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Abstract

Homomorphic encryption is an exciting technology that enables computations to be per-

formed over encrypted data. While initial constructions were impractical, recent works have

enabled efficiency necessary for many practical application. In this thesis, we present a new

library for homomorphic encryption and two of applications built on this library. The first

application is a fast oblivious linear evaluation protocol, a fundamental building block for

secure computation. The second is a secure data aggregation platform used to study cyber

risk.
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Chapter 1

Introduction

A fully homomorphic encryption (FHE) scheme, first proposed by Rivest et al. [RAD78],

is an encryption scheme that allows computations to be performed on data while the data

is encrypted. Applications for such a scheme are as fantastic as they are plentiful, from

securely outsourcing computation to dramatically efficient secure multi-party computation

(MPC). The first theoretical construction of a fully homomorphic encryption scheme was

given in 2009 in the groundbreaking work of Gentry [Gen09a], although it lacked any practical

efficiency and required the security of non-standard assumptions. Nevertheless, thanks to

furious efforts over the past decade, constructions of homomorphic encryption schemes have

steadily become more capable [CKKS17], secure [GSW13], and practical [BGV12].

In this thesis, we present a homomorphic encryption library that draws from this rich

body of work to become truly practical. We demonstrate this practicality through two ap-

plications. The first application, and the main result of this thesis, is an oblivious linear

evaluation protocol that is both highly efficient as well as secure based on standard assump-

tions. The second application is a platform to securely and efficiently aggregate and perform

computations over private data.
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1.1 Road Map

In chapter 2, we give general background useful throughout the rest of the thesis. In 3,

we present the Gazelle 2.0 homomorphic encryption library. In chapter 4, we present our

fast oblivious linear evaluation protocol. In chapter 5, we present a platform for securely

aggregating data built on top of Gazelle.
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Chapter 2

General Background

In this chapter, we introduce the several concepts relevant throughout the remainder of this

thesis.

2.1 Notation

We will make frequent use of the following ring.

R = Z[x]/(xn + 1) (2.1)

For a modulus q, let Rq be R with all coefficients mod q.

Rq = Zq[x]/(xn + 1)

For a ring Rq, we denote the action of uniformly sampling an element from the ring as

a← Rq.

For an integer n, we will denote the set {0, 1, 2, . . . , n− 1} as [n]. For integers i ≤ j, we

denote the range {i, i+ 1, . . . , j − 1} as [i : j].

17



We denote the rounding function d·c : R → Z that maps xr ∈ R to the closest integer

x ∈ Z. We denote the flooring function b·c : R→ Z that maps xr ∈ R to the closest integer

x ∈ Z such that x ≤ xr.

For a positive integer b, we write the modular reduction operation c ≡ a mod b as

c = [a]b. .

The norm notation ||·|| refers to the `∞ norm, unless otherwise specified. For a polynomial

a with n coefficients each mod q, we have the bound ||a|| ≤ q.

We specify the base-2 logarithm by log.

We say that a function negl is negligible if for every constant c > 1 we have negl(n) < 1/nc

for all sufficiently large n.

2.2 Ring Learning With Errors

The homomorphic encryption scheme used in our work is based off of the Ring Learning

with Errors (RLWE) problem [LPR10], which is defined over polynomial rings. In our

instantiation, we use the ring Rq = Zq/(xn + 1), where n is a power of 2. We note that the

polynomial f(x) = xn + 1 when n is a power of 2 is the (2n)th cyclotomic polynomial.

We now give an informal definition of the RLWE problem.

Definition 2.2.1 (Decisional Ring Learning with Errors (informal) [LPR10]). For a poly-

nomial ring Rq, let a, u← Rq. Let χ be an error distribution with support over Rq, and let

s, e ← χ. The decisional RLWE problem states that the following two tuples are computa-

tionally indistinguishable:

(a, as+ e) ≈c (a, u)

where all operations are performed over Rq.

Throughout this thesis, we will only consider the RLWE problem over the ring Rq =

18



Zq/(xn + 1) for n a power of 2 and the error distribution χ as the discrete, zero-centered

Gaussian distribution over Rq.

2.3 Homomorphic Encryption

In this section, we give high level definitions for the algorithms comprising a homomorphic

encryption scheme as well as necessary security definitions.

Definition 2.3.1 (Homomorphic Encryption). A homomorphic encryption scheme E =

(KeyGen,Encrypt,Eval,Decrypt) is a set of PPT algorithms defined as follows:

• KeyGen(1λ)→ (sk, pk, evk)

Given the security parameter λ, outputs a key pair consisting of a public encryption

key pk, a secret decryption key sk, and an evaluation key evk.

• Encrypt(pk,m)→ ct

Given a message m ∈M and an encryption key pk, outputs a ciphertext ct.

• Eval(evk, f, ct1, ct2, . . . , ctn)→ ct′

Given the evaluation key, a description of a function f : Mn → M, and n cipher-

texts encrypting messages m1, . . . ,mn, outputs the result ciphertext ct′ encrypting m′ =

f(m1, . . . ,mn).

• Decrypt(sk, ct) = m Given the secret decryption key and a ciphertext ct encrypting m,

outputs m.

When returning a ciphertext output by the Eval function, it is often desirable for this

ciphertext to hide the function f that was used to produce it. This property of the scheme

is called circuit privacy, which we formally define below.
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Definition 2.3.2. Circuit Privacy ([IP07] definition 7, [BDPMW16] definition 5.1) A ho-

momorphic encryption scheme E is circuit private for functions f of depth ` ≤ L = poly(λ)

if there exists a PPT simulator algorithm Sim such that for all PPT distinguishing algorithms

D the following holds:

∣∣∣∣∣Pr[D(E .Eval(evk, f, 〈cti〉), 〈cti〉, sk) = 1
]

− Pr
[
D
(
Sim
(
1`, pk, sk, evk, f(〈mi〉), 〈cti〉

)
, 〈cti〉, sk

)
= 1
]∣∣∣∣∣ ≤ negl(λ)

where 〈cti〉 denotes the input ciphertexts to the Eval function ct1, . . . , ctn and 〈mi〉 denotes the

corresponding input messages to the function f (i.e. Decrypt(sk, cti) = mi for all 1 ≤ i ≤ n).

Note that we assume each input ciphertext cti is accompanied by the bounds on the magnitude

of its noise term1.

2.3.1 Homomorphic Encryption Instruction Set

We now describe the basic operations supported by the homomorphic encryption schemes

we consider for the remainder of this thesis. The homomorphic encryption schemes that we

consider are all “packed,” which means that ciphertexts are able to encrypt vectors of values.

The operations listed in this section are used to build a circuit to execute the Eval operation.

• EvalAdd(ct1, ct2) = ct+

Takes in two ciphertexts encrypting vectors m1 and m2 and produces a ciphertext

encrypting m1 +m2, where the addition is component-wise. There is also EvalAddPlain

for when one of the operands is unencrypted.

• EvalMult(ct1, ct2, rlk) = ct×

Takes in two ciphertexts encrypting vectors m1 and m2 and produces a ciphertext

1This is achieved in [BDPMW16] by simply setting all cti to be fresh encryptions of mi.
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encrypting m1 ⊗ m2, where the multiplications is component-wise. This operation

requires an evaluation key called a relinearization key. There is also EvalMultPlain for

when one of the operands is unencrypted which does not require a relinearization key.

• EvalAutomorphism(ct, i, rotket) = ctrot

Since the available arithmetic operations are component-wise, this operation gives a

method to permute the encrypted vector. This allows for operations to be performed

on elements that are initially in different slots of a ciphertext. This operation requires

an evaluation key called a rotation key.

With these operations, we are able to implement any arithmetic circuit, which is sufficient

to implement the Eval function.

2.4 Security of an MPC Scheme

In this section, we give some definitions of the security of MPC schemes. These definitions

will be mostly informal and they are presented with the intention of improving understanding.

2.4.1 Real-Ideal Model

We begin by describing a useful model for proving security of an MPC scheme. For a more

formal definition, we refer the reader to [Can00]. Consider a protocol Π between parties

P1, . . . , Pk that that evaluates a function f : X1× . . .×Xk → Y1× . . .×Yk, where each party

Pi inputs xi ∈ Xi and receives the result yi ∈ Yi. We can prove that Π is secure if it is

indistinguishable from an “ideal” protocol that employs a trusted third party T to which

all parties send their inputs over perfectly private channels. The party T then computes

f and returns yi to each party Pi over a perfectly private channel. If we can prove that Π

is indistinguishable from this ideal protocol, then we can conclude that Π is secure in the
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real-ideal model. Note that this model captures the freedom of parties to pick any input that

they choose as well as removes from the security definition any leakage the function output

may reveal about the parties’ private inputs.

2.4.2 Honest-but-Curious Model

In the MPC protocols described in this thesis, we will only consider protocols that are secure

in the “honest-but-curious” or “passive” security setting. This setting captures an adversary

with limited capability. Namely, this adversary must follow the prescribed protocol exactly,

but is able to use the information learned from the protocol to try and extract additional

information beyond what could be learned in the ideal setting. For one of the many uses

of protocols secure in this setting, see [IPS08]. This model is in contrast to the malicious

security, in which the adversary is permitted to deviate from the protocol.
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Chapter 3

GAZELLE 2.0: A Faster

Homomorphic Encryption Library

In this chapter, we present the Gazelle homomorphic encryption library, focusing primarily

on its optimizations and performance features. The first version of this library was written

by Dr. Chiraag Juvekar [Juv18] with the goal of securely evaluating neural networks on

encrypted data [JVC18]. In this next version, we maintain this goal while expanding the

capability of the library to support a variety of advanced secure computation features.

As a general overview, Gazelle is a lattice cryptography library that implements the

homomorphic encryption scheme of Brakerski, Fan, and Vercuteran [Bra12, FV12] (from

hereon refered to as the BFV scheme) and the homomorphic encryption scheme of Cheon et

al. [CKKS17] (from hereon refered to as the CKKS scheme). More specifically, the library

implements the variants of these schemes that are optimized for the residue number system

(RNS) representation [HPS19, CKK+19] to allow all operations to use only standard machine

words.

Using these schemes, the library includes implementations of several useful secure compu-

tation algorithms, including protocols for both diagonalized and hybrid secure matrix-vector
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product [HS14, JVC18], oblivious linear evaluation (presented in chapter 4), and secure neu-

ral network layers for the evaluation of deep convolution neural networks on encryption data.

In the remainder of this section, we will present the goals and justification for this library as

well as the major design decisions made during its writing. We will also discuss some of the

optimizations the library includes, focusing on the more rare and novel optimizations that

most other HE libraries do not include.

3.1 Library Goals & Justification

Motivated by the potential applications of FHE, a rich area of applied cryptography research

has developed around the implementation of various homomorphic encryption schemes and

algorithms that use these schemes. This work primarily revolves around the development

of a few main C++ libraries for homomorphic encryption; namely, HElib [HS] developed

by IBM, SEAL [SEA19] developed by Microsoft Research, PALISADE [PAL] developed by

Duality Technologies, and most recently the HEAAN [HEA] group of libraries developed

primarily by researchers at Seoul National University. While this list is not exhaustive, it

represents the major libraries that are under active development as new optimizations and

techniques are researched. With this seemingly extensive selection of libraries that implement

homomorphic encryption, it may not seem necessary to introduce yet another HE library.

However, when considering using homomorphic encryption for a performance intensive

application, each of these libraries falls short in a significant way. They either sacrifice perfor-

mance for the sake of usability, are designed in ways that make including new optimizations

incredibly challenging, or simply lack the resource management infrastructure to scale to

memory intensive applications. In contrast the Gazelle library was built with performance

as the primary goal from the very beginning, allowing it to be uncompromising in this effort.

In addition, the library is incredibly modular, allowing different optimizations and tech-
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niques to mix-and-match together to easily create tailored solutions for various applications.

The code uses the latest C++17 features to ensure resource management is automatically

integrated into all applications using the library. The result is a feature-rich library that out-

performs all of the aforementioned libraries in a variety of applications, even outperforming

far more specialized libraries [ADI+17] for certain custom tasks.

3.2 NTT Engine

In essentially all homomorphic encryption schemes based on RingLWE (definition 2.2.1),

the bottleneck operation is the number-theoretic transform for polynomial multiplication.

This is essentially an analog of the fast Fourier transform over a field Z∗q. For a ring R =

Zq[x]/(xn + 1), nearly all operations that we perform over elements in the ring R take linear

time Θ(n), but the runtime of the NTT is Θ(n log(n)). As such, the speed of the NTT

operation limits the speed of any homomorphic encryption library.

With the goal of writing the fastest possible HE library, we began with the fastest NTT

implementation. Our implementation is based on the NFLlib library [AMBG+16], which

is a C library designed for an optimized NTT implementation. While the HE library built

atop NFLlib is limited in scope, several implementation techniques from this library have

been transfered over to Gazelle. A major source of speed for the library is compile-time

optimizations, achievable through pre-selection of the prime modulus q and dimension n

over the ring Zq[x]/(xn + 1) over which the NTT is performed. By dictating that these

parameters be known at compile time, further optimizations are available when compared

to all other known HE libraries that select their parameters at runtime. Gazelle contains a

variety of parameter sets available to easily indicate which set an application should be used

at compile-time as well as code-generation scripts to generate new parameter sets.
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3.2.1 Newton Modulus Reduction

Since we are able to dictate the exact primes that are used, we are able to ensure that they sat-

isfy additional constraints as well as precompute parameters for fast operations. One crucial

operation that is accelerated by careful selection of primes is the modular reduction opera-

tion. In Gazelle, we make use of the Newton reduction algorithm ([AMBG+16], Algorithm

2), which requires an additional precomputed parameter that is included in the parameter

sets in the library and automatically computed by the parameter generation scripts.

This reduction technique is independent of the input; it does not require an input-

dependent pre-computed parameter, as in Barrett reduction [Bar87]. However, it also re-

stricts the primes that we may use. For a machine word size s, let β = 2s (in most cases,

s = 64). For a prime p, let 1 ≤ s0 ≤ s − 1 be an integer denoting the gap between

the bitwidth of our prime p and the machine word size, i.e. p < β/2s0 . The full Newton

reduction constraint for the prime p is as follows ([AMBG+16] equation 1):

(1 + 1/23s0) · β/(2s0 + 1) < p < β/2s0 (3.1)

When compared to the standard modulus reduction operation supported by the clang++

compiler, Newton reduction provides a speedup of over 20%. As the bottle-neck operation

of most arithmetic tasks in homomorphic encryption, this is a significant improvement.

3.3 RNS Representation

The next major design choice for this library was to use no multi-precision arithmetic outside

of parameter computation. More specifically, we enforce that all moduli q that are larger

than the machine word are represented as a product of moduli
∏
qi = q, where each qi fit in

a standard machine word.
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3.3.1 Background

In leveled homomorphic encryption, one fixes an arithmetic circuit depth ` and then chooses

parameters of the homomorphic scheme to support noise growth up to ` levels. This leads to

a ciphertext modulus q that is often much larger than a standard machine word (typically 64

bits). In order to avoid expensive extended-precision arithmetic over these large integers, the

ciphertext modulus q is represented as a product of primes each smaller than the machine

word size. Let q =
∏k−1

i=0 qi, where the qi are all pair-wise coprime. By the Chinese Remainder

Theorem, we can use the isomorphism between the ring Zq and the tensor of rings mod each

of the factors of q.

Zq ' Zq0 ⊗ Zq1 ⊗ . . .⊗ Zqk−1

This allows us to represent a number mod q as a vector of length k of integers that each

fit nicely into a standard machine word. We refer to one of these elements of the vector as

a limb of the integer. Since this map is an isomorphism, we can perform arithmetic in this

representation as we would over the original ring Zq.

The structure of this isomorphism and it’s effective use when implementing RLWE

schemes is described in section 2.1 of [HPS19]. For an integer x ∈ Zq, let xi = [x]qi for

all i ∈ [k]. Let q∗i = q/qi and q̃i ≡ (q∗i )
−1 mod qi. We make use of the following equation:

x =
( k−1∑
i=0

[xi · q̃i]qi · q∗i
)
− v · q =

[ k−1∑
i=0

[xi · q̃i]qi · q∗i
]
q

(3.2)

for some v ∈ Z.
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3.3.2 BFV RNS Ciphertext Compression

In this section, we present an RNS operation in the BFV homomorphic encryption scheme

for compressing a ciphertext with integers comprising of many limbs into a ciphertext that

consists only of single-limb integers. This operation is useful when homomorphic operations

on a ciphertext have concluded and the encrypted result is ready to be sent over a network,

as the compressed form of the ciphertext saves network bandwidth. In addition, we show

later in section 4.3 that careful selection of parameters results in the output of the operation

having desirable circuit privacy properties.

Let Q =
∏k−1

i=0 qi be the ciphertext modulus, and let q∗0 = Q/q0. At its core, this operation

involves taking each ciphertext coefficient and dividing it by q∗0. The näıve approach to this

operation is to take an integer x in DCRT representation {x0, . . . , xk−1}, recombine according

to equation 3.2 above, then perform a multi-precision divide and floor by q∗0, then take the

result mod q0. In total, this requires 2k integer multiplications, k integer additions, 1 multi-

precision divide-and-floor, and k + 1 modular reductions.

To avoid multi-precision arithmetic required when operating over elements modulo the

full ciphertext modulus, we made use of the linearity of the DCRT recombination described

in equation 3.2. From this equation, we have the following expression for division by q∗0:

[ x
q∗0

]
q0

=

[
1

q∗0

(( k−1∑
i=0

[xi · q̃i]qi · q∗i
)
− v · q

)]
q0

(3.3)

=

[
1

q∗0

( k−1∑
i=0

[xi · q̃i]qi · q∗i
)]

q0

(3.4)

=

[
k−1∑
i=0

[xi · q̃i]qi ·
q0

qi

]
q0

(3.5)

From equation 3.5 above, we have that only the terms q̃i and q0/qi for all i ∈ [k] are needed to

compute the desired term
[
x/q∗0

]
q0

. Since these values only depend on the choice of factors

28



of the ciphertext modulus, we can easily precompute them, which allows us to perform

ciphertext compression with k integer multiplications, k floating point multiplications, k

floating point additions, and k+1 modular reductions. Comparing with the näıve approach,

this technique replaces the entire multi-precision divide-and-floor operation with only the

marginal cost increase of k floating point addition and multiplication operations versus k

integer addition and multiplication operations. We refer the reader to [HPS19] for further

analysis of the benefits of the DCRT representations.

3.3.3 Avoiding Floating Point Operations

In section 3.3.2, we gave a generic algorithm for the DCRT rounding operation. However, in

the case where the number of limbs is small, we can further constrain our primes to remove

even the floating-point operations in this compression procedure. The following two lemmas

are from [Juv18], which we state here.

Lemma 3.3.1 (Fast Two-Limb Compression ([Juv18] lemma 6.2.1)). Given primes (q0, q1) =

(2q1−1, q1) and limbs (x0, x1) of a positive integer x < q0q1 such that xi = [x]qi for i ∈ {0, 1},

the equation holds for −1 ≤ B ≤ 1:

x

q1

≡ 2(x1 − x0) +B mod q0

Lemma 3.3.2 (Fast Three-Limb Compression ([Juv18] lemma 6.2.2)). Given primes (q0, q1, q2) =

(4q2− 3, 2q2− 1, q2) and limbs (x0, x1, x2) of a positive integer x < q0q1q2 such that xi = [x]qi

for i ∈ {0, 1, 2}, the equation holds for −2 ≤ B ≤ 2:

x

q1q2

≡ (4 · 3−1
q2
− 2) · x2 − 4x1 + (8 · 3−1

q0
) · x0 +B mod q0

Table 3.1 gives the relative improvements of this techniques over the ones used when the
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primes are not picked according to the constraints in lemmas 3.3.1 and 3.3.1.

Two Limbs Three Limbs

Regular Reduction 458 µs 1592 µs

Fast Reduction 242 µs 752 µs

Percent Speedup 47.16% 52.76%

Table 3.1: Fast DCRT Compression vs. Regular DCRT Compression

The modularity of the Gazelle library allows us to switch to this fast DCRT reduction

method with a simple, one-line change at the application level. This is a prime example of

how the library’s modularity allows for the incorporation of new optimizations with virtually

no change to the application code itself.
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Chapter 4

Fast Oblivious Linear Evaluation

4.1 Introduction

Oblivious linear evaluation (OLE) is a fundamental building block in many secure computa-

tion protocols. In an OLE protocol over the ring Zp, there are two parties, a sender S with

values α, β ∈ Zp and a receiver R with a value x ∈ Zp. At the end of the protocol, R will

learn the value γ ∈ Zp where γ = α · x+ β while S will learn nothing. Vector OLE (VOLE)

can be viewed as many OLE protocols running in parallel where the receiver has the same x

in all the protocols. Batch OLE (BOLE) can be viewed as many OLE protocols running in

parallel where the receiver has a vector x of values over Zmp . In this work, we will primarily

focus on VOLE with a simple extension to BOLE.

Our approach to implementing a VOLE protocol is to use the packed additively ho-

momorphic encryption (PAHE) of Brakerski [Bra12] and Fan and Vercuteran [FV12], from

hereon referred to as the BFV scheme. PAHE is a natural choice of primitive to implement

such a protocol, especially in the honest-but-curious model. At a high level, our protocol has

the receiver R encrypt the value x and send the encryption [[x]] to the sender S. Using the

PAHE operations, the sender can then compute the ciphertext [[γ]] = [[α ·x+β]] and return it
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to the receiver, who can decrypt and learn the VOLE output γ. As long as the PAHE scheme

achieves circuit privacy, which, informally, says that a ciphertext does not leak information

about the circuit used to compute it, then security is achieved against honest-but-curious

adversaries.

4.1.1 Related Work

Recent related work on vector OLE has focused primarily on achieving impressive efficiency

through nonstandard assumptions. Our main point of comparison is the work of Applebaum

et al. [ADI+17], which implements a fast vector OLE protocol using linear codes. However,

they require a nonstandard coding assumption for their security proof, and our main result

is to achieve slightly better computational efficiency than this work using only standard

assumptions.

It is also worth mentioning the recent beautiful work of Boyle et al. [BCGI18] that

uses techniques from function secret sharing to generate random vector OLE correlations

by communicating only function shares. Using standard reductions from random OLE to

arbitrary OLE, this work achieves incredible efficiency; however, they require further coding

assumptions not only for their security proof but also to avoid an exponential runtime.

Constructing such a scheme from standard assumptions is a fascinating open question.

4.2 Background & Preliminaries

4.2.1 OLE Definition and Security Requirements

In this section, we give formal definitions of OLE, vector OLE, and batch OLE, along with

security definitions.

Definition 4.2.1 (Oblivious Linear Evaluation). Given a ring R, OLE is a protocol between
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two parties, a sender S and a receiver R. At the start of the protocol, S has two values

α, β ∈ Zp and R has a value x ∈ Zp. At the end of the protocol, R receives the value γ ∈ Zp

where γ = α · x+ β, and S receives no additional information.

Definition 4.2.2 (Vector Oblivious Linear Evaluation). Given a ring Zp and a positive

integer m, vector OLE is a protocol between two parties, a sender S and a receiver R. At

the start of the protocol, S has two vectors α,β ∈ Zmp and R has a scalar x ∈ Zp. At the

end of the protocol, R receives the vector γ ∈ Zmp where γ = α · x+ β, where the arithmetic

operations are performed component-wise over Zp, and S receives no additional information.

Definition 4.2.3 (Batch Oblivious Linear Evaluation). Given a finite field Zp and a positive

integer m, batch OLE is a protocol between two parties, a sender S and a receiver R. At the

start of the protocol, S has two vectors α,β ∈ Zmp and R has a a vector x ∈ Zmp . At the

end of the protocol, R receives the vector γ = α · x +β, where the arithmetic operations are

performed component-wise over Zp, and S receives no additional information.

In both VOLE and BOLE, we will refer to the dimension m as the “length” or “batch

size” of the protocol.

We now give security definitions for OLE. These definitions extend naturally to VOLE

and BOLE.

Definition 4.2.4 (Sender View). For an OLE protocol Π, public parameters pp, and values

α, β ∈ Zp, let ViewΠ(S(pp, α, β)) be the view of S during Π, which contains all messages

generated and received by S as well as all random bits sampled by S.

Definition 4.2.5 (Receiver View). For an OLE protocol Π, public parameters pp, and vector

x ∈ Zp, let ViewΠ(R(pp, x)) be the view of R during Π, which contains all messages generated

and received by R (including the output of the protocol) as well as all random bits sampled

by R.
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We define passive security with respect to each party with simulation-based definitions.

Definition 4.2.6 (Security against Sender). We say that an OLE protocol Π is computa-

tionally secure against semi-honest senders S if there exists a PPT algorithm Sim such that

for all PPT distinguishing algorithms D we have that

∣∣Pr[D(ViewΠ(S(pp, α, β))) = 1]− Pr[D(Sim(pp, α, β) = 1]
∣∣ ≤ negl(λ)

Definition 4.2.7 (Security against Receiver). We say that an OLE protocol Π is compu-

tationally secure against semi-honest receivers R if there exists a PPT algorithm Sim such

that for all PPT distinguishing algorithms D we have that

∣∣Pr[D(ViewΠ(R(pp, x))) = 1]− Pr[D(Sim(pp, x, γ) = 1]
∣∣ ≤ negl(λ)

where γ is the output that is received by R at the end of Π.

Note in definitions 4.2.6 and 4.2.7 the View variables we consider are only those of a valid

OLE protocol. We do not consider View variables resulting from either party deviating from

the protocol. In this way, we only consider passively-secure OLE protocols.

Satisfying definition 2.3.2 above will be necessary to satisfy defintion 4.2.7.

4.2.2 Flooring Error

It will be useful in our analysis below to define the error introduced by the divide-and-floor

operation as an exact function of the operands. Given two positive integers a and b, the

following identity holds: ⌊a
b

⌋
=
a− [a]b

b
=
a

b
− [a]b

b

It will also be useful to upper bound the probability that an error term e added to a has

any effect on the term
⌊
a+e
b

⌋
. This can be represented as the probability that

⌊
a+e
b

⌋
6=
⌊
a
b

⌋
.
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In particular, we are interested in the case where a is a uniformly random element of some

range [k · b] for an integer k > 1, meaning that [a]b is uniformly random over [b].

The following lemma will be very useful in our results below.

Lemma 4.2.1 (Flooring Error). Let α ∈ [k·b] be a uniformly sampled element from the range

[k · b], and let e be a small error term such that |e| < bb/2c with overwhelming probability.

We have the following upper bound:

Pr
[⌊α + e

b

⌋
6=
⌊α
b

⌋]
≤ |e|

b

where the probability is taken over the choice of α given e.

Proof. We can rewrite α as α = d · b+ r for non-negative integers d and r, where r < b. We

have that bα
b
c = d. In order for bα+e

b
c 6= d, we must have that either r + e ≥ b or r + e < 0.

Since 0 ≤ r < b, exactly one of these cases is possible, with the first case corresponding to

e ≥ 0 and the second corresponding to e < 0. In both cases, there is a range of size |e| into

which r must fall in order for bα+e
b
c 6= d. This range is [b − e, b − 1] in the first case and

[0,−e− 1] in the second case. From the discussion above, we have that r = [a]b is uniformly

random over the range [b], so the probability that r falls into the problematic range in either

case is |e|
b

.

4.2.3 Ring Expansion Factor

In order to effectively choose parameters for our leveled homomorphic encryption scheme,

we must accurately upper bound the noise growth due to homomorphic operations. When

multiplying two elements of Rq, we need an upper bound on the norm of the product by a

function of the norms of the operands as well as properties of Rq itself. We use the definition
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of the ring expansion factor from [LM06, Gen09b] as follows:

γR = max
a,b∈R

||a · b||
||a|| · ||b||

(4.1)

We can upper bound γR by n, for R = Z[x]/(xn + 1). Therefore, for any elements a, b ∈ R,

we can upper bound the norm of the product c = a · b over R by ||c|| ≤ n · ||a|| · ||b||.

4.2.4 BFV Homomorphic Encryption Scheme

In this section , we describe the algorithms that define the Brakerski-Fan-Vercuteran ([Bra12],

[FV12]) homomorphic encryption scheme based on the Ring Learning with Errors (RLWE)

problem [LPR10]. While this scheme is fully homomorphic, we will only be using encryption

and decryption, the plaintext addition, and plaintext multiplication functions for our VOLE

protocol.

For an integer q and n a power of two, we define the polynomial ring Rq = Zq[x]/(xn+1).

Let χ be the error distribution of the RLWE problem (typically a discrete, zero-centered

Gaussian mod q), and let p be an integer much smaller than q. Let ∆ = bq/pc.

First, let’s define the algorithms for public key and secret key encryption of the BFV

scheme.

• KeyGen(1λ)→ (sk, pk).

Outputs the secret key sk and public key pk. The secret key sk = s is generated

by sampling from the error distribution s ← χ. The public key is generated by first

sampling a uniformly random element a← Rq and an error term e← χ. We then set

pk = (a, a · s+ e).

• Encryptq,χ(sk,m)→ ct.

For an error distribution χ, outputs a ciphertext encrypting the message m ∈ Rp.
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Samples a uniformly random element a ← Rq and an error term e ← χ and outputs

the tuple ct = (a, a · s+ ∆m+ e).

• Encryptq,χ(pk,m)→ ct.

For an error distribution χ, outputs a ciphertext encrypting the message m ∈ Rp. For

a public key pk = (pk[0], pk[1]), this algorithm samples three error terms u, e1, e2 ← χ.

It then outputs the ciphertext

ct = (pk[0] · u+ e1, pk[1] · u+ ∆ ·m+ e2)

• Decrypt(sk, ct) = m. Outputs the message m that the ciphertext ct = (ct[0], ct[1])

encrypts. Computes and outputs the following:

m =
⌈ct[1]− s · ct[0]

∆

⌋

From the structure of the ciphertext, the algorithms for addition and plaintext multipli-

cation follow naturally. Note that these are specific instantiations of the algorithms listed in

2.3.1.

• EvalAdd(ct1, ct2) = ct3.

For ct1 = (ct1[0], ct1[1]) and ct2 = (ct2[0], ct2[1]) that encrypt m1 and m2, the ciphertext

ct3 encrypts m1 +m2, where addition is over Rp. The ciphertext

ct3 = (ct1[0] + ct2[0], ct1[1] + ct2[1]), where all operations are over Rq.

• EvalAddPlain(ct1,m2) = ct3.

For ct1 = (ct1[0], ct1[1]) encrypting the message m1 ∈ Rp and m2 ∈ Rp, the ciphertext

ct3 encrypts the message m1 +m2, where addition is over Rp. The ciphertext

ct3 = (ct1[0], ct1[1] + ∆m2), where all operations are over Rq.
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• EvalMultPlain(ct1,m2) = ct3.

For ct1 = (ct1[0], ct1[1]) encrypting the message m1 ∈ Rp and m2 ∈ Rp, the ciphertext

ct3 encrypts the message m1 ·m2, where multiplication is over Rp. The ciphertext

ct3 = (ct1[0] ·m2, ct1[1] ·m2), where all operations are over Rq.

Note that the EvalMultPlain function described above does not, on its own, achieve circuit

privacy as defined in definition 2.3.2.

Encoding Inputs as Polynomials

The homomorphic encryption scheme described above encrypts messages over the polynomial

ring Rp. In order to operate on encrypted vectors and perform component-wise operations,

we encode the vectors as polynomials. A vector x of length n is encoded as a polynomial in

Rp by finding a polynomial m such that evaluation of m at n roots of unity is x. This results

in polynomial multiplication on m1 and m2 mapping to component-wise multiplication over

the evaluations x1 and x2.

To encode scalar values, we note that it suffices to treat a scalar value x ∈ Zp as an element

of Rp, since the evaluation of this element in Rp at any input will be x. This naturally

distributes the scalar to all elements of the other encoded operand in the homomorphic

operations defined above. Because of this, our VOLE and BOLE protocols differ only in

these encoding and decoding steps.

4.2.5 OLE Leakage

Let’s consider a näıve application of the homomorphic operations described in section 4.2.4

to implement an VOLE protocol. We will show in this section that this results in leakage of

the sender’s private values.

In the ideal world [Can00], all that is revealed to the receiver is γ = α · x + β, which
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effectively hides the sender’s inputs α and β. However, we see that if the sender receives

a ciphertext of the form (a, as + ∆x + e) and then performs a single EvalMultPlain and

EvalAddPlain as defined in section 4.2.4, the receiver will receive a ciphertext that has the

following form:

(
a ·α, a · s ·α + ∆ · (x ·α + β) + e ·α

)
(4.2)

It is clear from equation 4.2 above that the vector α is easily recoverable from either the

first term by factoring out the a polynomial or the error term by factoring out the original

error term e.

If the receiver knows α, the OLE output also leaks β, so the sender’s privacy is completely

lost. In sections 4.3 and 4.4.1 below, we discuss our approach to achieving leakage resilience

by removing the dependence of α from both terms of the ciphertext, achieving the condition

in definition 2.3.2.

4.3 Circuit Privacy from Ciphertext Compression

Let Q be the original ciphertext modulus of our scheme, and let {qi}`−1
i=0 be the primes such

that
∏`−1

i=0 qi = Q. Given a ciphertext ctQ, where the elements are in RQ and the decryption

operations are performed over RQ, the goal of this operation is to obtain a ciphertext ctq0

that encrypts the same message. This new ciphertext ctq0 will have elements in Rq0 and the

decryption of this ciphertext will be performed over Rq0 as well. Recall that we choose this

primes qi to fit in a standard machine word, so decryption of ctq0 is far more efficient than

the decryption of ctQ. In addition, the communication cost of sending ctq0 over a network

is significantly less than sending ctQ. Note that this operation can only be correct if the

plaintext modulus p is sufficiently less than q0.

Let q∗0 = Q/q0. Below, we write the ciphertext ctQ and expand out the terms to anticipate
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the division by q∗0.

ctQ =
(
a, a · s+

⌊Q
p

⌋
m+ e

)
=
(
a′ · q∗0 + [a]q∗0 , (a′ · q∗0 + [a]q∗0 ) · s+

⌊Q
p

⌋
m+ e

)
=

(
a′ · q∗0 + [a]q∗0 , (a′ · q∗0 + [a]q∗0 ) · s+

(Q
p
− [Q]p

p

)
m+ e

)

The ciphertext ctq0 is obtained by dividing the two components of ctQ by q∗0.

ctq0 =

⌊
ctQ
q∗0

⌋
=
(⌊ a

q∗0

⌋
,

⌊
a · s+

⌊
Q
p

⌋
m+ e

q∗0

⌋)
(4.3)

=
(⌊a′ · q∗0 + [a]q∗0

q∗0

⌋
,

⌊
(a′ · q∗0 + [a]q∗0 ) · s+

(
Q
p
− [Q]p

p

)
m+ e

q∗0

⌋)
(4.4)

=
(
a′, a′ · s+

⌊
[a]q∗0 · s+

(
Q
p
− [Q]p

p

)
m+ e

q∗0

⌋)
(4.5)

=
(
a′, a′ · s+

q0

p
m+

⌊
[a]q∗0 · s−

[Q]p
p
m+ e

q∗0

⌋)
(4.6)

=
(
a′, a′ · s+

⌊q0

p

⌋
m+

[q0]p
p
m+

⌊
[a]q∗0 · s−

[Q]p
p
m+ e

q∗0

⌋)
(4.7)

Note that we made the substitution q0
p

=
⌊
q0
p

⌋
+ [q0]p

p
in the last line because we divide by⌊

q0
p

⌋
during decryption.

The new error term in ctq0 is

e′ =
[q0]p
p
m+

⌊
[a]q∗0 · s−

[Q]p
p
m+ e

q∗0

⌋
=

[q0]p
p
m+ v (4.8)

Lemma 4.3.1 (Compressed Error Independence). The compressed error e′ is independent

of the original error term e with probability 1− |e|
q∗0

.
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Proof. This follows directly from an application of lemma 4.2.1, which is valid since the term

v from equation 4.8 can be viewed as a uniformly random element plus a small error term.

As long as |e| < q∗0/2, probability that e has any effect on the resulting term is at most

|e|
q∗0

.

We will now argue that this compression technique can be used to achieve circuit privacy

from definition 2.3.2. At a high level, the homomorphic Eval function will first homomorphi-

cally evaluate f on the encrypted inputs, then randomize the a component of the ciphertext

using the public key. The resulting ciphertext can then be compressed, and this compressed

result will be output by the Eval function. As long as the error magnitude of the pre-

compressed ciphertext is not too great, which is a function of the error levels of the input

ciphertexts and the depth of f , then by lemma 4.3.1 this final ciphertext is simulatable.

Lemma 4.3.2 (Re-randomization using Encryption of Zero). Given a ciphertext ct =

(ct0, ct1) and public key pk = (a, a · s + e), let ct(0) ← Encrypt(pk, 0) the ciphertext ct′ =

ct + ct(0) = (ct′0, ct
′
1) has a term ct′0 that is indistinguishable from a uniformly random ele-

ment over RQ, even given sk = s.

Proof. This follows from the RLWE assumption, since the structure of ct
(0)
0 = a · u + e′,

where u and e′ are sampled from the RLWE noise distribution. Even knowing a, this term

is indistinguishable from uniform over RQ, so ct′0 = ct0 + ct
(0)
0 is also indistinguishable from

a random element of RQ.

Lemma 4.3.3 (Circuit Privacy from Compression). For the BFV homomorphic Eval al-

gorithm over a ring RQ where Q =
∏

i qi, consider the following modified homomorphic

evaluation algorithm Evalcp that first runs Eval, then adds a fresh encryption of zero, then

outputs the compressed result. If the error term of the ciphertext output by Eval has magni-

tude bound B, then Evalcp is circuit private (w.r.t. defintion 2.3.2) with probability 1 − B
q∗0

,

where q∗0 = Q/q0.
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Proof. In order to show that Evalcp is circuit private, we will construct a simulator that

produces a ciphertext indistinguishable from the output of Evalcp with probability 1 − B
q∗0

.

Recall that the simulator in definition 2.3.2 has the form

Sim
(
1`, pk, sk, evk, γ = f(〈mi〉), 〈cti〉

)
The ciphertext output by Evalcp will have the following form, where γ = f(〈mi〉) is the result

of the corresponding plaintext computation:

ctE =
(
a′, a′ · s+

⌊q0

p

⌋
γ +

[q0]p
p
γ +

⌊
[a]q∗0 · s−

[Q]p
p
γ + e

q∗0

⌋)
∈ R2

q0

which is from equation 4.7 above. We first note that even when given the secret key the

term a is computationally indistinguishable from a random element of RQ, since this term

was randomized with a public key encryption of zero prior to compression. This means that

it suffices for our simulator to output the compression of a ciphertext encrypting γ where

the a term is freshly sampled from RQ. Our simulator outputs a ciphertext of the following

form:

ctS =
(
a′, a′ · s+

⌊q0

p

⌋
γ +

[q0]p
p
γ +

⌊
[a]q∗0 · s−

[Q]p
p
γ

q∗0

⌋)
∈ R2

q0

where a′ = ba/q∗0c and a is uniformly sampled over RQ. The a used in the compression

of ctS and the a used in the compression of ctE are computationally indistinguishable by

the security of RLWE. Therefore, the only remaining difference between ctS and ctE are the

error terms. Since [a]q∗0 · s is uniformly random (recall that this a term has been randomized

by adding an encryption of zero), then we can invoke lemma 4.2.1 to get the following:

Pr

[⌊
[a]q∗0 · s−

[Q]p
p
γ + e

q∗0

⌋
=

⌊
[a]q∗0 · s−

[Q]p
p
γ

q∗0

⌋]
≥ 1− |e|

q∗0
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Bounding the magnitude of e with B, we have the statement in the lemma.

In section 3.3.2, we give several methods for efficiently performing this operation.

4.4 A Fast VOLE Protocol

In this section, we present our VOLE protocol. This VOLE protocol executes a vector OLE

protocol with length n, where n is the parameter in the ring R. Below, the steps of our

VOLE protocol are given.

Protocol 1 Vector Oblivious Linear Evaluation

Roles: Sender S and Receiver R.

Inputs: S inputs α and β, R inputs x.

Outputs: S gets nothing. R gets α · x+ β.

Protocol:

1. One-time Setup

(a) R generates a BFV public key pk.

(b) R sends pk to S.

2. Per VOLE Setup

(a) S uses pk to encrypt zero to produce ct0.

3. Online.

(a) R receives x, S receives α and β.

(b) R encrypts x to obtain ctx, S encodes α and β.

(c) R sends ctx to S.

(d) S multiplies ctx by α and adds β and ct0

(e) S compresses the result ciphertext.

(f) S returns the final ciphertext to R.

(g) R decrypts the final ciphertext to obtain the plaintext result.
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4.4.1 Security

In this section, we argue that protocol 1 satisfies the security definitions given in section

4.2.1.

Lemma 4.4.1 (Secure Against Sender). Protocol 1 satisfies definition 4.2.6.

Proof. This proof follows directly from the semantic security of the encryption scheme. Since

the view of the sender consists entirely of messages that are computationally indistinguishable

from uniformly random elements of RQ, the simulator Sim can easily generate a transcript

that is computationally indistinguishable from the real transcript by simply sampling uniform

elements of RQ for each element of RQ the sender receives. The compression operation can

be performed entirely with public parameters, which completes the transcript.

Lemma 4.4.2 (Secure Against Receiver). Protocol 1 satisfies definition 4.2.7.

Proof. This proof follows from lemma 4.3.3. The only information about the sender’s α

and β values that the receiver can learn must come from the result ciphertext. By lemma

4.3.3, this result ciphertext is indistinguishable from a ciphertext generated without access

to α or β, so no computationally bonded receiver can extract information about α or β

from the resulting ciphertext. Note that this necessarily requires that B′

q∗0
≤ 2−λ, for security

parameter λ, where B′ is the upper bound on the error term prior to compression. Using

equation 4.1, we can bound the magnitude of this error term by npB, where n is the ring

dimension, p is the plaintext modulus, and B is the magnitude bound on the original error

term.

4.4.2 Simple Extension to Batched OLE

The extension of protocol 1 from a VOLE protocol to a batch-OLE protocol is straight-

forward and preserves the security proofs of the previous section. Only the receiver’s role is
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modified in this extension. The receiver begins with a vector x of values, which she encodes

as a polynomial as described in section 4.2.4. The operations performed by the sender are

identical. To obtain the BOLE output, the receiver must decode the decryption result by

evaluating the resulting polynomial at the roots of unity determined by the encoding NTT

parameters.

4.5 Performance

4.5.1 Parameter Selection

In both of our OLE protocols, there are three parameters that we must select: the plaintext

modulus p, the ciphertext modulus q, and the ring dimension n. These parameter sets must

satisfy both the computational security requirements of the RLWE problem as well as the

statistical security requirements of the circuit-privacy compression operation. In the VOLE

protocol, there are no restrictions on the plaintext modulus p other than its size, so we opt

for powers of two for ease of comparison. In the BOLE protocol, the plaintext modulus

must support the NTT operation to encode the vectors as polynomials for component-wise

operations. This requires that Zp contain a 2nth root of unity.

In table 4.1 below, we give the parameter settings for the benchmarks below. Each

parameter setting is given an ID, and the benchmarks associated with a given ID were

generated using the parameter setting of the same ID. These settings are focused on the

sizes of the parameters and the security parameters that result from these sizes. All of the

limbs in the ciphertext moduli are 55 bits.

The parameters were selected to all have at least 128 bits of computation security based

on the homomorphic encryption security standard [ACC+18]. The statistical privacy pa-

rameter refers to the sender’s privacy due to the compression operation. This is computed
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by taking - log
(
B
q∗0

)
, where B is the upper bound on the `∞ norm of the noise just before

the compression operation is performed. For the discrete Gaussian sampler for our noise

terms, we used a standard deviation of σ = 3.2. We employ the discrete Gaussian sampling

method of [DG14], which means we can upper bound the magnitude of the output of this

distribution by 20σ < 64, or 6 bits. We can then get an upper bound on log(B) by adding

log(n) + log(p), as per the expansion factor described in section 4.2.3. This gives us the

following formula for the statistical privacy parameter.

log(q∗0)− log(B) = log(q0)− log(n)− log(p)− 6

ID log(p) log(q) log(n)
Statistical
Privacy

Parameter
1 8 165 13 83
2 16 220 13 130
3 20 220 13 126
4 24 220 13 122
5 28 220 13 118
6 32 220 13 114
7 40 220 13 106

Table 4.1: Parameter set sizes for OLE benchmarks.

In the tables below listing the results, we group parameters together with essentially

identical performance. This occurs for a variety of reasons, but it is often mainly due to

all data-types being identical in the benchmarks of the parameter sets. One set of times is

reported for these joined rows.

4.5.2 Experimental Setup

We benchmark our protocols using AWS machines with 16 virtual CPUs running at 3.1GHz

and 32GB of RAM. In order to give the most versatile benchmarks, we do not give bench-
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marks that ran over the Internet. Instead, we give benchmarks of protocols that ran locally

between two threads that are connected via localhost. These benchmarks along with the

communication complexity of the protocol modes given in table 4.6 should allow for the

calculation of the performance of the OLE protocols in a variety of network settings. Our

experiments show that the round-trip time of a localhost connection is less than 60 µs,

which we consider as negligible in the the computation time benchmarks given below.

4.5.3 Micro Benchmarks

In this subsection, we give micro-benchmarks for the VOLE protocol as well as the BOLE

variant. We note that only the receiver’s actions change in the BOLE variants, so only the

benchmarks for the receiver’s role is given for BOLE.

Furthermore, both protocols have two modes of operation: a compute-optimized mode

and a communication optimized mode. These two modes affect both the sender and the

receiver, and we give benchmarks for both modes. In the communication-optimized mode,

the random a elements in the ciphertexts are not sent over the network. Instead, we make

use of a standard technique, which is to generate the a values by sampling a small, random

PRG seed and then send the seed used to generate the a term rather than the a term itself.

This reduces our communication cost by nearly a factor of two, but running the PRG to

generate the a term is more computationally expensive than sampling the a term directly,

and the PRG generation must also be done by the sender.

All of the runtimes reported in tables 4.2, 4.3, 4.4, and 4.5 are for a single thread.
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ID

Sender Per-OLE

Preprocess

Time (ms)

Receiver

Encrypt

Time (ms)

Sender

Online

Time (ms)

Receiver

Postprocess

Time (ms)

1 3.722 2.91066 1.95537 1.5216

2-7 4.0139 3.6036 2.81912 1.51536

Table 4.2: Vector OLE microbenchmarks for compute-optimized mode

ID

Receiver

Encrypt

Time (ms)

Sender

Online

Time (ms)

1 3.0569 2.9040

2-7 3.782 4.0876

Table 4.3: Vector OLE microbenchmarks for communication-optimized mode

Note that in table 4.3 the times for the sender preprocessing and the receiver postpro-

cessing are not reported because they are unchanged from table 4.2.

ID

Sender Per-OLE

Preprocess

Time (ms)

Receiver

Encrypt

Time (ms)

Sender

Online

Time (ms)

Receiver

Postprocess

Time (ms)

2-5 4.41155 3.80401 2.82767 1.72952

6 5.58623 4.3955 2.82219 2.33956

7 7.32377 5.26913 2.82383 3.20131

Table 4.4: Batch OLE microbenchmarks for compute-optimized mode
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ID

Receiver

Encrypt

Time (ms)

Sender

Online

Time (ms)

2-5 4.00123 4.10862

6 4.3955 4.11112

7 5.45984 4.08604

Table 4.5: Batch OLE microbenchmarks for communication-optimized mode

We now report the communication complexity for the two modes of the OLE protocols.

The communication complexity for both the VOLE and BOLE variants are the same, so

we only report the VOLE variant. All numbers below are relative to the receiver (i.e. how

much data the receiver sends and receives). These numbers do not include the initial public

key sent before the OLE protocol is run; however, this message is identical in size to the

receiver’s first message in the OLE protocol. In both the computation and communication

optimized variants, the amount of data received by the receiver is the same, so only one

number is given for these cases.

ID

Receiver

Data Sent

Computation

Optimized (KB)

Receiver

Data Sent

Communication

Optimized (KB)

Receiver Data

Received (KB)

1 393.216 196.624 131.072

2-7 524.288 262.160 131.072

Table 4.6: OLE Communication Complexity
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4.5.4 Pipelined Benchmarks

In this section, we present the main performance result of this chapter. In the tables below,

we give a series of benchmarks for high-throughput VOLE and BOLE protocols. The imple-

mentations to obtain these benchmarks are the same as in section 4.5.3. However, the times

below include both the per-ole preprocessing and the online phase, as described in protocol

1 above. In other words, these times indicate the efficiency of executing VOLE and BOLE

protocols with no setup. If setup is allowed, then simply multiplying the online time from

section 4.5.3 will give the performance of this setting.

Computation-Optimized VOLE Benchmarks

ID 1 threads 2 threads

Wall-clock

Time (ms)

Per OLE

Time (us)

Wall-clock

Time

Per OLE

Time

1 6.0312 0.7362 4.469 0.5456

2 - 4 7.2743 0.8880 5.1131 0.6242

5 - 7 7.2929 0.8902 5.1097 0.6237

Table 4.7: Vector OLE Times for 1 & 2 threads

The parameter groupings in table 4.7 are largely due to the fact that the data-types repre-

senting the plaintext data are identical.
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ID 4 threads 8 threads

Wall-clock

Time (ms)

Per OLE

Time (us)

Wall-clock

Time

Per OLE

Time

1 3.2665 0.3987 3.4604 0.4224

2 - 7 3.7873 0.4623 4.0839 0.4985

Table 4.8: Vector OLE Times for 4 & 8 threads

The groupings in table 4.8 is largely due to the fact that span of the parallelized computa-

tion1 does not involve any plaintext processing. Thus, variability in the plaintext processing

times has no effect on the overall runtime. Note that the overhead of thread creation in the

eight thread case results in slightly slower runtimes than in the four thread case. The eight

thread case is mainly to compare against [ADI+17], whose fastest times use eight threads.

The runtimes given in [ADI+17] include communication time over a 1Gib network with

0.15ms latency and were run on a slightly faster machine (3.5 GHz). Their communication

did not consume the full bandwidth of the network, so subtracting the network latency and

accounting for the difference in clock speed gives approximately 0.6153µs of computation

per OLE for a VOLE protocol of width 10,000 over a 32-bit field when using eight threads.

Our protocol gives nearly 25% reduction in computation time over this protocol (where we

use the time in bold in table 4.8).

1The longest running sequence of threads.
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Communication-Optimized VOLE Benchmarks

ID 1 threads 2 threads

Wall-clock

Time (ms)

Per OLE

Time (us)

Wall-clock

Time

Per OLE

Time

1 7.00786 0.85545 4.87763 0.59541

2 - 7 8.55401 1.0442 6.14207 0.74976

Table 4.9: Communication-Optimized VOLE Times for 1 & 2 threads

ID 4 threads 8 threads

Wall-clock

Time (ms)

Per OLE

Time (us)

Wall-clock

Time

Per OLE

Time

1 4.05134 0.49455 4.05766 0.49532

2 - 7 4.9333 0.60221 4.85493 0.592643

Table 4.10: Communication-Optimized VOLE Times for 4 & 8 threads
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Computation-Optimized BOLE Benchmarks

ID 1 threads 2 threads

Per Batch

Time (ms)

Per OLE

Time (us)

Per Batch

Time (ms)

Per OLE

Time (us)

2 7.6914 0.9389 5.5072 0.6723

3 7.6641 0.9356 5.4717 0.6679

4 7.7443 0.9453 5.4631 0.6669

5 7.7522 0.9463 5.5366 0.6759

6 8.8391 1.0790 6.5233 0.7963

7 10.667 1.3021 8.5471 1.0433

Table 4.11: Batch OLE Times for 1 & 2 threads

ID 4 threads 8 threads

Per Batch

Time (ms)

Per OLE

Time (us)

Per Batch

Time (ms)

Per OLE

Time (us)

2 3.9930 0.4874 4.2072 0.5136

3 4.0157 0.4902 4.2351 0.5170

4 3.9897 0.4870 4.2742 0.5218

5 4.0533 0.4948 4.2988 0.5248

6 4.5526 0.5557 5.0155 0.6122

7 5.7565 0.7027 6.1831 0.7548

Table 4.12: Batch OLE Times for 4 & 8 threads
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Communication-Optimized BOLE Benchmarks

ID 1 threads 2 threads

Per Batch

Time (ms)

Per OLE

Time (us)

Per Batch

Time (ms)

Per OLE

Time (us)

2 8.98039 1.09624 6.34768 0.774863

3 8.95177 1.09275 6.34857 0.774972

4 8.95314 1.0929 6.36998 0.77759

5 9.0164 1.10063 6.38082 0.77891

6 10.219 1.24744 6.98307 0.85243

7 12.086 1.475341797 8.175 0.99792

Table 4.13: Communication-Optimized BOLE Times for 1 & 2 threads

ID 4 threads 8 threads

Per Batch

Time (ms)

Per OLE

Time (us)

Per Batch

Time (ms)

Per OLE

Time (us)

2 4.89069 0.59701 5.1113 0.623938

3 4.86141 0.59343 5.05564 0.6171

4 5.0829 0.620471 5.00712 0.61122

5 5.0632 0.6181 5.10315 0.6229

6 5.61014 0.6848 5.65156 0.68989

7 6.43982 0.786111 6.75374 0.82443

Table 4.14: Communication-Optimized BOLE Times for 4 & 8 threads
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4.6 Future Work

The efficiency on this protocol from standard assumptions presents exciting directions for

future works. Many of these directions involve using this protocol as a building block for

more sophisticated protocols. In particular, we plan to instantiate protocols in the malicious

security model using the IPS compiler [IPS08].

In addition, there are new directions allowing maliciously secure OLE to be instantiated

directly using several calls to a passively secure OLE protocol [HIMV19]. In fact, full passive

security is not required to run this instantiation; the underlying OLE protocol is allowed to

be “leaky.” This provides motivation to formally quantify the leakage that occurs in the

setting where the parameters are relaxed to have a weaker statistical privacy parameter.

This could allow for even more efficient OLE protocols to become crucial building blocks to

more sophisticated maliciously secure protocols in the future.
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Chapter 5

Computing Statistics on Private Data

5.1 Introduction

In this section, we present a platform to securely aggregate private data and perform compu-

tations over the joint dataset. This is a form of multi-party computation (MPC). In general,

MPC computations consider the case where a group of mutually distrusting parties P wish

to compute a function f on private inputs xi, for i ∈ P . The MPC computations we consider

are optimized for the situations that are specialize in two ways. The first specialization is

that each party holds a large amount of data relative to the number of parties participating

in the computation. The batched operations of our HE schemes naturally support this case.

The second specialization is when the function f being computed has a succinct represen-

tation as an arithmetic circuit. Again, this specialization is naturally supported by our HE

schemes, but it is worth noting that most MPC techniques are optimized for evaluation

of Boolean circuits, which can cause major performance degradation when implementing

arithmetic operations.
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5.2 MPC from HE

In this section, we describe in detail our instantiation of MPC from homomorphic encryption.

This instantiation builds off of the theoretical work of Asharov et al. [AJL+12]. At a high

level, the intuition for the approach is as follows. In our schemes, homomorphic operations

are only defined for ciphertexts that are decryptable with the same secret key. Our approach

is to design a distributed key generation algorithm that is run by each party. The result of

this key generation algorithm is a public encryption key that is shared by all participating

parties as well as an additive share of the corresponding secret key. Since each party has the

same public key, they can all encrypt their data with this public key to create ciphertexts

that are all decryptable with the same secret key. However, none of the parties actually have

this secret key. Instead, they each have additive shares of this secret key, which they can

use as inputs to a distributed decryption algorithm that allows a ciphertext encrypted under

the shared public key to be decrypted.

Successfully implementing the distributed key generation and decryption functions as

described yields a secure MPC protocol. This protocol begins by having the parties run the

distributed key generation to obtain the shared encryption key as well as their share of the

secret key. Then, each party encrypts their inputs xi and distributes the resulting ciphertexts

cti. Next, the ciphertext ctr = Eval(f, ct1, . . . , ct|P |) is computed either by each party or by

a trusted central server. Since Eval is deterministic and we only consider deterministic

functions f , each party can check that the computation was done correctly to all obtain

the same ciphertext ctr. It is crucial that ctr is the same for all parties. Once each party

has ctr, they can run the distributed decryption protocol to obtain f(x1, . . . , x|P |), which

is the desired output of the protocol. The security of the homomorphic encryption scheme

guarantees that no information about the inputs other than the output of f is learned by

the participants.
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In order to show that this MPC scheme is secure, it suffices to show that the distributed

key generation and distributed decryption algorithms do not compromise the security of the

underlying HE scheme. We discuss these protocols in more detail below. Note that we abuse

notation slightly by denoting uniformly random elements in Rq as a and error terms as e.

We denote when it is necessary that different a terms are equal. Note that it will never be

necessary that error terms are equal.

5.2.1 Distributed Encryption Key Generation

In both of the schemes implemented in the Gazelle library, the public encryption key has the

structure pk = (a, a ·s+e), where a is a uniformly random element over the ring and s and e

are drawn from the error distribution over the ring. The key generation protocol begins by

using a common random seed for a pseudorandom number generator (PRNG). Each party

then runs this PRNG to generate the a polynomial for the shared public key. Since each

party has the same PRNG seed, they will all sample the same a. They then proceed with

the remainder of the HE key generation protocol with this a value to obtain the following:

(pki, ski) =
(
(a, a · si + ei), si

)
(5.1)

Each party then distributes pki to all other parties. The parties can then all compute the

following shared public key.

pk =
(
a,
∑
i

pki[1]
)

=
(
a, a ·

∑
i

si +
∑
i

ei

)
(5.2)

Lemma 5.2.1. If the number of parties in O(1), then the tuple described in equation 5.2 is

a well-formed public key.

Proof. Consider the polynomial s =
∑

i si and e =
∑

i ei. The tuple in equation 5.2 is
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a public key with secret key s and error e. This is a well-formed public key for an error

distribution χ′ =
∑

i χ, the sum of n samples of the original error distribution. Since

we only consider error distributions that are Gaussians, this sum is also a Gaussian. The

variance of χ′ will be larger than the original χ, but if the number of parties is O(1), then

this additional magnitude is negligible.

5.2.2 Distributed Decryption

Consider a ciphertext in the standard BFV scheme, which has the following form:

ct =
(
a, a · s+ ∆m+ e

)
where ∆ is a public scaling factor to prevent the small error term e from corrupting the mes-

sage m. Decryption is performed by computing the following function on ct = (ct[0], ct[1]).

m =
⌊ct[1]− s · ct[0]

∆

⌋
=
⌊∆m+ e

∆

⌋

Our distributed decryption protocol collaboratively computes the numerator from “de-

cryption shares” generated by each party, then the division and flooring is computed in the

clear. Recall from the previous section that the secret key has the form s =
∑k

i=1 si, and

each party i has a share si of the secret key. We assume that all parties know the total

number of parties k as well as the ciphertext ct = (a, a ·s+∆m+e) that is to be decrypted.

Each client i takes their share of the secret key si and generates the following decryption

share:

di = a · s+ ∆m+ e− k · (a · si + e′i)

where all operations are over Rq and e′i is an error term sampled from a discrete Gaussian
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with large standard deviation1. The additive term (a · si + e′) is multiplied by k because

when these shares are summed there are k terms with a ·s = a
∑

i si, each with a component

a · si that must be subtracted away.

Each sample di is then published. The security of this step follows from the fact that the

tuple (a, a · si + e′i) is a well-formed Ring-LWE sample, which is computationally indistin-

guishable from (a, u) for a uniformly sampled u← Rq.

When all of the decryption shares have been published, the numerator in the decryption

equation can be computed as follows:

d =
k∑
i=1

di = k · a · s+ k ·∆m+ k · e−
k∑
i=1

(k · a · si + e′i)

= k · a · s+ k ·∆m+ k · e− k · a
k∑
i=1

(si)− e′

= k · a · s+ k ·∆m+ k · e− k · a · s− e′

= k ·∆m+ k · e− e′

Note that the message m is multiplied by k in this numerator.

Once this numerator is computed, the message m can be recovered by simply dividing

by k∆ and flooring.

m =
⌊ d

k∆

⌋
=
⌊k ·∆m+ k · e− e′

k∆

⌋
Correctness holds as long as the magnitude of the error term ke−e′ remains less than k∆/2.

1Such noise terms are sometimes referred to as “flooding” terms.
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5.2.3 Distributed Automorphism Key Generation

The protocol to generate automorphism keys is essentially the same as the protocol to gen-

erate encryption keys. This is due to the structure of the automorphism key, which is the

following set of pairs of elements in Rq:

rotket = {(a, a · s+ e+ 2wsrot)}blog qc
w=0

The term srot is simply a permutation of the terms of s that correspond to the desired rotation

on the message. Letting s =
∑k

i=1 si, we can then use the linearity of this permutation

operation to get the following equation:

k∑
i=1

(si)rot = srot

Using identical techniques as in section 5.2.1, we can generate keys for the automorphism

operation.

5.2.4 Distributed Multiplicaiton Key Generation

In order to perform the homomorphic evaluation algorithm, we need to generate evaluation

keys that corresponds to the shared secret key of the protocol. The evaluation key has the

following form:

evk = {(a, a · s+ e+ 2ws2)}blog qc
w=0 = {(a, a · s+ e+ 2w(

k∑
i=1

si)
2)}blog qc

w=0 (5.3)
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To compute the quadratic function of this sum of secret keys, we consider the function as

the sum of the following terms:

( k∑
i=1

si

)2

=
k∑
i=1

k∑
j=1

sisj =
k∑
i=1

si · s

In order to compute each of these terms, we define the following two round protocol.

1. The first round is essentially identical to the single round of communication required

to generate the shared public key described in section 5.2.1. Each party generates a set

of pair of elements in Rq that has the form {(a, a · si + e+ 2wsi)}blog qc
w=0 and distributes

this set of pairs to all other parties. Note that for a given value of w, all the a terms

across the sets distributed by different parties must be the same. However, the a terms

for different values of w need not be the same.

2. Each party now generates sets of the form {(a, a · s+ e+ 2ws)}blog qc
w=0 . Now, each party

i must multiply through by si. To perform this operation in a way that the result is

safe to publish, noise must be added to each term in the set. The result is a set of

elements of the following form:

evki = {(asi + e′, a · s · si + esi + 2ws · si + e′′)}blog qc
w=0

= {(a′, a′ · s+ e′′′ + 2ws · si)}blog qc
w=0

Note that a′ is now different for every party and every pair in the evki set. Our error

term e′′′ has grown by a multiplicative factor of si. However, si is sampled from the

error distribution, so this term remains small. Each party i broadcasts evki to all other

parties.

3. As the final step, the parties then all compute evk =
∑k

i=1 evki. Since all sets evki
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are already under the shared secret key s, the resulting evk will be well formed as in

equation 5.3.

5.3 CyberRisk@CSAIL: Securely Measuring Cyber Risk

In this section, we discuss a major application of the techniques above: the Secure Cyber

Risk Aggregation and Measurement (SCRAM) platform. Built atop the Gazelle library, this

platform is the primary piece of technical infrastructure for the CyberRisk@CSAIL industry

consortium. CyperRisk@CSAIL is an industry consortium formed as a joint project with the

MIT Internet Policy Research Initiative (IPRI) to better understand the causes of successful

cyber attacks and how best to prevent them.

Consortium members consist of companies with annual revenue higher than USD 1 billion

and as well as a high level of security sophistication, including a Chief Information Security

Officer (CISO). We recruited seven firms as our initial members, representing the financial

sector, health care, communications and retail services. The participating firms had an

average annual revenue of USD 24 billion (median of USD 18 billion) and and average of

50,000 employees.

5.3.1 Computing on Real Data

After a few sessions with computations on dummy data, we ran a computation in April

2019 on real data from our participants. We ran two computations in the April 2019 ses-

sion: the first benchmarking defenses and the second associating monetary losses to control

failures. We worked closely with the participating companies over four months developing

the two computations and their associated input formats. The inputs and outputs of the

computations are explained below.

1. Benchmarking: In computation one, we benchmark the adoption of a broad set of
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cyber defenses to allow firms to compare their own security posture to adoption levels

across the group. We use the Center for Internet Security’s (CIS) list of 171 critical

security sub-controls that are meant to help organizations better defend against known

attacks by distilling security concepts into actionable controls. The benchmarking

consisted of a questionnaire where firms indicated if they currently implement each of

the CIS 171 sub-controls (Yes = 1, No = 0). The result of the computation was the

adoption rate of each subcontrol across all participants.

2. Linking monetary losses to failed sub-controls: In the second computation,

we gather data on losses and implicated security control failures in order to identify

problematic controls across the group. We asked firms to submit individual losses

and implicate which sub-control failures were responsible. For the computation, firms

submitted a table with individual incidents on each row. Each participating firm

assigned a monetary loss (in USD thousands) to each of their security incidents and

then indicated up to 5 sub-controls (Yes = 1) that were responsible for each loss (either

because they were in place and failed, or because they were not implemented). For this

round, each implicated sub-control received an equal proportion of the total loss during

the computation. We implemented a minimum loss threshold of USD 5,000 in order

to exclude routine costs such as reformatting infected machines and focus specifically

on larger incidents. The output of this computation was the total loss attributed to

each subcontrol across all submitted incidents.

To avoid digressing too far into security policy, we forgo the presentation of these results

of these computations. However, at a high level, it is clear that the insights that are able

to be learned from this securely pooled dataset are greater than any individual party could

learn with their data alone. Furthermore, the removal of any trusted third party allows the

participation of companies that are much more sensitive to data leaks as well as allows for
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the use of much more sensitive and accurate datasets for computing our results.

5.4 Future Work

Much of the future work of this direction revolves around the expansion of the SCRAM

platform and the CyberRisk@CSAIL industry consortium. We are actively developing an

application that can better integrate into the systems of the participating firms. This will

allow us to run more computations on larger datasets as well as more easily on-board new

firms. The high-level goal of these efforts is to increase the scope and sophistication of

the measures we can compute to ultimately provide a rich understanding of cyber risk and

effective methods to reduce it.
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