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The decision of how to allocate subjects to treatment groups is of great importance in experimental clini-

cal trials for novel investigational drugs, a multi-billion dollar industry. Statistical power, the ability of an

experiment to detect a positive treatment effect when one exists, depends in part on the similarity of the

groups in terms of measurable covariates that affect the treatment response. We present a novel algorithm

for online allocation that leverages robust mixed-integer optimization. In all tested scenarios, the proposed

method yields statistical power at least as high as, and sometimes significantly higher than, state-of-the-art

covariate-adaptive randomization approaches. We present a setting in which our algorithm achieves a desired

level of power at a sample size 25-50% smaller than that required with randomization-based approaches. Cor-

respondingly, we expect that our covariate-adaptive optimization approach could substantially reduce both

the duration and operating costs of clinical trials in many commonly observed settings, while maintaining

computational efficiency and protection against experimental bias.

Key words : Clinical trials; Covariate-adaptive randomization; Mixed-integer optimization; Online

allocation; Robust optimization; Statistical power.

1. Introduction

A central task in formal experimentation for scientific inquiry is to identify unique groups of

subjects which should be administered alternate treatment conditions. In particular, the groups

should be as similar as possible as defined by measurable covariates, or attributes, which affect
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an individual’s response to treatment, so as distinguish the effect of treatment from confounding

factors.

The decision of how to allocate subjects to treatment groups is especially impactful in the

domain of experimental clinical trials for novel investigational drugs. Statistical power, the ability

of an experiment to detect a positive treatment effect when one exists, depends on the size of the

groups, the size of the treatment effect, and the chosen significance level, as well as, crucially, the

similarity of the groups in terms of covariates that affect the treatment response. The benefits of

achieving high power without increasing sample size are potentially massive. In 2010, global phar-

maceutical companies spent $32.5 billion to conduct clinical trials, out of $46.4 total expenditure

on research and development (Berndt and Cockburn 2013). Furthermore, drug approval requires

multiple phases of clinical trials that typically take years to complete (U.S. Food and Drug Admin-

istration 2015). The financial and time pressures of this challenging process often require qualified

individuals to be enrolled in a trial and quickly assigned and administered a treatment without

waiting for information about the characteristics of future enrollees; the urgency is especially press-

ing in instances of potentially life-saving treatments.

By leveraging robust, mixed-integer optimization (MIO), we present a novel algorithm that can

decrease the sample size needed to conduct a clinical trial by as much as 25-50% in certain settings,

and thus substantially reduce both the cost of conducting clinical trials and the time it takes for

novel effective therapies to reach patients. We extend the MIO approach of Bertsimas et al. (2015)

to the online setting in which subjects arrive sequentially.

The study of treatment allocation for controlled experiments dates back to Fisher (1935). Ran-

domization has been favored historically as a way to control for selection bias. However, random-

ization can yield another accidental bias identified by Efron (1971), in which there is an imbalance

in the distributions of known or hidden covariates across randomly assigned treatment groups.

There have been many attempts in the literature to address this accidental bias in both the offline

and online allocation settings. For the offline problem, some prominent mechanisms are pairwise
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matching (Rosenbaum and Rubin 1985, Greevy et al. 2004), rerandomization (Morgan and Rubin

2012), and the finite selection model (Morris 1979). Bertsimas et al. (2015) used an alternative

offline optimization-based approach.

For the online sequential allocation problem, Rosenberger and Sverdlov (2008) provide an excel-

lent review of the available heuristics for covariate-adaptive randomization, including prestratifi-

cation and biased coin designs. Many of the existing heuristics stem from variations of the biased

coin design first introduced by Efron (1971), including nonrandomized minimization (Taves 1974),

randomized minimization (Pocock and Simon 1975), and designs that attempt to minimize the

variance of the treatment effect (Atkinson 1982) or minimize loss of information (Antognini and

Zagoraiou 2011). These biased coin designs outperform pure randomization and represent the cur-

rent state of the art for online allocation. More recently, Kapelner and Krieger (2014) introduced

a pooled sequential matching algorithm, which discards covariate data as soon as each subject is

matched. Bhat, Farias, and Moallemi (2015) propose a dynamic programming algorithm for sequen-

tial allocation that comes with computational challenges for which they provide an approximation

algorithm. We believe that simple randomization or biased coin designs are most commonly used

in practice. While more advanced statistical methods exist, we demonstrate that robust, mixed-

integer optimization has the potential to improve upon existing methods in many instances, by

taking into account the uncertainty about future subjects.

In this paper, we develop a novel covariate-adaptive optimization mechanism for online alloca-

tion, which outperforms state-of-the-art covariate-adaptive randomization methods. We extend the

offline mixed-integer optimization approach presented in Bertsimas et al. (2015) to the online set-

ting in which patients arrive sequentially and each patient’s covariate data cannot be observed until

the time of her arrival. The new algorithm takes the form of a sequence of mixed-integer nonlinear

optimization problems. We adopt a robust optimization technique with a quadratic uncertainty set

(Ben-Tal, Nemirovski, and Roos 2002, Bertsimas, Brown, and Caramanis 2011), which serves as a

natural approach to model the uncertainty about future subjects.
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The new method, henceforth referred to as the covariate-adaptive robust optimization (CA-RO)

algorithm, delivers the following benefits:

1. In all tested scenarios, the CA-RO method achieved statistical power at least as high as, and

sometimes significantly higher than, covariate-adaptive randomization (CA-RAND) approaches.

We present an example of a nonlinear covariate-response setting for which the CA-RO method

achieved a desired level of statistical power at a sample size 25-50% smaller than that required

with the best CA-RAND approach.

2. We present theoretical and empirical evidence that the optimization approach compares

favorably with CA-RAND methods with respect to three advantages of complete randomization

described by Efron (1971): freedom from selection bias; freedom from accidental bias with respect

to observed and hidden covariates; and, a reasoned basis for inference.

3. The algorithm is sufficiently general to produce assignments among multiple groups p =

1, . . . ,m with multiple observed covariates per subject. The CA-RO algorithm can also be extended

to the setting where it is possible to aggregate subjects into small clusters of size r prior to making

group assignments.

4. The CA-RO algorithm is computationally tractable for instances of practical size, despite

taking the form of a nonlinear mixed-integer optimization problem that cannot be solved using

off-the-shelf commercial solvers. Our choice of uncertainty set allows us to extract a closed-form

solution for the robust constraints. Hence, we are able to solve the optimization by enumeration

with complexity O(mr), which does not depend on the sample size N . In all observed instances, CA-

RO provides the decision-maker with a high-quality assignment recommendation instantaneously

via enumeration.

The rest of the paper is organized as follows. In Section 2, we briefly revisit the optimization-

based allocation algorithm for the offline setting from Bertsimas, Johnson, and Kallus (2015).

This offline algorithm will form the basis for the online CA-RO approach we develop in Section

3. At the end of Section 3, we present computational results from experiments demonstrating the
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effectiveness of CA-RO in reducing between-group covariate imbalance. In Section 4, we provide

empirical evidence that the CA-RO algorithm achieves a high level of statistical power with much

smaller sample size as compared to CA-RAND methods when the covariate-response relationship

is nonlinear. In Section 5, we discuss the experimental bias and inference properties of the CA-RO

approach and demonstrate that it compares favorably with CA-RAND methods. Section 6 contains

concluding remarks.

2. Offline Optimization Approach

In this section, we describe a MIO approach to assign groups for the setting when pre-treatment

covariate values of all subjects are known ahead of time (Bertsimas et al. 2015). The decision-maker

knows a priori the total number of subjects N in the experiment and the respective covariates w =

(w1, . . . ,wN) of all subjects. Thus, she can make treatment allocations using this full information.

This may be the case, for example, in laboratory cancer drug testing on mice.

The decision-maker will assign k := N/m subjects to each of m ≥ 2 treatment groups. The

objective of the assignment is to minimize the maximum discrepancy between any two groups in

the weighted sum of the first and second moments of the covariates. Without loss of generality, we

assume that the vector of covariates w is normalized and has zero sample mean and unit sample

variance. The parameter ρ regulates the relative weight of the first and the second moments. The

binary decision variables are x = {xip | i = 1, . . . ,N, p = 1, . . . ,m}, where xip = 1 if subject i is

assigned to group p, and xip = 0, otherwise. We can express the mean and second moment of each

of the groups p∈ {1, . . . ,m} as follows:

µp(x) =
1

k

N∑
i=1

wi xip and σ2
p(x) =

1

k

N∑
i=1

w2
i xip.

Hence, the optimal offline assignment can be found using the following MIO problem, which we

henceforth refer to as the OPT algorithm:

min
x

max
p<q

|µp(x)−µq(x)|+ ρ|σ2
p(x)−σ2

q(x)| =
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min
x,d

d

s.t. ∀p < q= 1, . . . ,m :

d≥ µp(x)−µq(x) + ρσ2
p(x)− ρσ2

q(x)

d≥ µp(x)−µq(x) + ρσ2
q(x)− ρσ2

p(x)

d≥ µqx)−µp(x) + ρσ2
p(x)− ρσ2

q(x)

d≥ µq(x)−µp(x) + ρσ2
q(x)− ρσ2

p(x)

xip ∈ {0,1}
N∑
i=1

xip = k, ∀p= 1, . . . ,m

m∑
p=1

xip = 1, ∀i= 1, . . . ,N

xip = 0 ∀i < p.

The final constraint reduces the redundancy due to permutation symmetry in group numbering.

In all tested scenarios from Bertsimas et al. (2015), the OPT method generates groups with

covariate discrepancy that is exponentially lower in the group size k than those created by random-

ization. The expected average covariate discrepancy decreases from O(k−1/2) for randomization to

O(2−k) for the OPT algorithm. Furthermore, the OPT algorithm demonstrates exceptional preci-

sion in estimating small treatment effects and superior statistical power given a fixed treatment

effect.

For the remainder of this paper, the OPT algorithm will serve as a prescient benchmark for the

performance of methods in the setting of sequential online allocation.

3. Covariate-Adaptive Optimization Algorithms

In this section, we introduce the CA-RO algorithm, develop an extension in which aggregation

of decisions is allowed, and describe the results of empirical experiments comparing the covariate

balance of CA-RO versus CA-RAND methods.
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3.1. CA-RO Algorithm

To extend the model from Section 2 to the online setting, we consider the problem of N subjects

arriving sequentially. The decision-maker knows a priori the number of subjects k that will be

assigned to each of m≥ 2 treatment groups, such that N = km. In practical settings with sequential

arrivals, it is often reasonable to assume that investigators will have at least an estimate of the

number of subjects that will enroll based on the timeline, budget constraints, and prevalence of

disease in the population.

At each time-step t= 1, . . . ,N , where t indexes both the period and the subject, the decision-

maker observes the covariate vector wt ∈ RS, where S is the number of covariates observed for

each subject. We assume that this sequence of random covariate vectors is exchangeable, such

that any ordering of the subjects’ arrival is equally likely. The decision-maker then sets a decision

{xtp}mp=1 ∈ {0,1}m, where xtp = 1, if the decision-maker assigns subject t to group p ∈ {1, . . . ,m},

and xtp = 0, otherwise. In the CA-RO algorithm, the choice of {xtp}mp=1 is made by solving one

instance of robust MIO formulation (2) at each time-step. The data for the optimization at time-

step t include the covariate observations {wi}ti=1 and assignments x̂ := {x̂ip
∣∣ i = 1, . . . , t− 1, p =

1, . . . ,m} ∈ {0,1}(t−1)×m made at all previous time-steps. We define expressions for the sample

mean w̄t and the empirical covariance matrix Σt at time-step t as follows:

w̄t :=
1

t

t∑
i=1

wi and Σt :=
1

t

t∑
i=1

(wi− w̄t)(wi− w̄t)
>.

We also define uncertain parameters w̃ := {w̃i ∈RS}Ni=t+1, which represent the unknown covariates

for future subjects.

The objective of the CA-RO algorithm is to produce m groups whose covariate distributions are

as similar as possible. We measure the proximity between two groups p and q in terms of the mean

µsp and approximated variance σsp of group p= 1, . . . ,m with respect to covariate s= 1, . . . , S. At

time-step 1≤ t≤N , these sample statistics are defined as follows:

µsp :=
1

k

{ t−1∑
i=1

wsi x̂ip +wstxtp +
N∑

i=t+1

w̃sixip

}
,
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σsp :=
1

k

{ t−1∑
i=1

(wsi − w̄st )2x̂ip + (wst − w̄st )2xtp +
N∑

i=t+1

(w̃si − w̄st )2xip

}
,

where x := {xip ∈ {0,1}
∣∣ i = t, . . . ,N, p = 1, . . . ,m} are the binary assignment decision variables.

We model the decision at each time-step t= 1, . . . ,N by the following optimization problem:

min
x

max
p<q

S∑
s=1

|µsp−µsq|+ ρ|σsp−σsq |. (1)

Given that the values of future covariates w̃ are unknown, we employ robust optimization (Ben-Tal

et al. 2002) to model formulation (1) under uncertainty:

min
x,M,V,z

z

s.t. z ≥
S∑
s=1

M s
pq + ρV s

pq, ∀p < q

M s
pq ≥ µsp−µsq, ∀p < q, s= 1, . . . , S, ∀w̃ ∈Uw

M s
pq ≥ µsq −µsp, ∀p < q, s= 1, . . . , S, ∀w̃ ∈Uw

V s
pq ≥ σsp−σsq , ∀p < q, s= 1, . . . , S, ∀w̃ ∈Uw (2)

V s
pq ≥ σsq −σsp, ∀p < q, s= 1, . . . , S, ∀w̃ ∈Uw
t−1∑
i=1

x̂ip +xtp +
N∑

i=t+1

xip = k, ∀p= 1, . . . ,m

m∑
p=1

xip = 1, ∀i= t, . . . ,N

In this formulation, we use the uncertainty set Uw defined as follows:

Uw =
{

w̃ ∈R(N−t)×S
∣∣ w̃i = w̄t + (Σt)

1
2 εi, i= t+ 1, . . . ,N,ε∈Uε

}
,

where perturbation vector ε= (εt+1, . . . ,εN) belongs to the ellipsoidal uncertainty set Uε:

Uε =
{
ε∈R(N−t)×S

∣∣∣ ||ε||2 =

√√√√ N∑
i=t+1

S∑
s=1

(εsi )
2 ≤ Γ

√
(N − t)S

}
. (3)

The robustness parameter Γ controls the size of the ellipsoid and represents the level of conservatism

of the uncertainty set. In order to protect against experimental biases, we suggest that Γ should

be chosen independently at random for each time-step (see Section 5).
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Formulation (2) takes the form of a mixed-binary quadratic robust optimization problem with

conic uncertainty set, which cannot be solved using off-the-shelf commercial solvers. We overcome

this computational challenge by finding an efficient way to solve the following auxiliary optimization

problems with respect to the uncertain variables w̃:

max
w̃∈Uw

(
µsp−µsq

)
and max

w̃∈Uw

(
σsp−σsq

)
. (4)

The objectives of optimization problems (4) are to maximize a linear or quadratic function, respec-

tively, over an ellipsoid. The unique structure of these problems allows us to derive closed-form

solutions by applying Karush-Kuhn-Tucker conditions along with eigenvalue optimization. There-

fore, formulation (2) is equivalent to a mixed-binary optimization problem, described in (EC.7)

and (EC.8) in section EC.2 of the e-companion, that can be solved via simple enumeration of at

most m scenarios.

3.2. Aggregated CA-RO algorithm

The development of a partially online method is motivated by the opportunity presented when

multiple subjects enroll in a clinical trial within a short period of time. Under these circumstances,

the decision-maker may be able to make a joint decision regarding the simultaneous assignment of

this sub-cohort of subjects to treatment groups.

For this analysis, we will distinguish the notion of time from the arrival of subjects. Time will be

indexed by periods t= 1, . . . , T . Subjects will be indexed separately by i= 1, . . . ,N with covariate

vectors wi ∈RS, where N ≥ T . Both the number of periods T and the number of subjects N are

known a priori. We assume that at time t the decision-maker has observed the covariate values

for rt ≥ 1 unassigned subjects who have arrived during time period t. Let us define nt :=
∑t

j=1 rj

to represent the number of subjects who have arrived as of time t. We also introduce the vector

rt := {rj}tj=1. We can then define the following expressions to represent the sample mean and

approximated variance of group p with respect to covariate s at time t:

µsp(rt) =
1

k

{ nt−1∑
i=1

wsi x̂ip +

nt∑
i=nt−1+1

wsixip +
N∑

i=nt+1

w̃sixip

}
, and
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σsp(rt) =
1

k

{ nt−1∑
i=1

(wsi − w̄st )2x̂ip +

nt∑
i=nt−1+1

(wsi − w̄st )2xip +
N∑

i=nt+1

(w̃si − w̄st )2xip

}
.

In the aggregated CA-RO algorithm, we solve formulation (2) at each time-step t, but we replace

the expressions µsp and σsp with their generalized counterparts µsp(rt) and σsp(rt), respectively. The

optimal solutions {x∗ip ∈ {0,1} | i= nt−rt+1, . . . , nt, p= 1, . . . ,m} to the corresponding MIO prob-

lem are used to make the assignments at period t for rt subjects. The problem can be solved at time

t by enumeration with complexity O(mrt), and is therefore computationally tractable for instances

of practical size.

If the aggregation level is uniform across time such that rt = r for all t = 1, . . . , T − 1 and

rT =N − (T − 1)r, we define the CA-RO(r) algorithm with aggregation level r. We observe that

the CA-RO(1) algorithm is equivalent to the fully online CA-RO algorithm and the CA-RO(N)

algorithm is equivalent to the OPT algorithm from Section 2.

It is reasonable to assume that larger values of the aggregation parameter r lead to better

performance of the partially online algorithm in terms of both covariate balance and statistical

power. With a higher level of aggregation, the decision-maker has more information at the time of

each decision. In Section 3.4, we provide empirical evidence for this relationship.

3.3. Practical Considerations

When using the CA-RO algorithm in practice, we suggest a few modifications and parameter

selection guidelines.

1. At the beginning of the assignment process, group indices p = 1, . . . ,m can be randomly

assigned to each of the treatment conditions. In this way, the CA-RO algorithm is used to identify

groups that are well-balanced with respect to observed covariates, but plays no role in determining

which group should receive which treatment.

2. In the objective of formulation (2), the parameter ρ controls the tradeoff between imbalance in

the sample mean and the approximated variance. In practice, to facilitate an intuitive choice of ρ,

it is convenient to substitute the objective max
p<q

S∑
s=1

[
M s

pq + ρ
√
V s
pq

]
, which puts the expressions for



Bertsimas, Korolko and Weinstein: Covariate-Adaptive Optimization in Online Clinical Trials
Article submitted to Operations Research; manuscript no. OPRE-2017-06-327.R2 11

first and second moments on the same scale. This substitution by a nonlinear objective is tractable

because we are able to solve the optimization efficiently by enumeration. In the experiments that

follow, we use this nonlinear objective with ρ= 6, which we found to yield strong results that were

robust to perturbations of ρ across many instances.

3. At the beginning of the time horizon, we ensure that all groups have been assigned at least

one subject at random before we apply the optimization in formulation (2).

4. Toward the end of the time horizon, we set the robustness parameter Γ = 0 so as to make our

algorithm more greedy and avoid overly conservative assignment decisions.

5. In all tested experiments, the CA-RO(r) algorithms for r ∈ {1,3,5} produced assignment

recommendations instantaneously (i.e. under 1 second), which suggests that the method can be used

not just for clinical trials, but also for settings requiring real-time decisions, such as experimentation

for website design or marketing.

6. One can imagine a situation in which it is beneficial to exclude a given patient from the trial

on the basis of extreme covariate values rather than make an assignment. While we do not consider

this scenario directly in this paper, this question could be addressed through a pre-filter outlier

detection process. There are modifications that could be made to the MIO formulation to allow

for selective exclusion, but we leave this exploration to future work.

3.4. Empirical Performance

In this subsection, we evaluate the empirical performance of the CA-RO algorithm. First, we review

four state-of-the-art CA-RAND methods, which serve as benchmarks for the CA-RO algorithm.

Second, we compare the performance of the CA-RO algorithm at various aggregation levels with

pure randomization and these CA-RAND methods.

When evaluating the performance of CA-RO, we consider pure randomization (RAND) along

with the matching on-the-fly algorithm of Kapelner and Krieger (2014) (KK), and three biased

coin designs: the minimization method of Pocock and Simon (1975) (PS), the DA-optimal design of
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Atkinson (1982) (DA), and the covariate-adaptive biased coin design of Antognini and Zagoraiou

(2011) (AZ). The biased coin design methodology with m= 2, generically defined as

φt = Pr
(
xt1 = 1

∣∣∣ x̂1, . . . , x̂t−1; w1, . . . ,wt

)
= F

(
x̂1, . . . , x̂t−1; w1, . . . ,wt

)
,

forms the basis of the PS, DA and AZ methods, with function F (·) defined separately for each

method. For the PS method, the bias φt of the coin used in randomized allocation is defined as

φt =



1
2
, if D(t) = 0,

p, if D(t)< 0,

1− p, if D(t)> 0,

where p≥ 0.5 is the bias parameter and D(t) = 2
t−1∑
i=1

x̂i− (t− 1) represents the covariate imbalance

between the two groups after t−1 subjects have been assigned (with D(1) = 0). For the DA method,

φt =
(1− ζ)2

(1− ζ)2 + (1 + ζ)2
, where ζ =

wt
t−1∑
i=1

wi(xi1−xi2)

t−1∑
i=1

w2
i

for the case of one-dimensional covariates. In this definition, the value ζ represents the normalized

mismatch between the two groups after t−1 assignments. For the AZ method, we first define J+1

discrete levels ωj of the covariate space. If subject t arrives from level ωj, then the probability of

assignment of this subject into group 1 is φt =Gj(Dt(ωj)), where non-increasing and symmetric

functions Gj are defined as follows:

Gj(ζ) =


1
2
, 0≤ ζ ≤ 1,

(ζJ + 1)−1, ζ > 1,

and Gj(−ζ) +Gj(ζ) = 1, ∀ζ ∈,Z, j = 0, . . . J.

In this description, Dt(ωj) denotes the imbalance between the two groups within the level ωj. In

the KK method, subjects are either randomized to treatment groups or paired via a matching

criterion based on the pairwise Mahalanobis distance. In the latter case, the new paired subject is

assigned to the treatment opposite its pair in order to balance the groups.
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We now discuss the empirical performance of the various algorithms with respect to covariate

balance. For this analysis we took data from a Mayo Clinic trial of treatment for primary biliary

cirrhosis of the liver conducted between 1974 and 1984 (Therneau and Grambsch 2000) with a

total of 312 patients described by 20 covariates. After running a simple logistic regression model

predicting the outcome of the treatment, we identified three statistically significant covariates with

the largest effect: age (C1), alkaline phosphatase in U/liter (C2), and prothrombin time in seconds

(C3). We evaluated nine algorithms - RAND, PS, DA, AZ, KK and CA-RO(r) (with four different

values of r) - to measure the average worst pairwise difference in generalized moments across groups

with respect to three covariates described above (Table 1). For this and all subsequent experi-

ments when evaluating the CA-RO algorithm at any level of aggregation, we chose the robustness

parameter Γ in uncertainty set (3) independently and uniformly at random from the interval [0.5,

4] at each time-step. In terms of the discrepancy in the first moment, CA-RO outperformed other

CA-RAND algorithms for all standardized covariates. The discrepancy in the second moment,

which closely approximates the discrepancy in the variance in this setting, was also always lower

for CA-RO than for the best CA-RAND method. The discrepancy in higher moments, as well as

generalized moments of log(|w|) and 1/w, for CA-RO methods was always comparable with other

CA-RAND algorithms. As we expected, the advantage of optimization increases with r, and the

offline OPT algorithm has significantly better performance than other approaches.

We found similar (and often stronger) results from additional experiments with synthetic data

in which the covariates were generated from different types of distributions, including normal,

uniform, and long-tailed Cauchy distributions. One of these experiments is discussed in Section

EC.1 of the e-companion.

4. Statistical Power of CA-RO Algorithm

A common pre-condition for the approval of any clinical trial is to demonstrate that the trial

will have a sample size sufficient to make sound statistical inferences with high probability. These

inferences include both statistical power, the ability to detect a positive treatment effect when
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one exists, and a low type I error rate, the ability to correctly identify an ineffective treatment.

In classical statistical models, the power of a randomized controlled trial can be derived from the

sample size and significance level, given an estimated treatment effect. Randomized allocation can

yield an accidental imbalance in covariates between treatment groups that can impact the ability

to make experimental inferences. Traditionally, when estimating treatment effects, practitioners

have been satisfied to control for this covariate imbalance a posteriori via regression methods (Lin

2013).

We provide strong empirical evidence that such post hoc adjustments may produce suboptimal

effect estimation, particularly when the relationship between covariates and response is nonlinear.

By testing a variety of covariate-response models, we show that, at any fixed sample size, the

statistical power of a clinical trial is at least as high when covariate-adaptive optimization is used

rather than covariate-adaptive randomization. In settings where the covariate-response relationship

is nonlinear, we observe that the power under the CA-RO algorithm is significantly higher than for

state-of-the-art CA-RAND methods. Therefore, in certain settings, the use of covariate-adaptive

optimization could allow decision-makers to achieve desired levels of statistical power with sig-

nificantly smaller sample size as compared with CA-RAND mechanisms. Given the high cost of

enrolling human subjects in clinical trials, the ability to achieve needed statistical power with much

smaller sample size can result in significant cost savings for the healthcare industry and society at

large.

4.1. Test for Statistical Power

In order to compare statistical power under CA-RAND and CA-RO online allocation procedures,

we apply a hypothesis testing framework based on simulation (Bertsimas et al. 2015).

Let us assume there are m= 2 groups: a treatment group, which will be administered a given

therapy, and a control group, which will be administered a placebo. There are N subjects in

the trial, such that k = N/2 subjects will be assigned to each of the groups. At each time-step

t= 1, . . . ,N , the decision-maker observes the values of a covariate vector wt and makes a binary
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assignment xt, where xt = 1 indicates the treatment group (1) and xt = 0 indicates the control group

(0). Let vt be the response measured after the assigned treatment was administered for subject t. We

adopt the potential outcomes framework of Rosenbaum and Rubin (1983), such that each subject

has a pair of potential outcomes (v
(1)
t , v

(0)
t ), where the superscript indicates treatment or control

and only one of these two outcomes can be observed. Under this framework, we have the following

relationship between the observed response and the potential outcomes: vt = v
(1)
t xt + v

(0)
t (1−xt).

Given vt for each subject t= 1, . . . ,N , we can estimate the average treatment effect δ̂. We adopt

two estimators for δ̂, unadjusted and regression-adjusted, from Lin (2013):

1. δ̂unadj := 1
k

[∑N

t=1 vtxt−
∑N

t=1 vt(1−xt)
]

2. δ̂adj := βx, where βx is the estimated coefficient on xt in the ordinary least squares regression

vt = β0 +βxxt +β>wwt.

To test the significance of this observed effect δ̂, we adopt Fisher’s sharp null hypothesis (Fisher

1935), which states that every subject t= 1, . . . ,N would have had the same response to treatment

regardless of which treatment was assigned. In other words, under the sharp null hypothesis, we

have vt = v
(1)
t = v

(0)
t . Equipped with a complete set of potential outcomes for each subject, we can

estimate the average treatment effect under alternative random allocations of subjects 1, . . . ,N .

If we compute the average treatment effect δb as our test statistic for each alternative allocation

b= 1, . . . ,B, we can then estimate the p-value for our observed δ̂, using a two-sided test, as

p=
1

1 +B

(
1 +

B∑
b=1

I
[∣∣δb∣∣≥ ∣∣δ̂∣∣]).

We reject the null hypothesis if p ≤ α for some pre-specified significance level α; otherwise, we

accept the null hypothesis.

In order to estimate the statistical power under a given algorithm A, we generate Q random

samples of N subjects with covariates drawn i.i.d. from a fixed distribution. We apply the hypoth-

esis test described above for all random samples, and measure the number of samples Qreject for

which the null hypothesis is rejected. We evaluate the probability that the null hypothesis will be
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rejected by computing the ratio λ :=Qreject/Q. If the true treatment effect δ0 is nonzero, then λ

estimates the power of the experiment; otherwise, λ estimates the type I error rate.

The alternative allocations for the hypothesis test can be generated randomly using Monte

Carlo simulation to approximate the distribution of possible allocations under random assignment

mechanism A. If Monte Carlo simulation does not yield a sufficiently diverse set of allocations

within computational limits, one can generate bootstrapped resamples of covariate vectors wb
t , t=

1, . . . ,N drawn uniformly at random from the set W = {w1, . . . ,wN} (Efron and Tibshirani 1994).

Based on the observations from the original experiment and under the null hypothesis, we have

complete mappings v(1)(·) :W → R and v(0)(·) :W → R, which represent the potential outcomes

under treatment and control, respectively, for individuals with covariates inW. Therefore, for each

subject in a given bootstrapped sample, we observe the response under her random allocation xbt

as vbt = v(1)(wb
t) ·xbt + v(0)(wb

t) · (1−xbt).

4.2. Computational Results

To evaluate the statistical power of the CA-RO algorithm relative to CA-RAND methods, we

simulated clinical trials under three different hidden realities, each characterized by a unique model

relating treatment response to subject covariates. We assumed each subject t = 1, . . . ,N had a

covariate vector wt = (w1
t ,w

2
t ) of dimension S = 2, whose components were drawn i.i.d. from a

standard normal distribution. The covariate-response models were as follows:

• Nonlinear (NL): vt = δ0xt + (w1
t )

2− (w2
t )

2 + εt ,

• Linear (LIN): vt = δ0xt + 2(w1
t ) + 2(w2

t ) + εt ,

• No relationship (NR): vt = δ0xt + εt ,

where δ0 is the ground-truth additive treatment effect and εt is a Gaussian noise term with mean

0 and standard deviation 0.75.

For each covariate-response model, we evaluated statistical power λ under the CA-RAND and

CA-RO algorithms by applying the hypothesis test described in Section 4.1 with both estimators

δ̂unadj and δ̂adj (Figure 1). We considered N ∈ {40,80,120} with δ0 = 0.5, Q = 800, B = 500, and

significance level α= 0.05. For all scenarios, the power of the experiment increases with N .
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Figure 1 Statistical power (with 95% confidence intervals) under CA-RO(1) vs. CA-RAND methods for N ∈

{40,80,120} under various response models (NL, LIN, NR), using both adjusted and unadjusted treat-

ment effect estimators.

• In the NR scenario, post hoc regression adjustment does not improve power for any of the

methods. All methods yield similar power since there is no benefit from covariate balance.

• Conversely, in the linear response setting (LIN), regression adjustment increases statistical

power substantially for all methods. When using the δ̂unadj estimator, CA-RO(1) yields higher

power relative to randomization and CA-RAND methods. However, post hoc regression adjustment

using ordinary least squares, which exactly replicates the covariate-response model with additive

treatment effect, reduces the need for the a priori covariate balance provided by CA-RO. Power

evaluated using δ̂adj is equally high across all methods.

• Finally, in the nonlinear response scenario described above (NL), there is virtually no benefit

to using regression adjustment. In this setting, CA-RO(1) yields much higher statistical power than
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pure randomization and CA-RAND methods. The advantage of CA-RO grows with the sample

size N .

We conducted additional experiments under a variety of nonlinear models and found, in all tested

scenarios, that CA-RO had power at least as high as (and often higher than) randomization-based

methods. The NL scenario is an example in which the benefit of CA-RO was particularly dramatic.

We also ran simulations in which the p-values were estimated using a one-sided test rather than

a two-sided test. As one might expect, for fixed δ0 and distribution of noise ε, power was higher

for all methods under the one-sided test. However, in all tested scenarios, the CA-RO algorithm

maintained a similar advantage relative to other methods.

In Table 2, we show the results for the NL setting under the CA-RO(r) assignment mechanism

for N = 40 with aggregation levels r ∈ {1,3,5} along with OPT, which is equivalent to CA-RO(N).

As we expect, the power increases with the aggregation level r.

In Figure 1, we show that, under some covariate-response models, CA-RO yields higher power

at fixed sample sizes than other methods. This motivates a complementary question: What is the

sample size required to achieve a desired level of statistical power? We considered the NL scenario

and tested values of δ0 from 0.75 to 1.75 to estimate N∗A(δ0), the minimum number of subjects per

group needed to achieve power of at least 80% when assignment mechanism A is employed (Figure

2a). With a large effect size of δ0 = 1.75, statistical power of 80% was achieved with a sample size

of 22 using the CA-RO(1) algorithm compared with a sample size of 30 using the best CA-RAND

method (in this case, PS). With a small effect size of δ0 = 0.75, the advantage of optimization was

even bigger; a sample size of 58 was sufficient to achieve 80% power, compared with a sample size

of 122 using the best CA-RAND method (again, PS). For a given treatment effect δ0, the threshold

sample size needed to achieve 80% power under the CA-RO algorithm was reduced by at least 25%

relative to the best CA-RAND method (Figure 2b). If we consider the NL setting with δ0 = 0.75

as an example, the CA-RO method may enable the execution and analysis of some clinical trials

that would otherwise be infeasible given the prohibitively large sample size required to achieve a

sufficient level of statistical power when CA-RAND methods are employed.
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(a) Sample size needed to achieve statistical power of at least

80%.

skaljf

skaljf

(b) Ratio of N∗(δ0) for CA-RO(1) vs. best CA-RAND algorithm

(PS).

Figure 2 Statistical power under CA-RO vs. CA-RAND methods.

Table 3 demonstrates that the minimum sample size N∗A(δ0) decreases further as the aggregation

level r of CA-RO(r) algorithm grows. Relative to state-of-the-art CA-RAND methods, the CA-RO

approach can dramatically reduce the number of subjects enrolled in a trial without sacrificing

statistical power.
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We also evaluate the rate of type I errors for CA-RO(1) with δ0 = 0 with Q= 800 and B = 500

for N ∈ {40,80,120} and for each of the three covariate-response scenarios described above, using

the regression-adjusted treatment effect estimator (Table 4). We observe that, for each setting, the

type I error is a decreasing function of N . Type I error rates for all algorithms tested are shown

in Figure EC.1 in the e-companion. PS, the CA-RAND method with the best statistical power in

this experiment, had a mean type I error rate that was uniformly higher than that produced by

CA-RO(1).

5. Unbiasedness of CA-RO Approach

In this section, we provide empirical and theoretical evidence that the CA-RO algorithm introduced

in Section 3 exhibits the same statistical advantages ascribed to complete randomization by Efron

(1971): freedom from selection bias, freedom from accidental bias with respect to observed and

hidden covariates, and a reasoned basis for inference.

5.1. Freedom from selection bias

The CA-RO algorithm protects against selection bias, the possibility that an investigator could

consciously or unconsciously influence the order of subject enrollment based on deterministic knowl-

edge of the next treatment assignment. Through computer simulation, we demonstrate that, by

selecting the robustness parameter Γ independently and uniformly at random with support [0.5,

4] at each time-step, the CA-RO method yields sufficiently random treatment assignments as to

protect against this type of selection bias. For N from 30 to 100, we randomly generated 30 unique

sequences of covariates w ∈RN drawn independently from N (0,1). We used the CA-RO(1) algo-

rithm to generate 3,000 random assignments of the N subjects to two groups. We observe that

one cannot determine the sequence of future assignments based on knowledge of the algorithm

because, on average, the total number of possible allocations is large (Figure 3a) and no individual

assignment sequence has a likelihood higher than 6% (Figure 3b).

A concern that directly competes with selection bias is certifiability. When used with a fixed and

predefined sequence of robustness parameters Γt, t= 1, . . . ,N , the CA-RO algorithm is a sequence
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(a) Mean (with standard deviation) number

of unique allocations among 3,000 simulations.

(b) Mean (with standard deviation) frequency of

most common allocation among 3,000 simulations.

Figure 3 Analysis of distribution of unique allocations under CA-RO(1).

of deterministic optimization problems, each of which can be reproduced. This reproducibility

provides a natural method for certifying a posteriori that the algorithm’s recommendation was

followed, given knowledge of the subjects’ covariates and arrival order. If certifiability is deemed to

be of greater concern than selection bias in the context of a particular experimental setting, one can

apply the CA-RO algorithm with fixed robustness parameters in order to achieve full certifiability

of assignments. Conversely, certifiability is not achievable using randomized methods unless the

random seed used to initialize the algorithm is provided.

5.2. Freedom from accidental covariate imbalance

We have shown in the empirical results from Section 3.4 that the CA-RO method produces consis-

tently better balance in the first two moments across groups compared with simple randomization

and other existing CA-RAND approaches. In this subsection, we show that, despite only considering

the observed covariates w ∈RN when making assignment decisions, the CA-RO algorithm provides

the same level of protection as CA-RAND methods against irregular allocation with respect to

other, potentially unseen factors.

We consider two natural cases for the dependence of hidden factors on the observed covariates

w: no correlation and continuous dependence.
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1. If there is a hidden factor that is uncorrelated with observed covariates w, the CA-RO algo-

rithm generates an allocation which is as random with respect to the hidden covariates as that

produced by randomized methods.

2. The second case, when the unseen covariate is a continuous function of the observed covariate,

warrants further discussion. We see empirically that, when unseen factor f has a polynomial or

logarithmic conditional expectation in scalar random variable w, the discrepancy in higher moments

and generalized moments f = log(|w|) and f = 1/w for CA-RO methods is always comparable

with (and often lower than) the mismatch produced by CA-RAND algorithms (Table 1). In the

remainder of this subsection, we present formal theoretical evidence that this empirical relationship

extends to the general case of continuous dependence.

To examine this general case, we assume that there are two different assignment algorithms A

and B (e.g. CA-RO(1) and PS), and an unseen factor f that can be modeled in the form

f = g(w) + ε,

where g(·) is a Lipschitz function with constant L and ε is some noise function. When generating

groups of size k by algorithm A, let us denote the maximum discrepancy in means with respect to

unseen covariate f by:

zfA := max
p<q

1

k

∣∣∣ ∑
i∈Ip(A)

g(wi)−
∑

i∈Iq(A)

g(wi)
∣∣∣,

where Ip(A), Iq(A) ⊂ {1, . . . ,N} are disjoint index sets respectively describing groups p and q

produced by algorithm A. The maximum discrepancy zfB between groups generated by algorithm

B is defined analogously.

In Proposition 1, we derive theoretical upper bounds on the the values of zfA and |zfA−z
f
B |, where

A is the CA-RO(1) approach and B is any CA-RAND method. The first upper bound on zfA, given

by (7a), demonstrates that the maximum discrepancy in means with respect to unseen covariate f

is controlled by the corresponding discrepancy with respect to the observed covariate w. The second

upper bound on |zfA − z
f
B |, given by (7b), indicates that the maximum discrepancy in means with
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respect to unseen covariate f is as well-controlled under CA-RO(1) as under any other CA-RAND

algorithm.

Before we present Proposition 1, let us define some auxiliary notations. Sets of indices Sβα, for

α,β = 1,2, describing the differences between the groups produced by algorithms A and B have

the form

S1
1 = I1(A)∩ I2(B) and S1

2 = I2(A)∩ I1(B);

S2
1 = I1(A)∩ I1(B) and S2

2 = I2(A)∩ I2(B).

We also introduce the optimal objective value θ∗(A) of the auxiliary pairwise matching problem:

θ∗(A) := min
y

1
k

∑
i∈I1(A)

∑
j∈I2(A)

|wi−wj|yij

s.t.
∑

i∈I1(A)

yij = 1, ∀j ∈ I2(A)

∑
j∈I2(A)

yij = 1, ∀i∈ I1(A)

yij ∈ {0,1}.

(5)

Finally, we define the value ξ∗(A,B) := min
c=1,2

ξc(A,B), where ξc(A,B) is the optimal value of the

problem

ξc(A,B) := min
y

∑
i∈Sc

1

∑
j∈Sc

2

|wi−wj|yij

s.t.
∑
i∈Sc

1

yij = 1, ∀j ∈ Sc2∑
j∈Sc

2

yij = 1, ∀i∈ Sc1

yij ∈ {0,1}.

(6)

Proposition 1. Let us consider the simplest case where subjects with scalar covariates wi, i =

1, . . . ,2k are assigned to m= 2 groups. For any assignment algorithms A and B that produce groups

of equal size k, and for any Lipschitz function g(·)∈ Lip(L), the following inequalities hold:

zfA ≤L · θ∗(A), (7a)

|zfA− z
f
B | ≤ 2L · ξ∗(A,B). (7b)

Proof. The proof of Proposition 1 is presented in the e-companion, section EC.4. �
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Having obtained theoretical upper bounds (7), we conducted numerical experiments to measure

the values of the average pairwise distances θ∗(A) and ξ∗(A,B) defined in (5) and (6), respectively.

We fixed A = CA-RO(1) and chose B from among RAND, PS, DA, AZ and KK, where the ran-

domization methods were modified to ensure they would produce equal-sized groups at the end

of the horizon. We randomly generated populations of size N between 60 and 100, where each

subject had a scalar standard normal covariate wi. After executing both chosen algorithms A and

B, we identified the index sets Sβα, for α,β = 1,2 and solved the auxiliary optimization problems

(5) and (6). After 3,000 simulations, we observed that, in more than 99% of instances, the average

discrepancy θ∗
(
CA-RO(1)

)
≤ 0.35; the corresponding upper bounds for ξ∗

(
CA-RO(1),B

)
for B =

RAND, PS, DA, AZ, KK are equal to 0.255, 0.187, 0.2, 0.185, 0.215, respectively.

Given that, by definition, the distances θ∗ and ξ∗ scale linearly with respect to the covariates

wi, i= 1, . . . ,N , one may derive the empirical counterparts of upper bounds (7), which hold with

high probability:

zfCA-RO(1) ≤ 0.35L ·σ

max
B∈{RAND, PS, DA, AZ, KK}

|zfCA-RO(1)− z
f
B | ≤ 0.51L ·σ

where σ is the standard deviation of attributes w. The constant 0.51 in the right-hand side of

the second bound is derived from the maximum discrepancy ξ∗
(
CA-RO(1),B

)
among CA-RAND

methods reported above.

The result of Proposition 1 can be extended to the case of general continuous functions g(·)

under the assumption that the support K ⊂ RS of covariates w is a compact set. Indeed, any

continuously differentiable function g(·) defined on a compact set K (including any polynomial

function) is in a Lipschitz class with L= max
x∈K
|g′(x)|. Since any continuous function on K can be

approximated with arbitrary precision by some polynomial according to the Weierstrass theorem,

the upper bounds (7) hold for any continuous function g(·) on the set K.
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5.3. Reasoned basis for inference

The results from Figures 3a and 3b, which demonstrate the variety of unique allocations that can

result under the CA-RO approach, indicate that CA-RO provides a sufficient degree of random-

ization to be used as a reasoned basis for inference. While the probability distribution of these

allocations does not appear to be uniform (see Figure 3b), the fact that diverse allocations arise

motivates us to conduct randomization-inspired tests for statistical significance such that the power

of the CA-RO method can be estimated under various scenarios in Section 4.

6. Conclusions

In this paper, we introduced a covariate-adaptive optimization algorithm for the problem of online

allocation of subjects in randomized controlled trials. Our method leverages robust mixed-integer

quadratic optimization to improve upon state-of-the-art covariate-adaptive randomization meth-

ods. We demonstrated many desirable properties of the new CA-RO approach, including compu-

tational tractability, smaller between-group covariate imbalance as compared with randomization-

based methods, and a low potential for common experimental biases. In all tested scenarios, the

CA-RO method performed competitively with CA-RAND approaches, and sometimes significantly

outperformed these methods, as measured by statistical power. We presented a setting with a non-

linear covariate-response model for which the CA-RO method achieved a desired level of statistical

power at a sample size 25-50% smaller than the best CA-RAND method. Thus, the proposed CA-

RO algorithm has significant potential to reduce both the cost and duration of clinical trials. The

CA-RO algorithm can be used to make assignments to any arbitrary number of treatment groups

and for any number of observed covariates. Finally, we constructed an extension of the CA-RO

method for the setting in which it is possible to aggregate decision-making. We believe that the

proposed CA-RO algorithm is an efficient alternative to covariate-adaptive randomization that can

significantly strengthen experimental power in clinical trials and many other disciplines exploiting

controlled experiments.
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Table 1: Average absolute between-group discrepancy in moments under allocation algorithms for

dataset with 3 covariates (m= 2, S = 3).

Moment

Covariate Algorithm 1 2 3 4 5 log(|w|) 1/w

(C1) RAND 0.093 0.105 0.265 0.503 1.263 0.089 1.061

PS 0.039 0.092 0.214 0.484 1.188 0.066 0.920

DA 0.039 0.138 0.178 0.546 1.074 0.182 1.050

AZ 0.057 0.107 0.226 0.503 1.179 0.101 1.004

KK 0.070 0.103 0.227 0.473 1.151 0.092 1.034

CA-RO(1) 0.024 0.070 0.158 0.331 0.969 0.083 1.091

CA-RO(3) 0.024 0.059 0.162 0.329 0.997 0.086 1.051

CA-RO(5) 0.026 0.048 0.160 0.311 0.974 0.079 1.053

OPT 0.005 7.52× 10−5 0.150 0.537 1.064 0.260 1.112

(C2) RAND 0.089 0.306 1.414 6.914 35.419 0.098 1.947

PS 0.051 0.250 1.238 6.319 33.313 0.068 1.888

DA 0.040 0.209 1.014 5.401 29.513 0.149 1.973

AZ 0.073 0.299 1.408 6.994 36.190 0.105 1.879

KK 0.048 0.171 0.897 4.934 27.866 0.082 2.058

CA-RO(1) 0.028 0.093 0.660 4.206 25.515 0.097 1.918

CA-RO(3) 0.028 0.083 0.620 4.066 25.036 0.092 1.940

CA-RO(5) 0.028 0.073 0.561 3.790 23.788 0.095 1.999

OPT 0.004 7.91× 10−5 0.567 3.779 23.593 0.302 1.885

(C3) RAND 0.092 0.275 1.656 10.488 66.429 0.088 0.684

PS 0.047 0.257 1.600 10.303 65.643 0.058 0.509

DA 0.041 0.250 1.526 10.102 64.966 0.166 0.653
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AZ 0.060 0.257 1.621 10.384 66.111 0.107 0.599

KK 0.068 0.208 1.376 9.262 60.995 0.086 0.703

CA-RO(1) 0.025 0.101 1.247 9.009 61.335 0.114 0.703

CA-RO(3) 0.026 0.089 1.214 8.886 60.911 0.118 0.696

CA-RO(5) 0.028 0.085 1.192 8.784 60.324 0.118 0.702

OPT 0.005 7.92× 10−5 1.345 9.717 66.206 0.180 0.728
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Table 2 Statistical power under CA-RO(r) for NL scenario with N = 40.

Aggregation level, r 1 3 5 N

Power, λ 29.1% 29.8% 31.9% 36.4%
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Table 3 Minimum number of subjects per group N∗A(δ0) needed for power over 80%.

Treatment effect, δ0

Algorithm, A 0.75 1 1.25 1.5 1.75

RAND 268 142 88 62 48

PS 122 80 54 38 30

DA 268 148 94 60 42

AZ 158 104 68 50 36

KK 228 128 82 58 38

CA-RO(1) 58 42 32 26 22

CA-RO(3) 52 36 28 22 18

CA-RO(5) 48 32 26 22 18

OPT 26 22 18 16 14
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Table 4 Type I error under CA-RO(1).

Sample size, N

Scenario 40 80 120

Nonlinear (NL) 7.1% 4.6% 4.5%

Linear (LIN) 7.0% 6.0% 4.5%

No relationship (NR) 6.5% 5.3% 5.6%
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Electronic Companion to Covariate-Adaptive Optimization in
Online Clinical Trials

EC.1. Empirical performance: Synthetic data

In this section, we discuss the empirical performance of the various algorithms with respect to

covariate balance using synthetic data. For N ∈ {20,60,100} and m= 2, we simulated 3,000 unique

sets of covariate values drawn i.i.d. from a standard normal distribution. We evaluated nine algo-

rithms - RAND, PS, DA, AZ, KK and CA-RO(r) (with four different values of r) - to measure the

average worst pairwise difference in generalized moments across groups (Table EC.1). Similarly as

before, when evaluating the CA-RO algorithm at any level of aggregation, we chose the robustness

parameter Γ in uncertainty set (3) independently and uniformly at random from the interval [0.5,

4] at each time-step. In terms of the discrepancy in the first moment, CA-RO was always among

the best methods. The discrepancy in the second moment, which closely approximates the discrep-

ancy in the variance in this setting, was always lower for CA-RO than for the best CA-RAND

method. The discrepancy in higher moments, as well as generalized moments of log(|w|) and 1/w,

for CA-RO methods was always comparable with other CA-RAND algorithms. As we expected,

the advantage of optimization increases with r, and the offline OPT algorithm has starkly better

performance than other approaches.

EC.2. Tractability of the CA-RO algorithm

Lemma 1. Robust optimization problem (2) with ellipsoidal uncertainty set Uε as defined in (3)

is equivalent to mixed-binary closed-form optimization problem (EC.7) in case S ≥ 2 and (EC.8)

in case S = 1.

Proof. In order to model the constraints for each p, q, s from optimization problem (2) that should

hold for all possible realizations of uncertain vector w̃ ∈Uw, we will find a closed-form solution to

the following auxiliary optimization problems, repeated from (4):

max
w̃∈Uw

(µsp−µsq) and max
w̃∈Uw

(σsp−σsq).
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Step 1. Optimization of the linear term.

Let us define a parameter Γ̃ := Γ2(N − t)S, where Γ is the robustness parameter from (3). Then,

for any fixed values of p, q, s, and Γ̃, we consider the optimization problem

max
w̃∈Uw

(µsp−µsq). (EC.1)

We have

k(µsp−µsq) =
t−1∑
i=1

wsi (x̂ip− x̂iq) +wst (xtp−xtq) +
N∑

i=t+1

w̃si (xip−xiq),

where only the last term of the right-hand side depends on uncertain w̃. Therefore, we need to

solve the following optimization problem for fixed values of components of x:

max
w̃∈Uw

N∑
i=t+1

w̃si (xip−xiq) = max
ε∈Uε

N∑
i=t+1

(w̄st + v>(s)εi)(xip−xiq)

= w̄st

N∑
i=t+1

(xip−xiq) + max
ε∈Uε

N∑
i=t+1

(v>(s)εi)(xip−xiq).

where v(s) denotes the s-th row of the matrix (Σt)
1
2 . The optimization problem

max
ε∈Uε

N∑
i=t+1

(v>(s)εi)(xip−xiq)

can be rewritten in the following form:

max
ε

(apqs)>ε (EC.2)

s.t. ε>ε≤ Γ̃,

where vector apqs of dimension (N − t) × S is defined by (apqs)is′ = (xip − xiq)(Σ
1
2
t )ss′ for i =

t+ 1, . . . ,N, s′ = 1, . . . , S.

Application of the Karush-Kuhn-Tucker conditions yields that the optimal value of the opti-

mization problem (EC.2) is equal to

√
Γ̃ · ‖apqs‖2 =

√
Γ̃

√√√√ S∑
s′=1

N∑
i=t+1

(xip−xiq)2((Σ
1
2
t )ss′)2 =

√
Γ̃‖v(s)‖2

√√√√ N∑
i=t+1

(xip−xiq)2.
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The last factor can be simplified and expressed in terms of the current time-step decision variables

as follows:

N∑
i=t+1

(xip−xiq)2 =
N∑

i=t+1

(x2
ip− 2xipxiq +x2

iq) =
N∑

i=t+1

(xip +xiq) = 2k−
t−1∑
i=1

(x̂ip + x̂iq)− (xtp +xtq),

where the second equality is due to the fact that xip and xiq are binary variables with xipxiq = 0.

Thus, the analysis of optimization problem (EC.1) allows us to write a closed-form counterpart

of the linear terms in (2) that depends only on the current time-step decision variables xtp for

p= 1, . . . ,m, such that:

M s
pq ≥ µsp−µsq, ∀w̃ ∈Uw ⇐⇒

kM s
pq ≥

t−1∑
i=1

(wsi − w̄st )(x̂ip− x̂iq) + (wst − w̄st )(xtp−xtq)+

+
√

Γ̃‖v(s)‖2

√√√√2k−
t−1∑
i=1

(x̂ip + x̂iq)− (xtp +xtq).

Step 2. Optimization of the variance term.

Similarly to Step 1, we fix values of p, q, s and Γ̃ and consider the optimization problem

max
w̃∈Uw

(σsp−σsq). (EC.3)

As before, only the term representing the future time periods depends on the uncertain parame-

ters ε. Therefore, the primary goal of this step is to find a closed-form solution to the auxiliary

optimization problem

max
ε∈Uε

N∑
i=t+1

(v>(s)εi)
2(xip−xiq) = max

‖ε‖22≤Γ̃
ε>Aε= Γ̃ ·λmax(A). (EC.4)

In (EC.4), λmax(A) denotes the maximum eigenvalue of the square block matrix A:

A=



(xt+1,p−xt+1,q)B 0 0 . . . 0

0 (xt+2,p−xt+2,q)B 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . (xNp−xNq)B


,
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where matrix B = v(s)(v(s))
>.

The maximum eigenvalue λmax(A) depends not only on the values of x, but also on the dimension

S of the covariate space.

• Case 1. S ≥ 2. In this case, the eigenvalues of matrix B are 0 and ‖v(s)‖22, and the maximum

eigenvalue of matrix A can be determined as a function of x as follows:

λmax(A) =


0, if xip−xiq ≤ 0 for all i= t+ 1, . . . ,N,

‖v(s)‖22, if xip−xiq = 1 for at least one i= t+ 1, . . . ,N.

By construction, the condition xip − xiq = 1 for at least one i = t+ 1, . . . ,N holds if and only if

group p is not full after the current time-step assignment, i.e.,

k−
t−1∑
i=1

x̂ip−xtp ≥ 1.

Thus, optimization problem (EC.4) has the following closed-form solution that depends only on

the current time-step decision variables:

max
ε∈Uε

N∑
i=t+1

(v>(s)εi)
2(xip−xiq) = Γ̃ · ‖v(s)‖22 ·Ψp(x̂,x),

where

Ψp(x̂,x) =


1, if k−

t−1∑
i=1

x̂ip−xtp ≥ 1,

0, otherwise.

(EC.5)

Now we can exploit the closed-form solution for optimization problem (EC.3) within (2), as follows:

V s
pq ≥ σsp−σsq , ∀w̃ ∈Uw ⇐⇒

k V s
pq ≥

t−1∑
i=1

(wsi − w̄st )2(x̂ip− x̂iq) + (wst − w̄st )2(xtp−xtq)+

+ Γ̃ · ‖v(s)‖22 ·Ψp(x̂,x).
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• Case 2. S = 1. In this case, matrix B is one-dimensional and its only eigenvalue is ‖v(s)‖22.

Hence,

λmax(A) =



‖v(s)‖22, if xip = 1 for at least one i= t+ 1, . . . ,N,

−‖v(s)‖22, if xip = 0 and xiq = 1 for all i= t+ 1, . . . ,N,

0, if xip = 0 for all i= t+ 1, . . . ,N and

xiq = 0 for at least one i= t+ 1, . . . ,N.

This is equivalent to the formulation: λmax(A) = ‖v(s)‖22 ·Θpq(x̂,x), where

Θpq(x̂,x) =



1, if k−
t−1∑
i=1

x̂ip−xtp ≥ 1,

−1, if k−
t−1∑
i=1

x̂ip−xtp = 0 and
t−1∑
i=1

x̂iq +xtq + (N − t) = k,

0, if k−
t−1∑
i=1

x̂ip−xtp = 0 and
t−1∑
i=1

x̂iq +xtq + (N − t)>k.

(EC.6)

Thus, optimization problem (2) modeling the CA-RO algorithm with ellipsoidal uncertainty set

has the following closed form for S ≥ 2:

min
x,M,V,z

z

s.t. z ≥
S∑
s=1

M s
pq + ρV s

pq, ∀p < q

∀p < q, s= 1, . . . , S :

kM s
pq ≥

t−1∑
i=1

(wsi − w̄st )(x̂ip− x̂iq) + (wst − w̄st )(xtp−xtq)+

+
√

Γ̃‖v(s)‖2

√√√√2k−
t−1∑
i=1

(x̂ip + x̂iq)− (xtp +xtq)

kM s
pq ≥

t−1∑
i=1

(wsi − w̄st )(x̂iq − x̂ip) + (wst − w̄st )(xtq −xtp)+ (EC.7)

+
√

Γ̃‖v(s)‖2

√√√√2k−
t−1∑
i=1

(x̂ip + x̂iq)− (xtp +xtq)

k V s
pq ≥

t−1∑
i=1

(wsi − w̄st )2(x̂ip− x̂iq) + (wst − w̄st )2(xtp−xtq)+
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+ Γ̃ · ‖v(s)‖22 · I
{
k−

t−1∑
i=1

x̂ip−xtp ≥ 1
}

k V s
pq ≥

t−1∑
i=1

(wsi − w̄st )2(x̂iq − x̂ip) + (wst − w̄st )2(xtq −xtp)+

+ Γ̃ · ‖v(s)‖22 ·Ψq(x̂,x)

t−1∑
i=1

x̂ip +xtp ≤ k, ∀p= 1, . . . ,m

m∑
p=1

xtp = 1

xip ∈ {0,1}, ∀i= t, . . . ,N, p= 1, . . . ,m.

The second-to-last constraint guarantees that no group will be assigned more than k subjects and

is therefore a sufficient replacement for the second-to-last constraint of formulation (2).

A similar formulation for the case S = 1 is given by

min
x,M,V,z

z

s.t. z ≥
S∑
s=1

M s
pq + ρV s

pq, ∀p < q

∀p < q, s= 1, . . . , S :

kM s
pq ≥

t−1∑
i=1

(wsi − w̄st )(x̂ip− x̂iq) + (wst − w̄st )(xtp−xtq)+

+
√

Γ̃‖v(s)‖2

√√√√2k−
t−1∑
i=1

(x̂ip + x̂iq)− (xtp +xtq)

kM s
pq ≥

t−1∑
i=1

(wsi − w̄st )(x̂iq − x̂ip) + (wsi − w̄st )(xiq −xip)+ (EC.8)

+
√

Γ̃‖v(s)‖2

√√√√2k−
t−1∑
i=1

(x̂ip + x̂iq)− (xtp +xtq)

k V s
pq ≥

t−1∑
i=1

(wsi − w̄st )2(x̂ip− x̂iq) + (wst − w̄st )2(xtp−xtq)+

+ Γ̃ · ‖v(s)‖22 ·Θpq(x̂,x)

k V s
pq ≥

t−1∑
i=1

(wsi − w̄st )2(x̂iq − x̂ip) + (wst − w̄st )2(xtq −xtp)+
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+ Γ̃ · ‖v(s)‖22 ·Θqp(x̂,x)

t−1∑
i=1

x̂ip +xtp ≤ k, ∀p= 1, . . . ,m

m∑
p=1

xtp = 1

xip ∈ {0,1}, ∀i= t, . . . ,N, p= 1, . . . ,m,

where Ψp(x̂,x) and Ψq(x̂,x) are as defined in (EC.5); Θpq(x̂,x) and Θqp(x̂,x) are as defined in

(EC.6). �

Corollary 1. To find the optimal objective value of discrete optimization problem (EC.7) and

(EC.8) and the optimal current assignment at time t, it is sufficient to inspect the following easily

specified set X consisting of not more than m points:

X :=
m⋃
p=1

{
xtp = 1;

xtq = 0, ∀q= 1, . . . ,m, q 6= p;

xiu = 0, ∀i= t+ 1, . . . ,N, u= 1, . . . ,m;

t−1∑
i=1

x̂ip +xtp ≤ k
}
.

Proof. Formulations (EC.7) and (EC.8) depend only on current time-step decisions xtp, for

p= 1, . . . ,m. Given that these variables are binary and the subject with index t must be assigned

to exactly one group, it is sufficient to inspect the set X , with cardinality at most m, to solve (2)

for the optimal current assignment. �

EC.3. CARO algorithm with patient exclusion

In this section, we consider an extended clinical trial setting that allows a decision-maker to exclude

some patients from a trial due to their extreme covariate values that may aggravate final between-

group balance.

Following the notation from Section 3, we assume that in the new setting the total number of

subjects in a trial is N +N0, where N0 is the maximum number of subjects to be excluded, as
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specified by the decision-maker. The definitions of the mean µsp and approximated variance σsp of

group p = 1, . . . ,m with respect to covariate s = 1, . . . , S at time-step 1 ≤ t ≤N +N0 are almost

unchanged:

µsp :=
1

k

{ t−1∑
i=1

wsi x̂ip +wstxtp +

N+N0∑
i=t+1

w̃sixip

}
,

σsp :=
1

k

{ t−1∑
i=1

(wsi − w̄st )2x̂ip + (wst − w̄st )2xtp +

N+N0∑
i=t+1

(w̃si − w̄st )2xip

}
,

where x := {xip ∈ {0,1}
∣∣ i = t, . . . ,N +N0, p = 1, . . . ,m} are the binary assignment decision vari-

ables. The only new decision variables that we introduce are binary indicators

yi =


1, if we exclude patient i from the trial,

0, otherwise.

for i= t, . . . ,N +N0. In this case, at each time-step t= 1, . . . ,N +N0 we model the assignment or

exclusion decision by the following robust optimization problem (that has the same structure as

problem (2)):

min
x,y,M,V,z

z

s.t. z ≥
S∑
s=1

M s
pq + ρV s

pq, ∀p < q

M s
pq ≥ µsp−µsq, ∀p < q, s= 1, . . . , S, ∀w̃ ∈Uw

M s
pq ≥ µsq −µsp, ∀p < q, s= 1, . . . , S, ∀w̃ ∈Uw

V s
pq ≥ σsp−σsq , ∀p < q, s= 1, . . . , S, ∀w̃ ∈Uw (EC.9)

V s
pq ≥ σsq −σsp, ∀p < q, s= 1, . . . , S, ∀w̃ ∈Uw
t−1∑
i=1

x̂ip +xtp +

N+N0∑
i=t+1

xip = k, ∀p= 1, . . . ,m

yi +
m∑
p=1

xip = 1, ∀i= t, . . . ,N +N0

t−1∑
i=1

ŷi +

N+N0∑
i=t

yi ≤N0.
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In this formulation, the last two constraints state that each subject should be either excluded from

the trial or assigned to one of the m groups; and the total number of excluded subjects cannot

exceed the upper bound N0. The definition of uncertainty set Uw takes into account an increased

number of time-steps:

Uw =
{

w̃ ∈R(N+N0−t)×S
∣∣ w̃i = w̄t + (Σt)

1
2 εi, i= t+ 1, . . . ,N +N0,ε∈Uε

}
,

where perturbation vector ε= (εt+1, . . . ,εN+N0
) belongs to the ellipsoidal uncertainty set Uε:

Uε =
{
ε∈R(N+N0−t)×S

∣∣∣ ||ε||2 =

√√√√N+N0∑
i=t+1

S∑
s=1

(εsi )
2 ≤ Γ

√
(N +N0− t)S

}
.

Optimization formulation (EC.9) can be solved using the same enumeration method that we

designed for the initial formulation (2).

EC.4. Proof of Proposition 1

Proof. In order to verify inequality (7a) for m= 2, we note that optimization problem (5) uniquely

determines a pairwise matching of sets I1(A) and I2(A) with minimum average distance between

pairs. We denote the resulting pairs as {(il, jl) : l = 1, . . . , k}, where k is the number of indices in

each set. By the definition of zfA, we derive

zfA =
1

k

∣∣∣ ∑
i∈I1(A)

g(wi)−
∑

i∈I2(A)

g(wi)
∣∣∣≤ 1

k

k∑
l=1

|g(wil)− g(wjl)| ≤
L

k

k∑
l=1

|wil −wjl |=L · θ∗(A). (EC.10)

Similar reasoning is applicable for the second inequality (7b). First, it is easy to see that the

cardinality of both sets S1
1 and S1

2 is the same:

γ := |S1
1 |= |S1

2 |.

By symmetry, the cardinalities of the complementary sets are also identical:

|S2
1 |= |S2

2 |= k− γ.
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The next step is to express the between-group discrepancies in the means generated by algorithms

A and B as follows:

zfA =
1

k

∣∣∣∑
i∈S2

1

g(wi) +
∑
i∈S1

1

g(wi)−
∑
i∈S1

2

g(wi)−
∑
i∈S2

2

g(wi)
∣∣∣= |a+ b|.

zfB =
1

k

∣∣∣∑
i∈S2

1

g(wi)−
∑
i∈S1

1

g(wi) +
∑
i∈S1

2

g(wi)−
∑
i∈S2

2

g(wi)
∣∣∣= |a− b|,

where

a :=
1

k

(∑
i∈S2

1

g(wi)−
∑
i∈S2

2

g(wi)
)

and b :=
1

k

(∑
i∈S1

1

g(wi)−
∑
i∈S1

2

g(wi)
)
.

Hence, analogously to argument (EC.10), one may obtain upper bounds:

|a| ≤L · ξ2(A,B) and |b| ≤L · ξ1(A,B). (EC.11)

A simple corollary from the triangle inequality is that, for any a and b,

∣∣|a+ b| − |a− b|
∣∣≤ 2min

(
|a|, |b|

)
.

This corollary, taken together with (EC.11), implies that

|zfA− z
f
B | ≤ 2L ·min

{
ξ1(A,B), ξ2(A,B)

}
≤ 2L · ξ∗(A,B).

This proposition has a straighforward extension to the cases of m> 2 groups and multidimensional

covariates. The proofs have a similar structure to the case considered here, and thus are omitted.

�
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Figure EC.1 Type I error (with 95% confidence intervals) with CA-RO(1) vs. CA-RAND methods for N ∈

{40,80,120} under various response models (NL, LIN, NR), using the adjusted treatment effect

estimator. Dashed line indicates 0.05 significance level.
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Table EC.1: Average absolute between-group discrepancy in moments under allocation algorithms

(m= 2, S = 1).

Moment

N Algorithm 1 2 3 4 5 log(|w|) 1/w

20 RAND 0.358 0.498 1.321 2.955 8.108 0.387 13.521

PS 0.260 0.509 1.120 2.872 7.389 0.524 13.150

DA 0.167 0.616 0.931 3.172 6.953 0.719 13.492

AZ 0.286 0.553 1.228 3.070 7.881 0.558 13.143

KK 0.221 0.416 1.046 2.706 7.186 0.305 13.307

CA-RO(1) 0.250 0.269 1.179 2.196 7.759 0.335 13.439

CA-RO(3) 0.251 0.226 1.228 2.033 8.022 0.340 13.639

CA-RO(5) 0.254 0.186 1.224 1.954 7.969 0.343 13.621

OPT 0.024 0.010 0.960 1.517 7.348 0.354 13.702

60 RAND 0.205 0.292 0.793 1.869 5.396 0.224 10.020

PS 0.125 0.250 0.625 1.640 4.746 0.257 9.850

DA 0.092 0.350 0.560 1.935 4.700 0.408 9.990

AZ 0.125 0.278 0.663 1.788 4.981 0.257 9.763

KK 0.172 0.274 0.708 1.788 5.144 0.214 9.853

CA-RO(1) 0.099 0.139 0.629 1.378 4.992 0.214 9.979

CA-RO(3) 0.095 0.090 0.645 1.176 5.044 0.210 9.999

CA-RO(5) 0.096 0.067 0.653 1.128 5.112 0.206 10.028

OPT 0.001 3.33× 10−4 0.531 1.046 4.668 0.272 10.255

100 RAND 0.161 0.225 0.604 1.470 4.257 0.177 10.507

PS 0.083 0.178 0.438 1.242 3.619 0.182 10.251

DA 0.072 0.274 0.436 1.538 3.816 0.324 10.080
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AZ 0.088 0.190 0.482 1.320 3.839 0.181 9.933

KK 0.133 0.218 0.544 1.449 4.107 0.171 10.195

CA-RO(1) 0.066 0.116 0.479 1.132 4.034 0.168 10.223

CA-RO(3) 0.063 0.073 0.488 0.984 4.091 0.165 10.368

CA-RO(5) 0.064 0.051 0.485 0.901 4.041 0.163 10.551

OPT 0.001 1.14× 10−4 0.402 0.806 3.692 0.218 10.240


