
Tiresias: A Peer-to-Peer Platform for Privacy
Preserving Machine Learning

by

Kevin Zhang

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2020

c○ Massachusetts Institute of Technology 2020. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

January 17, 2020

Certified by. .
Kalyan Veeramachaneni

Principal Research Scientist
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

Tiresias: A Peer-to-Peer Platform for Privacy Preserving

Machine Learning

by

Kevin Zhang

Submitted to the Department of Electrical Engineering and Computer Science
on January 17, 2020, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Big technology firms have a monopoly over user data. To remediate this, we propose
a data science platform which allows users to collect their personal data and offer
computations on them in a differentially private manner. This platform provides a
mechanism for contributors to offer computations on their data in a privacy-preserving
way and for requesters — i.e. anyone who can benefit from applying machine learning
to the users’ data — to request computations on user data they would otherwise not
be able to collect. Through carefully designed differential privacy mechanisms, we
can create a platform which gives people control over their data and enables new
types of applications.

Thesis Supervisor: Kalyan Veeramachaneni
Title: Principal Research Scientist

3

4

Acknowledgments

First, I would like to thank my supervisor, Kalyan, for his support, guidance, and

mentorship throughout this project. His insightful feedback and ideas were invalu-

able for this thesis and his enthusiasm for tackling novel, ambitious, and open-ended

problems made this project possible. I would also like to thank Carles, Santu, Felipe,

Dongyu, Ivan, and Arash for their help with the design of the system, development

of the open source libraries, and creation of the figures and diagrams in this work.

Finally, I would like to thank my family for their support.

5

6

Contents

1 Introduction 15

1.1 Personal User Data . 15

1.1.1 Why does personal user data matter? 15

1.1.2 What data is available to individuals? 16

1.2 The Tiresias Platform . 17

1.3 Motivating Scenarios . 20

1.3.1 Peer-to-Peer Machine Learning 20

1.3.2 Supporting Research . 20

1.3.3 Transfer Learning . 21

1.3.4 Institutional Data Collection 22

1.4 Enabling Technologies . 22

1.5 Thesis Roadmap . 24

2 Related Work 25

2.1 Differential Privacy . 25

2.2 Mechanisms and Models . 26

2.3 Systems and Software . 27

3 System Architecture 29

3.1 Collectors . 29

3.1.1 Collector Usage . 30

3.1.2 Collector Development . 30

3.2 Stakeholders . 31

7

3.2.1 Data Contributors . 31

3.2.2 Data Requestors . 32

3.3 System Design . 32

3.3.1 Server . 33

3.3.2 Client . 34

4 Tasks and Mechanisms 39

4.1 Basic Tasks . 39

4.1.1 Task Representation . 40

4.1.2 Computation . 40

4.2 Integrated Tasks . 44

4.2.1 Task Representation . 44

4.2.2 Computation . 45

4.3 Bounded Tasks . 46

4.3.1 Task Representation . 46

4.3.2 Computation . 46

4.4 Gradient Tasks . 49

4.4.1 Task Representation . 49

4.4.2 Computation . 49

5 Experiments 53

5.1 Supporting Benchmarking . 53

5.1.1 Classification . 54

5.1.2 Regression . 55

5.2 Pull Request Prediction . 56

5.3 Transfer Learning . 58

5.4 Scalability . 59

6 User Studies 63

6.1 Data Contributors . 64

6.2 Data Requestors . 65

8

7 Future Work 67

7.1 Automated Machine Learning . 67

7.2 Collector Management . 68

7.3 Incentives and Economics . 68

7.4 Developer Experience . 69

7.4.1 Confidence Intervals . 69

7.4.2 Bounds Approximation . 69

7.4.3 Remote Debugging and Tooling 70

8 Conclusion 71

A Code 73

A.1 Smooth Sensitivity of the Median . 73

A.2 Approximate Bounds . 74

B Figures 75

9

10

List of Figures

1-1 Examples of personal user data from Uber, Starbucks, and Chase that

are available for individuals to capture and collect. Uber shows your

trip history including the time, price, and route. Starbucks shows the

time, price, and location. Chase shows the time, price, and vendor. . 17

1-2 Interactions between the collectors, client, server, and researchers on

the Tiresias platform. The design of the collectors, client, and server

is described in Section 3.3. 18

3-1 The client transforms raw data collected from the user’s device into a

personal data store. Then, if the user accepts a task, it retrieves the

appropriate data from the personal feature store, applies local privacy

mechanisms if appropriate, and transmits the processed data to the

server. 34

3-2 These two REST API endpoints (which are only accessible over local-

host) are used by collectors to (1) declare their data schema and (2)

insert data into the client. 36

4-1 This shows the JSON representation of a basic task whose goal is to

compute a differentially private estimate of the median age across all

of the data contributors who accept this task and contribute their age

to it. 41

4-2 This example shows the JSON representation of an integrated task

which trains a Gaussian naive bayes classifier in a differentially private

manner. 45

11

4-3 This shows the JSON representation of a bounded task which applies

local differential privacy mechanisms to the species and age values.

The untrusted server field refers to the fact that the differential privacy

mechanism is applied on the client side. 48

4-4 This shows the JSON representation of a gradient task which computes

the gradient update for a simple feedforward neural network. The

untrusted server field refers to the fact that the differential privacy

mechanism is applied to the gradients on the client side. Note that

our platform natively supports PyTorch models and provides helper

methods for serializing PyTorch models and loss functions. 51

4-5 This summarizes the different types of computation that happen on

the client and server for each type of task. 52

5-1 This plot shows the amount of time needed to (1) compute the median

using a basic task and (2) train a linear regression model using an

integrated task for different numbers of users. 60

B-1 This shows the web interface for the server which presents a list of all

open tasks. 76

B-2 This shows the graphical user interface for the client which presents a

list of all open tasks that they can contribute to. 77

B-3 This shows the graphical user interface for the client, specifically the

task view which allows the user to inspect the JSON representation of

a given task. 78

B-4 This shows the graphical user interface for the client, specifically the

data preview modal which allows the user to inspect the data that will

be sent to the platform if they accept the task. 79

12

List of Tables

4.1 This table describes the fields of the JSON object for a basic task. . . 40

4.2 This lists the different operations that are currently supported on our

platform through basic tasks. 41

4.3 This describes the fields of the JSON for an integrated task. 44

4.4 This lists the different operations that are currently supported on our

platform through integrated queries. 46

4.5 This describes the fields of the JSON for a bounded task. 47

4.6 This describes the fields of the JSON for a gradient task. 50

5.1 This table shows the results for training a variety of models (using

different types of tasks) on two classification datasets. The accuracy

and running time are reported for two different privacy levels. 54

5.2 This table shows the results for training a variety of models (using

different types of tasks) on two regression datasets. The accuracy and

running time are reported for two different privacy levels. 56

5.3 The performance of various implementations of logistic regression when

predicting pull request acceptance with (8.0, 10−5)-differential privacy. 58

5.4 The performance of various transfer learning techniques and privacy

levels on the STL-10 [3] dataset. 59

13

14

Chapter 1

Introduction

The twenty-first century has seen massive growth in machine learning applications

across various domains. However, machine learning is still only feasible for use in

production systems by tech giants and large corporations that have access to huge

amounts of proprietary data due to their large user bases [4]. Small entities like

start-ups and research communities, as well as individuals, often find it difficult to

develop and deploy novel machine learning models due to the scarcity of relevant

training data. Despite the fact that machine learning provides immense potential for

predictive analysis across various domains, the lack of of relevant data, as well as the

absence of a platform that can facilitate systematic gathering of such data, serve as

major barriers to entry. In this work, we propose a platform to address these issues.

1.1 Personal User Data

1.1.1 Why does personal user data matter?

Personal user data has immense economic value, as demonstrated by the $558 billion

dollar online advertising industry which relies heavily on behavioral targeting powered

by big data and machine learning [37]. Examples of personal user data range from an

individual’s physical location history and in-person purchases at stores to their web

browsing history and online purchases.

15

Large companies are able to use this data to deliver better products and services.

For example, by aggregating user location data, companies can now offer services

ranging from restaurant waiting time calculators, like what Google Maps provides, to

navigational software apps with traffic prediction such as Waze. Other applications

for personal user data include making recommendations for streaming services, as

happens on Spotify or Netflix, detecting fraud in financial transactions by institutions

such as Paypal and Bank of America, and even early detection of medical conditions

by insurance companies.

We observe that in many of these cases, there are no technological barriers pre-

venting individuals from doing the same thing in a peer-to-peer manner, merely a

lack of access to sufficient training data. This is a common theme across a variety

of scenarios involving individual personal data: although a group of individuals may

collectively have access to all the personal data needed to solve a problem, they are

unable to make use of it without having to rely on a third party due to the challenges

involved in collecting, processing, and aggregating it.

1.1.2 What data is available to individuals?

A plethora of personal user data is available for individuals to capture and collect.

The first type is data that has already been preprocessed by external applications

such as Uber, Starbucks, and Chase, as shown in Figure 1-1. Individuals are allowed

to export the data from these applications and use it for their personal purposes.

The second type of data that can be captured involves an active collection process.

Rather than extracting features from an existing dataset, individuals who want to

obtain this data must install collector applications that actively record information

about their actions. Examples of data collection applications which have an active

component range from a Chrome browser extension which tracks internet usage to

a desktop application which monitors the amount of screen time spent on different

software programs. These applications store their observations locally on the user’s

device; only the users themselves are able to view this data, and they choose what to

do with it.

16

Figure 1-1: Examples of personal user data from Uber, Starbucks, and Chase that
are available for individuals to capture and collect. Uber shows your trip history
including the time, price, and route. Starbucks shows the time, price, and location.
Chase shows the time, price, and vendor.

We envision a system which supports both of these types of data collection and

allows individuals to collect personal data across a variety of domains — ranging from

their Starbucks order history to their web browsing traffic — and store it locally on

their device as described in Section 3.1. At any point in time, a group of individuals

would be able to opt into using a differentially private mechanism to contribute a

subset of their data towards solving a problem of interest.

1.2 The Tiresias Platform

How can we make machine learning technology more accessible to smaller entities as

well as to individuals? In other words, can we build a general platform that facilitates

peer-to-peer machine learning? Because machine learning models are data-hungry,

17

Server
The server is responsible for publishing
a list of tasks and managing
contributions from data contributors.
When a task is ready, the platform
server executes it.

Client
The client runs locally on the
data contributor’s machine and
stores the features as a set of
relational tables. It also performs
the computations necessary to
support some types of tasks.

Collectors
The collector apps collect
user data and store it locally
on the device using the user
client.

Researchers
The researchers examine the
collector data schemas to see
what data is available,
design a task, and submit it
to the platform server.

Figure 1-2: Interactions between the collectors, client, server, and researchers on the
Tiresias platform. The design of the collectors, client, and server is described in
Section 3.3.

the platform must provide a way to securely share personal data among multiple

untrusted users. More importantly, in this case, the platform itself is not trusted,

because we want any end user to be able to initiate and host the machine learning

process. How can we create a secure peer-to-peer machine learning platform that is

hosted through an untrusted server, yet powerful enough to build useful data science

applications?

In this thesis, we propose Tiresias, an open yet secure data science platform

designed to enable peer-to-peer machine learning. Tiresias would allow requestors

to write machine learning tasks that can be used to solve a wide variety of problems

while enabling data contributors to collect and contribute data to those tasks. We

argue that the design of such a platform is highly challenging for three reasons:

1. Machine Learning: The primary focus of the platform is to enable peer-to-

peer machine learning. Thus, the system should provide a unified platform to

gather training data that can support a wide variety of machine learning tasks.

18

This dimension includes various subtopics, from data collection and feature

extraction to model selection and optimization.

2. Privacy: Privacy is a nebulous concept — it has been characterized as ev-

erything from the desire for personal space and freedom to the desire to avoid

price discrimination or other, more insidious forms of discrimination [2]. There

is significant evidence of shifting attitudes towards privacy and a growing back-

lash against privacy-violating firms, suggesting that stronger privacy protections

may be a necessary component of future data-related endeavors [4]. Most impor-

tantly, privacy concerns often make end users skeptical about the repercussions

of sharing their private data. For these reasons, the platform should provide a

privacy-preserving way to share personal data.

3. Systems: Finally, the platform itself has a systems aspect which contains its

own challenges, such as efficiency, robustness and resource management.

We understand that a comprehensive study of all three areas is beyond the scope

of a single thesis, and primarily focus on two dimensions in this work: Privacy and

Systems. For Privacy, we propose a decentralized data science platform that protects

consumers through local differential privacy mechanisms. In the Systems area, we

propose a new architecture for the platform and explain our current design choices in

detail.1

The benefits of such a platform are manifold. First, the platform provides a unique

locus for combining datasets across domains (e.g. we can merge data on web browsing

from a Chrome extension with fitness/health data from a mobile app at an individual

level). Second, this system allows users to retain ownership over their personal data.

Users can also preserve their data for future use, even if they don’t want to share it

now. Finally, the platform democratizes access to the benefits of machine learning

by allowing individuals to contribute to machine learning projects — potentially in

exchange for economic incentives — which we view as a paradigm shift that will

1This is ongoing work. As this project develops, we expect our design choices to evolve. The
reader can find the latest on the Tiresias platform at https://github.com/DAI-Lab/Tiresias.

19

https://github.com/DAI-Lab/Tiresias

characterize the next generation of machine learning.

1.3 Motivating Scenarios

In this section, we explore some common scenarios in which people could use the

Tiresias platform. Each of these scenarios is presented from the point of view of the

entity that wants to perform a particular data-driven task, and we provide a high-level

description of what the platform does behind the scenes to execute it.

1.3.1 Peer-to-Peer Machine Learning

In the first scenario, a group of friends is attempting to build a machine learning

model together and train it on their own personal data. They want to make sure they

do this in a privacy-preserving manner. The Tiresias platform allows them to achieve

this goal by (1) providing a client that allows them to collect and store their personal

data and (2) providing a server library that, in conjunction with the client library,

provides support for a variety of differentially private machine learning algorithms.

Specifically, each participant would simply need to install the client and start

collecting their data by installing whatever collector application suits their particular

use case (e.g. a geolocation collector which tracks their location history). Then,

they could work together to write a task that trains a differentially private logistic

regression model to predict a quantity of interest such as their commute time.

To the best of our knowledge, Tiresias is the first platform which enables indi-

viduals to perform this kind of differentially private collaborative machine learning,

opening up possibilities for all kinds of new applications.

1.3.2 Supporting Research

In the next scenario, a researcher at an academic institution is attempting to gain

insight into some societal trends. For example, consider a scenario where the re-

searcher wishes to understand the relationship between geographic location and web

20

browsing. The Tiresias platform enables this research by providing a personal data

store for people to collect this data, and providing differentially private mechanisms

for the researcher to securely interact with the data (e.g. estimating causal impacts

using a difference-in-differences regression).

The key feature of the Tiresias platform is that it makes this process easier for

both the users and the researcher. By providing a personal data store, the Tiresias

platform allows users to passively collect data about themselves and store it locally;

they then have the freedom to choose whether to provide private access to the data

on a case-by-case basis (e.g. if another researcher wants to run a similar experiment

but has a better reputation, the contributor can choose to deny the first request).

On the researcher side, the platform allows them to work more efficiently, as they no

longer have to collect the data themselves and can focus on modeling and analysis.

1.3.3 Transfer Learning

Another scenario where the Tiresias platform presents a compelling solution is model

fine-tuning. There are many practical image and natural language processing tasks

for which domain experts have released pre-trained models, from image classification

to machine translation, but these models often need to be fine-tuned if they are to

be applied to a specific problem. The Tiresias platform enables this by allowing

researchers to start from a pre-trained model and fine-tune it using private user data,

allowing the model to learn from data that is more representative of the real world

than the curated training set that it was originally constructed on.

To implement this, a researcher would start by submitting a gradient task con-

taining a set of pre-trained model weights and ask the users to compute the gradients

with respect to the weights using their private data, as described in Section 4. Differ-

ential privacy mechanisms are applied to the gradients on the client side before they

are sent to the platform for aggregation and applied to the pre-trained model. Pre-

vious work has shown that it can be difficult to train a neural network from scratch

within a reasonable privacy budget; however, fine-tuning a model that has already

been trained is significantly easier and can be accomplished even with a modest pri-

21

vacy budget [1].

Our platform makes it easy to apply these transfer learning techniques to private

user data, especially for image classification problems, by providing multiple pre-

trained convolutional neural networks that can be retrained using gradient tasks.

1.3.4 Institutional Data Collection

Finally, we see an opportunity for our platform to support institutional data collec-

tion. Everyone from academic institutions to Fortune 500 companies collects data

about their employees, students, and staff to track everything from the usage of office

space to the amount of time spent on different tasks. This type of data collection is

intrusive and has been widely criticized; however, it is still used by various institu-

tions since it allows administrations to better monitor resource usage and optimize

their internal performance.

Our system makes the process less intrusive and more equitable by giving users

control over their data. Specifically, we believe that our system will:

1. Make it easier for the parties to implement data collection mechanisms.

2. Provide a flexible set of tools for machine learning and data science.

3. Allow individuals to manage requests for data on a case-by-case basis.

We see an opportunity for our platform to make institutional data collection opt-in

rather than mandatory. Ideally, this would allow institutions to collect the same data

that they already do in a more open and transparent manner, while simultaneously

giving individuals more control over what their data is used for.

1.4 Enabling Technologies

We argue that now is the ideal moment for building a platform that enables personal

data collection and differentially private machine learning for four reasons:

22

1. Availability of user data. First, this work comes at a time when organizations

are moving towards giving individuals more access to their own data for a variety

of reasons, ranging from recent privacy legislation such as GDPR and CCPA to

competition with other firms. (For example, users can now access their rideshare

history through Lyft, their order history from Starbucks, and search history on

Google.) This, in combination with the ease of deploying software, has made

it possible to build data collection applications which operate at the user level

and allow individuals to create their own personal data stores.

2. Open source software. Second, the prevalence of open source machine learn-

ing libraries, from scikit-learn to PyTorch [34], has made it possible for individ-

uals to design, train, and deploy machine learning models. In contrast to other

technologies such as search engines, machine learning research puts a heavy

premium on open-source code, resulting in a rich ecosystem of libraries that

contain cutting edge research.

3. Automated machine learning pipelines. Third, work on automated ma-

chine learning has advanced to a stage where even non-domain experts can

build competitive machine learning models through techniques such as auto-

mated feature extraction [26] and hyperparameter optimization [20].

4. Differential privacy research. Finally, privacy research has advanced by

leaps and bounds in the past decade. Concepts such as differential privacy [15],

local differential privacy [7], and federated learning [1] provide formal math-

ematical guarantees of user privacy. This body of work makes it possible for

individuals to perform computations on their combined data in a way that min-

imizes their individual risk.

The combination of these factors makes it possible to (1) build a system for se-

curely and locally collecting individual user data, (2) design and implement complex

machine learning pipelines with ease, and (3) execute machine learning procedures

on individual user data while offering differential privacy guarantees.

23

1.5 Thesis Roadmap

This thesis is organized as follows:

∙ Chapter 2 introduces related work in privacy, machine learning, and systems.

∙ Chapter 3 presents the high-level design of our system.

∙ Chapter 4 explains the types of tasks supported by our system.

∙ Chapter 5 demonstrates the performance of our system.

∙ Chapter 6 proposes user studies to demonstrate the usability of our system.

∙ Chapter 7 highlights promising areas for future work on this system.

24

Chapter 2

Related Work

In this section, we provide an overview of key results in differential privacy, some

differentially private mechanisms and models that have been explored, and highlight

some open source software and systems which provide implementations of differential

privacy mechanisms.

2.1 Differential Privacy

Differential privacy is a statistical technique proposed by Dwork and McSherry [14]

to measure the theoretical maximum privacy loss that may be incurred if a statistic

derived from a dataset is released. This framework allows us to move away from

treating privacy as a binary concept and towards treating it as a continuum. As

defined in [12], a mechanism 𝑀 is (𝜖, 𝛿)-differentially private if it satisfies the following

condition for all subsets of possible values 𝑆 ⊆ 𝑅𝑎𝑛𝑔𝑒(𝑀) and databases 𝑥 and 𝑦 that

differ by a single row:

𝑃 (𝑀(𝑥) ∈ 𝑆) ≤ 𝑒𝜖𝑃 (𝑀(𝑦) ∈ 𝑆) + 𝛿

We note that multiple variations on 𝜖-differential privacy have been proposed [15];

the above (𝜖, 𝛿)-differential privacy definition is what we will primarily use in this

work. Across all of these definitions, the 𝜖 parameter corresponds to the maximum

25

privacy loss that may be incurred. Unfortunately, the interpretation of 𝜖 varies across

datasets and domains and automatically choosing the appropriate 𝜖 value for a par-

ticular dataset remains an open problem [28].

The four typical settings for applying differential privacy are (1) the local dif-

ferential privacy setting where users use randomized response to add noise to their

own data prior to contributing it, (2) the centralized aggregator model where a cen-

tral authority is responsible for collecting the raw data and then making the result

differentially private, (3) the interactive setting where multiple queries are sequen-

tially submitted to a central authority, and (4) the public disclosure setting where the

differentially private results are released to a public audience [29]. Our system is a

hybrid of the first three settings, giving data collectors and requestors the flexibility

to select the appropriate setting for their particular use case.

2.2 Mechanisms and Models

General strategies for achieving differential privacy include (1) randomized response-

based methods (a.k.a. local differential privacy) which adds noise to each individual’s

data as described in [25], (2) the propose-test-release framework which attempts to

iteratively identify the sensitivity of a function [13], and (3) the sample-and-aggregate

framework which uses sampling to bound the contribution of each user to the final

output [32]. These general strategies, in combination with basic building blocks such

as the Laplace mechanism and exponential mechanism, provide a rich toolkit for

designing differentially private algorithms for everything from summary statistics and

binary search to machine learning and combinatorial optimization.

Next, we select some works which lie at the intersection of machine learning and

differential privacy. These papers typically start with an existing machine learning

algorithm, modify it by adding noise to the parameters or perturbing the objective

function, and prove that the resulting model is differentially private. A few popular

examples of machine learning models for which differentially private versions have

been derived include linear regression [35], logistic regression [6], Gaussian naive bayes

26

[38], decision trees [23], and neural networks [1].

We note that the majority of the works described in this section focus primarily

on theoretical proofs of algorithms that can be used to achieve differential privacy

rather than providing practical software implementations.

2.3 Systems and Software

Finally, we highlight some recent works which aim to make differential privacy prac-

tical for real-world applications by releasing open source software and systems.

One of the earliest works that aims to make differential privacy easy to use is

[31], which presents a LINQ-like language for writing queries that automatically pro-

vide differential privacy; however, it imposes significant constraints on the types of

queries that can be executed. Another work on making queries differentially private

is [24], which proposes an algorithm for automatically rewriting SQL queries to be

differentially private.

Towards practical differentially private machine learning, the authors of [30] pro-

vide practical advice about how to implement differential privacy for iterative (e.g.

gradient based) training procedures and implement their ideas in the open source

Tensorflow Privacy library that enables users to train differentially private neural

networks. The authors of [8] take a orthogonal approach and propose training mod-

els in a non-private way but offering differentially private predictions as a service.

Other open-source projects that aim to make differential privacy tools more acces-

sible include Google’s RAPPOR [16] which provides tools to collect statistics about

categorical values, IBM’s DiffPrivLib [21] which provides implementations of differ-

entially private machine learning models, and Google’s Differential Privacy project

[39] which provides an optimized C++ library for computing various statistics in a

differentially private manner.

We note that although the works described in this section provide open source

software implementations of their algorithms, they tend to be focused on a specific

problem as opposed to providing an end-to-end platform for differential privacy.

27

28

Chapter 3

System Architecture

In this section, we describe (1) the collectors, which are responsible for capturing user

data, (2) the different stakeholders who interact with Tiresias, and (3) the software

architecture of the platform. At a high level, our system consists of the server, which

provides an interface for requesting, managing, and executing tasks, the client, which

is responsible for storing user data locally and performing the necessary client-side

computations, and a set of collectors, which are responsible for gathering user data

and extracting relevant features, as shown in Figure 1-2.

Individuals who are interested in running tasks on the user data — a.k.a. re-

questors — can inspect the predefined data schemas associated with each collector

and use this information to design and write tasks, as described in Section 4. The

requestor can then submit the task to the server which will allow data contributors

to explore all open tasks and choose which ones to accept. Once enough data con-

tributors have accepted the task, the task is executed and the differentially private

results are made available to the original requestor.

3.1 Collectors

The collectors are responsible for generating clean relational datasets locally on the

client. For example, a web browsing collector would track the internet history of the

user, extract relevant fields, and store them as a set of tables. Other examples of

29

collectors that could be implemented include scripts that extract data from external

applications such as Uber, Starbucks, and Chase, as well as applications that mon-

itor specific activities such as browsing history, application usage, or even physical

location.

Each collector is expected to interface with the client through a standard interface

which requires them to (1) declare a fixed data schema that describes the dataset that

it will be creating and (2) insert data into the client. The data insertion can either

be user-triggered (i.e. a script that extracts the Lyft ride history whenever the user

runs it) or periodic (i.e. an application that reports the user’s IP address at one-hour

intervals).

3.1.1 Collector Usage

When the data contributor installs the client, they can choose which of the available

set of collectors to install. Before enabling a collector, the user can inspect the publicly

declared data schema (or even the open-source code itself) to see what type of data

will be collected and stored locally. As shown in Figure 3-1, these collectors work

together to populate the user’s personal data store with useful features.

Note that different users can choose different sets of collectors to enable depending

on their personal preferences, allowing users to customize their experiences. Some

users may be reassured by the fact that all of the data is stored locally on their

personal device, and choose to simply enable all the available collectors to capture

and organize as much data as possible. Others may choose to install a subset of

collectors so as to only capture data that is of particular interest to them.

3.1.2 Collector Development

When the collector is first created, it must declare a static set of relational tables (i.e.

their data schema). These tables are stored and maintained by the client application,

which also exposes an interface to allow a requestor to further process the data as part

of a task. Any software developer who is interested in contributing to the Tiresias

30

platform can build a collector that runs on the user’s device upon installation, collects

data about a specific domain (i.e. browsing history), and extracts useful features.

They can then submit a pull request to the Tiresias repository in order to publish

their collector. Note that all collectors must be open source and must make their

output data schema publicly available for inspection.

3.2 Stakeholders

In this section, we describe the two primary stakeholders in our system: (1) the data

contributors who contribute their data and (2) the requestors who submit the tasks

that are computed on this data. The data contributors and requestors interact with

a client-server architecture which we describe in Section 3.3.

3.2.1 Data Contributors

Contributors are users who choose to pre-process and store their personal data locally

using the Tiresias client. By default, each data contributor maintains complete own-

ership over their own data, as it is stored locally on their own devices; at any point

in time, however, a contributor can choose to contribute their data to open tasks on

the Tiresias platform in a differentially private manner.

In order to become a data contributor, a user needs only to do the following:

1. Install the Tiresias client.

2. Choose, install, and run collectors.

3. Browse open tasks on Tiresias server.

4. Select tasks to privately contribute data to.

The server provides a listing of open tasks that users can contribute their data

to, and the data contributor is able to browse these tasks and choose which ones to

accept. Once the data contributor accepts a task, the client and server work together

31

to perform the appropriate computations depending on the task type, modeling al-

gorithm, and differential privacy configuration.

3.2.2 Data Requestors

Requestors are users who are interested in creating tasks which require computation

on user data. Examples of tasks range from evaluating statistical queries (e.g. identi-

fying the average age of visitors to a particular website) to training machine learning

models (e.g. predicting whether a pull request will be accepted).

To become a requestor, a user simply needs to make an API call to the server to

create a new task. In general, a requestor will take the following steps:

1. Install the Tiresias library.

2. Explore the publicly available data schemas (Section 3.1).

3. Design a task by writing a JSON object (Section 4).

4. Submit the task to the server.

Once enough data contributors have accepted the task, the requestor can then call

the API again to retrieve the output of their task, whether that is summary statistics

or a fully-trained model.

3.3 System Design

In this section, we introduce the design of our server and client. The server is hosted

by a service provider and is responsible for performing some of the necessary com-

putations to support differential privacy, statistics, and machine learning, as well as

providing API endpoints to allow requestors to create tasks and contributors to sub-

mit data. The client runs on the data contributor’s device and is responsible for

collecting data, extracting features into relational tables, and communicating with

the server in order to accept and process tasks.

32

3.3.1 Server

The server is responsible for coordinating interactions between data contributors and

requestors. It maintains a list of open tasks that have been submitted by requestors

for processing as well as a list of data schemas that correspond to the data that is

being collected. The data contributors can look at the open tasks and select which

tasks to accept, while the requestors can look at the data schemas in order to compose

and submit tasks.

Depending on the type of task, the server is also responsible for performing some

of the computation necessary to support differential privacy, train a machine learning

model, compute the appropriate statistics, and so on. We discuss the computational

aspects of the server in greater detail in Section 4.

The server interacts with the data contributors and requestors through the fol-

lowing REST endpoints:

∙ GET /api/task

This endpoint returns a list of all open tasks. Each task is represented as a JSON

object which contains information about the data that is being requested, how

the data will be processed, and what it will be used for.

∙ POST /api/task

This endpoint allows requestors to create a new task. The task is represented

as a JSON object as described in Section 4 and the endpoint returns a task

id.

∙ GET /api/task/<task_id>

This endpoint allows requestors to check on the status of their tasks. If the task

has been completed, the results field contains the output of the task, which can

range from a scalar value to a trained machine learning model.

∙ POST /api/task/<task_id>/submit

This endpoint allows contributors to submit their data to a specific task.

33

Raw Data

Collector

Client

Personal Data Store Local Privacy
Layer

Figure 3-1: The client transforms raw data collected from the user’s device into a
personal data store. Then, if the user accepts a task, it retrieves the appropriate data
from the personal feature store, applies local privacy mechanisms if appropriate, and
transmits the processed data to the server.

When a task is first created, all users are able to see it and choose whether to

contribute the requested data and/or features. The task remains in this state until

the minimum count threshold is reached (e.g. enough users have chosen to contribute

their data), at which point the task is executed and the results are returned to the

requestor.

This module is implemented using a multi-threaded web server backed by an in-

memory object which tracks the status of every task as well as the data associated with

it. A separate task handler thread is responsible for identifying tasks that are ready

for processing, performing the appropriate computations, and deleting the users’ data

once the results are ready.

3.3.2 Client

The client application runs locally on the user’s device and is responsible for securely

storing the user’s data as well as supporting the differential privacy mechanisms de-

scribed in Section 4.

Data Collection

A typical collector is implemented as an application that collects user data (e.g. loca-

tion history) and uses the API endpoints shown in Figure 3-2 to store the featurized

34

data within the Tiresias client. For example, when a collector such as a browsing

history tracker is installed, it calls the first endpoint once to register its schema and

then periodically calls the second endpoint to insert data about the user’s activity.1

Internally, within the client, the data store is organized as a collection of SQLite

databases which includes a metadata database and one or more collector databases.

The metadata database keeps track of which data collectors are installed and the data

schemas for each. The collector databases correspond to each data collector that is

installed; when the collector inserts data, it is stored in these databases.

When the data is being queried (i.e. when a task is approved), the appropriate set

of collector databases is attached to the metadata database and the query is executed.

This design enables requestors to use the JOIN operator to write tasks that operate

on data originating from multiple collectors.

Task Management

Using the client, the data contributor can view the open tasks on the platform and

select which tasks to accept through either the Python API or the graphical user

interface. As discussed in Section 4, each task is represented by a JSON object which

the data contributor can inspect to understand what data will be shared, what the

data will be used for, and the privacy settings that will be used. This JSON represen-

tation is supplemented by an automatically generated natural language description

of the task, as shown in Figure B-2. Furthermore, the user can preview the data that

will be sent to the platform, as shown in Figure B-4.

Once the data contributor has accepted a task, the requested values are retrieved

from the user’s personal data store and the appropriate local preprocessing steps

are performed before the data is sent to the server. For example, if the contributor

chooses to approve a task that uses local differential privacy, then the client applies

the appropriate differential privacy mechanisms. For other types of tasks, the client-

side computation may be more expensive; in the case of a gradient task, for example,
1We emphasize the fact that, although the collectors communicate with the client using a REST

API for simplicity and compatibility, all communication happens over localhost and there is no
communication with the outside world during the data collection process.

35

POST /app/<app_name>/register

This endpoint registers a new data collection application with the given schema.

Request Body:

{
"tableX": {

"description": "This table contains X.",
"columns": {

"column1": {
"type": "float",
"description: "This column contains ..."

},
"column2": {

"type": "string",
"description: "This column contains ..."

}
}

}
"anotherTable": ...

}

POST /api/<app_name>/insert

This endpoint allows the data collection application to insert data into its
feature store.

Request Body:

{
"tableX": [

{"column1": 0.0, "column2": "hello"}
],
"anotherTable": ...

}

Figure 3-2: These two REST API endpoints (which are only accessible over localhost)
are used by collectors to (1) declare their data schema and (2) insert data into the
client.

36

the client computes a perturbed estimate of the gradients for a deep learning model,

which can require significant computational power.

37

38

Chapter 4

Tasks and Mechanisms

The goal of this section is to provide a high-level overview of the four primary types

of tasks (and corresponding differential privacy mechanisms). Note that additional

instance-specific tasks are possible and desirable - for example, we may want to pro-

vide a highly optimized deep learning task which uses multiple rounds of computation

to support the moments accountant [1] - but these general task types are intended to

capture the vast majority of use cases.

The first two types of tasks — basic tasks and integrated tasks — assume

that the data contributors trust the server but do not trust the requestors. These

methods require that the data contributor send their featurized data to the server

which then applies differential privacy mechanisms before releasing the differentially

private results to the requestor.

The next two types of tasks — bounded tasks and gradient tasks — relax the

assumptions so that the data contributors do not need to trust the server. For these

types of tasks, the data contributors apply local differential privacy mechanisms in

the client and send only perturbed data to the server.

4.1 Basic Tasks

This type of task involves gathering a feature or a value from each contributor and

computing an aggregate statistic on the server. For this type of task, the differential

39

Field Description

epsilon This field takes a numerical value greater than 0.0.
delta This field takes a numerical value between 0.0 and 1.0.
min_count This field takes an integer value greater than 10 corresponding to the

minimum number of data contributors who must submit data before
the task is processed by the server.

featurizer This field is expected to be a string containing a valid SQL query
that extracts a feature from the data contributor’s personal data
store.

aggregator This field is expected to be one of the following aggregation mecha-
nisms: mean, median, count, sum, and variance.

Table 4.1: This table describes the fields of the JSON object for a basic task.

privacy mechanisms are implemented on the server ; therefore, the contributor needs to

trust the server to correctly compute a differentially private estimate of the statistic.

4.1.1 Task Representation

This task, when created by a requestor, is represented as a JSON object with the

fields listed in Table 4.1. The epsilon and delta fields correspond to the privacy

parameters in the (𝜖, 𝛿) definition of differential privacy. The min_count field corre-

sponds to the minimum number of data contributors who need to accept this task

before it is processed.

This class of tasks involves two components, a client-side featurizer operation

which computes and returns a single scalar value and a server-side aggregator oper-

ation which belongs to a set of predefined differentially private aggregation functions

shown in Table 4.2. We provide a complete example of a basic task which computes

the median age in Figure 4-1.

4.1.2 Computation

When processing basic tasks, the client is responsible for extracting the appropriate

features/variables from the user’s personal data store and transmitting it to the server.

The server then estimates the value of the aggregation function in a differentially

40

Example: Basic Task

{
"type": "basic",
"epsilon": 1.0,
"delta": 1e-5,
"server": "trusted",
"min_count": 100,
"featurizer": "SELECT age FROM profile.demographics",
"aggregator": "median"

}

Figure 4-1: This shows the JSON representation of a basic task whose goal is to
compute a differentially private estimate of the median age across all of the data
contributors who accept this task and contribute their age to it.

Statistic Relevant Work

Count (Dwork et al., [15])
Median (Nissim et al., [32])
Mean (Li et al., [29]), (Wilson et al., [39])
Sum (Li et al., [29]), (Wilson et al., [39])
Variance (Wilson et al., [39])

Table 4.2: This lists the different operations that are currently supported on our
platform through basic tasks.

private manner before releasing the result to the requestor.

By default, the server uses a generic sampling-based procedure designed to sup-

port arbitrary aggregation functions. This procedure works by (1) selecting random

subsets of the values from data contributors, (2) computing the value of the function

on each subset, (3) estimating the approximate bounds for these values, and (4) com-

puting the median of these values in a differentially private manner to produce an

estimate of the function value.

For some specific aggregation functions such as the count, however, there ex-

ist custom mechanisms which outperform the generic sampling-based procedure; in

these cases, the server will automatically use the best available implementation. We

provide a detailed description of the sampling-based procedure and bounds approxima-

tion algorithm in the following subsections and refer readers to Table 4.2 which lists

41

the aggregation functions that are supported and relevant literature.

Sample And Aggregate

Many of these tasks are implemented using the the sample-and-aggregate framework

[32] which provides a mechanism for computing a noisy estimate of a function 𝑓 on

dataset 𝐷 where the amount of noise is calibrated to both the function and the dataset

to guarantee (𝜖, 𝛿)-differential privacy.

The two key ideas behind the sample-and-aggregate paradigm are (1) estimating

the function 𝑓 on subsets of the data and (2) aggregating the estimates with a dif-

ferentially private mechanism. To efficiently perform this aggregation, Nissim et al.

define the 𝛽-smooth sensitivity of a function 𝑓 as

𝑆𝛽(𝑥) = max
𝑦∈𝐷𝑛

(𝐿𝑆𝑓 (𝑦) · 𝑒−𝛽𝑑(𝑥,𝑦)) (4.1)

and prove that it is an upper bound on the local sensitivity 𝐿𝑆 of the function [32].

By calibrating the scale of the noise distribution to the smooth sensitivity, we can

guarantee (𝜖, 𝛿)-differential privacy. The smooth sensitivity of the median (derivation

in [32]) is given by

𝑆𝛽 = max
𝑘=0,...,𝑛

(𝑒−𝑘𝛽 max
𝑡=0,...,𝑘+1

(𝑥𝑚+𝑡 − 𝑥𝑚+𝑡−𝑘−1)) (4.2)

where we assume that 𝑥1, ..., 𝑥𝑛 is in sorted order and 𝑚 = 𝑛+1
2

.

Then, to produce an (𝜖, 𝛿)-differentially private mechanism for computing the

median, we can simply add 𝑑-dimensional Laplacian noise scaled according to:

𝛽 =
𝜖

4 · (𝑑+ 𝑙𝑛(2/𝛿))
(4.3)

ˆ𝑀𝑒𝑑𝑖𝑎𝑛(𝑥) = 𝑀𝑒𝑑𝑖𝑎𝑛(𝑥) +
2𝑆𝛽(𝑥)

𝜖
· Laplace(0, 1) (4.4)

Therefore, for a given scalar function 𝑓 , we can evaluate the function 𝑓 on subsets

of the dataset 𝐷 to produce values 𝑓1, ..., 𝑓𝑛 where each value is a reasonable estimate

42

of 𝑓(𝐷). Using the above mechanism, we can then compute the median of these

estimates to obtain a stable and differentially private estimate of 𝑓(𝐷).

Approximate Bounds

Many differential privacy mechanisms require information about the domain of the

values; for example, a simple differentially private estimate of the sum can be obtained

by adding Laplacian noise scaled to ℎ𝑖𝑔ℎ−𝑙𝑜𝑤
𝜖

. In some specific situations, these bounds

are known or can be assumed a priori (e.g. if the variable corresponds to a human

age, then it is reasonable to assume it is in the range 0 to 150); however, in general,

these bounds are not known by the requestor or the server and need to be estimated.

In practice, many implementations of differential privacy algorithms will directly

estimate the lower and upper bounds from the data, resulting in some privacy leakage;

for example, in the open source implementation of [21], if bounds are not specified,

then they are directly estimated from the data and a privacy leakage warning is

logged.

An alternative approach is to use some of the privacy budget to first obtain a

differentially private approximation of the bounds, clip the data to this range, and

then use these bounds for the subsequent operation, as implemented in [39]. At a

high level, this approximation procedure works as follows:

1. Compute a log histogram of the values sent by the data contributors.

2. Add noise to the log histogram to make it differentially private.

3. Identify the first and last bins of the histogram which are above a given thresh-

old; these bins correspond to a differentially private estimate of the minimum

and maximum values present in the data.

4. Clip the values sent by the data contributors so they lie between the minimum

and maximum values obtained by this procedure.

This results in a new set of values with a known domain that can be supplied to the

downstream differential privacy mechanism.

43

Field Description

epsilon This field takes a numerical value greater than 0.0.
delta This field takes a numerical value between 0.0 and 1.0.
min_count This field takes an integer value greater than 10 corresponding to

the minimum number of users who must contribute data before the
task is processed.

featurizer This field is expected to be a string containing a valid SQL query
that extracts named variables from the user’s personal data store.

model This field is expected to be one of the following models: GaussianNB,
LinearRegression, and LogisticRegression.

inputs This field contains a list of variable names corresponding to the vari-
ables returned by the featurizer.

output This field contains a variable names that matches one of the variables
returned by the featurizer.

Table 4.3: This describes the fields of the JSON for an integrated task.

4.2 Integrated Tasks

This type of task involves (1) gathering a collection of named features from each

contributor and (2) using these features to train a model on the server. For this type

of task, the majority of the computation occurs on the server and the contributor

needs to trust the server to correctly train and release a differentially private model.

4.2.1 Task Representation

This class of tasks involves two components, a client-side featurizer operation which

computes and returns an collection of features and a server-side model operation

which is typically a type of machine learning model which has been modified to be

differentially private.

The JSON fields associated with an integrated task are listed in Table 4.3. We note

that the featurizer returns a dictionary of key-value pairs; the inputs and output

fields reference these key-value pairs and specify which features are the covariates and

which feature is the outcome. A complete example of an integrated task which trains

a Gaussian naive bayes model is shown in Figure 4-2.

44

Example: Integrated Task

{
"type": "integrated",
"epsilon": 10.0,
"min_count": 100,
"server": "trusted",
"featurizer": "SELECT x1, x2, y FROM profile.example",
"model": "GaussianNB",
"inputs": ["x0", "x1"],
"output": "y"

}

Figure 4-2: This example shows the JSON representation of an integrated task which
trains a Gaussian naive bayes classifier in a differentially private manner.

4.2.2 Computation

We provide a listing of machine learning models that are supported by this type of task

in Table 4.4. We omit a detailed description of the mechanisms used to support these

differentially private machine learning algorithms and refer readers to the relevant

works cited above. For example, the naive bayes integrated task shown in Figure 4-2

uses a differentially private implementation of the Gaussian Naive Bayes classifier as

proposed in [38].

In addition, we note that although our implementation of these algorithms is

based on DiffPrivLib by IBM [21], we make substantial modifications, particularly

in the case of bounds handling. In the authors’ implementation of [21], when the

bounds are not explicitly set by the user, they are directly estimated from the data,

resulting in possible privacy leakage. In our implementation, when the bounds aren’t

specified, we use the log histogram technique from [39] to obtain a differentially private

approximation of the bounds, clip the data to those bounds, and provide those bounds

to the machine learning algorithm.

45

Operation Relevant Work

Linear Regression (Holohan et al., [21]), (Sheffet, [35])
Logistic Regression (Holohan et al., [21]), (Chaudhuri et al., [6])
Naive Bayes (Holohan et al., [21]), (Vaidya et al., [38])

Table 4.4: This lists the different operations that are currently supported on our
platform through integrated queries.

4.3 Bounded Tasks

This type of task involves gathering a collection of named features or variables from

each contributor where the values are perturbed by the client before they are sent

to the server. For this type of task, the client is responsible for the majority of the

computation and the server simply relays the values to the requestor.

4.3.1 Task Representation

The JSON fields associated with a bounded task are listed in Table 4.5. This class

of tasks requires a client-side featurizer operation which computes and returns

a collection of features where the domain for each feature is specified in bounds.

Features may be either continuous, in which case the domain is specified by the lower

and upper bound, or categorical, in which case the domain is specified as a list of all

possible values that it can take on. We provide a complete example of a bounded

task in Figure 4-3.

4.3.2 Computation

When processing bounded tasks, the client is responsible for performing all of the

computations to support local differential privacy. Since all the features have a

known domain, the client can simply apply the following mechanisms to generate

a differentially private copy of each feature.

To generate an 𝜖-differentially private version of a numerical variable with bounded

46

Field Description

epsilon This field takes a numerical value greater than 0.0.
delta This field takes a numerical value between 0.0 and 1.0.
min_count This field takes an integer value greater than 10 corresponding to

the minimum number of users who must contribute data before the
task is processed.

featurizer This field is expected to be a string containing a valid SQL query
that extracts named variable from the user’s personal data store.

bounds This field contains a dictionary mapping each variable name to the
bounds for that variable. The bounds can be either a set of values,
in the case of a discrete variable, or a range of values, in the case of
a continuous variable.

Table 4.5: This describes the fields of the JSON for a bounded task.

range [𝑎, 𝑏], we can apply the classic Laplace mechanism

𝑥̂ = Laplace(𝑥,
𝑏− 𝑎

𝜖
) (4.5)

which has been explored in numerous previous works [15, 10].

Similarly, the Gaussian mechanism for (𝜖, 𝛿)-differential privacy is given by

𝜎 =
√︀
2𝑙𝑛(1.25/𝛿)

(𝑏− 𝑎)2

𝜖
(4.6)

𝑥̂ = 𝒩 (𝑥, 𝜎2) (4.7)

which can be preferable to the Laplace mechanisms in situations where the noise

distribution is expected to be Gaussian.

To generate a differentially private version of a categorical variable with 𝑁 possible

values [25], we can simply sample from the following distribution

𝑃 (𝑥̂|𝑥) =

⎧⎪⎨⎪⎩
𝑒𝜖

𝑁+𝑒𝜖−1
if 𝑥̂ = 𝑥

1
𝑁+𝑒𝜖−1

otherwise
(4.8)

47

Example: Bounded Task

{
"type": "bounded",
"epsilon": 1.0,
"min_sample_size": 100,
"server": "untrusted",
"featurizer": "SELECT species , age FROM profile.pets",
"bounds": {

"species": {
"type": "set",
"default": "dog",
"values": ["cat", "dog"],

},
"age": {

"type": "range",
"low": 0.0,
"high": 100.0

},
}

}

Figure 4-3: This shows the JSON representation of a bounded task which applies
local differential privacy mechanisms to the species and age values. The untrusted
server field refers to the fact that the differential privacy mechanism is applied on the
client side.

which trivially satisfies 𝜖-differential privacy since

𝑃 (𝑥̂ = 𝑥|𝑥)
𝑃 (𝑥̂ = 𝑧|𝑥)

≤ 𝑒𝜖 (4.9)

for all 𝑧 such that 𝑧 ̸= 𝑥. We can derive a similar mechanism for (𝜖, 𝛿)-differential

privacy which samples from the following distribution

𝑃 (𝑥̂|𝑥) =

⎧⎪⎨⎪⎩
𝑒𝜖+𝛿(𝑁−1)
𝑁+𝑒𝜖−1

if 𝑥̂ = 𝑥

(1−𝛿)(𝑁−1)
(𝑁−1)(𝑁+𝑒𝜖−1)

otherwise
(4.10)

and allows us to make comparisons with (𝜖, 𝛿)-differential privacy algorithms.

48

4.4 Gradient Tasks

This type of task requires the client to compute a gradient update for a neural network

using their personal data. Then, the client adds noise to the gradient update before

sending it to the server where it is merged with gradient updates from all other

data contributors in order to produce the final gradient update that can be used to

optimize the neural network.

4.4.1 Task Representation

The JSON fields associated with a gradient task are listed in Table 4.6. The model

field contains a serialized representation of a PyTorch model while the loss field

contains a serialized representation of a PyTorch loss function. To evaluate a gradient

task, the client performs the following:

1. Loads the appropriate features from their personal data store.

2. Evaluates the loss function by passing the features to the model.

3. Uses backpropagation to compute the gradient update.

4. Adds noise to the gradients to provide differential privacy.

We provide an example of a gradient task in Figure 4-4.

4.4.2 Computation

We implement a fully distributed model of federated learning where the participants

compute gradients and apply privacy mechanisms locally [1, 17, 30]. Suppose the

dataset contains 𝑛 examples and we want to compute a single gradient update. In

our setting, since we want to apply the noise on the client side, we use a slightly

modified version of the mechanism described in [30]. Starting with a set of 𝑛 users

and a target batch size of 𝑏 = 𝑞𝑛, we apply the following procedure:

1. Each user randomly chooses whether to contribute to the gradient task with

probability 𝑞.

49

Field Description

epsilon This field takes a numerical value greater than 0.0.
delta This field takes a numerical value between 0.0 and 1.0.
min_count This field takes an integer value greater than 10 corresponding to

the minimum number of users who must contribute data before the
task is processed.

featurizer This field is expected to be a string containing a valid SQL query
that extracts features from the user’s personal data store.

model This field is expected to contain a encoded representation of a Py-
Torch model. The Tiresias library provides helper functions for gen-
erating this representation.

loss This field is expected to contain a encoded representation of a Py-
Torch loss function. The Tiresias library provides helper functions
for generating this representation.

inputs This field contains a list of variable names corresponding to the vari-
ables returned by the featurizer.

outputs This field contains a list of variable names corresponding to the vari-
ables returned by the featurizer.

Table 4.6: This describes the fields of the JSON for a gradient task.

2. If chosen, the contributor computes the gradient 𝑔𝑖 for their data and clips the

maximum 𝐿2 norm with 𝑔𝑖 = 𝑔𝑖 ·𝑚𝑖𝑛(1, 𝑆
||𝑔𝑖||2).

3. Each contributor then computes 𝑔′𝑖 = 𝑔𝑖 +𝒩 (0, 𝜎2𝑆) where 𝜎 = 1
𝜖

√︀
2𝑙𝑛1.25/𝛿.

4. The server aggregates all the gradients and computes the gradient update as

𝑔 = 1
𝑛

∑︀
𝑖 𝑔

′
𝑖.

If only the final gradient update is released, then this procedure results in a mech-

anism that is (𝑞𝜖, 𝑞𝛿)-differentially private with respect to the database. However,

from the user’s perspective, even if their individual gradients are revealed (e.g. due

to a vulnerability on the server which exposed their data), they are still guaranteed

(𝜖, 𝛿) local differential privacy.

Note that if a requestor wants to fully train a neural network (as opposed to

computing a single gradient update), they will need to (1) create a task to compute

a gradient update for the model, (2) update the model with the result of the task,

and (3) repeat steps 1-2 until the model converges. If we apply the basic composition

50

Example: Gradient Task

{
"type": "gradient",
"epsilon": 10.0,
"delta": 1e-5,
"lr": 0.01,
"min_sample_size": 100,
"featurizer": "SELECT x1, x2, y FROM profile.example",
"model": torch.nn.Sequential(

torch.nn.Linear(2, 10),
torch.nn.ReLU(),
torch.nn.Linear (10, 1),

),
"loss": torch.nn.functional.mse_loss ,
"inputs": ["x0", "x1"],
"output": ["y"],

}

Figure 4-4: This shows the JSON representation of a gradient task which computes the
gradient update for a simple feedforward neural network. The untrusted server field
refers to the fact that the differential privacy mechanism is applied to the gradients
on the client side. Note that our platform natively supports PyTorch models and
provides helper methods for serializing PyTorch models and loss functions.

theorem, then the total privacy budget for fully training a neural network is simply

the sum of the privacy parameters for each individual task that was used in the

training process.

We observe that this result is suboptimal as alternative accounting methods such

as the Moments Accountant from [1] can typically provide tighter bounds on the

privacy loss. Unfortunately, these methods require the set of contributors to be static

throughout the training process, which is not guaranteed in our setting as users are

free to accept or decline any individual task. Therefore, these alternative accounting

methods are not currently supported by the Tiresias platform.

51

Basic Task

Server
Clients

Requestor

compute a statistic
S in a differentially

private manner

S

x
1

x
2

x
k

...

Integrated Task

Server
Clients

Requestor

train a model M
in a differentially
private manner

M

x
1

x
2

x
k

x ..

..

..

1

x
2

x
k

...

Bounded Task

Server
Clients

Requestor

concatenate the
records from the
data contributors
into a dataset D

D

x
1

x
2

x
k

..

..

..

x1

x2

xk

..

..

..

...

Gradient Task

Server
Clients

Requestor

combine the
individual gradient
updates into a final
gradient update G

G

x
1

x
2

x
k

..

..

..

...

Figure 4-5: This summarizes the different types of computation that happen on the
client and server for each type of task.

52

Chapter 5

Experiments

In this section, we demonstrate how a variety of different tasks, models, and mech-

anisms can be executed on the Tiresias platform and some of the applications they

can be used for. We start by providing a broad overview of the different models that

can be trained using our platform in Section 5.1, demonstrate the effectiveness of our

platform for solving a specific real-world task in Section 5.2, show how more compli-

cated procedures such as transfer learning can be implemented on top of our platform

in Section 5.3, and provide some baseline performance measures for the scalability of

our system in Section 5.4.

5.1 Supporting Benchmarking

In this set of experiments, we aim to demonstrate some of the different machine

learning models that are supported by our system as well as some of the different ways

that they can be trained. To do this, we will make use of the built-in benchmarking

framework which allows machine learning researchers to quickly experiment with new

machine learning models and differential privacy techniques by evaluating them in a

simulated environment.

This simulated environment works by taking a dataset containing N rows and

pretending that each row belongs to a different data contributor. We can then train

the model using the implementation provided by the Tiresias platform and report the

53

Dataset Task Model Epsilon Accuracy Time

Wine Bounded

Logistic Regression 32.0 0.704 0.002
64.0 0.931 0.002

Random Forest 32.0 0.583 0.013
64.0 0.811 0.014

Support Vector Machine 32.0 0.670 0.019
64.0 0.910 0.016

Integrated
Logistic Regression 32.0 0.901 0.010

64.0 0.974 0.010

Naive Bayes 32.0 0.917 0.040
64.0 0.926 0.039

Gradient Multilayer Perceptron 32.0 0.498 4.685
64.0 0.745 4.718

Cancer Bounded

Logistic Regression 32.0 0.633 0.008
64.0 0.689 0.020

Random Forest 32.0 0.659 0.020
64.0 0.689 0.037

Support Vector Machine 32.0 0.646 0.038
64.0 0.704 0.009

Integrated
Logistic Regression 32.0 0.929 0.026

64.0 0.952 0.009

Naive Bayes 32.0 0.874 0.062
64.0 0.881 0.063

Gradient Multilayer Perceptron 32.0 0.911 19.45
64.0 0.934 15.81

Table 5.1: This table shows the results for training a variety of models (using different
types of tasks) on two classification datasets. The accuracy and running time are
reported for two different privacy levels.

performance of the model on a held-out validation set.

5.1.1 Classification

One of the key features of the Tiresias platform is its flexibility which allows users

to experiment with and deploy a variety of different machine learning approaches. In

this section, we demonstrate some of the different methods for training a classification

model which include:

1. Bounded task. Models constructed using bounded tasks apply local differen-

tial privacy mechanisms on the client side to perturb the data before it is sent

54

to the researcher who then trains the model.

2. Integrated task. Models constructed using integrated tasks use differentially

private implementations of popular machine learning models that run directly

on the data.

3. Gradient task. Models constructed using gradient tasks work by applying

differential privacy mechanisms to the gradients on the client side before it is

sent to the server who merges the gradients and updates the model.

We start by exploring two datasets: the wine dataset which contains 178 samples

with 3 classes and 13 features and the breast cancer dataset which contains 569 sam-

ples with 30 features [9]. The results from these experiments are shown in Table 5.1

and we observe that, in general, the mechanisms where the server (as opposed to the

client) is responsible for offering the differential privacy guarantees result in the best

overall performance.

We note that these results are intuitive as the bounded tasks are designed

for high-privacy low-utility use cases such as computing summary statistics and the

gradient tasks are designed for deep learning applications (as opposed to tabular

classification/regression) whereas the integrated tasks apply techniques which are

explicitly designed to solve this type of tabular machine learning problem.

5.1.2 Regression

Next, we demonstrate the corresponding set of task types and models for regression

problems. We show that a variety of methods — from basic linear regression (through

either a bounded task approach or an objective perturbation approach) to feedforward

neural networks — are supported natively by our platform.

We evaluate these approaches on two public domain datasets: the diabetes dataset

which contains 442 samples with 10 features and the California housing prices dataset

which contains 20,640 samples with 8 features [9]. The results from these experiments

are shown in Table 5.2 and we note that the performance of different model and task

types is consistent with those found in the classification experiments.

55

Dataset Task Model Epsilon 𝑅2 Time

Diabetes Bounded

Linear Regression 32.0 0.087 0.001
64.0 0.240 0.001

Random Forest 32.0 0.122 0.021
64.0 0.202 0.020

Support Vector Machine 32.0 0.110 0.001
64.0 0.275 0.004

Integrated Linear Regression 32.0 0.472 0.001
64.0 0.483 0.008

Gradient Multilayer Perceptron 32.0 0.105 13.18
64.0 0.269 12.22

House Prices Bounded

Linear Regression 32.0 0.140 0.002
64.0 0.325 0.001

Random Forest 32.0 0.162 0.028
64.0 0.347 0.026

Support Vector Machine 32.0 0.085 0.020
64.0 0.248 0.018

Integrated Linear Regression 32.0 0.704 0.001
64.0 0.717 0.001

Gradient Multilayer Perceptron 32.0 0.260 12.26
64.0 0.329 14.79

Table 5.2: This table shows the results for training a variety of models (using differ-
ent types of tasks) on two regression datasets. The accuracy and running time are
reported for two different privacy levels.

5.2 Pull Request Prediction

In this set of experiments, we train a logistic regression model to predict whether a

pull request will be accepted. The data for this experiment comes from the Github

Archive1 and is preprocessed to simulate an environment where (1) users installed the

Tiresias client on their device, (2) they are using a collector to capture data about

their Github usage2, and (3) they are choosing to contribute their data to the tasks

detailed below.

We randomly selected 100 individuals who created 10 or more pull requests in

February 2019 and extracted all the rows pertaining to these individuals from the

1https://www.gharchive.org
2We note that all the data used in this experiment is publicly available; however, for the purposes

of this experiment, we assume that each individual is only aware of their personal Github activity.

56

https://www.gharchive.org

dataset. For this experiment, each of these individuals represents a data contributor

who installed a Github data collector and captured the following:

1. Information about the repository such as the number of stars and followers.

2. Information about the individual who submitted the pull request such as the

number of repositories and commits.

3. Information about the historical pull request accept/reject rate for the target

repository.

All of these features, including a binary variable indicating whether the pull request

was eventually accepted, are stored in the client and used to train the model.

We explore a few different ways to train a model for predicting pull request ac-

ceptance using our system and evaluate the performance of each approach along two

axes: test accuracy and running time. The Tiresias platform provides multiple ways

to train a logistic regression model; the three methods we evaluate in this experiment

(and compare to the baseline) are:

1. Baseline. In the first scenario, we use plain logistic regression (without hyper-

parameter optimization) to set a baseline for the level of performance that can

be achieved using this dataset.

2. Integrated task. In this scenario, we use the objective perturbation method

from [6] to train a logistic regression model.

3. Bounded task. In this scenario, we use local differential privacy to anonymize

the data before it is sent to the server, offering stronger privacy guarantees at

the cost of accuracy.

4. Gradient task. In this scenario, we use federated learning to compute dif-

ferentially private gradient updates locally on the user’s device and aggregate

them to produce the trained model.

57

Method Accuracy Running Time

Baseline 0.94 0.10
Bounded Task 0.83 0.31

Integrated Task 0.92 0.16
Gradient Task 0.88 6.30

Table 5.3: The performance of various implementations of logistic regression when
predicting pull request acceptance with (8.0, 10−5)-differential privacy.

As shown in Table 5.3, each of these methods presents a different set of trade-offs

between privacy, accuracy, and speed. It’s clear that the integrated task approach

provides the most utility for the requestor as it is fast and accurate but it requires the

data contributor to trust the platform to correctly anonymize the data. On the other

hand, the bounded task approach provides the least utility for the requestor due to

the relatively low accuracy but it doesn’t require the user to trust the server. Finally,

the gradient tasks approach provides a reasonable balance between accuracy and

privacy, giving requestors more accurate results while requiring no trust from the user

but at the cost of computational efficiency.

5.3 Transfer Learning

Next, we demonstrate our platform’s ability to support more complex tasks such as

transfer learning. In this section, we show how we can take the SqueezeNet [22]

and VGG [36] neural network architectures which can be pretrained on publicaly

available data and then use Tiresias to perform transfer learning in a differentially

private setting.

Specifically, we will demonstrate how a gradient task can be used to adapt these

pretrained models to the STL-10 [3] dataset which contains 5,000 training images

from 10 classes. Using this dataset, we simulate a setting where there are 5,000 users,

each of whom has a single training example that they want to keep differentially

private.

We implement two types of transfer learning: feature extraction, which holds

58

Model Method Epsilon Accuracy Running Time

SqueezeNet Model Fine-Tuning 8.0 0.071 2,899
SqueezeNet Model Fine-Tuning 16.0 0.095 2,927
SqueezeNet Model Fine-Tuning 32.0 0.410 5,864
SqueezeNet Feature Extraction 8.0 0.747 1,195
SqueezeNet Feature Extraction 16.0 0.783 1,163
SqueezeNet Feature Extraction 32.0 0.781 1,212

VGG16 Feature Extraction 8.0 0.904 20,989
VGG16 Feature Extraction 16.0 0.919 21,220
VGG16 Feature Extraction 32.0 0.920 20,274

Table 5.4: The performance of various transfer learning techniques and privacy levels
on the STL-10 [3] dataset.

the weights of the pretrained network fixed except for the final classification layer

and fine-tuning which computes gradients for the entire pre-trained network. Each

of these models were trained for 32 epochs with 𝛿 = 10−5, learning rate 0.01, and

lot size 100. As shown in Table 5.4, we find that our platform is able to support

common transfer learning scenarios using gradient queries, achieving test accuracy

values competitive with non-private transfer learning algorithms.

5.4 Scalability

Finally, we demonstrate the scalability of our platform by performing a series of ex-

periments on Amazon Web Services. The Tiresias client, upon installation, generates

an example dataset for testing purposes; in this experiment, we measure the amount

of time it takes to compute a differentially private task for different numbers of users.

Our experimental setup is as follows:

1. We launch t2.large instance on AWS with 2 virtual CPUs and 8 GB of memory

and use this machine to host our platform.

2. Next, we launched 10 t2.nano instances on AWS with 1 CPU and 0.5 GB of

memory; we run 10 different instances of the Tiresias client on each of these

machines to simulate a total of up to 100 users who could potentially contribute

data.

59

20 40 60 80 100

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of Users

R
un

ni
ng

T
im

e
(S

ec
on

ds
)

Basic Task - Median

20 40 60 80 100

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of Users

R
un

ni
ng

T
im

e
(S

ec
on

ds
)

Integrated Task - Regression

Figure 5-1: This plot shows the amount of time needed to (1) compute the median
using a basic task and (2) train a linear regression model using an integrated task for
different numbers of users.

60

3. Finally, we submit the median and regression queries with a limit of N contrib-

utors for N in {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.

4. We perform the above experiment 20 times and report the average running time

for each query against the number of contributors.

The results for this experiment are shown in Figure 5-1 and we note that both

the median and linear regression queries complete within a reasonable time window

of approximately one second. Furthermore, we note that the primary bottleneck is

the network bandwidth.

61

62

Chapter 6

User Studies

In this section, we design and propose a set of user studies which will aim to demon-

strate the usability of our system. We plan to ask users to test our system from the

perspective of (1) a data contributor who has used our system to collect some data

and now wants to try contributing it to a task as well as (2) a data requester who

wants to write and run tasks on private user data.

For these experiments, we generate the following synthetic datasets and prepopu-

late the client with them. We ask the participants in these experiments to treat the

simulated data in the client as though it were their own.

∙ Demographics. Age, Gender, Income, City, State, Zip Code

∙ Screen Time

– Events. Timestamp, Event Type, Application Name

– Types. Application Name, Application Type

∙ Browsing History. Timestamp, Domain

These synthetic datasets will be sampled from a Bayesian network which makes

plausible assumptions about the relationships between these variables (i.e. income is

correlated with geographical location, screen time is correlated with age, etc.) and

inserted into the client using the data collection API described in Section 3.3 as

though they were being captured in real time by a data collector.

63

6.1 Data Contributors

First, we propose a user study to understand how contributors interact with our

system. We plan to perform this experiment with three different groups of users

consisting of (1) individuals who have experience with machine learning and data

science, (2) individuals with a background in computer science and related fields,

and (3) individuals who are representative of the general public. Our goal will be to

answer the following questions for each type of user:

1. Are contributors able to contribute their data?

2. Do contributors understand what each task is asking for?

3. Do contributors feel comfortable sharing their data in a differentially private

manner?

To accomplish this, we will give each participant access to a client preloaded with

simulated data as described earlier. We will then submit a suite of tasks to the server,

as listed below, and ask the participants to (1) select which of the tasks that they are

willing to contribute their data to and (2) answer some questions about each task to

demonstrate their understanding.

We implement the following tasks and submit them to the server for the partici-

pants in this experiment to examine:

∙ Compute the median age of all users using a basic task.

∙ Train a model to predict the user’s age from the rest of their demographic

information using an integrated task.

∙ Train a model to predict the user’s age from their browsing history using an

integrated task.

∙ Report the average amount of time spent by users on different types of appli-

cations using a bounded task.

64

The users will be able to see these tasks, read the automatically generated descriptions

of what privacy guarantees each task offers, and select which tasks to contribute to.

We will report the percent of participants who accept each task and summarize their

responses to our questions.

6.2 Data Requestors

Next, we propose a user study to understand how requestors interact with our system.

Our goal will be to answer the following questions:

1. Are requestors able to write tasks to solve specific problems?

2. Do requestors understand the different types of tasks they can create?

For this experiment, we will configure the clients to randomly accept tasks. Further-

more, we will create a list of problems, as listed below, that can be solved using the

given datasets and ask each participant in this experiment to try to solve one or more

of these problems by writing a task and submitting it to the server.

We present the following problems to the participants in this experiment and ask

them to solve them using the tools provided by our system:

∙ What percent of the population is male?

∙ Train a model to predict a person’s gender from their browsing history.

∙ Identify the most frequently visited websites for people older than 21.

The participants in this experiment will write and submit tasks to the server interac-

tively using the Python API for Tiresias. We will report the percent of participants

who successfully write a task to solve each problem and summarize their responses

to our questions.

65

66

Chapter 7

Future Work

7.1 Automated Machine Learning

One direction for future work is to analyze and integrate tools for automated machine

learning. This includes everything from automated feature engineering, which can be

used to transform the raw features and data that is captured by the data collectors

into more useful features [26], to hyperparameter tuning for the machine learning

models [20].

This research direction is particularly compelling in the case of integrated queries

where the machine learning process runs on the server. By providing differentially

private implementations of automated feature engineering tools and hyperparameter

tuning algorithms, we can enable users to train better models with lower privacy costs.

Instead of writing a task that trains a single machine learning model, users would be

able to write a task that automatically optimizes over the space of all possible model

types and hyperparameters that are supported by the system.

The most closely related works in this area focus primarily on (1) the relationship

between differential privacy and generalization/overfitting [11] and (2) differentially

private combinatorial optimization [19]. As far as we know, there is no existing

literature that directly addresses differentially private feature engineering or hyper-

parameter tuning, making this an exciting new area for research.

67

7.2 Collector Management

Another topic that merits further investigation is how collector applications are man-

aged by the platform. Specifically, further work is needed to design a comprehensive

approach to:

1. Providing the tools for downloading and installing collector applications in a

verifiable and secure manner.

2. Managing the installation and removal of collector applications (specifically in

the context of how the data is managed when an application is uninstalled and

then potentially reinstalled).

3. Supporting software upgrades to collector applications which could require mak-

ing modifications to the data schema and migrating the data across different

versions of the application.

These challenges are closely related to those faced by application stores for mo-

bile operating systems which must support installation, uninstallation, and upgrades.

However, there are also unique challenges in our setting as deploying changes to the

data schema will require careful thought to make sure it presents a consistent view

to tasks that are in-progress.

7.3 Incentives and Economics

Furthermore, we believe that incentives and economics will also play a vital role in

our system. Thus far, we’ve primarily thought of the users who provide data to

our system as data contributors who chose whether or not to accept a task simply

by looking at the data being requested, the privacy levels specified, and what the

data will be used for. In practice, however, additional incentives may be needed to

encourage users to contribute their data.

For example, in the most general setting, tasks could potentially be associated

with a monetary bid value where data requestors would try to outbid one another in

68

order to attract users to contribute to their task. This would essentially transform

the platform into a data marketplace which can be studied using incentive design and

auction theory [18]. By creating a digital marketplace for statistical data products,

we create an ecosystem which allows users and researchers to work together to build

new types of datasets and applications.

However, even in private settings without monetary rewards (e.g. in an academic

setting where the school administrators wishes to collect data about their students

and staff without compromising privacy), a better game-theoretic understanding of

our system is still valuable since there are multiple conflicting incentives between

the collectors who want to preserve their privacy, the requestors who want to

maximize the accuracy of their results, and platform maintainer whose motivations

for operating the platform may be unclear.

7.4 Developer Experience

7.4.1 Confidence Intervals

A common technique for making differentially private results more understandable

is to provide confidence intervals for the output based on the noise distribution that

was added to the model. This technique can be found in software implementations

such as [39]. A similar body of work exists for the robustness of machine learning

models that are trained in a differentially private manner [11, 5, 33, 27]. These works

typically offer bounds on the generalization error but thus far have primarily been for

purely theoretical interest; however, these bounds could also be of practical interest

to users of our system who may be interested in bounds on how far the performance

in the real world could deviate from the performance on the test set.

7.4.2 Bounds Approximation

For many of our queries, we use a bounds approximation algorithm whose performance

can vary dramatically depending on the configuration. This bounds approximation

69

works by computing a differentially private log histogram and then identifying the

first and last bins that are above a given threshold. The scale and base used for the

log histogram, as well as the threshold, can have a significant impact on the amount

of noise in the result. Furthermore, if the threshold is too high, it’s possible that no

bins satisfy it, resulting in a bounds estimation error.

This is a motivating example for further work into how differentially private al-

gorithms can be explained to a general audience — if the requestor is attempting to

estimate a median and the bounds approximation procedure fails, how can we recover

from this error without exposing the underlying complexity to the user?

7.4.3 Remote Debugging and Tooling

Finally, we note that debugging differentially private algorithms presents numerous

novel challenges that have not been thoroughly explored. For example, suppose that

the featurizer for a particular task crashes for a subset of users (but not all users).

It is unclear how the error message and stack trace associated with the crash can be

relayed to the requestor while preserving differential privacy; further work needs to

be done to adapt existing differential privacy algorithms to provide an intuitive user

experience for debugging various failure modes.

70

Chapter 8

Conclusion

In this thesis, we proposed a novel system for enabling differentially private peer-to-

peer machine learning. The Tiresias platform presents a framework for data collection

that allows individual users to maintain personal data stores; furthermore, the frame-

work enables researchers to write a wide variety of tasks ranging from basic statistics

to machine learning that operate on sensitive user data without compromising their

privacy. This enables new types of collaboration, research, and data driven applica-

tions by allowing users to safely contribute their data to interesting tasks and allowing

researchers to gain access to new types of cross-domain datasets.

71

72

Appendix A

Code

A.1 Smooth Sensitivity of the Median

This function computes the differentially private estimate of the median using the

approach proposed in [32]. It uses the Laplace mechanism on page 10 and the smooth

sensitivity of the median derivation found on page 12. The resulting value is (𝜖, 𝛿)-

differentially private.

1 import numpy as np
2
3 def median(x, epsilon , delta):
4 alpha = epsilon / 2.0
5 beta = epsilon / (2.0 * np.log (2.0 / delta))
6
7 x = np.array(x)
8 x.sort()
9 m = (len(x) + 1) // 2

10 ss = []
11 for k in range(0, len(x)-m):
12 ls = max(x[m+t] - x[m+t-k-1] for t in range(0, k+1))
13 ss.append(np.exp(-k * beta) * ls)
14 ss = max(ss)
15
16 return np.median(x) + ss/alpha * np.random.laplace ()

73

A.2 Approximate Bounds

The dp_bounds function estimates the upper and lower bounds of the data values

using a variation of the histogram approach from [39]. These bounds can be used to

support other mechanisms such as the dp_mean function which is based on the noisy

average approach from [29] but will use part of the privacy budget to estimate the

bounds if it is not given.

1 import numpy as np
2
3 def dp_bounds(x, epsilon , scale =1.0, base=2, bins=64, p=0.999):
4 threshold = -np.log(2 - 2 * p) / epsilon
5 cutoffs = scale * np.power(base , np.arange(0, bins //2))
6 cutoffs = (-cutoffs [:: -1]). tolist () + [0] + cutoffs.tolist ()
7
8 histogram = np.random.laplace(size=bins) / epsilon
9 x = sorted(x.tolist ())

10 for i in range(len(cutoffs)-1, 0, -1):
11 while len(x) > 0 and x[-1] >= cutoffs[i-1]:
12 x.pop(-1)
13 histogram[i] += 1
14 histogram [0] += len(x)
15 has_value = (histogram > threshold). nonzero ()[0]
16 return cutoffs[has_value [0]], cutoffs[has_value [-1]]
17
18 def dp_mean(x, epsilon , bounds=None):
19 if not bounds:
20 epsilon = epsilon / 2.0
21 bounds = dp_bounds(x, epsilon)
22 low , high = bounds
23 x = np.minimum(np.maximum(x, low), high)
24 noise = np.random.laplace () * (high - low) / epsilon
25 return min(max(low , (np.sum(x) + noise) / len(x)), high)

74

Appendix B

Figures

75

Figure B-1: This shows the web interface for the server which presents a list of all
open tasks.

76

Figure B-2: This shows the graphical user interface for the client which presents a
list of all open tasks that they can contribute to.

77

Figure B-3: This shows the graphical user interface for the client, specifically the task
view which allows the user to inspect the JSON representation of a given task.

78

Figure B-4: This shows the graphical user interface for the client, specifically the
data preview modal which allows the user to inspect the data that will be sent to the
platform if they accept the task.

79

80

Bibliography

[1] Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov,
Kunal Talwar, and Li Zhang. Deep learning with differential privacy. In Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’16, pages 308–318, New York, NY, USA, 2016. ACM.

[2] Alessandro Acquisti, Curtis R. Taylor, and Liad Wagman. The economics of
privacy. Journal of Economic Literature, 52(2), 2016.

[3] Andrew Y. Ng Adam Coates, Honglak Lee. An analysis of single layer networks
in unsupervised feature learning. AISTATS, 2011.

[4] Imanol Arrieta-Ibarra, Leonard Goff, Diego JimÃľnez-HernÃąndez, Jaron
Lanier, and E. Glen Weyl. Should we treat data as labor? moving beyond
“free". AEA Papers and Proceedings, 108:38–42, 2018.

[5] Raef Bassily, Kobbi Nissim, Adam Smith, Thomas Steinke, Uri Stemmer, and
Jonathan Ullman. Algorithmic stability for adaptive data analysis. In Proceedings
of the forty-eighth annual ACM symposium on Theory of Computing, pages 1046–
1059, 2016.

[6] Kamalika Chaudhuri, Claire Monteleoni, and Anand D Sarwate. Differentially
private empirical risk minimization. Journal of Machine Learning Research,
12(Mar):1069–1109, 2011.

[7] Graham Cormode, Somesh Jha, Tejas Kulkarni, Ninghui Li, Divesh Srivastava,
and Tianhao Wang. Privacy at scale: Local differential privacy in practice.
In Proceedings of the 2018 International Conference on Management of Data,
SIGMOD ’18, pages 1655–1658, New York, NY, USA, 2018. ACM.

[8] Ashish Dandekar, Debabrota Basu, and Stéphane Bressan. Differentially private
non-parametric machine learning as a service. In DEXA, 2019.

[9] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[10] Cynthia Dwork. Differential privacy: A survey of results. In Theory and Appli-
cations of Models of ComputationâĂŤTAMC, volume 4978 of Lecture Notes in
Computer Science, pages 1–19. Springer Verlag, April 2008.

81

[11] Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toni Pitassi, Omer Reingold,
and Aaron Roth. Generalization in adaptive data analysis and holdout reuse. In
Advances in Neural Information Processing Systems, pages 2350–2358, 2015.

[12] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and
Moni Naor. Our data, ourselves: Privacy via distributed noise generation. In An-
nual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 486–503. Springer, 2006.

[13] Cynthia Dwork and Jing Lei. Differential privacy and robust statistics. In Pro-
ceedings of the forty-first annual ACM symposium on Theory of computing, pages
371–380. ACM, 2009.

[14] Cynthia Dwork and Frank D McSherry. Differential data privacy, Apr 2010.

[15] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential
privacy. Foundations and Trends in Theoretical Computer Science, 9, 01 2013.

[16] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. Rappor: Random-
ized aggregatable privacy-preserving ordinal response. In Proceedings of the
2014 ACM SIGSAC conference on computer and communications security, pages
1054–1067. ACM, 2014.

[17] Robin C Geyer, Tassilo Klein, and Moin Nabi. Differentially private federated
learning: A client level perspective. arXiv preprint arXiv:1712.07557, 2017.

[18] Arpita Ghosh and Aaron Roth. Selling privacy at auction. CoRR, abs/1011.1375,
2010.

[19] Anupam Gupta, Katrina Ligett, Frank McSherry, Aaron Roth, and Kunal Tal-
war. Differentially private combinatorial optimization. In Proceedings of the
twenty-first annual ACM-SIAM symposium on Discrete Algorithms, pages 1106–
1125. Society for Industrial and Applied Mathematics, 2010.

[20] Laura Gustafson. Bayesian tuning and bandits: an extensible, open source library
for AutoML. PhD thesis, Massachusetts Institute of Technology, 2018.

[21] Naoise Holohan, Stefano Braghin, PÃşl Mac Aonghusa, and Killian Levacher.
Diffprivlib: The ibm differential privacy library, 2019.

[22] Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han,
William J. Dally, and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with
50x fewer parameters and <1mb model size. CoRR, abs/1602.07360, 2016.

[23] Geetha Jagannathan, Krishnan Pillaipakkamnatt, and Rebecca N Wright. A
practical differentially private random decision tree classifier. In 2009 IEEE In-
ternational Conference on Data Mining Workshops, pages 114–121. IEEE, 2009.

82

[24] Noah Johnson, Joseph P Near, and Dawn Song. Towards practical differential
privacy for sql queries. Proceedings of the VLDB Endowment, 11(5):526–539,
2018.

[25] Peter Kairouz, Sewoong Oh, and Pramod Viswanath. Extremal mechanisms for
local differential privacy. In Advances in neural information processing systems,
pages 2879–2887, 2014.

[26] James Max Kanter and Kalyan Veeramachaneni. Deep feature synthesis: To-
wards automating data science endeavors. In 2015 IEEE International Con-
ference on Data Science and Advanced Analytics (DSAA), pages 1–10. IEEE,
2015.

[27] Mathias Lecuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, and Suman
Jana. Certified robustness to adversarial examples with differential privacy. In
2019 IEEE Symposium on Security and Privacy (SP), pages 656–672. IEEE,
2019.

[28] Jaewoo Lee and Chris Clifton. How much is enough? choosing 𝜖 for differential
privacy. In Proceedings of the 14th International Conference on Information
Security, ISC’11, pages 325–340, Berlin, Heidelberg, 2011. Springer-Verlag.

[29] Ninghui Li, Min Lyu, Dong Su, and Weining Yang. Differential privacy: From
theory to practice. Synthesis Lectures on Information Security, Privacy, & Trust,
8(4):1–138, 2016.

[30] H Brendan McMahan, Galen Andrew, Ulfar Erlingsson, Steve Chien, Ilya
Mironov, Nicolas Papernot, and Peter Kairouz. A general approach to
adding differential privacy to iterative training procedures. arXiv preprint
arXiv:1812.06210, 2018.

[31] Frank McSherry. Privacy integrated queries. Communications of the ACM,
53:89–97, September 2010.

[32] Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. Smooth sensitivity and
sampling in private data analysis. In Proceedings of the thirty-ninth annual ACM
symposium on Theory of computing, pages 75–84. ACM, 2007.

[33] Luca Oneto, Sandro Ridella, and Davide Anguita. Differential privacy and gener-
alization: Sharper bounds with applications. Pattern Recognition Letters, 89:31–
38, 2017.

[34] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
et al. Pytorch: An imperative style, high-performance deep learning library. In
Advances in Neural Information Processing Systems, pages 8024–8035, 2019.

[35] Or Sheffet. Private approximations of the 2nd-moment matrix using existing
techniques in linear regression. arXiv preprint arXiv:1507.00056, 2015.

83

[36] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[37] Statista. Global advertising spending from 2010 to 2018 (in billion U.S. dollars)
, 2017.

[38] Jaideep Vaidya, Basit Shafiq, Anirban Basu, and Yuan Hong. Differentially
private naive bayes classification. In 2013 IEEE/WIC/ACM International Joint
Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT),
volume 1, pages 571–576. IEEE, 2013.

[39] Royce J Wilson, Celia Yuxin Zhang, William Lam, Damien Desfontaines, Daniel
Simmons-Marengo, and Bryant Gipson. Differentially private sql with bounded
user contribution. https://github.com/google/differential-privacy, 2019.

84

	Introduction
	Personal User Data
	Why does personal user data matter?
	What data is available to individuals?

	The Tiresias Platform
	Motivating Scenarios
	Peer-to-Peer Machine Learning
	Supporting Research
	Transfer Learning
	Institutional Data Collection

	Enabling Technologies
	Thesis Roadmap

	Related Work
	Differential Privacy
	Mechanisms and Models
	Systems and Software

	System Architecture
	Collectors
	Collector Usage
	Collector Development

	Stakeholders
	Data Contributors
	Data Requestors

	System Design
	Server
	Client

	Tasks and Mechanisms
	Basic Tasks
	Task Representation
	Computation

	Integrated Tasks
	Task Representation
	Computation

	Bounded Tasks
	Task Representation
	Computation

	Gradient Tasks
	Task Representation
	Computation

	Experiments
	Supporting Benchmarking
	Classification
	Regression

	Pull Request Prediction
	Transfer Learning
	Scalability

	User Studies
	Data Contributors
	Data Requestors

	Future Work
	Automated Machine Learning
	Collector Management
	Incentives and Economics
	Developer Experience
	Confidence Intervals
	Bounds Approximation
	Remote Debugging and Tooling

	Conclusion
	Code
	Smooth Sensitivity of the Median
	Approximate Bounds

	Figures

