
Classification of Computer Programs in the Scratch
Online Community

by

Lena Abdalla

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2020

© Massachusetts Institute of Technology 2020. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

January 27, 2020

Certified by. .
Andrew Sliwinski
Research Affiliate
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

Classification of Computer Programs in the Scratch Online

Community

by

Lena Abdalla

Submitted to the Department of Electrical Engineering and Computer Science
on January 27, 2020, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Scratch is a graphical programming platform that empowers children to create com-
puter programs and realize their ideas. Although the Scratch online community is
filled with a variety of diverse projects, many of these projects also share similarities.
For example, they tend to fall into certain categories, including games, animations,
stories, and more. Throughout this thesis, I describe the application of Natural
Language Processing (NLP) techniques to vectorize and classify Scratch projects by
type. This effort included constructing a labeled dataset of 873 Scratch projects and
their corresponding types, to be used for training a supervised classifier model. This
dataset was constructed through a collective process of consensus-based annotation
by experts. To realize the goal of classifying Scratch projects by type, I first train
an unsupervised model of meaningful vector representations for Scratch blocks based
on the composition of 500,000 projects. Using the unsupervised model as a basis for
representing Scratch blocks, I then train a supervised classifier model that catego-
rizes Scratch projects by type into one of: “animation”, “game”, and “other”. After an
extensive hyperparameter tuning process, I am able to train a classifier model with
an F1 Score of 0.737. I include in this paper an in-depth analysis of the unsupervised
and supervised models, and explore the different elements that were learned during
training. Overall, I demonstrate that NLP techniques can be used in the classification
of computer programs to a reasonable level of accuracy.

Thesis Supervisor: Andrew Sliwinski
Title: Research Affiliate

3

4

Acknowledgments

I begin by thanking God (Allah) for blessing me with completing this thesis, for all

of the endless blessings He has bestowed upon me in my life, those I realize and those

I don’t, and for the ability to thank Him in the first place. Alhamdulilah (All Praise

is due to Allah).

It would be foolish to think that anyone makes it anywhere in life on their own.

I am so grateful for so many people, too numerous to list here, and am at a loss for

words to truly express that gratitude.

I would like to thank my supervisor, Andrew Sliwinski, for his incredible support

throughout this thesis. Thank you for being so patient, encouraging, supportive,

flexible, available, consistent and understanding. You have been instrumental in

all aspects of this thesis, whether it be the technical, conceptual, or writing parts.

You truly are a great teacher. Thank you! I would also like to thank Karishma

Chadha for being my co-mentor on this thesis. Thank you for saving me countless

times, whether it was with writing scripts to handle Scratch projects, or running an

annotation session with the team, or your thoughtful insight and feedback throughout

this project. Thank you for being so encouraging, friendly, and such a wonderful and

pleasant person to work with and be around.

I would also like to thank everyone at LLK and the Scratch Team for being so

welcoming and supportive throughout my time at LLK. Whether it was a heartfelt

“How’s everything going?”, a welcoming smile, an “Is there any way that I can help?”,

or the endless hours annotating Scratch projects for my thesis, it really made all the

difference! This project is as much mine as it is yours. I would be remiss if I did

not give a special shout out to the superstars that put in so many hours annotating

Scratch projects for my thesis – you know who you are and you guys are amazing.

I would like to thank my parents, although “thank you” always seems insufficient.

Thank you, Mama, for all of the hard work that no one sees you do, for always being

a source of love, care, and service to us, and for always knowing what I needed, even

when I didn’t. Thank you, Pops, for always being a source of support, guidance,

5

wisdom, and, most importantly, friendship. For always giving me space to grow and

mature, and for instilling in me the concept of hard work, of which this thesis is a

product. Everything I’ve accomplished and will accomplish goes back to you both.

I would like to thank my wonderful brothers, Ali and Sasha. Thank you, Ali,

for being an endless source of support, upliftment, laughter, wisdom, and criticism

(when needed). For always being only a phone call away, for sharing many of my

life’s troubles with me, and for making me laugh in the moment, and laugh again

at past jokes that are so funny, they become timeless. Thank you for being my

bestest friend. Thank you, Sasha, for truly being the big brother I always needed, for

completely taking care of so many of my burdens, and for always amazing me with

your incredible life and adulting skills. For always being a text away, for answering

my endless specific questions, for doing so much for us that goes unnoticed, and for

always reminding me of the important things in life when I need it.

I would like to thank my many, many friends, cousins, and mentors who have been

beacons of light in my life. I am so grateful for the fact that you are too many to

enumerate here, but know this: your support, encouragement, and overall friendship

have influenced and uplifted me in so many ways. I have and continue to learn so

much from you. I would be remiss not to specifically mention three of my closest

friends, who I am forever indebted to: Maha Shady, Jana Saadi, and Rowaa Abdalla.

Thank you for being my sisters.

I end by thanking and praising God again.

6

Contents

1 Introduction 15

1.1 Categorizing Scratch Projects . 17

1.2 Why Classify Scratch Projects? . 18

1.3 Outline . 19

2 Background 21

2.1 Scratch as a Programming Language 22

2.2 Scratch as a Community . 23

2.3 Project Taxonomy . 24

2.4 Motivation . 25

3 Related Work 27

3.1 Word Representations . 27

3.1.1 fastText . 29

3.2 Machine Learning on Software Code 31

4 Methods 37

4.1 Constructing the Dataset . 37

4.2 Vectorizing Scratch Projects . 46

4.2.1 Methodology . 47

4.3 Classifying Scratch Projects . 53

4.3.1 Methodology . 53

4.4 Hyperparameter Tuning . 54

7

5 Evaluation 61

5.1 Unsupervised Training Evaluation . 61

5.1.1 Evaluating Word Embeddings 62

5.1.2 Evaluating Project Embeddings 85

5.2 Supervised Training Evaluation . 96

5.2.1 Quantitative Evaluation . 96

5.2.2 Qualitative Evaluation . 98

6 Conclusion 111

6.1 Contributions . 111

6.2 Future Work . 112

6.2.1 Engaging the Scratch Community For Annotation 112

6.2.2 Overcoming Small Size of Labeled Dataset 112

6.2.3 Hyperparameter Tuning on Larger Dataset 113

6.2.4 Expanding Scratch Project Encodings 113

6.2.5 Classifying by “Complexity” 114

6.2.6 Recommendation Algorithm 114

A Tables 117

A.1 Mapping of Symbols to Transitions and Artifacts: 117

A.2 All Blocks Used (in Corpus of 500,000 Projects) By Category: 119

A.3 Hyperparameter Values Tested: . 129

B Figures 131

B.1 t-SNE Plot for All Blocks: . 132

8

List of Figures

1-1 Scratch programming editor page. Users drag and drop blocks of code

into the editor to create a program. 16

1-2 Different block arrangements in the Scratch editor. Blocks have differ-

ent shapes and can be arranged in a variety of ways. 17

2-1 Equivalent programs created using the Scratch programming language

(left) and pseudo (Python) code (right). 22

2-2 Thumbnails of some of the popular games in Scratch. 25

3-1 Diagram describing the high level process of this work. Each Scratch

project undergoes textification, vectorization, and, finally, classification. 30

4-1 Example project and corresponding question(s) from the Figure Eight

system, as it would appear for a contributor. 45

4-2 Diagram showing the training pipeline for this work. 47

4-3 A stack of blocks consisting of the event_whenflagclicked and mo-

tion_movesteps blocks. 48

5-1 Nearest neighbors of the motion_turnright block, ordered by the sim-

ilarity level of their embeddings. 63

5-2 Nearest neighbors of the sound_play block, ordered by the similarity

level of their embeddings. 64

5-3 Nearest neighbors of the event_whenflagclicked block, ordered by

the similarity level of their embeddings. 65

9

5-4 Nearest neighbors of the control_repeat block, ordered by the simi-

larity level of their embeddings. 66

5-5 Nearest neighbors of the _STARTSTACK_ block, ordered by the similarity

level of their embeddings. 67

5-6 The motion_turnright (left) and motion_turnleft (right) blocks. . 68

5-7 The control_repeat (left) and control_forever (right) blocks. . . . 69

5-8 The operator_gt (left) and operator_lt (right) blocks. 69

5-9 The data_setvariableto (left) and data_changevariableby (right)

blocks. 70

5-10 The control_if (left) and control_if_else (right) blocks. 70

5-11 The motion_turnright (left) and motion_ifonedgebounce (right) blocks. 71

5-12 The event_broadcast (left) and event_whenbroadcastreceived (right)

blocks. 71

5-13 The control_create_clone_of (left) and sensing_askandwait (right)

blocks. 73

5-14 The operator_join (left) and motion_setrotationstyle (right) blocks. 73

5-15 The operator_add (left) and looks_nextcostume (right) blocks. . . . 73

5-16 Heatmap matrix showing the cosine similarities between select blocks.

The shade of each square in the matrix represents the cosine similarity

of the Scratch block in that row and the Scratch block in that column.

Darker shades indicate higher similarity. 75

5-17 t-SNE plot showing the closest 20 words to the motion_turnright block. 77

5-18 t-SNE plot showing the closest 20 words to the procedures_defini-

tion block. 78

5-19 t-SNE plot showing the closest 20 words to the data_setvariableto

block. 79

5-20 Heatmap visualization of the motion_turnright, motion_turnleft,

and looks_changesizeby embeddings. 82

5-21 Heatmap visualization of the operator_gt, operator_lt, and event_

whenkeypressed embeddings. 83

10

5-22 Heatmap visualization of the looks_seteffectto, looks_changeef-

fectby, and sound_seteffectto embeddings. 84

5-23 Snippets of code from the nearest neighbor projects for Scratch project:

https://scratch.mit.edu/projects/311242236/. Each dashed box

corresponds to code from one of the projects. 87

5-24 Snippets of code from the nearest neighbor projects for Scratch project:

https://scratch.mit.edu/projects/223682613/. Each dashed box

corresponds to code from one of the projects. Each stack of blocks may

not be for the same characters (i.e. sprites) within a program. 89

5-25 A pair of simple Scratch programs that are very similar, with the only

differing blocks being the motion_movesteps (program on the left) and

motion_turnright (program on the right) blocks. 91

5-26 Heatmap visualization for the pair of (simple) Scratch programs shown

in Figure 5-25. 91

5-27 A pair of more complex Scratch programs that are very similar, with

the main differing blocks being the pen extension blocks (program on

the left) and the music extension blocks (program on the right). . . . 92

5-28 Heatmap visualization for the complex pair of Scratch programs shown

in Figure 5-27. 93

5-29 A cross-pairing of (different) Scratch programs with many differing

blocks. 94

5-30 Heatmap visualization for the (differing) Scratch programs shown in

Figure 5-29. 95

5-31 Confusion matrix for the supervised classifier model. 97

5-32 This Scratch project can be found at: https://scratch.mit.edu/

projects/75395146. 98

5-33 This Scratch project can be found at: https://scratch.mit.edu/

projects/286136792. 99

5-34 This Scratch project can be found at: https://scratch.mit.edu/

projects/141677189. 100

11

https://scratch.mit.edu/projects/311242236/
https://scratch.mit.edu/projects/223682613/
https://scratch.mit.edu/projects/75395146
https://scratch.mit.edu/projects/75395146
https://scratch.mit.edu/projects/286136792
https://scratch.mit.edu/projects/286136792
https://scratch.mit.edu/projects/141677189
https://scratch.mit.edu/projects/141677189

5-35 This Scratch project can be found at: https://scratch.mit.edu/

projects/146120846. 101

5-36 This Scratch project can be found at: https://scratch.mit.edu/

projects/169401431. 102

5-37 This Scratch project can be found at: https://scratch.mit.edu/

projects/116260245. 103

5-38 This Scratch project can be found at: https://scratch.mit.edu/

projects/174103769. 104

5-39 This Scratch project can be found at: https://scratch.mit.edu/

projects/288182786. 105

5-40 This Scratch project can be found at: https://scratch.mit.edu/

projects/106553892. 106

5-41 This Scratch project can be found at: https://scratch.mit.edu/

projects/91593031. 107

5-42 This Scratch project can be found at: https://scratch.mit.edu/

projects/29433528. 108

5-43 This Scratch project can be found at: https://scratch.mit.edu/

projects/244219748. 109

B-1 t-SNE visualization of all the blocks and symbols in our corpus. . . . 132

12

https://scratch.mit.edu/projects/146120846
https://scratch.mit.edu/projects/146120846
https://scratch.mit.edu/projects/169401431
https://scratch.mit.edu/projects/169401431
https://scratch.mit.edu/projects/116260245
https://scratch.mit.edu/projects/116260245
https://scratch.mit.edu/projects/174103769
https://scratch.mit.edu/projects/174103769
https://scratch.mit.edu/projects/288182786
https://scratch.mit.edu/projects/288182786
https://scratch.mit.edu/projects/106553892
https://scratch.mit.edu/projects/106553892
https://scratch.mit.edu/projects/91593031
https://scratch.mit.edu/projects/91593031
https://scratch.mit.edu/projects/29433528
https://scratch.mit.edu/projects/29433528
https://scratch.mit.edu/projects/244219748
https://scratch.mit.edu/projects/244219748

List of Tables

4.1 Symbols to Transitions . 49

4.2 Symbols to Artifacts . 50

5.1 Accuracy Metrics for Supervised Classification on Test Set 96

A.1 Symbols to Transitions . 117

A.2 Symbols to Artifacts . 118

A.3 Motion Category to Blocks . 119

A.4 Looks Category to Blocks . 120

A.5 Sound Category to Blocks . 121

A.6 Events Category to Blocks . 121

A.7 Control Category to Blocks . 122

A.8 Sensing Category to Blocks . 123

A.9 Operators Category to Blocks . 124

A.10 Variables Category to Blocks . 125

A.11 Procedures Category to Blocks . 125

A.12 Music Category to Blocks . 126

A.13 Pen Category to Blocks . 126

A.14 Video Sensing Category to Blocks . 127

A.15 Text to Speech Category to Blocks 127

A.16 Makey Makey Category to Blocks . 127

A.17 Micro:bit Category to Blocks . 127

A.18 LEGO MINDSTORMS EV3 Category to Blocks 128

A.19 LEGO BOOST Category to Blocks 128

13

A.20 LEGO Education WeDo Category to Blocks 128

A.21 Vernier Go Direct Category to Blocks 129

A.22 Unsupervised Hyperparameters . 129

A.23 Supervised Hyperparameters . 130

14

Chapter 1

Introduction

"How can we accurately classify Scratch projects by their type using

machine learning techniques?"

Throughout this paper, I discuss the use of machine learning techniques to classify

computer programs which were created using the Scratch graphical programming

language. To accomplish this task, I created a taxonomy of computer programs

shared in the Scratch online community, and developed a novel application of both

unsupervised and supervised Natural Language Processing (NLP) techniques. This

work resulted in a system that is able to meaningfully distinguish between computer

programs using our taxonomy.

Scratch is an online platform, featuring a block-based graphical programming

editor, that enables children to create rich, interactive media, ranging from games

to animations to stories. In addition, Scratch is a social community, where kids can

share their projects, collaborate on ideas, and receive feedback on their creations [10].

Users, called “Scratchers,” snap blocks of code together like LEGO pieces to create a

program (see Figure 1-1) [37]. In short, Scratch empowers children to create projects

based on their passions together with peers in a playful spirit [38]. With over 50

million users registered, and 48 million projects shared in the online community to

date [11], Scratch reaches and engages a wide population.

15

Figure 1-1: Scratch programming editor page. Users drag and drop blocks of code
into the editor to create a program.

In Scratch, blocks have different shapes and can be arranged in a myriad of ways

(as shown in Figure 1-2). Much like a LEGO brick [37], the shape of each Scratch

block contains affordances and constraints that dictate how it can be attached with

other blocks. Some blocks are “hat” blocks and can only be used to start a procedure,

with no blocks being attached on top of them. Other blocks have an oval shape,

meant to indicate that they can be attached as arguments to other blocks. Some

blocks have an elongated hexagonal shape, meant to indicate that they represent

conditions which evaluate to booleans. Blocks can be arranged into different “stacks”,

which are contiguous sequences of blocks. Blocks can also “nest” other blocks, such

as in the case of control_repeat and control_if blocks. Blocks can also be inputs

to other blocks, such as in the case of the operator_join block being an input to

the looks_say block.

16

Figure 1-2: Different block arrangements in the Scratch editor. Blocks have different
shapes and can be arranged in a variety of ways.

Blocks are also color-coded to indicate the block category they belong to. For

example, all blue blocks belong to the Motion category, and include blocks that

involve the motion of a character or “sprite” in the program. The different block

categories are listed on the left-hand side of the editor.

1.1 Categorizing Scratch Projects

Scratch projects tend to have some commonalities; for example, the type of a project

may fall into different categories, including (but not limited to): a game, an animation

or a story. Seeking to extract these regularities, and possibly more, prompts us to

explore the field of machine learning and apply it to this problem. In this work, we

are interested in exploring the field of statistical classification to help us distinguish

between different project types.

Currently, the Scratch online community leverages user-defined “tags” to group

17

projects by category. Unfortunately, less than 2% of shared projects actually contain

any tags. Within that 2%, however, it’s evident that Scratchers are already think-

ing about project groupings, as they include project tags such as “#game”, “#plat-

former”, “#animation”, “#tutorial”, and “#coloring contest”. Given this rich

project taxonomy from a Scratcher’s perspective, as well as the Scratch Team’s per-

spective on content curation, a new classification mechanism that could be applied

to all projects may be called for.

1.2 Why Classify Scratch Projects?

Having a robust mechanism for classifying Scratch projects can be useful in a variety

of ways.

First, it can help us improve a user’s project discovery experience in Scratch.

By developing a robust way of classifying Scratch projects, we would be establishing

the foundation for a robust project recommendation algorithm that could suggest

projects from the community to a user. Currently, there is an evident disparity in

the wealth of attention on the Scratch platform, with only a few users receiving

most of the attention in terms of likes, favorites, and views on their projects. Thus,

a project recommendation algorithm aimed at redistributing attention across the

platform could be useful in tackling this attention disparity issue. Although this work

does not explore the development of such a recommendation algorithm, I believe a

classification mechanism could pave the way for such important future work.

Second, having a way to classify Scratch projects could prove useful for the Scratch

Team and empower them with better methods for analyzing Scratch projects. The

ability to automatically divide projects by their type or tag a project with its type

could help the Scratch Team uncover trends on the platform, such as estimates of

how many projects of each type are being created.

Lastly, better project classification techniques can enhance the project search

mechanism on Scratch, providing users with more targeted search results. For exam-

ple, if a user searches for an “animation” on the platform, they could receive projects

18

that have been categorized as animations by a robust classifier model, as opposed to

projects that simply contain the string “animation” in the title or description.

1.3 Outline

In Chapter 2 (Background), I offer background on the Scratch platform as a

programming language and a community, and detail the motivation for this work.

Chapter 3 (Related Work) surveys some of the recent work related to training

word vector representations, and applying machine learning techniques on both text

and software code corpora. In Chapter 4 (Methods), I describe the methods uti-

lized throughout this project, including constructing the dataset of Scratch projects

and their corresponding types, vectorizing Scratch projects by training meaningful

vector representations of Scratch blocks (unsupervised learning), categorizing Scratch

projects by training a classifier neural network model (supervised learning), and the

process of finding the optimal set of hyperparameters (hyperparameter tuning). In

Chapter 5 (Evaluation), I evaluate the unsupervised and supervised models’ ac-

curacy, as well as explore the different elements that were learned during the training

process. Finally, Chapter 6 (Conclusion) concludes this paper by recounting its

contributions, and suggesting future directions for improving and utilizing this work.

19

20

Chapter 2

Background

Scratch is a visual drag-and-drop programming language and online community orig-

inally developed by the Lifelong Kindergarten Group at the MIT Media Lab. Since

its release in 2007, Scratch has been used by millions of children all around the world

to create and share interactive stories, games, and animations. Through Scratch chil-

dren develop the ability to not only “read” the digital world around them, but also

“write” it – developing essential skills and creative confidence [37].

The design of Scratch is rooted in the “4 P’s” of creative learning: projects, passion,

peers, and play. Projects form the primary activity in Scratch, with users creating

projects (i.e., computer programs) and then sharing them in the online community.

Passion energizes young people to work harder and longer on projects that are per-

sonally meaningful to them. Peers form the backbone of the Scratch community,

because, as founder of Scratch Mitchel Resnick puts it, “Creativity is a social process,

with people collaborating, sharing, and building on one another’s work.” And, finally,

play is at the core of the Scratch experience, where kids are encouraged to explore,

tinker, and experiment with computational concepts, as a means of realizing their

creative potential [38].

21

2.1 Scratch as a Programming Language

Scratch is a turing-complete programming language which includes features that are

common to many other languages including variables, lists, parallelism, recursion,

and dynamic typing. By leveraging these features, children can program their own

games, animations, stories, simulations, and more.

Figure 2-1: Equivalent programs created using the Scratch programming language
(left) and pseudo (Python) code (right).

The design of the Scratch programming language is built on three core principles:

low floor, high ceiling, and wide walls. A low floor enables novices to get

started with creating projects easily, while a high ceiling enables experts to create

more advanced projects, and wide walls enable users to create a wide array of

diverse projects [38]. The Scratch Team believes that the diversity of projects that

are possible on the platform is key to attracting a diverse user base, including many

children who are not traditionally represented in computer science.

The Scratch design and development team have explored the dimensions of com-

putational thinking that Scratchers might engage with through active participation

with the platform [19]. This includes computational concepts, such as loops, which

provide a method to execute a specific stack of blocks a number of times, parallelism,

which provide a mechanism to execute multiple stacks of blocks simultaneously, and

conditionals, which provide a way to execute blocks only if certain conditions are sat-

isfied, thereby allowing for the possibility of multiple outcomes. In addition to these

22

concepts, children become familiar with computational practices. Such practices

include being incremental and iterative, – writing a little bit of code, trying it out,

then making changes as a result – testing and debugging, – such as experimenting with

different use cases, and soliciting help from others as needed – and abstracting and

modularizing – starting with an initial idea and then breaking up the different aspects

of the code between sprites and stacks of code. Lastly, children develop computa-

tional perspectives about themselves and their surroundings. Such perspectives

include: viewing computation as a means for self-expression – feeling empowered to

create and express one’s ideas using computation – connecting and creating with oth-

ers – being able to collaborate with others on projects as well as having an audience

to create projects for – and questioning the “taken-for-granted” – thinking about how

technologies work and how one can tinker with them.

2.2 Scratch as a Community

In addition to being a programming language, Scratch is also an online community

where children can share their creations and interact with each other’s projects. From

the outset, the Scratch online community was intended to be an essential part of the

platform, where children can gain inspiration for new ideas and receive feedback on

their projects [37].

Across the platform, Scratchers are encouraged to engage with their peers in a va-

riety of ways, including commenting on each others’ projects and profiles, “favoriting”

and “loving” each others’ projects, joining and contributing to themed project studios

with fellow Scratchers, and engaging in forums centered around a specific topic. All

of these features provide avenues for Scratchers to form connections with, and learn

from, their peers.

Moreover, once a Scratcher shares a project to the community, others are able to

interact with that project and explore the code. They can learn new programming

practices by examining the code, and can “remix” the project to tinker with it further.

Scratchers collaborate across the platform in a myriad of ways. For example,

23

they offer complementary skills when working together on projects, they contribute

to subcommunities, and they offer their skills as services to the community [37].

As Scratchers share their creations in the online community, they learn from and

with their peers in many ways, whether it’s by way of receiving comments, exploring

code, remixing projects, or collaborating on ideas with others.

2.3 Project Taxonomy

Projects in Scratch also tend to fall into certain categories of type. Such types include

games, animations, slideshows, simulations, and many others. Based on anecdotal ev-

idence from the Scratch Team, games and animations tend to be the most common

project types in Scratch, with many sub-varieties of each (e.g., platform games, arcade

games, role-playing games). Worthwhile to note is the subjective nature of assigning

such categories to a project’s type. For instance, defining what a game is and is not

differs from person to person, making a generic, all-inclusive definition of a game dif-

ficult to arrive at (see Figure 2-2). A portion of this project included spending time

trying to construct concise yet comprehensive definitions for the different identified

types – namely, “game”, “animation”, and “slideshow” – but we couldn’t arrive at a set

of criteria that would accommodate all subcategories of each type, and that would

clearly separate between the categories. Expectedly, this difficulty to come up with

comprehensive definitions merely reflected the larger debate that exists today around

defining some of these very categories, for instance, games [44]. Still, although a

consensus is difficult to reach for what each category absolutely is and is not, there

is an intuitive categorizing of the projects that many Scratchers and Scratch Team

members assign, albeit potentially different from one person to another. One way to

reconcile this inability to absolutely categorize projects is to softly categorize them

by way of votes, thereby accounting for the different perspectives through consensus.

24

Figure 2-2: Thumbnails of some of the popular games in Scratch.

2.4 Motivation

Peer learning is central to the learning experience in Scratch. Unfortunately, there is

a significant disparity in the distribution of attention across the system, with a few

popular users getting a lot of the attention. According to current internal Scratch

user data, although the average view count for all projects shared in the last year is

as high as ∼ 13.8, 50% of Scratchers get less than 2 views on their projects, indicating

that a relatively small number of users dominate the wealth of attention on Scratch.

Similarly, while the average love count for those projects is 0.68, 50% of Scratchers

actually get no "loves" on their projects. This disparity in attention proves an obstacle

for Scratchers to fully engage in peer learning and reap the benefits associated with it.

According to internal Scratch analysis, when looking at a Scratcher’s retention (i.e.

the amount of time they remain engaged in the platform after their first visit), their

retention rate steadily increases with the number of loves and favorites they receive

on their first shared project. Such a correlation implies that peer recognition and

feedback can play a significant role in a Scratcher’s engagement on the platform.

In an effort to better understand trends in peer learning, the Scratch team views

25

users as potentially falling into multiple categories of engagement. Of these categories,

those relevant to this thesis are: “active” and “engaged”. An “active user” is one who

creates or edits a project during a given period of time. An “engaged user” is one

who shares a project during a given period of time. According to internal Scratch

user data, when looking at users who joined Scratch in 2019, around 79% of them

created projects during that period, but only around 15% shared those projects. This

disparity of about 64% can be due to many factors, many of which are related to the

social anxiety associated with sharing content to a wide audience.

At the same time, Scratchers have reported that seeing other sophisticated projects

on the platform can intimidate novice users, potentially causing them to feel incom-

petent, and to become demotivated to create their own projects.

Given the positive impact of social connection on a Scratcher’s retention, as well

as the overcoming of self-esteem obstacles, it seems worthwhile to try to redistribute

the wealth of attention on Scratch. Towards that end, we believe that a project

recommendation algorithm aimed at redistributing attention across the platform is

called for. The algorithm would suggest projects from the community to a user,

thereby increasing the visibility of some projects, and enabling the process of social

feedback to positively impact learning.

A key component of any such project recommendation algorithm is its abil-

ity to distinguish between different types of projects, such as “game”, “animation”,

“slideshow”, and “other”. If an algorithm is able to make that distinction, then it

can fetch more targeted examples of projects, making for a more personalized expe-

rience for the Scratcher. Thus, developing a robust classification model that is able

to determine the type of a project (up to a satisfactory confidence threshold) would

enhance the “intelligence” of the recommendation algorithm, and could lead to better

recommendations.

26

Chapter 3

Related Work

3.1 Word Representations

The problem of finding meaningful and effective vector representations for English

words has been a long-standing problem in the Natural Language Processing (NLP)

field. Traditional vector representations of words include the Term Frequency–Inverse

Document Frequency (TF–IDF) measure and one-hot encoding. The TF–IDF value is

meant to capture how important a word is to a document in the corpus, and is directly

proportional to the number of times a word is repeated across the document and

inversely proportional to the number of documents in which that word appears [36].

Thus, common words such as “the” are not weighted disproportionately highly. One-

hot encoding is an N-dimensional vector representation of a word in a vocabulary of

size N, where only one element in the vector is 1 (namely, at the position corresponding

to that word’s index) and all other elements are 0 [9].

Recently, it has been found that continuous vector representations of words ob-

tained from training large unsupervised datasets of English text provide meaningful

high-quality word representations [31]. Mikolov et. al first showed in 2013 that such

word representations, trained using the word2vec model architecture, perform well on

syntactic and semantic word similarity tasks, indicating their meaningful nature. For

instance, semantic relations between similar pairs of words are successfully captured

by this method, such as in the example of “Man is to King as Woman is to Queen”.

27

There are multiple types of word2vec architectures, including the Continuous

Bag-of-Words (CBOW) model architecture, and the Skip-gram model architecture

[31]. In both architectures, the most likely word(s) are predicted given their context.

In the CBOW architecture, the most likely current word, 𝑤(𝑡), is predicted given

its surrounding context, which includes some of the words that come prior to it and

some of those that come after it in the sentence. In the Skip-gram architecture, the

most likely surrounding words are predicted given the current word, 𝑤(𝑡) (which can

be thought of as the “flip” of the CBOW architecture). In both cases, the vector

representations correspond to the weight matrix values that are optimized and tuned

for these prediction tasks during training.

Word embeddings are dense low-dimensional vector representations of words [23].

Their dense and low-dimensional nature make them better suited for use with neural

network tasks, as it leads to better generalization power and lower computational re-

quirements [22]. Moreover, using pre-trained word embeddings to represent text has

been shown to improve the accuracy of many downstream NLP tasks, as demonstrated

by Pennington et. al [34], and Turian et. al’s works [41]. In our case, these improve-

ments imply that pre-training word representations on an unsupervised dataset of

Scratch projects and using those representations for our downstream project classifi-

cation task could prove to be advantageous.

Within the area of learning distributed word representations, Pennington et. al

developed the GloVe model for learning global word vectors [34]. Their model merges

global matrix factorization methods, which are useful for capturing the global co-

occurrence statistics of the training corpus, with local context window methods (such

as word2vec), which are better at uncovering the important linear substructures in

the corpus, drawing upon the benefits of both approaches. The model performs better

than baseline models on word analogy and similarity tasks, and results in a vector

space that contains meaningful substructure [34].

28

3.1.1 fastText

Facebook’s fastText library [2] offers an API for efficient text representation and

classification that is based on the word2vec approach, but that also varies in a few

important ways. Like the original CBOW and Skip-gram models, the fastText model

predicts words given their contexts. However, unlike those vanilla models, the fastText

model also takes into account the morphology of words, representing each word as a

“bag of character 𝑛-grams”. This “subword” information is typically ignored by the

traditional CBOW and Skip-gram models, since each word is treated as a distinct

unit and its sub-structure is not taken into account [18].

In the fastText model, each word is represented using its character 𝑛-grams. For

instance, if the word in question is “where”, and 𝑛 = 3, the character 𝑛-grams (or

3-grams, to be precise) would include:

<wh

whe

her

ere

re>

In the fastText model, a range of 𝑛-grams corresponding to different lengths are

extracted, with the word itself (shown below) also being included as part of these

𝑛-grams [18].

<where>

A vector representation is learned for each of the character 𝑛-grams as well as the

word 𝑛-gram. The final vector representation for the word in question is then the sum

of these 𝑛-gram vector representations. This setup allows for encoding misspelled or

fake words, since it simply represents a word using its character 𝑛-grams [3]. Moreover,

words that have similar sub-word sequences will share character 𝑛-gram sequences

and their vector representations. This benefit is especially relevant to our work,

since blocks can share sub-words, such as those within the same category of blocks or

29

those that have similar functionalities. For instance, motion_movesteps and motion_

gotoxy share the sub-word motion, while looks_setsizeto and motion_setx share

the sub-word set. Sharing the vector representations of these sub-words between

these blocks would thus align their vector representations, which is desirable.

The fastText library is intended to provide an architecture that can be quickly

and efficiently trained. Moreover, the fastText architecture was evaluated on word

similarity and analogy tasks and was found to achieve state-of-the-art performance

in many contexts [18]. In addition to training meaningful word representations, the

fastText library also offers an efficient text classification architecture that performs

comparably to other deep learning classifier networks [27]. All of these qualities make

it a suitable library for our use case of encoding Scratch blocks and projects using low-

dimensional vector representations, and then using those representations for project

classification. However, given that Scratch projects are not originally encoded in

textual format (as English sentences are, for example), we are somewhat “misusing”

the fastText architecture to suit our needs. To get around this limitation, I develop

a “textification” process that transforms a Scratch project into a body of text, by

encoding blocks and transitions between them in a special way. Please refer to Chap-

ter 4 (Methods) of this thesis for an in-depth description of the project textification,

vectorization, and classification processes.

Figure 3-1: Diagram describing the high level process of this work. Each Scratch
project undergoes textification, vectorization, and, finally, classification.

30

Although a Scratch project is not naturally encoded as a body of text, its struc-

ture is amenable to being transformed into a textual format. For instance, Scratch

blocks have “opcodes”, which describe the functionality of each block. An example

of an opcode is motion_movesteps, which denotes a block that causes a character to

move a specified number of steps in the Scratch program. These opcodes tend to be

meaningful and typically correspond to the block’s functionality, so a natural choice

is to encode blocks by their opcodes. In this way, we would be somewhat describing

the program’s functionality in the form of words. Besides the functionality of blocks,

the structure and arrangement of these blocks in the Scratch program can also be en-

coded using special textual symbols. Much like English words in a sentence, the hope

is that training embeddings on these “bodies of text” representing Scratch programs

would capture syntactic and semantic relationships between blocks.

3.2 Machine Learning on Software Code

There has been much recent work regarding machine learning applications on software

programs and code, with this field garnering the name “Big Code” [15]. Naturally,

due to the rich and defined structure of code, as well as the plethora of programs

and written code widely available nowadays, applying machine learning techniques to

learn from such data is a field that has been (and continues to be) widely explored.

Similar to natural languages, programming languages serve as a medium of com-

munication [15]. They have rich and strict syntactic rules and a complex grammar,

lending themselves nicely to prediction and comprehension tasks. Not only that, but

similar to natural language, it turns out that the use of programming languages (i.e.

code written by humans) tends to be repetitive and predictable, thereby making way

for statistical language modeling [26]. In 2012, Hindle et. al showed that this hy-

pothesis holds empirically by applying natural language machine learning techniques

to written software code, yielding impressive results [26].

In a similar vein, White et. al demonstrated the use of deep learning to construct

software language models, proposing a feed-forward, Elman recurrent neural network

31

for the task [43]. Using a corpus of over a 1,000 Java projects from Github, they

showed that their deep neural network outperforms the baseline 𝑛-gram model, when

considering model perplexity (PP) as the primary metric for comparison. Further-

more, their model also did better than the baseline 𝑛-gram model at the software

engineering task of code suggestion.

In terms of determining appropriate program features for learning, it appears

that hand engineering the features would be too time-consuming and ad hoc, and

may yield suboptimal results [33]. In contrast, using a neural network to determine

the important features seems like a worthwhile endeavor; besides the advantage of

not having to curate the features by hand, a deep neural network is also able to

model complex nonlinear features and functions [33]. Moreover, prior insight on the

data is not required for neural nets [33], allowing room for learning from preliminary

experiments with neural network architectures to glean such insight.

Although code has a very rich structure and syntax, the task of finding good

representations for software programs has proven to be a non-trivial problem. In

the context of neural networks, Peng et. al suggest that feeding random program

embeddings without any pre-training results in vanishing or exploding gradients dur-

ing backpropagation, yielding poor learning [33]. Instead, they propose a “coding

criterion”, which uses deep neural networks to learn program vector representations

of the nodes of the program’s abstract syntax tree (AST). In essence, each node’s

representation is a combination of its children nodes’ representations. This serves as

a pre-training method to construct meaningful initializations of program vectors that

are then fed into a neural network for learning. In a subsequent paper, they show how

to use Convolutional Neural Networks (CNNs) over trees constructed using the above

“coding criterion”, where they use tree-based kernels to infer program’s structural

details [32].

There has been recent work in the area of finding meaningful vector representations

for software code. Recently, Alon et al proposed the code2vec approach, which aims

to learn continuous distributed vector representations of code, or “code embeddings”

[17]. These code embeddings are meant to capture the semantic properties of the code

32

snippet. To achieve this goal, they use an attention-based model, and represent the

code snippet as a “bag of paths”. First, these syntactic paths between leaf nodes are

extracted from the code snippet’s abstract syntax tree (AST), and “path-contexts”

are constructed by including the values of the leaf nodes (in addition to the path

itself). Then, given this bag of “path-contexts” corresponding to the code snippet in

question, distributed vector representations are learned for each path-context jointly

along with how best to aggregate these embeddings (using attention) into a single

code embedding that would represent the code snippet [17].

Alon et. al evaluate their approach with a method name prediction task, which

predicts the method name corresponding to the method’s body, using its distributed

vector representation, and show that their model is both successful in carrying out

this task and surpasses previous works’ model accuracies. Moreover, method name

vectors are also learned during the training process, and are shown to capture semantic

similarities and analogies [17].

Another attempt at learning feature embeddings of programs was recently un-

dertaken by Piech et. al in their paper “Learning program embeddings to propagate

feedback on student code”. They propose a method to represent programs as linear

mappings from a precondition space to a postcondition space: given that a precondi-

tion is satisfied in an environment, their method aims to learn features of the program

in question, that would help in predicting the postcondition (i.e. outcome of execut-

ing the program) in the environment [35]. Their basic model for learning the function

of a program is to learn a nonlinear feature transformation of the precondition and

postcondition vectors, and then linearly relate those feature vectors using a “program

embedding matrix”, that represents the program in question. Moreover, they are in-

terested in propagating automatic feedback to ungraded programs, using only a few

human graded and annotated programs. Thus, this active learning problem can be

thought of as an N binary classification task, but since it involves more than just

considering the function of a program, the authors use an RNN architecture that

resembles the structure of the program’s abstract syntax tree, to refine the program

embedding matrix [35].

33

Beyond representing software programs as real-valued vectors, there has been re-

cent research exploring their representation with graphs. Allamanis et. al explore

a hand-designed approach for constructing program graphs that capture the syn-

tactic and semantic details of a program [16]. Composed of a set of nodes, node

features, and directed edges, the graph is primarily based on the program’s abstract

syntax tree (AST). As such, the graph contains syntax nodes and tokens, edge rela-

tions between children nodes to capture their ordering, as well as graph structures

to represent the control and data flow of the program. As an example, LastRead,

LastWrite and ComputedFrom edges between variable nodes are included to capture

the semantic structure of the code. Armed with this program graph, the authors then

use Gated Graph Neural Networks (GGNN) to learn representations of the nodes as

state vectors. The two tasks they use to evaluate their model are “VarNaming” and

“VarMisuse” tasks, aimed at predicting variable names using their usage context, and

predicting the right variable that should be used at a specific program location, re-

spectively. The learned node representations from the GGNN thus allow the authors

to infer context and usage representations of variables and “empty slots”, to aid in

these tasks [16].

Another common application of analyzing source code is detecting vulnerabili-

ties in programs. Russell et. al propose a system to detect vulnerabilities at the

functional-level using an ensemble classifier. To construct the dataset, they use static

analyzers to provide the labels for the code vulnerability of the functions. However,

their method promises to offer more than the static and dynamic analysis of rule-

based tools. Source code tokens are embedded as matrices and then a Convolutional

Neural Network is used for extracting features from the representations. Finally,

learned features are then fed into a Random Forest classifier. They also experiment

with neural networks for classification, but surprisingly, found that using a Random

Forest classifier worked best [39].

Li et. al propose another way to detect code vulnerabilities, namely using “code

gadgets” to represent software programs. These are groups of semantically-related

lines of code that are not necessarily adjacent in the program. These features are en-

34

coded into vectors, after which they’re fed into a Bidirectional Long Short-Term Mem-

ory (BLSTM) neural network for training. In addition to constructing the VulDeeP-

ecker [28] system to detect vulnerabilities, they contribute a set of guidelines for

vulnerability detection using deep learning, including program representation, appro-

priate granularity of a representation, and selection of appropriate neural network

architectures [28].

35

36

Chapter 4

Methods

4.1 Constructing the Dataset

A significant portion of this project involved constructing a dataset of Scratch projects

and their corresponding type, in order to be able to use supervised learning techniques

to classify Scratch projects. The resulting dataset consisted of 873 projects and their

labels, obtained using consensus-based annotation by experts.

The task of annotating Scratch projects by their type requires knowledge of the

Scratch platform and familiarity with Scratch projects. Thus, in order to get high-

quality annotations, such a task could not have been opened up to the general public

(through services such as Amazon Mechanical Turk [1] or Figure Eight [5]). Instead,

this task was better suited for members of the Scratch team to fulfill, given their

extensive expertise and familiarity with Scratch projects. The requirement of a spe-

cialized group of people to carry out the annotations meant that there was a smaller

pool of annotators, which led to the annotation process taking a longer period of

time.

To construct the dataset of Scratch projects for annotation, the following method-

ology was used:

• A total of 9,937 projects were pulled from the Scratch online community at

random

37

• The projects had the following restrictions:

– Their "language" field is "english"

– Projects must have at least 25 blocks

– Projects must have at least 25 views on the platform

– Projects must not include the string "Untitled" in their title (which is

a default string that is added to a project’s title when it gets saved on

Scratch without a title being specified)

– Projects must be created after January 1st, 2012 (after the launch of

Scratch 2.0)

– Projects must not have more than 500 sounds and 500 costumes (to elim-

inate projects that would take too long to load)

These restrictions were enforced to ensure that the projects were more "estab-

lished" or "finished" projects (and not simply starter or “test” projects), were

released after Scratch 2.0, and were not too large. Large projects take a long

time to load on the Figure Eight system and would considerably slow down the

workflow for annotators. Including large projects in the dataset would have re-

sulted in an inconvenient and time-consuming process for annotators who were

trying to go through as many projects as they could in a limited amount of

time. In an effort to make the process as smooth as possible for annotators, we

opted to remove large projects from the supervised dataset.

• Of these 9,937 projects, a random subsample of around 2000 projects were

chosen.

• Around 39 handpicked animations and 47 handpicked slideshows were manually

added to the dataset, to ensure that there was a base level of those types of

projects in the dataset. Given that the dataset was randomly pulled from the

Scratch backend, and there’s currently no way to specify the type of Scratch

projects to pull, adding in these handpicked animations and slideshows was a

38

way of ensuring there were enough of these types of projects for the classifier

model to subsequently train on. Games tend to be a very common project type

in Scratch, and were represented well in the dataset.

I utilized the Figure Eight platform to gather annotations for our dataset of

Scratch projects. I first set up a “job” in the platform that included our uploaded

dataset of Scratch projects, where each “row” in the job represented a specific Scratch

project. Each row is accompanied by a set of questions that “contributors” must an-

swer. In our case, the “contributors” were members of the Scratch team and the job

was only accessible to them.

At the start of this work, we had determined that the general categories of projects

include the following: “game”, “animation”, “slideshow” or “other”. Games and ani-

mations are among the most popular project types on the Scratch platform, and are

general enough to include many sub-varieties. We chose to include “slideshow” as a

separate category in the beginning because it was a category of projects that clearly

differed from games and animations, but was distinct enough to garner its own cat-

egory. As we’ll see in the Section 4.3 – Classifying Scratch Projects later, we ended

up lumping projects tagged with the “slideshow” label into the “other” category, as

there ended up being relatively few “slideshow” projects in the supervised dataset and

likely not enough for training an accurate classifier model.

Our end goal for the annotation phase was to obtain high-quality annotations

for the category of each project – i.e. “game”, “animation”, “slideshow” or “other”.

However, given that each category can be defined subjectively and can include a

wide range of projects, asking the right questions that would help guide contributors

to arrive at an accurate label for each project’s type was paramount. To that end,

we experimented with a few iterations of these questions to explore which set was

suitable.

For the first few iterations, we included some starting questions that were meant

to guide the contributors to focus on specific qualities of the project, to help narrow

down the contributor’s thought process while categorizing projects. We consulted

the Scratch Team to determine which qualities of a project were important in dif-

39

ferentiating one type from another, and we based the first two annotation questions

on those qualities (shown below). We then asked the contributor to categorize the

project in the third and final annotation question. Below I list the different iterations

of questions, with the changes between iterations marked in bold.

The first iteration of questions used included the following:

1. Is there user interaction in this project?

• This project requires user interaction.

• This project includes some user interaction, but it’s optional.

• This project has no user interaction.

2. Does the user move through the project on a (primarily) variable or predefined

path?

• The path of this project is primarily predefined and is the same regardless

of user action.

• The path of this project is primarily variable and that variability depends

on user action.

• The path of this project is primarily variable but the variability does not

depend on any user action.

3. What category best describes this project?

• Game

• Animation

• Slideshow

• Other

40

The second iteration of questions used included the following:

1. Is there user interaction in this project?

• This project requires user interaction.

• This project includes some user interaction, but it’s optional.

• This project has no user interaction.

2. Does the user move through the project on a (primarily) variable or predefined

path?

• The path of this project is primarily predefined.

• The path of this project is primarily variable.

3. What category best describes this project?

• Game

• Animation

• Slideshow

• Other

The third iteration of questions used included the following:

1. Is there user interaction in this project?

• This project requires user interaction.

• This project includes some user interaction, but it’s optional.

• This project has no user interaction.

• Could not answer the questions for this project.

41

2. Would the creator of this project be able to define all of the outcomes

of this project? Or would they only be able to define the user’s

behavior?

• The creator of this project would be able to define both the user’s

behavior in the project and all of the outcomes of this project.

• The creator of this project would only be able to define the user’s

behaviour in the project.

• Could not answer the questions for this project.

3. What category best describes this project?

• Game

• Animation

• Slideshow

• Other

• Could not answer the questions for this project.

The fourth and final iteration of questions used was:

1. What category best describes this project?

• Game

• Animation

• Slideshow

• Other

• Could not answer the questions for this project.

For each iteration, we incorporated the Scratch Team’s feedback when making

changes and adding new questions. However, after many discussions and trial runs,

42

it became apparent that the starting questions caused confusion and were counter-

productive to their original aim. Although these questions tried to get at a certain

intuition, getting their phrasing right was a significant challenge. As a result, we de-

cided to remove them altogether, and keep the third question as the only annotation

question, giving rise to the final iteration shown above. Please refer to Figure 4-1

for an example of how the project and corresponding question appeared for this final

iteration.

The Figure Eight platform offers a few different job settings that enable high-

quality annotations. In any Figure Eight job, there are two types of questions: “work”

and “test” questions.

Work questions are simply the rows of the dataset that the job owner wishes to

collect annotations for. These questions form the crux of the job, since annotating

these rows is the main task that the job owner wants to crowdsource. Test questions

are meant to verify whether contributors understand the task at hand, and whether

they are consistently producing high-quality annotations. The job owner chooses

certain rows in the dataset to become “test questions”, and specifies the accepted

answers for those questions. These questions are then presented to the contributor

throughout the job in a hidden manner, where they are indistinguishable from work

questions. Each contributor has a running accuracy score that is updated as they

work through the job. This score is based on whether their annotations fall within

the accepted range for test questions. The platform allows for the job owner to specify

a minimum accuracy score that contributors must maintain as they work through the

job [6]. In our case, we set the minimum accuracy score to 80%.

At the start of every job, the contributor begins in Quiz Mode, which comprises

of a few test questions that the contributor must fully answer correctly. This phase

is intended to ensure that all contributors have an understanding of the task at hand

to begin with. Once the contributor successfully completes Quiz Mode, they then

transition to Work Mode, where they are presented with a specified number of work

and test questions per “page” of work [6]. In our case, each page of work contained

four questions in total: one hidden test question, and three work questions.

43

The Figure Eight platform presents each row in the job to a specified number of

contributors, and aggregates their responses into one final annotation. This aggre-

gation process resembles a weighted voting scheme, where the responses are weighed

based on the accuracy levels of the contributors, and the highest scoring response is

chosen as the final annotation. The resulting score of the final annotation represents

its “confidence score” [7].

The Figure Eight platform also allows the job owner to specify the desired number

of “judgements” to be collected per row, the maximum number of “judgements” to

be collected per row, and the minimum confidence score for each row. Each unique

contributor’s response for a specific row is considered a “judgement”. In our case,

we set the desired number of judgements per row to be 3, the maximum number of

judgements per row to be 5, and the minimum confidence score per row to be 0.8.

These settings mean that the platform will collect a total of 3 judgements for each row

by default, unless the confidence score for that row is below the minimum (0.8), in

which case two additional judgements are requested, for a total of up to 5 judgements

per row. In summary, these settings allow the platform to “dynamically” collect more

judgements for each row in an effort to reach contributor consensus on an annotation

[6].

Test questions form an essential part of the benefits offered by the Figure Eight

platform and ensure that contributors maintain a base level of accuracy. As a result,

each page of work must include at least one hidden test question. The implication

of this requirement is that the job owner must specify as many test questions as

their desired number of pages of work. Choosing appropriate test questions can be a

tedious and time-consuming process. Fortunately, the Figure Eight platform allows

job owners to convert completed rows into test questions – after a specific number of

rows have been completed in the job – as a way of facilitating that process [6].

44

Figure 4-1: Example project and corresponding question(s) from the Figure Eight
system, as it would appear for a contributor.

Throughout the annotation phase, we faced a recurring tradeoff between the qual-

ity and quantity of annotations. In order to deliver high-quality annotations, con-

tributors needed to spend time interacting with each project until they felt confident

in their categorization of its type. On the other hand, in order to get many projects

annotated, we needed contributors to go through a large amount of projects in a short

amount of time. Given that many of the Scratch Team members had other important

work responsibilities to fulfill, there were only so many annotations we could gather

in the limited time frame that we had.

45

As a result, the annotated dataset was relatively small in size, coming out to 873

annotated projects with a confidence of greater-than or equal to 80%.

4.2 Vectorizing Scratch Projects

Once I had the labeled dataset of Scratch projects and their types, the next step was

to vectorize them in an effective manner, in order to feed these vectors as input to

the classifier neural network. As discussed earlier in Chapter 3 (Related Work), the

most promising method for vectorizing these projects was via unsupervised training of

word embeddings on a random selection of 500,000 Scratch projects. Given the recent

success of using word embeddings to represent natural language words and sentences

in boosting the performance of several machine learning tasks, we anticipated that

embeddings would also work as a better representation mechanism for Scratch blocks

and projects.

In lieu of vectorizing projects using traditional methods such as TF-IDF or one-hot

encoding, we decided to focus on training block and project embeddings on a large un-

supervised dataset of Scratch projects. Through this unsupervised training phase, we

hoped to train efficient and meaningful embeddings, that would adequately represent

Scratch blocks and projects, and sufficiently capture the relationships between the

different Scratch blocks. Given that our labeled dataset of Scratch projects was small

in size, we hoped to overcome this limitation and boost the accuracy and performance

of our classifier neural network by ensuring that we represented Scratch projects in

an efficient and meaningful manner. Since the process of training embeddings is an

unsupervised task and doesn’t require any project labels, we can leverage the virtually

unlimited amount of projects in the Scratch community and use an arbitrarily large

dataset of Scratch projects for unsupervised training. Training embeddings using a

large dataset is likely to result in more meaningful and useful embeddings that make

the downstream task of project type classification easier.

At a high level, the overall training pipeline for this project involved the following

parts (shown in Figure 4-2):

46

• Unsupervised training: training a large unsupervised dataset of 500,000

Scratch projects to extract high-quality “word” embeddings.

• Supervised training: using the aforementioned pre-trained embeddings as a

representation mechanism for “words”, training a supervised classifier model on

the labeled dataset of Scratch projects.

• Evaluation: evaluating the resulting classifier model by calculating the F1

score on the test dataset.

Figure 4-2: Diagram showing the training pipeline for this work.

4.2.1 Methodology

I used the fastText library to train word embeddings on the large unsupervised corpus

of Scratch projects. The fastText library is meant for “efficient text classification and

representation learning” [2], so a preliminary step before training word embeddings

on our dataset is to transform Scratch projects into textual form.

Textifying Scratch Projects

To transform a Scratch project into a textual document, I encoded each block via its

opcode and designated special symbols for specific “transitions” between blocks. For

instance, the first block from Figure 4-3 would be encoded by its opcode

event_whenflagclicked, and the transition from this block to the next block would

be encoded by the _NEXT_ symbol.

47

Figure 4-3: A stack of blocks consisting of the event_whenflagclicked and motion_

movesteps blocks.

As discussed in the Introduction, blocks can be arranged in a variety of ways in

Scratch, as shown by Figure 1-2. Blocks can be arranged into different “stacks”, which

are contiguous sequences of blocks. Blocks can also “nest” other blocks, such as in

the case of control_repeat and control_if blocks. Blocks can also be inputs to

other blocks, such as in the case of the operator_join block being an input to the

looks_say block.

See Appendix A.1 for a mapping of transitions to their encodings, as well as a list

of all blocks used in the corpus of 500,000 projects.

48

Rather than have the model infer the different transitions between blocks, I chose

to explicitly encode some of the common transitions in an effort to make the learning

process easier for the unsupervised model. To that end, I explicitly encoded the

following transitions (shown in Table 4.1):

Table 4.1: Symbols to Transitions

STARTSTACK beginning of a new stack

ENDSTACK end of a stack

STARTNEST beginning of nesting

ENDNEST end of nesting

STARTINPUT beginning of input

ENDINPUT end of input

NEXT next

49

Moreover, in order to ensure that there were enough regularities in the dataset for

the model to learn them effectively, I opted to remove verbose artifacts – such as menu

options or variable names – and replace them with generic symbols denoting their

presence. Keeping the original verbosity level of these artifacts would have resulted

in an enormously large vocabulary and the model will likely not have learned the

patterns effectively.

Table 4.2 shows examples of such artifacts:

Table 4.2: Symbols to Artifacts

numtext_input numeric or textual input

VAR variable

LIST list

menu_option a chosen menu option

MENU dropdown menu

NUMTEXTARG numeric or textual argument*

BOOLARG boolean argument*

procedures_definition custom procedure definition**

procedures_call custom procedure call

*These symbols are only used with procedures_definition block.

**procedures_definition is analogous to a software function.

Once the encoding of blocks and transitions were determined, I then wrote a Javascript

command-line program that executed the following steps:

• Converts the project into Scratch 3.0 version

• Traverses each stack of blocks and encodes the blocks and transitions accord-

ingly

This script was implemented recursively, in order to ensure that arbitrary levels

of nesting and input arrangements are correctly encoded. Accounting for all cases of

50

block arrangements and handling the different block encodings in the Scratch back-

end, as well as writing and debugging this script was a time-consuming process and

constituted a significant portion of this thesis.

Training the Embeddings

Once I had transformed the projects into textual form, I was able to utilize the

fastText library to train word embeddings on the dataset of Scratch projects.

The fastText library offers both a Python-based and a command-line based tool,

with the latter containing more offerings and wider functionality. As a result, I utilized

the fastText command line based tool during both the unsupervised and supervised

training processes.

The fastText API offers options for training either CBOW or Skip-gram unsuper-

vised models. As discussed in Chapter 3 (Related Work), the CBOW (Continuous

Bag-of-Words) model learns to predict the most likely current word, 𝑤(𝑡), given its

surrounding context (the words before and after it in the sequence). The Skip-gram

model learns to predict the most likely surrounding words given the current word,

𝑤(𝑡).

I created a command-line based Python script called fasttext_helper.py that

interfaced with the fastText API, and streamline the unsupervised and supervised

training processes. This script utilized the subprocess [12] API to spawn shell com-

mands, and had the following structure:

• The script takes in a user-created settings file that contains the arguments (i.e.

hyperparameters) to the fastText unsupervised / supervised training command.

• The script parses that settings file and extracts the hyperparameters from it.

See Section 4.4 (Hyperparameter Tuning) below for more details on the different

hyperparameters.

• The script constructs the fastText unsupervised / supervised training command

with those hyperparameters as arguments.

51

• The script spawns a shell command containing that fastText unsupervised /

supervised training command, which kicks off the training process.

In terms of the choice of which type of unsupervised model is best suited for

our purposes, CBOW or Skip-gram, it has been reported that CBOW tends to work

slightly better for frequent words in the corpus, and takes less time to train [14], [13].

Skip-gram, on the other hand, tends to have higher accuracy for rare words, such

as misspelled words, and takes longer to train. Given that our vocabulary is quite

constrained, consisting of predefined blocks and transition symbols with few out-of-

vocabulary words, training an unsupervised CBOW model seems to be the better

choice.

In Scratch, there are two types of blocks: core and extension blocks. Core blocks

represent core functionality that would be essential for most Scratch programs, in-

cluding categories such as Motion, Looks, and Control, and are present on the Scratch

editor by default. Extension blocks, on the other hand, represent blocks that offer

extra specialized functionality, including categories such as Pen, Music, Video Sens-

ing, and must be manually included into the Scratch editor by the user. Naturally,

core blocks tend to be used more often in Scratch projects, and extension blocks less

so. In a sense, extension blocks could end up being considered “out-of-vocabulary”

words in our corpus if they are not seen during training. In an effort to avoid this

situation, I increased the size of the unsupervised dataset in an attempt to cover a

large amount of blocks. The larger our unsupervised dataset is, the better the chance

we have at including as many blocks as possible in the training corpus.

Initial experiments comparing the accuracy of CBOW and Skip-gram models

trained on our unsupervised corpus of Scratch projects demonstrated that CBOW

works better. Due to time constraints, I thus opted to focus on training CBOW mod-

els during the hyperparameter tuning process (refer to Section 4.4 (Hyperparameter

Tuning) below for more details).

52

4.3 Classifying Scratch Projects

Once I had trained word embeddings on the large unsupervised dataset of Scratch

projects, I was then able to train a supervised classifier model on our smaller labeled

dataset of Scratch projects, using these trained word embeddings as the representation

mechanism for the supervised dataset.

4.3.1 Methodology

I utilized fastText’s text classification API to train a supervised model on this dataset.

I used the fasttext_helper.py Python script described earlier (see Training the

Embeddings in Section 4.2.1 above) to interface with the fastText command-line tool

for this supervised training portion.

Dataset Pre-processing

To begin, I executed some dataset pre-processing on the labeled dataset, which con-

sisted of the following steps:

1. Removing any duplicate entries from the dataset.

2. Assigning the final labels.

3. Lumping the Slideshow projects into the Other category.

4. Textifying the projects using the textification script described earlier in Texti-

fying Scratch Projects in Section 4.2.1.

5. Formatting the dataset to include the textified projects along with their labels

in the format that fastText requires (i.e. a text file containing all projects

in the dataset, where each line contains the project label first, encoded as

label game, for example, and the textified project second).

6. Shuffling and splitting the dataset into training and test sets. The training set

comprised roughly 80% of the full dataset and the test set roughly 20%.

53

Step 2 of assigning the final labels using a confidence threshold filtering mechanism

and consisted of the following methodology:

• First, a threshold value for the confidence level is determined.

• For all project labels with a confidence level above this threshold, the label is

kept as is.

• For all project labels with a confidence level below this threshold, the label is

changed to “Other”, and the confidence level is set to 1.

I chose a threshold value of 0.7.

I implemented step 3 of lumping the Slideshow projects into the Other category,

as there ended up being only 46 Slideshows in the labeled dataset (and only 30 after

filtering by the threshold confidence level). Such a low amount was likely not enough

for training an accurate classifier model.

Training the Supervised Classifier

Once I pre-processed the labeled dataset, I commenced supervised training on it using

the fasttext_helper.py Python script.

4.4 Hyperparameter Tuning

The end goal of the entire machine learning pipeline described above is to classify

Scratch projects by type as accurately as possible. To that end, I tuned the hyperpa-

rameters of both the unsupervised and supervised training processes to optimize for

the downstream performance of the classifier model, as measured by its F1 score on

the (supervised) test dataset.

The hyperparameters tuned in the unsupervised training included the following

[4]:

54

• type of unsupervised model to train, either skipgram or cbow

• dimension of the trained embeddings

• minimum number of word occurrences

• minimum length of the character 𝑛-grams

• maximum length of the character 𝑛-grams

• number of epochs for unsupervised training

• learning rate for unsupervised training

I explain each hyperparameter below and the reasoning behind our choice of its

value range.

For the type of unsupervised model to train, I decided to only focus on training a

CBOW model, since, as mentioned previously, this model type was better suited for

our problem and demonstrated better accuracy on a few initial experiments.

The dimension of the trained embeddings refers to the desired length of the re-

sulting vector representing each “word” in our corpus. The range of dimensions I

considered was: [50, 64, 128, 175, 200]. I started with a dimension of 50 as

a relatively “small” embedding size, ended with a dimension of 200 as a relatively

“large” embedding size, and randomly chose a few values in between that were rel-

atively evenly spaced out. The intuition was to experiment with a few values that

each differed from the previous one in a non-trivial way.

The minimum number of word occurrences refers to the minimum number of times

a word must appear in the corpus before an embedding is trained for it. The range we

chose for this hyperparameter was: [1, 5]. We chose these values based on fastText

default values. 1 and 5 seemed like reasonable values to experiment with, where a

value of 1 indicates that each word in the corpus will have an embedding trained

for it, and a value of 5 indicates that only words that appeared five times will have

corresponding embeddings. Ultimately, the two situations we are experimenting with

55

are the situation where all words, including infrequent words, receive a correspond-

ing trained embedding, and the situation where only more frequent words receive a

corresponding trained embedding.

The minimum and maximum length of character 𝑛-grams refers to the minimum

and maximum length of substrings of the original word to use when representing that

word. The resulting set of substrings (or “𝑛-grams”) will in fact include substrings

of all lengths between the minimum and maximum length specified. For example,

a minimum length of 1 and a maximum length of 5 implies that the following 𝑛-

gram lengths are extracted from the original word: [1, 2, 3, 4, 5]. Once all

the 𝑛-grams are extracted, they are collectively considered to represent the original

word (along with the full word 𝑛-gram itself), and a vector representation is learned

for each 𝑛-gram. The resulting word vector representation is a combination of its

character 𝑛-gram vector representations. The range we chose for the minimum and

maximum length of character 𝑛-grams is: [(min: 1, max: 5), (min: 1, max:

8), (min: 1, max: 10)]. We carefully chose these values based on the length of

meaningful words in our corpus. Our corpus contains block opcodes – representing

the “title” of a block – and transition symbols – signifying the presence of a special

transition between one block and another. For instance, the following sequence might

appear in our corpus:

STARTSTACK looks_nextcostume _NEXT_ motion_gotoxy

STARTINPUT numtext_input _ENDINPUT_ _STARTINPUT_ numtext_input

ENDINPUT

The size of the smallest meaningful substring in this sequence is 1. An example of

such a substring is “x” in the motion_gotoxy opcode. “x” is a meaningful substring

because it represents a coordinate of a physical location in the Scratch program. The

size of the longest meaningful substring in this sequence is 5. An example of such

a substring is START in the _STARTSTACK_ transition symbol. Thus, an appropriate

range for the minimum and maximum length of character 𝑛-grams would be: (min:

1, max: 5). The length of the longest substring in our corpus is 10. An example

56

of such a substring is procedures, found in procedures_definition and proce-

dures_call opcodes. We generally wished for the model to always pick up on size-5

substrings, since the START substring is shared among a few transition symbols (e.g.

STARTSTACK ; _STARTINPUT_ ; _STARTNEST_) and is generally very meaningful

for the model to learn. As a result, we picked a few values to experiment with for the

maximum length that were roughly evenly spaced out – namely, [1, 5, 8].

The number of epochs refers to the number of passes through the full training

set during the training process. The learning rate represents the step size used to

update the learned parameters during training (i.e. during the stochastic gradient

descent procedure). The number of epochs and the learning rate hyperparameters

are typically inversely related. Setting the number of epochs to a high number (e.g.

50) implies that the learning rate should be set to a low number (e.g. 0.01), and vice

versa. The values we chose to experiment with for these hyperparameters were:

(epoch: 5, lr: 0.1),

(epoch: 10, lr: 0.05),

(epoch: 25, lr: 0.01),

(epoch: 50, lr: 0.01))

The hyperparameters tuned in the supervised training included the following [4]:

• minimum number of word occurrences

• number of epochs for supervised training

• learning rate for supervised training

• size of word 𝑛-grams to consider

• pre-trained word vectors

Many of the hyperparameters in the supervised training are similar to those de-

scribed in the unsupervised training section above. The only new hyperparameters

57

in this case are the size of word 𝑛-grams to consider, and the pre-trained word vec-

tors. The former refers to the size of word 𝑛-gram “window” around the current word

to consider during training. The values we chose to experiment with for the size of

word 𝑛-grams were: [1, 5, 10]. The fastText default value for this hyperparame-

ter was 1. However, since our work involves categorizing Scratch projects, and the

type of a Scratch project likely depends on the interaction between blocks and their

neighboring blocks, it seemed befitting to experiment with a few values for the size

of neighboring word 𝑛-grams to consider.

The pre-trained word vectors refer to the word embeddings trained in the unsu-

pervised learning step, to be used as the initial representation mechanism for blocks

and symbols in the subsequent supervised learning step.

For the supervised training case, we experimented with slightly different values

for the number of epochs and learning rate, as compared to the unsupervised training

case. The values we experimented with here were:

(epoch: 5, lr: 0.1),

(epoch: 10, lr: 0.1),

(epoch: 25, lr: 0.05),

(epoch: 50, lr: 0.05)

The fastText default value for the supervised learning rate is 0.1 (in contrast, the

unsupervised learning rate default value is 0.05). We chose to experiment with this

value of 0.1 and the smaller value of 0.05, while accordingly varying the number of

epochs.

I implemented a grid search [23] to tune the hyperparameters for both the unsu-

pervised and supervised training processes. I iterated through all combinations of the

unsupervised and supervised hyperparameters, training models at each setting, and

evaluated the performance of the supervised classifier model on the test set. I wrote

Python scripts that implemented these steps.

During the process of unsupervised hyperparameter tuning, I elected to train

all the unsupervised models on a smaller unsupervised dataset consisting of 10,000

58

projects, in lieu of the larger 500,000 project dataset. Training only one unsuper-

vised model on the larger dataset takes a non-trivial amount of time, and repeatedly

training many unsupervised models during the hyperparameter tuning process (to

account for all the different hyperparameter combinations) would have taken pro-

hibitively long. As a result, I opted to use the smaller 10,000 project dataset to get

a ballpark estimate of the top 10 performing hyperparameter combinations. Then,

I took these hyperparameter combinations and trained unsupervised and supervised

models on the larger 500,000 project dataset to get more precise accuracy metrics and

determine which set of hyperparameters resulted in the best accuracy. Moreover, to

further speed up the unsupervised training process during hyperparameter tuning, I

used the hierarchical softmax loss function in lieu of the (default) negative sampling

loss function. Negative sampling loss tends to result in more accurate models for

frequent words [14]. Again, once I found the best performing hyperparameter combi-

nations, I trained a new unsupervised model using negative sampling loss function.

Although this workaround of using the smaller dataset for hyperparameter tuning

is not guaranteed to optimize all hyperparameters, it is a reasonable compromise for

gaining the resulting speedup. Moreover, given the constrained nature of our corpus

in terms of vocabulary and syntax, this workaround can provide a reasonable estimate

for the optimal hyperparameter settings.

Moreover, throughout the hyperparameter tuning process, I evaluated the accu-

racy of the resulting supervised model on the test set by calculating its F1 Score. In

the end, I chose the hyperparameter configuration that yielded the highest score on

the test set. The ideal scenario would be to use a validation set during the hyper-

parameter tuning process while keeping the test set untouched throughout the entire

training phase, so as to avoid overfitting and implicitly optimizing for the test set. In

the current configuration, we are effectively finding the optimal set of hyperparam-

eters that would result in the best performance on the test set. This practice could

lead to generalization issues, as it is difficult to confirm whether the model truly gen-

eralizes to unseen data samples (from the test set), if those samples were used during

the training phase in one way or another. Unfortunately, the classification dataset is

59

too small (873 projects) to split into training, validation, and test sets.

The best hyperparameter configuration I found was:

Unsupervised Hyperparameters:

• type of unsupervised model to train: cbow

• dimension of the trained embeddings: 64

• minimum number of word occurrences: 5

• minimum length of the character 𝑛-grams: 1

• maximum length of the character 𝑛-grams: 5

• number of epochs for unsupervised training: 5

• learning rate for unsupervised training: 0.1

Supervised Hyperparameters:

• minimum number of word occurrences: 5

• number of epochs for supervised training: 50

• learning rate for supervised training: 0.05

• size of word n-grams to consider: 1

Additional testing suggests that further tuning might result in improvements. In

future work, additional hyperparameter tuning on the larger 500,000 dataset could

be conducted to see the full range of improvements possible (albeit consuming more

computing resources).

60

Chapter 5

Evaluation

5.1 Unsupervised Training Evaluation

I evaluate and analyze the unsupervised model in this section. In particular, I will

examine both word and project embeddings.

In the sections below, I will refer to the concept of “similarity” often. Word sim-

ilarity is a well-established and well-defined concept – it’s usually straightforward to

judge whether two words are similar in their semantics or not. This is not immediately

the case for Scratch blocks, as it is often harder and more ambiguous to determine

whether two Scratch blocks are “similar” or what the metrics for similarity should be

in the first place. Two Scratch blocks can be similar in terms of functionality (though

likely not exactly the same in that regard), or similar in terms of appearing in similar

contexts or similar in terms of falling within the same category (e.g. Motion category

or Looks category). Although there isn’t currently a robust conception of how two

blocks might be similar, I will attempt to explore the aforementioned notions when

assessing similarity below.

61

5.1.1 Evaluating Word Embeddings

Nearest Neighbors

I examine the nearest neighbors of a few select blocks, based on their embeddings,

and intuitively assess whether these are reasonably “similar” to the original block.

62

Block 1: motion_turnright

Figure 5-1 shows the nearest neighbors of the motion_turnright block. As shown,

the closest block to it is the motion_turnleft block, which is expected since those

two blocks share the same exact functionality, only differing in which direction to

turn the character in the Scratch program. The similarity measure for this block is

higher than the remaining blocks by a noticeable margin.

The remaining blocks that are deemed similar to the motion_turnright block

are notable. A good portion of these blocks involve some sort of behavior that af-

fects or involves the direction of the character in the program, including motion_

ifonedgebounce, motion_pointindirection, motion_direction, motion_setro-

tationstyle, motion_pointtowards. It is remarkable that the model was able to

learn this “direction” relation between these blocks, even though the word “direction”

isn’t present in all the opcodes nor do all the opcodes share the same word.

The second most similar block to the motion_turnright block is the motion_

movesteps block. Although their functionalities are not the same, with the motion_

movesteps block indicating that the character move a certain number of steps in the

current direction, these two blocks are often used together.

Figure 5-1: Nearest neighbors of the motion_turnright block, ordered by the simi-
larity level of their embeddings.

63

Block 2: sound_play

Figure 5-2 shows the nearest neighbors of the sound_play block. The model was

able to correctly identify the sound_playuntildone block as one of closest blocks

to the sound_play block. The model deems the sound_stopallsounds block as the

most “similar” block to the sound_play block, although the similarity level of 0.608

is not significantly high. This is reasonable since the former block’s functionality is

essentially the opposite of the latter’s – i.e. stopping sounds as opposed to playing

sounds. The model was able to learn that these functionalities are significantly re-

lated. Lastly, most of the blocks in the nearest neighbors list are part of the Sound

category of blocks, indicating that the model at least learned that these blocks share

this feature in common. Of course, since the model takes into account sub-word in-

formation as well when representing a block, it picks up on the sub-word “sound”

that is shared between these blocks.

Figure 5-2: Nearest neighbors of the sound_play block, ordered by the similarity
level of their embeddings.

64

Block 3: event_whenflagclicked

Figure 5-3 shows the nearest neighbors of the event_whenflagclicked block. The

model identified that the looks_show, looks_hide, and control_forever blocks are

related to the event_whenflagclicked block, which is promising because those three

blocks tend to appear right after the event_whenflagclicked block often. Moreover,

the model learned that other “hat” (header) blocks, such as the event_whenbackdrop-

switchesto, event_whenbroadcastreceived, and event_whenthisspriteclicked

blocks, are similar to the event_whenflagclicked block. This is significant because

those blocks can only be placed at the top of a stack, so they share a “structural” qual-

ity, and they are triggered when certain events occur (such as the backdrop chang-

ing, a broadcast being received, etc.), so they share a “functional” quality. Lastly,

the model identified that the _STARTSTACK_ and _ENDSTACK_ symbols are similar to

event_whenflagclicked block, which makes sense because those symbols demarcate

the different stacks and the event_whenflagclicked block is often the starting block

in a stack.

Figure 5-3: Nearest neighbors of the event_whenflagclicked block, ordered by the
similarity level of their embeddings.

65

Block 4: control_repeat

Figure 5-4 shows the nearest neighbors of the control_repeat block. In this case,

many of the blocks deemed similar by the model are not immediately intuitive. For in-

stance, one would expect that the control_repeat_until and control_forever be

listed in the nearest neighbors, since these blocks share similar looping functionality

with the control_repeat block. However, the model doesn’t seem to have picked up

on that. However, many of the blocks listed as nearest neighbors are still reasonable,

since they are blocks that are typically nested inside the control_repeat block, such

as the looks_changeeffectby, control_wait, motion_turnleft, sound_change-

effectby, and looks_nextcostume blocks, among others. Lastly, since the model

utilizes sub-word information while training, it expectedly lists some of the Control

category blocks in the nearest neighbors list – namely, the control_create_clone_

of, control_wait, and control_delete_this_clone blocks.

Figure 5-4: Nearest neighbors of the control_repeat block, ordered by the similarity
level of their embeddings.

66

Block 5: _STARTSTACK_

Figure 5-5 shows the nearest neighbors of the _STARTSTACK_ symbol. Expectedly,

the model picks up on the similarity between the _STARTSTACK_ and _ENDSTACK_

symbols, which both share the functionality of demarcating stacks, and share the

sub-word STACK. The model assigns a high similarity measure of 0.875 corresponding

to these two blocks. Quite a few of the other blocks in the nearest neighbors list are

Event category “hat” (header) blocks. This is expected since those types of blocks

can only come at the start of a stack, and most stacks begin with them (so they often

appear right after the _STARTSTACK_ symbol).

Figure 5-5: Nearest neighbors of the _STARTSTACK_ block, ordered by the similarity
level of their embeddings.

67

Cosine Similarity Between Block Pairs

I examine the cosine similarity between pairs of “similar” blocks and pairs of “differ-

ent” blocks. The cosine similarity is a similarity measure between two vectors that

evaluates whether they point in approximately the same direction [25]. Cosine sim-

ilarity is often used as a similarity measure for word vectors. The cosine similarity

measure is:

cos(𝑎, 𝑏) =
(𝑎 · 𝑏)

||𝑎|| * ||𝑏||

The higher the cosine similarity measure, the higher the similarity between the two

vectors, with a value of 1 indicating perfect similarity [25].

Similar Blocks

Pair 1: motion_turnright & motion_turnleft

Cosine similarity: 0.9237434

These two blocks have a high cosine similarity (close to 1), as expected. Since

they share a few sub-words (motion, turn), and, as a result, share very similar func-

tionality, it is a good sign that the model picked up on this similarity.

Figure 5-6: The motion_turnright (left) and motion_turnleft (right) blocks.

68

Pair 2: control_repeat & control_forever

Cosine similarity: -0.04653213

These two blocks have a low similarity score. This is surprising since these two

blocks share similar looping functionalities and share the sub-word “control”, but

the model doesn’t learn this correlation. This could perhaps be due to the fact

that although these blocks share the looping functionality, that isn’t reflected in the

opcode, in that there are no shared sub-words that would indicate this similarity in

functionality. Another reason for this low similarity might be that these blocks aren’t

typically used interchangeably in similar contexts within Scratch.

Figure 5-7: The control_repeat (left) and control_forever (right) blocks.

Pair 3: operator_gt & operator_lt

Cosine similarity: 0.9350381

As expected, these two blocks have a high similarity score (close to 1). Given that

they share practically the same opcode (with the exception of a single letter), the

model learns that these two blocks should share similar representations. Moreover,

it is likely that they are often used in very similar contexts, giving rise to a high

similarity measure between their embeddings.

Figure 5-8: The operator_gt (left) and operator_lt (right) blocks.

69

Pair 4: data_setvariableto & data_changevariableby

Cosine similarity: 0.5607882

These two blocks share a relatively low similarity measure. Although they share

some sub-words (data, variable), their somewhat shared functionality of modifying

variables is not reflected in the opcode, seemingly the reason why the model doesn’t

pick up on this similarity. Although these blocks can conceivably be used inter-

changeably in similar contexts, perhaps this interchangeability doesn’t occur enough

throughout the training corpus for the model to pick up on.

Figure 5-9: The data_setvariableto (left) and data_changevariableby (right)
blocks.

Pair 5: control_if & control_if_else

Cosine similarity: 0.5709473

These two blocks have a relatively low similarity measure. Although they share

a few significant sub-words (control, if), this is not enough for the model to learn

the similarity in their conditional functionality.

Figure 5-10: The control_if (left) and control_if_else (right) blocks.

70

Pair 6: motion_turnright & motion_ifonedgebounce

Cosine similarity: 0.67463166

These two blocks share a relatively medium similarity score, given that they share

similar “rotation” functionalities, but don’t share many sub-words to indicate that.

The model seems to have picked up on this similarity, although it is hard to determine

this conclusively.

Figure 5-11: The motion_turnright (left) and motion_ifonedgebounce (right)
blocks.

Pair 7: event_broadcast & event_whenbroadcastreceived

Cosine similarity: 0.637749

These two blocks are “complementary” blocks, where the event_broadcast block

broadcasts a message, and the event_whenbroadcastreceived is triggered when that

message is received. Thus, since they share complementary functionalities, we expect

the model to learn this, to some extent. This is a hard relationship to decode because

these blocks don’t tend to appear consecutively, but rather, are typically found in

separate stacks. This distance between them would make this relationship difficult to

pick up. Consequently, we consider the similarity score (0.638) of these two blocks to

be relatively high.

Figure 5-12: The event_broadcast (left) and event_whenbroadcastreceived
(right) blocks.

71

Pair 8: _STARTSTACK_ & _ENDSTACK_

Cosine similarity: 0.8748894

As a sanity check, our model should have learned that these two symbols are

similar, given that they share the STACK sub-word, and demarcate the beginning and

end of each stack, so they occur in each other’s contexts often. We see that the model

has learned this similarity, assigning the high score of 0.875.

As we can see from the previous examples, the use of sub-word information for finding

optimal representations of blocks and symbols is very useful, since these sub-words

tend to reflect the similarity in functionality for blocks and symbols.

72

Different Blocks

As a further check, we ensure that our model assigns low similarity scores for blocks

that are considered to be “different”.

Pair 1: control_create_clone_of & sensing_askandwait

Cosine similarity: -0.3848171

Figure 5-13: The control_create_clone_of (left) and sensing_askandwait (right)
blocks.

Pair 2: operator_join & motion_setrotationstyle

Cosine similarity: -0.20272619

Figure 5-14: The operator_join (left) and motion_setrotationstyle (right)
blocks.

Pair 3: operator_add & looks_nextcostume

Cosine similarity: -0.3173863

Figure 5-15: The operator_add (left) and looks_nextcostume (right) blocks.

For all of the block pairs above, each pair share no meaningful sub-words and no

73

functionality. Moreover, the last pairs cannot be effectively used interchangeably in

the same locations within a Scratch program, since their shapes are different and

don’t allow for that. As expected, the model deems all of these pairs as “different”,

giving them low (and negative) similarity scores.

74

Comparing Similarities of Embeddings

I create a heatmap matrix to visualize the (cosine) similarities between a few select

blocks, shown in Figure 5-16. Darker colors correspond to a high similarity between

the corresponding blocks in that row and column. The diagonal of this matrix is the

darkest since it represents the similarity of each block with itself. Note that the scale

of cosine similarities goes down to below -0.3.

Figure 5-16: Heatmap matrix showing the cosine similarities between select blocks.
The shade of each square in the matrix represents the cosine similarity of the Scratch
block in that row and the Scratch block in that column. Darker shades indicate higher
similarity.

75

t-SNE Visualization

Closest Words Visualization

I create t-SNE plots [29] to visualize the closest set of blocks and symbols to a

specific block. t-SNE is an efficient dimensionality reduction technique that allows

us to simplify the data embeddings to fewer dimensions. In this case, I collapse

the data to 2 dimensions. I choose to focus on the motion_turnright, procedures_

definition, and data_setvariabletolook, and look at their 20 closest words. I use

these t-SNE plots both as an explorative way to uncover some of the relationships

between different blocks, and as a way to confirm relationships we expect to exist.

76

Block 1: motion_turnright

Figure 5-17 shows the t-SNE plot for the motion_turnright block. Many of

the blocks in the set of closest words are motion category blocks, confirming our

expectation that blocks within the same category have closer embeddings. Moreover,

many of these motion category blocks involve direction-related functionality, such

as motion_pointtowards, motion_pointindirection, motion_direction, motion_

setrotationstyle, and motion_ifonedgebounce. Moreover, it is interesting to see

that a few pen category blocks are included in the set of closest words.

Figure 5-17: t-SNE plot showing the closest 20 words to the motion_turnright block.

77

Block 2: procedures_definition

Figure 5-18 shows the t-SNE plot for the procedures_definition block. This

block corresponds to defining a new custom procedure in the program, much like a

function in software code. Unlike other block categories, the procedures category

only contains two blocks in total, the procedures_definition and procedures_

call blocks, meaning won’t be multiple blocks from the same category in the t-SNE

plot. There are quite a few data category blocks present in the set of closest words,

particularly list-type blocks, such as data_insertatlist, data_replaceitemoflist,

data_itemnumoflist, and more, implying that definitions of new procedures tend to

include list manipulations often. Moreover, the _NUMTEXTARG_ and _BOOLARG_ are

symbols that denote the presence of arguments for the custom procedure, of either

numerical, textual, or boolean types. These symbols only appear in stacks beginning

with the procedures_definition block, so, as expected, they are present in its t-SNE

plot as well.

Figure 5-18: t-SNE plot showing the closest 20 words to the procedures_definition
block.

78

Block 3: data_setvariableto

Figure 5-19 shows the t-SNE plot for the data_setvariableto block. As ex-

pected, many of the data category blocks are present in the set of closest words.

Moreover, many operator category blocks are also present, such as operator_add,

operator_multiply, operator_round, and operator_join blocks, suggesting that

variable manipulations tend to involve mathematical and lexical operations. Lastly,

the _VAR_ symbol, used to denote the use of a variable, is also present in the plot,

since the data_setvariableto block employs and manipulates variables.

Figure 5-19: t-SNE plot showing the closest 20 words to the data_setvariableto
block.

79

Clusters of Embeddings

I create a t-SNE plot with 2 dimensions containing all the blocks in our corpus, and

include it in the Appendix (Section B.1). As expected, blocks of the same category

tend to cluster close together, such as the data category blocks on the top left of the

plot, the pen category blocks on the bottom left of the plot, and the sound category

blocks on the top right of the plot. Moreover, it is interesting to note which category

clusters are found near each other. A few of the hardware extension categories,

such as LEGO MINDSTORMS EV3, LEGO Education WeDo, Micro:bit, LEGO BOOST, and

Vernier Go Direct, are found near each other towards the middle left of the plot. In

addition, the points corresponding to pairs of blocks that have “sister” functionalities

are found near each other on the plot, such as ev3_motorTurnClockwise and ev3_

motorTurnCounterClockwise (middle of the plot), motion_setx and motion_sety

(top middle of the plot), and data_showlist and data_hidelist (top left of the

plot).

Please refer to the Appendix (Section B.1) for this t-SNE plot containing all blocks

in our corpus.

80

Heatmap Visualizations of Embeddings

Visualizing Word Embedding Similarities

I create and compare heatmaps of various block embeddings to visualize the simi-

larity in their values at each dimension. I look at triplets of blocks at a time, choosing

two blocks that are similar (in terms of cosine similarity), and a third one that is dif-

ferent from the pair. It is important to note that two embeddings do not need to have

the similar values at each dimension in order to have a high cosine similarity. This

evaluation method is merely included to offer a different way of visualizing similarity,

if any exists.

81

Triplet 1:

Similar:

• motion_turnright

• motion_turnleft

Different:

• looks_changesizeby

Figure 5-20: Heatmap visualization of the motion_turnright, motion_turnleft,
and looks_changesizeby embeddings.

The motion_turnright and motion_turnleft embeddings have a higher cosine

similarity measure (0.924) than either the motion_turnright and looks_change-

sizeby (0.411), or the motion_turnleft and looks_changesizeby (0.335) embed-

dings.

Figure 5-20 shows the heatmap visualization for these blocks. The motion_turn-

right and motion_turnleft embeddings share similar values at quite a few dimen-

sions (in terms of how small / large the values are, and subsequently, the shading level

of each square) as compared to the looks_changesizeby embedding. Although this

isn’t an exact science, it is meant to give a rough intuition for whether the embeddings

for similar blocks line up at different dimensions.

82

Triplet 2:

Similar:

• operator_gt

• operator_lt

Different:

• event_whenkeypressed

Figure 5-21: Heatmap visualization of the operator_gt, operator_lt, and event_

whenkeypressed embeddings.

The operator_gt and operator_lt embeddings have a higher cosine similarity

measure (0.935) than either the operator_gt and event_whenkeypressed (-0.321),

or the event_whenkeypressed and operator_lt (-0.344) embeddings.

Figure 5-21 shows the heatmap visualization for these blocks. The operator_gt

and operator_lt embeddings share similar values at more than half the dimensions

as compared to the event_whenkeypressed embedding, and visually seems to line

up overall.

83

Triplet 3:

Similar:

• looks_seteffectto

• looks_changeeffectby

Different:

• sound_seteffectto

Figure 5-22: Heatmap visualization of the looks_seteffectto, looks_changeef-
fectby, and sound_seteffectto embeddings.

The looks_seteffectto and looks_changeeffectby embeddings have a higher

cosine similarity measure (0.810) than either the looks_seteffectto and sound_

seteffectto (0.594), or the sound_seteffectto and looks_changeeffectby (0.519)

embeddings. As an aside, although the looks_seteffectto and sound_setef-

fectto opcodes share more sub-words (set, effect, to) than looks_seteffectto

and looks_changeeffectby opcodes (looks, effect), the first pair have a much

higher cosine similarity score. This may be due to the fact that the functionalities

of the looks_seteffectto and looks_changeeffectby blocks are very similar and

they can consequently be used interchangeably in many of the same contexts.

Figure 5-22 shows the heatmap visualization for these blocks. Although the

looks_seteffectto and looks_changeeffectby have a high similarity score, their

embeddings don’t seem to significantly line up more than with the event_whenkey-

pressed embedding.

84

5.1.2 Evaluating Project Embeddings

Project embeddings can be derived from block embeddings by using the fastText API,

by computing a normalized average on the block embeddings (in the same way that

a sentence embedding is derived from word embeddings) [8].

I conduct a few evaluation experiments on these project embeddings.

85

Nearest Neighbors

I randomly choose a few projects from our training corpus and examine their nearest

neighbors within the same corpus. I qualitatively evaluate whether these projects

display any similarities to the original project. Since the block and project embeddings

only take into account the code of the program, and not the title or description, I

only focus on perceived similarities between the structure of the code between these

projects.

Example 1:

Chosen project: https://scratch.mit.edu/projects/311242236/

The nearest neighbors for this project all exhibited similar code structure to it.

Each project contained a control_forever loop with motion_glidesecstoxy blocks

nested inside of it, as shown in Figure 5-23. Although one of the projects was remixed

from the same parent project as the original project, the other nearest neighbors were

not related to the original project in this way.

The links to the nearest neighbor projects are listed below:

• https://scratch.mit.edu/projects/309248329/

• https://scratch.mit.edu/projects/1362473/

• https://scratch.mit.edu/projects/206398363/

• https://scratch.mit.edu/projects/304297420/

86

https://scratch.mit.edu/projects/311242236/
https://scratch.mit.edu/projects/309248329/
https://scratch.mit.edu/projects/1362473/
https://scratch.mit.edu/projects/206398363/
https://scratch.mit.edu/projects/304297420/

Figure 5-23: Snippets of code from the nearest neighbor projects for Scratch project:
https://scratch.mit.edu/projects/311242236/. Each dashed box corresponds
to code from one of the projects.

87

https://scratch.mit.edu/projects/311242236/

Example 2:

Chosen project: https://scratch.mit.edu/projects/223682613/

The nearest neighbors for this project also exhibited similar code structure to it.

In this case, all of the projects involved animating a name in Scratch, based on one

of the Scratch tutorials, so they expectedly shared similar code, as shown in Figure

5-24.

The links to the nearest neighbor projects are listed below:

• https://scratch.mit.edu/projects/269937962/

• https://scratch.mit.edu/projects/250085163/

• https://scratch.mit.edu/projects/146961249/

• https://scratch.mit.edu/projects/79984870/

88

 https://scratch.mit.edu/projects/223682613/
https://scratch.mit.edu/projects/269937962/
https://scratch.mit.edu/projects/250085163/
https://scratch.mit.edu/projects/146961249/
https://scratch.mit.edu/projects/79984870/

Figure 5-24: Snippets of code from the nearest neighbor projects for Scratch project:
https://scratch.mit.edu/projects/223682613/. Each dashed box corresponds
to code from one of the projects. Each stack of blocks may not be for the same
characters (i.e. sprites) within a program.

89

https://scratch.mit.edu/projects/223682613/

Crafted Project Examples and Their Similarities

I handcraft a few projects from scratch and measure the cosine similarity between their

embeddings as well as show a heatmap visualization comparing their embeddings.

90

Simple Programs:

Figure 5-25 shows the two handcrafted Scratch programs. The only differing

blocks are the motion_movesteps and motion_turnright blocks.

Figure 5-25: A pair of simple Scratch programs that are very similar, with the only
differing blocks being the motion_movesteps (program on the left) and motion_

turnright (program on the right) blocks.

Cosine Similarity:

The cosine similarity of these two programs is expectedly high (close to 1).

Cosine similarity: 0.9897882

Heatmap visualization:

Figure 5-26: Heatmap visualization for the pair of (simple) Scratch programs shown
in Figure 5-25.

It is evident from the heatmap visualization in Figure 5-26 that these two project

embeddings share similar values in most of the dimensions. This is expected, since

these programs only differ by one block in the program.

91

Complex Programs:

Figure 5-27 shows the two handcrafted Scratch programs. The main differing

blocks are the extension blocks used, with the pen extension blocks in the program

on the left and the music extension blocks in the program on the right.

Figure 5-27: A pair of more complex Scratch programs that are very similar, with
the main differing blocks being the pen extension blocks (program on the left) and
the music extension blocks (program on the right).

Cosine Similarity:

The cosine similarity of these two programs is expectedly high (close to 1).

Cosine similarity: 0.9795549

92

Heatmap visualization:

Figure 5-28: Heatmap visualization for the complex pair of Scratch programs shown
in Figure 5-27.

Although a little less apparent than in the example of the simple programs, it

is still evident from the heatmap visualization in Figure 5-28 that these two project

embeddings share similar values in many of the dimensions. This is expected, since

these programs only differ by a few blocks.

93

Across Program Types:

Figure 5-29 shows a cross-pairing of the previous programs, with a simple program

on the left and a more complex program on the right. There are many differing blocks

between these two programs.

Figure 5-29: A cross-pairing of (different) Scratch programs with many differing
blocks.

Cosine Similarity:

The cosine similarity of these two programs is relatively lower than the two pre-

vious examples of similar programs, however, note that this similarity score is still

considered objectively high.

Cosine similarity: 0.71526206

94

Heatmap visualization:

Figure 5-30: Heatmap visualization for the (differing) Scratch programs shown in
Figure 5-29.

It is evident from the heatmap visualization in Figure 5-30 that these two project

embeddings do not share as many similar values in the different dimensions as the

previous examples of similar projects do (simple and complex pairs). This is expected,

since these programs differ in many blocks as well as in their complexity.

95

5.2 Supervised Training Evaluation

5.2.1 Quantitative Evaluation

Accuracy Metrics:

The supervised model achieved an F1 score of 0.737, precision of 0.737, and recall

of 0.737, as is shown by Table 5.1. For the “game” category, the supervised model

achieved an F1 score of 0.811, precision of 0.789, and recall of 0.833. For the “anima-

tion” category, the supervised model achieved an F1 score of 0.832, precision of 0.800,

and recall of 0.867. For the “other” category, the supervised model achieved an F1

score of 0.442, precision of 0.500, and recall of 0.395. The model did pretty well for the

“game” and “animation” categories, achieving high F1 scores, and struggled quite a

bit with the “other” category. This difference in performance can be attributed to the

fact that the “other” category is essentially a blend of many different sub-categories

by nature, as all projects that aren’t games and animations get lumped into “other”.

As a result, we expect that it was difficult for the model to learn the commonalities

between projects labeled as “other”, especially with the small size of the supervised

dataset.

Table 5.1: Accuracy Metrics for Supervised Classification on Test Set

Overall Game Animation Other

Precision 0.737 0.789 0.800 0.500

Recall 0.737 0.833 0.867 0.395

F1 Score 0.737 0.811 0.832 0.442

96

Confusion Matrix:

I create a confusion matrix [21] for the supervised model that demonstrates the num-

ber of projects that are predicted to belong to one category when they, in reality,

belong to another. This confusion matrix is shown in Figure 5-31. As foreshadowed

by their high F1 scores, the model does well in predicting true animations and games.

The model evidently struggles with the “other” category, categorizing actual “other”

projects practically uniformly at random between the three categories (see the last

row of the matrix).

Figure 5-31: Confusion matrix for the supervised classifier model.

97

5.2.2 Qualitative Evaluation

Example Predictions for Select Projects

I examine the model predictions for a few select projects in each category. The model

does well on most examples, with only two mistakes out of twelve.

Games

Example 1:

Figure 5-32: This Scratch project can be found at: https://scratch.mit.edu/
projects/75395146.

Model prediction: game with probability 0.575

98

https://scratch.mit.edu/projects/75395146
https://scratch.mit.edu/projects/75395146

Example 2:

Figure 5-33: This Scratch project can be found at: https://scratch.mit.edu/
projects/286136792.

Model prediction: game with probability 0.799

99

https://scratch.mit.edu/projects/286136792
https://scratch.mit.edu/projects/286136792

Example 3:

Figure 5-34: This Scratch project can be found at: https://scratch.mit.edu/
projects/141677189.

Model prediction: other with probability 0.477

100

https://scratch.mit.edu/projects/141677189
https://scratch.mit.edu/projects/141677189

Example 4:

Figure 5-35: This Scratch project can be found at: https://scratch.mit.edu/
projects/146120846.

Model prediction: game with probability 0.513

101

https://scratch.mit.edu/projects/146120846
https://scratch.mit.edu/projects/146120846

Animations

Example 1:

Figure 5-36: This Scratch project can be found at: https://scratch.mit.edu/
projects/169401431.

Model prediction: animation with probability 0.845

102

https://scratch.mit.edu/projects/169401431
https://scratch.mit.edu/projects/169401431

Example 2:

Figure 5-37: This Scratch project can be found at: https://scratch.mit.edu/
projects/116260245.

Model prediction: animation with probability 0.901

103

https://scratch.mit.edu/projects/116260245
https://scratch.mit.edu/projects/116260245

Example 3:

Figure 5-38: This Scratch project can be found at: https://scratch.mit.edu/
projects/174103769.

Model prediction: animation with probability 0.536

104

https://scratch.mit.edu/projects/174103769
https://scratch.mit.edu/projects/174103769

Example 4:

Figure 5-39: This Scratch project can be found at: https://scratch.mit.edu/
projects/288182786.

Model prediction: animation with probability 0.986

105

https://scratch.mit.edu/projects/288182786
https://scratch.mit.edu/projects/288182786

Other

Example 1:

Figure 5-40: This Scratch project can be found at: https://scratch.mit.edu/
projects/106553892.

Model prediction: other with probability 0.578

106

https://scratch.mit.edu/projects/106553892
https://scratch.mit.edu/projects/106553892

Example 2:

Figure 5-41: This Scratch project can be found at: https://scratch.mit.edu/
projects/91593031.

Model prediction: other with probability 0.919

107

https://scratch.mit.edu/projects/91593031
https://scratch.mit.edu/projects/91593031

Example 3:

Figure 5-42: This Scratch project can be found at: https://scratch.mit.edu/
projects/29433528.

Model prediction: game with probability 0.724

108

https://scratch.mit.edu/projects/29433528
https://scratch.mit.edu/projects/29433528

Example 4:

Figure 5-43: This Scratch project can be found at: https://scratch.mit.edu/
projects/244219748.

Model prediction: other with probability 0.736

109

https://scratch.mit.edu/projects/244219748
https://scratch.mit.edu/projects/244219748

110

Chapter 6

Conclusion

6.1 Contributions

Throughout this paper, I described the use of NLP techniques to vectorize and classify

Scratch projects by type. This work has the following contributions:

• A labeled dataset of 873 Scratch projects and their corresponding types, with

a confidence of greater than or equal to 80%, constructed through a process of

consensus-based annotation by experts (i.e. staff of the Scratch Foundation).

• An unsupervised model of meaningful vector representations (i.e. “embeddings”)

for Scratch blocks based on the composition of 500,000 projects.

• A supervised classifier model that categorizes Scratch projects by type (into

the categories of “animation”, “game”, and “other”), with an overall F1 Score of

0.737.

• An analysis of the unsupervised and supervised models, and an exploration of

the elements learned during training.

Overall, I applied machine learning techniques to a new context, and demonstrated

that NLP techniques can be used in the classification of computer programs to a

reasonable level of accuracy.

111

6.2 Future Work

6.2.1 Engaging the Scratch Community For Annotation

The project annotation phase of this work drew upon the expertise of the Scratch

Team for labeling Scratch projects by their type. Another community of people,

namely the Scratch online community, have extensive experience and expertise with

Scratch projects, and could be a promising pool of annotators to tap into as well.

In addition, Scratchers may have different ways of thinking about project categoriza-

tions that the Scratch Team might miss. Combining the perspectives of both of these

communities may result in a more robust and diverse set of project annotations, and

eventually a better classifier model. Lastly, given that the classifier model could serve

as the foundation for a project recommendation algorithm (see Section 6.2.6 - Rec-

ommendation Algorithm below), it would be essential to incorporate the perspectives

of Scratchers in the project taxonomy, since they would be a primary end-user of the

classifier model.

6.2.2 Overcoming Small Size of Labeled Dataset

Recent work has demonstrated effective methods for augmenting small datasets to

improve the performance of text classifier models. Wei et. al. present “easy data

augmentation techniques”, such as “synonym replacement, random insertion, random

swap, and random deletion” within a sentence while retaining and conserving the orig-

inal label [42]. Their work has especially larger gains for smaller datasets. Although

their work is specifically targeted towards text applications, we can experiment with

using some of their methodology for overcoming the limitations of our small dataset.

In a similar vein, active learning techniques aimed at gauging the value of unlabeled

data samples by how informative they can be, and as a result, possibly improving the

performance of a model with less data, could prove useful for our work [40]. All of

these methods could be promising directions to apply to our work of training a clas-

sifier model on Scratch projects, where, as described earlier, labeling Scratch projects

112

has proven to be a time- and resource-consuming process.

6.2.3 Hyperparameter Tuning on Larger Dataset

Given time constraints, the hyperparameter tuning process followed in this work was

conducted on the smaller 10,000 project dataset, rather than on the larger 500,000

project dataset. In future work, more rigorous hyperparameter tuning on the larger

500,000 dataset can be conducted to see the full range of improvements possible (using

more computing resources).

6.2.4 Expanding Scratch Project Encodings

This work encoded Scratch projects in a “linear” text-based method, traversing each

stack of blocks and encoding blocks sequentially. Alternatively, we can explore encod-

ing Scratch projects using graphical representations. A potential avenue to explore

is to incorporate the Scratch program’s abstract syntax tree (AST) in the encoding,

following the code2vec work [17]. In code2vec, the authors explored representing

blocks of code using multiple “paths” between leaf nodes in the code’s AST [17]. Al-

though software code and Scratch programs are not exactly the same, one can imagine

defining what a “path” through a Scratch program’s AST would look like, and apply-

ing the methodology used in code2vec to explore whether better representations for

Scratch programs are learned this way. Another avenue for improving the methodol-

ogy for encoding Scratch projects is to incorporate information about the shapes of

blocks. The shape of a Scratch block tends to enforce certain affordances, and imply

certain limitations about how the block can be used and where it can be placed in the

program. Since many Scratch blocks share similar shapes, this information would be

useful for the model to pick up on so that it can learn the similarities between these

similarly shaped blocks. A potential way for incorporating this information could be

to encode each block as an “object” that has attributes (shape, inputs, menu options,

etc).

113

6.2.5 Classifying by “Complexity”

In addition to classifying Scratch projects by type, we could also classify them by

their level of complexity. There are a few notions of complexity to consider, but a

goal of this future direction would be to develop an intuitive notion of a project’s

complexity, both from the software and perceptual perspective. From the software

perspective, complexity measures such as McCabe’s cyclomatic complexity (which

evaluates the different paths through a program [30]), Halstead metrics (such as

program vocabulary, length, difficulty, delivered bugs [24]) and data access complexity

[20] (Card metric), among others, can be considered. In addition, we can explore a

“blocks” complexity concept that will incorporate the complexity and sophistication

level of the blocks used in the Scratch project as well as the complex usage of blocks

together. From the perceptual perspective, complexity could entail how the project

is perceived when interacted with. The number of moving parts, characters, features,

scenes and concepts that the project introduces, among other things, can be examined.

A part of this future direction will involve clearly defining and laying out the criteria

for a project’s complexity. Once such a concise definition is reached, we can build a

labeled dataset of Scratch projects and their complexity levels, and train a classifier

model on this dataset.

6.2.6 Recommendation Algorithm

To address the disparity of attention in the Scratch online community, we could

explore ways to make Scratch projects visible to Scratchers in a natural, personalized,

and sustainable way. An integrated project recommendation algorithm that will

suggest projects to Scratchers is one way to achieve this goal. The classifier model

trained as part of this work would naturally feed into this recommendation algorithm.

Moreover, if a complexity classifier is also trained (see Section 6.2.5 – Classifying by

“Complexity"), it can also serve as an engine for the recommendation algorithm.

Armed with a way to classify projects by type and complexity, we can search our

database of projects to pull “related” examples to surface to the user. The definition

114

of what counts as a “related” project could include metrics such as:

• How closely a project relates to a Scratcher’s interests, as measured by their

previous likes and favorites on the platform.

• How diverse a project’s type and complexity are from the Scratcher’s usual

preference, as measured by their previous likes and favorites on the platform.

• How closely a project’s programming difficulty level resembles the Scratcher’s

currently demonstrated programming skills.

A key priority of this recommendation algorithm would be to personalize the project

discovery experience for a Scratcher. Of course, we wish to present the Scratcher with

different uses of Scratch, to broaden their perspective on the power of Scratch, and

the creativity it enables. However, in order to ensure our algorithm is sustainable

and relevant, we must personalize our recommendation to the Scratcher and their

interests. That way, the recommendations presented by our algorithm feel natural

but contribute to the Scratcher’s learning implicitly.

An important aspect of designing the project recommendation algorithm will in-

volve tailoring it to Scratchers and their learning goals. Thus, the design of this

algorithm will likely require qualitative interviews with Scratchers to determine their

preferences and goals for a project recommendation interface.

115

116

Appendix A

Tables

A.1 Mapping of Symbols to Transitions and Arti-

facts:

Table A.1: Symbols to Transitions

STARTSTACK beginning of a new stack

ENDSTACK end of a stack

STARTNEST beginning of nesting

ENDNEST end of nesting

STARTINPUT beginning of input

ENDINPUT end of input

NEXT next

117

Table A.2: Symbols to Artifacts

numtext_input numeric or textual input

VAR variable

LIST list

menu_option a chosen menu option

MENU dropdown menu

NUMTEXTARG numeric or textual argument*

BOOLARG boolean argument*

procedures_definition custom procedure definition**

procedures_call custom procedure call

*These symbols are only used with procedures_definition block.

**procedures_definition is analogous to a software function.

118

A.2 All Blocks Used (in Corpus of 500,000 Projects)

By Category:

Table A.3: Motion Category to Blocks

Motion: motion_changexby

motion_changeyby

motion_direction

motion_glidesecstoxy

motion_glideto

motion_goto

motion_gotoxy

motion_ifonedgebounce

motion_movesteps

motion_pointindirection

motion_pointtowards

motion_setrotationstyle

motion_setx

motion_sety

motion_turnleft

motion_turnright

motion_xposition

motion_yposition

119

Table A.4: Looks Category to Blocks

Looks: looks_backdropnumbername

looks_changeeffectby

looks_changesizeby

looks_changestretchby

looks_cleargraphiceffects

looks_costumenumbername

looks_goforwardbackwardlayers

looks_gotofrontback

looks_hide

looks_hideallsprites

looks_nextbackdrop

looks_nextcostume

looks_say

looks_sayforsecs

looks_seteffectto

looks_setsizeto

looks_setstretchto

looks_show

looks_size

looks_switchbackdropto

looks_switchbackdroptoandwait

looks_switchcostumeto

looks_think

looks_thinkforsecs

120

Table A.5: Sound Category to Blocks

Sound: sound_changeeffectby

sound_changevolumeby

sound_cleareffects

sound_play

sound_playuntildone

sound_seteffectto

sound_setvolumeto

sound_stopallsounds

sound_volume

Table A.6: Events Category to Blocks

Events: event_broadcast

event_broadcastandwait

event_whenbackdropswitchesto

event_whenbroadcastreceived

event_whenflagclicked

event_whengreaterthan

event_whenkeypressed

event_whenthisspriteclicked

121

Table A.7: Control Category to Blocks

Control: control_create_clone_of

control_delete_this_clone

control_forever

control_if

control_if_else

control_repeat

control_repeat_until

control_start_as_clone

control_stop

control_wait

control_wait_until

122

Table A.8: Sensing Category to Blocks

Sensing: sensing_answer

sensing_askandwait

sensing_coloristouchingcolor

sensing_current

sensing_dayssince2000

sensing_distanceto

sensing_keypressed

sensing_loud

sensing_loudness

sensing_mousedown

sensing_mousex

sensing_mousey

sensing_of

sensing_resettimer

sensing_setdragmode

sensing_timer

sensing_touchingcolor

sensing_touchingobject

sensing_userid

sensing_username

123

Table A.9: Operators Category to Blocks

Operators: operator_add

operator_and

operator_contains

operator_divide

operator_equals

operator_gt

operator_join

operator_length

operator_letter_of

operator_lt

operator_mathop

operator_mod

operator_multiply

operator_not

operator_or

operator_random

operator_round

operator_subtract

124

Table A.10: Variables Category to Blocks

Variables: data_changevariableby

data_hidevariable

data_setvariableto

data_showvariable

data_addtolist

data_insertatlist

data_itemnumoflist

data_itemoflist

data_lengthoflist

data_listcontainsitem

data_replaceitemoflist

data_deletealloflist

data_deleteoflist

data_hidelist

data_showlist

Table A.11: Procedures Category to Blocks

Procedures: procedures_call

procedures_definition

125

Table A.12: Music Category to Blocks

Music: music_changeTempo

music_getTempo

music_midiPlayDrumForBeats

music_midiSetInstrument

music_playDrumForBeats

music_playNoteForBeats

music_restForBeats

music_setInstrument

music_setTempo

Table A.13: Pen Category to Blocks

Pen: pen_changePenColorParamBy

pen_changePenHueBy

pen_changePenShadeBy

pen_changePenSizeBy

pen_clear

pen_penDown

pen_penUp

pen_setPenColorParamTo

pen_setPenColorToColor

pen_setPenHueToNumber

pen_setPenShadeToNumber

pen_setPenSizeTo

pen_stamp

126

Table A.14: Video Sensing Category to Blocks

Video Sensing: videoSensing_setVideoTransparency

videoSensing_videoOn

videoSensing_videoToggle

videoSensing_whenMotionGreaterThan

Table A.15: Text to Speech Category to Blocks

Text to Speech: text2speech_setLanguage

text2speech_setVoice

text2speech_speakAndWait

Table A.16: Makey Makey Category to Blocks

Makey Makey: makeymakey_whenCodePressed

makeymakey_whenMakeyKeyPressed

Table A.17: Micro:bit Category to Blocks

Micro:bit: microbit_displayClear

microbit_displaySymbol

microbit_displayText

microbit_getTiltAngle

microbit_isButtonPressed

microbit_isTilted

microbit_whenButtonPressed

microbit_whenGesture

microbit_whenPinConnected

microbit_whenTilted

127

Table A.18: LEGO MINDSTORMS EV3 Category to Blocks

LEGO MINDSTORMS EV3: ev3_beep

ev3_buttonPressed

ev3_getDistance

ev3_getMotorPosition

ev3_motorSetPower

ev3_motorTurnClockwise

ev3_motorTurnCounterClockwise

ev3_whenButtonPressed

Table A.19: LEGO BOOST Category to Blocks

LEGO BOOST: boost_getMotorPosition

boost_seeingColor

Table A.20: LEGO Education WeDo Category to Blocks

LEGO Education WeDo: wedo2_getDistance

wedo2_getTiltAngle

wedo2_isTilted

wedo2_motorOff

wedo2_motorOn

wedo2_motorOnFor

wedo2_playNoteFor

wedo2_setLightHue

wedo2_setMotorDirection

wedo2_startMotorPower

wedo2_whenDistance

wedo2_whenTilted

128

Table A.21: Vernier Go Direct Category to Blocks

Vernier Go Direct: gdxfor_getTilt

gdxfor_whenGesture

gdxfor_whenTilted

A.3 Hyperparameter Values Tested:

Table A.22: Unsupervised Hyperparameters

type of unsupervised model: skipgram

cbow

dimension of embeddings: 50

64

128

175

200

min number of word occurrences: 1

5

min / max length of the char n-grams: (1, 5)

(1, 8)

(1, 10)

num. of epochs / learning rate: (5, 0.1)

(10, 0.05)

(25, 0.01)

(50, 0.01)

129

Table A.23: Supervised Hyperparameters

min number of word occurrences: 1

5

num. of epochs / learning rate: (5, 0.1)

(10, 0.1)

(25, 0.05

(50, 0.05))

size of word n-grams to consider: 1

5

10

130

Appendix B

Figures

131

B.1 t-SNE Plot for All Blocks:

Figure B-1: t-SNE visualization of all the blocks and symbols in our corpus.

132

Bibliography

[1] Amazon Mechanical Turk. https://www.mturk.com/.

[2] fastText. https://fasttext.cc/.

[3] fastText FAQ page. https://fasttext.cc/docs/en/faqs.html/.

[4] fastText "List of options" page. https://fasttext.cc/docs/en/options.
html.

[5] Figure Eight. https://www.figure-eight.com/.

[6] Figure Eight Success Center. https://success.figure-eight.com/hc/en-us.

[7] Figure Eight Success Center. How to Calculate a Confidence
Score. https://success.figure-eight.com/hc/en-us/articles/
201855939-How-to-Calculate-a-Confidence-Score?mobile_site=false.

[8] Github issue thread describing how sentence vectors are computed from
word vectors. https://github.com/facebookresearch/fastText/issues/
323#issuecomment-353167113.

[9] One-hot Encoder. Scikit-learn library. https://scikit-learn.org/stable/
modules/generated/sklearn.preprocessing.OneHotEncoder.html.

[10] Scratch About page. https://scratch.mit.edu/about/.

[11] Scratch Statistics page. https://scratch.mit.edu/statistics//. Accessed:
Jan 16, 2020.

[12] subprocess — Subprocess management. Python library. https://docs.python.
org/3.7/library/subprocess.html.

[13] Tomas Mikolov’s reply re: differences between CBOW and Skip-gram on
Google Groups thread. https://groups.google.com/forum/#!searchin/
word2vec-toolkit/c-bow/word2vec-toolkit/NLvYXU99cAM/E5ld8LcDxlAJ.

[14] word2vec. Google Code. https://code.google.com/archive/p/word2vec/.

[15] Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles Sutton.
A survey of machine learning for big code and naturalness. ACM Computing
Surveys (CSUR), 51(4):1–37, 2018.

133

https://www.mturk.com/
https://fasttext.cc/
https://fasttext.cc/docs/en/faqs.html/
https://fasttext.cc/docs/en/options.html
https://fasttext.cc/docs/en/options.html
https://www.figure-eight.com/
https://success.figure-eight.com/hc/en-us
https://success.figure-eight.com/hc/en-us/articles/201855939-How-to-Calculate-a-Confidence-Score?mobile_site=false
https://success.figure-eight.com/hc/en-us/articles/201855939-How-to-Calculate-a-Confidence-Score?mobile_site=false
https://github.com/facebookresearch/fastText/issues/323#issuecomment-353167113
https://github.com/facebookresearch/fastText/issues/323#issuecomment-353167113
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
https://scratch.mit.edu/about/
https://scratch.mit.edu/statistics//
https://docs.python.org/3.7/library/subprocess.html
https://docs.python.org/3.7/library/subprocess.html
https://groups.google.com/forum/#!searchin/word2vec-toolkit/c-bow/word2vec-toolkit/NLvYXU99cAM/E5ld8LcDxlAJ
https://groups.google.com/forum/#!searchin/word2vec-toolkit/c-bow/word2vec-toolkit/NLvYXU99cAM/E5ld8LcDxlAJ
https://code.google.com/archive/p/word2vec/

[16] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. Learning to
represent programs with graphs. arXiv preprint arXiv:1711.00740, 2017.

[17] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. code2vec: Learning
distributed representations of code. Proceedings of the ACM on Programming
Languages, 3(POPL):1–29, 2019.

[18] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enrich-
ing word vectors with subword information. Transactions of the Association for
Computational Linguistics, 5:135–146, 2017.

[19] Karen Brennan and Mitchel Resnick. New frameworks for studying and assessing
the development of computational thinking. In Proceedings of the 2012 annual
meeting of the American educational research association, Vancouver, Canada,
volume 1, page 25, 2012.

[20] David N Card and Robert L Glass. Measuring software design quality. Prentice-
Hall, Inc., 1990.

[21] Tom Fawcett. An introduction to roc analysis. Pattern recognition letters,
27(8):861–874, 2006.

[22] Yoav Goldberg. Neural network methods for natural language processing. Syn-
thesis Lectures on Human Language Technologies, 10(1):1–309, 2017.

[23] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,
2016.

[24] Maurice Howard Halstead et al. Elements of software science, volume 7. Elsevier
New York, 1977.

[25] Jiawei Han, Micheline Kamber, and Jian Pei. Data mining concepts and tech-
niques third edition. Morgan Kaufmann, 2011.

[26] Abram Hindle, Earl T Barr, Zhendong Su, Mark Gabel, and Premkumar De-
vanbu. On the naturalness of software. In 2012 34th International Conference
on Software Engineering (ICSE), pages 837–847. IEEE, 2012.

[27] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of
tricks for efficient text classification. arXiv preprint arXiv:1607.01759, 2016.

[28] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun
Deng, and Yuyi Zhong. Vuldeepecker: A deep learning-based system for vulner-
ability detection. arXiv preprint arXiv:1801.01681, 2018.

[29] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne.
Journal of machine learning research, 9(Nov):2579–2605, 2008.

[30] Thomas J McCabe. A complexity measure. IEEE Transactions on software
Engineering, (4):308–320, 1976.

134

[31] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[32] Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. Convolutional neural net-
works over tree structures for programming language processing. In Thirtieth
AAAI Conference on Artificial Intelligence, 2016.

[33] Hao Peng, Lili Mou, Ge Li, Yuxuan Liu, Lu Zhang, and Zhi Jin. Building
program vector representations for deep learning. In International Conference
on Knowledge Science, Engineering and Management, pages 547–553. Springer,
2015.

[34] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global
vectors for word representation. In Proceedings of the 2014 conference on empir-
ical methods in natural language processing (EMNLP), pages 1532–1543, 2014.

[35] Chris Piech, Jonathan Huang, Andy Nguyen, Mike Phulsuksombati, Mehran
Sahami, and Leonidas Guibas. Learning program embeddings to propagate feed-
back on student code. arXiv preprint arXiv:1505.05969, 2015.

[36] Anand Rajaraman and Jeffrey David Ullman. Mining of massive datasets. Cam-
bridge University Press, 2011.

[37] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Eve-
lyn Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver,
Brian Silverman, et al. Scratch: programming for all. Communications of the
ACM, 52(11):60–67, 2009.

[38] Mitchel Resnick and Ken Robinson. Lifelong kindergarten: Cultivating creativity
through projects, passion, peers, and play. MIT press, 2017.

[39] Rebecca Russell, Louis Kim, Lei Hamilton, Tomo Lazovich, Jacob Harer, Onur
Ozdemir, Paul Ellingwood, and Marc McConley. Automated vulnerability de-
tection in source code using deep representation learning. In 2018 17th IEEE In-
ternational Conference on Machine Learning and Applications (ICMLA), pages
757–762. IEEE, 2018.

[40] Burr Settles. Active learning literature survey. Technical report, University of
Wisconsin-Madison Department of Computer Sciences, 2009.

[41] Joseph Turian, Lev Ratinov, and Yoshua Bengio. Word representations: a simple
and general method for semi-supervised learning. In Proceedings of the 48th
annual meeting of the association for computational linguistics, pages 384–394.
Association for Computational Linguistics, 2010.

[42] Jason W Wei and Kai Zou. Eda: Easy data augmentation techniques for boosting
performance on text classification tasks. arXiv preprint arXiv:1901.11196, 2019.

135

[43] Martin White, Christopher Vendome, Mario Linares-Vásquez, and Denys Poshy-
vanyk. Toward deep learning software repositories. In 2015 IEEE/ACM 12th
Working Conference on Mining Software Repositories, pages 334–345. IEEE,
2015.

[44] Ludwig Wittgenstein. Philosophical investigations. John Wiley & Sons, 2009.

136

	Introduction
	Categorizing Scratch Projects
	Why Classify Scratch Projects?
	Outline

	Background
	Scratch as a Programming Language
	Scratch as a Community
	Project Taxonomy
	Motivation

	Related Work
	Word Representations
	fastText

	Machine Learning on Software Code

	Methods
	Constructing the Dataset
	Vectorizing Scratch Projects
	Methodology

	Classifying Scratch Projects
	Methodology

	Hyperparameter Tuning

	Evaluation
	Unsupervised Training Evaluation
	Evaluating Word Embeddings
	Evaluating Project Embeddings

	Supervised Training Evaluation
	Quantitative Evaluation
	Qualitative Evaluation

	Conclusion
	Contributions
	Future Work
	Engaging the Scratch Community For Annotation
	Overcoming Small Size of Labeled Dataset
	Hyperparameter Tuning on Larger Dataset
	Expanding Scratch Project Encodings
	Classifying by “Complexity”
	Recommendation Algorithm

	Tables
	Mapping of Symbols to Transitions and Artifacts:
	All Blocks Used (in Corpus of 500,000 Projects) By Category:
	Hyperparameter Values Tested:

	Figures
	t-SNE Plot for All Blocks:

