
MIT Open Access Articles

Designing Hardware for Machine Learning:
The Important Role Played by Circuit Designers

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Sze, Vivienne. "Designing Hardware for Machine Learning: The Important Role Played
by Circuit Designers." IEEE Solid-State Circuits Magazine 9, 4 (November 2017): 46-54 © 2017
IEEE

As Published: http://dx.doi.org/10.1109/mssc.2017.2745798

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: https://hdl.handle.net/1721.1/129802

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/129802
http://creativecommons.org/licenses/by-nc-sa/4.0/

Designing Hardware for Machine Learning
Vivienne Sze

Abstract—Machine learning is becoming increasingly impor-
tant in the era of big data. It enables us to extract meaningful
information from the overwhelming amount of data that is being
generated and collected every day. This information can be used
to analyze and understand the data to identify trends (e.g., surveil-
lance, portable/wearable electronics); or to take immediate action
(e.g., robotics/drones, self-driving cars, smart Internet of Things).
In many applications, embedded processing near the sensor is
preferred over the cloud due to privacy or latency concerns, or
limitations in the communication bandwidth. However, sensor
devices often have stringent constraints on energy consumption
and cost in addition to throughput and accuracy requirements.
Circuit designers can play an important role in addressing these
challenges by developing energy-efficient platforms to perform
the necessary processing for machine learning. In this tutorial, we
will give a short overview of the key concepts in machine learning,
discuss its challenges particularly in the embedded space, and
highlight various opportunities where circuit designers can help
to address these challenges.

I. INTRODUCTION

Machine learning is needed to extract meaningful, and ideally
actionable, information from the overwhelming amount of data
that is being generated and collected every day. Given the
sheer volume of data, the high energy cost of communication
and the often limited communication bandwidth, there is an
increasing need to perform the analysis locally near the sensor
rather than sending the raw data to the cloud. Enabling machine
learning at the edge also addresses important concerns related to
privacy, latency and security. Accordingly, embedded machine
learning has shown to be beneficial for many applications in
the multimedia and medical fields.

For instance, computer vision is a form of machine learning
that extracts information from images and videos, which are
arguably the biggest of the big data as they account for over
70% of today’s Internet traffic [1]. In many applications (e.g.,
measuring wait times in stores, traffic patterns), it is desirable to
extract the meaningful information from the video at the image
sensor rather than in the cloud to reduce the communication
cost. For other applications such as autonomous vehicles, drone
navigation and robotics, local processing is desired since the
latency and security risk of relying on the cloud are too high.
However, video involves a large amount of data, which is
computationally expensive to process; thus, low cost hardware
to analyze video is challenging yet critical to enabling these
applications. While there is a wide range of computer vision
tasks [2], in this article, we will focus on image classification
as a driving example, where the task is to determine the class
of objects in the image (Fig. 1).

Another important application is speech recognition, which
enables us to seamlessly interact with electronic devices, such
as smartphones. Speech recognition is the first step before

Dog (0.7)
Cat (0.1)
Bike (0.02)
Car (0.02)
Plane (0.02)
House (0.04)

Machine	
Learning		
(Inference)	

Fig. 1. Example of an image classification task. The machine learning
platform takes in an image and outputs the confidence scores for a predefined
set of classes.

Feature
Extraction

Classification
(wTx)

Handcrafted Features
(e.g. HOG)

Learned Features
(e.g. DNN)

pixels Features (x)

Trained weights (w)
Image

Scores

Scores per class
(select class based

on max or threshold)

Fig. 2. Inference pipeline.

many other tasks such as machine translation, natural language
processing, etc. Low power hardware for speech recognition
is explored in [3, 4].

In the medical field, there is a clinical need to collect long-
term data to help detect/diagnose various diseases or monitor
treatment. For instance, constant monitoring of ECG or EEG
signals can identify cardiovascular diseases or detect the onset
of a seizure for epilepsy patients, respectively. In many cases,
these devices are either wearable or implantable, and thus the
energy consumption must be kept to a minimum. The use of
embedded machine learning to extract meaningful physiological
signals and process them locally is explored in [5, 6].

II. MACHINE LEARNING BASICS

Machine learning is a form of artificial intelligence (AI)
that can perform a task without being specifically programmed.
Instead, it learns from previous examples of the given task
during a process called training. After learning, the task is
performed on new data through a process called inference.
Machine learning is particularly useful for applications where
the data is difficult to model analytically.

A typical machine learning pipeline for inference can be
broken down into two steps as shown in Fig. 2: Feature
Extraction and Classification. Approaches such as deep neural
networks (DNN) blur the distinction between these steps.

A. Feature Extraction

Feature extraction is used to transform the raw data into
meaningful representations for the given task. Traditionally,
feature extraction was designed through a hand-crafted process
by experts in the field. For instance, it was observed that
humans are sensitive to edges (i.e., gradients) in an image.
As a result, many well-known computer vision algorithms use
image gradient-based features such as Histogram of Oriented
Gradients (HOG) [7] and Scale Invariant Feature Transform
(SIFT) [8]. The challenge in designing these features is to
make them robust to variations in illumination and noise.

B. Classification

The output of feature extraction is represented by a vector
(x in Fig. 2), which is mapped to a score of confidence using
a classifier. Depending on the application, the score is either
compared to a threshold to determine if an object is present,
or compared to the other scores to determine the object class.

Techniques for classification include linear methods such as
support vector machine (SVM) [9] and Softmax, and non-linear
methods such as kernel-SVM [9] and Adaboost [10]. Many
of these classifiers compute the score using a dot product of
the features (~x) and a set of weights (~w) (i.e.,

∑
i wixi). As

a result, machine learning hardware research tends to focus
on reducing the cost of a multiply and accumulate (MAC)
operation.

Training involves learning these weights from a dataset.
Inference involves performing a given task using the trained
weights. In most cases, training is done in the cloud, while
inference can happen in the cloud or locally on a device near
the sensor. In latter case, the trained weights are downloaded
from the cloud and stored on the device. Thus, the device
needs to be programmable in order to support a reasonable
range of tasks.

C. Deep Neural Networks (DNN)

Rather than using hand-crafted features, the features can
be directly learned from the data, similar to the weights in
the classifier, such that the entire system is trained end-to-
end. These learned features are used in a popular form of
machine learning called deep neural networks (DNN), also
known as deep learning [11]. DNNs deliver higher accuracy
than hand-crafted features, sometimes even better than human
level accuracy, on a variety of tasks by mapping inputs to
a high-dimensional representation; however, it comes at the
cost of high computational complexity, resulting in orders
of magnitude higher energy consumption than hand-crafted
approaches [12].

There are many forms of DNN (e.g., convolutional neural
networks, recurrent neural networks, etc.). For computer vision
applications, DNNs are often composed of multiple convolu-
tional (CONV) layers [13] as shown in Fig. 3; each CONV
layer involves the application of multiple high-dimensional
filters to the incoming data. With each layer, a higher-level
abstraction of the input data, called a feature map, is extracted
that preserves essential yet unique information. Modern DNNs

Modern DNNs: 5 – 1000 Layers

Classes FC
Layer

CONV
Layer

Low-Level
Features CONV

Layer

High-Level
Features …

1 – 3 Layers

convolu'on	 non-linearity	

×	

normaliza'on	 pooling	

Fig. 3. Deep Neural Networks are composed of several convolutional layers
followed by fully connected layers.

TABLE I
SUMMARY OF POPULAR DNNS [16, 18–21]. ACCURACY MEASURED

BASED ON TOP-5 ERROR ON IMAGENET [22].

Metrics LeNet AlexNet VGG-16 GoogLeNet ResNet
5 16 (v1) 50

Accuracy n/a 16.4 7.4 6.7 5.3
CONV Layers 2 5 16 21 49

Weights 2.6k 2.3M 14.7M 6.0M 23.5M
MACs 283k 666M 15.3G 1.43G 3.86G

FC Layers 2 3 3 1 1
Weights 58k 58.6M 124M 1M 2M
MACs 58k 58.6M 124M 1M 2M

Total Weights 60k 61M 138M 7M 25.5M
Total MACs 341k 724M 15.5G 1.43G 3.9G

are able to achieve superior performance by employing a very
deep hierarchy of layers, on the order of tens to hundreds.

The output of the final CONV layer is typically processed
by fully-connected (FC) layers for classification. In FC layers,
the filter and input feature map are the same size, so that there
is a unique weight for each input feature value. In between
CONV and FC layers, additional functions can be added, such
as pooling and normalization [14]. In addition, a non-linear
function, such as a rectified linear unit (ReLU) [15], is applied
after each CONV and FC layer. Overall, convolutions still
account for over 90% of the run-time and energy consumption
in modern DNNs for computer vision.

Table I compares modern DNNs, with a popular neural net
from the 1990s, LeNet-5 [16]. Today’s DNNs use more layers
(i.e., deeper) and are several orders of magnitude larger in
terms of compute and storage. A more detailed discussion on
DNNs can be found in [17].

D. Impact of Difficulty of Task on Complexity

The difficulty of the task must be considered when comparing
different hardware platforms for machine learning, as the size
of the classifier or network (i.e., number of weights) and the
number of MACs tend to be larger for more difficult tasks and
thus require more energy. For instance, the task of classifying
handwritten digits from the MNIST dataset [23] is much
simpler than classifying an object into one of a 1000 classes
in the ImageNet dataset [22](Fig. 4). Accordingly, LeNet-
5, which is designed for digit classification, requires much

MNIST ImageNet

Fig. 4. MNIST (10 classes, 60k training, 10k testing) [23] vs. ImageNet
(1000 classes, 1.3M training, 100k testing) [22] dataset.

less storage and compute than the larger DNNs in Table I,
which are designed for the 1000-class image classification
task. Thus, hardware platforms should only be compared when
performing machine learning tasks of similar difficulty and
accuracy; ideally, the same task with the same accuracy.

III. CHALLENGES

The key metrics for embedded machine learning are accuracy,
energy consumption, throughput, and cost. The challenge is to
address all these requirements concurrently.

As previously discussed, the accuracy of the machine
learning algorithm should be measured for a well-defined task
on a sufficiently large dataset (e.g., ImageNet).

Energy consumption is often dominated by data movement
as memory access consumes significantly more energy than
computation [24]. This is particularly challenging for machine
learning as the high dimensional representation and filters
increase the amount of data generated, and the programmability
needed to support different applications, tasks and networks
means that the weights also need to be read and stored. In
this article, we will discuss various methods that reduce data
movement to minimize energy consumption.

The throughput is dictated by the amount of computation,
which also increases with the dimensionality of the data. In this
article, we will discuss various transforms that can be applied
to the data to reduce the number of required operations.

The cost is dictated by the amount of storage required on
the chip. In this article, we will discuss various methods to
reduce storage costs such that the area of the chip is reduced,
while maintaining low off-chip memory bandwidth.

Currently, state-of-the-art DNNs consume orders of magni-
tude higher energy than other forms of embedded processing
(e.g., video compression) [12]. We must exploit opportunities
at multiple levels of hardware design to address all these
challenges and close this energy gap.

IV. OPPORTUNITIES IN ARCHITECTURES

The MAC operations in both the feature extraction (CONV
layers in a DNN) and classification (for both DNN and hand-
crafted features) can be easily parallelized. Two common highly-
parallel compute paradigms that can be used are shown in Fig. 5.

A. CPU and GPU Platforms

CPUs and GPUs use temporal architectures such as SIMD or
SIMT to perform the MACs in parallel. All the arithmetic logic

Temporal Architecture
(SIMD/SIMT)

Spatial Architecture
(Dataflow Processing)

Register File

Memory Hierarchy

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

Control

Memory Hierarchy

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

Fig. 5. Highly-parallel compute paradigms with multiple arithmetic logic
units (ALU).

units (ALUs) share the same control and memory (register file).
On these platforms, all classifications are represented by a
matrix multiplication. The CONV layer in a DNN can also be
mapped to a matrix multiplication using the Toeplitz matrix.
Software libraries that optimize for matrix multiplications can
be used to accelerate processing on CPUs (e.g., OpenBLAS,
Intel MKL, etc.) and GPUs (e.g., cuBLAS, cuDNN, etc.). The
matrix multiplications can be further sped up by applying
transforms such as Fast Fourier Transform (FFT) [25, 26]
and Winograd [27] to the data to reduce the number of
multiplications.

B. Specialized Hardware

Specialized hardware provides an opportunity to optimize
the data movement (i.e., dataflow) in order to minimize
accesses from the expensive levels of the memory hierarchy
and maximize data reuse at the low-cost levels of the memory
hierarchy. Fig. 6 shows the memory hierarchy of the spatial
architecture in Fig. 5, where each ALU processing element
(PE) has a local memory (register file) on the order of several
kB and a shared memory (global buffer) on the order of several
hundred kB. The global buffer communicates with the off-chip
memory (e.g., DRAM). Data movement is allowed between
the PEs using an on-chip network (NoC) to reduce accesses
to the global buffer and the off-chip memory.

The dataflows of all three types of data (feature map, filter
weights and partial sums) affect energy consumption. Various
dataflows have been demonstrated in recent works [28–39],
which differ in terms of the type of data that moves and the type
of data that remains stationary in the register file [40]. The row
stationary dataflow, which considers the energy consumption
of all three data types, reduces the energy consumption by
1.4× to 2.5× compared to the other dataflows for the CONV
layers [41].

V. OPPORTUNITIES IN JOINT ALGORITHM AND HARDWARE
DESIGN

The machine learning algorithms can be modified to make
them more hardware-friendly by reducing computation, data

DRAM Global
Buffer PE

PE PE

ALU fetch data to run
a MAC here

ALU

Buffer ALU

RF ALU

Normalized Energy Cost

200×
6×

PE ALU 2×
1×
1× (Reference)

DRAM ALU

0.5 – 1.0 kB

100 – 500 kB

NoC: 200 – 1000 PEs

Fig. 6. Memory hierarchy and data movement energy for a spatial
architecture [41].

movement and storage requirements, while maintaining accu-
racy.

A. Reduce Precision

GPUs and CPUs commonly use 32-bit floating-point as the
default representation. For inference, it is possible to use fixed-
point with reduced bitwidth for energy and area savings, and
increased throughput, without affecting accuracy.

For instance, for object detection using hand-crafted HOG
features, only 11-bits are required per feature vector and only
5-bits are required per SVM weight [42]. For DNN inference,
recent commercial hardware uses 8-bit integer operations [43].
Custom hardware can be used to exploit the fact that the
minimum bitwidths varies per layer for energy savings [44] or
increased throughput [45]. With more significant changes to
the network, it is possible to reduce the bitwidth of DNNs to
1-bit at the cost of reduced accuracy [46, 47].

B. Sparsity

Increasing sparsity in the data reduces storage and com-
putation cost. For SVM classification, the weights can be
projected onto a basis such that the resulting weights are
sparse for a 2× reduction in number of multiplications [42].
For feature extraction, the input image can be made sparse by
pre-processing for a 24% reduction in power consumption [48].

For DNNs, the number of MACs and weights can be reduced
by removing weights through a process called pruning. This
was first explored in [49] where weights with minimal impact
on the output were removed. In [50], pruning is applied to
modern DNNs by removing small weights. However, removing
weights does not necessarily lead to lower energy. Accordingly,
in [51] weights are removed based on an energy-model [52]
to directly minimize energy consumption.

Specialized hardware in [42, 53–55] exploits sparse weights
for increased speed or reduced energy consumption. In Eye-
riss [53], the processing elements are designed to skip reads
and MACs when the inputs are zero, resulting in a 45% energy
reduction. In [42], specialized hardware is designed to avoid
computation and storage of zero-valued weights, which reduces
the energy and storage cost by 43% and 34%, respectively.

0.02

0.04

0.06

WLDAC Code

ΔV
BL

 (V
)

0
5 10 15 20 25 30 35

Ideal transfer curve

Nominal transfer curve

Standard Deviation
(from Monte Carlo

simulations)

IBC

WLDAC
code

ΔVBL

(a) Multiplication performed by bit-cell
(Figure from [57])

V1
G1

I1 = V1×G1
V2

G2

I2 = V2×G2

I = I1 + I2
= V1×G1 + V2×G2

(b) Gi is conductance of resistive
memory (Figure from [58])

Fig. 7. Analog computation by (a) SRAM bit-cell and (b) non-volatile resistive
memory.

C. Compression

Lightweight compression can be applied to exploit data
statistics (e.g., sparsity) to further reduce data movement and
storage cost. Lossless compression can reduce the transfer of
data on and off chip by around 2× as shown in [5, 44, 55].
Lossy compression such as vector quantization can also be used
on feature vectors [42] and weights [3, 6, 56] such that they
can be stored on-chip at low cost. When lossy compression is
used, it is also important to evaluate the impact on accuracy.

VI. OPPORTUNITIES IN MIXED-SIGNAL CIRCUITS

Mixed-signal circuit design can be used to address the data
movement between the memory and processing element (PE),
and also the sensor and PE. However, circuit non-idealities
should be factored into the algorithm design, for instance, by
reducing precision as discussed in Section V. In addition, since
the training often occurs in the digital domain, the ADC and
DAC overhead should also be accounted for when evaluating
the system.

While spatial architectures bring the memory closer to the
computation (i.e., into the PE), there have also been efforts to
integrate the computation into the memory itself. For instance,
in [57] the classification is embedded in the SRAM (Fig. 7(a)),
where the bit-cell current is effectively a product of the value
of the 5-bit feature vector (WLDAC) that drives the word line
(WL), and the value of the binary weight stored in the bit-cell.
The currents from bit-cells in the column are added together
to discharge the bitline (BL) by ∆VBL. This approach gives
12× energy savings over reading the 1-bit weights from the
SRAM.

Recent work has also explored the use of mixed-signal cir-
cuits to reduce the computation cost of the MAC. It was shown
in [59] that performing the MAC using switched capacitors
can potentially be more energy-efficient than digital circuits
at low bitwidths despite ADC and DAC overhead. In [60, 61],
the matrix multiplication (with bitwidths ≤ 8-bits) is integrated

into the ADC; this also moves the computation closer to the
sensor and reduces the number of ADC conversions by 21×.

To further reduce the data movement from the sensor, [62]
proposed performing the entire CONV layer in the analog
domain at the sensor. Similarly, in [63], the entire HOG
feature is computed in the analog domain to reduce the sensor
bandwidth by 96.5%.

VII. OPPORTUNITIES IN ADVANCED TECHNOLOGIES

Advanced technologies can also be used to reduce data
movement by moving the processing and memory closer
together. For instance, embedded DRAM (eDRAM) and
Hyper Memory Cube (HMC) are explored in [39] and [64],
respectively, to reduce the energy access cost of the weights
in DNN. The multiplication can also be directly integrated
into advanced non-volatile memories [65] by using them as
resistive elements (Fig. 7(b)). Specifically, the multiplications
are performed where the conductance is the weight, the voltage
is the input, and the current is the output; the addition is done
by summing the current using Kirchhoff’s current law. Similar
to the mixed-signal circuits, the precision is limited, and the
ADC and DAC overhead must be considered in the overall cost.
DNN processing using memristors is demonstrated in [58, 66],
where the bitwidth of the memristors is restricted to 2 to 4
bits.

The computation can also be embedded into the sensors.
For instance, an Angle Sensitive Pixels sensor can be used to
compute the gradient of the image input, which along with
compression, reduces the sensor bandwidth by 10× [67]. Such a
sensor can also reduce the computation and energy consumption
of the subsequent processing engine [48, 68].

VIII. SUMMARY

Machine learning is an important area of research with
many promising applications and opportunities for innovation
at various levels of hardware design. The challenge is to balance
the accuracy, energy, throughput and cost requirements.

Since data movement dominates energy consumption, the
primary focus of recent research has been to reduce the data
movement while maintaining accuracy, throughput and cost.
This means selecting architectures with favorable memory
hierarchies like a spatial array, and developing dataflows that
increase data reuse at the low-cost levels of the memory
hierarchy. With joint design of algorithm and hardware, reduced
bitwidth precision, increased sparsity and compression are used
to further reduce the data movement requirements. With mixed-
signal circuit design and advanced technologies, computation
is moved closer to the source by embedding computation near
or within the sensor and in the memories.

Finally, designers should also consider the interactions
between the different levels. For instance, reducing the bitwidth
through hardware-friendly algorithm design enables reduced
precision processing with mixed-signal circuits and non-
volatile memories. Reducing the cost of memory access with
advanced technologies could also result in more energy-efficient
dataflows.

ACKNOWLEDGMENT

Portions of this article contains excerpts from our invited
paper entitled ”Hardware for Machine Learning: Challenges
and Opportunities” that appeared at the 2017 IEEE Custom
Integrated Circuits Conference [69].

REFERENCES

[1] “Complete Visual Networking Index (VNI) Forecast,” Cisco,
June 2016.

[2] R. Szeliski, Computer vision: algorithms and applications.
Springer Science & Business Media, 2010.

[3] M. Price, J. Glass, and A. P. Chandrakasan, “A 6 mW, 5,000-
Word Real-Time Speech Recognizer Using WFST Models,”
IEEE J. Solid-State Circuits, vol. 50, no. 1, pp. 102–112, 2015.

[4] R. Yazdani, A. Segura, J.-M. Arnau, and A. Gonzalez, “An
ultra low-power hardware accelerator for automatic speech
recognition,” in MICRO, 2016.

[5] T.-C. Chen, T.-H. Lee, Y.-H. Chen, T.-C. Ma, T.-D. Chuang, C.-J.
Chou, C.-H. Yang, T.-H. Lin, and L.-G. Chen, “1.4µW/channel
16-channel EEG/ECoG processor for smart brain sensor SoC,”
in Sym. on VLSI, 2010.

[6] K. H. Lee and N. Verma, “A low-power processor with
configurable embedded machine-learning accelerators for high-
order and adaptive analysis of medical-sensor signals,” IEEE J.
Solid-State Circuits, vol. 48, no. 7, pp. 1625–1637, 2013.

[7] N. Dalal and B. Triggs, “Histograms of oriented gradients for
human detection,” in CVPR, 2005.

[8] D. G. Lowe, “Object recognition from local scale-invariant
features,” in ICCV, 1999.

[9] N. Cristianini and J. Shawe-Taylor, An introduction to support
vector machines and other kernel-based learning methods.
Cambridge university press, 2000.

[10] R. E. Schapire and Y. Freund, Boosting: Foundations and
algorithms. MIT press, 2012.

[11] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
vol. 521, no. 7553, pp. 436–444, May 2015.

[12] A. Suleiman, Y.-H. Chen, J. Emer, and V. Sze, “Towards Closing
the Energy Gap Between HOG and CNN Features for Embedded
Vision,” in ISCAS, 2017.

[13] Y. LeCun, K. Kavukcuoglu, and C. Farabet, “Convolutional
networks and applications in vision,” in ISCAS, 2010.

[14] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,” in
ICML, 2015.

[15] V. Nair and G. E. Hinton, “Rectified Linear Units Improve
Restricted Boltzmann Machines,” in ICML, 2010.

[16] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86,
no. 11, pp. 2278–2324, Nov 1998.

[17] V. Sze, Y.-H. Chen, T.-J. Yang, and J. Emer, “Efficient Processing
of Deep Neural Networks: A Tutorial and Survey,” arXiv preprint
arXiv:1703.09039, 2017.

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet
Classification with Deep Convolutional Neural Networks,” in
NIPS, 2012.

[19] K. Simonyan and A. Zisserman, “Very Deep Convolutional
Networks for Large-Scale Image Recognition,” in ICLR, 2015.

[20] C. Szegedy and et al., “Going Deeper With Convolutions,” in
CVPR, 2015.

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning
for Image Recognition,” in CVPR, 2016.

[22] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg,
and L. Fei-Fei, “ImageNet Large Scale Visual Recognition
Challenge,” International Journal of Computer Vision (IJCV),
vol. 115, no. 3, pp. 211–252, 2015.

[23] C. J. B. Yann LeCun, Corinna Cortes, “THE MNIST DATABASE
of handwritten digits,” http://yann.lecun.com/exdb/mnist/.

[24] M. Horowitz, “Computing’s energy problem (and what we can
do about it),” in ISSCC, 2014.

[25] M. Mathieu, M. Henaff, and Y. LeCun, “Fast training of
convolutional networks through FFTs,” in ICLR, 2014.

[26] C. Dubout and F. Fleuret, “Exact acceleration of linear object
detectors,” in ECCV, 2012.

[27] A. Lavin and S. Gray, “Fast algorithms for convolutional neural
networks,” in CVPR, 2016.

[28] M. Sankaradas, V. Jakkula, S. Cadambi, S. Chakradhar, I. Dur-
danovic, E. Cosatto, and H. P. Graf, “A Massively Parallel
Coprocessor for Convolutional Neural Networks,” in ASAP,
2009.

[29] V. Sriram, D. Cox, K. H. Tsoi, and W. Luk, “Towards an
embedded biologically-inspired machine vision processor,” in
FPT, 2010.

[30] S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi, “A
Dynamically Configurable Coprocessor for Convolutional Neural
Networks,” in ISCA, 2010.

[31] V. Gokhale, J. Jin, A. Dundar, B. Martini, and E. Culurciello,
“A 240 G-ops/s Mobile Coprocessor for Deep Neural Networks,”
in CVPRW, 2014.

[32] S. Park, K. Bong, D. Shin, J. Lee, S. Choi, and H.-J. Yoo, “A
1.93TOPS/W scalable deep learning/inference processor with
tetra-parallel MIMD architecture for big-data applications,” in
ISSCC, 2015.

[33] L. Cavigelli, D. Gschwend, C. Mayer, S. Willi, B. Muheim, and
L. Benini, “Origami: A Convolutional Network Accelerator,” in
GLVLSI, 2015.

[34] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan,
“Deep Learning with Limited Numerical Precision,” in ICML,
2015.

[35] Z. Du and et al., “ShiDianNao: Shifting Vision Processing Closer
to the Sensor,” in ISCA, 2015.

[36] M. Peemen, A. A. A. Setio, B. Mesman, and H. Corporaal,
“Memory-centric accelerator design for Convolutional Neural
Networks,” in ICCD, 2013.

[37] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Opti-
mizing FPGA-based Accelerator Design for Deep Convolutional
Neural Networks,” in FPGA, 2015.

[38] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“DianNao: A Small-footprint High-throughput Accelerator for
Ubiquitous Machine-learning,” in ASPLOS, 2014.

[39] Y. Chen and et al., “DaDianNao: A Machine-Learning Super-
computer,” in MICRO, 2014.

[40] Y.-H. Chen, J. Emer, and V. Sze, “Using Dataflow to Optimize
Energy Efficiency of Deep Neural Network Accelerators,” IEEE
Micro, vol. 37, no. 3, pp. 12–21, 2017.

[41] ——, “Eyeriss: A Spatial Architecture for Energy-Efficient
Dataflow for Convolutional Neural Networks,” in ISCA, 2016.

[42] A. Suleiman, Z. Zhang, and V. Sze, “A 58.6 mW real-time
programmable object detector with multi-scale multi-object
support using deformable parts model on 1920× 1080 video at
30fps,” in Sym. on VLSI, 2016.

[43] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal,
R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers et al.,
“In-datacenter performance analysis of a tensor processing unit,”
in ISCA, 2017.

[44] B. Moons and M. Verhelst, “A 0.3–2.6 TOPS/W precision-
scalable processor for real-time large-scale ConvNets,” in Sym.
on VLSI, 2016.

[45] P. Judd, J. Albericio, and A. Moshovos, “Stripes: Bit-serial deep
neural network computing,” IEEE Computer Architecture Letters,
2016.

[46] M. Courbariaux and Y. Bengio, “Binarynet: Training deep neural
networks with weights and activations constrained to+ 1 or-1,”

arXiv preprint arXiv:1602.02830, 2016.
[47] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-

Net: ImageNet Classification Using Binary Convolutional Neural
Networks,” in ECCV, 2016.

[48] A. Suleiman and V. Sze, “Energy-efficient HOG-based object
detection at 1080HD 60 fps with multi-scale support,” in SiPS,
2014.

[49] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal Brain Damage,”
in NIPS, 1990.

[50] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both Weights
and Connections for Efficient Neural Network,” in NIPS, 2015.

[51] T.-J. Yang and et al., “Designing Energy-Efficient Convolutional
Neural Networks using Energy-Aware Pruning,” CVPR, 2017.

[52] “DNN Energy Estimation,” http://eyeriss.mit.edu/energy.html.
[53] Y.-H. Chen and et al., “Eyeriss: An Energy-Efficient Reconfig-

urable Accelerator for Deep Convolutional Neural Networks,”
in ISSCC, 2016.

[54] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger,
and A. Moshovos, “Cnvlutin: ineffectual-neuron-free deep neural
network computing,” in ISCA, 2016.

[55] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz,
and W. J. Dally, “EIE: efficient inference engine on compressed
deep neural network,” in ISCA, 2016.

[56] S. Han, H. Mao, and W. J. Dally, “Deep Compression: Compress-
ing Deep Neural Network with Pruning, Trained Quantization
and Huffman Coding,” in ICLR, 2016.

[57] J. Zhang, Z. Wang, and N. Verma, “A machine-learning classifier
implemented in a standard 6T SRAM array,” in Sym. on VLSI,
2016.

[58] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P.
Strachan, M. Hu, R. S. Williams, and V. Srikumar, “ISAAC: A
Convolutional Neural Network Accelerator with In-Situ Analog
Arithmetic in Crossbars,” in ISCA, 2016.

[59] B. Murmann, D. Bankman, E. Chai, D. Miyashita, and L. Yang,
“Mixed-signal circuits for embedded machine-learning applica-
tions,” in Asilomar, 2015.

[60] J. Zhang, Z. Wang, and N. Verma, “A matrix-multiplying ADC
implementing a machine-learning classifier directly with data
conversion,” in ISSCC, 2015.

[61] E. H. Lee and S. S. Wong, “A 2.5 GHz 7.7 TOPS/W switched-
capacitor matrix multiplier with co-designed local memory in
40nm,” in ISSCC, 2016.

[62] R. LiKamWa, Y. Hou, J. Gao, M. Polansky, and L. Zhong, “Red-
Eye: analog ConvNet image sensor architecture for continuous
mobile vision,” in ISCA, 2016.

[63] J. Choi, S. Park, J. Cho, and E. Yoon, “A 3.4-µW object-adaptive
CMOS image sensor with embedded feature extraction algorithm
for motion-triggered object-of-interest imaging,” IEEE J. Solid-
State Circuits, vol. 49, no. 1, pp. 289–300, 2014.

[64] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopad-
hyay, “Neurocube: A programmable digital neuromorphic archi-
tecture with high-density 3D memory,” in ISCA, 2016.

[65] S. Yu and P.-Y. Chen, “Emerging memory technologies: Recent
trends and prospects,” IEEE Solid-State Circuits Magazine, vol. 8,
no. 2, pp. 43–56, 2016.

[66] P. Chi, S. Li, Z. Qi, P. Gu, C. Xu, T. Zhang, J. Zhao, Y. Liu,
Y. Wang, and Y. Xie, “PRIME: A Novel Processing-In-Memory
Architecture for Neural Network Computation in ReRAM-based
Main Memory,” in ISCA, 2016.

[67] A. Wang, S. Sivaramakrishnan, and A. Molnar, “A 180nm CMOS
image sensor with on-chip optoelectronic image compression,”
in CICC, 2012.

[68] H. Chen, S. Jayasuriya, J. Yang, J. Stephen, S. Sivaramakrishnan,
A. Veeraraghavan, and A. Molnar, “ASP Vision: Optically
Computing the First Layer of Convolutional Neural Networks
using Angle Sensitive Pixels,” in CVPR, 2016.

[69] V. Sze, Y.-H. Chen, J. Emer, A. Suleiman, and Z. Zhang,

http://yann.lecun.com/exdb/mnist/
http://eyeriss.mit.edu/energy.html

“Hardware for Machine Learning: Challenges and Opportunities,”
in CICC, 2017.

	Introduction
	Machine Learning Basics
	Feature Extraction
	Classification
	Deep Neural Networks (DNN)
	Impact of Difficulty of Task on Complexity

	Challenges
	Opportunities in Architectures
	CPU and GPU Platforms
	Specialized Hardware

	Opportunities in Joint Algorithm and Hardware Design
	Reduce Precision
	Sparsity
	Compression

	Opportunities in Mixed-Signal Circuits
	Opportunities in Advanced Technologies
	Summary

