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Abstract

Multi-Channel Acoustic Echo cancellation (MCAEC) is a vital component of de-
livering clean speech to a virtual personal assistant through a smart speaker with
multi-channel audio (stereophonic, etc). The use of the Kalman filter as an alter-
native adaptive filter methodology for this MCAEC application is explored in this
work. The Normalized Least Mean Squares filter (NLMS) serves as a benchmark for
the Kalman filter. Simulations using room recordings and measured room responses
are employed in this exploration. Useful metrics such as the Word Error Rate (WER)
and Echo Return Loss Enhancement (ERLE) help to distinguish performance among
the two adaptive filter algorithms. For the single channel case, simulations confirm
the cancellation and convergence rate advantage of the Kalman filter, in full-band,
but the NLMS filter gives similar results in the sub-band domain, as measured by
WER and ERLE. In the multi-channel case, both solutions achieve similar steady
state cancellation, but the NLMS offers slightly faster convergence rates. In experi-
ments where adaptation was not frozen, the Kalman filter effectively maintains high
echo cancellation by tracking input signal statistics. In most cases, the Kalman filter
does not present an appropriate alternative for the MCAEC application in this work.
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Chapter 1

Introduction

The rise of virtual personal assistants (VPA) on smart speakers has required the

application of acoustic echo cancellation to deliver clean speech to an automatic speech

recognition (ASR) engine. In this case, an acoustic echo occurs when a smart speaker

plays music that reverberates throughout a room, and is captured by the microphone

on the speaker. The music echo at the microphone interferes with the speech signal

(wake-up word) that should be delivered to the VPA. This wake-up word (WUW)

is typically a signal to the VPA to await further instruction. Hence, acoustic echo

cancellation is needed to help deliver clean speech to the VPA. The canonical case of

this phenomenon is known as single channel echo cancellation, where single channel

refers to the presence of a single reference channel (i.e. one music signal). There is

substantial literature on this particular problem, but an area of active research is in

Multi-Channel/Multi-Party acoustic echo cancellation (AEC). Multi-channel refers to

the presence of multiple reference signals, playing through separate speakers, echoing

separately and summing at the microphone as a combined echo. The topic of this

thesis is to explore alternative AEC algorithms for this application that have not been

heavily researched before.
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1.1 Motivations for Multi-channel Echo Cancellation

1.1.1 Adaptive filtering and AEC’s

In order to motivate this problem, a brief description of adaptive filtering is needed.

Adaptive filtering is a technique used to estimate an unknown transfer function. In

this development, this transfer function is modeled as a set of unknown coefficients to

a finite impulse response (FIR) filter. Figure 1-1 illustrates the general block diagram

of an adaptive filter.

Figure 1-1: Adaptive Filter Block Diagram [3]

The filter works by convolving the input reference signal 𝑥𝑘 with an estimated

FIR filter response 𝑓𝑘 to produce an output estimate 𝑦𝑘. This output estimate is

then subtracted from the desired signal 𝑑𝑘, to produce the error signal 𝑒𝑘. The

estimated filter coefficients 𝑊𝑘 are then updated using the error signal, according to

some optimization criteria, to produce new filter coefficients 𝑊𝑘+1. These coefficients

are then used in the next iteration to convolve the reference signal and so on. Over

time, the algorithm converges to the desired filter coefficients and cancels out the

portion of the desired signal that is correlated to the reference signal. This algorithm

ideally leaves any uncorrelated noise in the desired as a signal to be delivered or

transmitted.

The adaptive filtering methodology can be applied to echo cancellation in the VPA

case by mapping the signals in Figure 1-1 appropriately. The reference signal 𝑥𝑘 is

the music being played from the speaker. The desired signal 𝑑𝑘 is the microphone

18



signal captured at the speaker (including music echo and WUW). The error signal

is the difference between the estimate of the echo and the echo at the microphone.

The filter then uses its optimization criteria to estimate the FIR filter model of the

transfer function that represents the speaker to microphone path that music takes to

produce the echo. This mapping is shown in Figure 1-2 below.

Figure 1-2: Smart Speaker Setup. User utters wake-up word (WUW), which is contaminated by
music echo and received by microphone on the speaker. Note that the virtual personal assistant
(VPA) above is a symbolic representation and not actually on the speaker.

1.1.2 Non-Uniqueness Issue: Multi-Channel

As mentioned in the introduction, the single channel case is well known and many

techniques have been developed for its efficient implementation. The reason why the

Multi-Channel case is still an active area of research is because of correlation between

multiple input reference signals. Figure 1-3 illustrates this issue with a stereophonic

(2-channel) case.
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Figure 1-3: Stereophonic AEC

With Figure 1-3 above, we follow a small derivation to arrive at the error signal in

the frequency domain. Ignoring the interference signal 𝑣(𝑛), the microphone signal is

𝑥1(𝑛) * ℎ1(𝑛) + 𝑥2(𝑛) * ℎ2(𝑛)

and the output of the filter estimates is

𝑥1(𝑛) * ℎ̂1(𝑛) + 𝑥2(𝑛) * ℎ̂2(𝑛)

where ℎ̂1(𝑛) = Estimate of ℎ1 and ℎ̂2(𝑛) = Estimate of ℎ2. The subtraction of the

microphone (desired output) and the estimated output is expressed as the error

𝑒(𝑛) = 𝑥1(𝑛) * ℎ1(𝑛) + 𝑥2(𝑛) * ℎ2(𝑛)− 𝑥1(𝑛) * ℎ̂1(𝑛) + 𝑥2(𝑛) * ℎ̂2(𝑛)

= 𝑥1(𝑛) * ℎ1(𝑛) + 𝑥2(𝑛) * ℎ2(𝑛)

where ℎ1(𝑛) = ℎ1(𝑛)− ℎ̂1(𝑛) and ℎ2(𝑛) = ℎ2(𝑛)− ℎ̂2(𝑛).

20



This leads to the following equation in the frequency domain.

𝑒(𝑛) = 𝑥1(𝑛) * ℎ1(𝑛) + 𝑥2(𝑛) * ℎ2(𝑛)
F−→ 𝐸(𝜔) = 𝑋1(𝜔)𝐻1(𝜔) +𝑋2(𝜔)𝐻2(𝜔) (1.1)

According to Sondhi, the issue is that as the adaptive filter drives the error 𝑒(𝑛)

and thus 𝐸(𝜔) in equation 1.1, down to zero, it is not guaranteed that 𝐻1(𝜔) =

𝐻2(𝜔) = 0, unless the two input signals 𝑥1(𝑛) and 𝑥2(𝑛) are completely uncorrelated

[10]. This condition is necessary for the estimated filter taps to actually converge to

the unknown filter taps. Therefore, even if the error is driven to zero, there is no

guarantee that the estimated filter taps will maintain a low error, if input statistics

(i.e. 𝑋1(𝜔), 𝑋2(𝜔) ) change. This problem is referred to as the non-uniqueness issue

because there are many solutions that the adaptive filter could be driven too, and

they are more than likely not all correct. This issue establishes why Multi-Channel

AEC is still an active area of research.

1.2 Prior Research

1.2.1 NLMS

The Normalized Least Mean Squares filter is the cornerstone for many adaptive filter

applications in development and deployment. The reason for this is because of its

simplicity, computational efficiency, and performance. A derivation of the filter equa-

tion is presented in Appendix A. The equation1 and block diagram for the update of

the filter coefficients are presented below in Figure 1-4.

1Note that bold quantities represent vectors and convolution is represented as an inner product.
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Figure 1-4: Adaptive Filter [5]

ℎ̂(𝑛+ 1) = ℎ̂(𝑛) + 𝜇
𝑒(𝑛)𝑥(𝑛)

𝑥𝑇𝑥

The step size parameter, 𝜇, governs the performance of the filter with a simple

trade-off. The trade-off is that of convergence and steady state error. For higher

values of 𝜇, a higher rate of convergence is observed as the filter takes larger steps

in the direction of the estimated gradient (the error 𝑒(𝑛)). However, this means a

larger steady state error as the steps may bounce around the optimum coefficients.

Conversely, lower values of the 𝜇 mean a slower rate of convergence, but also a lower

steady state error since the filter is taking smaller steps towards the optimum coeffi-

cients.

Due to it’s simplicity and computational efficiency, this filter serves as a typical

benchmark for many new adaptive filter algorithms. Therefore, the NLMS filter is

the main source of comparison for the alternative Kalman filter in this thesis. The

NLMS filter is still expected to be deficient in the case of the Multi-channel AEC

because it does not deal with possible correlations between the multiple input signals

and therefore suffers the non-uniqueness issue2.

2Section 1.1.2
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1.2.2 Alternative Multi-Channel Techniques

Decorrelation

Since the main issue of the multi-channel case is that of correlation between input

signals, one possible technique is to decorrelate the input signals. Decorrelation can

be done by adding nonlinear distortion to the input signals. For example, say 𝑥(𝑛) is

an input signal, and 𝑓(·) is a function that non-linearly distorts its input. The new

input signal would then be

𝑥𝑛𝑒𝑤(𝑛) = 𝑥(𝑛) + 𝑓(𝑥(𝑛))

This process is done for every input signal and the output signals are then used for the

AEC3 application. This has proven to work well for speech signal applications [2, p. 29]

, but is not an option for the application at hand since distortion of music input signals

is counter-productive for high-fidelity audio.

Widely Linear General Kalman Filter

The widely linear Kalman filter is an existing solution for stereophonic acoustic echo

cancellation, in the teleconferencing case. The development of the filter is detailed in

the paper by Paleologu, Benesty, Grant, and Ciochina, [9], but the basics are covered

here for context. Figure 1-5 shows the filter block diagram in a teleconferencing case.

For ease of analysis, it is best to think of the signals 𝑥𝐿(𝑛) and 𝑥𝑅(𝑛) as the equivalent

reference signals for this Multi-channel VPA application.

3Acoustic Echo Cancellation
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Figure 1-5: Widely Linear Kalman Filter for AEC [9]

The formulation of the filter is to take two input signals and use them as the real

and imaginary parts of one complex signal and run the adaptive filter as a complex

single channel (shown by the blue highlighted block). This boasts success in some

applications, but did not seem promising as this mathematical formulation does not

change the underlying physics of the problem (correlation between input signals).

Also, in this VPA4 case, there is only one receiving microphone, while in the widely

linear model, there are two microphones for stereophonic audio transmission. This

exercise is left for future work to see if the formulation would have any affect at all

for the application in this thesis.

Multi-Party Kalman Solution

Another Kalman filter, discussed by Microsoft engineers assures good multi-party

performance in audio spatialization. However, as noted using Figure 1-6, the formu-

lation for their model does not map well to the application investigated in this thesis.

This filter is also explained comprehensively in the Microsoft presentation [12],

but the main assumption is that the input channels 𝑥𝑖 are independent. This does
4Virtual Personal Assistant
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not apply to the VPA case since the relevant reference signals are indeed correlated.

Figure 1-6: Microsoft Multi-Party Kalman Solution [12]
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Chapter 2

Main Exploration: Kalman Filter

The main focus of this thesis is to research a novel Kalman filter system as a better

solution to the Multi-Channel case of an AEC. For reference, the development of the

Kalman filter for echo cancellation presented in [7] is included in Appendix A. This

chapter presents a brief description of the application of the Kalman filter equations

to acoustic echo cancellation, and why this formulation seems promising for the VPA

case.

2.1 Kalman Filter AEC

The results of the Kalman filter derivation for acoustic echo cancellation are presented

in the following equations. It is noted that rather than expressing relevant equations

using convolution, they are presented using inner products and matrix notation.
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Figure 2-1: General AEC [7]

𝑅𝑚(𝑛) = 𝑅𝜇(𝑛− 1) + 𝜎2
𝑤(𝑛)𝐼𝐿 (2.1)

𝑅𝑒(𝑛) = 𝑋𝑇 (𝑛)𝑅𝑚(𝑛)𝑋(𝑛) + 𝜎2
𝑣(𝑛)𝐼𝑃 (2.2)

𝐾(𝑛) = 𝑅𝑚(𝑛)𝑋(𝑛)𝑅−1
𝑒 (𝑛) (2.3)

𝑒(𝑛) = 𝑑(𝑛)−𝑋𝑇 (𝑛)ℎ̂(𝑛− 1) (2.4)

ℎ̂(𝑛) = ℎ̂(𝑛− 1) +𝐾(𝑛)𝑒(𝑛) (2.5)

𝑅𝜇(𝑛) = [𝐼𝐿 −𝐾(𝑛)𝑋𝑇 (𝑛)]𝑅𝑚(𝑛) (2.6)

The initialization of the filter involves choosing ℎ̂(0) and 𝑅𝜇(0) = 𝜖𝐼𝐿, where 𝜖 is

some small positive constant.

As mentioned previously, the derivation of these equations is explained in detail

in Appendix A, while here they are used to define concepts for basic development.

The first to note is the assumption that the room transfer function is the unknown

filter response

ℎ(𝑛) = [ℎ0(𝑛), ℎ1(𝑛), · · ·ℎ𝑀−1(𝑛)]
𝑇

where 𝑀 is the filter length. The Kalman filter is formulated in state-space modeling,
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and so ℎ(𝑛) represents the state we are trying to estimate. With this,

ℎ̂(𝑛) = [ℎ̂0(𝑛), ℎ̂1(𝑛), · · ·ℎ̂𝐿−1(𝑛)]
𝑇

where ℎ̂(𝑛) is the state estimate vector, with length 𝐿. In this application, the

filter length of the state ℎ(𝑛) is expected to be very long due to typical acoustic

reverberation times (100-200 ms [1]), and take "500-1500 taps at normal sampling

frequencies"1, to model [6]. Due to practical computational constraints, it is unlikely

that the length of ℎ̂(𝑛) will match that of the real state (𝐿 < 𝑀), so 𝐿 becomes a

parameter that can be varied and thus affect performance of the AEC. The number

of reference input samples that are used to generate the output at each iteration

depends on this length 𝐿. Hence, the input vector that is used every iteration 𝑛 is

𝑥(𝑛) = [𝑥(𝑛), 𝑥(𝑛− 1), 𝑥(𝑛− 2), ...𝑥(𝑛− 𝐿+ 1)]𝑇

Another notable parameter of the Kalman filter is its order 𝑃 . This parameter

determines how many blocks of input samples the filter uses every iteration. These

blocks form the columns of the input 𝑋(𝑛) which is a matrix of dimension 𝐿x𝑃 .

𝑋(𝑛) = [𝑥(𝑛),𝑥(𝑛− 1),𝑥(𝑛− 2), ...𝑥(𝑛− 𝑃 + 1)]

The other quantities follow naturally. For example, the quantities 𝑒(𝑛) and 𝑑(𝑛)

are vectors of length P, when 𝑃 > 1. When P = 1, the Kalman filter follows the same

development as the NLMS filter, where one sample of 𝑒(𝑛) and 𝑑(𝑛) are used every

iteration.

2.2 Tracking and Noise Variances

The most potentially beneficial part of the Kalman filter for the AEC application

is the assumption that the state is not time invariant, but instead dynamic. This

18 kHz or 16 kHz
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assumption is true for the case when people move around in a room, thus changing

the echo paths. This is captured in the Kalman filter through equation 2.7.

ℎ(𝑛) = ℎ(𝑛− 1) +𝑤(𝑛) (2.7)

𝑤(𝑛) is a zero mean white Gaussian noise vector, with variance 𝜎2
𝑤(𝑛). This noise

variance is a measure of the uncertainties in the dynamic state [7, p. 13]. This param-

eter introduces the concept of tracking changes in the echo path or ℎ(𝑛). Remaining

uncertain about the accuracy of the estimated filter coefficients allows for a faster re-

sponse and tracking of any possible changes in the state. Thus, for low values of 𝜎2
𝑤(𝑛),

the Kalman filter achieves low steady state performance/cancellation, but maintains

poor tracking capabilities. The converse is true of higher values of 𝜎2
𝑤(𝑛). This intro-

duces an important user-designed parameter that greatly affects the Kalman filter’s

performance, similar to the step size 𝜇 for the NLMS filter. There is a distinction,

however, as tracking is not to be confused with convergence rate. Tracking refers to

a response of the filter to a significant change in the echo path or ℎ(𝑛).

This variance and another (𝜎2
𝑣(𝑛)), appear in the equations 2.1 and 2.2, respec-

tively. These equations show how these noise variances affect the Kalman gain cal-

culation (equation 2.3), although the noise variance 𝜎2
𝑣(𝑛) is considered negligible for

the VPA application as it is a measure of the background noise in the room. More

often than not, the background noise power is typically much lower than the music

echo in the room.

2.3 Explorations

The sections in this thesis consist of the use of the Kalman filter, in both single channel

and multi-channel configurations, and also in full-band and sub-band versions. The

single channel experiments were for the purpose of comparing the Kalman filter to

the single channel NLMS. The main research focus was to use the Kalman filter in

the trivial multi-channel configuration. This configuration refers to the update of the
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left and right room responses, based on the use of the same error signal, but with the

use of separate reference signals.
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Chapter 3

Methods and Setup

This section describes the methods and general experimental setup used to benchmark

the Kalman and NLMS filter in a variety of situations. These are used in conjunction

with different data sets to aid in the exploration of the multi-channel acoustic echo

cancellation (MCAEC) solution provided by the Kalman filter. All signals that were

captured or used were recorded or synthesized at 16 kHz.

3.1 Room Recordings

Due to the data driven focus of this thesis, the AEC performance of these two algo-

rithms was evaluated in a variety of simulated situations. These situations represented

realistic test conditions such as different user/speaker placement, playback volumes,

and instances of music.

The different test conditions were generated through the following process. First,

transfer functions for several user/speaker placements were measured and then con-

volved with an audio file of 24 wake up word utterances from several different speakers.

The output of this convolution was then added to music played in the room through

the smart-speaker, captured by the smart-speaker microphone. The final outputs were

referred to as "dirty files" (i.e. speech contaminated by music echo). This methodol-

ogy was used for repeatability since physically recording these test cases might have

presented unexpected changes in the echo path and other unpredictable results. The
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input signal used in all of the simulations was a 50-second looping excerpt of a music

track that presented a challenging audio environment.

This type of setup modeled realistic situations and recordings in which a user

would be interacting with the smart speaker, as shown in Figure 3-1. As mentioned

previously, since much of the work presented here was data driven, simulating realistic

situations was important in evaluating these AEC algorithms, especially when the

existing literature largely focuses on having access to acoustic impulse responses and

other ideal1 conditions.

Figure 3-1: Smart Speaker and Room Echo Paths.

3.2 Impulse Responses

Along with the realistic room recordings setup, there were experiments conducted

that included access to the actual FIR filter coefficients that produced the echo signal.

With this inclusion, there were two main sets of impulse responses that were used.

The general framework was to take these responses, convolve the input reference

signals to produce the new microphone signal, and then run the AEC algorithm on
1White noise inputs, uncorrelated background noise, exact modeling of impulse response
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this microphone signal. It should be noted that this set of "dirty files" only included

music echo and possibly some background noise, but not wake up word utterances.

3.2.1 Recorded Responses

Figure 3-2: Left Speaker to Mic Impulse Response @ 16 Khz

For the most realistic replication of the room responses, it was best to measure

the impulse responses (IR) from the left/right channels of a smart speaker to the

microphone on the speaker. Figure 3-2 shows the impulse response for the left speaker.

These impulse responses were acquired by playing a chirp signal through the speaker

and capturing the room echo of the signal at the microphone. The transfer function

was then calculated in the frequency domain by using the known input and recorded

output signal. The frequency domain transfer function was then converted to a time

domain vector and scaled to produce the response shown in the figure above. Since

these responses could be measured for the left and right speakers, both were used for

the multi-channel case.
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Figure 3-3: Acoustic Impulse Response @ 16kHz

3.2.2 Online Acoustic Responses

In addition to the recorded impulse responses, an acoustic impulse response that

was acquired online was also used. This was used for single-channel recordings and

was chosen as a generic impulse response, with properties of a typical acoustic echo

response. This impulse response included majority of its power in the first reflections

and a filter length of length 200ms. Although the original response was around this

length, it was truncated to about 20ms (after which most of the energy had decayed)

and used in order to allow for quicker simulations.

3.3 Simulation Environment

The entirety of simulations and experiments presented were performed using Matlab.

This choice was made for ease of code development and fast prototyping. Most

of the simulations used single floating point precision although some others used

double floating point where specified. This choice of precision was made in order to

appropriately compare with an existing commercial AEC that served as an essential

benchmark. The code used for the NLMS and Kalman filters is included in Appendix

B. These scripts represent the multi-channel, sub-band (complex) simulations for each
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filter, but are also used with slight modifications for single channel and full-band cases.

3.3.1 Freezing Point

To discuss what the freezing point is, a particular case of the echo cancellation for-

mulation must be introduced. This case is known as double talk. The name comes

from the origins of echo cancellation in telephony, but is essentially a phenomena

in which the signal power of speech affects adaptation. This happens because the

interference presents a very uncorrelated signal to the input reference signal and thus

causes the filter coefficients to adapt to incorrect coefficients. In the worst case, this

interference can cause the adaptive filter to begin diverging [2, p. 104]. Due to this

phenomena, a double talk detector is typically implemented to detect this situation

and temporarily freeze adaptation by saving the current coefficients until double talk

is declared over. Given that implementing an effective double talk detector was out

of scope of this thesis, a manual freezing point was implemented instead. This meant

that at a certain point in the simulation, adaptation was frozen and the converged

coefficients were saved and used for the remainder of the simulation. This point was

always chosen slightly before speech comes in, in order to allow the AEC enough time

to converge.
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Chapter 4

Metrics

Several metrics were used to evaluate the performance of the AEC algorithms and

not all were available in every simulation. These metrics were useful in evaluating the

AECs, but were not completely holistic. For example, computational considerations

are not heavily emphasized in this work. Numerical stability is generally also a

concern with the Kalman filter but the analysis of this metric was not included in

this work either. The definition of each metric is included in this section.

4.1 Word Error Rate

The main goal of the AEC, in this context, was to provide clean speech to a VPA on

a smart speaker. An important metric used to evaluate speech intelligibility is the

word error rate (WER) of the VPA. Given an audio file, this metric is defined as the

percentage of wake up words that the VPA correctly recognizes from a fixed set of

wake up utterances in the file. In the context of this thesis, the audio file provided

to the VPA was the "dirty file" described in section 3.1. The WER was determined

by an automatic speech recognition (ASR) engine that had access to a transcript of

all of the wake-up word utterances in the dirty file. The engine generated an output

transcript of words recognized and compared this output to the original transcript to

find what percentage of words it missed. Word Error Rate could then be calculated
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as the ratio

number of total words - number of words recognized
number of total words

As such, a higher number for the WER indicates worse performance, and vice versa.

This metric was only used when speech utterances were embedded in the audio files

passed to the ASR engine. 1

4.2 Echo Return Loss Enchancement

𝐸𝑅𝐿𝐸(𝑛) = 10 log
𝑑2(𝑛)

𝑒2(𝑛)
(4.1)

The echo return loss enhancement (ERLE) is a staple metric for the performance of

an AEC. This metric represents the amount of loss of the echo that returns in the

error signal. The metric measures the power in the error signal relative to the input

microphone signal that contains the echo. Below is the mathematical description,

with relevant signals shown in Figure 4-1.

As cancellation of the echo signal takes place, the error signal approaches zero

(when 𝑣(𝑛) is zero), and so the echo return loss enhancement increases. Ideally, the

error signal will approach such that the interference left in the background (𝑣(𝑛)). It

should be noted that this metric is calculated as an average of the power in the error

signal. The averaging window is arbitrary, but in this case it was chosen to be around

1 second based on how long the unknown filter length could be (128 milliseconds in

the longest case). This decision was made to allow an average that spanned at least

2-3 times the filter length. Allowing the average to span at least 2-3 times the filter

length permits the bouncing error signal to stabilize over a couple of filter lengths.

Another important consideration is that the ERLE calculation does not make as

much sense when there is a large power in the interference signal 𝑣(𝑛). Since this

signal consisted of background noise and in some cases, speech utterances, the speech
1As mentioned in Chapter 3, not all experimental setups included speech files
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Figure 4-1: AEC configuration [7]

provided this large interference. This interference resulted in a momentary spike in

the ERLE calculation, which may be misleading in terms of the performance of the

actual cancellation. As such, whenever speech utterances were present in the dirty

files, the ERLE calculation is halted before the speech. This approach was appropriate

given that in most of the files, speech was not introduced until about 20 seconds in.

This amount of time was expected to be more than enough for the AEC to converge.

4.3 Misalignment

𝑀(𝑛) = 20 log
‖ℎ(𝑛)− ℎ̂(𝑛)‖2

‖ℎ(𝑛‖2
(4.2)

The misalignment of an AEC is a measure related to the Euclidean distance between

the vectors representing the unknown filter coefficients and the estimated filter coeffi-

cients. In this case, a normalized misalignment was used, which required the division

by the norm of the unknown filter coefficients. To compute this metric, knowledge of

the unknown system has to be available. The misalignment is a useful metric when
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it is available; for example in cases where the microphone signal was produced by

convolving with a known impulse response. As such, the misalignment of an AEC is

a highly theoretical metric since these transfer functions are not always available in

practice. Even so, misalignment can be a very useful metric in carefully analyzing

the dynamics and details of the performance of the algorithms.

4.4 Convergence Rate

Convergence rate of an AEC is typically defined as the time it takes for an AEC system

to reach its maximum echo attenuation. This metric was not explicitly calculated,

but was apparent in the plots of the ERLE and Misalignment for every simulation.

Visually, convergence appears in plots when the ERLE/Misalignment shows no more

large changes. Depending on the application, achieving faster convergence rates may

or may not be necessary. In the application investigated in this thesis, convergence

rate was not as crucial because an AEC on a smart speaker typically has more than

enough time to converge before a user asks the speaker anything.
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Chapter 5

Single Channel Simulations

This section focuses on the single channel explorations of the Kalman filter, in com-

parison to the NLMS filter. These explorations were mainly to familiarize with echo

cancellers and learn about different trade-offs associated with each filter. However,

these explorations led to interested and unexpected results, which are analyzed and

presented in this section. This chapter also contains an analysis of the NLMS and

Kalman filters under different testing conditions, through various types of simulations.

The particular setup and metrics used for each simulation are specified wherever rel-

evant.
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5.1 Full-Band

Unless noted, the following sets of simulations and results were generated using the

room recordings setup described at the beginning of Chapter 31. Each dirty file,

on which the echo cancellation was run, consisted of a speech file convolved with a

user-to-speaker transfer function. This output was then added to a recording of an

appropriate music test track played through the smart speaker. The metric used for

these initial simulations is the word error rate (WER). As explained in Chapter 3, the

framework used to calculate WER results assumes access to the transcript of clean

speech utterances throughout the dirty file and compares this against the result of

the AEC processing.

NLMS

In the case of single channel NLMS, the main parameter varied for these simulations

was the step size 𝜇. Several step sizes were tested in the range of 0.01 - 1.2, but only

the results of the best performing step sizes are included here. The freezing point

chosen for these simulations was 13.1 seconds (well before speech at 20 seconds) and

the estimated filter tap length is 900 taps at 16kHz (56 ms). The best performing

step size was consistently 0.31. The filter with this step size achieved a WER of 0.375

on a file with 24 speech utterances.

Kalman

With the Kalman filter, a slightly different approach was taken. The main parameter

varied in these simulations was the noise variance 𝜎2
𝑤. However, 𝜎2

𝑤 was not varied

in the same way as the step size 𝜇 was varied in the NLMS. Instead of choosing a

constant 𝜎2
𝑤 and varying it per simulation/trial, an estimated version of this parameter

was used. The results are shown below, but a detailed description of the estimated

version of 𝜎2
𝑤 can be found in Appendix C. The freezing point of these simulations

was 12.5 seconds, and the tap length for the optimal Kalman case was 2000 taps at

1Section 3.1
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16kHz (filter length of 125ms). This system achieved a WER of 0.20833 on the same

file with 24 speech utterances. Figure 5-1 presents a portion of the simulation output

error for the optimal NLMS and Kalman solutions.

Figure 5-1: Optimal NLMS vs Kalman, with freezing point at 12.5 and 13.1 seconds.

5.1.1 Convergence Analysis

It is noted that these two simulation results were chosen due to their WER per-

formance, with results described in the previous sections. It is also noted that an

adaptation freezing point2 was employed in the following simulations. This freezing

point occurred at 12.5 seconds for Kalman and 13.1 seconds for NLMS and can be

seen clearly in Figure 5-1 when the error signals increase. A loss in echo attenuation

is expected when adaptation is frozen.

From Figure 5-1, the Kalman filter seems to have presented an advantage in

reducing the error signal faster and more effectively than the NLMS counterpart.

This advantage was confirmed when considering the Root Mean Square (RMS) of the

error signals, shown in Figure 5-2. The RMS values represent the average power in

the error signal, thus accounting for transient behavior.

2Section 3.3.1
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Figure 5-2: RMS Value Optimal NLMS vs Kalman. RMS values were calculated with a window of
1 second of samples. The Kalman filter RMS quickly converges and approaches its minimum value
within 1 second. The NLMS RMS converges slowly and does not reach the same minimum as the
Kalman filter before adaptation is frozen.

This result was not surprising since the Kalman solution is expected to have much

faster convergence rates than the NLMS equivalent [7].

As a result of comparing simulations by WER, the filter lengths for the optimal

NLMS and Kalman filters were not necessarily equal. At longer filter lengths, the

NLMS filter performed worse than the Kalman filter in terms of WER. This result was

unexpected because at shorter lengths, an adaptive filter models the acoustic impulse

response poorly, leading to degradation in performance [8]. The poor performance

of the NLMS at longer filter lengths was related to the point at which adaptation

was frozen. For the NLMS filter, increasing its length also decreases it’s convergence

rate [6]. Thus, in the attempt to fully model the echo path by increasing the filter

length, the NLMS filter showed a slowing convergence rate. Even though the final

echo attenuation may have increased as a result of the longer filter, the freezing point

at 13.1 seconds, coupled with the slower convergence, halted the improvement in echo

reduction. Thus, the Kalman filter showed optimal performance and did not seem to

suffer from this phenomena.
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5.1.2 Under-modeling

The notion of different degrees of modeling of the system introduces the concept

of under-modeling. Under-modeling refers to the case where the estimated filter

length is actually lower than the actual filter length. The under-modeling case oc-

curs quite often in practice due to the computational burden of using a long filter

length that more accurately matches an acoustic impulse response [8]. To explore

this under-modeling case further, an important detail about the experimental setup

had to change: full knowledge of the room impulse response. With this considera-

tion, the experimental setup was switched to using known impulse responses3. With

the actual filter coefficients, ℎ(𝑛), it was possible to use the misalignment metric4 to

evaluate the performance effect of different degrees of under-modeling. Plots of these

experiments are shown in Figures 5-3 and 5-4. The total room response is 300 taps,

and so under-modeling by 𝑥 taps means that the estimated filter length is 300 − 𝑥

taps.

.

3Section 3.2
4Section 4.3
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(a) Misalignment

(b) Output Error

(c) RMS of Output Error

Figure 5-3: Under-modeling by 75 taps, freezing point at 12.5 seconds indicated on plots
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(a) Misalignment

(b) Output Error

(c) RMS of Output Error

Figure 5-4: Under-modeling by 150 taps, freezing point at 12.5 seconds indicated on plots
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For 25% under-modeling presented in Figure 5-3, the Kalman solution reached -16

dB misalignment at 0.25 seconds, but oscillated around this value until adaptation

was frozen. The NLMS reached a misalignment of -14 dB at about 5 seconds before

oscillating as well. This result indicates that the Kalman solution was superior in

convergence speed and in estimating the acoustic impulse response. However, in Fig-

ures 5-3 (b) and (c), it should be noted that both solutions depict high amounts of

reduction in the error signal, even with the oscillating misalignments (prior to freezing

of adaptation). This reduction then decreased after the freezing point (around 12.5

s) for both the NLMS and Kalman. The Kalman froze at a lower misalignment (-15.5

dB) than the NLMS filter (-13 dB), indicating that the Kalman performed better in

this experiment. This result was confirmed in the RMS5 in Figure 5-3 (c) that shows

the Kalman had a lower RMS value after freezing. It is noted that the RMS values

for the error of both simulations increased by approximately an order of magnitude

after adaptation was frozen. This finding indicates that the presence of oscillations

in misalignment, prior to freezing, is effective in reducing the echo.

Similar results were obtained for the 50% under-modeling case presented in Fig-

ure 5-4. Most notably, the Kalman filter continued to outperform the NLMS in the

reduction of error and both filters exhibited better performance prior to freezing. The

difference in this second set of results is that the filters oscillated much more in their

misalignment, demonstrated in Figure 5-4 (a). Even with these large oscillations, the

error signals remained somewhat low, as shown in Figures 5-4 (b) and (c). As in the

25% under-modeling case, this phenomenon is likely a similar result of tracking statis-

tical variations of the input. These results indicate that the degree of under-modeling

affects the extent to which the NLMS/Kalman filters track input variations. The

RMS comparisons in Figure 5-5 show how the NLMS/Kalman filters react differently

to the change of under-modeling.

5Figures 5-3 (c) and F-4 (c) were created using a 1 second window of error signal samples
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Figure 5-5: RMS Comparison Plot for Under-modeling Cases. Calulcated with 1 second window of
samples. 75 and 150 refers to the number of taps by which the filter was under-modeled. 75 is the
25% under-modeling case, and 150 is the 50% under-modeled case.

When comparing the two filters’ performance in different degrees of under-modeling,

the Kalman filter was less affected by the increase in the degree of under-modeling

from 25% to 50% than the NLMS filter. The Kalman filter saw an increase in error

after freezing, from the 75 to 150 taps case, but maintained a low error signal, prior

to freezing. This behavior is seen in the first 12 seconds of Figure 5-5, where the

RMS values for the Kalman 75 and Kalman 150 case are similar. The NLMS 150

case, did see an increase in error, before and after freezing. This result indicates that

the Kalman performs well in severe under-modeling cases. This is likely due to the

Kalman filter’s formulation for estimation of dynamic systems. This formulation may

explain the success in the Kalman filter of tracking input music variations, in order

to maintain the error signal low. The extent of this result is not explored further in

this thesis, and is left for future work.

Results from the mathematical analysis for the under-modeled case are below.

The full mathematical analysis can be found in Appendix C. This analysis takes into

account how the under-modeling case, coupled with minimization of the mean square

error, leads to a dependence on input statistics.
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If

ℎ = [ℎ0, ℎ1, · · ·ℎ𝐿−1]
𝑇

is the actual filter state, and

ℎ̂(𝑛) = [ℎ̂0(𝑛), ℎ̂1(𝑛), · · ·ℎ̂𝑀−1(𝑛)]
𝑇

is the estimate, and if 𝐿 > 𝑀 , then minimization of the mean square error 𝐸
{︀
|𝑒(𝑛)|2

}︀
is not achieved by requiring that ℎ̂𝑖 = ℎ𝑖 for 𝑖 ≤ 𝑀 . Instead, the solution that

minimizes the mean square error depends on the correlations of the input signal 𝑥(𝑛),

and thus relies on it’s changing input statistics. For stationary signals like white

gaussian noise, this is not the case, but it is clear that these signals are not used as

inputs for the VPA application.
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5.2 Sub-band

This section presents the results of single channel simulations, but in the sub-band

domain. Sub-band refers to the use of perfect reconstruction filter banks that split

input signals into different frequency bands. The processing (echo cancellation), then

occurs within each sub-band, independent of the other sub-bands. Once the process-

ing occurs in each sub-band, the results are summed together and synthesized into a

full-band output. This process is shown generally in Figure 5-6 below.

Figure 5-6: Sub-band Processing, with analysis filters shown as 𝐻𝑖(𝑧) and synthesis filters 𝑅𝑖(𝑧). 𝑥[𝑛]
represents the input full-band signal, and �̂�[𝑛] is the processed and reconstructed output signal. [11]

5.2.1 General Principles

Advantages

There are two main characteristics that make sub-band processing attractive for this

application.

· Increased Convergence Rate This can be attributed to the degree to which the

sub-band processing splits the signal into several frequency bands. As the divi-

sion gets higher (more sub-bands), the signal spectrum begins to resemble white

noise within each band, and for algorithms such as the NLMS, this increases

the convergence rate.

· Computational Efficiency There is an increase in computational efficiency by

a decrease in the millions of instructions per second (MIPS) required in the
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system. This relationship is due to the downsampling of the broadband input

signal into the smaller sub-band signals. This applies to both the Kalman and

NLMS filters. Also, with the downsampling of the input signal, it is possible

to represent the same broadband length 𝐿 filter response, with M, length 𝐿
𝑀

responses, where 𝑀 is the number of sub-bands. This means that sub-band

processing allows one to use shorter filters. Sub-band processing then presents

an important advantage for the Kalman filter, which boasts O(𝑛3) complexity.

The only disadvantage of this approach is an increase in the delay of the processing

pipeline due to the analysis and synthesis filters in place. This disadvantage is not

overly crucial because the delay is never long enough to affect the response of the

VPA-human interaction.

Implementation

A low-pass prototype filter was required to properly construct the perfect reconstruc-

tion filter banks. This prototype filter was modulated to different center frequencies

for each band. In this case, the low-pass prototype filter had a stop-band attenuation

of 80 dB and was used for 64 frequency bands. This design divides the total sampled

frequency range into 33 real frequency bands.

Given that the adaptive filters now work in the frequency domain (after sub-band

processing), the complex versions of the equations listed for NLMS and Kalman are

needed. The complex version is straightforward for the NLMS case and is presented

in Appendix A. However, it is more complicated in the Kalman case. Review of

existing literature revealed that there is a general complex Kalman filter as well as

an augmented Kalman filter. The general complex version was used in this work

and is summarized by simple analogs to the original equations in Appendix A. The

augmented Kalman filter is possibly more accurate due to its full consideration of

second order statistics [4, p. 1], but its use in the AEC context was not explored in

this thesis.

54



5.2.2 Setup and Results

The experimental setup used for these simulations was that of the same full-band

simulations in the previous section, which included the room recordings methodology.

This setup included speech file utterances so the main metric used to distinguish

performance is the WER. The outputs of the best performing sub-band NLMS and

Kalman solutions are presented in Figure 5-7. This time, the filter length is 128ms,

which corresponds to 64 filter taps within each of the sub-bands. This length was

chosen to match the length of the best performing Kalman solution from the full-band

case.

(a) Output Error

(b) RMS

Figure 5-7: Optimal Sub-band NLMS and Kalman Results
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As seen in Figure 5-7, it is clear that the Kalman performance advantage in the

AEC context was no longer as present when using sub-band processing. This result

is due to the speed-up that the NLMS filter receives due to the "white" nature of

the inputs to each separate sub-band NLMS filter. It is also noted that the freezing

point no longer has much of an effect on the output error. The freezing point is still

employed at 12.5 seconds and yet there is no significant increase in the output error

or RMS for either filter. This behavior indicates that both filters were able to fully

model the room response, and arrive at very accurate coefficients, rather than resort

to tracking the input signal. Both of these solutions achieved nearly perfect WER,

with the Kalman at 0.0416 and NLMS at 0.0833. The results of these simulations

support the conclusion that the Kalman may not be as attractive a choice as the

NLMS, in the single channel case, due to the simplicity and computational efficiency

of the NLMS.
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Chapter 6

Multi-Channel Simulations

Figure 6-1: Main Testing Overview

This section is structured based on the testing overview presented in Figure 6-1. The

inclusion of the room recordings data set was to have a representative and realistic

multi-channel test set. The findings from these multi-channel simulations highlighted

some very unexpected results. To explore these findings, another data set (Music +

Measured responses) was introduced. It should be noted that, in some of the follow-

ing simulations, a third-party benchmark was available in the form of a proprietary

commercial AEC of unknown design and methodology.
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6.1 Data Set 1 - Room Recordings

Figure 6-2: Multi-Channel AEC Sub-band Diagram. Inputs are audio WAV files, containing mic
signals and reference channels. These inputs are converted to sub-band, as described in Section 5.2,
processed by an AEC block per sub-band, and then synthesized to form the output speech estimate
(error signal). Dashed lines refer to the output error being fed back to adapt the coefficients for
left/right echo paths.

Figure 6-2 explicitly describes the setup for this section. This setup was also described

in the single channel case, but a clear difference is the presence of two channels. It is

noted that only sub-band simulations were considered in this chapter. The reasons

for this are that sub-band echo cancellation presents a state of the art solution, due

to advantages outlined in the previous chapter. Another important detail about this

particular setup is that the wav-files that represent the dirty files are 16-bit integer

precision. This system choice was for the purpose of providing a fair comparison to

the commercial AEC in question. Additionaly, the freezing point of 12.5 seconds was

present in the following simulations.
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6.1.1 User-Design Parameters

The variation of user-designed parameters (𝜇 for NLMS, 𝜎2
𝑤 for Kalman), were tested

for each simulation to see the effects in the multi-channel case. Rather than presenting

the results of the best performing parameters, simulations with a variety of parameters

are shown here to outline a comprehensive view of the results. First, the ERLE1 is

presented to outline some of these results.

(a) ERLE for Kalman

(b) ERLE for NLMS

Figure 6-3: ERLE for different user-designed parameters. Both Kalman and NLMS filters were 128
ms long.

1Section 4.2: Echo Return Loss Enhancement

59



It’s also noted that a variety of signal to noise ratios (SNR’s) were introduced in

these simulations. This was achieved by choosing different playback volumes, with

the speech signals maintained at the same volume. It was expected that changing

the SNR would not affect the ERLE measurement because this metric is a ratio.

Consequentially, if the input was louder, then the output would also be louder by

the same amount. Indeed, changing the SNR did not affect the ERLE curves across

different simulations. The trends seen for these initial simulations are as follows.

· General Trends For the Kalman filter, an increase in the noise variance parameter

𝜎2
𝑤 generally causes an increase in the performance of the AEC, measured by

the ERLE, before the freezing point. On the other hand, the NLMS seemed

to exhibit the typical step size trade-off where higher step sizes 𝜇 resulted in

higher steady state error (lower ERLE), but faster responses to input changes.

There is some evidence of this with the best performing step sizes at 0.01 and

0.09 and a significant decrease in performance for any larger step sizes. Also,

it is clear to see that the performance of the ERLE for the Kalman solution is

initially much greater than that of the NLMS solution, but was not always the

case.

· Freezing Point In the Kalman solution a freezing point is apparent with a clear

drop off of ERLE, after 12.5 seconds. The NLMS however, does not have this

clear distinction, even though a freezing point was also employed in the sim-

ulation. This different behavior is interesting because it would seem that the

Kalman filter solution is tracking input statistics to achieve such good cancel-

lation, as measured by the ERLE. The NLMS did not have this same behavior.

After the freezing point, both solutions achieved similar ERLE in their best

cases.

· Convergence Rate Convergence rate is difficult to analyze for these simulations

because it is unclear when there is a steady state in the ERLE curves. For

the Kalman case, it seems that convergence rate is higher due to its immediate

increase in ERLE, in comparison with the convergence rate of the NLMS. This
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observation is misleading however, due to the significant decrease in ERLE

at the freezing point for the Kalman filter. The NLMS exhibited the typical

convergence rate trade-off, given that smaller step size simulations slowly rise

to a high ERLE and large step size simulations rapidly achieve low ERLE.

· Divergence Adaptive filters can easily exhibit instability and diverge during adap-

tation. In the case of the NLMS, this instability can occur due to a large step

size that causes unbounded oscillations in the estimated filter taps. Divergence

in the Kalman filter is typically due to numerical instabilities. The reason

that Kalman filter simulations were not run at larger noise variances is that at

𝜎2
𝑤 > 10−8, the output error signal diverged in those cases. It is noted that

even at 𝜎2
𝑤 = 10−8, the Kalman filter became more sensitive to input changes.

This observation is noted in Figure 6-3(a), where the 𝜎2
𝑤 = 10−8 ERLE dips

drastically at 9 seconds, in comparison to the other ERLE curves.
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(a) Kalman Word Error Rate

(b) NLMS Word Error Rate

Figure 6-4: WER at different user-designed parameters and playback volumes

These simulations were also evaluated in terms of the WER results, which are

presented in Figure 6-4. It is noted that these WER results are included from sim-

ulations that were conducted at different Signal to Noise Ratios (SNR). The signal

in this case is the speech signal, and the noise is music played through the speaker.

The reasoning behind including these additional results was to analyze trends from

a variety of tests, although it was expected that speech intelligibility will be lower

(higher WER) for higher playback volumes. Figure 6-4 above presents this trend

through different colored curves, with the color indicating the playback volume.
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· General Trends: Kalman In Figure 6-4 (a), it is clear that the WER results

agree with the initial ERLE results in Figure 6-3 (a). An interesting observation

is that the results do not agree with the ERLE results after the freezing point.

After the freezing point, the ERLE curves appear to be around the same level,

so it is surprising that the two highest 𝜎2
𝑤 values would have such a dramatic

increase in the WER performance. This effect is likely due to the use of sub-

band processing in these particular simulations. This refers to the fact that

the Kalman filter AEC in these simulations is a collection of individual Kalman

filter AECs that worked independently per sub-band of the full-band signal.

The ERLE shown above is of the full-band signal, but does not show which

frequency bands contribute to this ERLE. As a result, even though the full-

band ERLE is similar for all noise variances after the freezing point, there was

more effective cancellation in critical2 speech frequency bands for higher noise

variances.

· General Trends: NLMS The WER performance for the NLMS filter is somewhat

matched to the ERLE performance in Figure 6-3 (b), except for two cases. For

𝜇 = 0.01 and 𝜇 = 0.09, the ERLE curves appear to indicate that the lower step

size is performing better than the higher one. In the WER plots, however, it is

noted that 𝜇 = 0.09 achieved a much lower WER. This is indicative of the same

phenomenon seen in the Kalman case - better cancellation in critical frequency

bands.

· Comparison The optimal performance of the NLMS and the Kalman solutions

was compared at a reasonable playback volume of 68 dB. For comparison, the

NLMS actually achieved better cancellation with a WER of 0.1, than the

Kalman filter with a WER of about 0.25. The commercial AEC, at the same

playback volume, achieved a WER of 0.208333.

2Speech frequencies reside predominately in the 100 Hz - 6 kHz range
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WER Results for Freezing Point Variation
Algorithm WER Freezing

@ 4 sec
WER Freezing
@ 12.5 sec

NLMS 0.45 0.083
Kalman 0.833 0.25

Table 6.1: WER Results

6.1.2 Freezing Point Variation

Due to the misleading nature of the initial ERLE curves for the Kalman filter, some

more tests were conducted to determine the convergence rates of the two algorithms.

This test was accomplished by moving the freezing point to a time earlier in the

simulation. The justification for this was based on the assumption that if algorithms

stop adapting at an earlier point, whichever one has converged faster will have better

WER. As presented in Table 6.1 it would seem that the NLMS filter is still converging

at faster rates than the Kalman filter, in this multi-channel scenario. Given that this

test case presented unexpected results, the next sections explore more theoretical

tests with metrics such as the Misalignment3.

6.1.3 Sub-banding Effects

As noted previously, the discrepancy of the ERLE and WER results may have been

due to the misrepresentation of ERLE cancellation in critical frequency bands. Along

with this hypothesis and a suspicion of high amounts of uncorrelated low frequency

noise, tests were run to demonstrate the effects on the ERLE without the first two

sub-bands. With a total frequency band decomposition of 64 bands and 16 kHz

sampling rate, each band consisted of a range of 250 frequencies. For example, the

first band is centered at 0 Hz (DC), and goes up to 125 Hz. The second band is

centered at 250 Hz, and extends until 375 Hz, and so on. This experiment would

effectively get rid of frequencies up to 375 Hz, thus focusing on the ERLE in higher

frequency bands. The results of these experiments are presented in Figures 6-5 and

6-6.
3Section 4.3
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(a) Kalman without 1st band

(b) Kalman without first 2 bands

Figure 6-5: Kalman ERLE, without 1 or 2 sub-bands
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(a) NLMS without 1st band

(b) NLMS without first 2 bands

Figure 6-6: NLMS ERLE, without 1 or 2 sub-bands

It is first noted that the Kalman ERLE curves in Figure 6-5 agree with the WER

results previously shown in Figure 6-4 (a). For example, higher noise variances 𝜎2
𝑤

lead to much higher ERLE results in these critical bands, and thus lead to good

speech intelligibility and WER results. The NLMS case agreed with previous WER

results initially, except for the case of 𝜇 = 0.01 and 𝜇 = 0.09. Figure 6-6 (a) and
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(b) demonstrate that 𝜇 = 0.09 should lead to much better WER results than with

𝜇 = 0.01, due to higher cancellation in critical frequency bands. The significance

of these results is that the lower two sub-bands provide the same echo cancellation

across several simulations. In comparison, the energy in higher bands (> 375 Hz) , is

much lower, and so cancellation differences in these bands across several simulations

are not as well noted, when considered in full-band. However, when the two lower

sub-bands are not considered, these differences are more readily seen through ERLE

curves, as shown in Figure 6-7 and 6-6.

In the particular case of the Kalman filter, it is also interesting to note that the

freezing point is no longer obvious in Figure 6-5 (a) and (b). In contrast, the full-band

ERLE curves presented in Figure 6-3 (a) demonstrated a clear drop in ERLE at higher

noise variances, after the freezing point. This result confirms that the cancellation in

the lower two sub-bands, prior to a freezing point, is due to the Kalman’s ability to

track the dynamic nature of the input signal. Once the freezing point is reached, this

tracking stops, and the cancellation in the two lower bands becomes the same across

most noise variances.

For completeness, the WER results for the simulations without the 1st sub-band

are included below in Figure 6-7. It is interesting to note that removing the first

sub-band allowed the Kalman filter to run at a noise variance of 𝜎2
𝑤 = 10−7, without

diverging. With this change, the Kalman WER was able to match the optimal NLMS

WER performance. The WER results for the second sub-band case are not shown

here, but this case proved to be worse than with all sub-bands.
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(a) Kalman, without 1st band

(b) NLMS, without 1st band

Figure 6-7: WER Results, without 1st sub-band

6.1.4 No-Freeze Simulations

Due to the effective echo cancellation that both the NLMS and Kalman filters ex-

hibited prior to freezing of adaptation, simulations were run to analyze the effect

of omitting a freezing point entirely. In practice, the lack of a freezing point would

mimic an AEC without the use of a double talk detector. It is noted that these

results were produced without considering the first sub-band. The reason for this
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decision was that the ERLE results could be misleading due to tracking in the lower

bands. For the Kalman filter, this also allowed the use of a higher noise variance to

be used without divergence. The ERLE and WER results for this experiment are

shown below in Figures 6-8 and 6-9.

(a) Kalman without freezing

(b) NLMS without freezing

Figure 6-8: No Freeze ERLE Results
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(a) Kalman without freezing

(b) NLMS without freezing

Figure 6-9: No Freeze WER Results

The ERLE plots in Figure 6-8 (a) show that the Kalman filter achieves high ERLE

rapidly (20 dB at 6 seconds) in the case of 𝜎2
𝑤 = 10−7. Adaptation appears to stop

improving well before speech is introduced for the higher 𝜎2
𝑤, but is slower for lower 𝜎2

𝑤.

The WER results in Figure 6-9 (a) show significant improvement from the previous

freezing case in Figure 6-7 (a). This observation is expected because the filter has

more time to continue adapting for the entire length of the speech file. This advantage

relies heavily on the condition that speech does not disrupt adaptation significantly.
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The NLMS, however, suffered from the lack of a freezing point as seen through the

WER results presented in Figure 6-9 (b). The ERLE results in Figure 6-8 (b) also do

not agree with the WER results in Figure 6-9 (b). The ERLE performance seems to

be the same for 𝜇 = 0.25, 0.33, 0.41, 0.49, which suggests similar WER results across

these values. However, in Figure 6-9 (b), it is clear that speech intelligibility suffered

as the step size increased to 𝜇 = 0.41, 0.49. A possible explanation for this behavior

is that speech may have been disrupting adaptation at the reactive, higher step sizes.

As a result, this could have lead to distortion in the speech signal and thus less speech

intelligibility.

6.2 Data Set 2 - Music + Known IR

Figure 6-10: Data Set 2 System Diagram

Figure 6-10 above presents the experimental setup of this section, which focuses on

simpler experiments with measured speaker responses (both left and right). The

reasoning for this focus was to closely analyze the convergence behavior of these algo-

rithms in multi-channel scenarios. These simulations do not include speech utterances

in each dirty file, so the WER metric is not available. It is noted that these simula-

tions were performed using full-band processing rather than sub-band processing in

the previous section. This choice was based on the assumption that results in the

full-band domain would only improve in sub-band domains.
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6.2.1 User-Design Parameters

As before, the focus was varying the two main parameters, 𝜇 for NLMS and 𝜎2
𝑤 for

Kalman, and observing the effects on performance of the respective AEC solutions.

In this case, a measured speaker response that is 512 taps long @ 16 kHz was used in

conjunction with the typical stereo music wav-file. A freezing point was not employed

in this experiment for two reasons. The first is that there is no speech from which

to guard adaptation from. The second is that the misalignment metric is enough to

determine in what direction the convergence of the AEC is headed. Figures 6-11 and

6-12 summarize these results for both solutions.
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(a) Kalman ERLE

(b) NLMS ERLE

Figure 6-11: ERLE Curves, Kalman filter reaches good cancellation as measured by 60 dB ERLE,
in as little as 5 seconds. NLMS takes full simulation time to reach similar ERLE values.
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(a) Kalman Misalignment

(b) NLMS Misalignment

Figure 6-12: Misalignment Curves, Kalman filter reaches good cancellation as measured by -60 dB
misalignment, in as little as 10 seconds. NLMS does not reach this low of misalignment and takes
40 seconds to reach the lowest misalignment at around -30 dB.

Initially, these simulations seem to suggest different conclusions from those of the

first data set4, but these discrepancies can be explained in the context of full-band

processing. From Figures 6-12 and 6-11 it is clear that the Kalman filter had faster

convergence rates than the NLMS in these experiments. This finding contradicts

4Room Recordings
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earlier results from data set 1 where the NLMS had faster convergence rates as mea-

sured by better WER performance, in simulations with an earlier freezing point. As

noted previously, the NLMS experiences a significant speed-up in convergence rates

with the use of sub-band processing. Therefore, the slower convergence rate for the

NLMS in this case is due to the use of full-band processing. It is also interesting

to note that for both solutions, the typical parameter trade-off is observed: a higher

parameter (𝜇 or 𝜎2
𝑤) increased the convergence rate, but also increased steady state

error. This trade-off is readily seen from both the Misalignment and ERLE plots of

both algorithms in Figures 6-11 and 6-12.

Another interesting point to note is that in this case, the performance of both the

NLMS and Kalman filter far surpassed that of the commercial third-party plugin. It

is difficult to determine exactly what the reasons for this difference in performance

are because the commercial AEC is presented as a black box with few parameters

to vary. The ease with which both solutions converge in this multi-channel scenario

is also extremely apparent. In the Sondhi paper [10], this scenario is outlined as

a significant issue for convergence of multi-channel echo cancelers. However, the

Kalman and NLMS solutions converge easily and reach satisfactory levels of ERLE

and Misalignment. This observation highlights further investigation into the reasons

for this, and if the multi-channel issue is as relevant for this particular application as

initially assumed.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

The work presented in this thesis suggests that, in comparison to the NLMS filter,

the Kalman filter is not a viable AEC option for the VPA application in the majority

of cases. There were some experimental results which suggest that the Kalman filter

is an attractive choice for a specialized version of this application, but these results

were generally outweighed by the instances that prove the NLMS filter to be a better

solution.

7.1.1 Single Channel

The single channel simulations, in the full-band case, proved largely in favour of the

Kalman filter solution, due to its rapid convergence speed. In the sub-band case,

however, the NLMS experienced a significant improvement in it’s convergence rates,

and reached similar WER results as the Kalman filter. This would seem to put

the NLMS at an advantage, due to the fact that it is more computationally efficient

and simple to implement than the Kalman filter. However, the phenomenon of under-

modeling presents a case for the Kalman filter. It was observed that the Kalman filter

was more capable of tracking input statistics than the NLMS, in order to maintain

the error low. This result would appear to be a disadvantage, except in the case
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of foregoing an adaptation freezing point. Given that the presence of such a large,

uncorrelated signal could cause filter divergence, the absence of a freezing point would

seem counter-intuitive. However, the wake-up word speech burst is short, meaning

that the speech may not necessarily disrupt adaptation long enough for the filter to

begin adapting incorrectly or even begin diverging. Thus, the Kalman filter would be

a clear choice for this application, due to the fact that it converges to a lower error

very quickly and maintains this lower error by effectively tracking the input signal

statistics.

7.1.2 Multi-Channel

The results of Data Set 1 showed that both filters provide similar ERLE and WER

performance, but the NLMS had the added benefit of being computationally efficient

and simple to implement. This advantage is significant, given that this data set was

the most realistic representation of an actual user-case (speech utterances, playback

volumes, etc). Additionally, in Data Set 1 the Kalman filter presented itself as an

attractive tracking alternative, due to its high ERLE performance, when the lower

two sub-bands (< 375 Hz) were considered. In these cases, the Kalman filter was

able to track the uncorrelated, low frequency rumble, and maintain this performance

until the freezing point. Not only was it well suited for this tracking, but it did so

in a very fast manner, bringing the echo down within seconds. The VPA application

does not require such fast convergence speeds, but it is something to note for a future

adaptive filter application that can withstand not freezing or employing a double-talk

detector. Data Set 2 again demonstrated the Kalman filter speed advantage in the

full-band case. This advantage is likely not as present in the sub-band, due to the

NLMS filter’s improvement under sub-band conditions.

Along with this advantage presented by the Kalman filter, a significant disadvan-

tage was the filters propensity to diverge easily. The Kalman filter became extremely

reactive to changes in the input statistic at higher noise variances, as seen in Figures

6-11 (a) and 6-12 (a) with sudden dips in ERLE and increases in Misalignment. This

was also seen in the Data Set 1 simulations where the noise variance could not be
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increased past 10−8 before divergence occurred.

7.1.3 Future Work

This research led to many unexpected results, although not all of these were explored

in their entirety and are included in this section as future work.

· Third-Party Comparison A significantly unexpected conclusion from this work

was that, in some cases, both algorithms outperformed the third-party com-

mercial solution. The reasons for this result are still unknown, but a possibility

is that this commercial solution traded faster convergence for a much lower

steady-state error and also for stability. It is difficult to predict what kind of

effect this trade-off would have in practice. More data collection on realistic sit-

uations using the third-party commercial solution would help in order to form

a more definitive conclusion.

· Kalman Filter Stability The divergence issue that the Kalman filter experienced

is also somewhat worrisome due to the fact that it is not clear as to why the filter

became so reactive in the multi-channel case. Simpler system cases might help

in clearing this issue up. For example, one could test the same Kalman system

with uncorrelated white inputs that were colored1 in part of the experiment.

This test would then determine if it was an unequal power spectrum that caused

the divergence to occur. Also, a filter sweep on this white input could highlight

if it was the rate at which input statistics change that affected the divergence. It

is also likely that this divergence issue was an artifact of the numerical instability

of the Kalman filter, as a result of ill-conditioned matrices. If this reasoning

were to be the case, further numerical simulation would be needed in order to

test the stability of the Kalman filter under these conditions.

· Estimated User-Designed Parameters In this work, most of the user-designed

parameters were held constant for each simulation and varied across different

1Processed to resemble other forms of noise with unequal power spectra
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simulations. Several papers in the AEC realm suggest using some form of

adapted system parameter that depends on the system inputs and outputs in-

stead. This was not implemented in this work due to the scope of the thesis

and also since there is extensive literature on these estimated parameter AECs.

· Sub-Band Optimizations The sub-banding effects in Data Set 1 provide inter-

esting insights into the way that convergence in individual frequency bands

can affect the full-band output signal. Some possible explorations in this area

would be to employ an estimated parameter much like the VSS (variable step

size) NLMS. If such a system was used and adapted per individual frequency

band, then results could be better optimized per frequency band. This would

likely have the effect of increasing the overall performance in the full-band out-

put error. Another possible optimization, more specific to the Kalman filter,

is to update the covariance matrices (through the noise variance), according to

the power in each frequency band.

· Multi-Channel Simplification With most of the multi-channel simulations, it is

surprising to see that such good cancellation occurred in a reasonable amount of

time. This finding was unexpected because the configuration of these systems

should give rise to the non-uniqueness issue, in which the filters continually

face convergence issues due to varying input statistics. The lack of this issue

was highlighted with Data Set 2, which was a multi-channel system that was

generated by measured smart speaker responses. Even so, the misalignment

curves demonstrated that the filter coefficients converged to good estimates

without having to re-converge many times. This begs the question of whether

the non-uniqueness issue is as much of a problem in this application, and why

that might be. This is possibly due to a fundamental difference between the

VPA application and the teleconferencing case in which the multi-channel issue

is described [10]. Particularly, the proximity of the microhphone on the speaker

to both the left and right output channels may have a simplifying effect on the

analysis of the multi-channel case. This question is left as an exercise to be
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verified in a scope beyond the purpose of this thesis.
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Appendix A

Adaptive Filter Derivations

A.1 Normalized Least Mean Squares

Figure A-1: NLMS Filter [5]

To derive the NLMS filter, we first begin with the LMS filter, and then normalize

accordingly. To begin with the LMS filter, we need to define the cost function. As

the name suggests, this is chosen as
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𝐶(𝑛) = 𝐸
{︀
|𝑒(𝑛)|2

}︀
(A.1)

where this cost function is referred to as the mean square error. We then apply

steepest descent and take partial derivatives to get the gradient of this cost function.

∇
ℎ̂
𝐻𝐶(𝑛) = ∇

ℎ̂
𝐻𝐸

{︀
𝑒(𝑛)𝑒*(𝑛)

}︀
= 2𝐸

{︀
∇

ℎ̂
𝐻 (𝑒(𝑛))𝑒*(𝑛)

}︀
(A.2)

∇
ℎ̂
𝐻 (𝑒(𝑛)) = ∇

ℎ̂
𝐻 (𝑑(𝑛)− ℎ̂

𝐻 · 𝑥(𝑛)) = −𝑥(𝑛) (A.3)

Thus,

∇
ℎ̂
𝐻𝐶(𝑛) = 2𝐸

{︀
𝑥(𝑛)𝑒*(𝑛)

}︀
(A.4)

The method of steepest descent then requires us to correct the filter coefficient esti-

mates at each iteration, by the negative of this gradient.

ℎ̂(𝑛+ 1) = ℎ̂(𝑛)− 𝜇

2
∇

ℎ̂
𝐻𝐶(𝑛) (A.5)

where 𝜇 is chosen as the step size and determines how big of a step in the direction

of the gradient we take.

The main simplification, and the reason that the LMS filter (and thus NLMS), is

so attractive, is in it’s estimation of the gradient function, where

∇
ℎ̂
𝐻𝐶(𝑛) = 2𝐸

{︀
𝑥(𝑛)𝑒*(𝑛)

}︀
≈ 𝑥(𝑛)𝑒*(𝑛) (A.6)
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and so the final update equation for the LMS filter is

ℎ̂(𝑛+ 1) = ℎ̂(𝑛)− 𝜇𝑥(𝑛)𝑒*(𝑛) (A.7)

The NLMS filter follows naturally in normalizing by the input power signal.

ℎ̂(𝑛+ 1) = ℎ̂(𝑛) + 𝜇
𝑒(𝑛)𝑥(𝑛)

𝑥𝑇𝑥
(A.8)

A.2 Kalman Filter Derivation for Echo Cancellation

Figure A-2: General AEC [7]

To derive the filter, we must introduce relevant variables and definitions, using

the diagram above.

85



𝑑(𝑛) = 𝑥𝑇 (𝑛)ℎ+ 𝑣(𝑛) = 𝑦(𝑛) + 𝑣(𝑛) (A.9)

𝑥(𝑛) = [𝑥(𝑛), 𝑥(𝑛− 1), · · ·𝑥(𝑛− 𝐿+ 1)]𝑇 (A.10)

where L is the length of input samples taken in each iteration. The objective is to

design a filter that uses a state variable model to update estimated filter coefficients

ℎ̂(𝑛) = [ℎ̂0(𝑛), ℎ̂1(𝑛), · · ·ℎ̂𝐿−1(𝑛)]
𝑇 , that estimates ℎ.

The state variable model is as follows.

𝑑(𝑛) = [𝑑(𝑛), 𝑑(𝑛− 1), · · ·, 𝑑(𝑛− 𝑃 + 1)] (A.11)

= 𝑦(𝑛) + 𝑣(𝑛) (A.12)

𝑦(𝑛) = 𝑋𝑇 (𝑛)ℎ(𝑛) (A.13)

𝑋(𝑛) = [𝑥(𝑛),𝑥(𝑛− 1), · · ·𝑥(𝑛− 𝑃 + 1)] (A.14)

where P is the model order. This essentially means how many sets of input vectors

are considered at a single iteration. The key part of the Kalman filter comes from

the next assumption.

ℎ(𝑛) = ℎ(𝑛− 1) +𝑤(𝑛) (A.15)

This assumes that the unknown filter coefficients are not time-invariant, but in-

stead vary from iteration to iteration by some random white Gaussian noise vector

with variance 𝜎2
𝑤(𝑛).

The update equation for the Kalman filter is given as follows,

ℎ̂(𝑛) = ℎ̂(𝑛− 1) +𝐾(𝑛)𝑒(𝑛) (A.16)

where 𝐾(𝑛) is the Kalman gain, and 𝑒(𝑛) = 𝑑(𝑛)−𝑋𝑇 (𝑛)ℎ̂(𝑛− 1)
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To derive the Kalman gain, we consider first the a posteriori misalignment or,

𝜇(𝑛) = ℎ(𝑛)− ℎ̂(𝑛) (A.17)

It’s correlation matrix is 𝑅𝜇(𝑛) = 𝐸
[︀
𝜇(𝑛)𝜇𝑇 (𝑛)

]︀
, and to continue we also define the

a priori misalignment, or

𝑚(𝑛) = ℎ(𝑛)− ℎ̂(𝑛− 1) = 𝜇(𝑛− 1) +𝑤(𝑛) (A.18)

where we have made use of equation A.17, to respresent this in terms of the a posteriori

misalignment. With this, the correlation matrix of this is

𝑅𝑚(𝑛) = 𝐸
[︀
𝑚(𝑛)𝑚𝑇 (𝑛)

]︀
(A.19)

= 𝑅𝜇(𝑛− 1) + 𝜎2
𝑤(𝑛)𝐼𝐿 (A.20)

The minimization criteria that leads to the Kalman gain expression is

𝐽(𝑛) =
1

𝐿
𝑡𝑟
[︀
𝑅𝜇(𝑛)

]︀
(A.21)

Thus, to minimize this, we get

𝐾(𝑛) = 𝑅𝑚(𝑛)𝑋(𝑛)
[︀
𝑋𝑇 (𝑛)𝑅𝑚(𝑛)𝑋(𝑛) + 𝜎2

𝑣𝐼𝑃

]︀−1

With this, we are able to formulate the full set of Kalman filter equations, presented

in the order that they are updated during each iteration.
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𝑅𝑚(𝑛) = 𝑅𝜇(𝑛− 1) + 𝜎2
𝑤(𝑛)𝐼𝐿 (A.22)

𝑅𝑒(𝑛) = 𝑋𝑇 (𝑛)𝑅𝑚(𝑛)𝑋(𝑛) + 𝜎2
𝑣(𝑛)𝐼𝑃 (A.23)

𝐾(𝑛) = 𝑅𝑚(𝑛)𝑋(𝑛)𝑅−1
𝑒 (𝑛) (A.24)

𝑒(𝑛) = 𝑑(𝑛)−𝑋𝑇 (𝑛)ℎ̂(𝑛− 1) (A.25)

ℎ̂(𝑛) = ℎ̂(𝑛− 1) +𝐾(𝑛)𝑒(𝑛) (A.26)

𝑅𝜇(𝑛) = [𝐼𝐿 −𝐾(𝑛)𝑋𝑇 (𝑛)]𝑅𝑚(𝑛) (A.27)

The initialization of the filter involves choosing ℎ̂(0) and 𝑅𝜇(0) = 𝜖𝐼𝐿, where 𝜖 is

some small positive constant.

A.3 General Complex Kalman Filter

The general complex Kalman filter has simple modifications to the General Kalman

filter, as shown below.

𝑅𝑚(𝑛) = 𝑅𝜇(𝑛− 1) + 𝜎2
𝑤(𝑛)𝐼𝐿 (A.28)

𝑅𝑒(𝑛) = 𝑋𝐻(𝑛)𝑅𝑚(𝑛)𝑋(𝑛) + 𝜎2
𝑣(𝑛)𝐼𝑃 (A.29)

𝐾(𝑛) = 𝑅𝑚(𝑛)𝑋(𝑛)𝑅−1
𝑒 (𝑛) (A.30)

𝑒(𝑛) = 𝑑(𝑛)−𝑋𝑇 (𝑛)ℎ̂
*
(𝑛− 1) (A.31)

ℎ̂(𝑛) = ℎ̂(𝑛− 1) +𝐾(𝑛)𝑒*(𝑛) (A.32)

𝑅𝜇(𝑛) = [𝐼𝐿 −𝐾(𝑛)𝑋𝐻(𝑛)]𝑅𝑚(𝑛) (A.33)
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Appendix B

Source Code

B.1 NLMS

1 f unc t i on [mean_e , Lmisalignment , Rmisalignment ] =

NLMS_music_complex_MC(LREF,RREF, input , f i l t_ l eng th , order ,

step , reg ,K, f r e e z e , mis , h l e f t , h r i gh t )

2

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 %

5 %NLMS F i l t e r

6 % This code takes in two r e f e r e n c e s i g n a l s (LREF/RREF) and a

mic input

7 % s i g n a l and runs the a f f i n e p r o j e c t adapt ive a lgor i thm to

es t imate the

8 % room response . The a lgor i thm i s a g e n e r a l i z a t i o n o f the

NLMS algor ithm ,

9 % which r e s u l t s i f the order o f the a lgor i thm i s 1 . In t h i s

case , i t i s , so

10 % the code runs the NLMS algor i thm . Other input parameters

are the l enght
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11 % of the est imated f i l t e r , the s tep s i z e , ( reg ) u l a r i z a t i o n

parameter , and

12 % the f r e e z i n g po int o f the s imu la t i on .

13 %

14 %

15 %i n i t i a l i z a t i o n and va r i a b l e s

16 M = f i l t_ l e n g t h ; %f i l t e r l ength

17 N = order ; %f i l t e r order − how f a r

back we look at data − 1 f o r NLMS

18 time = length (LREF) ; %length o f s imu la t i on

19 de l t = reg ; %r e g u l a r i z a t i o n parameter

20 L_coef f s = ze ro s (M, 1 ) ; %f i l t e r c o e f f i c i e n t s

21 R_coeffs = ze ro s (M, 1 ) ;

22 L_prev_coeffs = ze ro s (M, 1 ) ;

23 R_prev_coeffs = ze ro s (M, 1 ) ;

24 e r r o r = ze ro s (N, 1 ) ; %e r r o r vec to r

25 mean_e = ze ro s (1 , time ) ;

26 Lmisalignment = ze ro s (1 , time ) ; %misal ignment vec to r f o r

l e f t

27 Rmisalignment = ze ro s (1 , time ) ; %misagl ienment vec to r f o r

r i g h t

28 L_A = ze ro s (M,N) ; %matrix with h i s t o r y o f

past inputs

29 R_A = ze ro s (M,N) ;

30 L_sigma_e = 0 ; %obse rvat i on no i s e var i ance

− i gno r e most o f the se as i t i s not r e a l l y used here

31 R_sigma_e = 0 ;

32 sigma_d = 0 ;

33 R_sigma_d = 0 ;

34 L_sigma_y = 0 ;
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35 R_sigma_y = 0 ;

36 B = 1 − 1/(K*M) ;

37

38

39 %algor i thm

40 f o r i = 1 : time

41

42 %input s t u f f − take in mic s i g n a l ( d_cur )

43 i f i < N

44 d_cur = [ f l i p l r ( input ( 1 : i ) ) z e r o s ( 1 , (N−i ) ) ] ;

45 e l s e

46 d_cur = f l i p l r ( input ( i− N + 1 : i ) ) ;

47 end

48

49 %sigma_d = B*sigma_d + (1 − B) *( conj ( d_cur (1 ) )*d_cur (1 ) ) ;

50

51 %Lef t r e f e r e n c e

52 %s h i f t in amount o f samples cor re spond ing to the f i l t e r

l ength

53

54 i f i < M

55 L_in = [ f l i p l r (LREF( 1 : i ) ) z e r o s ( 1 , (M−i ) ) ] ;

56 e l s e

57 L_in = f l i p l r (LREF( i− M + 1: i ) ) ;

58 end

59 L_A = [ L_in . ’ L_A( 1 :M, 1 :N−1) ] ; %update

matrix with newest l e f t input vec to r − j u s t a vec to r

f o r NLMS

60

61 L_y = ( L_coeffs ’ ) *L_in . ’ ;
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62 L_prev_coeffs = L_coef fs ;

63 L_sigma_y = B*L_sigma_y + (1 − B) *( conj (L_y)*L_y) ;

64

65

66 %Right r e f e r e n c e input

67 %s h i f t in amount o f samples cor re spond ing to the f i l t e r

l ength

68 i f i < M

69 R_in = [ f l i p l r (RREF( 1 : i ) ) z e r o s ( 1 , (M−i ) ) ] ;

70 e l s e

71 R_in = f l i p l r (RREF( i− M + 1: i ) ) ;

72 end

73 R_A = [ R_in . ’ R_A( 1 :M, 1 :N−1) ] ; %update

matrix with newest input vec to r − j u s t the vec to r f o r

NLMS

74

75 R_y = ( R_coeffs ’ ) *R_in . ’ ;

76 R_prev_coeffs = R_coeffs ; %save

prev ious c o e f f i c i e n t s

77 %R_sigma_y = B*R_sigma_y + (1 − B) *( conj (R_y)*R_y) ;

78

79

80 %ca l c u l a t e the e r r o r us ing l e f t and r i gh t r e f e r e n c e

81 e r r o r = d_cur . ’ − ( ( L_coeffs ’ ) *L_A + ( R_coeffs ’ ) *R_A) ;

%undisturbed e r r o r s i g n a l

82 % L_sigma_e = B*L_sigma_e + (1 − B) *( conj ( e r r o r (1 ) )* e r r o r

(1 ) ) ;

83 % R_sigma_e = B*R_sigma_e + (1 − B) *( conj ( e r r o r (1 ) )* e r r o r

(1 ) ) ;

84
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85

86 %ca l c u l a t e cur rent mu − l e f t (mu encompasses the s tep s i z e

and the input mu l t i p l i c a t i o n )

87 i f i < M

88 L_mu = step *L_A/((L_A’ ) *L_A + de l t * eye (N) ) ;

89 e l s e

90 L_mu = step *L_A/((L_A’ ) *L_A + de l t * eye (N) ) ;

91 end

92

93 %ca l c u l a t e cur rent mu − r i g h t

94 i f i < M

95 R_mu = step *R_A/((R_A’ ) *R_A + de l t * eye (N) ) ;

96 e l s e

97 R_mu = step *R_A/((R_A’ ) *R_A + de l t * eye (N) ) ;

98 end

99

100

101 %update l e f t and r i gh t c o e f f i c i e n t s

102 i f i < f r e e z e

103 L_coef f s = L_coef fs + L_mu*( e r ro r ’ ) ; %L_mu

and R_mu encompass the s tep s i z e and the input o f

the update equat ions

104 R_coeffs = R_coeffs + R_mu*( e r ro r ’ ) ;

105 e l s e

106 L_coef f s = L_prev_coeffs ; %

f r e e z e the c o e f f i c i e n t s

107 R_coeffs = R_prev_coeffs ;

108 end

109
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110 %ca l c u l a t e cur rent misal ignment and cur rent mean e r r o r −

j u s t the value

111 %fo r NLMS so e r r o r = s c a l a r

112 mean_e( i ) = e r r o r (1 ) ;

113

114

115 i f mis == 1

116 Lmis = norm ( ( h l e f t − L_coef f s ( 1 : l ength ( h l e f t ) ) ) ) ;

117 normL = norm( h l e f t ) ;

118 Rmis = norm ( ( hr i gh t − R_coeffs ( 1 : l ength ( hr i gh t ) ) ) ) ;

119 Lmisalignment ( i ) = 20* l og10 ( Lmis/normL) ;

120 Rmisalignment ( i ) = 20* l og10 ( ( Rmis ) /(norm( hr i gh t ) ) ) ;

121 end

122

123

124

125

126

127

128 end

B.2 GKF

1 f unc t i on [mean_e , Lmisalignment , Rmisalignment ] =

GKF_music_est_nov_complex_MC(LREF,RREF, input , f_length ,

order , reg ,K, f l ag , s_w, f r e e z e , mis , h l e f t , h r i gh t )

2

3

4 %Setup o f parameters

5 f_length = f_length ; %adapt ive f i l t e r
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l ength

6 order = order ; %" lookback " order −

how many block o f samples we look in the past

7 e = 0 .0000001 ; %smal l p o s i t i v e

constant f o r some i n i t i a l i z a t i o n s −used in o ld e r

s imu l i a t i o n s

8 Lsigma_w = s_w; %proce s s no i s e

var i ance

9 Rsigma_w = s_w;

10 l en = length (LREF) ; %s imu la t i on l ength

11 L_coef f_hist = complex ( z e r o s ( f_length ,800000) ) ;

12 Rcoe f f_hi s t = complex ( z e r o s ( f_length ,800000) ) ;

13 L_prev_coeffs = complex ( z e r o s ( f_length , 1 ) ) ;

14 R_prev_coeffs = complex ( z e r o s ( f_length , 1 ) ) ;

15

16

17 %Setup o f v a r i a b l e s

18 e r r o r = complex ( z e r o s ( order , 1 ) ) ; %e r r o r

s i g n a l

19 mean_e = complex ( z e r o s (1 , l en ) ) ;

20 Lmisalignment = ze ro s (1 , l en ) ;

21 Rmisalignment = ze ro s (1 , l en ) ;

22

23 %I n i t i a l i z a i o n o f v e c t o r s / matr i ce s

24 L_coef f s = complex ( z e r o s ( f_length , 1 ) ) ; %

adapt ive f i l t e r c o e f f s − ** in column vec to r form**

25 Rcoe f f s = complex ( z e r o s ( f_length , 1 ) ) ;

26 R_uL = complex ( e* eye ( f_length ) ) ; %

p o s t e r i o r i misal ignment au t o c o r r e l a t i o n matrix

27 R_uR = complex ( e* eye ( f_length ) ) ;
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28 R_mL = complex ( z e r o s ( f_length , f_length ) ) ; %p r i o r i

misal ignment au t o c o r r e l a t i o n matrix

29 R_mR = complex ( z e r o s ( f_length , f_length ) ) ;

30 R_eL = complex ( z e r o s ( order , order ) ) ; %p r i o r i

e r r o r au t o c o r r e l a t i o n matrix

31 R_eR = complex ( z e r o s ( order , order ) ) ;

32 K_nL = complex ( z e r o s ( order , f_length ) ) ; %Kalman

gain matrix

33 K_nR = complex ( z e r o s ( order , f_length ) ) ;

34 X_mL = complex ( z e r o s ( f_length , order ) ) ; %input

matrix

35 X_mR = complex ( z e r o s ( f_length , order ) ) ;

36

37

38 %output o f microphone , f o r no i s e c a l c u l a t i o n s

39 d = input ;

40

41 %simula t i on

42 f o r i = 1 : l en

43

44 %input s t u f f f i r s t

45 i f i < order

46 d_cur = [ f l i p l r (d ( 1 : i ) ) z e r o s ( 1 , ( order−i ) ) ] ;

47 e l s e

48 d_cur = f l i p l r (d( i− order + 1 : i ) ) ;

49 end

50

51 %Lef t r e f e r e n c e −populate input matrix with newest

r e f e r e n c e samples

52 i f i < f_length
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53 L_in = [ f l i p l r (LREF( 1 : i ) ) z e r o s ( 1 , ( f_length−i ) ) ] ;

54 e l s e

55 L_in = f l i p l r (LREF( i− f_length + 1 : i ) ) ;

56 end

57 X_mL = [ L_in . ’ X_mL( 1 : f_length , 1 : order −1) ] ;

58

59

60 %r i gh t r e f e r e n c e −populate input matrix with newest

r e f e r e n c e samples

61 i f i < f_length

62 R_in = [ f l i p l r (RREF( 1 : i ) ) z e r o s ( 1 , ( f_length−i ) ) ] ;

63 e l s e

64 R_in = f l i p l r (RREF( i− f_length + 1 : i ) ) ;

65 end

66

67 X_mR = [ R_in . ’ X_mR(1 : f_length , 1 : order −1) ] ;

68

69 %l e f t − p r ed i c t i on s tage

70 L_prev_coeffs = L_coef fs ;

71 i f i < f r e e z e

72 R_mL = R_uL + Lsigma_w* eye ( f_length ) ;

%c a l c u l a t e a p r i o r i

misal ignment au t o c o r r e a l t i o n matrix

73 end

74

75 %r i gh t − p r ed i c t i on s tage

76 R_prev_coeffs = Rcoe f f s ;

77 i f i < f r e e z e

78 R_mR = R_uR + Rsigma_w* eye ( f_length ) ;

%c a l c u l a t e a p r i o r i
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misal ignment au t o c o r r e a l t i o n matrix

79 end

80

81 %obse rvat i on s tage − l e f t

82 i f i < f r e e z e

83 R_eL = (X_mL’ ) *R_mL*X_mL + ( reg )* eye ( order ) ;

%c a l c u l a t e a p r i o r i e r r o r s i g n a l

au t o c o r r e l a t i o n matrix , i n c lude r e g u l a r i z a t i o n

parameter

84 K_nL = (R_mL*X_mL) /(R_eL) ;

%c a l c u l a t e Kalman

gain

85 end

86

87 %obse rvat i on s tage − r i g h t

88 i f i < f r e e z e

89 R_eR = (X_mR’ ) *R_mR*X_mR + ( reg )* eye ( order ) ;

%c a l c u l a t e a p r i o r i e r r o r s i g n a l

au t o c o r r e l a t i o n matrix , i n c lude r e g u l a r i z a t i o n

parameter

90 K_nR = (R_mR*X_mR) /(R_eR) ;

%c a l c u l a t e Kalman

gain

91 end

92

93

94

95

96 %Update Stage − l e f t and r i gh t

97 e r r o r = d_cur . ’ − ( (X_mL. ’ ) * conj ( L_coef fs ) + (X_mR. ’ ) * conj
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( Rcoe f f s ) ) ; %e r r o r − no noise , make sure the

t ranspose i s not complex conjugate !

98

99 i f i < f r e e z e

100 L_coef f s = L_coef fs + K_nL*( conj ( e r r o r ) ) ;

101 Rcoe f f s = Rcoe f f s + K_nR*( conj ( e r r o r ) ) ;

102 e l s e

103 L_coef f s = L_prev_coeffs ;

%f r e e z e f i l t e r c o e f f s

104 Rcoe f f s = R_prev_coeffs ;

%f r e e z e f i l t e r

c o e f f s

105 end

106

107 i f i < f r e e z e

108 R_uL = ( eye ( f_length ) − K_nL*(X_mL’ ) )*R_mL;

%update the p o s t e r i o r i misal ignment

au t o c o r r e l a t i o n matrix

109 R_uR = ( eye ( f_length ) − K_nR*(X_mR’ ) )*R_mR;

%update the p o s t e r i o r i misal ignment

au t o c o r r e l a t i o n matrix

110 end

111

112 Lnorm_coeffs = norm( L_coef fs − L_prev_coeffs ) ;

113 Rnorm_coeffs = norm( Rcoe f f s − R_prev_coeffs ) ;

114 i f f l a g == 1

115 Lsigma_w = s_w;

116 Rsigma_w = s_w;

117 e l s e

118 Lsigma_w = ( Lnorm_coeffs*Lnorm_coeffs ) /( order * f_length

99



) ;

119 Rsigma_w = ( Rnorm_coeffs*Rnorm_coeffs ) /( order * f_length

) ;

120 end

121

122 %get cur rent e r r o r f o r t h i s t imestep

123 mean_e( i ) = e r r o r (1 ) ;

124

125 %ca l c u l a t e misal ignment i f we can

126 i f mis == 1

127 Lmis = norm ( ( h l e f t − L_coef f s ( 1 : l ength ( h l e f t ) ) ) ) ;

128 normL = norm( h l e f t ) ;

129 Rmis = norm ( ( hr i gh t − Rcoe f f s ( 1 : l ength ( hr i gh t ) ) ) ) ;

130 Lmisalignment ( i ) = 20* l og10 ( Lmis/normL) ;

131 Rmisalignment ( i ) = 20* l og10 ( ( Rmis ) /(norm( hr i gh t ) ) ) ;

132 end

133

134

135 end

100



Appendix C

Miscellaneous

C.1 Under-modeling Analysis

It is clear that the estimated filter taps of the adaptive filter systems should not

converge to the real filter taps in under-modeling cases. This finding is seen by

considering the criteria that many adaptive filters: the mean square error

𝐸
{︀
|𝑒(𝑛)|2

}︀
A simple example below is sufficient to show this result. Consider an unknown echo

path modeled by

ℎ = [ℎ0, ℎ1, ℎ2]
𝑇

and say that the estimate filter is such that its length is less than the unknown path,

i.e.

ℎ̂(𝑛) = [ℎ̂0(𝑛), ℎ̂1(𝑛)]
𝑇
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The input is 𝑥(𝑛) and thus the error is defined as

𝑒(𝑛) = 𝑦(𝑛)− 𝑦(𝑛)

where

𝑦(𝑛) = [𝑥(𝑛), 𝑥(𝑛− 1), 𝑥(𝑛− 2)]ℎ = 𝑥(𝑛)ℎ0 + 𝑥(𝑛− 1)ℎ1 + 𝑥(𝑛− 2)ℎ2

𝑦(𝑛) = [𝑥(𝑛), 𝑥(𝑛− 1)]ℎ̂(𝑛) = 𝑥(𝑛)ℎ̂0(𝑛) + 𝑥(𝑛− 1)ℎ̂1(𝑛)

To find the corresponding filter coefficients of ℎ̂ that minimize the mean square error,

the following condition must be satisfied:

𝜕

𝜕ℎ̂𝑖

𝐸
{︀
|𝑒(𝑛)|2

}︀
= 0 for 𝑖 = 1, 2

Expanding the expression for the mean square error above results in

𝐸
{︀
|𝑒(𝑛)|2

}︀
= 𝐸

{︀
|𝑦(𝑛)− 𝑦(𝑛)|2

}︀
= 𝐸

{︀
𝑦2(𝑛)− 2𝑦(𝑛)𝑦(𝑛) + 𝑦2(𝑛)

}︀
Given that the partial derivatives are taken with respect to the estimated filter coef-

ficients, any term that does not contain these will not show up in the minimization.

Thus the first term 𝑦2(𝑛) need not be considered. Thus

𝐸
{︀
− 2𝑦(𝑛)𝑦(𝑛) + 𝑦2(𝑛)

}︀
= 𝐸

{︀
− 2[𝑥(𝑛)ℎ0 + 𝑥(𝑛− 1)ℎ1 + 𝑥(𝑛− 2)ℎ2][𝑥(𝑛)ℎ̂0(𝑛)

+ 𝑥(𝑛− 1)ℎ1] + [𝑥(𝑛)ℎ̂0(𝑛) + 𝑥(𝑛− 1)ℎ̂1(𝑛)]
2
}︀

= 𝐸
{︀
− 2[𝑥(𝑛)ℎ0 + 𝑥(𝑛− 1)ℎ1 + 𝑥(𝑛− 2)ℎ2][𝑥(𝑛)ℎ̂0(𝑛)

+ 𝑥(𝑛− 1)ℎ1] + [𝑥2(𝑛)ℎ̂2
0(𝑛) + 2𝑥(𝑛)𝑥(𝑛− 1)ℎ̂0ℎ̂1 + 𝑥2(𝑛− 1)ℎ̂2

1(𝑛)]
}︀
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Now, taking partial derivatives, and setting them to 0, the optimal filter coefficients

can be found.

𝜕

𝜕ℎ̂0

𝐸
{︀
|𝑒(𝑛)|2

}︀
=

𝜕

𝜕ℎ̂0

𝐸
{︀
− 2[𝑥(𝑛)ℎ0 + 𝑥(𝑛− 1)ℎ1 + 𝑥(𝑛− 2)ℎ2][𝑥(𝑛)ℎ̂0(𝑛)]

}︀
+

𝜕

𝜕ℎ̂0

𝐸
{︀
[𝑥2(𝑛)ℎ̂2

0(𝑛) + 2𝑥(𝑛)𝑥(𝑛− 1)ℎ̂0ℎ̂1]
}︀

= 𝐸
{︀
−2[𝑥2(𝑛)ℎ0 + 𝑥(𝑛)𝑥(𝑛− 1)ℎ1 + 𝑥(𝑛)𝑥(𝑛− 2)ℎ2]

}︀
+

𝐸
{︀
2[𝑥2(𝑛)ℎ̂0(𝑛) + 𝑥(𝑛)𝑥(𝑛− 1)ℎ̂1(𝑛)]

}︀
and

𝜕

𝜕ℎ̂1

𝐸
{︀
|𝑒(𝑛)|2

}︀
=

𝜕

𝜕ℎ̂1

𝐸
{︀
− 2[𝑥(𝑛)ℎ0 + 𝑥(𝑛− 1)ℎ1 + 𝑥(𝑛− 2)ℎ2][𝑥(𝑛)ℎ̂1(𝑛)]

}︀
+

𝜕

𝜕ℎ̂1

𝐸
{︀
[𝑥2(𝑛− 1)ℎ̂2

1(𝑛) + 2𝑥(𝑛)𝑥(𝑛− 1)ℎ̂0ℎ̂1]
}︀

= 𝐸
{︀
−2[𝑥(𝑛)𝑥(𝑛− 1)ℎ0 + 𝑥2(𝑛− 1)ℎ1 + 𝑥(𝑛− 1)𝑥(𝑛− 2)ℎ2]

}︀
+

𝐸
{︀
2[𝑥2(𝑛− 1)ℎ̂1(𝑛) + 𝑥(𝑛)𝑥(𝑛− 1)ℎ̂0(𝑛)]

}︀
where any terms not containing an ℎ̂0(𝑛) or ℎ̂1(𝑛) were not considered, since those

terms would simply be 0 after the respective derivative was taken. With this, the

following two equations should be satisfied in order to minimize the mean square error

𝐸
{︀
𝑥2(𝑛)ℎ0 + 𝑥(𝑛)𝑥(𝑛− 1)ℎ1 + 𝑥(𝑛)𝑥(𝑛− 2)ℎ2

}︀
= 𝐸

{︀
𝑥2(𝑛)ℎ̂0(𝑛) + 𝑥(𝑛)𝑥(𝑛− 1)ℎ̂1(𝑛)

}︀
(C.1)

𝐸
{︀
𝑥(𝑛)𝑥(𝑛− 1)ℎ0 + 𝑥2(𝑛− 1)ℎ1 + 𝑥(𝑛− 1)𝑥(𝑛− 2)ℎ2

}︀
= 𝐸

{︀
𝑥(𝑛)𝑥(𝑛− 1)ℎ̂0(𝑛) + 𝑥2(𝑛− 1)ℎ̂1(𝑛)

}︀
(C.2)
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By inspection of this result, it is easy to see that in this under-modeling case, the

taps that minimize the error will not be such that ℎ̂0 = ℎ0 and ℎ̂1 = ℎ1 , unless the

input is white. If the input is white, then the above result may be simplified as follows:

Equation C.1 can be simplified by further splitting the expectation operation:

LHS of C.1 = ℎ0𝐸
{︀
𝑥2(𝑛)

}︀
+ ℎ1𝐸

{︀
𝑥(𝑛)𝑥(𝑛− 1)

}︀
+ ℎ2𝐸

{︀
𝑥(𝑛)𝑥(𝑛− 2)ℎ2

}︀
RHS of C.1 = ℎ̂0𝐸

{︀
𝑥2(𝑛)

}︀
+ ℎ̂1𝐸

{︀
𝑥(𝑛)𝑥(𝑛− 1)

}︀
where if 𝑥(𝑛) is a white signal, with 𝐸

{︀
𝑥(𝑛− 𝑖)𝑥(𝑛−𝑗)

}︀
= 0 for 𝑖 ̸= 𝑗, then Equation

C.1 reduces to

ℎ0𝐸
{︀
𝑥2(𝑛)

}︀
= ℎ̂0𝐸

{︀
𝑥2(𝑛)

}︀
Following the same process but for Equation C.2, this also reduces to

ℎ1𝐸
{︀
𝑥2(𝑛− 1)

}︀
= ℎ̂1𝐸

{︀
𝑥2(𝑛− 1)

}︀
Thus, it is clear to see that to satisfy this and minimize the mean square error, then

ℎ̂0 = ℎ0 and ℎ̂1 = ℎ1
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C.2 Kalman Noise Variance: Practical Estimation

𝜎2
𝑤(𝑛) =

‖ℎ̂(𝑛)− ℎ̂(𝑛− 1)‖2
𝑃𝐿

(C.3)

This shows how practical estimation of the noise variance parameter can be

achieved using the estimated filter coefficients. The idea is that at the beginning

of the AEC processing, the filter coefficients will be changing rapidly and thus the

difference in the norm above will be large. As a result, the noise variance will be

large, which will contribute to good tracking. As convergence begins to occur, this

difference will get smaller and cause the noise variance to also get smaller, resulting

in better steady state error performance. This estimation aims to achieve a better

balance in the tracking/steady state error tradeoff that the Kalman filter suffers from.
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