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Abstract

Social learning is a crucial component of human intelligence, allowing us to rapidly adapt to
new scenarios, learn new tasks, and communicate knowledge that can be built on by others. This
dissertation argues that the ability of artificial intelligence to learn, adapt, and generalize to new
environments can be enhanced by mechanisms that allow for social learning. I propose several
novel deep- and reinforcement-learning methods that improve the social and affective capabilities
of artificial intelligence (AI), through social learning both from humans and from other AI agents.
First, I show how AI agents can learn from the causal influence of their actions on other agents,
leading to enhanced coordination and communication in multi-agent reinforcement learning. Sec-
ond, I investigate learning socially from humans, using non-verbal and implicit affective signals
such as facial expressions and sentiment. This ability to optimize for human satisfaction through
sensing implicit social cues can enhance human-AI interaction, and guide AI systems to take
actions aligned with human preferences. Learning from human interaction with reinforcement
learning, however, may require dealing with sparse, off-policy data, without the ability to explore
online in the environment – a situation that is inherent to safety-critical, real-world systems that
must be tested before being deployed. I present several techniques that enable learning effectively
in this challenging setting. Experiments deploying these models to interact with humans reveal
that learning from implicit, affective signals is more effective than relying on humans to provide
manual labels of their preferences, a task that is cumbersome and time-consuming. However,
learning from humans’ affective cues requires recognizing them first. In the third part of this
thesis, I present several machine learning methods for automatically interpreting human data and
recognizing affective and social signals such as stress, happiness, and conversational rapport. I
show that personalizing such models using multi-task learning achieves large performance gains
in predicting highly individualistic outcomes like human happiness. Together, these techniques
create a framework for building socially and emotionally intelligent AI agents that can flexibly
learn from each other and from humans.
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1 Introduction

In the last few years, a series of breakthroughs in machine learning—
and particularly deep learning—have led to an exciting surge of
progress in artificial intelligence (AI) research. Deep learning (DL)
has advanced technologies like automatic speech recognition (Graves
et al., 2013), machine translation (Bahdanau et al., 2016), computer
vision (Krizhevsky et al., 2012; Girshick et al., 2014; Hariharan et al.,
2011; Wei et al., 2016), and traditional AI research (Mnih et al., 2015;
Silver et al., 2016; Agrawal, 2018; Finn, 2018). The benefits of DL
for basic science (Evans et al., 2018), medicine (Ardila et al., 2019;
Jaques et al., 2017a), and sustainability (Rolnick et al., 2019) are
beginning to be realized. Machine learning (ML) now permeates
the products that we use every day; search engines like Google,
recommender systems like Netflix, personal assistants like Siri, etc.
The preponderance of such systems is only going to increase as
technologies like autonomous vehicles (Huval et al., 2015) become
more widespread.

Despite this inspiring progress, and despite the fact that many cur-
rent ML systems are part of interfaces that attempt to meet human
needs, modern ML still has a critical shortcoming: a lack of social
intelligence. Personal assistants cannot understand the meaning be-
hind a user’s tone of voice, autonomous vehicles cannot effectively
model the intentions of other cars or pedestrians, and recommender
systems cannot improve by adapting to the user’s changing mood
and wellbeing over time. Beyond simply improving ML as it is used
today, social learning could provide a general mechanism for enhanc-
ing the capabilities of AI more broadly. Many authors who study
human cognition argue that human social intelligence is a key driv-
ing factor behind our unique intelligence (Harari, 2014; Laland, 2017;
Henrich, 2015; Kleiman-Weiner, 2018). Research suggests that social
learning is responsible for our rapid cognitive evolution, and the cul-
tural evolution of our species, allowing us to achieve unprecedented
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progress and coordination on a massive scale (Herrmann et al., 2007;
Harari, 2014; van Schaik and Burkart, 2011). While current ML mod-
els struggle to learn from interactions with other agents or generalize
to unfamiliar tasks, humans’ social intelligence allows us to quickly
and flexibly learn from the behavior of others, and use this to adapt
to novel situations.

What if we could create AI with similar social learning abilities, such
that it could benefit from the knowledge of expert humans, or even
other agents? Previous research into learning from experts has often
focused on techniques such as Learning from Demonstration (LfD)
or imitation learning, in which an expert demonstrates each step of
executing a task (Chernova and Thomaz, 2014; Argall et al., 2009;
Abbeel and Ng, 2004; Schaal, 1999). Providing these demonstrations
requires a significant degree of human effort. Similarly, reinforce-
ment learning (RL) agents that learn from human guidance have
required a human to manually label correct and incorrect task per-
formance (Knox and Stone, 2009; Christiano et al., 2017). As I show
in this dissertation, this approach does not scale. In fact, the current
successes of ML in classification and supervised learning have de-
pended on large-scale, manually curated datasets with thousands of
human-generated labels (Russakovsky et al., 2015). Although humans
are providing these signals, we do not refer to this as typical social
learning, since no human child requires a parent to manually label
thousands of cats before she can learn the concept.

The fact that current ML systems still require such an intense degree
of explicit supervision slows the development of ML in areas for
which plentiful, labeled data and known metrics do not exist. Hu-
mans are often unwilling or unable to provide detailed supervision,
and human effort is a much more scarce and expensive resource than
training in simulation (Agrawal, 2018). This may explain why major
successes in deep reinforcement learning are often restricted to sim-
ulated environments (such as games), which have clearly specified
metrics to optimize (such as points). The limited scope of this type of
explicit supervision severely limits the applicability of ML in the real
world.

Intrinsic motivations for reinforcement learning (RL) suggest a
possible solution to this issue. The idea is to develop an incentive
that causes an agent to learn across multiple environments in the
absence of explicit supervision (Chentanez et al., 2005; Lenat, 1976;
Schmidhuber, 1991). Current research into intrinsic motivation has
proposed incentives like curiosity (a drive for novelty) (e.g. Pathak
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et al. (2017); Schmidhuber (1991)), and empowerment (a drive for the
ability to manipulate the environment) (e.g. Capdepuy et al. (2007)).
However, if we consider how humans learn, it is evident we are not
only motivated by drives for novelty and power.

As social animals, we find interacting with other people highly moti-
vating, and learn a great deal from these interactions (Bandura and
Walters, 1977). We enjoy developing relationships, and our ability
to do this is aided by our highly developed ability to sense one an-
other’s emotions (Kujawa et al., 2014). In fact, there is substantial
evidence that social and emotional processing is a key component of
our overall cognitive development and intelligence (Damasio, 1994),
and that emotion is heavily involved in the learning process (e.g.
(Kort et al., 2001)). There is a wealth of research demonstrating that
social interaction is not only inherently rewarding for humans, but
fundamental to our normal functioning. Social relationships have
been found to be important to wellbeing (Reis and Gable, 2003), cog-
nitive performance and mental health (Hawkley and Cacioppo, 2010),
and even physical health and recovery from illness (Cohen and Her-
bert, 1996; House et al., 1988). According to Social Learning Theory
(Bandura and Walters, 1977), observing the attitudes and behaviors of
others is central to how humans learn both intelligent behavior, and
how to adapt to new situations.

Given the fact that social interaction is inherently rewarding for
most humans and other animals, incorporating intrinsic1 social

1 Note that intrinsic is not a synonym
of internal; other people can be intrin-
sically motivating (Stavropoulos and
Carver, 2013).

motivations into AI agents could have beneficial implications for
their ability to learn and adapt. In this dissertation, I develop ML
methods for social learning, which lead to enhanced performance on
a variety of tasks. In the first part, I show how AI agents can learn
socially from other AI agents in simulations, through modeling the
behavior of other agents and learning how their actions affect others.
This leads to enhanced coordination and communication in complex
multi-agent social dilemmas. The second part presents methods for
learning from humans. Rather than requiring humans to explicitly,
manually label good performance, I focus on learning from implicit
social cues, such as people’s facial expressions, or the sentiment they
express in text.

Any AI system which is intended to interact with humans could
benefit from the ability to sense implicit social cues, because it can
use these cues to infer human preferences and therefore cater to those
preferences. Building systems that are intrinsically motivated to ad-
here to human needs is likely to lead to more safe and beneficial AI.
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However, this necessitates creating a system that has enough emo-
tional intelligence to both accurately sense social cues, and use them
to infer human mental states and preferences. Therefore, the third
part of this dissertation discusses how to use sophisticated machine
learning techniques to work with data from humans, and detect not
only superficial cues such as facial expressions, but also infer deeper
affective states such as stress, happiness, and conversational rapport.

This dissertation unites disparate ideas from Affective2 Computing,
2 Affective means relating to emotions
moods, feelings, and attitudes.

Human Robot Interaction, Machine learning and Reinforcement
Learning for the first time. I use automatic emotion recognition
techniques to allow AI agents to automatically sense implicit social
and emotional feedback, and use it as an intrinsically motivating
cue to improve. Because human data are scarce and noisy, I present
several methods for working with this data, including pre-training
on more readily available data and fine-tuning with human feedback.
I also propose new types of intrinsic social motivation for deep RL
which improve coordination and communication among multiple
agents training in simulation. I investigate several research questions
related to how to improve the social and emotional intelligence of AI
agents, and study whether this can result in faster learning and better
performance. For example, can a generative model produce better
art if it is aware of the facial expressions made in response to the
samples it generates? Can a conversational AI produce better dialog
if it is rewarded when human responses to its utterances have more
positive sentiment? Can agents in a multi-agent environment learn
socially from the behavior of other agents, and will this help them to
learn more coordinated behavior?

Incorporating social and affective intelligence into ML is a promising
direction for improving the intelligence, robustness, and adaptability
of future AI. Social learning is a core component of human intelli-
gence, allowing us to rapidly adapt to new scenarios and transmit
knowledge. Pursuing the development of social and emotional AI
will provide the immediate benefit of building AI systems that can
collaborate more effectively with humans, and the long-term research
benefit of developing AI systems that learn more generally and
flexibly. Current AI models suffer from an often deleterious lack of
ability to generalize to new situations or benefit from the implicit
feedback they receive when deployed. I believe that social learning
may provide a path to overcoming this problem.
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1.1 Part I - Social learning from other AI agents

The fact that most ML systems still rely heavily on explicit supervi-
sion hampers the development of broadly applicable, generalizable
models. Reinforcement Learning (RL) provides a paradigm that al-
lows agents to learn from ongoing interaction with the environment,
yet successes in RL have largely been restricted to simplified, sim-
ulated domains where correct performance is described through a
fully specified reward function such as points in a game. For real-
world tasks, such a reward function is unlikely to be available,
and designing a hand-engineered reward function can be a time-
consuming and error-prone process (Agrawal, 2018). Such reward
functions may be vulnerable to trivial exploitation, where the learner
is able to maximize reward without actually learning useful skills. In
subjective domains, it may not even be possible to design the reward
function. What computable metric accurately describes beautiful
music?

Deriving rewards from social interaction may help to overcome these
problems, since social rewards are inherently dynamic and constantly
evolving. As one agent learns and adapts to the environment, the
other agent must continually adapt as well. This is clearly obvious
in competitive games; as the strategies of one player get more so-
phisticated, the other player must improve in order to compete. The
dynamic, non-stationary nature of multi-agent learning may provide
an inherent autocurriculum (Leibo et al., 2019), which continually
pushes agents to improve (as demonstrated in recent work on com-
petitive hide-and-seek (Baker et al., 2019)). Social rewards are not
trivially exploitable; if one agent discovers an exploitative strategy,
the other can learn to defend against it. Thus, by making it inherently
rewarding for an agent to interact with another agent, it may be pos-
sible to engender complex behavior for scenarios in which there are
multiple agents sharing a common environment. For this reason, re-
searchers have recently begun to explore social intrinsic motivations
for multi-agent systems (Hughes et al., 2018; Peysakhovich and Lerer,
2018).

However, existing multi-agent research makes assumptions that are
not realistic for real-world social learning. For example, many works
(e.g. Foerster et al. (2016, 2017); Lazaridou et al. (2018); Cao et al.
(2018); Hughes et al. (2018)) assume that agents are able to share
private information such as rewards, observations, or even gradients
during training time. These assumptions are not valid for real-world
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scenarios with competitive agents, agents with internal intrinsic
motivations, or agents developed at different institutions, and most
importantly, cannot generalize to learning from humans.

In Chapter 3, I present a new type of intrinsic social motivation for
multi-agent learning, where agents are motivated to have a causal
influence over the actions of another agent (Jaques et al., 2019b).
This is related to rewarding the mutual information between agents’
actions. This novel form of social empowerment drives agents to
learn to communicate and coordinate in complex, multi-agent social
dilemma tasks. Unlike previous work in multi-agent reinforcement
learning, our agents are able to learn socially from each other, while
still training independently. This is accomplished by equipping each
agent with a predictive model of the other agents. An agent can
thus ask itself counterfactual questions of the form, “What would
the other agent do if I had taken this action instead?”, and use its
internal model to simulate the answer. The ability for agents to
understand the causal impact of their actions on other agents and
their environment is a promising future direction for enhancing
social learning in AI.

1.2 Part II - Social and affective learning from humans

Beyond improving the long-term intelligence and generalizability of
AI, social learning mechanisms could provide an immediate benefit
to the ML systems deployed today. In order to make these systems
as satisfying and useful to people as possible, we want to train ML
algorithms to directly optimize for human preferences. Past work
that trained RL algorithms based on human preferences required
humans to manually label good performance with explicit button
presses (Christiano et al., 2017; Knox and Stone, 2009; Brochu, 2010).
However, as I will show in this dissertation, asking users to manually
report their preferences and feedback is cumbersome and does not
scale.

Consider an AI that is intrinsically motivated to produce positive
social responses in the humans with whom it interacts, perhaps
deployed within a personal assistant such as Alexa or Siri. When a
user responds with an angry or frustrated tone, this could act as a
negative incentive, training the model not to repeat the action that led
to the user’s frustration. Rather than requiring the user to manually
train the device, such passive sensing of the user’s emotional state
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could allow the model to learn quickly and at scale, enabling human-
in-the-loop training without extra human effort. Although implicit
human feedback is likely to be noisy and subject to individual dif-
ferences, it could be used in a wide range of contexts where people
interact with ML systems. Crucially, the representations learned by a
socially motivated agent are more likely to capture dimensions of the
task that are relevant to human behavior and satisfaction.

Finally, some machine learning problems are really questions about
human judgement and taste. What does it mean for an image to look
more like art, a song to be more moving, or a joke to be more funny?
When the objective function is aesthetic preference, it cannot be
approximated without access to human input. Using social incentives
as a reward could enable training a model to perform these tasks,
and others that involve complex social interactions, where no other
current technique can make progress.

Thus, Part II of this dissertation explores learning from human
interaction; in particular, learning from implicit social and affective
cues. Learning from humans is challenging; human data are scarce,
so it is important that algorithms work efficiently and effectively with
limited data. Further, it may be unwise to continually update the
model as it is interacting with human users, because it may begin to
learn inappropriate or unsafe behavior. In Chapter 4 I tackle both of
these issues in the context of learning from implicit cues in human
conversation. To use the human data as efficiently as possible, I first
pre-train a reasonable model using readily available data, and then
use transfer learning to fine-tune it with respect to human feedback.
To ensure that the model does not learn inappropriate behavior
while interacting with humans, I develop novel deep reinforcement
learning algorithms for successfully learning from a fixed batch
of limited human interaction data, without allowing the model to
explore online in the human environment (Jaques et al., 2019a). This
ability is needed for any safety-critical real-world RL system that
must be tested before being deployed to interact with humans. I
show that learning from implicit signals such as sentiment expressed
in the text is more effective than relying on explicit, manual feedback.
In Chapter 5, I use a different transfer learning technique to improve
a deep generative sketching model using the facial expressions of
humans viewing samples from the model. This was the first work to
show that a deep generative model could be improved with implicit
cues such as facial expressions (Jaques et al., 2018).
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1.3 Part III - Detecting social and affective states

Learning from implicit social cues is important because people
convey a large volume of information through nonverbal channels
(Mehrabian, 2017). Nonverbal communication—i.e., gestures, body
language, tone of voice—not only supplements language, but in
some cases can actually replace it (Argyle, 1972). Think of how
easily we can detect that our friend or partner is ready to leave a
party from across a crowded room. Humans are incredibly effective
communicators, readily recognizing emotions in others even when
nothing is said explicitly. For AI to work well with humans and in
human environments, it should be able to read the rich information
sent through nonverbal channels.

However, simply detecting cues such as a smiling facial expression
may not be enough to determine a person’s underlying mental state.
Understanding the broader context in which such a cue occurs can be
critical to interpreting it (Kosti et al., 2019). An AI that is motivated
to satisfy humans may be more safe, but how can it determine when
a human is really satisfied? Such a system requires the emotional
intelligence to make inferences about humans’ underlying and ongo-
ing mental state. In this dissertation, I present several studies which
use a variety of data sources to predict people’s underlying affective
states. In Chapter 6, I focus on predicting whether two people having
a conversation are bonding with each other; i.e., experiencing rapport
or ‘chemistry’. I show that ML models can accurately predict bond-
ing using only short, one-minute snippets of facial expressions and
body language (Jaques et al., 2016b,a).

Predicting internal affective states is challenging for a number of
reasons, one of which is that collecting and working with human
data can be exceptionally difficult. Not only is it expensive to collect,
but it is often noisy, sparse, or incomplete. In Chapter 7, I show how
to use machine learning techniques to overcome these problems. I
present a method for learning to reliably predict affective outcomes
even when whole data sources go missing; a common problem if a
participant forgets to wear a physiological sensor, or does not want to
provide a particular data source, such as location data (Jaques et al.,
2017b). I also show how to use machine learning to accurately detect
artifacts in electrodermal activity (EDA), a useful physiological signal
for detecting psychological states like stress (Taylor et al., 2015).

Finally, Chapter 8 presents the culmination of several years of work
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into the problem of predicting a person’s wellbeing; specifically, their
next day happiness, stress, and health (Jaques et al., 2015a,b, 2016c;
Taylor et al., 2017). Data are collected primarily from unobtrusive
devices such as smartphones or wrist-worn physiological sensors. We
show that generic machine learning methods result in disappoint-
ingly low performance on this task, despite sophisticated feature
extraction efforts (Jaques et al., 2015a). However, by leveraging multi-
task learning techniques to personalize these models and therefore
account for individual differences, we are able to achieve a more than
20% improvement in prediction accuracy (Jaques et al., 2016c). Anal-
ysis of the learned multi-task models reveals that people react to the
same stimuli in dramatically different ways, underscoring the need
for custom, personalized models (Taylor et al., 2017). The ability to
accurately model long-term wellbeing could help future ML systems
optimize for human flourishing, rather than trivially optimizing for
metrics such as clicks or watch time with destructive consequences
(Roose, 2019).

1.4 Related work

The methods proposed here are related to a rich history of research
in Affective Computing, Human Robot Interaction, Reinforcement
Learning, and Deep Learning. This dissertation brings these diverse
directions together for the first time, in order to build state-of-the-art
AI agents that are motivated to learn socially, and are able to infer
complex information from social and affective cues.

1.4.1 Affective Computing

The field of Affective Computing includes using computational
techniques to recognize, interpret, and process human emotion
and affective states, as well as building emotional mechanisms into
machines (Picard, 2000). Early research looked at endowing AI
agents with emotional intelligence or emotional learning mechanisms.
For example, Hyung-il and Picard (2006) propose a modification
to the traditional Q-learning function that incorporates valence
and arousal. Gadanho and Hallam (2001) incorporate emotions
like fear and anger into a robot navigating a physical environment
environment. Emotions arise from basic sensations like hunger, pain,
and restlessness, driven by not obtaining enough energy, bumping
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into walls, and not moving for too long, respectively. For a survey of
emotions in RL agents, see Moerland et al. (2018).

A plethora of affective computing studies have focused on detecting
human emotion, using data such as facial expressions (e.g. Tian et al.
(2001)), text (e.g. Shivhare and Khethawat (2012)), electroencephalo-
gram (EEG) (e.g. Ramirez and Vamvakousis (2012)), electrodermal
activity (EDA) (e.g. Zangróniz et al. (2017)), electrocardiogram (ECG)
(e.g. Valenza et al. (2014)), voice (e.g. Cho and Kato (2011)), and even
eye-tracking data (e.g. Jaques (2014)). Existing research tends to stop
here, rather than actually using the detected emotions to train the
AI to improve. Very recently, a few authors have been able to use
the sentiment in language to guide text generation (Shin et al., 2019),
and to provide cues to assess whether instructions for a robot were
positive or negative (Krening et al., 2017). However, there is very little
work in which detected human emotions serve as an intrinsically
motivating reward function.

1.4.2 Human Robot Interaction

Although this dissertation is not concerned with training robots, the
field of human robot interaction (HRI) has investigated questions
related to social learning from humans. Many studies use Learning
from Demonstration (LfD) (Chernova and Thomaz, 2014; Argall
et al., 2009) or imitation learning (e.g Duan et al. (2017); Finn et al.
(2017b); Abbeel and Ng (2004); Schaal (1999)) to teach a robot how
to complete a task by having a human expert demonstrate correct
performance. However, such approaches are brittle, because the robot
may have little guidance on how to complete the task if it strays
from the demonstrated method, and obtaining manual demonstra-
tions requires time consuming human effort and thus may not scale
(Agrawal, 2018). This dissertation presents techniques which first
pre-train a reasonable policy using readily available data, and then
fine-tune the policy using implicit human reactions. This approach
is more robust and scaleable, and does not require humans to take
special steps to train the model.

Beyond imitation learning, several HRI studies have looked at inter-
active learning with human feedback. Thomaz and Cakmak (2013)
build robots that use active learning to ask questions of human train-
ers. Some of this work incorporates nonverbal cues, in addition to
verbal instructions, but relies on heavily engineered task represen-
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tations in order to learn (Lockerd and Breazeal, 2004; Thomaz and
Breazeal, 2007). Kim and Pineau (2016) use inverse RL to learn how
humans typically move in crowded environments, and show that
training with this model allows a robotic wheelchair to navigate in
a more efficient and natural manner. However, although prominent
works in HRI have considered the importance of social cues (Breazeal,
2000), often these works take a human-computer interaction (HCI) ap-
proach, focusing on engineering robot social signals and measuring
human responses to them, rather than developing new mechanisms
for improving AI algorithms. For example, Breazeal et al. (2005) cre-
ate a robot that responds to human gestures with non-verbal social
cues and conduct a human evaluation demonstrating that humans
prefer this type of social robot, but do not incorporate machine learn-
ing or reinforcement learning into the design.

While the field of HRI has long recognized the importance of robots
that can recognize human nonverbal social cues, few works have
developed new algorithms for learning from these social signals, or
agents that are intrinsically motivated to produce positive reactions
in humans. Such ideas could apply much more broadly than in the
field of robotics, and improve the usefulness of modern RL and deep
learning techniques.

1.4.3 Reinforcement Learning and Deep Learning

Intrinsic motivation for RL agents is predicated on the idea that rather
than wasting time developing complex reward functions for each
domain in which we would like to train an RL agent, it may be more
important to invest effort in developing a sophisticated, generalizable
motivation system that would be applicable across a number of prob-
lems (Chentanez et al., 2005; Lenat, 1976; Schmidhuber, 1991). Once
experiments have established the usefulness of a given motivation in
several tasks, it could be deployed across a number of systems to im-
prove learning. Originally a concept from the psychology literature,
intrinsic motivation refers to the desire to perform an activity for the
inherent satisfaction or fun that it provides, rather than because of
some expectation that it will eventually lead to a desirable outcome.
For example, psychologists theorize that humans may find it inher-
ently enjoyable to rapidly learn to perform a task that they initially
could not, regardless of whether performing the task will lead to any
personal gain (Oudeyer et al., 2008).



42

There have been several approaches to designing intrinsic moti-
vations for RL. A common thread has been to reward curiosity or
novelty by encouraging the agent to discover new or unpredictable
stimuli (e.g. Oudeyer et al. (2008)). This can be implemented by re-
warding actions which led to high error in predicting future states
(e.g. (Still and Precup, 2012)). To avoid curious agents becoming dis-
tracted by random effects in the environment, it is possible to learn
a representation which only encodes information relevant to taking
actions, and reward prediction error in this this representation space
(Pathak et al., 2017).

Other approaches focus on encouraging the agent to find knowledge
and competence rewarding. Schmidhuber (2010) proposed that an
agent should seek to maximize the first derivative of its learning
progress in training an internal model of world dynamics. This also
combats the problem of being curious about random effects; since
the agent will make no progress in predicting random elements such
as white noise, it will not be motivated to focus on learning about
those parts of the environment. Such an approach has been referred
to as a drive for surprise (Mohamed and Rezende, 2015). A similar
intrinsic motivator is known as empowerment, which can be defined as
maximizing the mutual information between a sequence of K actions
beginning in state t and the final state st+K (Capdepuy et al., 2007;
Mohamed and Rezende, 2015). Empowerment can encourage an
agent to learn complex behavior because it will seek to move to states
in which it can exert more control over future states. By optimizing
for empowerment, the agent is optimizing for the ability to influence
its environment.

Social intrinsic motivation has also been proposed as a way to drive
learning (Breazeal et al., 1998). Recently, motivations such as inequity
aversion (Hughes et al., 2018) have been used to drive cooperation in
multi-agent systems. However, as with much of contemporary multi-
agent research, this work depends on agents being able to view other
agents’ rewards, which is not compatible with other agents having
unknown intrinsic motivations, or with learning from humans. It is
surprising that more deep RL work on intrinsic social motivation has
not incorporated human feedback, but perhaps it can be explained by
the fact that some deep learning experts feel that “relying on humans
for measuring rewards does not scale and is tedious” (p.12) (Agrawal,
2018).

Existing RL work that does incorporate human feedback has largely
been restricted to learning from explicit, manually labeled rewards.
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For example, Knox and Stone (2009) had humans observe an RL
agent playing simple games like Mountain Car, and press a button
when they observed the agent taking an action that they would like
to reward. Christiano et al. (2017) demonstrated that training a deep
RL model with human feedback can lead to better performance
in some Atari games. Here, rather than asking humans to reward
individual actions, humans were asked to choose which of two
videos of action trajectories they preferred. While the ideas presented
in these papers serve as useful examples of how to learn from human
preferences, both models were trained manually by requiring humans
to explicitly indicate feedback through button presses. In contrast,
automatically inferring preference through passively observing a
user’s emotional response requires no additional effort on the part of
the user, and could be used in a wide range of contexts where people
interact with ML systems.

1.5 Contributions

The goal is to establish that endowing AI agents with social and
affective methods for learning can result in better performance across
a variety of tasks and environments, and lead to the development of
models that are better able to meet human preferences and adapt to
new circumstances. In service of this goal, this dissertation makes the
following contributions:

• Novel algorithms for multi-agent social learning, leading to en-
hanced communication and coordination among agents.

• Novel techniques for learning effectively from limited human
data with reinforcement learning, even when it is not possible to
explore online in the environment.

• Deep learning models that improve through sensitivity to social
and affective feedback such as facial expressions.

• Machine learning techniques for effectively dealing with noisy,
limited, missing, and sparse human data

• Machine learning models that can detect whether two humans are
bonding with each other, based on their implicit social cues.

• Personalized multi-task learning models that can account for
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individual differences when predicting affective outcomes like
stress and happiness, while still learning from data from across the
population.

In addition to these conceptual contributions, the above research
has also led to the production of several research artifacts, including
fourteen peer-reviewed publications (Jaques et al., 2019b,a, 2017a,
2018, 2017b, 2016b,a,c, 2015a, 2017c, 2015b; Ghandeharioun et al.,
2019; Taylor et al., 2015, 2017), open-source software to support
these projects (see https://github.com/natashamjaques and https:

//github.com/mitmedialab/), and an online tool which deploys some
of the trained machine learning models to help other researchers
(https://eda-explorer.media.mit.edu/).

Further progress towards social and affective AI will require integrat-
ing in-depth knowledge of affective computing, psychology, machine
learning, deep learning, and reinforcement learning, in order to
develop models that can effectively infer others’ intentions and pref-
erences, learn from their expertise, and coordinate with them in novel
tasks and environments. If these efforts are successful, it could poten-
tially lead to the development of a smarter, more functional AI, that
is more aligned with our human behavior, goals, and preferences.

https://github.com/natashamjaques
https://github.com/mitmedialab/
https://github.com/mitmedialab/
https://eda-explorer.media.mit.edu/
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Machine learning (ML) is an area of artificial intelligence (AI) con-
cerned with systems that can learn from data and improve without
being explicitly programmed. Mitchell (1997) formalizes the concept
of learning as being able to improve performance on a task given
new experience with the task. Thus, we can define machine learning
algorithms as those that can improve their performance in response
to more data or experience. In practice, modern ML often relates to
finding patterns in large-scale data. This ability enables us to develop
solutions to tasks that are too difficult to be solved with a set of fixed,
manually curated instructions written by humans (Goodfellow et al.,
2016). Dramatic progress in ML has occurred over the past decade,
thanks in large part to deep learning (DL) (Girshick et al., 2014; Gir-
shick, 2015; Lin et al., 2017; Hariharan et al., 2011; He et al., 2017; Cao
et al., 2017; Carreira et al., 2016; Wei et al., 2016; Russakovsky et al.,
2015; Agrawal, 2018).

Because this thesis will make use of methods from traditional ML,
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DL, and reinforcement learning (RL), this chapter provides an intro-
duction to these topics. Section 2.1 presents a broad overview of ML
and introduces some general, basic models used in later chapters. DL
is introduced in Section 2.2, which explains both general concepts
behind all deep learning algorithms, as well as basic types of deep
learning models. Finally, Section 2.3 introduces RL. The goal of this
chapter is not a comprehensive review of these topics, but rather
to provide enough background to understand the rest of the thesis.
For more in-depth reviews of ML please see Bishop (2006); Murphy
(2012), for DL see Goodfellow et al. (2016), and for RL see Sutton and
Barto (1998).

2.1 Machine learning

Machine learning typically involves learning from a matrix of data,
X ∈ Rn×m, where n is the number of data points, and m is the
number of features. A feature is a measurable property of the data
point. For example, in the classic data set containing examples of
different types of iris flowers (Fisher, 1936), one of the features is
the petal length in cm. Each row of the data matrix X is an example
data point, x ∈ Rm. In the case of the iris dataset, each row would
describe the features of a particular flower. We can think of each row
as a vector, and each entry of the vector represents the value of the
data point for a particular feature. For example, X3,2 is the value of
feature 2 of example 3.

2.1.1 Types of ML problems

One of the most frequent use cases of machine learning is supervised
learning. In supervised learnig, we are not only given a matrix of
data X, but each data point xi also has an associated label, yi. In
this case, we would like to learn how to predict the correct label
of a new data point the model has never seen before, by learning
a mapping f : X → Y, where X is the input space and Y is the
output space. When the output or label is a real value, f : Rn → R,
we call the problem regression. An example regression problem
is predicting the price of a home based on its features, such as the
square footage and the location. When the output is a categorical
variable, f : Rn → {1, ..., k}, we call the problem classification. An
example classification problem would be determining which images
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contain a picture of a cat, and which contain pictures of dogs. The
iris data set is also a classification problem: we seek to predict the
type of a particular iris, out of the classes iris setosa, iris virginica, or
iris versicolor (as shown in Figure 2.1). In some cases, we may actually
wish to learn a probabilistic model which learns the conditional
probability of the output, f (x) = p(y|x).

Figure 2.1: Data from the iris
dataset proposed by Fisher
(1936). The x and y axes are two
of the features. The left figure
shows the true labels for each
of the data points, where red
points belong to the setosa class,
pink are virginica, and green
are versicolor. The right figure
shows an assignment of each
point to a cluster, learned via
k-means clustering. Taken from
Sanchez (2018).

In unsupervised learning, we are not given any labels Y and must
use only the data points of the matrix X to extract patterns from
the data. We might seek to estimate the probability distribution that
generated the data, or impute missing values (Goodfellow et al.,
2016). Often we may wish to group the data into related clusters. A
well-known clustering algorithm is k-means clustering (MacQueen
et al., 1967), which learns to assign each data point to one of k clus-
ters such that the distance between all points within the same cluster
is minimized. Formally, it partitions the n observations into k sets
S = {S1, S2, ..., Sk} to minimize:

arg min
S

k

∑
i=1

∑
x∈Si

||x− µi||2

where µi is the mean of the points in cluster Si. Figure 2.1 (right)
shows an example of k-means clustering applied to the iris data. In
this example, with only two features and no access to the true labels
Y, k-means is not able to learn a partitioning of the data into clusters
that matches the true labels.

Not all ML problems fall neatly into the supervised/unsupervised
division. Often reinforcement learning (RL) is considered a third
major category of ML; we will discuss RL in Section 2.3. Or, a prob-
lem might be semi-supervised, if some examples have a supervision
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target y, while others do not. Another category of task is referred
to as structured prediction. In this case, the output Y is a vector or
other data structure with multiple values, including a finite set, a
subset of finite sequences, etc. (Goodfellow et al., 2016). Structured
prediction problems include translation, scene labeling, and part of
sentence tagging. Still other types of ML tasks exist; for a review, see
Goodfellow et al. (2016); Murphy (2012).

2.1.2 Supervised learning

In the following section, we will dive into supervised learning as a
test case that can help explain important ML concepts, such as opti-
mizing a loss function. We will describe several common supervised
learning techniques for both regression and classification.

In supervised learning, we are attempting to predict the label y of
a data point x. Thus, we make a prediction ŷ = f (x). To learn to
make better predictions, we need to optimize some measure of the
performance of our model. Typically, this is framed as minimizing a
loss function, L(x, y).

Consider the case of learning a linear regression model:

ŷ = wTx (2.1)

Here, w is a vector containing the parameters of the model, which we
will often refer to as weights throughout this thesis. Each weight wi

is the coefficient that will be multiplied by feature i. If a feature has
a positive weight, it will increase the value of our prediction ŷ, while
features with a negative weight will decrease our predicted ŷ. Large
weights will affect the prediction a lot, while small weights will not.

How can we learn useful values for the weights that will help us
make predictions about our data? Consider the following mean
squared error loss function:

L̂(X, y) = 1/n
n

∑
i=1

(ŷi − yi)
2 (2.2)

This loss sums the difference between our predicted ŷi and the true yi

over all data points i. Therefore, it computes the total prediction error
we make on our dataset, which is a quantity we want to minimize.
We can minimize the error by substituting wTx for ŷ, and finding the
point at which the gradient of the loss with respect to the parameters
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w is 0 (i.e. ∇w L̂ = 0). Doing this, we can determine that the optimal
weight vector is:

w = (XTX)−1XTyT (2.3)

For an example of this proof, see Goodfellow et al. (2016).

Figure 2.2: Logistic sigmoid
function.

Say that we wanted to modify our linear regression model slightly to
be able to do binary classification. Logistic regression makes use of
the logistic sigmoid function (plotted in Figure 2.2):

σ(x) =
1

1 + e−x (2.4)

The logistic function is applied as a non-linear activation function to
transform the output of wTx. Note that the logistic function in Eq.
2.4 is bounded between 0 and 1. This allows logistic regression to
learn the probability that a given example x belongs to a particular
class:

p(y = 1|x) = σ(wTx) (2.5)

To make a decision about which class the example belongs to, we can
simply apply a threshold to the learned probability. If p(y = 1|x) >
0.5, the example is classified as belonging to class 1. Although logistic
regression does not have a simple closed form solution, the loss is
convex and easily optimized (Goodfellow et al., 2016).

Classification models learn a decision boundary: a plane that sepa-
rates the input space into regions where the model predicts one class
versus the other. Figure 2.3 shows an example decision boundary as
a line in a 2D plane. Examples to the right of the line are classified
as belonging to the blue class, examples to the left are classified as
belonging to the red class. Support vector machines (SVMs) are a
special type of classification model that seeks to maximize the mar-
gin between the decision boundary and any of the data points (see
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Figure 2.3: A classification
model learns a decision bound-
ary (red line) that divides the
red and blue classes. Dotted
lines show the margin of the
decision boundary. Reproduced
with permission from Mubaris
(2017).

Figure 2.3). For a more comprehensive review of SVMs and other
common machine learning algorithms, see Bishop (2006); Murphy
(2012).

2.1.3 Generalization

The central challenge of machine learning is to improve generaliza-
tion, which is the ability to perform well on previously unseen inputs
(Goodfellow et al., 2016). If we assume that the true distribution
which generates the data (in the world) is p∗X , then the generalization
error is:

Ex∼p∗X [L( f , x)] (2.6)

However, there is usually no way to compute this quantity, since
we only have access to a finite amount of data D, sampled from p∗X.
Therefore, we can only compute the empirical loss (or empirical
risk) on our n data points:

L̂( f , D) = 1/n
n

∑
i=1

L( f , xi) (2.7)

Typically, we divide our data into three subsets: the training, valida-
tion, and test sets. We attempt to minimize the empirical loss on the
training set, and—only once we have finalized our model—measure
the empirical loss on the test set as a proxy for the generalization
error1. If we are able to assume the data are independent and identi-

1 It is very important never to contam-
inate the test data by using it to select
parameters, features, or model types.
Otherwise the test data no longer pro-
vides a good proxy for generalization
error. We can use the validation set to
measure which model settings improve
performance.

cally distributed (IID)—meaning, sampled independently from same
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data-generating distribution p∗X—we can mathematically study the
relationship between training and test error (Dinh, 2018). This is the
subject of the field of statistical learning theory.

The difference between the training error and the validation error
is an important diagnostic measure that can identify two common
phenomena: underfitting and overfitting. Underfitting occurs when
a model is not able to accurately fit even the training data, and can
be diagnosed when the training (or approximation) error is high.
The power of the model to accurately fit the data is called the model
capacity, and if it is too low then underfitting can occur. For example,
the capacity of a logistic regression model that is only able to learn
a linear classification boundary might be too low to accurately fit a
curved function, as shown in Figure 2.4.

(a) Underfitting (b) Appropriate capacity (c) Overfitting

Figure 2.4: A classification task
where the model must sepa-
rate class 1 (green X’s) from
class 2 (circles). Three decision
boundaries are shown in red.
Underfitting occurs when the
model capacity is not sufficient
to accurately partition the data
(a). Here, a linear decision
boundary is too simple for the
curved distribution of the class
labels. However, if the model
capacity is too great, it may
overfit the data, perfectly cap-
turing the idiosyncracies of the
training data at the expense of
generalization error (c). Figures
from Nautiyal (2019).

However, if the model capacity is too high, it might begin to overfit
the data. In this case, it may learn to memorize the idiosyncracies
of the training data, rather than learning a generalizable function.
This phenomenon is shown in Figure 2.4 (c), where the decision
boundary has enough degrees of freedom to include specific training
points, but these spurious patterns are unlikely to occur in the test
set. We can control the model capacity by altering the hypothesis
space, which is the set of possible functions that our model is able to
learn. For example, we can increase the capacity of a linear regression
model to allow it to fit polynomial functions, by changing the model
from ŷ = wx + b to ŷ = w2x2 + w1x + b (Goodfellow et al., 2016).
Statistical learning theory gives us ways of formally quantifying
model capacity. Vapnick-Chervonenkis dimension (VC dimension)
describes the capacity of a binary classifier as the largest possible
training data set size n for which the classifier can label each data
point arbitrarily.

The bias-variance tradeoff is an important idea that relates to overfit-
ting and underfitting. Bias error is a result of incorrect assumptions
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made by the learning algorithm; for example, assuming the true de-
cision boundary is linear when it is actually curved. High bias can
lead to underfitting and therefore high training or approximation
error. Variance (Var(ŵ)) describes how much the solution found by
the learning algorithm is sensitive to small fluctuations in the training
data. If the model has high variance, we expect that the solution may
change significantly if we re-sample a new dataset (Goodfellow et al.,
2016).

Ideally, we would like to minimize both bias and variance, but often
there is a tradeoff: decreasing the bias may lead to higher variance.
As we reduce the bias and increase the capacity of the model to
fit more complicated data, we tend to increase the variance, and
therefore the generalization gap (the difference between the gener-
alization error and the training error). We want to find the optimal
capacity of the model with the smallest possible generalization gap.

The trainability of a model might limit its capacity as well. If a model
is difficult to optimize, it may not be possible to actually find the
right function within the family of functions that the model could
possibly represent. In this case, the model will have lower effec-
tive capacity. While we would ideally like a model that is tractable,
expressive, and generalizes well (Dinh, 2018), the No Free Lunch
Theorem (Wolpert, 1996) states no general purpose algorithm can
fulfill all these criteria in every case. Specifically, it states that when
averaging over all possible data generating distributions, all algo-
rithms have the same error rate on unseen points (Goodfellow et al.,
2016). This means that no one algorithm is universally better, and we
must design algorithms with good inductive biases that give good
performance in the real world.

Regularization is a way to modify a model in hopes of reducing the
generalization error. A common example is weight decay, which
introduces a penalty on the norm of the parameters of a model, e.g.:

J(w) = L̂(X, y; w) + λwTw (2.8)

Here we see the total loss combines our original loss function (such
as mean squared error), with a penalty on the size of the weights.
The hyperparameter λ controls the strength of the penalty. Most
algorithms have hyperparameters that must be tuned by testing the
generalization performance using the validation set.
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2.2 Deep learning

Deep learning refers to a set of techniques for training many differ-
ent forms of artificial neural networks (NNs). As shown in Figure
2.5, a neural network is made up of hidden layers that contain nodes.
Each node computes its output based on a set of weights (or pa-
rameters) applied to the output of the previous layer. The first layer
is applied to the input data x. So, node i in the first hidden layer
(h(1)) computes h(1)

i = φ(w(1)
i

Tx), where φ is an activation function.
Note the similarity with the logistic regression model we saw in
Eq. 2.5. Essentially, each node is learning its own regression model.
Computing the output of all the nodes can be done efficiently using
matrix multiplication: h(1) = φ(W(1)Tx), where W(1) is the matrix of
weights for layer 1.

Figure 2.5: A simple neural net-
work with two hidden layers (in
green), and a one-dimensional
output layer.

Activation functions: The name ‘neural’ comes from early research
which was inspired to (loosely) model the nodes after neurons in the
brain. The idea was that each node should aggregate signals from the
previous layer, but only ‘fire’ when these signals became sufficiently
strong. This motivates using something like a step-function as an
activation function:

φ(x) =

1 x ≥ 0

0 x < 0

However, a step-function is difficult to optimize, as we will explain
further below. Therefore, activation functions like the logistic sigmoid
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(Eq. 2.4) were often used instead. As explained by Goodfellow et al.
(2016), modern neural networks more frequently make use of the
Rectified Linear Unit (ReLU):

φrelu(x) = max(0, x) (2.9)

So where does the term deep learning come from? This is due to
the ability of neural networks to stack many hidden layers together,
with each layer using the output of the previous layer as input, and
tranforming it using a non-linear activation function:

h(m) = φ(W(m)Th(m−1)) (2.10)

The network learns a series of transformations that can be composed,
e.g.: f (3)( f (2)( f (1)(x))) (Goodfellow et al., 2016). We describe net-
works with more layers as having greater depth, hence the name.

So why go deep? We know from the Universal Approximation
Theorem (Cybenko, 1989; Hornik et al., 1990; Barron, 1993) that
even a neural network with one hidden layer can approximate any
continuous function with arbitrary precision on a bounded data
set – as long as that hidden layer is sufficiently large (Goodfellow
et al., 2016). Aside from the fact that a single, massive hidden layer
is computationally impractical and difficult to optimize, there is a
more intuitive reason. Stacking layers allows the network to learn
a hierarchical set of computations, with later layers building on the
features extracted by earlier layers. For example, it has been shown
that object detection networks learn to detect simple features such
as a line or sphere in early layers, while nodes in the deep layers
detect highly abstract entities such as a face, or a cat (Le, 2013). This
type of hierarchy allows features in earlier layers to be re-used and
composed to create new types of higher level features (i.e both a cat
and a face might make use of the sphere feature).

In writing about the nature of intelligence, Hawkins and Blakeslee
(2004) argue that hierarchies are extremely important to both the
human brain, and to the natural world. Although it is important
to emphasize that neural networks are only loosely inspired by the
human brain, there is nonetheless evidence of similarities between
the representations learned by deep neural networks and those of the
human brain. For example, networks that process visual input learn
a hierarchy of features that is similar to features recognized by the
human visual cortex (Kuzovkin et al., 2018).

Deep networks have proven to be extremely effective at compressing
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information from large-scale data into useful representations. The ac-
tivation of all of the neurons at a particular hidden layer, h(m) can be
considered a representation, or an embedding vector, or simply an
embedding. Given the arguments above, we expect representations
learned by the deeper layers of the network to extract useful, abstract
information about the data. Ideally, these representations should
disentangle the factors of variation in the input into informative,
reuseable features. Arguably, it is the proficiency of deep learning for
representation learning that makes it so powerful.

2.2.1 Gradient-based learning

As we learned in Section 2.1.2, learning the parameters of a machine
learning model involves minimizing a loss function. We can visu-
alize the surface of that function as a loss landscape, in which the
height of the function indicates the value of the loss function for a
particular assignment of parameter values (as shown in Figure 2.6).
Traditional ML models often have convex loss functions (e.g. Figure
2.6 (a)) which are easy to optimize. In contrast, due to the number
of parameters and non-linearities present in deep neural networks,
they have more complicated loss landscapes (e.g. Figure 2.6 (b)). This
makes optimization challenging, and precludes the use of traditional
methods like linear equation solvers.

(a) Convex loss landscape (b) Resnet-110 loss landscape

Figure 2.6: Red areas show
regions of parameter space
where the loss is high, blue ar-
eas show regions where the loss
is low. Convex loss functions
(a) are easily to optimize, while
neural network architectures
can lead to complicated loss
landscapes (b). Reproduced
with permission from Li et al.
(2018a).

Instead, deep learning relies on iterative, gradient-based optimiza-
tion to find good network parameters by descending the loss land-
scape in steps, usually starting from a random initialization of the
parameters. The simplest example of such an algorithm is stochastic
gradient descent (SGD). At each step of SGD, we randomly sample
a batch of data XB from the training data, XB ∼ Xtrain. We then
compute the gradient of the loss with respect to the parameters
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given the batch data, ∇w ˆL(XB; w), and move the parameters by a
small amount in the direction of the gradient. We can think of this
as taking a step down the loss landscape in the direction of steepest
descent. A learning rate parameter α controls the size of the step
taken. Algorithm 1 gives the procedure for SGD.

Algorithm 1: Stochastic Gradient Descent (SGD)

Require: α (learning rate)
Require: w0 (initial parameters)
t← 0 (initialize timestep)
while wt not converged do

XB ∼ Xtrain

gt ← ∇w ˆL(X; w)

wt+1 ← wt − αgt

t← t + 1
end

The gradient with respect to each parameter can be computed effi-
ciently using backpropagation (Rumelhart et al., 1985), by recursively
applying the chain rule. Frameworks like Tensorflow perform auto-
matic differentiation via backpropagation and computation graphs
(Abadi et al., 2015).

The computational cost of SGD is linear in the size of the batch.
Using a smaller batch requires less computation and memory, but
introduces more noise to the gradient updates (Dinh, 2018). How-
ever, the noisy updates of SGD may actually have a regularizing
effect (Wilson and Martinez, 2003), which may be important to the
empirically demonstrated power of deep neural networks. Modern
alternatives to SGD often rely on computing a moving average of the
gradient estimates as a form of momentum that affects gradient up-
dates (Yu, 2007; Sutskever et al., 2013). Other approaches incorporate
an adaptive learning rate. The most frequently used optimization
algorithm is Adaptive Moment estimation (AdaM) (Kingma and Ba,
2014).

SGD gives an unbiased stochastic approximation of the true gradi-
ent, and with mild assumptions will converge to a local minimum
even with a batch size of one (Dinh, 2018; Robbins and Monro, 1951;
Bottou, 1998). Past working theories of optimization for deep neural
networks assumed that local minima presented a signifcant issue for
finding good parameter values (e.g. Bengio (2014)). However, recent
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theoretical research has begun to reveal that under certain assump-
tions all local minima are actually equivalent to the global minimum
(Lu and Kawaguchi, 2017; Kawaguchi, 2016). Similar exciting work
has attempted to demonstrate that all optima are actually connected
to each other by Bezier curves (Garipov et al., 2018). Further research
in optimization has investigated how known techniques such as
skip connections can smooth the optimization landscape (Li et al.,
2018a; Santurkar et al., 2018), and shown how the common practice
of overparameterizing neural networks (using more parameters
than training data points) can also aid optimization (Arora et al.,
2018). Further research into how the techniques engineered by deep
learning practioners actually aid optimization is needed.

2.2.2 Neural network architectures

The type of network we have been discussing so far is a fully-
connected network, where each neuron in a given layer is connected
to every neuron in the layer before it. This requires learning a unique
set of parameters for every input feature. However, the input may
have known regularities that can be better exploited through param-
eter sharing; that is, applying the same weights to multiple parts
of the input. This has proven to be an effective strategy, potentially
because it improves generalization by limiting the hypothesis space
while simultaneously enhancing computational efficiency (Dinh,
2018).

Convolutional neural networks (CNNs) (Fukushima, 1980; LeCun
et al., 1998) are one of the most intuitive examples of parameter
sharing. These networks contain learned filters which are applied
across all parts of the input, which is typically an image. In this way,
the networks can learn functions which are translation invariant. For
example, the network can learn a filter to detect a cat, and because
it will be applied across many positions in the input image, the
network can detect cats in any part of the image.

Rather than sharing parameters across space (as a CNN does for an
image), we can also share parameters across time. This is the idea
behind recurrent neural networks (RNNs), which have neurons (or
cells) that receive their own output from the previous timestep as
input (see Figure 2.7). While this can give an RNN a rudimentary
form of memory, it also exacerbates problems with vanishing and
exploding gradients. Because computing the gradient depends on
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multiplying by the same parameter values repeatedly, this can cause
the gradients to explode (if the parameter is > 1) or vanish (if the
parameter is < 1). Long Short-Term Memory (LSTM) networks
(Hochreiter and Schmidhuber, 1997) help to address this problem by
adding an input, output, and forget gate to each recurrent cell. These
gates allow the network to learn when to update the information in
the cell and when to erase it, rather than simply multiplying by the
same parameters each time.

(a) RNN w/ 2

recurrent cells

(b) The same RNN unrolled across time. Each column
represents the input to the network at a particular timestep.

Figure 2.7: RNNs have recur-
rent cells which receive their
own output as input on the
next timestep (a). We can visu-
alize RNN processing by un-
rolling the network across time
(b). Here, we see a common
use-case for RNNs: modeling
sequences of data such as text.

Recently, transformers have emerged as an alternative to RNNs
(Vaswani et al., 2017). These models make use of an attention mecha-
nism (Bahdanau et al., 2016) to summarize inputs of varying lengths
based on dynamically changing, learned attention weights. Trans-
formers have been shown to be highly effective at modeling se-
quences of data, and consequently have led to impressive results in
music generation (Huang et al., 2018b) and text generation (Radford
et al., 2019).

2.3 Reinforcement learning

Reinforcement learning (RL) describes an interactive learning
paradigm in which an agent interacts with an environment by taking
actions and receiving rewards (see Figure 2.8). This interaction takes
place across time; at each timestep t, the agent chooses an action
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at ∈ A given the state of the environment st ∈ S , and receives reward
rt ∈ R. The series of states, actions, and rewards for an episode of in-
teracting with the environment is often termed a trajectory, denoted
τ. The goal of the agent is to maximize its reward in the long-term
(over the trajectory), rather than naïvely taking the action that will
lead to the highest reward in the moment. This makes RL a sequen-
tial decision making problem, distinct from simply predicting future
rewards, and other, simpler forms of optimization problems.

Figure 2.8: In reinforcement
learning, an agent interacts
with the environment by taking
actions and receiving rewards.
Based on a similar figure in
Sutton and Barto (1998).

In this thesis, we study problems where task performance is specified
through a reward function2. In other words, there is a function that

2 Some types of learning which relate
to RL do not depend on having a
reward function. For example, inverse
reinforcement learning and inverse
optimal control learn using a sequence
of observations, and learning from
demonstration (LfD) uses sequences of
observation-action pairs.

can assign a high reward value rt when the agent takes a desirable
action at in the appropriate state st. However, it can be difficult to
define a complete reward function for many real-world tasks. This
may explain why many prominent successes of RL (e.g. Mnih et al.
(2015); Silver et al. (2018)) have been restricted to games, where the re-
ward is specified clearly through the points obtained in the game. It
may be possible to overcome the issue of needing to manually design
reward functions for each new type of task by instead focusing on
intrinsic motivations. These are reward functions that may motivate
an agent to learn across any number of tasks or environments, such
as curiosity. In this thesis, we propose new forms of social intrinsic
motivation.

To learn to maximize rewards, the agent learns a policy, π, which
maps observations of the state to actions. In deep reinforcement
learning, a deep neural network is used to parameterize the pol-
icy, such that if the network parameters are θ, the task is to learn
at ∼ π(st; θ). Often, the agent has limited sensing abilities, or the en-
vironment is partially observable, such that the agent sees a restricted
view of the state, denoted by ot or xt

3. An agent learns to improve its
3 In this thesis, we may forego using
ot or xt in favour of just using st to
represent the agent’s view of the state,
to simplify notation. In the multi-agent
case, we use the notation sj

t for agent j’s
partially-observed view of the state.

policy by repeatedly choosing an action and observing the rewards it
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receives.

However, an agent cannot only seek to maximize rewards, especially
not too early in the process of interacting with the environment. How
can it know that the current policy it has learned is the best possible
policy, without exploring more of the environment, and trying
actions that it has never tried before? Deciding when to explore
by searching for a better policy, and when to exploit the current best
policy, is a fundamental problem in RL known as the explore/exploit
trade-off. Frequently, exploration is handled by having the agent act
randomly in ε proportion of timesteps, and greedily exploiting the
best action the rest of the time. This strategy is known as ε-greedy
exploration.

But how can we define the best action to take? We must be able to
estimate the expected long-term, future reward; a central problem in
RL. Often, the environment is stochastic, meaning that future rewards
cannot be predicted exactly. Therefore, we apply a discount factor
γ ∈ [0, 1) to rewards received from later timesteps. We can then learn
to estimate:

Vπ(s) = Eπ(st ;θ)[rt + γrt+1 + γ2rt+2 + γ3rt+3 . . . |st = s] (2.11)

= Eπ(st ;θ)[
∞

∑
k=0

γkrt+k|st = s] (2.12)

This quantity is called the value function or value estimate, and gives
the total expected future discounted reward that an agent can expect
to obtain when starting in state st, and acting according to its policy.

2.3.1 Q-learning

Rather than simply learning a value estimate, we often want to learn
an action-value estimate, Qπ(a, s), which gives the expected future
reward of starting in state s and taking action a:

Q(a, s) = Eπ(st ;θ)[
∞

∑
k=0

γkrt+k|st = s, at = a] (2.13)

The action-value function is useful because it informs the agent about
which actions are expected to lead to the highest payoff from any
given state. Given access to these Q-values, the agent can create
a reasonable policy by simply taking the action with the highest
Q(a, s)4:

4 Often, we may want to transform
the Q-values using a softmax function
and then probabilistically sample from
them, to allow the agent to continue
to explore rather than always greedily
selecting the same action. This is known
as Boltzmann exploration.

π(s) = max
a

Q(a, s) (2.14)
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But how can we learn the Q-values? As we improve our policy, we
should expect the value estimates to change, since they should de-
scribe how much payoff we expect to get following our updated policy.
This is where the Bellman equation comes in handy (Bellman and
Kalaba, 1957). The Bellman equation breaks down value estimation
using a recursive definition:

Qπ(at, st) = rt + γEp(st+1|st ,at)[max
at+1

Qπ(at+1, st+1)] (2.15)

The Bellman equation shows that we can describe Q-values in terms
of the reward that we actually received at timestep t, rt, and the
future reward we expect to receive starting in the next state that
we transitioned to, st+1. The future reward is estimated using our
current best estimates of the Q values for st+1. Knowing this, we can
bootstrap Q-value estimation by repeatedly refining our estimate
of Q(a, s) using observed tuples (st, at, rt, st+1) that we get from
interacting with the environment. Specifically, we can plug those
tuples into the following equation to get the temporal difference
error:

δt = [rt + γ max
at+1

Qπ(at+1, st+1)]−Qπ(at, st) (2.16)

The left side of Equation 2.16 is based on plugging our observed
tuple into the Bellman equation, while the right term, Q(a, s), is our
current best estimate of the Q-value. Thus, TD error gives how far off
our current Q estimate is from the reward we just received.

Because the environment is stochastic, it is possible to receive differ-
ent rewards from taking the same action in the same state, so we do
not want to overwrite our previous estimate of Q(a, s) using only rt

and Equation 2.15. Instead, we can create a loss function by squaring
the TD error:

L(st, at, rt, st+1; θ) = (rt + γ max
at+1

Qπ(at+1, st+1)−Qπ(at, st))
2 (2.17)

By iteratively optimizing this loss function using the gradient-based
learning techniques described in Section 2.2.1, we can refine our Q
estimates until they converge to their actual expected value.

An extremely interesting finding that has been replicated repeatedly
in the neuroscience literature is that dopamine neurons in the human
brain actually encode a reward prediction error signal that is equiva-
lent to the temporal difference error (?Hollerman and Schultz, 1998;
Schultz, 2007)! These findings suggest that the above RL equations
may be a useful and ecologically valid way to learn to estimate future
reward based on interactive feedback from the environment.
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In deep Q-learning (Mnih et al., 2015)—a technique on which several
chapters of this thesis are based—we use a deep neural network to
estimate Q(a, s) by treating the state s as input, and having an output
neuron for each possible action k, which each learn to estimate
Q(ak, s). This is called the Deep Q-network (DQN). However, several
modifications are often required to ensure stability in training. The
first is to store all observed (st, at, rt, st+1) tuples into an experience
replay buffer, and randomly sample batches from this buffer to
compute the loss in Equation 2.17. The second is to have a target
Q-network (Van Hasselt et al., 2016) parameterized by θT which is
initialized randomly, and only slowly updated so that the parameters
move towards the values of the main Q-network. This is because
in the early stages of Q-learning, the Q estimates are based on very
few samples and can be quite noisy. In fact, the estimates tend to
be overly optimistic about future rewards, given the max operator
inherent to the Bellman equation. Therefore, the target Q-network
is used to provide more conservative estimates of the total expected
future reward, such that the loss function becomes:

L(st, at, rt, st+1; θ) = (rt + γ max
at+1

QπθT
(at+1, st+1)−Qπθ

(at, st))
2

(2.18)

2.3.2 Policy gradients

While deep Q-learning has led to some impressive results (e.g. Mnih
et al. (2015)), some have argued that is more difficult to use and less
powerful than alternatives. In fact, a 2016 blog post went so far as to
claim that DQNs were “so 2013” (Karpathy, 2016).

A set of alternative approaches are based on the policy gradients
algorithm. In policy gradients, we have a policy network πθ . As in
a DQN, this network inputs the state and has an output for every
possible action. However, in this case the output layer is learning a
probability distribution over the next action, πθ(at|st) ≈ p(at|st)5. To

5 To ensure the values of the K output
neurons sum to 1.0 and stay within
[0, 1]—and thus can model a probability
distribution—we can apply the softmax
function:

φ(xi) =
exi

∑K
j=1 exj

act, the network simply samples an action: at ∼ πθ(at|st).

Policy gradients is an extremely conceptually simple algorithm. The
idea is simply to increase the probability of actions that led to the
algorithm receiving a positive reward, and decrease the probability
of ones associated with a negative reward. Remember that we always
want to maximize the total expected future reward we receive during
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a trajectory based on our policy:

Eπθ
[r(τ)] = Eπθ

[γtrt] (2.19)

The original policy gradients algorithm, REINFORCE (Williams,
1992), simply updates the policy network’s parameters based on
taking the gradient of this function. Thus, the REINFORCE gradient
update is:

∇θEπθ
[r(τ)] = Eπθ

[
T

∑
t=0

rt∇θ log πθ(at|st)] (2.20)

How is the gradient update so simple? Let’s go through the steps of
the derivation. First, remember that the definition of an expectation
is: Ex[ f (x)] = ∑x f (x)p(x). Substituting πθ(at|st) for p(x) and the
reward function r(at, st) = rt for f (x), we have:

∇θEπθ
[rt] = ∇θ ∑

at

rtπθ(at|st) (2.21)

= ∑
at

rt∇θπθ(at|st) (2.22)

= ∑
at

rt
πθ(at|st)

πθ(at|st)
∇θπθ(at|st) (2.23)

= ∑
at

rtπθ(at|st)∇θ log πθ(at|st) (2.24)

= Eπθ
[rt∇θ log πθ(at|st)] (2.25)

To get from Eq. 2.23 to Eq. 2.24, we used the definition of the gra-
dient of the log function: ∇θ log(x) = 1

x∇θ x. To get to Eq. 2.25, we
simply used the definition of an expectation again.

To use policy gradients in practice, we multiply the gradient ∇θ log πθ(at|st)

by both rt and an indicator function for whether the action at was
actually taken.

2.3.3 Actor critic

In contrast with Q-learning, policy gradients is an on-policy algo-
rithm, meaning that the policy is constantly being updated with the
latest experience samples that the agent gets from the environment.
Because there tends to be high variance in the rewards received,
and thus in the gradients, this can lead to instability in the learning
process. To solve this problem, a common practice is to subtract a
baseline b from the rewards (Williams, 1992):

∇θ J(θ) = Eπθ
[(rt − b)∇θ log πθ(at|st)] (2.26)
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For example, if the baseline is the average reward received, then this
function will increase the probability of actions that lead to better
than average reward, and decrease the probability of actions that do
not.

However, different states are likely to lead to very different rewards,
so subtracting the total average might not be very informative. In-
stead, we could do something more clever using the value estimate of
the state, V(st). Specifically, we can directly optimize the advantage
function:

A(at, st) = Q(at, st)−V(st) (2.27)

= rt + γV(st+1)−V(st) (2.28)

Here we obtain Eq. 2.28 because Q(at, st) = E[rt + γV(st+1)].

The advantage function describes how much better the current
reward is than what we expect we can get in this state. By optimizing
it, we increase the probability of actions that lead to better than
average reward given the current state. If we substitute the advantage
function into policy gradients, we obtain the advantage actor-critic
(A2C) algorithm (Sutton and Barto, 1998):

∇θ J(θ) = Eπθ
[(rt + γV(st+1)−V(st))∇θ log πθ(at|st)] (2.29)

= Eπθ
[A(at, st)∇θ log πθ(at|st)] (2.30)

Optimizing for advantage may seem reasonable, but where did
the phrase actor-critic come from? The idea is that the policy is an
actor, choosing which actions to take. The value estimate serves as
a critic that can determine whether the action had a good payoff
given previous experience. In Chapter 3 of this dissertation, we
learn weights for the actor and critic that are both connected to the
output of a shared LSTM. We call this having separate heads for
the actor and critic. We also use modern methods for training A2C
asynchronously: asynchronous advantage actor-critic (A3C) (Mnih
et al., 2016).

2.4 Conclusion

This chapter has briefly reviewed some of the core concepts in Ma-
chine Learning (ML), Deep Learning (DL), and Reinforcement Learn-
ing (RL). While we have attempted to provide additional background



65

and context for understanding the material in this thesis, there are
obviously many more concepts within each of these topics that we
were not able to cover here. For much more detailed reviews, con-
sider reading the following textbooks: Bishop (2006); Murphy (2012)
for ML, Goodfellow et al. (2016) for DL, and Sutton and Barto (1998)
for RL.
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Social learning is incredibly important for humans, and has been
linked to our ability to achieve unprecedented progress and coordi-
nation on a massive scale (Henrich, 2015; Harari, 2014; Laland, 2017;
van Schaik and Burkart, 2011; Herrmann et al., 2007). In this chapter,
we propose a method for allowing reinforcement learning (RL) agents
in a multi-agent environment to learn socially from the actions taken
by other agents. Specifically, we propose a unified mechanism for
achieving coordination and communication in Multi-Agent Reinforce-
ment Learning (MARL) through rewarding agents for having causal
influence over other agents’ actions. Empirical results demonstrate
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that influence leads to enhanced coordination and communication
in challenging social dilemma environments, dramatically increas-
ing the learning curves of the deep RL agents, and leading to more
meaningful learned communication protocols. The influence rewards
for all agents can be computed in a decentralized way by enabling
agents to learn a model of other agents using deep neural networks.
In contrast, key previous works on emergent communication in the
MARL setting were unable to learn diverse policies in a decentral-
ized manner and had to resort to centralized training. Consequently,
the influence reward opens up a window of new opportunities for
research in this area.

3.1 Introduction

Intrinsic Motivation for Reinforcement Learning (RL) refers to re-
ward functions that allow agents to learn useful behavior across
a variety of tasks and environments, sometimes in the absence of
environmental reward (Singh et al., 2004). Previous approaches to
intrinsic motivation often focus on curiosity (e.g. Pathak et al. (2017);
Schmidhuber (2010)), or empowerment (e.g. Klyubin et al. (2005);
Mohamed and Rezende (2015)). Here, we consider the problem of
deriving intrinsic social motivation from other agents. While some
previous work has investigated intrinsic social motivation for RL (e.g.
Sequeira et al. (2011); Hughes et al. (2018); Peysakhovich and Lerer
(2018)), these approaches rely on hand-crafted rewards specific to
the environment, or allowing agents to view the rewards obtained
by other agents. Such assumptions make it impossible to achieve
independent training of MARL agents across multiple environments.

Achieving coordination among agents in MARL still remains a
difficult problem. Prior work in this domain (e.g., Foerster et al. (2017,
2016)), often resorts to centralized training to ensure that agents
learn to coordinate. While communication among agents could help
with coordination, training emergent communication protocols also
remains a challenging problem; recent empirical results underscore
the difficulty of learning meaningful emergent communication
protocols, even when relying on centralized training (e.g., Lazaridou
et al. (2018); Cao et al. (2018); Foerster et al. (2016)).

We propose a unified method for achieving both coordination and
communication in MARL by giving agents an intrinsic reward for
having a causal influence on other agents’ actions. Causal influence
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is assessed using counterfactual reasoning; at each timestep, an
agent simulates alternate, counterfactual actions that it could have
taken, and assesses their effect on another agent’s behavior. Actions
that lead to relatively higher change in the other agent’s behavior
are considered to be highly influential and are rewarded. We show
how this reward is related to maximizing the mutual information
between agents’ actions, and hypothesize that this inductive bias
will drive agents to learn coordinated behavior. Maximizing mutual
information as a form of intrinsic motivation has been studied in the
literature on empowerment (e.g. Klyubin et al. (2005); Mohamed and
Rezende (2015)). Social influence can be seen as a novel, social form
of empowerment.

To study our influence reward, we adopt the Sequential Social
Dilemma (SSD) multi-agent environments of Leibo et al. (2017).
Through a series of three experiments, we show that the proposed
social influence reward allows agents to learn to coordinate and
communicate more effectively in these SSDs. We train recurrent
neural network policies directly from pixels, and show in the first
experiment that deep RL agents trained with the proposed social
influence reward learn effectively and attain higher collective reward
than powerful baseline deep RL agents, which often completely fail
to learn.

In the second experiment, the influence reward is used to directly
train agents to use an explicit communication channel. We demon-
strate that the communication protocols trained with the influence
reward are more meaningful and effective for obtaining better col-
lective outcomes. Further, we find a significant correlation between
being influenced through communication messages and obtaining
higher individual reward, suggesting that influential communication
is beneficial to the agents that receive it. By examining the learning
curves in this second experiment, we again find that the influence
reward is essential to allow agents to learn to coordinate.

Finally, we show that influence agents can be trained independently,
when each agent is equipped with an internal neural network Model
of Other Agents (MOA), which has been trained to predict the actions
of every other agent. The agent can then simulate counterfactual
actions and use its own internal MOA to predict how these will
affect other agents, thereby computing its own intrinsic influence
reward. Influence agents can thus learn socially, just by observing
other agents’ actions, and without requiring a centralized controller
or access to another agent’s reward function. Therefore, the influence



104

reward offers us a simple, general and effective way of overcoming
long-standing unrealistic assumptions and limitations in this field of
research, including centralized training and the sharing of reward
functions or policy parameters. Moreover, both the influence rewards
as well as the agents’ policies can be learned directly from pixels
using expressive deep recurrent neural networks. In this third experi-
ment, the learning curves once again show that the influence reward
dramatically enhances coordination in these complex domains.

The chapter is structured as follows. We describe the environments
in Section 3.2, and the MARL setting in Section 3.3. Section 3.4
introduces the basic formulation of the influence reward, Section 3.5
extends it with the inclusion of explicit communication protocols,
and Section 3.6 advances it by including models of other agents to
achieve independent training. Each of these three sections presents
experiments and results that empirically demonstrate the efficacy of
the social influence reward. Related work is presented in Section 3.7.
Finally, more details about the causal inference procedure are given
in Section 3.8.

3.2 Sequential Social Dilemmas

Sequential Social Dilemmas (SSDs) (Leibo et al., 2017) are partially
observable, spatially and temporally extended multi-agent games
with a game-theoretic payoff structure. An individual agent can
obtain higher reward in the short-term by engaging in defecting, non-
cooperative behavior (and thus is greedily motivated to defect), but
the total payoff per agent will be higher if all agents cooperate. Thus,
the collective reward obtained by a group of agents in these SSDs
gives a clear signal about how well the agents learned to cooperate
(Hughes et al., 2018).

We experiment with two SSDs in this work, a public goods game
Cleanup, and a public pool resource game Harvest (see Figure 3.1).
Both games are partially observable, and the rewards are based
on collecting apples1, which are a limited resource. In Cleanup (a

1 Apples are worth a reward of +1.
Agents have the ability to punish each
other with a fining beam, which costs −1
reward to fire, and fines any agent it
hits −50 reward.

public goods game) agents must clean a river before apples can
grow, but are not able to harvest apples while cleaning. In Harvest
(a common pool resource game), apples respawn at a rate propor-
tional to the amount of nearby apples; if apples are harvested too
quickly, they will not grow back. Both coordination, and cooper-
ation are required to solve both games. In Cleanup, agents must



105

efficiently time harvesting apples and cleaning the river, and al-
low agents cleaning the river a chance to consume apples. In Har-
vest, agents must spatially distribute their harvesting, and abstain
from consuming apples too quickly in order to harvest sustainably.
Agents must coordinate harvesting apples with the behavior of other
agents in order to achieve cooperation. For reproducibility, the code
for these games has been made available in open-source: https:
//github.com/eugenevinitsky/sequential_social_dilemma_games.

Figure 3.1: The two SSD envi-
ronments, Cleanup (top) and
Harvest (bottom). Agents can
exploit other agents for immedi-
ate payoff, but at the expense of
the long-term collective reward
of the group. Reproduced with
permission from Hughes et al.
(2018).

The reward structure of the games is shown in Figure 3.2, which
gives the Schelling diagram for both SSD tasks under investigation.
A Schelling diagram (Schelling, 1973; Perolat et al., 2017) depicts
the relative payoffs for a single agent’s strategy given the number
of other agents who are cooperative out of a fixed total number
of other agents (in this case, there are always five agents). As the
Schelling diagrams in Figure 3.2 reveal, all agents would benefit from
learning to cooperate in these games, because even agents that are
being exploited get higher reward than in the regime where more
agents defect. However, traditional RL agents struggle to learn to
coordinate or cooperate to solve these tasks effectively (Hughes et al.,
2018). Thus, these SSDs represent challenging benchmark tasks for
the social influence reward. Not only must influence agents learn to
coordinate their behavior to obtain high reward, they must also learn
to cooperate.

https://github.com/eugenevinitsky/sequential_social_dilemma_games
https://github.com/eugenevinitsky/sequential_social_dilemma_games
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(a) Cleanup (b) Harvest

Figure 3.2: Schelling diagrams
for the two social dilemma
tasks show that an individual
agent is motivated to defect,
though everyone benefits when
more agents cooperate. Repro-
duced with permission from
Hughes et al. (2018).

3.3 Multi-agent RL for SSDs

We consider a MARL Markov game defined by the tuple 〈S, T, A, r〉,
in which multiple agents are trained to independently maximize
their own individual reward; agents do not share weights. The en-
vironment state is given by s ∈ S . At each timestep t, each agent k
chooses an action ak

t ∈ A. The actions of all N agents are combined to
form a joint action at = [a0

t , ...aN
t ], which produces a transition in the

environment T(st+1|at, st), according to the state transition distribu-
tion T. Each agent then receives its own reward rk(at, st), which may
depend on the actions of other agents. A history of these variables
over time is termed a trajectory, τ = {st, at, rt}T

t=0. We consider a
partially observable setting in which the kth agent can only view a
portion of the true state, sk

t . Each agent seeks to maximize its own
total expected discounted future reward, Rk = ∑∞

i=0 γirk
t+i , where γ

is the discount factor. A distributed asynchronous advantage actor-
critic (A3C) approach (Mnih et al., 2016) is used to train each agent’s
policy πk.

Our neural networks consist of a convolutional layer, fully connected
layers, a Long Short Term Memory (LSTM) recurrent layer (Gers
et al., 1999), and linear layers. All networks take images as input
and output both the policy πk and the value function Vπk (s), but
some network variants consume additional inputs and output either
communication policies or models of other agents’ behavior. We will
refer to the internal LSTM state of the kth agent at timestep t as uk

t .
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3.4 Basic social influence

Social influence intrinsic motivation gives an agent additional reward
for having a causal influence on another agent’s actions. Specifically,
it modifies an agent’s immediate reward so that it is defined as
rk

t = αek
t + βck

t , where ek
t is the extrinsic or environmental reward, and

ck
t is the causal influence reward.

To compute the causal influence of one agent on another, suppose
there are two agents, k and j, and that agent j is able to condition its
policy on agent k’s action at time t, ak

t . Thus, agent j computes the
probability of its next action as p(aj

t|ak
t , sj

t). We can then intervene on
ak

t by replacing it with a counterfactual action, ãk
t . This counterfactual

action is used to compute a new distribution over j’s next action,
p(aj

t|ãk
t , sj

t). Essentially, agent k asks a retrospective question: “How
would j’s action change if I had acted differently in this situation?”.

By sampling several counterfactual actions, and averaging the re-
sulting policy distribution of j in each case, we obtain the marginal
policy of j, p(aj

t|s
j
t) = ∑ãk

t
p(aj

t|ãk
t , sj

t)p(ãk
t |s

j
t); in other words, j’s policy

if it did not consider agent k. The discrepancy between the marginal
policy of j and the conditional policy of j given k’s action is a mea-
sure of the causal influence of k on j; it gives the degree to which j
changes its planned action distribution because of k’s action. Thus,
the causal influence reward for agent k is defined as:

ck
t =

N

∑
j=0,j 6=k

[
DKL[p(aj

t | ak
t , sj

t)
∥∥∥∑

ãk
t

p(aj
t | ãk

t , sj
t)p(ãk

t | sj
t)]
]

=
N

∑
j=0,j 6=k

[
DKL[p(aj

t | ak
t , sj

t)
∥∥∥p(aj

t | sj
t)]
]

. (3.1)

Note that it is possible to use a divergence metric other than KL; we
have found empirically that the influence reward is robust to the
choice of metric.

The reward in Eq. 3.1 is related to the mutual information (MI)
between the actions of agents k and j, I(ak; aj|s). As the reward is
computed over many trajectories sampled independently from the
environment, we obtain a Monte-Carlo estimate of I(ak; aj|s). In
expectation, the influence reward incentivizes agents to maximize
the mutual information between their actions. The proof is given in
Section 3.11.1 of the Supplementary Material. Intuitively, training
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agents to maximize the MI between their actions results in more
coordinated behavior.

For the basic influence model presented in this section we make two
assumptions: 1) we use centralized training to compute ck

t directly
from the policy of agent j, and 2) we assume that influence is unidi-
rectional: agents trained with the influence reward can only influence
agents that are not trained with the influence reward (the sets of in-
fluencers and influencees are disjoint, and the number of influencers
is in [1, N − 1]). Algorithm 2 shows how to compute the influence
reward in this simplified case. In later sections, we relax both of
these assumptions. In particular, Section 3.6 gives an alternative al-
gorithm that allows each agent to compute its own influence reward
internally, without viewing any information about the other agents
beyond their actions. Further explanations of the causal inference
procedure (including causal diagrams) are available in Section 3.8.

Algorithm 2: Computing basic influence reward for agent k

Require: τ, trajectory containing actions and observations for all
agents. Let T be the trajectory length.
influence = [0] ∗ T
for timestep t in [0, T) do

for other agent j in N do
prob_aj = 0
for action ãk

t in A do
Compute p(ãk

t |sk
t ; θk) using agent k’s policy network

Compute p(aj
t|ãk

t , sj
t; θ j) using agent j’s policy network

prob_aj = prob_aj + p(aj
t|ãk

t , sj
t)p(ãk

t |sk
t )

end

p(aj
t|s

j
t)← prob_aj

influence[t] = influence[t] + DKL[p(aj
t|ak

t , sj
t)||p(aj

t|s
j
t)]

end

end

The variance of policy gradient updates increases as the number of
agents in the environment grows (Lowe et al., 2017b). This issue can
hinder convergence to equilibrium for large-scale MARL tasks. Social
influence can reduce the variance of policy gradients by introducing
explicit dependencies across the actions of each agent. This is because
the conditional variance of the gradients an agent is receiving will be
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less than or equal to the marginalized variance.

3.4.1 Experiment I: Basic influence

Figure 3.3 shows the results of testing agents trained with the ba-
sic influence reward against standard A3C agents, and an ablated
version of the model in which agents do not receive the influence
reward, but are able to condition their policy on the actions of other
agents (even when the other agents are not within the agent’s par-
tially observed view of the environment). We term this ablated model
the visible actions baseline. In this and all other results figures, we
measure the total collective reward obtained using the best hyperpa-
rameter setting tested with 5 random seeds each. Error bars show
a 99.5% confidence interval (CI) over the random seeds, computed
within a sliding window of 200 agent steps. We use a curriculum
learning approach which gradually increases the weight of the social
influence reward over C steps (C ∈ [0.2− 3.5]× 108); this sometimes
leads to a slight delay before the influence models’ performance
improves.

As is evident in Figure 3.3, introducing an awareness of other agents’
actions helps, but having the social influence reward eventually leads
to significantly higher collective reward in both games. Due to the
structure of the SSD games, we can infer that agents that obtain
higher collective reward learned to cooperate more effectively. In the
Harvest MARL setting, it is clear that the influence reward is essential
to achieve any reasonable learning.

(a) Cleanup (b) Harvest

Figure 3.3: Total collective re-
ward obtained in Experiment 1.
Agents trained with influence
(red) significantly outperform
the baseline and ablated agents.
In Harvest, the influence re-
ward is essential to achieve any
meaningful learning.

To understand how social influence helps agents achieve cooperative
behavior, we investigated the trajectories produced by high scoring
models in both Cleanup and Harvest; the analysis revealed interest-
ing behavior. As an example, in the Cleanup video available here:
https://youtu.be/iH_V5WKQxmo a single agent (shown in purple) was
trained with the social influence reward. Unlike the other agents,

https://youtu.be/iH_V5WKQxmo
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which continue to move and explore randomly while waiting for
apples to spawn, the influencer only traverses the map when it is
pursuing an apple, then stops. The rest of the time it stays still.

Figure 3.4: Moments of high
influence. Left: the purple
influencer gains influence by
moving, signaling the presence
of an apple (green tiles) outside
the yellow influencee’s field-
of-view (yellow outlined box).
Right: the purple influencer
stays still, signaling to the pink
influencee that no apples have
yet appeared.

Figure 3.4 shows a moment of high influence between the influencer
and the yellow influencee. The influencer has chosen to move to-
wards an apple that is outside of the ego-centric field-of-view of
the yellow agent. Because the influencer only moves when apples
are available, this signals to the yellow agent that an apple must be
present above it which it cannot see. This changes the yellow agent’s
distribution over its planned action, p(aj

t|ak
t , sj

t), and allows the purple
agent to gain influence. A similar moment occurs when the influ-
encer signals to an agent that has been cleaning the river that no
apples have appeared by staying still (Figure 3.4 right).

In this case study, the influencer agent learned to use its own actions
as a binary code which signals the presence or absence of apples in
the environment. We observe a similar effect in Harvest. This type
of action-based communication could be likened to the bee waggle
dance discovered by von Frisch (1969). Evidently, the influence
reward gave rise not only to cooperative behavior, but to emergent
communication.

It is important to consider the limitations of the influence reward.
Whether it will always give rise to cooperative behavior may depend
on the specifics of the environment and task, and tuning the trade-off
between environmental and influence reward. Although influence is
arguably necessary for coordination (e.g. two agents coordinating to
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manipulate an object must have a high degree of influence between
their actions), it may be possible to influence another agent in a non-
cooperative way. The results provided here show that the influence
reward did lead to increased cooperation, in spite of cooperation
being difficult to achieve in these environments.

3.5 Influential communication

Given the above results, we next experiment with using the influence
reward to train agents to use an explicit communication channel.
We take some inspiration from research drawing a connection be-
tween influence and communication in human learning. According
to Melis and Semmann (2010), human children rapidly learn to use
communication to influence the behavior of others when engaging in
cooperative activities. They explain that “this ability to influence the
partner via communication has been interpreted as evidence for a ca-
pacity to form shared goals with others”, and that this capacity may
be “what allows humans to engage in a wide range of cooperative
activities”.

Thus, we equip agents with an explicit communication channel,
similar to the approach used by Foerster et al. (2016). At each
timestep, each agent k chooses a discrete communication symbol
mk

t ; these symbols are concatenated into a combined message vector
mt = [m0

t , m1
t ...mN

t ], for N agents. This message vector mt is then
given as input to every other agent in the next timestep. Note that
previous work has shown that self-interested agents do not learn
to use this type of ungrounded, cheap talk communication channel
effectively (Crawford and Sobel, 1982; Cao et al., 2018; Foerster et al.,
2016; Lazaridou et al., 2018).

Figure 3.5: The communication
model has two heads, which
learn the environment policy,
πe, and a policy for emitting
communication symbols, πm.
Other agents’ communication
messages mt−1 are input to the
LSTM.

To train the agents to communicate, we augment our initial network
with an additional A3C output head, that learns a communication
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policy πm and value function Vm to determine which symbol to emit
(see Figure 3.5). The normal policy and value function used for acting
in the environment, πe and Ve, are trained only with environmental
reward e. We use the influence reward as an additional incentive
for training the communication policy, πm, such that r = αe + βc.
Counterfactuals are employed to assess how much influence an
agent’s communication message from the previous timestep, mk

t−1,

has on another agent’s action, aj
t, where:

ck
t =

N

∑
j=0,j 6=k

[
DKL[p(aj

t | mk
t−1, sj

t)
∥∥∥p(aj

t | sj
t)]
]

(3.2)

Importantly, rewarding influence through a communication chan-
nel does not suffer from the limitation mentioned in the previous
section, i.e. that it may be possible to influence another agent in a
non-cooperative way. We can see this for two reasons. First, there
is nothing that compels agent j to act based on agent k’s commu-
nication message; if mk

t does not contain valuable information, j is
free to ignore it. Second, because j’s action policy πe is trained only
with environmental reward, j will only change its intended action
as a result of observing mk

t (i.e. be influenced by mk
t ) if it contains

information that helps j to obtain environmental reward. Therefore,
we hypothesize that influential communication must provide useful
information to the listener.

3.5.1 Experiment II: Influential communication

Figure 3.6 shows the collective reward obtained when training the
agents to use an explicit communication channel. Here, the ablated
model has the same structure as in Figure 3.5, but the communication
policy πm is trained only with environmental reward. We observe
that the agents incentivized to communicate via the social influence
reward learn faster, and achieve significantly higher collective re-
ward for the majority of training in both games. In fact, in the case of
Cleanup, we found that α = 0 in the optimal hyperparameter setting,
meaning that it was most effective to train the communication head
with zero extrinsic reward (see Table 3.2 in the Supplementary Mate-
rial). This suggests that influence alone can be a sufficient mechanism
for training an effective communication policy. In Harvest, once again
influence is critical to allow agents to learn coordinated policies and
attain high reward.
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(a) Cleanup (b) Harvest

Figure 3.6: Total collective re-
ward for deep RL agents with
communication channels. Once
again, the influence reward is
essential to improve or achieve
any learning.

To analyze the communication behaviour learned by the agents,
we introduce three metrics, partially inspired by Bogin et al. (2018).
Speaker consistency, is a normalized score ∈ [0, 1] which assesses the
entropy of p(ak|mk) and p(mk|ak) to determine how consistently a
speaker agent emits a particular symbol when it takes a particular
action, and vice versa (the formula is given in the Supplementary
Material Section 3.11.3.4). We expect this measure to be high if, for ex-
ample, the speaker always emits the same symbol when it is cleaning
the river. We also introduce two measures of instantaneous coordina-
tion (IC), which are both measures of mutual information (MI): (1)
symbol/action IC = I(mk

t ; aj
t+1) measures the MI between the influ-

encer/speaker’s symbol and the influencee/listener’s next action,
and (2) action/action IC = I(ak

t ; aj
t+1) measures the MI between

the influencer’s action and the influencee’s next action. To compute
these measures we first average over all trajectory steps, then take the
maximum value between any two agents, to determine if any pair
of agents are coordinating. Note that these measures are all instan-
taneous, as they consider only short-term dependencies across two
consecutive timesteps, and cannot capture if an agent communicates
influential compositional messages, i.e. information that requires
several consecutive symbols to transmit and only then affects the
other agents behavior.

Figure 3.7 presents the results. The speaker consistencies metric re-
veals that influence agents more unambiguously communicate about
their own actions than baseline agents, indicating that the emergent
communication is more meaningful. The IC metrics demonstrate
that baseline agents show almost no signs of co-ordinating behavior
with communication, i.e. speakers saying A and listeners doing B
consistently. This result is aligned with both theoretical results in
cheap-talk literature (Crawford and Sobel, 1982), and recent empirical
results in MARL (e.g. Foerster et al. (2016); Lazaridou et al. (2018);
Cao et al. (2018)).



114

Figure 3.7: Metrics describing
the quality of learned commu-
nication protocols. The models
trained with influence reward
exhibit more consistent commu-
nication and more coordination,
especially in moments where
influence is high.

In contrast, we do see high IC between influence agents, but only
when we limit the analysis to timesteps on which influence was
greater than or equal to the mean influence (cf. influential moments
in Figure 3.7). Inspecting the results reveals a common pattern: in-
fluence is sparse in time. An agent’s influence is only greater than
its mean influence in less than 10% of timesteps. Because the lis-
tener agent is not compelled to listen to any given speaker, listeners
selectively listen to a speaker only when it is beneficial, and influ-
ence cannot occur all the time. Only when the listener decides to
change its action based on the speaker’s message does influence
occur, and in these moments we observe high I(mk

t ; aj
t+1). It appears

the influencers have learned a strategy of communicating meaningful
information about their own actions, and gaining influence when this
becomes relevant enough for the listener to act on it.

Examining the relationship between the degree to which agents were
influenced by communication and the reward they obtained gives a
compelling result: agents that are the most influenced also achieve
higher individual environmental reward. We sampled 100 different
experimental conditions (i.e., hyper-parameters and random seeds)
for both games, and normalized and correlated the influence and
individual rewards. We found that agents who are more often influ-
enced tend to achieve higher task reward in both Cleanup, ρ = .67,
p < 0.001, and Harvest, ρ = .34, p < 0.001. This supports the hy-
pothesis that in order to influence another agent via communication,
the communication message should contain information that helps
the listener maximize its own environmental reward. Since better
listeners/influencees are more successful in terms of task reward, we
have evidence that useful information was transmitted to them.

This result is promising, but may depend on the specific experimen-
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tal approach taken here, in which agents interact with each other
repeatedly. In this case, there is no advantage to the speaker for com-
municating unreliable information (i.e. lying), because it would lose
influence with the listener over time. This may not be guaranteed
in one-shot interactions. However, given repeated interactions, the
above results provide empirical evidence that social influence as in-
trinsic motivation allows agents to learn meaningful communication
protocols when this is otherwise not possible.

3.6 Modeling other agents

Computing the causal influence reward as introduced in Section 3.4
requires knowing the probability of another agent’s action given a
counterfactual, which we previously solved by using a centralized
training approach in which agents could access other agents’ policy
networks. While using a centralized training framework is common
in MARL (e.g. Foerster et al. (2017, 2016)), it is less realistic than a
scenario in which each agent is trained independently. We can relax
this assumption and achieve independent training by equipping
each agent with its own internal Model of Other Agents (MOA). The
MOA consists of a second set of fully-connected and LSTM layers
connected to the agent’s convolutional layer (see Figure 3.8), and is
trained to predict all other agents’ next actions given their previous
actions, and the agent’s egocentric view of the state: p(at+1|at, sk

t ).
The MOA is trained using observed action trajectories and cross-
entropy loss.

Figure 3.8: The Model of Other
Agents (MOA) architecture
learns both an RL policy πe,
and a supervised model that
predicts the actions of other
agents, at+1. The supervised
model is used for internally
computing the influence re-
ward.

A trained MOA can be used to compute the social influence reward
using Algorithm 3. Each agent can “imagine" counterfactual actions
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that it could have taken at each timestep, and use its internal MOA
to predict the effect on other agents. It can then give itself reward for
taking actions that it estimates were the most influential. This has an
intuitive appeal, because it resembles how humans reason about their
effect on others (Ferguson et al., 2010). We often find ourselves asking
counterfactual questions of the form, “How would she have acted if I
had done something else in that situation?”, which we answer using
our internal model of others.

Algorithm 3: Computing the influence reward for agent k using a
trained model of other agents (MOA).

Require: τ, trajectory containing actions for all agents, but only the
observations and rewards of agent k. Let T be the trajectory length.
Require: A trained MOA parameterized by θk

M
influence = [0] ∗ T
for timestep t in [0, T) do

for other agent j in N do
prob_aj = 0
for action ãk

t in A do
Compute p(ãk

t+1|at, sk
t ; θk

π) using agent k’s policy network

Compute p(aj
t+1|ãk

t , sk
t ; θk

M) using MOA

prob_aj = prob_aj + p(aj
t+1|ãk

t , sk
t )p(ãk

t |at, sk
t )

end

p(aj
t+1|s

j
t)← prob_aj

influence[t] = influence[t] + DKL[p(aj
t|ak

t , sk
t ; θk

M)||p(aj
t|s

j
t)]

end

end

Learning a model of p(aj
t+1|ak

t , sk
t ) requires implicitly modeling both

other agents’ internal states and behavior, as well as the environ-
ment transition function. If the model is inaccurate, this would lead
to noisy estimates of the causal influence reward. To compensate
for this, We only give the influence reward to an agent (k) when
the agent it is attempting to influence (j) is within its field-of-view,
because the estimates of p(aj

t+1|ak
t , sk

t ) are more accurate when j is
visible to k.2 This constraint could have the side-effect of encourag-

2 This contrasts with our previous
models in which the influence reward
was obtained even from non-visible
agents.

ing agents to stay in closer proximity. However, an intrinsic social
reward encouraging proximity is reasonable given that humans seek
affiliation and to spend time near other people (Tomasello, 2009b).
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3.6.1 Experiment III: Modeling other agents

As before, we allow the policy LSTM of each agent to condition on
the actions of other agents in the last timestep (actions are visible).
We compare against an ablated version of the architecture shown in
Figure 3.8, which does not use the output of the MOA to compute a
reward; rather, the MOA can be thought of as an unsupervised auxil-
iary task that may help the model to learn a better shared embedding
layer, encouraging it to encode information relevant to predicting
other agents’ behavior. Figure 3.9 shows the collective reward ob-
tained for agents trained with a MOA module. While we see that the
auxiliary task does help to improve reward over the A3C baseline,
the influence agent gets consistently higher collective reward. These
results demonstrate that the influence reward can be effectively com-
puted using an internal MOA, and thus agents can learn socially but
independently, optimizing for a social reward without a centralized
controller.

(a) Cleanup (b) Harvest

Figure 3.9: Total collective re-
ward for MOA models. Again,
intrinsic influence consistently
improves learning, with the
powerful A3C agent baselines
not being able to learn.

Agents with influence achieve higher collective reward than the
previous state-of-the-art for these environments (275 for Cleanup
and 750 for Harvest) (Hughes et al., 2018). This is compelling, given
that previous work relied on the assumption that agents could view
one another’s rewards; we make no such assumption, instead re-
lying only on agents viewing each other’s actions. Table 3.4 of the
Supplementary Material gives the final collective reward obtained
in previous work, and by each influence model for all three experi-
ments.

3.7 Related work

Several attempts have been made to develop intrinsic social rewards.3
3 Note that intrinsic is not a synonym
of internal; other people can be intrin-
sically motivating (Stavropoulos and
Carver, 2013).
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Sequeira et al. (2011) developed hand-crafted rewards for a foraging
environment, in which agents were punished for eating more than
their fair share of food. Another approach gave agents an emotional
intrinsic reward based on their perception of their neighbours’ coop-
erativeness in a networked version of the iterated prisoner’s dilemma,
but is limited to scenarios in which it is possible to directly classify
each action as cooperative or non-cooperative (Yu et al., 2013). This is
untenable in complex settings with long-term strategies, such as the
SSDs under investigation here.

Some approaches allow agents to view each others’ rewards in order
to optimize for collective reward (e.g. Kleiman-Weiner et al. (2016)).
Peysakhovich and Lerer (2018) show that if even a single agent is
trained to optimize for others’ rewards, it can significantly help the
group. Hughes et al. (2018) introduced an inequity aversion moti-
vation, which penalized agents if their rewards differed too much
from those of the group. Liu et al. (2014) train agents to learn their
own optimal reward function in a cooperative, multi-agent setting
with known group reward. However, the assumption that agents can
view and optimize for each others’ rewards may be unrealistic. Thus,
recent work explores training agents that learn when to cooperate
based solely on their own past rewards (Peysakhovich and Lerer,
2017).

Training agents to learn emergent communication protocols has
been explored (Foerster et al., 2016; Cao et al., 2018; Choi et al., 2018;
Lazaridou et al., 2018; Bogin et al., 2018), with many authors find-
ing that selfish agents do not learn to use an ungrounded, cheap talk
communication channel effectively. Crawford and Sobel (1982) find
that in theory, the information communicated is proportional to the
amount of common interest; thus, as agents’ interests diverge, no
communication is to be expected. And while communication can
emerge when agents are prosocial (Foerster et al., 2016; Lazaridou
et al., 2018), curious (Oudeyer and Kaplan, 2006; Oudeyer and Smith,
2016; Forestier and Oudeyer, 2017), or hand-crafted (Crandall et al.,
2017), self-interested agents do not to learn to communicate (Cao
et al., 2018). We have shown that the social influence reward can en-
courage agents to learn to communicate more effectively in complex
environments.

Our MOA is related to work on machine theory of mind (Rabinowitz
et al., 2018; Shum et al., 2019). Rabinowitz et al. (2018) demonstrated
that a model trained to predict agents’ actions can model false beliefs.
LOLA agents model the impact of their policy on the parameter
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updates of other agents, and directly incorporate this into the agent’s
own learning rule (Foerster et al., 2018).

Barton et al. (2018) propose causal influence as a way to measure
coordination between agents, specifically using Convergence Cross
Mapping (CCM) to analyze the degree of dependence between two
agents’ policies. The limitation if CCM is that estimates of causality
are known to degrade in the presence of stochastic effects (Tajima
et al., 2015). Counterfactual reasoning has also been used in a multi-
agent setting, to marginalize out the effect of one agent on a pre-
dicted global value function estimating collective reward, and thus
obtain an improved baseline for computing each agent’s advantage
function (Foerster et al., 2017). A similar paper shows that counter-
factuals can be used with potential-based reward shaping to improve
credit assignment for training a joint policy in multi-agent RL (De-
vlin et al., 2014). However, once again these approaches rely on a
centralized controller.

Mutual information (MI) has been explored as a tool for designing
social rewards. Strouse et al. (2018) train agents to optimize the MI
between their actions and a categorical goal, as a way to signal or
hide the agent’s intentions. However, this approach depends on
agents pursuing a known, categorical goal. Guckelsberger et al.
(2018), in pursuit of the ultimate video game adversary, develop
an agent that maximizes its empowerment, minimizes the player’s
empowerment, and maximizes its empowerment over the player’s
next state. This third goal, termed transfer empowerment, is obtained
by maximizing the MI between the agent’s actions and the player’s
future state. While a social form of empowerment, Guckelsberger
et al. (2018) find that agents trained with transfer empowerment sim-
ply tend to stay near the player. Further, the agents are not trained
with RL, but rather analytically compute these measures in simple
grid-world environments. As such, the agent cannot learn to model
other agents or the environment.

Given the social influence reward incentivizes maximizing the mu-
tual information between agents’ actions, our work also has ties to
the literature on empowerment, in which agents maximize the mu-
tual information between their actions and their future state (Klyubin
et al., 2005; Mohamed and Rezende, 2015). Thus, our proposed re-
ward can be seen as a novel social form of empowerment.
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3.8 Details on causal inference

The causal influence reward presented in Eq. 3.1 is assessed using
counterfactual reasoning. Unlike a do-calculus intervention (which
estimates the general expected causal effect of one variable on an-
other), a counterfactual involves conditioning on a set of variables
observed in a given situation and asking how would the outcome
have changed if some variable were different, and all other vari-
ables remained the same (Pearl et al., 2016). This type of inquiry
allows us to measure the precise causal effect of agent k’s action at
timestep t, ak

t , on agent j’s action, aj
t, in the specific environment state

st, providing a richer and less sparse reward for agent k. Computing
counterfactuals requires conditioning on the correct set of observed
variables to ensure there are no confounds. In our case, the condi-
tioning set must include not only an agent’s partially observed view
of the environment state, sj

t, but also the agent’s internal LSTM state
uj

t, to remove any dependency on previous timesteps in the trajec-
tory. Thus, the basic causal influence reward can be more accurately
written:

ck
t =

N

∑
j=0,j 6=k

[
DKL[p(aj

t | ak
t , sj

t, uj
t)||p(aj

t | sj
t, uj

t)]
]

. (3.3)

Figure 3.10 shows the causal diagrams for computing the influence
reward in both the basic case and the MOA case. Because basic
influence looks at influence between agents’ actions in the same
timestep, the diagram is much simpler. However, to avoid circular
dependencies in the graph, it requires that agent k choose its action
before j, and therefore k can influence j but j cannot influence k. If
there are more than two agents, we assume a disjoint set of influencer
and influencee agents, and all influencers must act first.

(a) Basic (b) MOA

Figure 3.10: Causal diagrams
of agent k’s effect on j’s action.
Shaded nodes are conditioned
on, and we intervene on ak

t
(blue node) by replacing it
with counterfactuals. Nodes
with a green background must
be modeled using the MOA
module. Note that there is
no backdoor path between ak

t
and st in the MOA case, since
it would require traversing
a collider that is not in the
conditioning set.

Computing influence across timesteps, as in the communication and
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MOA experiments, complicates the causal diagram, but ensures that
each agent can influence every other agent. Figure 3.10 (b) shows the
diagram in the MOA case, in which we can isolate the causal effect
of ak

t on aj
t+1 because the back-door path through st is blocked by the

collider nodes at st+1 and uj
t+1 (Pearl et al., 2016). Note that it would

be sufficient to condition only on sk
t in order to block all back-door

paths in this case, but we show 〈uk
t , sk

t , aj
t〉 as shaded because all of

these are given as inputs to the MOA to help it predict aj
t+1. For the

MOA to accurately estimate p(aj
t+1|ak

t , sk
t ), it must model both the

environment transition function T, as well as aspects of the internal
LSTM state of the other agent, uj

t+1, as shown by the shaded green
variables in Figure 3.10 (b).

This is a simple case of counterfactual reasoning, that does not re-
quire using abduction to update the probability of any unobserved
variables (Pearl, 2013). This is because we have built all relevant
models, know all of their inputs, and can easily store the values for
those variables at every step of the trajectory in order to condition
on them so that there are no unobserved variables that could act as a
confounder.

3.9 Conclusions and future work

All three experiments have shown that the proposed intrinsic so-
cial influence reward consistently leads to higher collective return.
Despite variation in the tasks, hyper-parameters, neural network
architectures and experimental setups, the learning curves for agents
trained with the influence reward are significantly better than the
curves of powerful agents such as A3C and their improved baselines.
In some cases, it is clear that without influence, agents fail to demon-
strate any evidence of coordination, attesting to the promise of this
idea and highlighting the complexity of learning general deep neural
network multi-agent policies.

Experiment I also showed that the influence reward can lead to the
emergence of communication protocols. In experiment II, which
included an explicit communication channel, we saw that influence
improved communication. Experiment III showed that influence can
be computed by augmenting agents with an internal model of other
agents. The influence reward can thus be computed without having
access to another agent’s reward function, or requiring a centralized
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controller. We were able to surpass state-of-the-art performance on
the SSDs studied here, despite the fact that previous work relied on
agents’ ability to view other agents’ rewards.

Using counterfactuals to allow agents to understand the effects of
their actions on others is a promising approach with many extensions.
Agents could use counterfactuals to develop a form of ‘empathy’, by
simulating how their actions affect another agent’s value function.
Influence could also be used to drive coordinated behavior in robots
attempting to do cooperative manipulation and control tasks. Finally,
if we view multi-agent networks as single agents, influence could
be used as a regularizer to encourage different modules of the net-
work to integrate information from other networks; for example, to
hopefully prevent collapse in hierarchical RL.

3.10 Statement of contributions

I originally conceived the idea for this work was as an answer to
a general exam question set by Nando de Freitas about how to
develop new forms of intrinsic motivation using inspiration from
human social and emotional motivation. I developed the formulation
of influence described in Equations 4.1 and 4.2, wrote the agent
code, and devised and ran the experiments. Angeliki Lazaridou
conducted the analysis of the learned communication protocols
presented in Section 3.5.1. Ed Hughes and Joel Leibo developed
the SSD environments and code to run vanilla A3C agents in those
environments. Ed, Joel, Nando, and Caglar Gulcehre advised on
the project throughout, along with DJ Strouse and Pedro Ortega. DJ
and Pedro helped develop the proof of the connection with Mutual
Information, and Pedro advised on Pearl’s notion of causality and
checked the correctness of Figure 3.10.

3.11 Appendix

3.11.1 Influence as Mutual Information

The causal influence of agent k on agent j is:

DKL

[
p(aj

t | ak
t , zt)

∥∥∥p(aj
t | zt)

]
, (3.4)
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where zt represents all relevant u and s background variables at
timestep t. The influence reward to the mutual information (MI)
between the actions of agents k and j, which is given by

I(Aj; Ak|z) = ∑
ak ,aj

p(aj, ak|z) log
p(aj, ak|z)

p(aj|z)p(ak|z)

= ∑
ak

p(ak|z)DKL

[
p(aj|ak, z)

∥∥∥p(aj|z)
]
, (3.5)

where we see that the DKL factor in Eq. 3.5 is the causal influence
reward given in Eq. 3.4.

By sampling N independent trajectories τn from the environment,
where k’s actions ak

n are drawn according to p(ak|z), we perform a
Monte-Carlo approximation of the MI (see e.g. Strouse et al. (2018)),

I(Ak; Aj|z) = Eτ

[
DKL

[
p(Aj|Ak, z)

∥∥p(Aj|z)
]∣∣∣z]

≈ 1
N ∑

n
DKL

[
p(Aj|ak

n, z)
∥∥p(Aj|z)

]
. (3.6)

Thus, in expectation, the social influence reward is the MI between
agents’ actions.

Whether the policy trained with Eq. 3.4 actually learns to approx-
imate the MI depends on the learning dynamics. We calculate the
intrinsic social influence reward using Eq. 3.4, because unlike Eq. 3.5,
which gives an estimate of the symmetric bandwidth between k and
j, Eq. 3.4 gives the directed causal effect of the specific action taken
by agent k, ak

t . We believe this will result in an easier reward to learn,
since it allows for better credit assignment; agent k can more easily
learn which of its actions lead to high influence.

The connection to mutual information is interesting, because a fre-
quently used intrinsic motivation for single agent RL is empowerment,
which rewards the agent for having high mutual information be-
tween its actions and the future state of the environment (e.g. Klyu-
bin et al. (2005); Capdepuy et al. (2007)). To the extent that the social
influence reward approximates the MI, k is rewarded for having
empowerment over j’s actions.

The social influence reward can also be computed using other diver-
gence measures besides KL-divergence. Lizier and Prokopenko (2010)
propose local information flow as a measure of direct causal effect; this
is equivalent to the pointwise mutual information (the innermost term
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of Eq. 3.6), given by:

pmi(ak; aj | Z = z) = log
p(aj | ak, z)

p(aj | z)

= log
p(ak, aj | z)

p(ak | z)p(aj | z)
. (3.7)

The PMI gives us a measure of influence of a single action of k on the
single action taken by j. The expectation of the PMI over p(aj, ak|z)
is the MI. We experiment with using the PMI and a number of diver-
gence measures, including the Jensen-Shannon Divergence (JSD), and
find that the influence reward is robust to the choice of measure.

3.11.2 Additional experiment - Box Trapped

Figure 3.11: The Box trapped
environment in which the teal
agent is trapped, and the pur-
ple agent can release it with a
special open box action.

As a proof-of-concept experiment to test whether the influence
reward works as expected, we constructed a special environment,
shown in Figure 3.11. In this environment, one agent (teal) is trapped
in a box. The other agent (purple) has a special action it can use to
open the box... or it can simply choose to consume apples, which
exist outside the box and are inexhaustible in this environment.

As expected, a vanilla A3C agent learns to act selfishly; the purple
agent will simply consume apples, and chooses the open box action
in 0% of trajectories once the policy has converged. A video of A3C
agents trained in this environment is available at: https://youtu.be/
C8SE9_YKzxI, which shows that the purple agent leaves its compatriot
trapped in the box throughout the trajectory.

In contrast, an agent trained with the social influence reward chooses
the open box action in 88% of trajectories, releasing its fellow agent so
that they are both able to consume apples. A video of this behavior
is shown at: https://youtu.be/Gfo248-qt3c. Further, as Figure 3.12

reveals, the purple influencer agent usually chooses to open the box
within the first few steps of the trajetory, giving its fellow agent more
time to collect reward.

https://youtu.be/C8SE9_YKzxI
https://youtu.be/C8SE9_YKzxI
https://youtu.be/Gfo248-qt3c
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Most importantly though, Figure 3.13 shows the influence reward
over the course of a trajectory in the Box trapped environment. The
agent chooses the open box action in the second timestep; at this point,
we see a corresponding spike in the influence reward. This reveals
that the influence reward works as expected, incentivizing an action
which has a strong—and in this case, prosocial—effect on the other
agent’s behavior.

Figure 3.12: Number of times
the open box action occurs at
each trajectory step over 100

trajectories.

Figure 3.13: Influence reward
over a trajectory in Box trapped.
An agent gets high influence for
letting another agent out of the
box in which it is trapped.

3.11.3 Implementation details

All models are trained with a single convolutional layer with a kernel
of size 3, stride of size 1, and 6 output channels. This is connected
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to two fully connected layers of size 32 each, and an LSTM with 128

cells. We use a discount factor γ = .99. The number of agents N is
fixed to 5.

In addition to the comparison function used to compute influence
(e.g. KL-divergence, PMI, JSD), there are many other hyperparam-
eters that can be tuned for each model. We use a random search
over hyperparameters, ensuring a fair comparison with the search
size over the baseline parameters that are shared with the influence
models. For all models we search for the optimal entropy reward and
learning rate, where we anneal the learning rate from an initial value
lr_init to lr_final. The below sections give the parameters found
to be most effective for each of the three experiments.

3.11.3.1 Basic influence hyperparameters

In this setting we vary the number of influencers from 1 − 4, the
influence reward weight β, and the number of curriculum steps
over which the weight of the influence reward is linearly increased
C. In this setting, since we have a centralised controller, we also
experiment with giving the influence reward to the agent being influ-
enced as well, and find that this sometimes helps. This ‘influencee’
reward is not used in the other two experiments, since it precludes
independent training. The hyperparameters found to give the best
performance for each model are shown in Table 3.1.

Cleanup Harvest

Hyperparameter
A3C
baseline

Visible
actions
baseline

Influence
A3C
baseline

Visible
actions
baseline

Influence

Entropy reg. .00176 .00176 .000248 .000687 .00184 .00025

lr_init .00126 .00126 .00107 .00136 .00215 .00107

lr_end .000012 .000012 .000042 .000028 .000013 .000042

Num. influencers - 3 1 - 3 3

Influence weight β - 0 .146 - 0 .224

Curriculum C - - 140 - - 140

Policy comparison - - JSD - - PMI
Influencee reward - - 1 - - 0

Table 3.1: Optimal hyperparam-
eter settings for the models in
the basic influence experiment.

3.11.3.2 Communication hyperparameters

Because the communication models have an extra A2C output head
for the communication policy, we use an additional entropy regu-
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larization term just for this head, and apply a weight to the com-
munication loss in the loss function. We also vary the number of
communication symbols that the agents can emit, and the size of
the linear layer that connects the LSTM to the communication policy
layer, which we term the communication embedding size. Finally, in
the communication regime, we experiment to setting the weight on
the extrinsic reward E, α, to zero. The best hyperparameters for each
of the communication models are shown in Table 3.2.

Cleanup Harvest

Hyperparameter
A3C
baseline

Comm.
baseline

Influence
comm.

A3C
baseline

Comm.
baseline

Influence
comm.

Entropy reg. .00176 .000249 .00305 .000687 .000174 .00220

lr_init .00126 .00223 .00249 .00136 .00137 .000413

lr_end .000012 .000022 .0000127 .000028 .0000127 .000049

Influence weight β - 0 2.752 - 0 4.825

Extrinsic reward
weight α

- - 0 - - 1.0

Curriculum C - - 1 - - 8

Policy comparison - - KL - - KL
Comm. entropy reg. - - .000789 - - .00208

Comm. loss weight - - .0758 - - .0709

Symbol vocab size - - 9 - - 7

Comm. embedding - - 32 - - 16

Table 3.2: Optimal hyperparam-
eter settings for the models in
the communication experiment.

3.11.3.3 Model of other agents (MOA) hyperparameters

The MOA hyperparameters include whether to only train the MOA
with cross-entropy loss on the actions of agents that are visible, and
how much to weight the supervised loss in the overall loss of the
model. The best hyperparameters are shown in Table 3.3.

Cleanup Harvest

Hyperparameter
A3C
baseline

MOA
baseline

Influence
MOA

A3C
baseline

MOA
baseline

Influence
MOA

Entropy reg. .00176 .00176 .00176 .000687 .00495 .00223

lr_init .00126 .00123 .00123 .00136 .00206 .00120

lr_end .000012 .000012 .000012 .000028 .000022 .000044

Influence weight β - 0 .620 - 0 2.521

MOA loss weight - 1.312 15.007 - 1.711 10.911

Curriculum C - - 40 - - 226

Policy comparison - - KL - - KL
Train MOA only
when visible

- False True - False True

Table 3.3: Optimal hyperpa-
rameter settings for the models
in the model of other agents
(MOA) experiment.



128

3.11.3.4 Communication analysis

The speaker consistency metric is calculated as:

N

∑
k=1

0.5[∑
c

1− H(p(ak|mk = c))
Hmax

+ ∑
a

1− H(p(mk|ak = a))
Hmax

], (3.8)

where H is the entropy function and Hmax is the maximum entropy
based on the number of discrete symbols or actions. The goal of the
metric is to measure how much of a 1:1 correspondence exists be-
tween a speaker’s action and the speaker’s communication message.

3.11.4 Additional results

(a) Cleanup (b) Harvest

Figure 3.14: Total collective
reward obtained by agents
trained to optimize for the col-
lective reward, for the 5 best
hyperparameter settings with
5 random seeds each. Error
bars show a 99.5% confidence
interval (CI) computed within
a sliding window of 200 agent
steps.In this section we include the results of training explicitly prosocial

agents, which directly optimize for the collective reward of all agents.
Previous work (e.g. Peysakhovich and Lerer (2018)) has shown that
training agents to optimize for the rewards of other agents can help
the group to obtain better collective outcomes. Following a similar
principle, we implemented agents that optimize for a convex combi-
nation of their own individual reward ek

t and the collective reward of
all other agents, ∑N

i=1,i 6=k ei
t. Thus, the reward function for agent k is

rk
t = ek

t + η ∑N
i=1,i 6=k ei

t. We conducted the same hyperparameter search
over the parameters mentioned in Section 3.11.3.1 varying the weight
placed on the collective reward, η ∈ [0, 2].

As expected, we find that agents trained to optimize for collective
reward attain higher collective reward in both Cleanup and Harvest,
as is shown in Figure 3.14. In both games, the optimal value for
η = 0.85. Interestingly, however, the equality in the individual returns
for these agents is extremely low. Across the hyperparameter sweep,
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no solution to the Cleanup game which scored more than 20 points
in terms of collective return was found in which all agents scored an
individual return above 0. It seems that in Cleanup, when agents are
trained to optimize for collective return, they converge on a solution
in which some agents never receive any reward.

Note that training agents to optimize for collective reward requires
that each agent can view the rewards obtained by other agents. As
discussed previously, the social influence reward is a novel way
to obtain cooperative behavior, that does not require making this
assumption.

3.11.4.1 Collective reward and equality

It is important to note that collective reward is not always the perfect
metric of cooperative behavior, a finding that was also discovered
by Barton et al. (2018) and emphasized by Leibo et al. (2017). In
the case, we find that there is a spurious solution to the Harvest
game, in which one agent fails to learn and fails to collect any apples.
This leads to very high collective reward, since it means there is
one fewer agent that can exploit the others, and makes sustainable
harvesting easier to achieve. Therefore, for the results shown in here,
we eliminate any random seed in Harvest for which one of the agents
has failed to learn to collect apples, as in previous work (Hughes
et al., 2018).

However, here we also present an alternative strategy for assessing
the overall collective outcomes: weighting the total collective reward
by an index of equality of the individual rewards. Specifically, we
compute the Gini coefficient over the N agents’ individual environ-
mental rewards ek

t :

G =
∑N

i=1 ∑N
j=1 |ei

t − ej
t|

2N ∑N
i=1 ei

t
, (3.9)

which gives us a measure of the inequality of the returns, where
G ∈ [0, 1], with G = 0 indicating perfect equality. Thus, 1− G is a
measure of equality; we use this to weight the collective reward for
each experiment, and plot the results in Figure 3.15. Once again, we
see that the influence models give the highest final performance, even
with this new metric.
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(a) Cleanup - Basic influence (b) Harvest - Basic influence

(c) Cleanup - Communication (d) Harvest - Communication

(e) Cleanup - Model of other agents (f) Harvest - Model of other agents

Figure 3.15: Total collective re-
ward times equality, R ∗ (1− G),
obtained in all experiments.
Error bars show a 99.5% con-
fidence interval (CI) over 5

random seeds, computed
within a sliding window of
200 agent steps. Once again,
the models trained with influ-
ence reward (red) significantly
outperform the baseline and
ablated models.

3.11.4.2 Collective reward over multiple hyperparameters

Finally, we would like to show that the influence reward is robust to
the choice of hyperparameter settings. Therefore, in Figure 3.16, we
plot the collective reward of the top 5 best hyperparameter settings
for each experiment, over 5 random seeds each. Once again, the
influence models result in higher collective reward, which provides
evidence that the model is robust to the choice of hyperparameters.

3.11.4.3 Performance comparison between models and related work

Table 3.4 presents the final collective reward obtained by each of the
models tested in the experiments presented. We see that in several
cases, the influence agents are even able to out-perform the state-of-
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(a) Cleanup - Basic influence (b) Harvest - Basic influence

(c) Cleanup - Communication (d) Harvest - Communication

(e) Cleanup - Model of other agents (f) Harvest - Model of other agents

Figure 3.16: Total collective
reward over the top 5 hyperpa-
rameter settings, with 5 random
seeds each, for all experiments.
Error bars show a 99.5% confi-
dence interval (CI) computed
within a sliding window of
200 agent steps. The influence
models still maintain an ad-
vantage over the baselines and
ablated models, suggesting
the technique is robust to the
hyperparameter settings.

the-art results on these tasks reported by Hughes et al. (2018). This is
impressive, considering the inequity averse agents are able to view all
other agents’ rewards. We make no such assumption (only assuming
that agents can view each others’ actions), and yet are able to achieve
similar or superior performance.

Cleanup Harvest
A3C baseline 89 485

Inequity aversion (Hughes et al.) 275 750

Influence - Basic 190 1073
Influence - Communication 166 951
Influence - Model of other agents 392 588

Table 3.4: Final collective re-
ward over the last 50 agent
steps for each of the models
considered. Bolded entries
represent experiments in which
the influence models signifi-
cantly outperformed the scores
reported in previous work on
inequity aversion (Hughes et al.,
2018)
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In order to create AI systems that not only provide benefit to humans,
but that are aligned with long-term human interests, it is important
to develop techniques for automatically learning from human prefer-
ences. This chapter explores how to create a neural network dialog
model that can learn by conversing with a human. Specifically, we
focus on learning from implicit cues in the text itself (such as the
sentiment expressed), in order to improve the model based on human
feedback.

This chapter has three parts. Section 4.1 addresses the problem of
building and evaluating open-domain dialog models via interactive
human evaluation. Building from the data collected in these first
experiments, Section 4.2 describes how to learn from a fixed, static
batch of this human data using reinforcement learning (RL), in the
unusual setting where the model is not able to explore online in the
environment. Finally, Section 4.3 shows that the same techniques
can be applied to a variety of related sequence modeling problems,
yielding good results, and reducing catastrophic forgetting when
performing RL via transfer learning from a model pre-trained on
data.

4.1 Interactive human evaluation of dialog systems

Building an open-domain conversational agent is a challenging prob-
lem. Current evaluation methods, mostly post-hoc judgments of
single-turn evaluation, do not capture conversation quality in a real-
istic interactive context. Therefore we investigate interactive human
evaluation and provide evidence for its necessity; we then introduce a
novel, model-agnostic, and dataset-agnostic method to approximate
it. In particular, we propose a self-play scenario where the dialog sys-
tem talks to itself and we calculate a combination of proxies such as
sentiment and semantic coherence on the conversation trajectory. We
show that this metric is capable of capturing the human-rated quality
of a dialog model better than any automated metric known to-date,



135

achieving a significant Pearson correlation (r > .7, p < .05). To in-
vestigate the strengths of this novel metric and interactive evaluation
in comparison to state-of-the-art metrics and one-turn evaluation,
we perform extended experiments with a set of models, including
several that make novel improvements to recent hierarchical dialog
generation architectures through sentiment and semantic knowledge
distillation on the utterance level. Finally, we open-source the inter-
active evaluation platform we built and the dataset we collected to
allow researchers to efficiently deploy and evaluate generative dialog
models.

4.1.1 Background

The goal of an open-domain conversational agent is to carry out
natural social interactions with humans. Current state-of-the-art gen-
erative neural networks fail in producing key aspects of good natural
conversation, including staying on topic, not being repetitive, and
generating emotionally appropriate responses. One of the biggest
challenges in training better dialog systems relates to the difficulty of
evaluating them. Automatic metrics such as BLEU score relate poorly
to human judgment of dialog quality (Liu et al., 2016), and while
embedding-distance based metrics provide an alternative (Mitchell
and Lapata, 2008), we will show that they also do not correlate well
with human evaluation. Without a reliable metric to optimize, train-
ing high quality dialog models remains difficult.

Since humans are the ultimate authority on what constitutes a good
conversation, many authors rely on human ratings to evaluate their
methods (e.g. (Serban et al., 2017b; Park et al., 2018; Serban et al.,
2016)). The predominant procedure for obtaining human ratings uses
single-turn evaluation: a context of several sentences is used as input
to generate a single response for a human to evaluate. However, a
single turn is incapable of capturing common failure modes of open-
domain dialog systems, such as a lack of diversity in the responses,
inability to track long-term aspects of the conversation, and inability
to maintain a consistent persona (Dinan et al., 2019; Li et al., 2016a;
Mazare et al., 2018). In spite of this, most authors still rely on single-
turn evaluation, even when evaluating these exact qualities.

Conversation is inherently a process. In this chapter, we argue that
multi-turn interactive human evaluation is essential for evaluating
this process, and for making progress in improving open-domain
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Single-turn
HRED - Cornell

Multi-turn
HRED - Cornell

Multi-turn
EI HRED - Reddit

Self-play
EI HRED - Reddit

[User]: you’re weird.
[HRED]: i’m sorry.

[User]: i’m feeling sad today.
[HRED]: no.
[User]: yes i am!
[HRED]: i’m sorry, i’m sorry.
i don’t want to know.
[User]: you’re weird.
[HRED]: i’m sorry.

[User] talk to me
[EI HRED]: it’s my job.
[User]: i love you
[EI HRED]: thank you for the
kind words.
[User]: do you love me?
[EI HRED]: it’s a bit personal,
so I sent you a dm.
[User]: i’m blushing

[EI HRED] i can’t wait to see
what i can do.
[EI HRED] that’s a good idea.
[EI HRED] how do you deal
with people?
[EI HRED] i’ve been on reddit
for a long time.
[EI HRED] i am in the same boat.

Table 4.1: Single-turn evalua-
tion fails to capture a lack of
diversity in a dialog model’s re-
sponses, as well as its inability
to track the conversation and re-
spond in emotionally appropri-
ate ways. We argue multi-turn
evaluation is needed to evalu-
ate dialog models, and show
that our Emotion+Infersent
(EI) models trained on a larger
and more diverse corpus, pro-
duce better interactive dialog.
We present strong evidence
that our novel dialog self-play
framework combined with
psychologically motivated
novel automated metrics can
accurately estimate quality
of a model with respect to its
ability to carry out multi-turn
conversations.

dialog models. Table 4.1 illustrates an example where a bot generates
a coherent single-turn response, but multi-turn evaluation shows that
the distribution of its responses has collapsed onto repeatedly saying
the same phrase, a common problem in this domain (Li et al., 2016c).

The relative sparsity of interactive human evaluation of dialog sys-
tems may relate to the difficulty and expense of collecting human
data. Therefore, we develop a way to approximate human judgment
of interactive dialog quality using a novel form of dialog self-play.
We begin by proposing a series of metrics to evaluate the quality of
conversation motivated by findings in psychology. We then fit a func-
tion that predicts human assessments of conversation quality given
these metrics. This function is used to predict bot quality through
self-play: for a fixed number of turns, the bot generates utterances
which are fed back into itself as input in the next turn. The same
metrics described above are computed on the self-play generated con-
versation, and the same function fit to human data is used to predict
the bot quality. We show a very high correlation (r = .725, p = .008)
between the predicted quality scores and the ground-truth human
judgments of bot quality, suggesting self-play is a good proxy for
interactive conversation assessment.

To demonstrate the relevance of the interactive evaluation and the
proposed self-play evaluation, we perform extended experiments
with different hierarchical architectures. In particular, we compare
three recent baseline hierarchical architectures: HRED, VHRED,
VHCR. Motivated by sentiment and semantics being key aspects of
producing high quality conversations, we regularize the top level of
the hierarchy to ensure it encodes such information, using a form
of model distillation (Hinton et al., 2015). Our results show the
effectiveness of the proposed regularization in interactive evaluation
in both the human-bot and the self-play scenarios.
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This section makes three main contributions: 1) demonstrates the
necessity of interactive multi-turn evaluation to capture the quality
of the dialog systems; 2) Presents a novel self-play framework to
estimate a new psychology-motivated hybrid quality score. These
estimations are highly correlated with quality scores obtained from
interactive human evaluation, more strongly than the state-of-the-
art automated metrics; 3) proposes a new method of regularizing
hierarchical seq2seq models with knowledge distillation. All the code,
data, and interactive evaluation platform resulting from our work are
publicly available.

4.1.2 Related work

Despite the noisiness of single-turn human evaluation, interactive
evaluation in dialog has been mostly limited to presenting the results
of competitions (e.g. the Alexa prize (Serban et al., 2017a; Venkatesh
et al., 2018), or the Conversational Intelligence Challenge (Dinan
et al., 2019)). Those findings reveal that most bots do not perform
well in interactive evaluation, due to repetitiveness, inability to bal-
ance dialog acts across the conversation, and inability to maintain
a consistent persona (Dinan et al., 2019). Even work aimed at main-
taining a persona does not test in an interactive setting (Mazare
et al., 2018; Li et al., 2016a). To the best of our knowledge, no prior
work has compared interactive, multi-turn human evaluations of
open-domain dialog models to traditional forms of evaluation.

Dialog systems remain difficult to train due to the lack of metrics
that can effectively capture good dialog quality. Several authors have
proposed training automatic predictors of human judgment or to
combine human judgment with automatic metrics (Hashimoto and
Sassano, 2018; Lowe et al., 2017a; Hashimoto et al., 2019). However, a
state-of-the-art model trained to predict human judgments achieved a
correlation of less than 0.5 with the ground truth (Lowe et al., 2017a).

Perhaps the lack of research into interactive evaluation relates to
the difficulty and expense. We show that human judgments of the
quality of an interactive evaluation can be automatically and reliably
approximated using dialog model self-play. There is limited work
investigating self-play for dialog systems: Shah et al. (2018) use a
task schema and user simulator to generate samples for input to a
goal-directed dialog system, while Li et al. (2016c) use a copy of a
dialog model to compute a reward function that can be optimized
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with reinforcement learning. However, we are not aware of prior
work using self-play for approximating interactive human evaluation.

Multi-turn conversation necessitates tracking long-term aspects of
the dialog like the topic and tone. Hierarchical recurrent neural
networks (RNNs) have been proposed as a way to improve long-
term tracking of the conversation, through maintaining both a word-
and utterance-level RNN (e.g. (Serban et al., 2016, 2017b; Park et al.,
2018; Shen et al., 2018; Zhao et al., 2017)). Yet dialog is more than
language modeling, it requires topic and social coherence. Prior
performance improvements to dialog models using topic information
include appending topic as an additional input (Ghosh et al., 2016),
or extracting topic information using Latent Dirchlet Allocation (Li
and Jurafsky, 2017; Xing et al., 2017). Towards social and emotional
coherence, previous works have investigated various features and
loss functions based on emotion (Zhou et al., 2018a; Zhou and Wang,
2018; Huang et al., 2018a; Rashkin et al., 2018).

4.1.3 Knowledge distillation for sentiment and semantic regularization

We build on three existing hierarchical seq2seq1 architectures de-
1 Note that while transformer archi-
tectures (e.g. (Radford et al., 2019))
have emerged as a powerful alternative
to seq2seq models, here we choose
to focus on hierarchical architectures
because it gives us the flexibility to
extend our reinforcement learning
methods described in Section 4.2 to use
hierarchical control in the future, thus
learning to optimize rewards at both
the utterance and conversation level.

signed for dialog. Here, we provide a brief summary; for detailed
information, see (Serban et al., 2016, 2017b; Park et al., 2018). The
first baseline model, Hierarchical Recurrent Encoder Decoder (HRED)
(Serban et al., 2016) extends a traditional seq2seq model by adding a
third recurrent neural network (RNN), which is only updated after
each dialog turn, or utterance. The idea behind this Context RNN is
that it could potentially track longer term aspects of the conversation,
such as the topic; however, there is no guarantee that it will learn
to do so. The decoder of the HRED model conditions on both the
embedding produced by the encoder for the current utterance, he

n,
and the embedding of the Context RNN for the previous utterance,
hc

n−1.

The second baseline model, Variational HRED (VHRED) (Serban
et al., 2017b), extends HRED with a variational constraint on the
utterance embedding space z. Let xn = [w1n, w2n . . . wmn] be the n-th
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utterance composed of tokens w1..m. VHRED predicts xn as follows:

he
n = f e(xn−1) (4.1)

hc
n−1 = f c(xn−1, he

n−1) (4.2)

µ, Σ = f (hc
n−1) (4.3)

pθ(zn|x<n) = N(z|µ, Σ) (4.4)

p(xn|x<n) = f d(hc
n−1, zn) (4.5)

Equations (4.1)-(4.5) describe the computation of VHRED at inference
time where f e, f c, and f d are Gated Recurrent Unit (GRU) networks
for the encoder, context, and decoder RNNs, respectively; at training
time, it allows the computation of z, µ, and Σ to condition on the
encoding of the target utterance, he

n, giving the posterior distribution
pΨ(zn|x≤n). A Kullback-Leibler (KL) divergence constraint is placed
between the posterior and prior, DKL(pΨ||pθ). The third model,
Variational Hierarchical Conversation RNN (VHCR) (Park et al., 2018)
further extends VHRED by drawing a prior encoding zconv ∼ N(0, I)
for each conversation, allowing all parts of the model ( f c, µ, Σ) to
condition on zconv, which is unchanging throughout the conversation.

Distillation 

Word-level 
encoder 

RNN 

Context 
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Figure 4.1: Illustration of the EI
regularization (blue) applied
to VHRED baseline (red) to
enforce encoding sentiment
and semantics of an utterance
in the Context RNN. The EI
regularization can be similarly
applied to HRED and VHCR.

4.1.3.1 Emotion and Infersent regularization (EI)

While the hierarchical design of these models is motivated by a desire
to allow tracking high-level, slow-changing aspects of the conversa-
tion like topic or tone, it is unclear that the network will be able to
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model these aspects without additional structure or information. We
thus propose a regularization to the top level of the hierarchy, the
Context RNN, to force it to encode both the sentiment and semantics
of the utterance. To do this, we leverage a state-of-the-art sentiment
detection model trained on a large Twitter corpus (Felbo et al., 2017),
as well as the recently proposed Infersent sentence-embedding model
trained to predict the meaning (i.e. entailment, contradiction) of
sentences (Conneau et al., 2017), and distill them into the Context
RNN.

First, we use these models to predict the emotional content, fE(xn),
and infersent embedding, f I(xn) of each input utterance. We then
add an additional network to the hierarchical models which predicts
these values based on the context RNN embedding of the utterance:
f distill(hc

n) =< fE(xn), f I(xn) >. The goal is to transfer knowledge of
emotion and semantics in text into the context RNN via knowledge
distillation (Hinton et al., 2015).

Figure 4.1 illustrates, in blue color, the EI regularization applied to
the VHRED model. The regularization can be similarly applied to
HRED and VHCR. In our experiments we refer to the regularized
models as HRED-EI, VHRED-EI, and VHCR-EI, respectively, or, more
generally, EI models as opposed to baseline models. The code for
all our models is available at https://github.com/natashamjaques/
neural_chat and was originally based on (Park et al., 2018).

4.1.4 Evaluation methodologies

4.1.4.1 Traditional evaluation

Automatic metrics Embedding-based metrics compare generated
sentences to ground truth sentences using a vector representation
of words (Mitchell and Lapata, 2008). In this work we use three
embedding metrics: embedding average, vector extrema, and greedy
matching. These three metrics are used in previous open-domain
dialog models (Serban et al., 2017b; Liu et al., 2016; Park et al., 2018).
We also use perplexity as a standard measure of the likelihood of
the generated sentences with respect to the target outputs. Another
common metric for variational models is the KL-Divergence between
the posterior and the prior distribution, as a way of assessing the
information encoded into the latent variables (Shen et al., 2018)
(Figure 4.1 illustrates KL for the VHRED model).

https://github.com/natashamjaques/neural_chat
https://github.com/natashamjaques/neural_chat
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Conventional one-turn human evaluation We employ a similar
method to previous work for our single-turn human evaluation of
generated responses (Serban et al., 2017b; Park et al., 2018), sam-
pling contexts from each corpus and asking humans to compare
the generated responses. To reduce ambiguity, we exclude contexts
shorter than 10 tokens and contexts containing <unknown> tokens.
We recruited participants from Amazon Mechanical Turk (AMT) to
compare generated sentences. Annotators could also select a third
“tied” option. For each example (context and pair of generated sen-
tences), we asked annotators to rate quality, fluency, relatedness,
and empathy of the generated sentences. Each batch of 100 pairwise
comparison were labeled by 6 - 8 annotators.

4.1.4.2 Interactive human evaluation

To address the limitations of single-turn human evaluation, we
built a platform for conducting interactive evaluation of dialog
models with humans, which we make available in open-source to
the community (see Figure 4.2). Annotators rated quality, fluency,
relatedness, and empathy of a bot after interacting with it for at least
3 turns. Participants can also upvote or downvote each bot response.

 a) b)

Figure 4.2: Screenshots
of our Interactive Evalua-
tion Platform (available at
https://neural.chat): (a) chat
window (left) and first part of
the evaluation form (right); (b)
second part of the evaluation
form (to show all evaluation
questions asked).

4.1.4.3 Novel metrics and self-play

Inspired by real-world human interactions, we introduce novel met-
rics to capture the morphology of a conversation, i.e., how the users’
responses progress over time and how the bot’s responses interact
with them. We propose a hybrid combination of these metrics, MH ,

https://neural.chat
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that is optimized to predict conversation quality on human data.
We then apply MH to self-play, i.e., the trajectory of bot-generated
responses, and investigate how it relates to human ratings of conver-
sation quality.

4.1.5 Details about implicit metrics

Figure 4.3: 64 most frequent
emojis in the Twitter corpus, in
order of frequency. DeepMoji
(Felbo et al., 2017) predicts the
probability of each emoji given
an utterance, and this vector is
used for calculating emotion
embeddings.

Sentiment metrics To approximate emotional tone of an utterance,
we use a state-of-the-art sentiment detector called DeepMoji, which
was trained on a large Twitter corpus to predict the emojis used
in tweets (Felbo et al., 2017). Transfer learning from this model to
other tasks showed that it was able to significantly outperform state-
of-the-art classifiers on a series of sentiment, irony, and sarcasm
benchmarks, and a detailed analysis of the models predictions reveals
a nuanced ability to distinguish between the tone of slightly different
phrases. DeepMoji outputs an emotion embedding: a probability
distribution over 64 most-frequently used emojis, shown in Figure
4.3. To estimate the Sentiment Coherence between user’s query and
generated samples, we calculate the cosine similarity between their
emotion embeddings. We define a set of weights over the 64 emojis
and calculate the weighted sum over an emotion embedding vector
to derive a Sentiment score which is higher for positive sentiment and
lower for negative sentiment; the weights are shown in Figure 4.4. We
define Sentiment Transition as the change between user’s Sentiment
before and after a bot response. Additionally, Sentiment Min-Max is
defined by the slope of change between min and max Sentiment in
user utterances over the course of a conversation. This was designed
to measure whether the peak positive sentiment occurred later in
the conversation than the peak negative sentiment; we reasoned that
sentiment should improve over the course of the conversation. Since
humour can be used to create solidarity (Hay, 2000), we count the
number of ’ha’s in the user response as a proxy for Laughter. The
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combination of these metrics provides a snapshot of the trajectory of
sentiment in a conversation and quantifies if the bot is able to elicit
positive emotions in the user.

Figure 4.4: Assigned weights
used for reducing the 64-
dimensional emotion embed-
ding into a Sentiment score.

Semantic metrics Language style matching is a strong predictor of
relationship stability (Ireland et al., 2011) and social cohesiveness
(Gonzales et al., 2010); thus, we introduce metrics to capture lexical
similarity. We use Infersent, a state-of-the-art sentence-embedding
model to encode the user and bot responses into a 4096-dimensional
embedding space (Conneau et al., 2017). Infersent was trained to
distinguish if two sentences are supporting, contradicting, or have a
neutral relationship. We estimate Semantic Similarity by calculating
the cosine similarity between the infersent embedding of the user’s
query and the generated bot sample. Additionally, we use the classic
Word2Vec embeddings trained on Google News Corpus along with
average, extrema, and greedy aggregation methods similar to Section
4.1.4.1 to derive Average Word Coherence, Extrema Word Coherence, and
Greedy Word Coherence between user and bot responses.

Engagement metrics Asking questions is an important active listen-
ing skill which is linked to conversation management, attentiveness,
and responsiveness (Bodie et al., 2012). Therefore, we define Question
Score, to which we add 0.5 if the utterance contains a question word
(how, what, where, why, when, who), and an additional 0.5 if it contains
a question mark. We also introduce # Words as a proxy for user en-
gagement that counts the number of words in their response. Based
on prior work (Zhou et al., 2018b), we use the number of turns in the
conversation as an indicator of the quality of the bot’s performance.
We also compute the number of words in the user’s response, which
we refer to as the words elicited.

Hybrid metric (MH) We combine the aforementioned metrics (Mi)
using linear regression, and optimize their coefficients (λi) to best
predict human judgment of interactive conversation quality: MH =
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∑ λi ∗Mi + M0. We use a leave-bot-out scenario where we isolate all
the human conversations with one of the dialog models, χj, as the
hold-out test set. We train the λi,j on the remaining quality ratings.
We found that the learned λis were stable across the training folds,
only exhibiting small variations. Other researchers are encouraged to
use our learned coefficients directly or adjust them according to their
own interactive human evaluation dataset.

Self-play as an approximation for interactive evaluation Since in-
teractive human evaluation is costly, we propose a self-play scenario
where the dialog system talks to itself, i.e. the bot generated re-
sponses are fed back into it as the next turn input. For each model
χj, we generate 100 random conversations, fixed at 10 turns. The
self-play trajectories created using model χj are treated as the hold-
out set. Therefore, the trained λi,j values based on all conversations
except for the ones with χj are used to calculate MH on each gener-
ated bot-bot conversation trajectory for χj. The estimated MH values
are averaged across conversation samples for χj. This value is used
for comparison against the ground-truth interactive quality ratings
aggregated on a the bot-level.

4.1.6 Experiments

4.1.6.1 Datasets

A common source of data for open-domain dialog systems is movie
scripts, among which the Cornell dataset (Danescu-Niculescu-Mizil
and Lee, 2011) is the largest and most commonly used. Therefore,
we use it to benchmark against previous state-of-the-art results (Park
et al., 2018). Its median conversation length is 3 utterances and the
conversations are strictly between pairs of speakers. Recognizing
that movie lines have limited conversation diversity, we also built
a new corpus, Reddit. Between the many different subreddits
available, the conversations vastly differ on topic, language style, and
participation patterns. We select the Casual Conversations forum
(https://www.reddit.com/r/CasualConversation), a community of
607K conversationalists discussing a variety of topics. We collect a
dataset of 109K conversations of at least 3 turns with the median
conversation containing 7 utterances from conversational exchanges
on the platform in 2018. This Reddit dataset is available at https:
//affect.media.mit.edu/neural_chat/datasets for public use.

https://www.reddit.com/r/CasualConversation
https://affect.media.mit.edu/neural_chat/datasets
https://affect.media.mit.edu/neural_chat/datasets
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4.1.6.2 Interactive human evaluation results

Table 4.1 (in Section 4.1.1) illustrates how EI regularization produces
a higher quality conversation when compared to baseline. Rather
than cherry-picking results, we make all of the bots evaluated in the
study available at https://neural.chat/BRFZACDCOA/ for readers to
assess interactively.

Cornell Reddit
Model Metric Baseline EI Baseline EI

HRED

quality 2.182 ± 0.305 2.347 ± 0.313 2.527 ± 0.310 2.714 ± 0.299

fluency 3.909 ± 0.387 4.000 ± 0.381 4.436 ± 0.349 4.786 ± 0.316

diversity 2.836 ± 0.374 2.735 ± 0.380 3.418 ± 0.386 3.554 ± 0.372

contingency 2.200 ± 0.291 2.469 ± 0.336 2.382 ± 0.288 2.536 ± 0.322

empathy 2.673 ± 0.352 2.490 ± 0.350 3.018 ± 0.329 3.107 ± 0.337

VHRED

quality 2.022 ± 0.309 2.333 ± 0.252 2.694 ± 0.392 2.864 ± 0.341

fluency 3.109 ± 0.351 3.949 ± 0.396 4.250 ± 0.496 4.477 ± 0.402

diversity 3.565 ± 0.442 4.385 ± 0.371 5.00 ± 0.468 4.705 ± 0.353

contingency 2.261 ± 0.287 2.487 ± 0.346 2.472 ± 0.362 2.773 ± 0.370

empathy 2.739 ± 0.374 2.564 ± 0.367 3.000 ± 0.393 3.341 ± 0.385

VHCR

quality 2.132 ± 0.247 2.548 ± 0.380 2.615 ± 0.350 2.692 ± 0.298

fluency 2.679 ± 0.306 3.976 ± 0.380 3.923 ± 0.433 4.308 ± 0.395

diversity 3.755 ± 0.340 4.238 ± 0.421 4.436 ± 0.455 4.231 ± 0.382

contingency 2.189 ± 0.270 2.571 ± 0.356 2.077 ± 0.298 2.692 ± 0.354

empathy 2.340 ± 0.316 2.714 ± 0.368 2.974 ± 0.434 3.288 ± 0.379

Table 4.2: Mean ratings (from
humans) for Baseline and EI
(Emotion+Infersent) models for
HRED, VHRED, and VHCR ar-
chitectures with 90% confidence
intervals. For 3-factor ANOVA
results, see Section 4.1.6.2.

Overall, N=566 ratings were captured. Table 4.2 summarizes human
ratings of baseline and EI models obtained via interactive evaluation.
We ran a 3-factor ANOVA on the sum of user scores, where the
independent variables are model architecture (HRED, VHRED,
VHCR), EI regularization (Baseline, EI), and dataset (Cornell,
Reddit). We found a significant main effect of EI regularization
and dataset, but no significant difference between the three types of
hierarchical models. We found that adding emotion and infersent
(EI) regularization to baseline models improved the interactive chat
experience significantly, F(554, 1) = 9.016, p = .003. Further, the
models trained on the Reddit dataset performed significantly better,
F(554, 1) = 30.796, p < .001. This finding validates the hypothesis
that distilling information about topic and tone into the top level of
the hierarchy is useful for good conversation, and suggests that the
Reddit dataset could provide more realistic training for open-domain
dialog and be valuable to the community.

https://neural.chat/BRFZACDCOA/
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4.1.6.3 Traditional metrics results

Cornell Reddit
Model Version PPL KL Avg Ext Grd PPL KL Avg Ext Grd

HRED baseline 52.311 - .471 .329 .331 41.730 - .649 .394 .474

EI 47.636 - .560 .383 .400 41.245 - .651 .398 .482

VHRED baseline 49.414 .264 .539 .352 .395 36.240 .188 .635 .383 .464

EI 50.526 .517 .545 .355 .394 35.510 .167 .636 .392 .465

VHCR baseline 61.000 .562 .532 .345 .382 36.736 .267 .619 .371 .448

EI 49.243 .475 .588 .369 .444 37.198 .231 .639 .394 .469

Table 4.3: Results of automatic
traditional metrics for 1-turn
responses of models per context
of baseline and EI (Emotion
+ Infersent) models. PPL: per-
plexity, KL: KL divergence, Avg:
Average, Ext: Extrema, Grd:
Greedy

Automatic metrics Several prior works have focused on ensuring that
the variational KL term remains high in order to improve model qual-
ity (e.g. (Shen et al., 2018; Park et al., 2018)). However, we observe
there is no consistency between human quality rating and KL (Table
4.3). Thus, it is not evident that KL captures human judgements of
dialog quality. Even perplexity (a transformation of the cross-entropy
loss used to train our models) falls short of capturing human quality
judgments, underscoring the difficulty in effectively training good
language models. We find embedding metrics show more promise in
preserving the order of human quality ratings, but have only weak
correlation with human ratings. We present evidence for our novel
hybrid metric being a much stronger alternative.

Human one-turn evaluation As shown in Table 4.4, while single-turn
human evaluation suggests EI regularization is effective due to a
higher number of win judgment, the results are noisy and difficult
to interpret due to large confidence intervals and a high percentage
of ties. The median inter-annotator agreement measured pairwise
through Cohen’s kappa (Fleiss et al., 1969) for our human evaluation
was only 0.176 and 0.120 for Cornell and Reddit respectively. This
level of annotator agreement is lower than the median Cohen’s kappa
of previous work (Liu et al., 2016) and explains the larger confidence
intervals. Even after removing ambiguous examples (i.e. where
equal number of annotators select each response as being better),
large annotation variation persists. This may be due to subjective
interpretations and ambiguity arising from different interpretations
of <unknown> tokens or the short length of contexts in the Cornell

corpus (e.g. median length of conversation of 3 utterances). These
findings further highlight the importance of an interactive evaluation
as opposed to limited single-turn responses.
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Cornell Reddit
Model Wins % Losses % Ties % Wins % Losses % Ties %
HRED-EI 40.8 ± 4.9 24.5 ± 4.9 34.8 ± 9.2 31.3 ± 5.2 29.5 ± 6.6 39.3 ± 10.7
VHRED-EI 36.9 ± 4.7 36.6 ± 5.6 26.6 ± 6.9 39.0 ± 7.0 34.0 ± 5.3 27.0 ± 8.9
VHCR-EI 33.0 ± 6.1 29.0 ± 5.4 38.0 ± 10.1 33.7 ± 7.9 27.3 ± 3.3 39.0 ± 8.6

Table 4.4: Results from human
single-turn evaluation for EI
(Emotion+Infersent) vs. base-
line models as measured by
pairwise comparisons of Qual-
ity. We follow Park et al. (2018)
in highlighting the higher
value between wins/losses
and reporting 90% confidence
intervals.
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Figure 4.5: Correlations be-
tween five human metrics and
automated metrics (-U: Cal-
culated on user response, -B:
bot response, -U/B: between
user and bot response, -B/B:
between consecutive bot utter-
ances). Hybrid Metric MH -B/B,
our novel self-play based metric,
has a higher correlation across
all human metrics than any
other metric proposed to-date.

4.1.6.4 Novel metrics applied to human data and self-play

Figure 4.5 summarizes the relationships between interactive human
ratings and the automated metrics. We observe that our sentiment
metric applied to human data on its own has higher correlation with
interactive human ratings than the commonly used metrics such
as perplexity and embedding distance metrics. Most importantly,
our novel hybrid metric, MH , applied to self-play aggregated on the
model-level is strongly correlated with all human ratings (r > .7),
while previous metrics achieved r < .5. This is a significant finding,
suggesting that even without running interactive human evaluation,
we can automatically approximate it through self-play. This metric is
agnostic to the training set and model type and can be calculated on
the trajectory of self-play utterances for any chatbot, regardless of its
architecture. One interpretation is that the self-play framework keeps
the conversation within the training set distribution, and the model
is less likely to produce <unknown> tokens. Therefore, MH and its
sub-components have meaningful values for the generated responses
and can be useful for quality approximation.

Though we expect that the hybrid nature of MH makes it less ex-
ploitable, optimizing for its sub-components in isolation through a
self-play scenario should be avoided. Differently from human interac-
tion, maintaining extreme similarity in sentiment or semantics or just
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Figure 4.6: One hundred high-
est vs. lowest quality conver-
sation trajectories; lines: mean,
shaded area: 90% confidence
intervals, x-axis: conversa-
tion turns. (a) Timing of up-
vote/downvote ratings: A bad
first impression impedes overall
rating. (b) Participants talk
longer and use more words
in conversations rated higher.
(c) High-quality conversa-
tions elicit more positive user
sentiment. (d) High-quality
conversations are more seman-
tically similar as measured
by average word coherence
between user query and bot
responses. Note that users tend
to leave the conversation after
strong negative sentiment or
semantic dissimilarity.

asking questions in self-play conversation trajectories could backfire
by reducing the diversity of generated responses.

We examine how the novel psychologically-inspired metrics relate to
the trajectories of the 100 best and 100 worst quality conversations.
This is only feasible with interactive evaluation. As shown in Figure
4.6, we observe that appropriate sentiment, coherent semantics, and
engaging users are indispensable to attaining high quality ratings
in multi-turn interaction. Comparing EI and baseline conditions,
we see a replication of these trends (Figure 4.7). For example, EI
elicits longer responses from users (greater engagement), with more
laughter and higher semantic coherence.
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Figure 4.7: EI vs. baseline con-
versation trajectories; lines:
mean, shaded area: 90% con-
fidence intervals, x-axis: con-
versation turns. (a) EI elicits
longer responses from users,
suggesting that they are more
engaged compared to baseline.
(b) EI evokes more laughter
from users compared to base-
line. (c) EI has higher semantic
coherence as measured by aver-
age word coherence. The same
pattern applies to greedy and
extrema word coherence.

4.1.7 Conclusions

A major obstacle in open-domain dialog generation is the predomi-
nant optimization of an objective function that does not map out to
human judgment of conversation quality in a naturalistic chat. In this
section, we have argued that it is necessary to go beyond single-turn
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evaluation by investigating the strengths of interactive evaluation and
highlighting blind-spots of traditional one-turn evaluation methods.
To alleviate this problem, we have combined interactive human data
with psychologically-motivated measures and introduced a novel
hybrid metric. Using this metric in a self-play framework provides
results that are strongly correlated with human judgment of chatbot
empathy (r>.8) and quality (r>.7). Additionally, we have demon-
strated a significant improvement to several hierarchical seq2seq
generative models using regularization of the utterance level of the
hierarchy with knowledge distillation. Finally, we have open-sourced
the platform together with a new Reddit dataset.

4.2 Way off-policy batch reinforcement learning

Given the human interaction data collected in the previous section,
we would like to use reinforcement learning (RL) to learn to improve
our models based on human feedback. However, most deep RL sys-
tems are not able to learn effectively from off-policy data, especially
if they cannot explore online in the environment. These are critical
shortcomings for applying RL to real-world problems where col-
lecting data is expensive, and models must be tested offline before
being deployed to interact with the environment – e.g. systems that
learn from human interaction. Thus, we develop a novel class of
off-policy batch RL algorithms, which use KL-control to penalize
divergence from a pre-trained prior model of probable actions. This
KL-constraint reduces extrapolation error, enabling effective offline
learning, without exploration, from a fixed batch of data. We also
use dropout-based uncertainty estimates to lower bound the target
Q-values as a more efficient alternative to Double Q-Learning. This
Way Off-Policy (WOP) algorithm is tested on both traditional RL
tasks from OpenAI Gym, and on the problem of open-domain dialog
generation; a challenging reinforcement learning problem with a
20,000-dimensional action space. WOP allows for the extraction of
multiple different reward functions post-hoc from the collected hu-
man interaction data, and can learn effectively from all of these. We
test the real-world generalization by deploying dialog models live to
converse with humans in an open-domain setting, and demonstrate
that WOP achieves significant improvements over state-of-the-art
prior methods in batch deep RL.
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4.2.1 Background

In order to scale deep reinforcement learning (RL) to safety-critical,
real-world domains, two abilities are needed. First, since collecting
real-world interaction data can be expensive and time-consuming,
algorithms must be able to learn from off-policy data no matter
how it was generated, or how little correlation between the data
distribution and the current policy. Second, it is often necessary
to carefully test a policy before deploying it to the real world; for
example, to ensure its behavior is safe and appropriate for humans.
Thus, the algorithm must be able to learn offline first, from a static
batch of data, without the ability to explore.

Figure 4.8: In this example
batch RL problem, the robot’s
goal is to travel the minimum
distance around the black walls
to get to the red flag. A trained
behavior policy generated the
batch data; the probability of
each of the states appearing
in the batch, pB(s), is in yel-
low (white locations are not
contained in the batch). If the
offline RL policy estimates
the value of going up or left
from the start position is high,
it will have no way to refine
this estimate using the batch
data, or learn a good policy
in this region of state space.
The KL-constraint ensures that
the RL policy will stay within
the support of the batch data.
However, the behavior policy
is suboptimal, so using behav-
ior cloning to directly imitate
the batch data will result in
suboptimal return. Instead,
the KL-constrained model can
learn to find the optimal policy,
which is within the support of
the batch.

This off-policy, batch reinforcement learning (BRL) setting represents
a challenging RL problem. Most deep RL algorithms fail to learn
from data that is not heavily correlated with the current policy (Fu-
jimoto et al., 2018b). Even models based on off-policy algorithms
like Q-learning fail to learn in the offline, batch setting, when the
model is not able to explore. If the batch data is not sufficient to
cover the state-action space, BRL models can suffer from extrapolation
error, learning unrealistic value estimates of state-action pairs not
contained in the batch (Fujimoto et al., 2018b). It can be impossible
to correct for extrapolation error when there is a mismatch in the dis-
tribution of state-actions pairs in the batch data, and the distribution
induced by the learned policy. For example, if the policy learns to
select actions which are not contained in the batch, it cannot learn a
reasonable value function for those actions. Figure 4.8 illustrates this
concept, where the batch only covers a subset of possible policies. Ex-
trapolation error is particularly problematic in high-dimensional state
and action spaces (such as those inherent in language generation).
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We propose to resolve these issues by leveraging a pre-trained gen-
erative model of the state-action space, p(a|s), trained on known
sequences of interaction data. While training with RL, we penalize
divergence from this prior model with different forms of KL-control.
This technique ensures that the RL model learns a policy that stays
close the state-action distribution of the batch, combating extrapo-
lation error. We also propose using dropout to obtain uncertainty
estimates of the target Q-values, and use this lower bound to alleviate
overestimation bias. We benchmark against a discrete adaptation
of Batch Constrained Q (BCQ) (Fujimoto et al., 2018b), a recently
proposed BRL algorithm for continuous domains, and show that our
Way Off-Policy algorithm achieves superior performance in both a
traditional RL domain, as well as in a challenging, under-explored,
real-world reinforcement learning problem: using implicitly ex-
pressed human reactions in chat to improve open-domain dialog
systems.

When a machine learning system interacts with humans, ideally
we would like to learn about the humans’ preferences in order to
improve the performance of the system. Yet having humans manually
indicate their preferences through explicit means like pressing a
button (e.g. (Christiano et al., 2017)) or submitting a feedback report,
does not scale. Instead, we would like to be able to use humans’
implicit reactions, such as the sentiment they express, or the length of
the conversation, in order to improve the policy.

Applying off-policy batch RL to language generation is challeng-
ing because the number of potential combinations of words and
sentences leads to a combinatorial explosion in the size of the state
space. The action space—the set of frequent vocabulary words in
the English language—is 20,000-dimensional. This compounds ex-
trapolation error, making BRL even more difficult. However, when
learning from human interactions in the wild, it is crucial to be able
to learn offline and test the policy before deploying it, lest it learn
inappropriate behaviors (e.g. (Horton, 2016)).

To support this work, we developed an interactive online platform
that allows humans to chat with deep neural network dialog models
running on GPU; the BRL models trained for this study are available
live at https://neural.chat/rl. Through this platform we collected
human responses to a set of over 40 different dialog models over
the course of several months. Using our Way Off-Policy algorithm,
we are able to effectively learn from this batch of data, in spite of
the fact that it was generated with a vastly different set of model

https://neural.chat/rl
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architectures, which were trained on different datasets. Further, we
use the batch to learn from many different reward functions designed
post-hoc to extract implicit human preferences, something that is
only possible with effective off-policy BRL.

In summary, the contributions of this section are:

• A novel algorithm, Way Off-Policy learning, which is the first to
propose using KL-control from a pre-trained prior model as a way
to reduce extrapolation error in batch RL.

• Experiments showing the effectiveness of WOP above strong
baselines based on prior work (e.g. Fujimoto et al. (2018b)), on
both traditional RL tasks and on the challenging problem of open-
domain dialog generation.

• A set of novel conversation rewards based on how human pref-
erences are implicitly expressed in text. We are the first work to
learn from implicit signals in conversation offline using batch RL.

4.2.2 Related Work

The approach we propose is based on KL-control, a branch of stochas-
tic optimal control (SOC) (Stengel, 1986) where the Kullback-Leibler
(KL) divergence from some distribution is used to regularize an RL
policy (e.g. (Abdolmaleki et al., 2018; Kappen et al., 2012; Rawlik
et al., 2012; Todorov, 2007)). Well-known examples include Trust
Region Policy Optimization (TRPO) (Schulman et al., 2015), and use
conservative, KL-regularized policy updates to restrict the RL algo-
rithm to stay close to its own prior policy (e.g. (Haarnoja et al., 2018;
Kakade, 2002; Peters et al., 2010; Rawlik et al., 2012)). KL-control can
also be applied to entropy maximization (e.g. (Ziebart et al., 2008;
Nachum et al., 2017; Haarnoja et al., 2017)); for example, G-learning
penalizes KL-divergence from a simple uniform distribution in or-
der to cope with overestimation of Q-values (Fox et al., 2016). Soft
Q-learning motivates using a Boltzmann distribution in the value
function as a way of performing maximum entropy RL (Haarnoja
et al., 2017). KL-control has also been used to improve transfer learn-
ing between maximum likelihood estimation (MLE) training on data,
and training with RL (Jaques et al., 2017a). To the best of our knowl-
edge, our work is the first to propose penalizing KL-divergence from
a learned prior model of the state-action space as a way to improve
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offline batch RL.

Other strategies to improve off-policy learning have been proposed,
but differ from this work in key respects. Many focus on scenarios
where the policy is able to explore and collect more data (e.g. (Degris
et al., 2012; Riedmiller, 2005)); for example, when learning online
from an outdated replay buffer (e.g. Munos et al. (2016)). In contrast,
we learn entirely offline, from a fixed batch of data, without the
ability to explore. Methods proposed for this setting have often
not been used in conjunction with modern function approximation
techniques (e.g. Thomas et al. (2015)). Many other works focus on
off-policy policy evaluation (rather than policy learning), for example
using importance sampling or model estimation (e.g. Farajtabar et al.
(2018); Jiang and Li (2016); Precup (2000); Thomas and Brunskill
(2016)).

In the deep BRL setting, Liu et al. (2019) have proposed a correction
to policy gradients, Gelada and Bellemare (2019) have proposed
covariance-shift methods, and Bhatt et al. (2019) have proposed nor-
malized feature representations. Kumar et al. (2019) use maximum
mean discrepancy to cope with extrapolation error in BRL, while
Agarwal et al. (2019) use a Random Ensemble Mixture (REM) Q-
network. Most similar to our work is Batch Constrained Q-learning
(BCQ) (Fujimoto et al., 2018b), which tackles off-policy BRL in con-
tinuous action domains by training a generative model of the batch,
p(a|s), sampling from this model, and selecting the best action based
on a Q-estimate. Unlike our approach, this does not integrate infor-
mation about the distribution p(a|s) directly into the policy, or allow
the model to learn when to strategically deviate from the prior in
order to obtain more reward.

We propose using dropout to approximate model uncertainty of the
target Q-network. The idea of using dropout to estimate uncertainty
in neural networks was first proposed by Gal and Ghahramani
(2016). Different forms of uncertainty estimates have been used in RL
(e.g. (Kahn et al., 2017; Osband et al., 2016)); for example, Bayesian
uncertainty estimates have been proposed as an alternative to double
DQN (Azizzadenesheli et al., 2018).
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4.2.3 RL for language generation

Improving dialog systems with RL has largely been restricted to
task-oriented dialog systems, which have a limited number of task-
specific actions (e.g. (Fatemi et al., 2016; Gašić et al., 2011; Liu and
Lane, 2017; Liu et al., 2018; Su et al., 2017)). These approaches may
incorporate human input, usually through explicit, manual feedback
(e.g. (Shah et al., 2018)), but sometimes with more implicit signals,
such as the user interrupting the system or starting over (Shi and Yu,
2018). Efforts to expand RL to the open-domain dialog setting, such
as those of Li et al. (2016c, 2017, 2018b), are less numerous, and do
not involve learning from human feedback. Even in the open-domain
setting, authors may choose to use a highly restricted action space;
for example, using RL to choose which scripted or MLE dialog model
to invoke to answer a user’s query (Serban et al., 2017a).

Since the posting of the preprint of this paper, Ziegler et al. (2019)
have used explicit human feedback to improve the summarization
and text continuation performance of a large-scale language model.
Although they do not study dialog or the batch RL setting (instead
learning online from a trained model of human feedback), they do
make use of our proposal to penalize KL-divergence from a pre-
trained language model, and find that this is important to achieving
good performance.

Although implicit signals such as sentiment (Hancock et al., 2019)
and conversation length (Zhou et al., 2018b) have been used in MLE
systems, the idea of using such signals as a reward for RL is rela-
tively unexplored. Shin et al. (2019) use on-policy learning in conjunc-
tion with a user-sentiment approximator to improve a seq2seq model,
but are unable to learn directly from user feedback. To the best of
our knowledge, we are the first to use batch RL to train open-domain
dialog models on implicit cues gained from real human interactions.

4.2.4 Methods

We employ typical RL notation in which st represents the environ-
ment state at time t, the agent takes action at according to its pol-
icy π(at|st), and receives a reward r(st, at). The agent’s goal is to
maximize reward over an episode trajectory τ, with a discount fac-
tor of γ applied to future rewards. Q-learning methods learn an
action-value estimate of the total expected discounted future reward,
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Qπ(at, st) = Eπ [∑T
t′=t γt′−tr(st′ , at′)], through iterative updates based

on the Bellman equation:

Qθπ
(st, at) = r(st, at) + γEst+1∼p(·|st ,at)[max

at+1
QθT (st+1, at+1)] (4.6)

In deep Q-learning (Mnih et al., 2013), a Q-network approximates
Qθπ

(st, at) and drives the policy π. A second target Q-network ap-
proximates the expected reward from the next state, QθT (st+1, at+1).

4.2.4.1 Batch RL and extrapolation error

In batch RL, we are given a fixed batch of data B, and assume that
no further interaction with the environment is possible. To train Qθπ

,
we sample (st, at, rt, st+1) ∼ B, and update the weights of the Q-
network to approximate Eq. 4.6. Because Q-learning is an off-policy
algorithm, in principle it should be able to learn from data collected
by any behavior policy. However, extrapolation error can occur
if the BRL policy learns to favour a state-action pair (s, a) that is
unlikely, or not contained, in the batch data. In this case, the estimate
Q(s′, π(s′)) can be arbitrarily bad (Fujimoto et al., 2018b). Such errors
can then accumulate through the Bellman backup operator (Kumar
et al., 2019). Experiments from Fujimoto et al. (2018b) show that
extrapolation error can be highly detrimental to learning off-policy in
BRL.

These problems are compounded by the fact that algorithms based
on the Bellman operator are inherently optimistic in the face of
uncertainty. When value estimates for some region of the state-action
space are noisy (because too few experience samples have been used
to refine them), the maximum operation in Eq. 4.6 will lead to an
overestimation of expected future reward. In a normal RL setting,
this overestimation bias drives the model to explore areas of the state-
action space for which the value estimates have the highest variance,
thus enabling it to refine them; in essence, creating a built-in drive
to explore. However, in a batch setting where exploration is not
possible, the model is instead driven to value parts of the state-action
space for which it has little to no data to learn a good policy (see
Figure ??).
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4.2.4.2 Dropout for uncertainty estimation of Target Q-values

The overestimation of Q-values in the BRL setting necessitates other
methods for estimating the future reward via the Target Q-network.
Clipped Double Q-learning (Fujimoto et al., 2018a) maintains two
independent pairs of Q-networks, and taking the minimum of their
estimates of future reward. This approach is computationally expen-
sive and memory intensive.

Instead, we obtain a distribution over predictions from a single tar-
get Q-network trained with dropout, and take the lower bound of
these to reduce overestimation bias. It has been shown that dropout
approximates Bayesian uncertainty for neural networks, by assum-
ing the weights of the network are drawn from a Gaussian prior,
W ∼ N(0, I), and using variational inference to estimate the poste-
rior distribution p(W|X, Y) (Gal and Ghahramani, 2016). We perform
dropout during both training and inference before each weight layer,
and approximate the posterior such that the dropout distribution
qW is a mixture of Gaussians, and DKL[qW ||p(W|X, Y)] is minimized.
Given the target Q-network QθT , we compute Q(at+1, st+1) using a
Monte Carlo (MC) estimate of the lower-bound of QθT (at+1, st+1) by
running M stochastic forward passes of the network, each with a new
dropout mask di ∼ qW :

Q(at+1, st+1) = min
i=1...M

[QθT (at+1, st+1; di)] (4.7)

Using the minimum operator penalizes high variance estimates and
leads the algorithm to be pessimistic in the face of uncertainty, rather
than optimistic. Such a bias will push the model to favour actions
that lead to states well covered by the batch data (Fujimoto et al.,
2018b).

4.2.4.3 Discrete Batch Constrained Q

Batch Constrained Q-learning (BCQ) (Fujimoto et al., 2018b) proposes
to address the BRL problem by constraining the actions of the Q-
network to be close to the data contained within the batch. This is
accomplished by learning a generative model of the batch, Gw =

p(a|s), and sampling from this model during learning and inference.
Because BCQ is designed for continuous action domains, it applies
a learned perturbation model ξ(s, a; Φ) which is allowed to alter
the action within the range [−Φ, Φ]. BCQ learns Q-estimates that
incorporate the perturbation model, Qθ(s, a + ξ(s, a; Φ)). To act,
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n possible actions are sampled from the generative model, {ai ∼
Gw(s)}n

i=1, perturbed, and the action with the maximum Q-value is
selected, giving the BCQ policy:

πBCQ(s) = arg max
ai+ξ(s,ai ;Φ)

Qθ(s, ai + ξ(s, ai; Φ)) (4.8)

We propose an adaptation of BCQ to discrete action spaces (DBCQ)
which does not use a continuous perturbation model. Since BCQ
relies on Double Clipped Q-learning (Fujimoto et al., 2018a), here
we use dropout-based uncertainty estimates as in Eq. 4.7. Thus, the
DBCQ policy is:

πDBCQ(s) = arg max
ai∼p(a|s)

Qθπ
(s, ai) (4.9)

4.2.4.4 KL Control from pre-trained prior

Rather than simply sample from the prior, we would like the Q-
learning algorithm to directly incorporate the prior into the pol-
icy. Thus, we use KL-control to penalize divergence between the
prior p(a|s), and the Q-network policy πθ , while still maximiz-
ing reward. Given a trajectory of actions, τ = {a1, a2, ...at−1}, let
q(τ) = ∏T

t=1 πθ(at, st) be the policy of our Q-learning algorithm at
the trajectory level. Similarly, let p(τ) = ∏T

t=1 p(at|st) be the prior
distribution over the trajectory, and r(τ) be the return. We seek to
maximize the following KL-regularized objective:

L(q) = Eq(τ)[r(τ)]/c− DKL[q(τ)||p(τ)] (4.10)

Since DKL[q||p] = ∑x q(x)(log q(x)− log p(x)), we can see that this is
equivalent to maximizing the following expected value function of
the policy πθ at the action level:

Qπ(st, at) = Eπ [
T

∑
t′=t

r(st′ , at′)/c + log p(at′ |st′)− log π(at′ |st′)] (4.11)

The two terms we have introduced in Eq. 4.11 have clear motivations.
The p(a|s) term rewards the model for choosing actions that have
high probability under the prior, biasing the model to state-action
pairs that are realistic, and likely to be in the batch. The − log π(a|s)
term is analogous to entropy regularization. Maintaining diversity
in the action space through entropy regularization is important for
generative models like dialog systems, which are known to collapse
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to an uninteresting, small number of repeated samples (Li et al.,
2016b). Re-stating Eq. 4.11 as an entropy-regularized Q-function, we
obtain:

Q(st, at) = Eπ [
T

∑
t′=t

r(st′ , at′)/c + log p(at′ |st′) +H(·|st′)] (4.12)

One can derive a soft version of the entropy-regularized Q-function
that uses a Boltzmann distribution to estimate future reward (Haarnoja
et al., 2017). We refer to it as a Ψ-function following previous work
(Jaques et al., 2017a), which derived this function as a generalization
of the Ψ-learning proposed by (Rawlik et al., 2012). The optimal
Ψ-function and policy are:

Ψ∗(st, at) = r(st′ , at′)/c + log p(at′ |st′) + γ log ∑
a′

exp(Ψ∗(s′, a′))

(4.13)

π∗Ψ(at|st) = exp(Ψ∗(st, at)) (4.14)

Because it avoids taking a hard max over noisy estimates, Ψ-learning
leads to less overestimation of future reward (Abdolmaleki et al.,
2018; Haarnoja et al., 2017). This improves learning through more
stable temporal-difference (TD) updates. Thus, we argue it will be
especially useful in the BRL setting for reducing optimism in the
face of uncertainty. The Way Off-Policy (WOP) algorithm combines
Monte Carlo (MC) target estimation, Ψ-learning, and KL-control from
a pre-trained prior.

4.2.4.5 Model averaging

Finally, we explore the setting where the data in the batch may be
generated from a large variety of different models M with different
architectures, which each learn a different estimate of p(a|s; M).
We use this diversity to create a more robust prior by computing a
weighted average of these models based on a normalized score S(M)

for each model. The score could be some measure of model quality,
or simply the proportion of data in the batch that was generated with
that model. Thus, we define pMA(a|s) as the model-averaged prior:
pMA(a|s) = ∑M S(M)p(a|s; M).

4.2.5 Traditional RL experiments

To demonstrate the effectiveness of these techniques, we conduct a
series of experiments in traditional RL tasks using the OpenAI gym
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(a) Full buffer (b) Concurrent

(c) Expert demonstrator (d) Noisy demonstrator

Figure 4.9: Comparison of batch
RL algorithms for different of-
fline learning conditions. WOP
consistently exceeds the per-
formance of Batch Q-learning,
Behavioral Cloning (BC), DBCQ,
and the Behavior policy used to
generate the batch data. Error
bars show 95% CI of the mean
over 50 trials.

(Brockman et al., 2016). Here we show results for the CartPole-v0 en-
vironment; more results are available in the Appendix. We first train
an online Q-learning Behavior policy, and store all (s, a, r, s′) experi-
ence samples into a replay buffer. We use this buffer to train a prior
model of p(a|s) using a Variational Auto-encoder (VAE) (details in
Appendix). This model is used as a part of both the DBCQ and WOP
algorithms. We can use the prior for imitation learning, by sampling
actions directly from p(a|s) to obtain Behavioral Cloning (BC). We
benchmark all of these techniques against vanilla Q-learning on the
batch data (Batch Q).

We experiment with four different conditions which vary the quality
of the Behavior policy and the replay buffer data: a) Full buffer: all
experience samples experienced during online training are used for
offline learning; b) Concurrent: the offline learning algorithms see
a sliding window of experience samples in the same order that the
online learner experienced them; c) Expert demonstrator: the buffer
only contains experience generated by a fully trained online learner;
and d) Noisy demonstrator: the online learner has a high probability
of acting randomly (ε = 0.3) and is thus a bad model of the optimal
policy.

Figure 4.9 shows the results. Across conditions, we see that WOP
is able to outperform Batch Q, imitation learning (BC), DBCQ, and
the original behavior policy. As expected, Imitation learning (BC)
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underperforms other techniques when the batch contains noisy or
inexpert experience samples. However, when the batch contains only
expert trajectories, Batch Q fails to learn, because the batch does not
cover the full state-action space well, increasing extrapolation error
(as illustrated in Figure ??). DBCQ matches or outperforms BC and
Batch Q in all scenarios. However, because DBCQ acts by sampling
from p(a|s) as learned by the BC model, its performance suffers
when the batch data is noisy or imperfect. In contrast, WOP is able
to learn to trade-off staying close to the prior and obtaining higher
reward, and consistently outperforms all other algorithms in this
environment.

4.2.6 Batch RL for learning dialog from human feedback

Here, we tackle the problem of training an open-domain dialog
model from human feedback. We consider human interaction to
represent the ‘environment’. The response of a human to the bot’s
utterance is used to compute a reward signal to train the model. The
state is the conversation history, composed of a series of conversation
turns or utterances, u1...t, where each utterance is composed of vocab-
ulary tokens. The model attempts to construct a response utterance
uπ

t+1 = [a1, a2, ..., an] by iteratively choosing an action ai as the next
token. Applying RL to dialog generation is challenging due to the
large state-action space. The number of tokens in the vocabulary of
our pre-trained model is 20,000, making the action space very high-
dimensional; this further compounds the problem of extrapolation
error.

The state of the environment st constitutes all of the text in the con-
versation uttered so far, both by the bot and the human. The state has
a hierarchical structure, marking its division into utterances, which
are further divided into tokens. While the bot is constructing an ut-
terance uπ

t , it chooses its next action ati and the state st is updated by
appending ai: st = [st, ai]. During this phrase, it is straightforward
to obtain a target Q-estimate of future reward using the model’s es-
timated Q-values over its own next token in the utterance. However,
at the last token of the bot’s utterance, the estimated future reward
must include the human’s response uh

t . Therefore, we append the
human response into the conversation, st+1 = [st−1, uπ

t , uh
t ], feed this

into the target Q-network, and use the estimated Q-values for the
first token of the bot’s next utterance. The combinatorial size of the
state space also increases extrapolation error ,
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Therefore, we begin by initializing the Q-networks with the weights
of a pre-trained language model. We use the best models obtained
from the experiments in Section 4.1, which provide a strong prior
over the appropriate word to select. The code for the models and
the server is available in open-source at https://github.com/
natashamjaques/neural_chat/tree/master/rl. Using the server,
we collected a batch of human interaction data containing 14232

pairs of user input and agent response. The batch data was used
to train the RL models as described in Section 4.2.4. Here, we use
the pre-trained language model to estimate p(a|s). We recruited 90

Mechanical Turk workers to provide a total of 718 7-point Likert scale
ratings of the bots’ quality, fluency, diversity, contingency (related-
ness), and empathy, after interacting with each bot for at least 3 turns.
Participants also had the option to provide explicit feedback through
upvoting or downvoting a particular utterance within the interface.
We sum these manual votes to create an overall votes score. We note
that using this platform to test our models “in the wild" with humans
represents a more meaningful test of generalization than testing an
RL model in the same limited (game) environment in which it was
trained, since humans are not restricted in the text they can type as
input to the model.

4.2.6.1 Learning from implicit human preferences

We would like to improve a dialog model’s ability to engage in
natural conversation with a human by learning from the signals
implicit in the way that the human responds. Rather than having the
human manually label good performance—which we show in this
work does not scale—the agent should recognize informative cues
within the user’s responses, like sentiment, and the amount of time
they spend chatting. Essentially, we want to create an agent that is
intrinsically motivated to produce positive reactions in its human
conversation partner. Therefore, we employ the sentiment, semantic,
and engagement metrics proposed in Section 4.1.4.3 as our rewards.
We test combinations of these rewards, including the Hybrid Metric
proposed in the previous section, but eventually settled on a final
reward computed using the following equation:

r = 0.157*question + 0.138*semantic_coherence + 0.153*laughter

+ 0.142*sentiment_transition + 0.142*sentiment + 0.148*words_elicited

+ 0.120*conversation_length.

https://github.com/natashamjaques/neural_chat/tree/master/rl
https://github.com/natashamjaques/neural_chat/tree/master/rl
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Note that with the exception of the question reward, these rewards
depend on eliciting positive responses from a human, and are thus
difficult to optimize. However, the question reward is trivially ex-
ploitable, since it depends only on the bot’s own output. Finally, it
is important to point out that these rewards represent only an initial
foray into designing good metrics of human enjoyment, and further
experimentation will be needed to improve them.

4.2.7 Dialog results

Model type Quality Fluent Diverse Related Empathy Total Votes
Human
reward

DBCQ 1.64 ±.29 1.87 ±.34 3.13 ±.58 1.84 ±.34 2.09 ±.38 10.58 ±1.55 -.228 -.050

Batch Q 1.87 ±.30 2.36 ±.42 2.20 ±.41 1.91 ±.32 2.58 ±.47 11.91 ±1.58 -.163 -.005

Batch Q + MC 1.85 ±.39 2.46 ±.44 2.46 ±.52 1.98 ±.39 2.34 ±.49 11.07 ±1.82 -.068 .005

KL-control Q 2.38 ±.39 3.24 ±.47 3.42 ±.54 2.38 ±.45 2.56 ±.43 13.98 ±1.81 .016 .004

KL-control Ψ 2.33 ±.41 3.73 ±.53 2.82 ±.50 2.31 ±.44 3.47 ±.50 14.67 ±1.82 .128 .061
KL-control MA Ψ 2.60 ±.43 3.47 ±.42 3.00±.49 2.49 ±.44 2.89 ±.51 14.44 ±1.96 .127 .042

Table 4.5: Interactive human
evaluation of techniques
for off-policy batch RL. KL-
control models significantly
out-perform other techniques.
Ratings are Likert scale, votes
and human reward are z-scores.

To compare models, we not only look at human users’ ratings and
votes, but also consider the automatic signals detectable from the
text itself. This implicit human reward metric aggregates the measures
listed in items 1-4 in Section 4.2.6.1, and measures the ability to elicit
positive responses from the human. Table 4.5 shows the results of the
human evaluation, comparing WOP to ablations of itself, Batch Q,
and DBCQ2. MC Target Q estimation leads to modest improvements

2 We also compare the RL models
to the prior, and see performance
improvements in terms of the elicited
human reward, but not in terms of
the quality ratings. We believe this is
because the rewards proposed here
do not fully cover what it means to
have a high quality conversation (as
we will elucidate later), and hope that
other researchers be able to use the
techniques we propose to learn from
improved rewards.

in votes and human reward, but does not improve ratings. Conversely,
model averaging (MA) leads to modest improvements in ratings with-
out improving votes or reward. Using Ψ-learning improves all three.
However, the most notable difference in performance comes from
KL-control. The KL-control models show substantial gains over the
baseline models across both ratings and human reward. We perform
a one-way analysis of variance (ANOVA) comparing the KL-control
models to the Batch Q baselines and DBCQ on the total human rating
score, and find that the KL-control models are significantly better,
F(x) = 4.781, p < .05. This validates the hypothesis that KL-control
with a strong, pre-trained prior can be used to improve batch RL.

As shown in Figure 4.10, without KL-regularization the baseline RL
models diverge quickly and continuously from the prior, losing infor-
mation about realistic sequences. This figure also helps explain the
poor performance of DBCQ in Table 4.5. The underlying Q-network
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Figure 4.10: KL-divergence
of the policy from the prior is
lower with KL-control through-
out training. Bands show
standard deviation.

[User]: hey, what’s up?
[Batch Q]: where did you get??, that sounds so exciting. how do you work for you...
you want to talk to me?... you want
[User]: yes, i want to talk to you!
[Batch Q]: where did you say to me?... you want to talk to you about you...
you are so good for you... you are so good...
[User]: thanks, i appreciate that.
[Batch Q]: where did you get??, that sounds so exciting. how do you work for you...
you want to see you...

[User]: hey, what’s up?
[KL-control]: i’m not sure, but i’m glad to see you, and
i’m so happy that you’re not alone
[User]: oh thanks, that’s very nice of you!
[KL-control]: i’m sorry, but i’m glad to see what you think.
[User]: don’t be sorry, you did a good job.
[KL-control]: that’s really nice to me.

Table 4.6: Purely reward-
maximizing methods like Batch
Q trivially exploit the reward
function by asking a question
every turn, and using the maxi-
mum number of tokens in every
sentence. Such models diverge
away from realistic language,
using implausible phrases. In
contrast, KL-control methods
output plausible language by
staying close to the prior, but
shift to using polite, cheerful
language to maximize implicit
human rewards.

in DBCQ does not directly integrate the prior. As Q-learning causes
the model to diverge from the prior, the Q-estimates of language gen-
erated according to the prior become unrealistic, and Eq. 4.9 selects
unrealistic actions. This results in highly ‘diverse’ (random) gener-
ated utterances. Although DBCQ performed well in simple domains
in Section 4.2.5, it does not scale effectively to dialog in our experi-
ments. Note that since we operate in discrete action space, we could
not include the perturbation model originally proposed by (Fujimoto
et al., 2018b), which may be critical to achieving good performance
with BCQ.

The pre-trained prior may be especially important in a generative
domain like dialog, where the true reward function is unknown, and
so purely maximizing a heuristic may actually lead to lower quality
conversations. Table 4.6 shows examples of conversations with a
Batch Q and KL-control model. Because the Batch Q model has no
incentive to stay close to realistic language, it learns to exploit the
reward by asking a question and outputting the maximum number
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of tokens (30) every utterance. These sentences contain implausible
phrases that do not represent realistic language (e.g. “where did you
say to me?"). In contrast, the KL-control model uses fluent language,
but shifts its distribution towards cheerful and polite speech, pre-
sumably because this is what led to positive human responses in the
batch data. Rather than simply cherry-picking results, we invite the
reader to check for themselves; all of the models tested in this study
are available at: https://neural.chat/rl.

In fact, we noticed that all models trained with the implicit human
rewards described in Section 4.2.6.1 learned to use more cheerful
and supportive language. Therefore, we create post-hoc metrics
to measure this effect (see the Appendix for details). Figure 4.11

shows how these metrics, as well as the implicit rewards, differ across
models. Without KL-control, baseline methods like Batch Q exploit
simple rewards like asking questions at the expense of realistic
language, explaining their poor quality ratings. In contrast, KL-
control models learn to rely more on realistic but polite, supportive,
and cheerful dialog to elicit higher total human reward.

Figure 4.11: Z-scored reward.
Red metrics were used in train-
ing rewards, green are post-hoc.
Traditional RL methods like
Batch Q exploit simple action-
based rewards, like asking ques-
tions. In contrast, KL-control
methods shift their distribution
towards polite, supportive, and
cheerful conversation, allowing
them to elicit higher human
reward (blue).

https://neural.chat/rl
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Reward
function

Quality Fluent Diverse Related Empathy Total Votes
Human
reward

Conv. len. 2.20 ±.40 3.61 ±.53 3.02 ±.52 2.25 ±.46 2.48 ±.45 13.57 ±1.84 -.035 -.003

Semantic sim. 1.93 ±.34 3.50 ±.45 2.37 ±.45 2.11 ±.45 2.52 ±.48 12.43 ±1.75 -.020 .012

User laughter 1.96 ±.38 3.56 ±.48 2.33 ±.51 1.93 ±.42 3.20 ±.55 12.98 ±1.60 -.149 -.003

Words elicited 2.11 ±.32 3.96 ±.44 3.04 ±.45 2.04 ±.35 2.55 ±.46 13.70 ±1.44 .059 .024

Manual votes 2.14 ±.38 3.47 ±.45 2.91 ±.47 2.07 ±.39 2.42 ±.46 13.00 ±1.65 -.030 .010

Sent. trans. 2.02 ±.31 3.71 ±.49 2.98 ±.50 2.04 ±.42 2.84 ±.48 13.60 ±1.63 .031 .014

Question 2.29 ±.37 4.31 ±.50 3.31 ±.52 2.20 ±.40 2.60 ±.41 14.71 ±1.63 .057 .012

Sentiment 2.47 ±.32 4.05 ±.45 3.23 ±.46 2.42 ±.39 3.23 ±.55 15.40 ±1.49 .085 .045

Table 4.7: Interactive human
evaluation of WOP trained
with different reward functions.
Sentiment leads to the highest
quality. Learning from manual
button presses is not as effec-
tive as learning from implicit
metrics like sentiment.

Table 4.7 presents the results of WOP trained with only a single
reward function, ordered from lowest to highest quality. Notably,
extracting multiple different reward functions post-hoc from a batch
of data and training on these independently is only possible with an
effective BRL model. Here all models are trained with KL-control,
Ψ-learning, and MC targets. Investigating which rewards presented
in Section 4.2.6.1 are most critical to achieving high-quality conversa-
tions with humans, we note that maximizing positive and minimizing
negative sentiment in the user turns out to lead to the highest quality
bot. This underscores the importance of affective signals as cues for
good conversation. Bots trained on the manual upvotes and down-
votes provided by users on the utterance level fail to achieve similarly
high performance. Even though users were instructed to make use
of the vote feature, the task is burdensome, and users did not vote
frequently enough to provide a good training signal. This validates
the hypothesis that implicit signals of human enjoyment (such as
sentiment) are a more scalable way to learn from human preferences.

To further elucidate the effect of the implicit rewards, Figure 4.12

shows the reward trajectory over the ten best conversations obtained
with models trained with different techniques. Figure 4.12 (a) shows
that manual votes are indeed a rare event, with only the best and
worst models receiving an upvote or downvote. Once again, this sug-
gests that explicit feedback from humans is a cumbersome and sparse
reward signal. As shown in 4.12 (b), eliciting laughter is an extremely
rare event, and only the KL-control models are able to do so. While
we see that KL-control models are able to elicit significantly higher
reward than baselines, we note that KL-control Q performs best over-
all and in terms of words elicited, even though it had lower quality
ratings in Table 4.5. This suggests that maximizing these rewards is
not a perfect proxy for human judgments of quality. Note that this
aligns with what we observed when we compared the RL models
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(d) Words elicited

Figure 4.12: Comparison of top
10 conversation trajectories ob-
served across deployed models,
showing the 90% confidence
interval of the rewards.

in Table 4.5 to the pre-trained prior. While we saw performance im-
provements in terms of the elicited human reward, the human quality
ratings were not significantly better. We believe this is because the
rewards proposed here do not fully cover what it means to have a
high quality conversation. We hope that other researchers will be
able to use the techniques we propose here to learn effectively from
improved rewards in an off-policy batch setting.

4.2.8 Conclusion

This section presents the Way Off-Policy (WOP) algorithm, which
improves performance when learning off-policy without the possi-
bility to explore – i.e. batch RL (BRL). We are the first to propose
using KL-control from a strong prior model pre-trained on data
as a way to avoid extrapolation error and instability in BRL. Our
results on traditional RL tasks demonstrate that WOP provides
performance improvements over state-of-the-art BRL techniques,
and results in dialog generation show that KL-control is critical to
achieving good performance in this real-world, high-dimensional
setting. In a generative domain such as dialog, the true reward func-
tion is not known, and trivially exploiting the rewards can actually
lead to worse performance. Thus, KL-control may be particularly
necessary to ensure samples remain realistic and close to the data
distribution. We propose several reward functions that could allow
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an open-domain dialog generation model to learn from rich cues
implicit in human interaction, where learning from expressed senti-
ment was most promising. While these rewards are far from perfect
or complete, we see that maximizing implicit rewards leads to better
performance than relying on explicit feedback. We hope that the
techniques presented here can improve learning with RL from offline
data, making it easier to apply RL to safety-critical settings such as
human interaction.

4.3 KL-control for improved sequence generation with RL

The KL-control approach proposed in the previous section—specifically,
minimizing KL-divergence from a strong prior pre-trained on se-
quence data—is broadly applicable, and can be useful in a variety of
domains. Below, we briefly present the results of additional experi-
ments using the KL-regularized Q-learning and Ψ-learning models
presented above in the domains of music generation and drug discov-
ery. Once again, we penalize KL-divergence from a pre-trained prior
sequence model of p(a|s), but here trained on sequences of musical
notes or sequential encodings of drug molecules into text strings. We
also introduce an additional method, called Recurrent G-learning,
which directly incorporates the prior into the policy when choosing
actions. These results emphasize the flexibility of the proposed ap-
proach, and its promise for learning from sparse human feedback
data in a variety of domains.

4.3.1 Recurrent G-learning

We can derive another algorithm by parametrizing Ψθ indirectly by
Ψθ(st, at) = log p(at|st) + Gθ(st, at). Substituting into the equations in
Section 4.2.4.4, we get a different temporal-difference method:

LG(θ) = Eβ[(Gθ(st, at)− yt)
2] where (4.15)

yt = r(st, at)/c + γ log ∑
a′

p(a′|st+1)eG(st+1,a′) and

πθ(at|st) ∝ p(at|st) exp(Gθ(st, at))

This formulation corresponds to G-learning (Fox et al., 2016), which
can thus be seen as a special case of generalized Ψ-learning. Unlike
Ψ learning, which directly builds knowledge about the prior policy
into the Ψ function, the G-function does not give the policy directly
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but instead needs to be dynamically mixed with the prior policy
probabilities. While this computation is straight-forward for discrete
action domains as here, extensions to continuous action domains re-
quire additional considerations such as normalizability of Ψ-function
parametrization (Gu et al., 2016).

The KL control-based derivation also has another benefit in that the
stochastic policies can be directly used as an exploration strategy,
instead of heuristics such as ε-greedy or additive noise (Mnih et al.,
2013; Lillicrap et al., 2015).

4.3.2 KL-control for sequence generation

Thus, we now have three methods for generating sequences which
combine training on data and fine-tuning with RL using KL-control:
Q-learning with log prior augmentation (based on Eq. 4.11), gener-
alized Ψ-learning (based on Eq. 4.13), and G-learning (based on Eq.
4.15). These methods enjoy the benefits of both data and RL training,
and are ideal in scenarios when neither approach will lead to ideal
performance. This is often the case in sequence generation, since
Maximimum Likelihood Estimation (MLE) training can lead to bor-
ing, repetitive, and unstructured output Li et al. (2016c), and it may
be difficult to write reward functions that fully describe good task
performance (as we saw in the previous section).

In the following experiments, we compare these approaches to both
the original performance of the MLE RNN, and a model trained
using only RL and no prior policy. Model evaluation is performed
every 100,000 training epochs, by generating 100 sequences and
assessing the average task reward rT and prior probability log p(a|s)3.

3 The code is available in open-source
at https://github.com/tensorflow/
magenta/tree/master/magenta/models/

rl_tuner.
4.3.3 Experiment I: Melody generation

Music compositions adhere to relatively well-defined structural
rules, making music an interesting sequence generation challenge.
For example, music theory tells that groups of notes belong to keys,
chords follow progressions, and songs have consistent structures
made up of musical phrases. Our research question is therefore
whether such constraints can be learned by an RNN, while still
allowing it to maintain note probabilities learned from data.

https://github.com/tensorflow/magenta/tree/master/magenta/models/rl_tuner
https://github.com/tensorflow/magenta/tree/master/magenta/models/rl_tuner
https://github.com/tensorflow/magenta/tree/master/magenta/models/rl_tuner
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To test this hypothesis, we developed several rules that we believe
describe pleasant-sounding melodies, taking inspiration from a text
on melodic composition (Gauldin, 1995). We do not claim these char-
acteristics are exhaustive or strictly necessary for good composition;
rather, they are an incomplete measure of task success that can sim-
ply guide the model towards traditional composition structure. It
is therefore crucial that the KL-control approach allows the model
to retain knowledge learned from real songs in the training data.
The rules comprising the music-specific reward function rT(a, s) en-
courage melodies to: stay in key, start with the tonic note, resolve
melodic leaps, have a unique maximum and minimum note, pre-
fer harmonious intervals, play motifs and repeat them, have a low
autocorrelation at a lag of 1, 2, and 3 beats, and avoid excessively
repeating notes. Interestingly, while excessively repeating tokens is a
common problem in RNN sequence generation models, avoiding this
behavior is also Gauldin’s first rule of melodic composition (p. 42).

To train the model, we begin by extracting monophonic melodies
from a corpus of 30,000 MIDI songs and encoding them as one-
hot sequences of notes4. These melodies are then used to train an

4 More information about both the note
encoding and the reward metrics is
available in Jaques et al. (2017a)

LSTM with one layer of 100 cells. Optimization was performed with
Adam (Kingma and Ba, 2014), a batch size of 128, initial learning
rate of 0.5, and a stepwise learning rate decay of 0.85 every 1000

steps. Gradients were clipped to ensure the L2 norm was less than 5,
and weight regularization was applied with β = 2.5× 10−5. Finally,
the losses for the first 8 notes of each sequence were not used to
train the model, since it cannot reasonably be expected to accurately
predict them with no context. The trained RNN eventually obtained
a validation accuracy of 92% and a log perplexity score of 0.2536.
This model was used as described above to initialize the three sub-
networks in the KL-control models.

The KL-control models were trained using a similar configuration to
the one above, except with a batch size of 32, and a reward discount
factor of γ=0.5. The Target-Q-network’s weights θ− were gradually
updated towards those of the Q-network (θ) according to the formula
(1− η)θ− + ηθ, where η = 0.01 is the Target-Q-network update rate.
A strength of our model is that the influence of data and task-specific
rewards can be explicitly controlled by adjusting the weighting
parameter c. We replicated our results for a number of settings for
c; we present results for c = .5 below because we believe them to be
most musically pleasing, however additional results are available at
https://goo.gl/cTZy8r. Similarly, we replicated the results using
both ε-greedy and Boltzmann exploration, and present the results

https://goo.gl/cTZy8r
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using ε-greedy exploration below.

4.3.3.1 Melody generation results

Table 4.8 provides quantitative results in the form of performance
on the music theory rules to which we trained the model to adhere;
for example, we can assess the fraction of notes played by the model
which belonged to the correct key, or the fraction of melodic leaps
that were resolved. The statistics were computed by randomly gener-
ating 100,000 melodies from each model.

Metric MLE Q Ψ G
Repeated notes 63.3% 0.0% 0.02% 0.03%
Mean autocorr. lag 1 -.16 -.11 -.10 .55

Mean autocorr. lag 2 .14 .03 -.01 .31

Mean autocorr. lag 3 -.13 .03 .01 17

Notes not in key 0.1% 1.00% 0.60% 28.7%
Starts with tonic 0.9% 28.8% 28.7% 0.0%
Leaps resolved 77.2% 91.1% 90.0% 52.2%
Unique max note 64.7% 56.4% 59.4% 37.1%
Unique min note 49.4% 51.9% 58.3% 56.5%
Notes in motif 5.9% 75.7% 73.8% 69.3%
Notes in repeat motif 0.007% 0.11% 0.09% 0.01%

Table 4.8: Statistics of music
theory rule adherence based
on 100,000 randomly initial-
ized melodies generated by
each model. The top half of
the table contains metrics that
should be minimized, while the
bottom half contains metrics
that should increase. Bolded
entries represent significant
improvements over the MLE
baseline.

The results above demonstrate that the application of RL is able to
correct almost all of the targeted “bad behaviors" of the MLE RNN,
while improving performance on the desired metrics. For example,
the original LSTM model was extremely prone to repeating the same
note; after applying RL, we see that the number of notes belonging
to some excessively repeated segment has dropped from 63% to
nearly 0% in all of the KL-control models. While the metrics for
the G model did not improve as consistently, the Q and Ψ models
successfully learned to adhere to most of the imposed rules. The
degree of improvement on these metrics is related to the magnitude
of the reward given for the behavior. For example, a strong penalty
of -100 was applied each time a note was excessively repeated, while
a reward of only 3 was applied at the end of a melody for unique
extrema notes (which most likely explains the lack of improvement
on this metric). The reward values could be adjusted to improve
the metrics further, however we found that these values produced
pleasant melodies.

While the metrics indicate that the targeted behaviors of the RNN
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have improved, it is not clear whether the models have retained
information about the training data. Figure 4.13 plots the average
log p(a|s) as produced by the Reward RNN for melodies generated
by the models every 100,000 training epochs. Included in the plot
is an RL only model trained using only the music theory rewards,
with no information about log p(a|s). Since each model is initialized
with the weights of the trained MLE RNN, we see that as the models
quickly learn to adhere to the music theory constraints, log p(a|s)
falls from its initial point. For the RL only model, log p(a|s) reaches
an average of -3.65, which is equivalent to an average p(a|s) of ap-
proximately 0.026, or essentially a random policy over the 38 actions
with respect to the distribution defined by the Reward RNN. This is
strong evidence of catastrophic forgetting; even though the RL-only
model was initialized with a prior that had effectively learned from
data, this information is lost when naively continuing to train with
RL. However, as shown in Figure 4.13, the KL-control models (Q, Ψ,
and G) attain higher log p(a|s) values than this baseline even over
3,000,000 training steps. This indicates they have maintained informa-
tion about the data distribution throughout training. The G-learning
implementation scores highest on this metric, at the cost of slightly
lower average rT .
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Figure 4.13: Average prior
reward p(a|s) (probability of
notes under the MLE prior),
obtained by sampling 100

melodies every 100,000 training
epochs. The three models are
compared to a model trained
using only the music theory
rewards rT . This RL-only model
shows evidence of catastrophic
forgetting, diverging to a policy
that is random with respect
to the prior. In contrast, KL-
control alleviates catastrophic
forgetting.This compromise between data probability and adherence to music

theory could explain the difference in the G model’s performance on
the music theory metrics in Table 4.8. Figure 4.14 plots the average rT ,
which also shows that the G model obtains less task reward. Finally,
we have verified that by increasing the c parameter it is possible to
train all the models to have even higher average log p(a|s), but found
that c = 0.5 produced melodies that sounded better subjectively.
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Figure 4.14: Average music
theory reward obtained by
sampling 100 melodies every
100,000 training epochs. The
three models are once again
compared to a model trained
using only the music theory
rewards rT .

The question remains whether the RL-tutored models actually pro-
duce more pleasing melodies. The sample melodies used for the
study are available here: goo.gl/XIYt9m; we encourage readers to
judge their quality for themselves. To more formally answer this
question, we conducted a user study via Amazon Mechanical Turk
in which participants were asked to rate which of two randomly se-
lected melodies they preferred on a Likert scale. A total of 192 ratings
were collected; each model was involved in 92 of these comparisons.
Figure 4.15 plots the number of comparisons in which a melody from
each model was selected as the most musically pleasing. A Kruskal-
Wallis H test of the ratings showed that there was a statistically
significant difference between the models, χ2(3) = 109.480, p < 0.001.
Mann-Whitney U post-hoc tests revealed that the melodies from all
three Sequence Tuner models (Q, Ψ, and G) had significantly higher
ratings than the melodies of the MLE RNN, p < .001. The Q and Ψ
melodies were also rated as significantly more pleasing than those of
the G model, but did not differ significantly from each other.

4.3.3.2 Discussion

Listening to the samples produced by the MLE RNN reveals that
they are sometimes dischordant and usually dull; the model tends to
place rests frequently, repeat the same note, and produce melodies
with little variation. In contrast, the melodies produced by the KL-
control models are more varied and interesting. The G model tends
to produce energetic and chaotic melodies, which include sequences
of repeated notes. This repetition is likely because the G policy as

goo.gl/XIYt9m
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Figure 4.15: The number of
times a melody from each
model was selected as most
musically pleasing. Error bars
reflect the std. dev. of a bi-
nomial distribution fit to the
binary win/loss data from
each model. KL-control models
G, Q, and Ψ are significantly
preferred over the prior.

defined in Eq. 4.15 directly mixes p(a|s) with the output of the G
network, and the MLE RNN strongly favours repeating notes. The
most pleasant melodies are generated by the Q and Ψ models. These
melodies stay firmly in key and frequently choose more harmonious
interval steps, leading to melodic and pleasant tunes. However, it
is clear they have retained information about the training data; for
example, the sample q2.wav in the sample directory ends with a
seemingly familiar riff.

While we acknowledge that the monophonic melodies generated by
these models—which are based on highly simplistic rules of melodic
composition—do not approach the level of artistic merit of human
composers, we believe this study provides a proof-of-concept that
encoding even incomplete and partially specified domain knowledge
using our method can help the outputs of an LSTM adhere to a more
consistent structure. The musical complexity of the songs is limited
not just by the heuristic rules, but also by the simple monophonic
encoding, which cannot represent the dynamics and expressivity of a
musical performance. Although these melodies cannot surpass those
of human musicians, they provide a way to train a model to generate
aesthetically pleasing outputs in the absence of a better metric of
human taste than log-likelihood. Ultimately, we would like to use
human feedback as the ideal reward signal, dynamically learning
from human reactions to improve the model’s ability to generate mu-
sic. For example, it might be possible to use Electrodermal Activity
(EDA) to sense when a person finds music especially stimulating (or

https://www.youtube.com/watch?v=rJ0KQjku7T4&feature=youtu.be
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gets goosebumps!), and use these techniques to train the model to
generate songs that are more likely to elicit such reactions.

4.3.4 Experiment II: Computational drug discovery

As a further experiment, we tested the effectiveness of Sequence Tu-
tor for generating a higher yield of synthetically accessible drug-like
molecules. Organic molecules can be encoded using the commonly
used SMILES representation (Weininger, 1970). For example, am-
phetamine can be encoded as ‘CC(N)Cc1ccccc1’, while creatine is
‘CN(CC(=O)O)C(=N)N’. Using this character encoding, it is straight-
forward to train an MLE RNN to generate sequences of SMILES
characters (e.g. Segler et al. (2017)); we trained such a model using
the same settings as described above for the melody MLE RNN.
However, only about a third of the molecules generated using this
simple approach are actually valid SMILES encodings. Further, this
approach does not directly optimize for metrics of molecule or drug
quality. These metrics include: a) the water-octanol partition coef-
ficient (logP), which is important in assessing the drug-likeness of
a molecule; b) synthetic accessibility (SA) (Ertl and Schuffenhauer,
2009), a score from 1-10 that is lower if the molecule is easier to
synthesize; and c) Quantitative Estimation of Drug-likeness (QED)
(Bickerton et al., 2012), a more subjective measure of drug-likeness
based on abstract ideas of medicinal aesthetics.

To optimize for these metrics, while simultaneously improving the
percent yield of valid molecules from the RNN, we constructed
a reward function that incentivizes validity, logP, SA, and QED
using an open-source library called RDkit5. Included in the reward

5 http://www.rdkit.org/function was a penalty for molecules with unrealistically large carbon
rings (size larger than 6), as per previous work (Gómez-Bombarelli
et al., 2016). Finally, after observing that the model could exploit the
reward function by generating the simple molecule ‘N’ repeatedly, or
‘CCCCC...’ (which produces an unrealistically high logP value), we
added penalties for sequences shorter than, or with more consecutive
carbon atoms than, any sequence in the training data. The KL-control
models were then trained using these rewards, the pre-trained MLE
RNN, and similar settings to the first experiment, except with ε-
greedy exploration with ε = .01, a batch size of 512, and discount
factor γ = .95. For this experiment, we also made use of prioritized
experience replay (Schaul et al., 2015) to allow the model to more
frequently learn from relatively rare valid samples. A value of c =

http://www.rdkit.org/
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2.85 led to a higher yield of valid molecules with high metrics, but
still encouraged the diversity of generated samples.

4.3.4.1 Drug discovery results and discussion

As the Ψ algorithm produced the best results for the music gen-
eration task, we focused on using this technique for generating
molecules. Table 4.9 shows the performance of this model against the
original MLE model according to metrics of validity, drug-likeness,
and synthetic accessibility. Once again, KL-control is able to signifi-
cantly improve almost all of the targeted metrics. However, it should
be noted that the KL-control models tend to produce simplistic
molecules involving more carbon atoms than the MLE baseline; e.g.
Sequence Tutor may produce ‘SNCc1ccccc1’, while the MLE produces
‘C(=O)c1ccc(S(=O)(=O)N(C)C)c(Cl)c1’, which is the reason for the Se-
quence Tutor model’s lower QED scores. This effect is due to the fact
that simple sequences are more likely to be valid, have high logP and
SA scores, and carbon is highly likely under the distribution learned
by the MLE model. A higher reward for QED and further improve-
ment of the task-specific rewards based on domain knowledge could
help to alleviate these problems. Overall, the fact that KL-control can
improve the percentage of valid molecules produced as well as the
logP and synthetic accessibility scores serves as a proof-of-concept
that Sequence Tutor may be valuable in a number of domains for
imparting domain knowledge onto a sequence predictor.

Metric MLE Q
Percent valid 30.3% 35.8%
Mean logP 2.07 4.21
Mean QED .678 .417

Mean SA penalty -2.77 -1.79
Mean ring penalty -.096 -.001

Table 4.9: Statistics of molecule
validity and quality based on
100,000 randomly initialized
samples. Bolded entries repre-
sent significant improvements
over the MLE baseline.

4.3.5 Conclusion and future work

We have derived a novel sequence learning framework which uses RL
to correct properties of sequences generated by an RNN, while main-
taining information learned from MLE training on data, and ensuring
the diversity of generated samples. By demonstrating a connection
between our sequence generation approach and KL-control, we have
derived three novel RL-based methods for optimizing sequence gen-
eration models. These methods were empirically compared in the
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context of a music generation task, and further demonstrated on a
computational molecular generation task. KL-control from a pre-
trained prior showed promising results in terms of both adherence to
task-specific rules, and subjective quality of the generated sequences.

We believe the approach of using RL to refine RNN models could
be promising for a number of applications, including the reduction
of bias in deep learning models. While manually writing a domain-
specific reward function may seem unappealing, that approach is
limited by the quality of the data that can be collected, and besides,
even state-of-the-art sequence models often fail to learn all the as-
pects of high-level structure (van den Oord et al., 2016; Graves, 2013).
Further, the data may contain hidden biases, as has been demon-
strated for popular language models (Caliskan-Islam et al., 2016).
In contrast to relying solely on possibly biased data, our approach
allows for encoding high-level domain knowledge into the RNN,
providing a general, alternative tool for training sequence models.
Finally, the most promising use for these techniques is to learn from
human social responses in order to fine-tune models with scarce
and limited samples. This could potentially allow a wide range of
machine learning models to incorporate human feedback.

4.4 Statement of contributions

Sections 4.1 and 4.2 of this chapter are the results of a large, collabo-
rative effort on dialog systems research in Rosalind Picard’s Affective
Computing group. I initially began the project myself in October
2018 by familiarizing myself with the relevant literature, and began
asking members of the group if they would like to work on it with
me. By February 2019, Asma Ghandeharioun, Judy Hanwen Shen,
Craig Ferguson, Agata Lapedriza, and Noah Jones had agreed to
participate. I am grateful to all of these co-authors for a truly collab-
orative project involving deep sharing of ideas and joint effort. The
first section describes the results of training and evaluating many
dialog models using an interactive online platform. My role in this
first project was to formulate the initial ideas, including incorporating
sentiment (DeepMoji), using variational hierarchical models, and the
idea for EI regularization, which were then extended and improved
by all authors. Asma proposed the idea of evaluating with self-play. I
wrote the code that allowed interacting with the models and training
with EI regularization, and handled the majority of the effort related
to training the models and deploying them to the web server. Craig
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wrote the code for the web server itself, and designed the user in-
terface. Asma wrote code to integrate DeepMoji and Infersent, after
investigating other approaches to topic modeling. Judy handled run-
ning the interactive study on Mechanical Turk. Noah advised on the
psychological aspects of empathy and good conversation. Agata and
Rosalind provided advice and guidance throughout.

Learning from implicit human reactions in conversation with RL
(Section 4.2) was an idea I originally proposed during my thesis
proposal, and this part of the project was something that I worked on
independently, although still consulting with Asma, Judy, Rosalind,
and Shane Gu. I formulated the idea of improving Batch RL with KL-
control from a pre-trained prior after considering how to work with
a static dataset and reading Scott Fujimoto’s BCQ paper. Scott also
provided advice on the project over email. The code and experiments
for this section were written and conducted by me. Craig and Judy
helped run the evaluation of the RL models on the server and on
Mechanical Turk.

Section 4.3 resulted from an earlier paper, which began as part of an
internship project supervised by Douglas Eck. I initially wrote code
and ran experiments to improve a music generation model with Q-
learning by adding the prior probability p(a|s) to the reward function.
The music-theory rewards were developed with advice from Curtis
‘Fjord’ Hawthorne. After presenting the internship project, Shane Gu
approached me about developing some theoretical improvements to
my technique, and was instrumental in developing the Ψ-learning
and G-learning formulations of the algorithm. Shane had the idea
to extend the experiments to the drug discovery domain and put
me in touch with José Hernández-Lobato, who provided advice as I
wrote the code and ran the experiments for drug discovery. Dzmitry
Bahdanau provided initial consultation about Q-learning and the
original algorithm, and advice and feedback on the manuscript.

4.5 Appendix

4.5.1 Self-play hybrid metric coefficients

We optimized the coefficients of sub-components of the hybrid metric
using a leave-bot-out scenario. As shown in Figure 4.16, we observe
that λis are stable across these training iterations. However, because
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Figure 4.16: The learned co-
efficients (λi) that the hybrid
metric (MH) is comprised of.
Using a leave-bot-out method,
we observe that the λis are sta-
ble. The error bars show 90%
confidence intervals.

we have optimized a linear regression equation and some of the
features have overlapping information, such as different aggregation
methods for calculating word coherence, we do not suggest using λis
for direct interpretation; further investigation is required.

4.5.2 Reddit casual conversation corpus details

Using the 1.7 Billion post comments dataset hosted on Google Big-
Query, we extracted post ids for all posts on https://www.reddit.

com/r/CasualConversation from July 2018 to December 2018. For
each post, we built a conversation tree of comments and subse-
quent replies to extract three-turn dialog. We removed links, ex-
cluded [removed] and [deleted] tag comments, and only used text
before “edit” comments to preserve the original content in the
conversation. We make this dataset available for public use at
https://affect.media.mit.edu/neural_chat/datasets.

https://www.reddit.com/r/CasualConversation
https://www.reddit.com/r/CasualConversation
https://affect.media.mit.edu/neural_chat/datasets
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4.5.3 Embedding-based metrics

Embedding Average Taking the mean word embedding of the gener-
ated sentence eg and the target sentence et, the embedding average
metric is the cosine distance between the two.

ēt =
∑w∈t ew

|∑w′∈t ew′ |
(4.16)

Avg(êt, êg) = cos(ēt, ēg) (4.17)

Vector Extrema The extrema vector for a sentence can be calculated
by taking the most extreme value for each dimension (e(d)w ) among
the word vectors in the sentence. The extrema embedding metric is
again the cosine distance between the extrema sentence vectors.

ê(d)t =

maxw∈t e(d)w if e(d) > |minw′∈t e(d)w′ |
minw∈t e(d)w otherwise

(4.18)

Ext(êt, êg) = cos(êt, êg) (4.19)

Greedy Matching The greedy matching distance is computed by
matching word vectors in a source sentence (s) with the closest words
vectors in the target sentence(s).

G(r, r̂) =
∑w∈r; maxŵ∈r̂ cos(ew, eŵ)

|r| (4.20)

Grd(s, t) =
G(s, t) + G(t, s)

2
(4.21)

4.5.4 RL post-hoc metrics

After training the bots on the above rewards, we noticed a shift in
the distribution of their language towards more polite, cheerful,
and supportive speech. Therefore, we designed post-hoc metrics
to measure these qualities, which are based on counting whether a
subset of phrases is present in an utterance.

Politeness phrases: if I may; may I; please; thanks; no worries; if you
don’t mind; have a great day; I’m sorry.

Supportive phrases: you’re right; you are right; you’re not alone; you are
not alone; congrats; that’s a good idea; that is a good idea; you’ll be fine; you
will be fine; you’ll be okay; you will be okay; it will get better; sorry you’re
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going through; sorry you are going through; if it makes you feel better; if
it makes you feel any better; keep your head up; keep it up; I’m in a similar
situation; I am in a similar situation; you’ll get it; you will get it; happy for
you; I’m in the same boat; I am in the same boat; if you feel like you need to
vent.

Cheerful phrases: nice to hear; happy; excited; really nice; glad; the best;
great; good time; looking forward; beautiful.

4.5.5 Interactive evaluation details

Figure 4.17: Interactive evalua-
tion chat interface

For our interactive evaluation, we built a platform to mimic a natu-
ral chat setting. Figure 4.17 is an example conversation within the
platform that interactive evaluation participants see. Annotators
can optionally click the up and down arrows beside each chatbot
response to give feedback on the specific utterance. Once 3 or more
turns of the conversation has taken place, participants may click
“Close Chat and Rate". This will take them to the rating page where
the conversations to be rated is presented along side the 7 point
Likert scale questions used to asses the conversation (Figure 4.2).
Figure4.18 shows example conversations with the RL models.

For the experiments presented in Section 4.1, participants both from
Amazon Mechanical Turk and from the authors’ institution were
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Figure 4.18: Conversa-
tion with RL models on
https://neural.chat.

recruited for interactive evaluation. Although the minimum required
number of turns is 3, the average number of responses per conversa-
tion of participants varied between 3.00-10.58 turns with the average
at 5.43 turns. Table 4.10 summarizes the number of ratings collected
for each model. The average rating each annotator gave differed sig-
nificantly between annotators. As a result, we also computed scores
for interactive evaluation after normalizing each annotator’s scores.
We restricted ratings down to only annotators who completed 10 or
more ratings which left 301 ratings. Similar to table 4.2, the mean
ratings for EI (Emotion+Infersent) models were higher than the mean
ratings for the baseline models.

Cornell Reddit
HRED VHRED VHCR HRED VHRED VHCR

Baseline 55 46 53 55 36 39

EI 49 39 42 56 44 52

Table 4.10: Summary table of
ratings collected per model.

https://neural.chat
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4.5.6 Website server setup and configuration

The server was hosted on a Google Cloud Platform virtual instance
with 64GB of RAM and a NVIDIA Tesla P100 graphics card. The
backend was a Django program being served by NGINX and uWSGI.
For simplicity, we opted to have the Django process import the chat-
bots into the same Python process as Django, rather than have the
two connect to each other via other means such as sockets. This con-
figuration decreased development time and increased reliability, but
it would need to be revisited if the server needed to scale several or-
ders of magnitude past what was required for this study. The current
configuration was still able to support hundreds of simultaneous
users and host more than 30 bots concurrently.

The chatbots were kept in a separate project from the Django project
and maintained separately from the server code. Each chatbot ex-
tended an abstract class that defined key methods for the Django
program to use, and was registered to a globally accessible dictio-
nary via a decorator. The Django project was provided the path to
the Chatbots project in its PYTHONPATH, so it could import the
dictionary in which all the chatbot objects had been registered and
use that to dynamically determine which chatbots were available and
to access them in its views.

It is important to note that the chatbots used PyCUDA, and PyCUDA
does not work in a multiprocessing environment. Because of this,
uWSGI needed to be configured to only have one python process
and to disable any attempt at multiprocessing. Furthermore, the
chatbots required substantial startup times, so all chatbots are kept
in memory at all times in the Django process. In order to keep all the
chatbots in memory concurrently, we needed a very high amount of
RAM on our server and opted for a 64GB virtual instance, and a GPU
with 16GB RAM. This combination of CUDA to run the chatbots on
the GPU with a high amount of RAM to keep all bots in memory
at the same time resulted in incredibly fast server response times,
with effectively no increase in response time when using the bots in
requests compared to requests that did not.

For further information and instructions on server configuration,
please read the server documentation available at https://github.
com/asmadotgh/neural_chat_web. We hope that this platform will al-
low others to host their own bots and evaluate them in an interactive
setting.

https://github.com/asmadotgh/neural_chat_web
https://github.com/asmadotgh/neural_chat_web
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4.5.7 Hyper-parameter tuning details

For the baseline models that were trained on the Cornell dataset,
we used the parameters reported in (Serban et al., 2016, 2017b; Park
et al., 2018) that achieved state-of-the-art results for HRED, VHRED,
and VHCR models trained on the same dataset, respectively. For EI
models, we compared a combination of values for encoder hidden
size (400, 600, 800, 1250), decoder hidden size (400, 600, 800, 1250),
context size (1000, 1250), embedding size (300, 400, 500), word drop
(0, .25), sentence drop (0, .25), beam size (1, 5). Learning rate (.0001),
dropout (.2) were fixed. Batch size 80 was used. If due to memory
limitation the job was not successfully completed, batch size 64 was
used. Additionally, we tuned the EI parameters, i.e., emotion weight
(25, 150), infersent weight (25K, 30K, 50K, 100K), emotion sizes
(64, 128, 256), infersent sizes (128, 1000, 2000, 4000). Due to limited
computational resources, we were not able to run a grid search on
the aforementioned values. Instead we used combinations of the
parameters that heuristically were more viable.

For the models that were trained on the Reddit dataset, a set of
properly tuned baseline parameters were non-existent. Thus, to
ensure fair comparison, we used a similar approach for baseline
and EI hyper-parameter tuning: We explored a combination of
values for encoder hidden size (400, 600, 800, 1250), decoder hidden
size (400, 600, 800, 1250), context size (1000, 1250), embedding size
(300, 400, 500, 600), word drop (0, .25), sentence drop (0, .1, .25),
and beam size (1, 5). Learning rate (.0001), dropout (.2) were fixed.
Batch size 64 was used. If due to memory limitation the job was
not successfully completed, batch size 32 was used. Due to limited
computational resources, we were not able to run a grid search on
all the aforementioned values. Instead we used combinations of
the parameters that heuristically were more viable. To ensure fair
comparison, any selected combination was tested for both baseline
and EI models. Then, for EI models, we tuned the parameters that
were solely relevant to the EI design, such as the weight of emotion
and infersent term in the loss function and the size of the added
discriminator networks: Emotion weight (25), infersent weight (25K,
50K, 100K), emotion sizes (64, 128, 256), infersent sizes (100, 128,
1000, 2000, 4000). See Table 4.11 for a summary of the final selected
parameters.

RL models were trained for between 800 and 1000 batches of data,
where the batch size was fixed at 32. Early stopping was used to
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Cornell

Baseline
HRED 80 .2 400 400 1000 300 .0 .0 5 - - - -
VHRED 80 .0 1000 1000 1000 400 .25 .0 5 - - - -
VHCR 80 .2 1000 1000 1000 500 .25 .25 5 - - - -

EI
HRED 64 .2 1000 1000 1000 500 .0 .0 1 25 128 100K 4000

VHRED 80 .2 1250 1250 1000 600 .0 .0 1 25 128 30K 128

VHCR 32 .2 1000 1000 1250 600 .0 .0 1 25 128 25K 4000

Reddit

Baseline
HRED 64 .2 1000 1000 1000 500 .0 .0 1 - - - -
VHRED 32 .2 1250 1250 1000 600 .0 .0 1 - - - -
VHCR 32 .2 1000 1000 1250 600 .0 .25 1 - - - -

EI
HRED 64 .2 1000 1000 1000 500 .0 .0 1 25 128 25K 2000

VHRED 32 .2 1250 1250 1250 600 .0 .0 1 25 128 100K 4000

VHCR 32 .2 1000 1000 1250 600 .0 .0 1 25 128 100K 4000

Table 4.11: Hyper-parameters
used for different models.
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determine the number of training iterations of the best checkpoint.
All other hyperparameters were shared between RL models, and
were as follows: discount γ = 0.5, weight placed on RL reward
vs. KL-divergence term c = 2, number of Monte Carlo samples
of the Target Q-network M = 5, target network update rate α =

.005, learning rate r = .0001. We used a smooth L1 loss function to
approximate the Q-values, and clipped gradients at a value of 1.0.

The underlying parameters of the VHRED model were as follows:
Context RNN hidden size = 1000, decoder hidden size = 1250,
encoder hidden size = 1250, z embedding size = 600, gradient clip
= 1.0, dropout d = 0.2. The maximum conversation length was
fixed at 5 utterances (context from more than 5 utterances ago was
discarded), and the maximum sentence length was 30 tokens. There
were 2 additional feedforward EI prediction layers of size 128, which
used ReLu activation.

4.5.8 One-turn evaluation experiment details

Figure 4.19 shows the one-turn evaluation interface that Mechanical
Turk workers used.

Figure 4.19: One-turn evalu-
ation interface crowdworkers
see.
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4.5.9 Additional results

4.5.9.1 Ablated EI models

We conducted additional evaluations of ablations of our EI models, to
determine whether emotion or infersent regularization provided the
most benefit. The results in Table 4.12 reveal that this depends on the
dataset and the model in question. We also checked whether simply
appending the emotion and infersent embedding of an utterance
to the top level of the hierarchy could provide the same benefit as
knowledge distillation, even though this would require retaining
copies of the DeepMoji and Infersent models, and would be more
computationally expensive at inference time. Table 4.12 reveals that
the input-only models do not out-perform the knowledge-distillation
EI models on automatic metrics.

Cornell Reddit
Model Version PPL KL Avg Ext Grd PPL KL Avg Ext Grd

HRED

baseline 52.311 - .471 .329 .331 41.730 - .649 .394 .474

input only 47.911 - .549 .381 .392 41.227 - .644 .395 .469

EIemo 48.619 - .562 .359 .416 47.395 - .541 .310 .371

EIin f 47.988 - .562 .381 .405 41.083 - .646 .394 .472

EI 47.636 - .560 .383 .400 41.245 - .651 .398 .482

VHRED

baseline 49.414 .264 .539 .352 .395 36.240 .188 .635 .383 .464

input only 49.819 .442 .543 .353 .393 40.248 .312 .630 .377 .456

EIemo 51.346 .636 .552 .358 .401 36.212 .199 .631 .380 .458

EIin f 52.143 .702 .539 .346 .392 36.518 .222 .637 .381 .463

EI 50.526 .517 .545 .355 .394 35.510 .167 .636 .392 .465

VHCR

baseline 61.000 .562 .532 .345 .382 36.736 .267 .619 .371 .448

input only 50.966 .558 .531 .344 .382 37.342 .287 .608 .365 .431

EIemo 52.407 .590 .585 .374 .442 37.449 .254 .619 .366 .444

EIin f 53.085 .575 .544 .356 .390 37.109 .199 .629 .378 .457

EI 49.243 .475 .588 .369 .444 37.198 .231 .639 .394 .469

Table 4.12: Automatic metrics
computed on ablations of the EI
models, trained with distillation
from only the emotion recogni-
tion model (EIemo), the infersent
model (EIin f ), or receiving emo-
tion and infersent only as input,
without knowledge distillation
(input-only). Whether emotion
or semantics provides the most
benefit depends on the dataset
and the model.

4.5.9.2 Human interactive ratings correlation table

Figure 4.20 provides detailed information about different aspects of
interactive human ratings. We observe that quality is highly corre-
lated with other aspects of the conversation. Specifically, it is most
strongly correlated with contingency, which further highlights the
importance of semantic metrics of bot-generated responses in a good
quality conversation. It also has high correlation with empathy that
could better be captured by sentiment metrics.
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Figure 4.20: Correlation ma-
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We observe a strong correlation
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Figure 4.21: Correlation ma-
trix showing the relationships
between different automated
metrics on self-play trajectories
and interactive human ratings
aggregated on the bot-level.
Postfixes: -I: Interactive human
evaluation, -B: Calculated on
bot response, -B/B: Metric
applied to self-play on two
consecutive bot generated utter-
ances when the bot converses
with itself.
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Cornell Reddit
Model Metric Wins % Losses % Ties % Wins % Losses % Ties %

HRED

quality 40.8 ± 4.9 24.5 ± 4.9 34.8 ± 9.2 31.3 ± 5.2 29.5 ± 6.6 39.3 ± 10.7
fluency 10.3 ± 4.4 17.3 ± 4.1 72.5 ± 8.1 22.8 ± 5.3 20.0 ± 7.1 57.3 ± 11.2
relatedness 36.3 ± 6.5 28.7 ± 4.8 35.0 ± 7.9 34.3 ± 2.8 30.3 ± 7.8 35.5 ± 9.7
empathy 37.8 ± 7.2 24.5 ± 5.6 37.8 ± 8.9 32.5 ± 3.4 31.2 ± 5.9 36.3 ± 8.0

VHRED

quality 36.9 ± 4.7 36.6 ± 5.6 26.6 ± 6.9 39.0 ± 7.0 34.0 ± 5.3 27.0 ± 8.9
fluency 23.4 ± 9.6 27.7 ± 8.3 48.9 ± 16.3 29.0 ± 13.6 23.3 ± 9.3 47.7 ± 21.6
relatedness 37.4 ± 5.4 33.1 ± 7.2 29.7 ± 9.6 38.3 ± 5.6 33.0 ± 5.1 28.7 ± 9.0
empathy 36.6 ± 9.4 34.0 ± 8.4 29.4 ± 15.8 34.7 ± 8.7 33.7 ± 6.7 31.7 ± 10.9

VHCR

quality 33.0 ± 6.1 29.0 ± 5.4 38.0 ± 10.1 33.7 ± 7.9 27.3 ± 3.3 39.0 ± 8.6
fluency 13.5 ± 4.1 25.5 ± 4.3 66.0 ± 7.7 24.7 ± 7.2 18.3 ± 5.2 57.0 ± 10.2
relatedness 40.8 ± 4.8 26.8 ± 6.8 32.5 ± 10.5 28.3 ± 6.6 31.3 ± 3.6 40.3 ± 8.4
empathy 32.8 ± 6.6 28.0 ± 7.8 39.3 ± 13.7 30.3 ± 3.9 24.0 ± 4.6 45.7 ± 7.6

Table 4.13: Results from hu-
man single-turn evaluation
for EI vs. Baseline models for
HRED, VHRED, and VHCR
models across quality, fluency,
relatedness and empathy pair-
wise comparisons with 90%
confidence intervals

4.5.9.3 Self-play correlation table

Figure 4.21 provides detailed information about the introduced
metrics applied to self-play. We observe that several metrics also
transfer to self-play trajectories. Inducing positive sentiment as
measured by Sentiment and Laughter, and being able to generate
longer sentences in self-play are associated with higher quality
model ratings. It is worth mentioning that maintaining extreme
similarity in sentiment or semantics or just asking questions in self-
play conversation trajectories could backfire by reducing the diversity
of generated responses, though applicable to interactive human data.
Most importantly, our novel hybrid metric applied to self-play (MH

-B/B) is highly correlated with all human ratings of the dialog model.

4.5.9.4 Detailed results of single-turn evaluation

We replicated the one-turn evaluation found in previous work (Ser-
ban et al., 2017b; Park et al., 2018). We sampled conversation contexts
from the test set of each corpus and generated samples by each
model based on these contexts. After filtering by context length (> 10

tokens) and removing contexts which contain <unknown> tokens, we
sampled 100 examples. We divided each set of 100 examples into two
batches of 50 for annotators to rate. Annotators recruited through
Amazon Mechanical Turk were first trained with an example ques-
tion. Annotators must be in the United States and had to correctly
answer all training questions to complete the task. Figure 4.19 shows
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the interface displayed to crowdworkers in the one-turn evaluation
task. We asked annotators to select which sentence was better for
quality, fluency, relatedness, and empathy. Table 4.13 summarizes the
results for all 4 metrics and is an uncondensed version of table 4.4.
One notable exception to the pattern of EI models winning is fluency;
baseline models trained on the Cornell corpus generated more
fluency wins.

Noting the high disagreement between annotators in this task, we
further examined the ambiguous examples in the human evaluation
test set. We define an ambiguous example as a question where an
equal number of annotators select the first sentence as better as the
second sentence. If the two examples were similar, annotators would
select the “tied" option. An equal number of selections for each
answer as the winner indicates a disagreement in perception. Table
4.14 summarizes the number of ambiguous examples per model
and metric out of 100 in total for each box. After removing these
ambiguous example from calculating wins, losses and ties, the results
are similar to table 4.2. The number of ambiguous samples further
highlights the noisy and unreliable nature of single-turn evaluation.

Cornell Reddit
HRED VHRED VHCR HRED VHRED VHCR

Quality 12 13 15 26 15 9

Fluency 4 10 10 12 20 6

Relatedness 11 12 10 15 13 7

Empathy 16 9 12 14 17 7

Table 4.14: Count of ambiguous
examples in human one-turn
evaluation.

4.5.9.5 Additional RL results

Figure 4.22 shows the normalized6 reward scores obtained by bots
6 Using z-score normalizationtrained with respect to different rewards. While some bots (such as

those trained to ask questions or elicit positive sentiment) effectively
generalize to new users, we see that others (e.g. words elicited)
are not actually able to best elicit those responses in the wild. We
hypothesize this is because the relatively small size of batch date we
were able to collect (≈ 14, 000 utterances) does not give these bots
enough information about how to elicit long responses from users.
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Figure 4.22: Normalized reward
scores obtained by models
trained with respect to different
rewards.
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A known deficit of modern machine learning (ML) and deep learning
(DL) methodology is that models must be carefully fine-tuned in
order to solve a particular task. Most algorithms cannot generalize
well to even highly similar tasks, let alone exhibit signs of artificial
general intelligence (AGI). To address this problem, researchers have
explored developing loss functions that act as intrinsic motivators
that could drive an ML or DL agent to learn across a number of
domains. Once again, this chapter argues that social interaction can
be an important and useful intrinsic motivator, which can help agents
adapt quickly and flexible to new tasks. We posit that making an AI
agent aware of implicit social feedback from humans can allow for
faster learning of more generalizable and useful representations, and
could potentially impact AI safety. To support this claim, we collect
social feedback in the form of facial expression reactions to samples
from Sketch RNN, an LSTM-based variational autoencoder (VAE)
designed to produce sketch drawings. We use a Latent Constraints
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GAN (LC-GAN) to learn from the facial feedback of a small group
of viewers, by optimizing the model to produce sketches that it
predicts will lead to more positive facial expressions. We show in
multiple independent evaluations that the model trained with facial
feedback produced sketches that are more highly rated, and are
associated with significantly more positive facial expressions. Thus,
we establish that implicit social feedback can improve the output of a
deep learning model.

5.1 Introduction

Despite the recent rapid and compelling progress in ML and DL,
modern AI is still remarkably far from approximating the intelligence
of even simple animals. A notable deficit is the degree of explicit
supervision required in order to learn, either through labeled sam-
ples or well-defined external rewards such as points in a game. The
limited scope of such supervision will not enable the development of
a generally intelligent AI.

For this reason, some researchers have focused on intrinsic motiva-
tors, inherent drives that cause the agent to learn representations
that are useful across a variety of tasks and environments. Examples
include curiosity (a drive for novelty) (Pathak et al., 2017), and em-
powerment (a drive for the ability to manipulate the environment)
(Capdepuy et al., 2007). However, so far this research has overlooked
an important intrinsic motivator for humans: the drive for positive
social interactions.

We argue that making an AI agent intrinsically motivated to obtain
a positive social reaction from humans in its environment is an
important new research direction. Specifically, the agent should be
able to recognize implicit feedback from humans in the form of facial
expressions, body language, or tone in voice and text, and optimize
for actions that appear to please humans as measured through these
signals. Such feedback could be used in a wide range of contexts
where people interact with ML systems.

The representations learned by such an agent are more likely to
capture dimensions of the task that are relevant to human satisfaction.
This has meaningful implications for questions of AI safety; an AI
agent motivated by satisfaction expressed by humans will be less
likely to take actions against human interest. Such an agent will also
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be better suited to perform tasks which already involve AI. Imagine
if a home assistant could sense when a user responds with an angry
or frustrated tone and this acted as a negative incentive, training the
algorithm not to repeat the action that led to the user’s frustration?
Rather than requiring the user to manually train the device, it could
learn quickly through passive sensing of the user’s emotional state,
leading to a more immediately satisfying experience for the user.
Finally, some machine learning problems—including the one under
investigation in this chapter—cannot be solved without human
feedback; when the objective function is human aesthetic preference,
it cannot be approximated without human input.

Social awareness may be a key component of AGI. There is substan-
tial evidence that emotion recognition, which is critical for empathy
and successful social interaction, plays an influential role in cognitive
development in humans (Kujawa et al., 2014). According to Social
Learning Theory (Bandura and Walters, 1977), observing the attitudes
and behaviors of others is a central component of how humans learn
both intelligent behavior and how to adapt to new situations. It has
been argued that social learning is responsible for the rapid cultural
evolution of the human species (van Schaik and Burkart, 2011). Given
the importance of cultural evolution to humans’ technological suc-
cess, endowing a deep learning agent with the ability to perceive and
benefit from this socially exchanged cultural knowledge could allow
it to rapidly develop more generalizable knowledge representations.

In this work we demonstrate the utility of learning through implicit
social feedback via an experiment in which samples generated by a
deep learning model are presented to people, and their facial expres-
sion response is detected. The model is Sketch RNN (Ha and Eck,
2017), an LSTM-based VAE with a Mixture Density Network output,
designed to produce sketch drawings. Using a newly developed
technique known as Latent Constraints (Engel et al., 2017), we train a
Generative Adversarial Network (GAN) to produce VAE embedding
vectors that, when decoded by Sketch RNN, are more likely to pro-
duce drawings that lead to positive facial expressions such as smiling.
In a rigorous, double-blind evaluation, we show that samples from
the social feedback model generate statistically significantly better
affective responses than the prior, and are consistently rated as more
preferred by human judges. Thus, this experiment is a first step in
demonstrating that deep learning models are able to improve in
quality as a result of learning from implicit social feedback.
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5.2 Related work

Many affective computing papers have addressed how to automat-
ically detect facial expressions (e.g. Senechal et al. (2015)). A com-
prehensive review of this work is out of scope for this chapter. We
instead build on this work by assuming that an accurate facial expres-
sion detector is already available, and asking what can be learned
using this facial feedback.

Previous work has attempted to train ML and DL models to ap-
proximate human preferences. For example, Knox and Stone (2009)
ask users to press a button to teach a reinforcement learning (RL)
model to play Mountain Car, and model human reaction latencies
as a Gamma distribution in order to distribute the reward appropri-
ately over past time steps. A more recent work attempts to train a
deep learning model from human preferences, by first training an
approximator of human button presses using supervised learning,
and then using this to train an RL model (Christiano et al., 2017).
However, both of these approaches require the human to provide
explicit supervision by manually entering feedback. In contrast, our
approach enables learning from implicit social cues that can be ob-
tained ubiquitously, through awareness of the non-verbal reactions
people naturally provide. Essentially, we obtain human-in-the-loop
training without additional human effort.

The closest work to our own of which we are aware is an approach
that used valence and engagement, detected via facial expressions,
as a reward function in a Q-learning framework (Gordon et al., 2016).
The goal of the project was to allow an intelligent tutoring system
to adapt its behavior so that children would remain engaged while
using the system. While this is an excellent example of learning from
implicit social feedback, the goals of this paper are quite distinct from
our own. We believe we are the first authors to use implicit social
feedback to improve a generative deep learning model. Our model
attempts to learn to improve its ability to produce creative content by
observing the implicit responses it receives from human judges. This
process could be considered analogous to a human artist fine-tuning
her work after she observes critics’ nonverbal reactions.
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5.3 Methods

5.3.1 Study design

To gather social feedback, we focused on facial expression recogni-
tion, since this is currently one of the most reliable and accurate ways
to detect social signals (Senechal et al., 2015). The facial expression
detector employed for this project is a pre-trained convolutional
network trained to detect common facial expressions.

Figure 5.1: The web app was
designed to indicate to users
how the model was interpreting
their facial expressions in order
to learn how to sketch better.

To obtain facial feedback at scale, we built a web app that serves
samples from a deep learning model while recording the user’s fa-
cial expressions with a webcam. Figure 5.1 shows examples of the
interface, which was carefully designed in conjunction with a User
Experience team at Google (including James Tolentino, Ira Blossom,
Adrien Baranes, Rebecca Salois, and Josh Lovejoy) in order to elicit
facial expressions from the user, and clearly communicate how they
were being used and interpreted. The user’s image was collected
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via their webcam and fed into the facial-expression detection net-
work to compute the intensities of common expressions, including
amusement, contentment, surprise, sadness, and concentration. Due
to the degree of inter-individual variation in users’ resting facial
expression, these intensities were normalized against each user’s
average expression to produce value vectors v. The app is also ca-
pable of collecting Likert-scale ratings of sketch quality and asking
users to choose which of two sketches they prefer. These mecha-
nisms were used to collect evaluation data. The app can be viewed at
https://facial-feedback-for-ai.appspot.com/.

To test the hypothesis that facial feedback can improve the outputs
of a deep learning model, we sought a model for which the outputs
were likely to generate a natural facial expression response. We chose
Sketch RNN (Ha and Eck, 2017), a model which generates sequences
of strokes that form a sketched image of a common object, vehicle, or
animal (see Figure 5.6). Such sketches were determined to elicit facial
responses in initial tests.

5.3.2 Machine learning techniques

Sketch RNN is a VAE that was trained in an unsupervised manner on
a large corpus on human sketch data collected via Quick, Draw!1. The

1 https://quickdraw.withgoogle.com/sketches are represented as sequences of coordinates that represent
the points where the pen is placed during sketching. The architecture
of Sketch RNN comprises: a) a bidirectional LSTM encoder that
projects each input sketch into a latent embedding vector z, b) an
LSTM decoder which takes z as input and generates a sequence
of parameters for c) a Gaussian Mixture Model that generates the
(x, y) coordinates of the tip of the pen during each stroke. This
Mixture Density Network (MDN) approach is similar to prior work
on handwriting generation (Graves, 2013).

The design of Sketch RNN provides important benefits that facil-
itate optimizing the model with facial feedback. First, due to the
variational constraint, it is straightforward to sample a latent vector
z ∼ N (0, I) and feed this into the Sketch RNN decoder to produce
a recognizable sketch. Second, the latent embeddings z learned by
Sketch RNN provide a clean, compressed representation of sketch
drawings. These features allowed us to apply a newly developed
technique known as Latent Constraints (Engel et al., 2017) in order to
learn to produce sketches likely to lead to positive facial expressions.

https://facial-feedback-for-ai.appspot.com/
https://quickdraw.withgoogle.com/
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Figure 5.2: Steps involved in
training the LC-GAN facial
feedback model.

The latent constraints GAN (LC-GAN) is a GAN applied to the latent
embedding space of a VAE. The steps of training this model to use
facial feedback are shown in Figure 5.2. We first sample a number
of z vectors from the VAE prior (N (0, I)), and feed these into the
Sketch RNN decoder to obtain sketches. These sketches are shown
to users, and the intensity of their facial expression responses is
recorded; we refer to these intensities as the value of a sketch, v. The
z vectors are then used as input to a discriminator D(z) → v, which
is trained to estimate the value v of different regions of the latent
space; for example, which regions decode to sketches that produced
the highest intensity of smiles. A generator G(z)→ z′ is then trained
to convert a randomly sampled z into a modified z′ that produces a
higher v. In fact, the generator uses a gating mechanism to control
how heavily the original z is modified. The generator loss is LG =

− log D(z′). Because the Sketch RNN latent space is a compressed,
128-dimensional, robust representation, the discriminator is able to
learn a value function on z even with relatively small sample sizes.

5.4 Experiments

Data collection for the experiments was conducted in four phases.
In the initial phase, we ran a pilot study on 7 users who viewed a
total of 30 sketches, in which we collected both facial expressions and
Likert-scale ratings of sketch quality. Then, we used the webapp to
collect facial reactions from 28 users to a total of 334 sketches, record-
ing the embedding vector z for each sketch. These (z, v) pairs were
used to train the LC-GAN. Finally, two phases of data collection were
used to evaluate the model. Both involved rigorous, double-blind
experiments in which we randomly generated hundreds of samples
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from both the facial feedback and baseline models, and displayed
them in random order to users “in the wild”, using their personal
webcams, without experimenter supervision. The first evaluation
sought to establish that sketches from the LC-GAN are able to elicit
more positive facial expressions than the original Sketch RNN. For
this test, we obtained evaluation data from 76 users, spanning 536

sketches. The second evaluation asked users to rate which of two
sketches they preferred; we collected 4,692 ratings from 79 users.

(a) Contentment, r=-.58, p <.001 (b) Concentration, r=.58, p <.001

Figure 5.3: Scatterplots showing
that human ratings of quality
are highly correlated with their
facial expressions.

5.5 Results

5.5.1 Facial expression analysis

Optimizing for user preference requires knowing which facial ex-
pressions indicate that the user likes a sketch. Therefore, we used
the pilot study data to assess how users’ ratings of sketch quality
related to their facial expressions. We found significant positive corre-
lations with contentment and amusement (smiling), and significantly
negative correlations with sadness and concentration (frowning), as
shown in Table 5.1; examples are shown in Figure 5.3. Notably, these
results indicate that implicit facial feedback carries an informative
signal about the user’s preferences.

Emotion metric r p
Contentment .582 .001

Amusement .546 .002

Concentration -.576 .001

Sadness -.405 .026

Table 5.1: Significant correla-
tions between facial expressions
and quality ratings.

However, learning from facial feedback still represents a challeng-
ing problem; there is a high degree of inter-individual variability,



199

the meaning of facial expressions may be extremely context depen-
dent, and the data can be remarkably noisy. In addition to noise
introduced through inaccuracies in the detector, there are many con-
founding reasons that may cause a person to make a given facial
expression.

Figure 5.4: The user expresses
contentment and amusement
at a scribbled sketch, showing
the challenging level of noise
present in the human facial
expression feedback.

For example, Hoque and Picard (2011) found that users tend to smile
when they are frustrated. In our case, we noticed that users tend to
smile simply at the concept of an AI making drawings, or even at
their own face as shown to them via the webcam feed. This can lead
to highly misleading interactions; Figure 5.4 shows an example in
which the user smiles profusely at a drawing that is no better than a
scribble.

Finally, the difficulty of modeling user preference through facial
expressions is enhanced by the non-stationarity of the data. We
found that users’ facial expressions tended to change over repeated
interactions with the system. There were significant relationships
between the number of previous sketches viewed by the user and the
user’s average sadness (r(751) = 0.248, p < .001) and concentration
r(751) = −0.158, p < .001). Thus, the meaning of an intense expres-
sion of concentration may change depending on when it occurs in the
user’s interaction with the app.
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Figure 5.5: Sketches from the
LC-GAN lead to significantly
more amused expressions and
significantly less sadness.

5.5.2 Machine learning results

In spite of the noise and non-stationarity inherent in the data, we
found that the LC-GAN was able to use the facial feedback to learn
to produce significantly higher quality sketches. Given the direction
of the relationships discovered between facial expressions and quality,
we trained the LC-GAN to maximize amusement and contentment,
and minimize concentration and sadness. Although relatively little
data was collected (63-69 samples per sketch class), the LC-GAN
was able to effectively optimize for more pleasing sketches. Figure
5.6 shows the difference between samples produced with the Sketch
RNN prior and the LC-GAN. The LC-GAN appears to have learned
that people smile more and frown less for cats with larger, smiling
faces with whiskers. Similarly, the quality of crab and rhinoceros
sketches generated by the LC-GAN appears to be consistently higher.
For example, the original rhinoceros model often produced sketches
that did not resemble a rhinoceros, or were no better than scribbles.
After training with a small amount of facial feedback, the LC-GAN
model consistently produces more realistic drawings.

The evaluation data revealed that humans found sketches from the
LC-GAN model to be significantly better. In the first experiment, we
were able to support the hypothesis that sketches from the LC-GAN
model generate significantly more positive facial expressions than the
original Sketch RNN. Figure 5.5 shows the results of this evaluation,
indicating that all of the facial expression metrics improved in the
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Figure 5.6: Samples drawn ran-
domly from the cat, crab, and
rhinoceros sketch classes, pro-
duced by (a) the original Sketch
RNN, and (b) the LC-GAN
trained on a small amount of
social feedback.

expected direction under the LC-GAN. Two of the metrics reached
statistical significance: mean amusement, t(535) = 2.31, p < .05,
and mean sadness, t(535) = −2.01, p < .05. In the second part
of the evaluation, we tested the hypothesis that humans actually
rate the quality of the LC-GAN sketches as higher. Users reported
preferred the LC-GAN 2843 times, as opposed to 1770 for the original
Sketch RNN, a significant improvement as shown in a Binomial test,
p < .0001.

Figure 5.7: Sketches from the
LC-GAN are consistently pre-
ferred over sketches from the
original model. Error bars show
the variance of the estimated
binomial distribution.

5.6 Conclusions and future work

We have demonstrated that implicit social feedback in the form of
facial expressions not only can reflect user preference, but also can
significantly improve the performance of a deep learning model.

There are many ways to enhance and extend this work. For example,
we could use an RL framework to improve the model’s ability to
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draw based on facial feedback. Further, our current model makes no
use of the evolving temporal dynamics of the collected facial expres-
sions, instead relying on an average intensity over viewing the sketch.
A more sophisticated system could use the alignment between the
process of drawing the sketch and the user’s expressions over time to
gain better temporal credit assignment in an RL framework.

5.7 Statement of contributions

This work initially began as an internship project at Google Brain un-
der the supervision of Douglas Eck. I proposed learning from human
facial expression feedback to improve a deep learning model. In close
consultation with Fred Bertsch, I determined that the model most
likely to elicit facial expression responses was David Ha’s Sketch
RNN. I built a website that was able to serve samples of sketch RNN
outputs to humans and collect their facial expression response. We
worked with a Human Centered Machine Learning (HCML) team
comprising James Tolentino, Ira Blossom, Adrien Baranes, Rebecca
Salois, and Josh Lovejoy to conduct a pilot study using the website
and analyze the results. I modified Latent Constraints code pro-
vided by Jesse Engel and used it to train Sketch RNN in response
to facial feedback data. After leaving Google, Rosalind Picard pro-
vided advice on how to extend the project, and Jennifer McCleary re-
implemented the website I had built in open source using Affectiva,
so that I could conduct additional human evaluation experiments
with the Latent Constraints models.
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If we want AI to learn from implicit human signals, we must first
create systems that accurately detect those signals. This chapter
investigates how to predict whether two humans involved in a con-
versation with each other are experiencing a feeling of bonding or
chemistry, based on their facial expressions and body language. This
could allow an intelligent agent to predict whether it is bonding
with its user, and take actions to enhance this effect. To this aim, we
investigate how the agent could convey appropriate facial expres-
sion and body language responses to foster bonding. Observational
data, including video and Kinect recordings, are collected from a
series of naturalistic conversations, and a reliable measure of bonding
is adapted and verified. A qualitative and quantitative analysis is
conducted to determine the non-verbal cues that characterize both
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high and low bonding conversations. We then train a deep neural
network classifier using one-minute segments of facial expression
and body language data, and show that it is able to accurately predict
bonding in novel conversations. Further, the effects of personality
and dispositional attitudes on bonding are analyzed, and we find that
attentiveness and excitement are more effective at promoting bonding
than traits like attractiveness and humour.

6.1 Introduction

The most effective conversationalists do not simply smile, nod, and
mirror their partner; instead, they are adept at sensing non-verbal
cues and adapting to the other person’s state. If an intelligent virtual
agent (IVA) could be designed with this level of emotional intelli-
gence, it could dynamically adapt its interaction style to the needs of
the user. Such an endearing and empathetic IVA would have a wide
range of applications, from intelligent tutoring, to human-robot inter-
action, to helping individuals who struggle with social interaction.

Many studies have probed how to make intelligent virtual agents
(IVAs) more appealing to human users, by focusing on the aesthetic
appeal of the characters (e.g. van Vugt et al. (2009)), their facial ex-
pressions (e.g. Wong and McGee (2012)), mirroring (e.g. Kahl and
Kopp (2015)), and the contingency of their non-verbal responses
(Gratch et al., 2006). Detailed models of bonding and rapport (Zhao
et al., 2014), and interpersonal emotions in conversations (Butler,
2011), have also been developed. We contribute to this work by ex-
amining which dispositional attitudes and personality traits are most
important to bonding and rapport. For example, if Agreeableness is
important to rapport (as reported in Cuperman and Ickes (2009)), it
may suggest that designing the responses of an IVA to appear more
kind, polite, and non-confrontational would be beneficial (Carver
and Scheier, 2011). The effect of personality on bonding is compared
to that of traits like attractiveness and humour, to suggest which
characteristics deserve the most attention when designing an IVA.

Rather than simply designing the characteristics of the agent, in this
chapter we show that using facial expression and body language
data from one-minute segments of a human-humman conversation
(a.k.a. thin slices), a machine learning classifier can be trained to
predict whether a novel person will experience bonding up to twenty
minutes later. While it has been shown that humans have the ability
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to predict similar outcomes from such thin slices of an interaction
(Ambady and Rosenthal, 1992), training computer algorithms to
predict bonding using this type of data is a novel contribution. Data
is collected unobtrusively using cameras and Microsoft Kinects while
participants engage in free-form conversations. Bonding is assessed
empirically using a measure adapted from the Working Alliance
Inventory (Horvath and Greenberg, 1989); we show that it is strongly
related to conversation quality and rapport.

To provide insight into the data we have collected and the features
extracted, we provide both a qualitative and quantitative analysis
of facial expression and skeletal joint position features related to
bonding. We also suggest ways that an IVA could learn to synthesize
the appropriate non-verbal responses based on interaction context,
and provide insight into the type of non-verbal behaviors that may
arise in situations in which a person is either extremely frustrated
with an interaction, or deeply engaged.

6.2 Related work

A body of work has shown that using only thin slices (less than
five minutes) of video of a person’s non-verbal cues, human judges
can predict everything from therapy outcomes to job performance
(Ambady and Rosenthal, 1992). Since computer algorithms have
successfully predicted conversational outcomes like stress and en-
gagement using audio data (Pentland, 2004), it is possible that an
IVA could use thin slices of facial expressions and body language to
predict whether it is bonding with its user.

Non-verbal cues such as facial expressions and body language are a
rich source of information about a person’s mental state, and as such,
there has been a great deal of research on how to detect, interpret,
and display them. Although a thorough survey of all such work
is impossible here, we refer the interested reader to a recent meta-
analysis of the state of the art in automatic facial-expression recog-
nition (Valstar et al., 2012). Automatic analysis of body-language
has also been explored. For example, Avola et al. (2013) developed a
system that uses Kinect data to compute features of gestural strokes,
and Yang and colleagues used motion capture data to show that
friendly conversational dyads had a higher degree of correlation in
body language gestures (Yang et al., 2014).
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Most relevant to our work is research on bonding and rapport, which
has been investigated in the context of the contingency (e.g. Gratch
et al. (2007)) or mirroring (e.g. Kahl and Kopp (2015)) between the
VA’s behavior and the user. Detailed models of rapport have also
been developed (Zhao et al., 2014). Other research has investigated
which facial expressions generated by an agent led to the most
rapport with its users (Wong and McGee, 2012).

Personality has been examined in the context of users’ reactions to an
IVA (Astrid et al., 2010), and in terms of how personality similarity af-
fects conversation quality (Cuperman and Ickes, 2009). In some cases
similarity is helpful, as when partners have a similar level of extraver-
sion. However, interactions between two disagreeable participants
were rated as the least pleasant. While this study provides valuable
insights, participants were all college students, and it is uncertain
how far these claims can generalize. Our study builds upon this pre-
vious work by collecting data from participants from a diverse range
of ages, ethnicities, and backgrounds, and relating personality and
conversation quality to a robust measure of bonding.

6.3 User study

Data were collected from a study in which participants conversed
while being recorded with cameras, microphones, and Microsoft
Kinects; the experimental set-up is shown in Figure 6.1. To conceal
the true nature of the study and ensure participants could act nat-
urally, participants were told the purpose of the study was to train
computer algorithms to read lips. They were instructed to stay within
view of the recording devices, but not to over-emphasize their lip
movements1, and to keep the conversation flowing as naturally as

1 Even if some participants did speak
with exaggerated lip movements, this
would not affect our later analysis.

possible. The interaction lasted for approximately 20 minutes, after
which participants completed a post-study survey, were debriefed
about the study’s true purpose, and were compensated with $25 in
Amazon gift cards for participating. All procedures were approved
by the MIT IRB. In total we had 30 participants (13 male, 17 female)
divided into 15 conversation dyads, recruited through the MIT Behav-
ioral Research Lab (BRL) from the wider Boston community. There
was variety across participants in terms of age (M = 40.0, SD = 15.3),
occupation, ethnicity, and socioeconomic status.

Participants completed both a pre- and post-study survey. Personality
traits were collected during the pre-study survey using the Big-Five
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Figure 6.1: Experimental set-up
for the user study, in which par-
ticipants conversed while facing
each other in a standing posi-
tion, and were monitored with
Kinects, lapel microphones,
and cameras attached to a
microphone stand.

Factor Markers questionnaire (Goldberg, 1992). The post-study
survey contained a Perception of Interaction questionnaire similar
to that of Cuperman and Ickes (2009), asking participants to rate
their partner on a Likert scale on qualities like interesting, funny,
and attractive. Bonding was measured with a modified version of
the Bonding subscale of the Working Alliance Inventory (B-WAI).
The WAI was developed to measure the degree of collaboration and
trust between a therapist and client; the bonding subscale measures
positive personal attachment, including “mutual trust, acceptance,
and confidence" (p. 224) (Horvath and Greenberg, 1989). Items
include, “My therapist and I understood each other", and “I felt
uncomfortable with my therapist". The scale was adapted to our
study by substituting the phrase “my partner" for “my therapist",
and removing items 17, 21, and 36, which were irrelevant for short
conversations between strangers. Two other items were modified
slightly; Item 29 was changed to read “I had the feeling that if I said
or did the wrong things, my partner would stop talking with me"
(rather than “working with me"), and in Item 28 the phrase “my
relationship” was replaced with “getting along”, such that the item
reads, “Getting along with my partner was important to me”. Most
items were unmodified. Typical items included “My partner and I
understood each other", and “I felt uncomfortable with my partner".
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6.4 Methods

6.4.1 Facial expression detection

Automated software (Affdex - Affectiva, Inc.) (McDuff et al., 2016)
was applied to the videos to obtain confidence scores (from 0 to 100)
indicating the presence of facial expressions. These included twelve
facial action units from the Facial Action Coding System (FACS)
(Ekman and Friesen, 1977), as well as smiles, lip corner pulls, seven
expressions of emotion, and three axes of head pose (pitch, yaw and
roll). These expressions are shown in Figure 6.2. After removing
portions of the interaction in which the participant’s face was not
tracked, and downsampling each signal to 1 Hz to ensure smooth
estimates, we obtained facial expression data for 13,714 seconds of
conversation.

Figure 6.2: Definitions and ex-
amples of the facial actions and
emotion expressions coded by
Affectiva automated software
(McDuff et al., 2016). The num-
bers correspond to the FACS
codes. A similar figure can be
found in McDuff (2016)

6.4.2 Skeletal joint extraction

Microsoft Kinects were used to gather data about the X (horizontal),
Y (vertical) and Z (depth) position of participants’ joints, including
the head, neck, thumbs, finger tips, four positions on each limb,
and three positions on the spine; the full set of joints tracked are
shown in Figure 6.3. To clean this data we removed portions of the
interaction in which a second body was tracked, and 4s segments in
which the derivative was more than two standard deviations above
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the mean in any axis (X, Y or Z) (which is often due to the Kinect
briefly losing track of the participant). After removing noise, minutes
of the interaction that were missing more than 60% of the data were
discarded, due to the unreliability of the signal during this period.
The joint data was then aligned with the video data. Finally, we
applied a z-score normalization to the data from each axis of each
joint, which reduces effects due to the Kinect being placed in slightly
different locations for different participants.

Figure 6.3: The skeletal joint po-
sitions tracked by the Microsoft
Kinect. Each joint has associ-
ated X, Y, and Z coordinates.

6.4.3 Machine learning classification

To train our machine learning model, we extracted features from each
minute of conversation for each participant and their partner. From
the skeletal data, we computed five features for each joint’s X, Y, and
Z positions: the mean, std. dev., max. of the abs. derivative, mean
derivative, and max. of the abs. second derivative. These features
provide information about the position, degree of movement, speed
of movement, direction of movement, and sharpness of movement
(acceleration), respectively. For facial expressions, we computed the
sum, mean, and std. dev. of each feature, telling us the amount, de-
gree, and variability in expression. In total we obtained 375 joint and
143 facial expression features for each of 532 minutes of conversation.

Each minute was assigned a binary classification label, based on
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whether it belonged to a conversation with high or low bonding
(scores were split based on the median B-WAI). The data were then
randomly partitioned into training, validation, and testing sets. Data
from each participant were assigned to only one set. Thus, the testing
set represents completely novel, held-out data.

To reduce the number of features, we used Correlation-based Feature
Selection (CFS) (Hall, 1998). CFS chooses a subset of features that are
both strongly predictive of an outcome variable (in this case bond-
ing), but also have low correlation with the rest of the features in
the subset (are not redundant). CFS was applied only to the training
data, to avoid contaminating the testing data. Neural network models
were then trained on the CFS features using Google’s TensorFlow
library (Abadi et al., 2015). Both single-layer and deep architectures
were explored, and parameters were tuned using the validation set.

6.5 Results

In this section we will first provide evidence establishing the reliabil-
ity of the modified B-WAI, and then perform a regression analysis
to determine which personality traits and characteristics are most
strongly associated with bonding. We then give qualitative examples
of the type of data we have collected and ways in which it can be
used to detect bonding. A quantitative analysis of the differences in
facial expressions and body language between participants with high
and low bonding is provided. Finally, we show that machine learning
can be applied to these features to accurately predict bonding levels
reported by participants, up to 20 minutes later.

6.5.1 Reliability of the bonding scale

The following analysis relies on B-WAI as an aggregate measure of
the bonding, rapport, and trust participants felt toward their conver-
sational partner, as well as their feelings of warmth, comfort, and
enjoyment. To examine how well B-WAI captures these character-
istics, we tested the correlations between it and eight self-reported
Likert-scale ratings of conversation quality (see Table 6.1). We see
that B-WAI is related to participants’ ratings of their partner as in-
teresting, charming, friendly, and funny, and inversely related to their
ratings of distant and annoying. After applying a Bonferroni correc-
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tion, the relationships between B-WAI and interesting, annoying, and
distant remained significant, suggesting that B-WAI is strongly related
to participants’ perceived conversation quality.

Measure r p
Interesting .6912 <.001
Charming .4342 .021

Friendly .3806 .038

Funny .3736 .046

Engaging .1104 .561

(a) Positive correlations

Measure r p
Distant -.6207 <.001
Annoying -.5549 .001
Awkward -.2589 .167

(b) Negative correlations

Table 6.1: Pearson’s r corre-
lations between B-WAI and
conversation quality. Bolded
measures are significant af-
ter performing a Bonferroni
correction.

6.5.2 Designing an agent to promote bonding

A multiple regression analysis is employed to determine if it is
possible to accurately estimate participants’ B-WAI scores from infor-
mation about their partner’s personality and attitudes, and to analyze
how these traits affected bonding. Although we could include fac-
tors about the participant themselves in the model, this is not under
control of the designer of a virtual agent. Rather, we restrict focus
to characteristics about the IVA that could be modified. Only the
following traits were included: partner’s Big Five extraversion and
agreeableness scores, extraversion match (a binary variable indicating
whether the pair were both introverts or both extroverts), gender match
(defined similarly), age difference, and the participant’s rating of their
partner on the following qualities: attractive, funny, attentive, and
excited. The resulting model statistically significantly predicted WAI
score, F(9, 19) = 4.656, p = .004, and was able to account for 72.4% of
the variance in WAI score, R = .851.

Table 6.2 shows the coefficients of the regression model. The first
column (unstandardized β) gives the increase (or decrease) that can
be expected in bonding for a 1-unit increase in the variable. For
example, an increase in a participant’s rating of their partner as
attentive is associated with an increase of 6.024 in expected B-WAI.
Three significant effects were detected; whether the gender of the
two participants matched, and whether the partner was perceived
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as excited and attentive. It appears that bonding will be highest
when the partner’s gender is not a match, the partner gives the
impression of listening carefully to the participant, and the partner is
enthusiastic about the conversation.

Variable Unstd. β Std. Err. Std. β t p
Extraversion -4.461 3.984 -.179 -1.120 .279

Agreeableness -5.441 6.393 -.127 -.851 .407

Extraversion match 3.158 2.169 .235 1.456 .165

Gender match -6.765 2.923 -.393 -2.314 .034

Age difference .150 .091 .255 1.646 .119

Attractive .352 .788 .067 .446 .662

Funny -1.624 1.314 -.207 -1.237 .234

Attentive 6.024 1.251 .847 4.814 .000

Excited 1.622 .754 .342 2.152 .047

Table 6.2: Linear regression co-
efficients for each of the factors
in the model.

6.5.3 Qualitative analysis of non-verbal cues

In this section we provide examples of the facial expression and
body language data we have collected, showing that the interaction
between the two participants is highly relevant to bonding. For exam-
ple, Figure 6.4 plots five minutes of facial expressions which occurred
between the participant who experienced the lowest bonding in our
study, Pl (top), and her partner (bottom). Although Pl began the inter-
action with frequent smiling, in the portion of the interaction plotted
in Figure 6.4, she shows expressions of sadness as she is discussing
a highly personal topic. Instead of responding empathetically, her
partner continues to smile and smirk. Eventually Pl becomes angry,
and afterwards simply stops emoting; for the rest of the conversation,
she shows little or no facial expressions whatsoever. This interaction
underlines the importance of designing an IVA to both detect emo-
tional cues, and display the appropriate response at the right time.
Further, it could suggest that an emotionally intelligent agent may
need to treat a sudden suppression of affect as a potential warning
sign of an upset or frustrated user.

While displaying the appropriate emotional cues in response to an
unhappy user can be considered a minimum requirement of an emo-
tionally intelligent VA, promoting a high degree of bonding and
rapport can be much more subtle and complex. Figure 6.5 plots the
Z position of the Spine Mid joint for the two participants in the con-
versation with the highest bonding. The distance maintained between
the participants reveals a high degree of synchrony, suggesting they
are highly attentive and responsive to each others’ movements.
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Figure 6.4: Five minutes of
facial expressions from the
conversation with the least
bonding, in which the partici-
pant’s partner fails to respond
empathetically, instead smiling
and smirking in response to her
sadness and anger.
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Figure 6.5: There is a strong
degree of synchrony in whole-
body distance (Spine Mid Z) for
the pair of participants with the
highest bonding.

6.5.4 Quantitative analysis of non-verbal cues

In this section we will establish what kinds of facial expression
and skeletal position features are relevant to bonding, and discuss
design implications for an IVA. To begin, we analyzed which facial
expression behaviors are more frequent in conversations with high
vs. low bonding, by computing the difference in average z-score
between both groups. Figure 6.6 shows the three features that had
the greatest difference for both high and low bonding conversations,
for the participant themselves, and their partner2. T-tests with a

2 The participant is the one who com-
pletes the B-WAI about their partner.

Bonferroni correction were used to assess whether high and low
bonding conversations differed significantly on these features, and all
of them reached significance at the α = .05 level.

Figure 6.6 reveals some expected trends. When the participant ex-
periences bonding, she is more likely to smile, express joy, and raise
her chin. When she feels that bonding is low, she is more likely to
sneer and shake her head (see Head angle left right in Figure 6.6 (a)).
In terms of the partner’s behavior, frequent nodding (Head angle up
down) and nose wrinkling is associated with higher bonding. Nose
wrinkling is often detected when someone is laughing, which has
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Figure 6.6: The facial expres-
sions with the largest differ-
ences between conversations
with high bonding (blue) and
conversations with low bonding
(red). If the Z-score is below
zero, it means the behavior was
less frequent in this group’s
conversations relative to the
overall average. Top: partic-
ipant’s expression, bottom:
partner’s expression.

been found to be both deferential and endearing (Provine, 2001). Con-
versely, negative displays of emotion by the partner appear to hinder
bonding; frequent brow furrows, inner eyebrow raises, or expressions
of sadness are associated with lower bonding. An intriguing thing to
note, however, is that bonding is not symmetric. A participant who
did not enjoy an interaction could score very low on the bonding
scale, even though her partner felt fine about the conversation and
scored relatively high (and indeed this does occur). Therefore asym-
metric effects can occur, such as with the lips part AU (frequently
detected when a person is speaking).

Although Figure 6.6 provides some interesting insights, without ac-
counting for interaction context it can only give an incomplete picture
of facial expressions and bonding. Therefore we investigate how the
contingency between conversational partners’ expressions differs
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Figure 6.7: The heatmap shows
the difference in correlation co-
efficient (rdi f f = rh − rl) between
conversations with high bond-
ing (rh) and low bonding (rl).
Blue tiles represent a correlation
that is more strongly positive
in high bonding conversations,
while red represents a corre-
lation more prevalent in low
bonding.

with bonding. We computed the Pearson’s r correlations between
each participant’s facial expressions and their partner’s, for conver-
sations with high bonding (rh) and low bonding (rl). The difference
between these coefficients was then computed as rdi f f = rh − rl ,
and plotted in Figure 6.7. Blue locations in the grid correspond to
behaviors that occurred together more frequently in high bonding
conversations; red locations occurred more in low bonding conversa-
tions3. We also tested the correlation with the partner’s behavior both

3 Note again that bonding is not sym-
metric and neither is the matrix in
Figure 6.7; it is computed based on the
participant’s perception of bonding, not
her partner’s.

1s and 5s later. The results were similar, therefore we choose to focus
on the behaviors that occur together in the same second, since neural
processing of facial expressions occurs on the order of 100ms (Meeren
et al., 2005).
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Figure 6.7 reveals several interesting patterns. Bonding is likely to be
lower if the partner is smiling or joyful while the participant is shak-
ing her head. If the participant smiles while the partner is parting
her lips the conversation is likely to have higher bonding, perhaps
because the participant is enjoying what the partner is saying. Smil-
ing at the right time appears to be important; bonding tends to be
lower when the partner smiles or expresses joy in response to the
participant’s lip corner depressor or brow furrow. An interesting re-
sult is that there is little difference in the correlation between mutual
smiling behavior in conversations with high and low bonding. This
may suggest that mutual smiling is such a ubiquitous behavior that
it can occur even when bonding is low. Note that there are several
strong differences in inner eyebrow raising, however this AU can be
associated with either sadness or happiness, making it difficult to
interpret (Kohler et al., 2004).

Not only does Figure 6.7 provide insight into micro-interactions that
can be used to detect bonding, it could also allow an IVA to synthe-
size appropriate facial responses. Consider the heatmap scores as
probabilities that the agent could use when deciding what expres-
sion to display. If the user tilts her head (see the row Head angle roll),
then the probability of the agent raising its outer eyebrows should
be high, and the probability of it shaking its head should be low or
almost zero. This approach is likely to be more effective than simple
mirroring, because it captures the appropriateness of the expression
in context.

6.5.4.1 Skeletal joint features

A similar analysis is applied to the joint data collected with the Mi-
crosoft Kinect. After performing CFS feature selection as described
in Section 6.4.2, we were left with a total of 69 non-redundant4 joint

4 After CFS, two body part features that
are highly correlated (for example, the
left and right hips) will be represented
by only one of the pair (e.g. the right
hip).

features. For each of these, we computed the information gain, which
can be interpreted as the reduction in uncertainty about one variable
obtained after observing another (Murphy, 2012). Essentially, infor-
mation gain tells us which features are most predictive of bonding.
The five features with the highest information gain are listed in Table
6.3.

These joint features reveal that the partner’s movements in the Z
direction (towards or away from the participant) are highly related to
whether the participant experiences bonding. The features relate to
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Feature Info. gain Pearson’s r p

Partner SpineBaseZ sd 0.1695 0.4190 <.001

Partner HipRightZ sd 0.1541 0.4146 <.001

Partner KneeLeftZ max abs acc 0.1219 0.3505 <.001

Partner HipRightZ max abs deriv 0.1091 0.3712 <.001

Partner HipRightZ max abs acc 0.1091 0.3712 <.001

Table 6.3: The skeletal joint
features with the highest in-
formation gain. All features
are significantly correlated
with bonding after applying a
Bonferroni correction.

the position of the partner’s whole body, such as the spine, hips, and
knees. Since these features describe the acceleration, variability, and
speed of movement, a larger degree of movement of the partner’s
whole body may be more indicative of a high bonding conversation.
Perhaps in conversations in which the partner is engaged and at-
tentive, this enthusiasm is displayed by larger and more animated
whole-body movements.

The synchrony between body language in conversation dyads must
also be considered. As in the previous section, we computed the
Pearson’s r correlation between the participant’s movements and her
partner’s in conversations with high and low bonding. Interestingly,
the speed and acceleration of whole body movements are highly
correlated in conversations with high bonding. Correlations in accel-
eration in the Z direction are in some cases quite large; for example,
for the knees, r(308) = .5226, p < .001, hips, r(308) = .4578, p < .001,
and spine base, r(308) = .4465, p < .001. This suggests that in
high-bonding conversations, the partner tends to closely mirror the
sharpness of the participant’s movements towards or away from her.
This provides supporting evidence for the hypothesis generated in
the previous section, that there is a great deal of synchrony in terms
of whole body movements in pairs with high bonding. Agents that
can mirror whole body movements (e.g. Kahl and Kopp (2015)) may
be highly effective at facilitating bonding.

6.5.5 Predicting bonding in novel conversations.

Using one-minute slices of the facial expression and body language
features described above, we trained a series of neural network
models to predict bonding, as explained in Section 6.4.3. We found
that a deep architecture with 2 layers of 300 and 12 hidden nodes5

5 The other parameter settings were:
learning rate = .01, batch size = 20, L2

regularization β = .01, no dropout.

led to the highest validation accuracy, of 64.7% (AUC=.678). Using
this model, we obtained an accuracy of 85.87% and an AUC of .931

on the held-out test data, showing we can accurately predict bonding
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in novel conversations. Note that 66.3% of the samples in the test
set belong to high-bonding interactions, so this result is almost 20%
better than the baseline majority-class classifier (always guessing the
most frequent class).

While these results are promising, they should be interpreted with
caution given the small size of the testing dataset (N=92, represent-
ing data from 6 participants). While the validation accuracy still
exceeded the majority-class baseline of 60.78% for the validation set,
it was notably lower than the test accuracy. This is likely due to the
random partitioning process and the small size of the datasets. Nev-
ertheless, because the test set comprises novel users from which the
classifier has never accessed data, this serves as a proof-of-concept
that it is possible for an IVA to use data collected unobtrusively from
a camera and Kinect to detect whether it is bonding with a new user
during each minute of the conversation. Such fine-grained sensitivity
to the user’s perceptions could allow an IVA to dynamically adapt
to improve bonding throughout the interaction, just like an excellent
human conversationalist.

6.6 Conclusions and future work

We have shown that facial expression and body language features can
allow an IVA to detect whether or not it is bonding with its user. We
also presented a matrix, learned from human high and low bonding
interactions, that could allow an IVA to generate the appropriate
facial expressions and body language in response to user behavior.
We have shown that a machine learning classifier can be trained to
predict whether a person will experience high or low bonding, given
only a one-minute slice of facial expression and body language data.
This information can be gathered unobtrusively with a camera and
Kinect, making the classification system potentially highly useful to a
future IVA.

We have compared the effects of personality, attractiveness, humour,
and attitudes like excitement on bonding and rapport. We have
found that bonding can be predicted effectively using personality and
the traits described. Future work is needed to determine the extent
to which these findings can generalize to interactions between a
person and an IVA. For example, physical attraction between people
could account for our finding that pairs with opposite genders have
higher bonding, and these factors would presumably not be present
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in Human-VA interactions. However, to the extent that these findings
generalize, they suggest that it may be most important to design an
IVA to appear enthusiastic and attentive, rather than focusing on
designing it to be agreeable, funny, attractive, or to have a similar
age to the user. The importance of attentiveness may suggest that
designing agents around mirroring (e.g. Kahl and Kopp (2015)) and
contingent nonverbal cues (e.g. Gratch et al. (2007)) may be the most
promising approaches.

As future work, the next step is to analyze the audio data, for
prosody, emotional tone, and speaking turns. There are also many
ways in which the modeling of the data could be improved. For ex-
ample, a time-series analysis technique such as a Hidden Markov
Model (Murphy, 2012) could be employed to infer the participant’s
mental state (bonding or not) throughout the interaction, and the
joint positions could be further abstracted into higher level ges-
tures, as described by Avola et al. (2013). Also, instead of a matrix of
pair-wise measures of behavior, tensors capturing higher-order com-
binations could be collected from larger sets of data and used to learn
and synthesize appropriate responses for outcomes beyond bonding.
Even without these improvements, this work has contributed novel
fundamental elements enabling the crafting of future agents with
which human partners will bond.

6.7 Statement of contributions

To collect the conversation data in this study, I designed an exper-
iment in consultation with Rosalind Picard, who recommended
modifying the WAI and telling participants the study was about
lip reading. I hired three undergraduate students to help run the
study: Jenn Kim, Lisa Zahray, and Miranda McClellan. Jenn took an
organizing role and ran several study sessions independently, pro-
vided valuable psychology references to help ground the study, and
continued to contribute to the project after the experiment was over.
The raw videos were sent to Dan McDuff to process with Affectiva
to obtain facial expression time series data. I then took this data and
the raw joints data and wrote code for feature extraction and the
machine learning algorithms, and trained and evaluated them. The
data analysis was conducted by me in consultation with Jenn and
Rosalind.
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In order to learn from humans, it is necessary to collect data from
them that can be used to predict their affective state, non-verbal
cues, or other forms of feedback. However, collecting data from
humans—especially in real-world settings—is often difficult, error-
prone, noisy, and data frequently go missing. Fortunately, machine
learning techniques can be used to cope with noisy or missing data.
This chapter describes two settings in which we have shown that
machine learning solutions can be leveraged to make human data
more useful. The first project, described in Section 7.3, uses a deep
learning approach to handle the scenario where a whole set of related
features (a data modality) goes missing at once. This is relevant if, for
example, you would like to make predictions about a person’s mood
using a model trained on data from their phone, their location, and
a physiological sensor, but they forgot to wear their sensor that data.
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We call this approach the Multimodal Autoencoder. The second project,
presented in Section 7.3, deals with artifacts that can be introduced
to Electrodermal Activity (EDA) data when it is collected “in the
wild" via a wrist-worn sensor. We use machine learning techniques to
detect such artifacts with over 95% test accuracy, which could allow
a downstream system to extract clean EDA data for prediction of
measures like stress and wellbeing.

7.1 Multimodal autoencoder

To accomplish forecasting of outcomes like mood in real-world
situations, affective computing systems need to collect and learn
from multimodal data collected over weeks or months of daily use.
Such systems are likely to encounter frequent data loss, e.g. when
a phone loses location access, or when a sensor is recharging. Lost
data can handicap classifiers trained with all modalities present in
the data. This paper describes a new technique for handling missing
multimodal data using a specialized denoising autoencoder: the
Multimodal Autoencoder (MMAE). Empirical results from over 200

participants and 5500 days of data demonstrate that the MMAE is
able to predict the feature values from multiple missing modalities
more accurately than reconstruction methods such as principal
components analysis (PCA). We discuss several practical benefits of
the MMAE’s encoding and show that it can provide robust mood
prediction even when up to three quarters of the data sources are
lost.

7.1.1 Introduction

Affective Computing studies frequently collect rich, multimodal
data from a number of different sources in order to be able to model
and recognize human affect. These data sources—whether they
are physiological sensors, smartphone apps, eye trackers, cameras,
or microphones—are often noisy or missing. Increasingly, such
studies take place in natural environments over long periods of time,
where the problem of missing data is exacerbated. For example, a
system trying to learn how to forecast a depressed mood may need
to run for many weeks or months, during which time participants
are likely to not always wear their sensors, and sometimes miss
filling out surveys. While research has shown that combining more
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data sources can lead to better predictions (D’Mello and Graesser,
2010; Kapoor and Picard, 2005), as each noisy source is added, the
intersection of samples with clean data from every source becomes
smaller and smaller. As the need for long-term multimodal data
collection grows, especially for challenging topics such as forecasting
mood, the problem of missing data sources becomes especially
pronounced.

While there are a number of techniques for dealing with missing
data, more often than not researchers may choose to simply discard
samples that are missing one or more modalities. This can lead to
a dramatic reduction in the number of samples available to train an
affect recognition model, a significant problem for data-hungry ma-
chine learning models. Worse, if the data are not missing completely
at random, this can bias the resulting model (Gelman and Hill, 2007).

In this paper we propose a novel method for dealing with miss-
ing multimodal data based on the idea of denoising autoencoders
(Vincent et al., 2010). A denoising autoencoder is an unsupervised
learning method in which a deep neural network is trained to recon-
struct an input that has been corrupted by noise. In most cases, noise
is injected by randomly dropping out some of the input features, or
adding small Gaussian noise throughout the input vector. In contrast,
we focus on the case where a whole block of features may go miss-
ing at one time – specifically, all of those features that are computed
using the data from a single modality.

We demonstrate that by using a new model, which we call a Multi-
modal Autoencoder (MMAE), it is possible to accurately reconstruct
the data from a missing modality, something that cannot be done
with other techniques such as PCA. Further, we show that the MMAE
can be trained with additional neural network layers designed to
perform classification, effectively leveraging information from both
unlabeled and labeled data. We present empirical results comparing
MMAE to several other methods for dealing with missing data, and
demonstrate that the MMAE consistently gives the best performance
as the number of missing modalities increases.

Results are shown for the task of predicting tomorrow’s mood,
health, and stress, using data collected from physiological sensors, a
smartphone app, and surveys. The goal of this research is to build a
real-world system that can not only help participants predict their fu-
ture mood and make adjustments to improve it, but also help detect
early warning signs of depression, anxiety, and mental illness. How-
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ever, the data inevitably contain samples with missing modalities,
which can easily occur when a participant’s smartphone cannot log
data, or when sensor hardware malfunctions.

Previous work on this dataset (e.g. Jaques et al. (2015a,b, 2016c))
dealt with this problem by simply discarding samples for which any
modality was missing. Therefore, these models cannot make accurate
mood predictions if any of the data sources go missing. This is highly
problematic if the models are to be used for any sort of real-world
mental-health treatment and prevention program, as data frequently
go missing during long-term use “in the wild".

In contrast, the new MMAE enables accurate mood prediction even
with several missing modalities. Below we will show that in addition
to being robust, the MMAE provides added benefits that may allow
individuals with privacy or comfort concerns regarding the collection
of certain types of data to opt out of providing such data, yet still
enjoy the benefits of a mood forecasting system.

7.1.2 Related work

Previous research has used autoencoders to enhance emotion recogni-
tion systems. Deng and colleagues demonstrate that an autoencoder
can be used to improve emotion recognition in speech through trans-
fer learning from related domains (Deng et al., 2013). Xue and others
use an autoencoder as a pre-training step in a semi-supervised learn-
ing framework to disentangle emotion from other features in speech
(Xue et al., 2015). A recent, related approach uses auto-encoders for
both speech emotion classification and domain adaptation, taking ad-
vantage of their ability to learn from both labeled data and unlabeled
data from other domains (Deng et al., 2017).

In the medical community, denoising autoencoders have been used
to effectively compress data from large, sparse, extremely noisy
Electronic Health Records (EHRs) into a much smaller embedding
(Miotto et al., 2016). The authors show that the autoencoder embed-
ding can drastically improve classification accuracy over the raw
and noisy feature vector, or over other dimensionality reduction
techniques such as PCA.

To the best of our knowledge, no previous work has proposed using
autoencoders to fill in features from missing data sources. Some
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Figure 7.1: Image inpainting
with an autoencoder, repro-
duced from Shcherbakov and
Batishcheva (2014)

research that is conceptually similar to this idea comes from the com-
puter vision community, which has investigated using autoencoders
for the purpose of image inpainting (Pathak et al., 2016; Xie et al.,
2012; Shcherbakov and Batishcheva, 2014). In this problem, a large
swath of an image has been removed or masked, and the task of the
autoencoder is to hallucinate plausible values for the missing pixels
based on related images it has seen in the training data (see Figure
7.1 for an example). This task is similar to our problem, because we
consider the case when many related feature values go missing at
once; for example, if the smartphone app encounters an error, we can
no longer compute any of the many features relating to the partici-
pant’s location, calls, or SMS. However, it should be noted that image
inpainting may be a considerably easier task than filling in missing
sensor data, because an inpainting autoencoder can take advantage
of the strong spatial regularities of images and high correlations in
values of neighbouring pixels that occur in natural images, not to
mention the abundance of image data that exists for unsupervised
learning.

7.1.3 Mood prediction dataset

The task at hand is to predict individuals’ mood, health, and stress
tomorrow night by using today’s data about their physiology and be-
havior. The data we use were collected as part of a large-scale study
of undergraduate students entitled SNAPSHOT: Sleep, Networks,
Affect, Performance, Stress, and Health using Objective Techniques
(Sano, 2015). Rich, noisy, multimodal data was collected from 206

participants over 30 days each using wearable sensors, a smartphone
app, and surveys. These data, along with weather information col-
lected using DarkSky’s Forecast.io API (LLC, 2016), were used to
compute a total of 343 features. Only a brief overview of the data is
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provided here; for more details see Jaques et al. (2015b,a); Sano et al.
(2015a) or Chapter 8.

Wrist-worn Affectiva Q sensors were used to collect 24-hour-a-day
skin conductance (SC), skin temperature, and 3-axis accelerometer
data, from which features such as step count, stillness, and SC re-
sponses (which relate to emotional arousal and stress) were extracted.
Daily survey features included self-reported behaviors such as aca-
demic activities, exercise, and sleep. We include additional variables
for day of the week, and whether it is a night before a school day.
The smartphone app logged participants’ calls, text messages, screen
on/off events, and location throughout the day. In addition to extract-
ing features about participants’ communication and phone usage,
location patterns were modeled with a Gaussian Mixture Model.

Each morning and evening, participants self-reported their mood
(sad/happy), stress (low/high), and health (sick/healthy) on a scale
from 0-100. Binary classification labels were assigned to the top
and bottom 40% of these scores, discarding the middle 20% due
to their questionable nature as either a ‘happy’ or ‘sad’ state, for
example1. To predict future mood and wellbeing, features from today

1 Note: this is an improvement from
previous work (Jaques et al., 2015a,b) in
which the middle 40% of scores were
discarded.

are combined to predict mood, stress, and health labels tomorrow
night. All 5,547 days for which any data are present are divided
into non-overlapping training, validation, and testing sets using a
65/20/15% split. Data from a single person may appear in multiple
sets, to allow for comparison with previous work.

As with many Affective Computing studies, the multimodal, real-
world nature of the dataset leads to inevitable problems with missing
data, as Table 7.1 makes clear. While 206 participants × 30 days
should lead to a total of 6180 days worth of data, there are only 5547

samples for which at least 40% of the features can be computed.
This number is reduced significantly when we consider only those
samples for which all of the multimodal data sources are available.
The number of available samples drops even more precipitously
when we must consider only those samples that have a supervised
training label, especially when discarding the middle 20% of ratings2.

2 The number of samples with all
modalities present overlaps more
heavily with labeled samples in this
dataset than is typical of most datasets,
since the labels are collected from a
survey, and other information from this
survey is considered to be one of the
modalities.

If we wish to train a supervised learning model using only samples
with all modalities, we can use only half of the available data. Meanwhile,
valuable information contained in the remainder of the data goes to
waste.
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Data Num. samples Percent
All days in the study 6180 100%
More than 40% clean data 5547 89.7%
All modalities present 3819 61.8%
Labeled 2951 47.7%
Labeled and all modalities 2886 46.7%

Table 7.1: Missing data in the
SNAPSHOT study. More than
half the data are lost when we
require that all data sources
and the classification label are
present.

7.1.4 Method

An autoencoder is an unsupervised learning technique in which a
deep neural network is trained to reproduce an input X based on the
reconstruction error between X and the network’s output X′; e.g. if
using squared reconstruction error, the model would be trained to
optimize the following loss function:

L(X, X′) =
∥∥X− X′

∥∥2 (7.1)

A key feature of autoencoders is learning a useful representation of
the data, often in a compressed format. The input X ∈ RD must first
be transformed into an embedding Z ∈ RK, often such that K << D;
see Figure 7.2 for a graphical representation. The mapping from X to
Z is accomplished by the encoder portion of the network. For example,
if the encoder contains only a single neural network layer, then:

Z = α(WeX + be) (7.2)

where We, be are the linear weights and bias and α is typically a
non-linear activation function, for example a Rectified Linear Unit
(ReLU).

The second half of the network, the decoder, maps Z to the reconstruc-
tion X′; i.e.:

X′ = α(WdZ + bd) (7.3)

As a regularization technique, it is sometimes effective to tie the
weights of the encoder and decoder, such that Wd = WT

e .

The encoder can be considered a more complex, non-linear dimen-
sionality reduction technique. In the simple case of a 1-layer encoder
with no activation function and mean squared error (MSE) loss, the
network behaves like PCA, learning to project the input in the span
of the first K principle components of the data (Bengio et al., 2009).
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Figure 7.2: A basic autoen-
coder model, which learns to
reconstruct X′ given input X,
after compressing X into the
embedding representation Z.

However, with multiple hidden layers and non-linear activation
functions at each layer, the embedding can learn to encode complex,
higher-level features. Thus, the embedding Z can capture important
conceptual information about the input data (Mikolov et al., 2013).

In a denoising autoencoder (DAE), the input X is corrupted with
noise to obtain X̃. The DAE is trained to reconstruct the original,
noise-free input X from X̃. Typically, the added noise takes the form
of: a) Gaussian noise, X̃|X ∼ N (X, σ2 I); b) masking noise, where
a random fraction of the elements of X are set to 0; or c) salt and
pepper noise, where a random fraction of the elements of X are set to
their minimum or maximum value (Vincent et al., 2010).

7.1.4.1 MMAE

The MMAE was developed to ameliorate the likely problem where a
number of contiguous features from the same modality go missing
at once. We start by normalizing all of the features to be in the range
[0, 1]. We then represent a missing modality by filling all features
from that modality with the special value −1. It is important to use
a special value to indicate missing data that must be filled, rather
than fill with a value such as 0 which could actually occur in the
real data. To train the MMAE, we first use samples that have data
from every modality to provide the ground truth noise-free X. At
training time, for every sample X, we compute X̃ by adding noise
using two methods. First, we add simple masking noise to 5% of the
features, as in (Vincent et al., 2010). Second, we randomly select one
or more modalities and set all of the feature values for that modality
to −1; essentially, masking entire modalities at once. The model is
then trained to reproduce X from X̃. Effectively, this means that
the model must learn to predict reasonable values for the missing
modality from the rest of the features. For example, it may use the
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participant’s physiology and location patterns to predict her survey
responses, such as how much time she spent in class, or whether she
drank caffeine.

Figure 7.3: Data loss in tra-
ditional supervised learning
paradigm

After training the autoencoder portion of the network with the clean,
unsupervised examples for which all sensors are available, we then
begin a second phase of training for classification. Here we connect
the encoder to additional classification layers used for predicting
mood, health, and stress. We allow gradients to backpropagate
through the entire network, from the classification layers into the
encoder. In this second phase, although we continue to add noise
in the same way, we use all of the training data for which a label
is available, whether it has data for every modality or not. As is
presented in Figure 7.3, traditional supervised learning is only able
to learn from the intersection of samples which are both clean and
labeled. In contrast, the weights of the MMAE’s encoder learn from
both clean, unsupervised data with no labels, and noisy, supervised
data with missing modalities, leveraging as much of the available
data as possible.

We identify 11 modalities within the data, as in (Jaques et al., 2016c);
these are shown in Table 7.2. Note that physiology is sub-divided
into features from four different time intervals during the day in
order to ensure each modality has a roughly similar number of
features. This could allow the MMAE to more easily predict an
individual’s physiology in the afternoon from her physiology in the
morning. However, we believe this to be a realistic scenario, since
often a participant will choose not to wear the sensor for only part
of a day, e.g., if s/he has to participate in an extra-curricular activity
such as a dance recital or swim meet.
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Still, it is possible for multiple modalities to go missing at once, e.g.
all four physiology modalities. Previous research has shown that
denoising autoencoders are most effective when the noise injected
during training matches the actual noise in the data distribution (Xie
et al., 2012). Therefore, we assessed the training data to determine
how frequently each modality goes missing, and which modalities
frequently go missing together. We found that in the SNAPSHOT
data, the location modality is lost most frequently (likely due to par-
ticipants disabling location services on their phone), and the second
most likely pattern is that all of the smartphone app modalities (loca-
tion, call, SMS, and screen) go missing together. We used this learned
distribution over missing modalities to improve the training of the
MMAE; we call this approach training with structured noise.

7.1.4.2 Implementation and Experiments

While using MSE is easy and most common, we found that using a
cross-entropy (CE) reconstruction loss reliably led to better results for
the MMAE than using MSE. The CE loss to be minimized is:

LH(X, X′) = −
D

∑
k=1

[Xk log X′k + (1− Xk) log(1− X′k)]

Since cross-entropy is appropriate for binary values, before applying
this loss we first normalized all of our features to the [0,1] range.

In addition, we experimented with implementing the MMAE as a
Variational Autoencoder (VAE) (Kingma and Welling, 2013), which
constrains the features in the embedding to follow K independent
Gaussian distributions. This makes it more likely that a random em-
bedding sampled from a K-dimensional multivariate Gaussian with
mean 0 and variance 1, will actually correspond to a plausible sample
when passed through the decoder; in other words, it makes it possi-
ble to generate new samples by interpolating in the embedding space.
While this ability to generate realistic-looking samples of data is in-
teresting, we conducted experiments using the VAE version of our
MMAE and found it did not improve reconstruction or classification
performance.

To assess the MMAE, we compared it to two other dimensional-
ity reduction techniques: PCA, and a supervised feature selection
technique in which the features with the highest ANOVA F-value
with the classification label in the training data were selected. We
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Figure 7.4: The full feature
vector containing 11 modalities.
MMAE reconstruction (red) and
PCA reconstruction (green) are
compared to the original data
(black). Areas shaded grey have
been masked to produce X̃.constrained each method to reduce the original 343 features to 100

dimensions to enable fair comparison; this allowed the PCA to cap-
ture 98% of the variance in the data, assuring a fair comparison. We
also compared MMAE to four ways of dealing with missing data,
including discarding the data when training the model, filling it with
a special value like -1, filling it with the average for that feature, and
filling it using a PCA reconstruction. PCA reconstruction of missing
data was conducted by applying the inverse transformation learned
by PCA to the 100-dimensional principle components vector.

We also compared the MMAE’s classification performance to three
other machine learning algorithms including Support Vector Ma-
chines (SVM), Logistic Regression (LR), and a feedforward neural
network (NN). For all models we performed a grid search over pos-
sible hyperparameter settings, optimizing for performance on the
validation set. Final performance on the held-out test set is reported.

The MMAE autoencoder architecture that produced the lowest recon-
struction error was: hidden layers of size [300,100] for the encoder,
identical structure with tied weights for the decoder, softsign activa-
tion function, no dropout, and an L2 weight regularization coefficient
of .001. The MMAE architecture that produced the best classifica-
tion accuracy had hidden layers of [300,100] with tied weights for
the autoencoder, classification layers of [50,20], ReLU activation and
dropout throughout, and an L2 weight regularization coefficient of
.01 for the autoencoder, but 0 for the classification layers.

All of the Tensorflow code developed to implement the MMAE—as
well as the supporting algorithms, feature selection methods, and the
hyperparameter search—has been open sourced and is available at
https://github.com/natashamjaques/MultimodalAutoencoder.

https://github.com/natashamjaques/MultimodalAutoencoder
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Figure 7.5: MMAE reconstruc-
tion (red), PCA reconstruction
(green), original data (black).
As in Figure 7.4, masked data
has been shaded grey.

7.1.5 MMAE results

We first assess the ability of the MMAE to fill in missing modality
data. As a comparison, we also reconstruct missing data with a PCA
mapping learned on the training data. The PCA was able to explain
97.81% of the variance in the data when projecting down to 100

dimensions, indicating that it provides a strong baseline. In fact, PCA
produces a more faithful reconstruction of the clean data than the
MMAE; PCA obtains a Root Mean Squared Error (RMSE) of 0.036 on
reconstructing clean test set data with no missing modalities, while
MMAE scores 0.084.

However, the strength of the MMAE is its ability to restore missing
modalities by predicting appropriate values based on the rest of the
feature vector and similar patterns in the training data. Figure 7.4
shows that even in the case when four of the modalities go missing
at the same time, the MMAE trained with structured noise is still
able to predict realistic values for the features that have been masked
with -1. In contrast, the PCA reconstruction hovers around whatever
value was used to fill the missing data; in this case we chose a value
of 0 to make it a fair comparison (since 0 is a frequent value in the
real data, the RMSE will be lower if the PCA reconstruction does not
differ much from the fill value), but still find that PCA is unable to
reconstruct the missing features.
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The difference in reconstruction performance between the MMAE
and PCA is even more evident in Figure 7.5, which shows a close-up
of reconstructed data from a single missing modality. PCA is able
to recover one or two of the features, likely because they are highly
correlated with other features in the vector which are not masked,
and are thus redundant. However, in general PCA fails to reconstruct
the missing data and again produces output hovering around -1 (the
value used to fill missing data in this case). Conversely, the MMAE
is able to accurately predict the missing feature values based on
patterns learned in the training data, effectively restoring much of the
original data.

7.1.5.1 Ability to reconstruct each modality

To test the MMAE’s ability to reconstruct data from each of the
different sources, each modality was dropped out over the entire test
set, and this data was reconstructed with either an MMAE trained
with by uniformly masking different modalities, or with PCA. It
is clear from Table 7.2 that the MMAE produces decidedly lower
RMSE when reconstructing data from a missing modality than PCA.
A series of t-tests with Bonferroni correction were conducted to
determine if MMAE produced significantly lower RMSE than PCA;
all of the tests were significant at the p = .001 level.

Modality Num. features PCA MMAE t
Survey 39 0.363 0.263 26.5
Physiology 12am-3am 43 0.319 0.095 84.9
Physiology 3am-10am 43 0.320 0.086 103.7
Physiology 10am-5pm 43 0.301 0.091 96.4
Physiology 5pm-12am 43 0.320 0.093 85.3
Location 15 0.590 0.110 133.8
Call 20 0.280 0.044 137.4
SMS 30 0.481 0.078 154.6
Screen 25 0.423 0.081 149.3
Weather 40 0.488 0.253 82.4
Day of week, school night 2 0.634 0.276 12.3
Total 343 0.411 0.134 104.5

Table 7.2: RMSE for each modal-
ity. Bolded entries are signifi-
cant improvements. We see that
the MMAE significantly outper-
forms PCA in reconstructing
missing data, reducing the total
RMSE by over 75%.

From Table 7.2, it is interesting to note that the MMAE can more
easily predict a person’s physiology and behavioral patterns (e.g. call,
sms, screen, etc.) than predict extrinsic factors like the weather or the
day of the week. In particular, the RMSE for day of the week may be
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quite high because it is not possible to distinguish between similar
week days; i.e. a student’s physiology and location patterns may look
the same whether it is Monday or Tuesday.

7.1.5.2 Using the MMAE embeddings for classification

We also tested the ability of the MMAE to produce embeddings
that can be used effectively for classification. To do this each feature
vector X was passed through the encoder to produce an embedding
Z, then the embedding was used with other classifiers such as SVM.
These results are compared to those obtained by applying other
methods for dimensionality reduction or dealing with missing data;
namely, PCA, feature selection, and filling the missing values with
either the average or a special value like -1. Although some studies
have reported dramatic improvement in prediction accuracy using
autoencoder embeddings (e.g. Miotto et al. (2016)), in this case the
MMAE embeddings did not approve classification performance
above the comparison methods. Table 7.3 shows that the accuracy3

3 We also compute Area Under the
Curve (AUC) scores; they are extremely
similar to the accuracy scores due to
the balanced nature of the classification
labels.

in predicting mood, stress, and health on the held-out test set when
using the embeddings is similar to that obtained with the other
methods. A McNemar test (Adedokun and Burgess, 2011) applied
revealed no significant differences. The lack of improvement is likely
due to the fact that the dataset is relatively clean (only about 30% of
the supervised training examples contain noise). Further, the original
feature vector used in the work of Miotto and colleagues contained
100,000s of extremely noisy features (Miotto et al., 2016), whereas
the 343 features from the SNAPSHOT data are already the result of
several years worth of careful feature extraction, design, and selection
based on domain knowledge, and are therefore already compressed
and cleaned. Still, the embedding provides equivalent performance
while compressing the data representation even further for enhanced
computational efficiency. In addition, the embedding provided by the
MMAE is a de-identified representation of otherwise highly sensitive
and personal data, which may provide protection for privacy as long
as the decoder is kept private.

7.1.5.3 Robust prediction with missing modalities

The most important use case of the MMAE is to be able to deal effec-
tively with real-world noisy data in which several modalities may go
missing at once. Therefore, we compared the MMAE to several other
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Label Model Fill
avg.

Fill
-1

Feat.
sel.

PCA MMAE

LR 59.3 59.2 60.2 57.0 60.2
Mood SVM 61.8 59.5 61.2 59.3 59.1

NN 60.3 58.2 60.9 62.5 61.5
LR 59.7 59.8 57.9 56.7 58.9

Health SVM 60.5 61.0 64.2 61.6 64.1
NN 64.3 62.5 59.3 60.4 61.5
LR 62.5 61.7 59.3 59.2 60.3

Stress SVM 65.5 61.8 62.6 59.5 58.7
NN 63.9 59.8 60.5 63.2 62.2

Table 7.3: Mood, health, and
stress prediction accuracy on
the held-out test set obtained
with different approaches for
filling missing data.

methods for dealing with missing data: simply discarding it and
training only on clean samples, filling it with a special value like -1,
or performing PCA. Each of these methods are used to train a NN, as
it was shown to consistently give high performance. The MMAE can
directly make predictions using the additional classification layers
connected to the encoder, as described in Section 7.1.4.1.
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Figure 7.6: Stress prediction ac-
curacy on the held-out test set
as a function of the number of
missing modalities. Error bars
show 95% confidence intervals.
Mood and health showed a
similar pattern.

Figure 7.6 shows the performance of each of these methods on the
test data as the number of modalities missing from the data increases.
Note that the discard model was trained once on all available clean
data, while the rest of the models were re-trained each time on
training data with the appropriate number of missing modalities
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per row. As is obvious from Figure 7.6, the discard model—which
represents the previous state-of-the-art for dealing with missing
modalities in this dataset (Jaques et al., 2015a,b, 2016c)—performs
extremely poorly as more modalities go missing. This is likely to
reflect the performance that can be expected from such a model when
applied “in the wild” in a mood prediction app. Performance is
slightly higher when the NN is trained on noisy data, but in general
both dimensionality reduction methods (PCA and MMAE) give
higher performance from the beginning, likely because they reduce
the risk of overfitting. When the dataset is relatively clean, as is
the case with the SNAPSHOT data, the MMAE may not provide a
significant performance improvement over PCA. However, as the
number of modalities lost increases, the MMAE reliably outperforms
PCA, maintaining its mood prediction accuracy even when nearly
three quarters of the original features are missing. Thus, we see that
the new MMAE provides an important performance advantage for a
real-world system in which multiple modes of data are sporadically
present.

7.1.6 Discussion and conclusion

We have described a new method for restoring missing sensor data,
which is frequently lost in multimodal, real-world data collection
settings. Empirical results demonstrate that the MMAE can accu-
rately reproduce data from a lost modality, while other methods
such as PCA cannot. The MMAE offers valuable new advantages for
Affective Computing researchers who would like to train unbiased
models on noisy data, accurately cluster noisy samples, or make
robust predictions in the face of real-world data loss.

The MMAE has potential benefits in terms of providing enhanced
flexibility and privacy to users of a mood prediction system. Because
it can make accurate mood predictions even when data are lost, it
could allow users to opt-out of providing data for all modalities. This
could be particularly enticing to certain users, e.g. those who are
uncomfortable wearing sensors throughout the day, or those who are
concerned about privacy issues surrounding location or other data.

The MMAE also provides an effective feature reduction method that
may enhance privacy; the embeddings learned by the MMAE can
be used to provide roughly equal classification performance to the
raw features, meaning that the raw features would not have to be
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stored once the embeddings are computed. The embeddings could
potentially allow the highly sensitive personal data collected from
this study to be shared with other researchers in a non-identifiable
way.

We believe the MMAE provides an advance in the modeling of real-
world mood prediction systems based on long-term multimodal data
streams. Unlike prior methods, the MMAE is able to leverage valu-
able information from all available data, whether labeled, unlabeled,
noisy, or clean. We have shown that the performance of machine
learning models trained without considering missing data quickly
deteriorates with data loss; however the MMAE’s performance is
relatively maintained even with significant loss of data. While models
trained to account for missing data cannot provide reliable prediction
performance as the level of noise increases, the MMAE can maintain
its ability to predict tomorrow’s mood even in the realistic situation
where there is intermittent missing input data.

7.2 Automatic identification of artifacts in EDA data

Recently, wearable devices have allowed for long term, ambulatory
measurement of electrodermal activity (EDA). Despite the fact that
ambulatory recording can be noisy, and recording artifacts can easily
be mistaken for a physiological response during analysis, to date
there is no automatic method for detecting artifacts. This paper
describes the development of a machine learning algorithm for
automatically detecting EDA artifacts, and provides an empirical
evaluation of classification performance. We have encoded our results
into a freely available web-based tool for artifact and peak detection.

7.2.1 Introduction

Electrodermal Activity (EDA) refers to the electrical potential on
the surface of the skin (Boucsein, 2012).When the body responds
to stress, temperature, or exertion, the sympathetic nervous system
(SNS) increases sudomotor innervation, causing EDA to increase
and perspiration to occur. Because the SNS is influenced by the
hypothalamus and limbic system—structures in the brain that deal
with emotion—EDA has frequently been used in studies related to
affective phenomena and stress (e.g. Hedman (2010); Hernandez et al.
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(2011); Kappeler-Setz et al. (2013); Kocielnik et al. (2013); Reinhardt
et al. (2012); Sano and Picard (2013b); Wilhelm and Roth (1998)).

Despite its popularity, little research has been done into detecting
noise and artifacts in an EDA signal. This is especially problematic
given the increasing number of studies that are collecting ambula-
tory EDA data over long time periods using wearable devices (e.g.
Doberenz et al. (2011); Hedman (2010); Kappeler-Setz et al. (2013);
Sano et al. (2015b); Wilhelm and Roth (1998)). While these studies
may provide profound insight into how affect and stress interact with
other factors in daily life, continuous and unobtrusive measurement
of EDA using wearable devices makes the signal collected vulnerable
to several types of noise. Artifacts can be generated from electronic
noise or variation in the contact between the skin and the recording
electrode caused by pressure, excessive movement, or adjustment of
the device. If these artifacts remain in the signal when it is analyzed
they can easily be misinterpreted and skew the analysis; for exam-
ple, they may be mistaken for a skin conductance response (SCR) (a
physiological reaction that may indicate increased stress).

Consequently, many researchers are forced to manually inspect the
data in order to decide which portions are too noisy to retain (e.g.
Fedor and Picard (2014)). This approach cannot scale to the type of
large-scale EDA studies that are currently being proposed (Kappeler-
Setz et al., 2013), which may involve data collected from hundreds of
participants over weeks or months. In order to make collecting EDA
viable in these types of studies, an automated method for detecting
and removing noise and artifacts must be developed. In this project
we describe the development of both a classification algorithm for
automatically detecting artifacts, and an online system hosted at
eda-explorer.media.mit.edu that will apply the algorithm to users’
uploaded EDA files in order to provide them with an analysis of
which portions contain artifacts.

7.2.2 Related work

Through extensive research into the physiological processes un-
derlying EDA, as well as the electrical properties of the recording
equipment used in measurement, Boucsein (2012) is able to provide
a complete description of the characteristic shape of an SCR: the
response typically lasts between 1-5 seconds, has a steep onset and
an exponential decay, and reaches an amplitude of at least .01µS (see

eda-explorer.media.mit.edu
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Fig. 7.7 for an example of a typical SCR). However, despite the avail-
ability of this knowledge, no accepted technique for removing signal
artifacts has been developed.
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Figure 7.7: Plot of a typical
Skin Conductance Response
(SCR), including both shape
and length.

Currently, many researchers deal with signal artifacts and noise by
simply applying exponential smoothing (e.g. Hernandez et al. (2011))
or a low-pass filter (e.g. Kocielnik et al. (2013); Poh et al. (2010); Sano
and Picard (2013b)). While these techniques are able to smooth small
variations in the signal, they are not able to compensate for large-
magnitude artifacts that can result from pressure or movement of
the device during ambulatory recording. Fig. 7.8 shows a portion
of signal that contains three obvious artifacts, in which the sharp
decreases could not possibly be produced by human physiology. As
is evident from comparing the raw and filtered versions of the signal,
the low-pass filter has not removed the artifacts, and any subsequent
analysis based on the filtered signal is likely to mistake the artifacts
as genuine physiological responses.

Other researchers have used Boucsein’s analysis to develop heuristic
techniques for removing atypical portions of the EDA signal. Kociel-
nik and colleagues (Kocielnik et al., 2013) chose to discard portions
of their data where the signal increased more than 20% per second
or decreased more than 10% per second. They verified that this ap-
proach removed artifacts based on visual inspection. Using a similar
approach, Storm and colleagues manually set thresholds for the
maximum and minimum amplitude, maximum slope, and minimum
width of an SCR, and discarded responses that did not fit these crite-
ria (Storm et al., 2000). In another case, a study which collected EDA
from two sensors (on both the ankle and the wrist) was able to detect
artifacts by looking for epochs when only one of the two sensors had
an abnormally low signal, or showed an unusually rapid increase or
decrease (Hedman, 2010).
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Figure 7.8: A portion of the
signal containing artifacts. The
raw signal is shown on the left;
a 1Hz low-pass filter has been
applied to the signal on the
right. As is evident, the filter
cannot remove the artifact.

These heuristic thresholds were developed for particular studies
and participants, and verified only through visual inspection by the
researchers conducting them; they may not generalize beyond those
contexts. We seek to develop an empirically validated automatic
technique for removing artifacts in EDA signals.

7.2.3 Methods

In order to validate our automatic artifact detection method, we
needed to establish a ground truth for what portions of an EDA
signal are considered clean, and what portions contain artifacts. To
do this we had two expert EDA researchers label 5-second epochs of
EDA data collected from a previous experiment (Fedor and Picard,
2014). The labeled data was used as input to our machine learning
classifier.

7.2.3.1 Data collection

The data used in this analysis were collected during a study in which
32 participants completed physical, cognitive and emotional tasks
while wearing Affectiva Q EDA sensors on both wrists (Fedor and
Picard, 2014). The Q sensor collects EDA data by measuring skin
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conductance (SC) in microSiemens (µS) at a frequency of 8Hz. All
experimental procedures were approved by the Institutional Review
Board for human subjects research at MIT.

7.2.3.2 Expert labeling

We created a data set of 1560 non-overlapping 5-second epochs of
EDA data, sampled from portions of data that were identified as pos-
sibly containing artifacts, true SCRs, or static skin conductance level
(SCL). As part of our website, we built an interface to allow our two
experts to review these epochs and assign a label of either ‘artifact’ or
‘clean’. Both experts agreed on a set of criteria that defines an artifact
in the signal, which is as follows:

• A peak which does not show exponential decay, depending on
the context (e.g. if two SCRs occur close together in time, the first
response may not decay before the second begins, yet this is not
considered an artifact)

• Quantization error with ≥ 5% of signal amplitude

• A sudden change in EDA correlated with motion

• A SCL ≤ 0

Although our classification labels were created using these criteria,
our website provides the ability for other researchers to agree to label
their own data according to their individual application needs. The
site allowed the experts to view both the raw signal and a filtered
signal (to which a standard 1Hz low-pass filter had been applied), as
well as the accelerometer data, which is simultaneously collected by
the Q sensor. We felt that viewing the accelerometer data might help
the experts to identify motion artifacts. However, we do not provide
acceleration data to our classification algorithm, for two reasons.
Firstly, by training the classifier using only EDA data, we enable it
to be applied to EDA signal collected from devices other than the
Q that do not collect accelerometer data. Secondly, while it would
be simple to discard portions of the signal with high power in the
corresponding accelerometer data, this is not always desirable; for
example, in applications such as detecting epileptic seizures, strong
accelerometer signal occurs simultaneously with high EDA, but the
EDA signal is both clean and valuable to the analysis (Poh, 2011).
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Because we allowed the raters to skip epochs if they did not wish
to label them, we eventually obtained 1301 data points that were
labeled by both experts. The percentage agreement was 80.71%, and
the Cohen’s κ = 0.55.

There are multiple ways to deal with epochs for which the raters’
labels did not agree. The first is to discard them, which is reasonable
in the sense that we cannot establish a ground truth value for those
epochs, meaning we have no way to train or assess the performance
of the classifier. The second technique is to treat disagreements as a
third class in which we are unsure whether the signal is clean or an
artifact. We will present results from both approaches. Table 7.4 gives
the datasets for both.

Classifier
# Clean
Epochs

# Questionable
Epochs

# Artifact
Epochs

Binary 798 NA 252

Multiclass 798 251 252

Table 7.4: Number of Epochs in
each classifier.

7.2.3.3 Feature Extraction

We extracted several features for each five second epoch. Given the
importance of the shape of an SCR, we began by including statistics
related to the amplitude and first and second derivative of the EDA
signal (see Table 7.5). These features were computed for both the
raw and filtered signal; we are not concerned about including too
many features at this stage, because we later apply a feature selection
procedure to reduce the chance of overfitting.

Category Specific Feature

Raw SC
Filtered SC

amplitude: mean
1st derivative, 2nd derivative: max, min,
max of absolute value, mean absolute value

Wavelet coefficients
max, mean, standard deviation,
median, number aboveZero

Table 7.5: Computed features
on both the raw and filtered
SC signal, as well as wavelet
coefficient features.

We then used a Discrete Haar Wavelet Transform to compute addi-
tional features that may be indicative of sudden changes in the EDA
signal. Wavelet Transforms have been successfully used in several
noise reduction applications; because of their good time-frequency
localization, they can be considered a spatially aware noise filtra-
tion technique (Xu et al., 1994). A wavelet transform decomposes a
signal into coefficients at multiple scales; in our case, we obtain coef-
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ficients at 4Hz, 2Hz, and 1Hz. Because the Haar wavelet transform
involves computing the degree of relatedness between subsequent
points in the original signal, it is excellent for detecting edges and
sharp changes (Xu et al., 1994). Using this technique applied to the
participant’s full EDA signal, the 3 levels of detail coefficients were
computed, and statistics were computed on the coefficients over each
5-second epoch.

7.2.3.4 Feature Selection

Because we computed a large number of potentially redundant fea-
tures, we used wrapper feature selection to ensure that our classifier
did not overfit the training data. Unlike simple filtering techniques
that merely rank features based on their relationship to the classifica-
tion label, Wrapper feature selection (WFS) repeatedly tests subsets of
features using a specific classifier4 in order to select an independent

4 WFS was used with SVM after it was
found to be the most effective algorithm

subset of features that work well in combination with each other
(Guyon and Elisseeff, 2003). Since this is computationally expensive,
we used a greedy search process, which can quickly search the space
of all subsets and is robust to overfitting (Guyon and Elisseeff, 2003).

7.2.3.5 Classification

In order to perform feature and model selection, we partitioned the
data set into training, validation, and testing sets, using a random-
ized 60/20/20% split. Feature selection was performed using only
the training data. In order to find a suitable machine learning tech-
nique for this problem, we tested a variety of algorithms including
neural networks, random forests, naïve Bayes, nearest neighbour, lo-
gistic regression, and support vector machines (SVM). The algorithm
that produced the best accuracy on the validation data set was SVM,
so we focus on SVM for the remainder of the paper. In order to per-
form model selection we tested a range of settings for the parameters
of SVM, including both a Radial Basis Function (RBF), polynomial,
and linear kernel, and selected the settings that produced the highest
accuracy on the validation set. The held-out test set was not used in
feature or model selection.



244

4 5 6 7 8

3

4

5

6

7

µ
S

Binary

4 5 6 7 8
Time (min)

3

4

5

6

7

µ
S

Multiclass

Figure 7.9: A subset of a sin-
gle participant’s data which
includes true SCRs and arti-
facts. The red and grey shading
shows epochs labeled as artifact
and unsure, respectively. We
note that both classifiers label
true SCRs as clean signal.

Classifier Parameter settings
Baseline
Accuracy

Validation
Accuracy

Test
Accuracy

Binary RBF, β=0.1, C=1000 76.0% 96.95% 95.67%
Multiclass RBF, β=0.1, C=100 61.33% 88.38% 78.93%

Table 7.6: Classifier settings
and accuracy on the held-out
test-set. The binary classifier
shows very strong performance
in detecting artifacts in new
data.

7.2.4 Results

7.2.4.1 Classification results

Table 7.6 shows the classification results obtained for both the binary
and multiclass classifiers on the validation and test sets, as well as
the optimal SVM parameters. Although the accuracy for the multi-
class classifier is lower (three-class classification is a more difficult
problem), the output may prove more useful for real users. Fig. 7.9
shows both algorithms applied the same portion of EDA signal. As
is evident from the figure, portions of the signal containing artifacts
are detected (in red), while normal SCRs are labeled clean. Fig. 7.10

shows the performance of the algorithms on another sample contain-
ing a greater number of artifacts, which are also detected by both
algorithms. The multiclass algorithm is able to label questionable
parts of the data that are not clear artifacts in grey. Note that the
binary classifier labels some epochs as artifacts that the multiclass
one does not. The level of stringency needed in the classifier may de-
pend on the researchers’ application; computing aggregate measures
like area under the curve may be less sensitive to artifacts than SCR
detection.

7.2.4.2 Features selected

The feature selection process only led to a marginal improvement
in classification on the validation set: 1.3% and 1.4% for the binary
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Figure 7.10: An example of
a typical artifact, similar to
Fig. 7.8, where the participant
removed the sensor. Red and
grey shading show where the
classifiers labeled the SC data
as artifact and questionable,
respectively.

and multiclass classifiers, respectively. However the features selected
provide valuable insight into the signal characteristics that best dis-
tinguish between normal EDA and an artifact. Table 7.7 shows the
features selected by the binary classifier; the multiclass version se-
lected extremely similar features. The selected features confirm the
theoretical assumption that shape, including first and second deriva-
tive, are important in detecting artifacts. The wavelet features also
proved valuable, especially the standard deviation of the coefficients.
This is intuitive, because these values indicate whether there is a
change in the wavelet domain, which may be indicative of an edge or
sharp change in the original signal.

Category Specific Feature

Raw SC
amplitude: mean
1st derivative: max absolute value
2nd derivative: max, mean absolute value

Filtered SC
amplitude: mean
2nd derivative: min, max absolute value

Wavelet
Mean: 1st coefficient
St. Dev: 1st, 2nd, 3rd coefficients
Median: 3rd coefficient

Table 7.7: Features Selected for
Binary Classification
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7.2.5 Conclusion

In summary, we have developed algorithms that can automatically
and accurately distinguish artifacts in an EDA signal from normal
physiological responses. The code we have written to develop these
algorithms is freely available on our website, and we have built an
online web-platform so that anyone can upload their raw EDA signal
and receive an output indicating which portions contain noise. This
tool could be enormously time-saving to researchers dealing with
large data sets involving many participants measured over long
periods of time. As a follow-up project, we extended our approach
using active, semi-supervised learning, which can allow the machine
learning algorithm to interactively ask the user to label specific
epochs based on its level of uncertainty. This way, human raters
will be required to label fewer epochs that are highly similar, and
instead will only label novel data for which the classifier has little
information.

7.2.6 EDA Explorer

As an extension of this project, Sara Taylor and I built the web tool
eda-explorer.media.mit.edu, which allows researchers to upload
EDA data collected with various EDA sensors including the Affec-
tiva Q and Empatica E4, and analyze it using several tools. We have
maintained the site for over four and a half years now, and it cur-
rently has a total of 756 accounts, 105 of which were made this year.
The below figures show how EDA Explorer allows users to apply
the classification algorithms described in this section to their own
data, apply our SCR-detection algorithm, and save the results. It also
allows researchers to view chunks of their data and manually assign
a label, which can later be used to train a classifier (this was how we
obtained the expert labels for the above research).

In total, the site is currently hosting 5084 raw EDA files, 3208 artifact
files, 2313 SCR files, and 334 epoch-label files. We believe EDA Ex-
plorer and the associated models and scripts have been useful in the
application of EDA analysis to a variety of projects.

eda-explorer.media.mit.edu
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7.3 Statement of contributions

I developed the idea and wrote the code for the MMAE project
described in Section , with advice from Rosalind Picard and Sara
Taylor. Sara also contributed some code. The SNAPSHOT data used
in the MMAE experiment was collected as part of a long term study
involving many people, but special credit must be given to Sara
Taylor, Akane Sano, and Rosalind Picard.

The project described in Section was a joint effort between myself and
Sara. We began the project by meeting regularly with Akane, Szymon
Fedor, Weixuan ‘Vincent’ Chen to devise methods for detecting
artifacts in EDA data. I proposed building a website to collect expert
labels, and training a machine learning classifier to predict them.
Sara and I worked together to build the website, with Akane and
Szymon acting as experts, using it to label data. Vincent proposed
the idea of using wavelet-based features to help distinguish artifacts.
Sara and I both wrote code to extract features and train machine
learning algorithms, with Sara focusing more on the former and
myself focusing more on the latter.
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(a) Home page of EDA Explorer.

(b) Users can apply the trained machine learning classifiers described in this section to their own EDA data,
and visualize the artifacts within the data. When ready, they can create a downloadable file marking the
locations of artifacts.
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(a) This screen shows a user downloading a saved artifact file to their computer.

(b) Users can also apply an algorithm we created to detect peaks or SCRs within their data. They can tune
the hyperparameters of this algorithm to suit their needs, save these settings, and download a file of the
detected peaks.
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(a) EDA Explorer also allows researchers to manually label epochs of their data, which can be used to train
a machine learning classifier later. This is the process we followed to obtain expert labels for the algorithms
described in this section.
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This chapter tackles the problem of predicting next-day stress, hap-
piness, and health using data collected from participants as they go
about their daily lives, primarily via smartphones and wrist-worn
sensors. There are several motivations for building a system that can
accurately predict wellbeing from such unobtrusive daily monitoring.
First, if a person is aware that there is an 87% chance they will feel
stressed tomorrow, they can take steps to ameliorate their potential
stress; for example by getting some exercise or some extra sleep.
Second, any sort of AI or digital assistant that can accurately predict
a person’s mood is much more likely to be useful and pleasant to
the user, especially if it can plan for how its actions will affect future
mood, rather than just react to detecting the user’s current mood.
Most importantly, if a decline in happiness or an increase in stress
could be predicted before it occurs, it could help to guide treatment
and prevention efforts that could alleviate the risk of serious mental
health consequences like depression and anxiety.

In order to model students’ wellbeing, we apply machine learning
methods to data collected from undergrad students monitored over
the course of one month each. The data collected include physio-
logical signals, location, smartphone logs, and survey responses to
behavioral questions. Each day, participants self-reported their well-
being in terms of stress, health, and happiness, on a scale from 0-100.
Our initial experiments, which applied and compared a variety ma-
chine learning and feature selection techniques, resulted in relatively
low classification accuracy (≈ 70%). A review of relevant literature
reveals that machine learning (ML) methods frequently yield low
performance in this domain.

We posit that this is because a one-size-fits-all machine learning
model is inherently ill-suited to predicting outcomes like mood
and stress, which vary greatly due to individual differences. There-
fore, we employ Multi-task Learning (MTL) techniques to train
personalized ML models which are customized to the needs of each
individual, but still leverage data from across the population. Sev-
eral formulations of MTL for classification are compared: i) MTL
deep neural networks, which share several hidden layers but have
final layers unique to each task; ii) Multi-task Multi-Kernel learning,
which feeds information across tasks through kernel weights on fea-
ture types; iii) a Hierarchical Bayesian model in which tasks share
a common Dirichlet Process prior. We also extend this approach to
regression models to make fine-grained predictions about an individ-
uals’ level of stress, happiness, and health, and offer the code for this
work in open source. Empirical results demonstrate that using MTL
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to account for individual differences provides large performance
improvements over traditional machine learning methods and pro-
vides personalized, actionable insights into the relationship between
behavioral factors such as sleep and social activity, and individual
wellbeing.

8.1 Introduction

Perceived wellbeing, as measured by self-reported health, stress, and
happiness, has a number of important clinical health consequences.
Stress increases susceptibility to infection and illness (Cohen et al.,
1991). Self-reported health is so strongly related to actual health and
all-cause mortality (Keller et al., 2012), that in a 29-year-study it was
found to be the single most predictive measure of mortality, above
even more objective health measures such as blood pressure readings
(Aichele et al., 2016). Finally, happiness is so strongly associated with
greater longevity that the effect size is comparable to that of cigarette
smoking (Veenhoven, 2008).

Self-reported happiness is also indicative of scores on clinical depres-
sion measures (Cheng and Furnham, 2003). Rates of depression in
the United States have notably increased in the last century, and a
greater number of young adults are becoming depressed (Klerman
and Weissman, 1989). Depression is prevalent on college campuses,
and is also the most frequent precursor to suicide (Westefeld and
Furr, 1987). Addressing depression among college students has be-
come a major concern for some universities, especially given the fact
that 18-24-year-olds have the highest incidence of suicidal ideation,
and suicide has become the third leading cause of death among
college-aged individuals (Kisch et al., 2005).

Clearly, the ability to model and predict subjective mood and well-
being could be immensely beneficial, especially if such predictions
could be made using data collected in an unobtrusive and privacy-
sensitive way, perhaps using wearable sensors and smartphones.
Such a model could open up a range of beneficial applications which
passively monitor users’ data and make predictions about their men-
tal and physical wellbeing. This could not only aid in the manage-
ment, treatment, and prevention of both mental illness and disease,
but the predictions could be useful to any person who might want
a forecast of their future mood, stress, or health in order to make
adjustments to their routine to attempt to improve it. For example,
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if the model predicts that I will be extremely stressed tomorrow, I
might want to choose a different day to agree to review that extra
paper.

Unfortunately, modeling wellbeing and mood is an incredibly dif-
ficult task, and a highly accurate, robust system has yet to be de-
veloped. Historically, classification accuracies have ranged from
55-76% (e.g., Bogomolov et al. (2014); Canzian and Musolesi (2015);
LiKamWa et al. (2013); Grünerbl et al. (2015)), even with sophisticated
models or multi-modal data. In this chapter, we use a challenging
dataset where accuracies from prior efforts to recognize wellbe-
ing and mood ranged from 56-74% (Jaques et al., 2015a,b). Across
many mood detection systems, performance remains low despite
researchers’ considerable efforts to develop better models and extract
meaningful features from a diverse array of data sources.

We hypothesize that these models suffer from a common problem:
the inability to account for individual differences. What puts one
person in a good mood does not apply to everyone else. For in-
stance, the stress reaction experienced by an introvert during a loud,
crowded party might be very different for an extrovert (Brebner,
1990). Individual differences in personality can strongly affect mood
and vulnerability to mental health issues such as depression (Clark
et al., 1994). There are even individual differences in how people’s
moods are affected by the weather (Klimstra et al., 2011). The lack of
ability to account for these individual differences may help to explain
why many ML models tend to perform poorly in predicting mood.
In fact, some authors have already found that personalization can
provide important performance enhancements (e.g. Canzian and
Musolesi (2015); LiKamWa et al. (2013)), although personalization
typically takes the form of training many, independent models for
each person. However, these approaches assume an abundance of
person-specific data, which in clinical applications is not always the
case. Moreover, they fail to leverage the data of all people, which can
be used to build more reliable ML models.

We propose principled methods for personalizing ML models using
Multi-task Learning (MTL), and show that accounting for interindi-
vidual variability via MTL can dramatically improve the prediction
of these wellbeing states: mood, stress, and health. MTL is a type of
transfer learning, in which models are learned simultaneously for
several related tasks, but share information through similarity con-
straints (Caruana, 1997). We show that MTL can allow each person to
have a model tailored specifically for them, which still learns from all
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available data. Therefore, the approach remains feasible even if there
is insufficient data to train an individual machine learning model
for each person. By adapting existing MTL methods to account for
individual differences in the relationship between behavior and
wellbeing, we are able to obtain state-of-the-art performance on the
dataset under investigation (78-82% classification accuracy), signifi-
cantly improving on prior published results. We extend these results
to a regression setting, and show similar dramatic improvements in
model fit as a result of personalization.

In addition to showing the benefits of personalization, we undertake
a more challenging task than is typically attempted when modeling
mood. While most prior work has focused on detecting current mood
state, we test the ability to predict mood and wellbeing tomorrow
night (at least 20 hours in the future), using only data from today.
Specifically, assume xt represents all the smartphone, wearable sensor,
and weather data collected about a person on day t (from 12:00am
to 11:59pm). Let yt be the person’s self-reported mood, stress, and
health in the evening of day t (reported after 8pm). Previous work
has focused on learning to model p(yt|xt); that is, the probability of
the person’s current mood given the current data, which we refer to
as mood detection. In contrast, we learn p(yt+1|xt), the probability
of the person’s mood tomorrow given today’s data. This type of
prediction could be considered a type of mood forecasting, providing
an estimate of a person’s future wellbeing which could potentially
allow them to better prepare for it – just as a weather forecast gives
one a chance to take an umbrella rather than being left to be soaked
by the rain.

Typical forecasting models make use of a history of prior labels to
make predictions; i.e. such models learn the function p(yt+1|yt, yt−1, . . . , y1, xt, xt−1, . . . , x1).
Using such a model for mood forecasting is less than desirable, since
it implies that a person must input their mood every day in order to
obtain predictions about tomorrow. In contrast, we do not use any
prior labels. Instead, we learn p(yt+1|xt), allowing us to predict an
individual’s mood without ever requiring them to manually input a
mood rating.

This study also advances understanding of the role of affect in re-
siliency and wellbeing by investigating the relationship between
factors like sleep, social and physical activity, stress, and wellbeing.
We believe it is important to understand these factors, as they may
contribute to resistance to depression. A body of research has shown
that overall wellbeing, including factors like self-reported happiness,
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social support, and engagement with work, contribute to an indi-
vidual’s resiliency and ability to handle negative life events without
becoming depressed (Seligman, 2012). Physiological variables also
affect vulnerability to depression. Numerous studies have shown a
significant link between sleep disturbances and subsequent depres-
sion (Tsuno et al., 2005), and physical health is strongly correlated
with depression and happiness (Cheng and Furnham, 2003). Ideally
we would like to investigate the factors that affect an individual’s
overall wellbeing both positively and negatively. Since wellbeing
cannot be measured directly, we rely on self-reported measures that
are known to affect wellbeing, including stress, health, and happiness.
To aid our investigation we examine a wide range of data sources:

• Physiological data: electrodermal activity (EDA) (a measure of
physiological stress), and 3-axis accelerometer (a measure of steps
and physical activity)

• Survey data: questions related to academic activity, sleep, drug
and alcohol use, and exercise

• Phone data: phone call, SMS, and usage patterns

• Location data: coordinates logged throughout the day

Finally, we propose methods for interpreting the models learned
using the proposed MTL techniques, revealing how the wellbeing
of different types of people responds in dramatically different ways
to the same stimuli. We hope these insights can shed light on the
interactions between behavior, wellbeing, and individual differences.

Our work makes the following contributions to the affective com-
puting literature. We predict future wellbeing without requiring a
history of collected wellbeing labels for each person. Our data are
gathered in the “wild" as participants go about their daily lives, using
surveys, wearable sensors, weather monitoring, and smartphones,
and thus are relevant to use in a real-world wellbeing prediction sys-
tem. We provide insights into the relationship between the collected
data and mood and wellbeing. Finally, we demonstrate the ability
of MTL to train personalized models that can account for individual
differences, and provide the developed code for the MTL models in
open source. The insight that personalization through MTL can sig-
nificantly improve mood prediction performance could be a valuable
step towards developing a practical, deployable mood prediction
system.
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8.2 Related work

The idea of estimating mood, stress, and mental health indicators
using unobtrusive data collected from smartphones and wearables
has been garnering increasing interest. For example, Bogomolov
et al. (2013) use smartphone data combined with information about
participants’ personalities and the weather to detect stress with 72%
accuracy. Other researchers have investigated using smartphone
monitoring to detect depressive and manic states in bipolar disorder,
attaining accuracy of 76% (Grünerbl et al., 2015). Detecting workplace
stress is another growing body of research (Carneiro et al., 2017).

The insight that an impersonal, generic affect classifier cannot ac-
count for individual differences has been arrived at by several re-
searchers. In estimating workplace stress, Koldijk et al. (2017) found
that adding the participant ID as a feature to their model could im-
prove accuracy in classifying mental effort. Similarly, Canzian and
Musolesi (2015) found that training a generic SVM to classify de-
pressive mood from location data and surveys resulted in sensitivity
and specificity values of 0.74 and 0.78, respectively. By training an
independent SVM for each person, the authors obtained values of
0.71 and 0.87.

Finally, a detailed study reported that an omnibus model trained
to detect all people’s mood based on smartphone communication
and usage resulted in a prediction accuracy of 66% (LiKamWa et al.,
2013). However, if two months of labeled data were collected for each
person, then individual, independent personalized models could
be trained to achieve 93% accuracy in mood classification! Since
obtaining two months of training data per person can be considered
somewhat unrealistic, the authors investigated methods for training
a hybrid model that weights personalized examples more heavily,
which can be used when there are fewer labeled training examples
per person. In contrast with this work we focus on methods for
making reasonable personalized predictions even in the absence of
any labeled training data for a new person.

As mentioned above, almost all prior work of which we are aware
has focused on mood detection, rather than true prediction; that is,
learning p(yt|xt), where the model label yt and data xt are both col-
lected on day t. A recent paper published in April 2017 claims to
be the first work to forecast future mood (Suhara et al., 2017). This
work uses a Recurrent Neural Network (RNN) to predict mood given
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two weeks of mood history reported every day, learning the function
p(yt+1|yt, yt−1...y1, xt, xt−1...x1). Using a large-scale dataset of 2,382

people, the authors achieved an AUC score of 0.886 in forecasting
severely depressed mood. While a notable contribution, the draw-
back to this approach is that it requires a person to diligently input
their mood every day. If one day is missed, a prediction cannot be
made for the next two weeks. Further, the results reveal that past
mood features are many times more effective at predicting future
mood than any of the other data collected. Thus, using a mood
history to predict future mood is a significantly easier problem. In
contrast, we are able to predict tomorrow’s wellbeing given a rich
set of data from today (p(yt+1|xt)), obtaining accurate predictions
about an individual’s future mood through personalization, without
requiring them to manually input self-reported labels.

8.2.1 Multitask Learning

MTL is a type of transfer learning, in which models are learned
simultaneously for several tasks but share information through sim-
ilarity constraints. Originally proposed as a way to induce efficient
internal representations within neural networks (NNs) (Caruana,
1997), MTL can be used across a variety of models. It can be con-
sidered a form of regularization, and can improve generalization
performance (Caruana, 1997) as long as tasks are sufficiently related
(Rosenstein et al., 2005). Because MTL is beneficial when training
data are scarce and noisy, it is well-suited to the messy, real-world
problem of predicting mood.

Since Caruana’s original work, a variety of NN MTL methods have
been explored. For example, face detection accuracy for a deep
convolutional network can be improved by sharing layers with
networks trained on similar tasks, like face pose estimation and facial
landmark localization (Zhang and Zhang, 2014). Multitasking has
also been used successfully to train NNs with very little data; by
using the same network to predict traffic flow in the past, present,
and future, Jin and Sun were able to improve prediction accuracies
using only 2112 samples of traffic data (Jin and Sun, 2008).

Hierarchical Bayesian learning is a popular approach to MTL; Baxter
(1997) provide a detailed overview. The general approach is exempli-
fied by an algorithm like Transfer-Aware Naive Bayes (Rosenstein et al.,
2005): each task’s model’s parameters are drawn from a common
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prior distribution, thus imposing a similarity constraint. The model
can update the parameters of the prior as it learns; for example, by
decreasing the variance if the tasks are very similar. Bayesian infer-
ence techniques have been applied to a number of MTL scenarios.
For example, MTL has been applied to a reinforcement learning
problem in which each task is an environment an agent must ex-
plore, and the Markov Decision Process (MDP) learned for previous
environments is treated as a strong prior on the model for a new
environment (Wilson et al., 2007).

MTL has also been explored within the Affective Computing com-
munity. The idea of treating predicting the affect of a single person
as a task was introduced in conjunction with Multi-Task Multi-
Kernel Learning (MTMKL)(Kandemir et al., 2014) using the DEAP
dataset(Koelstra et al., 2012). MTMKL is an MTL method specifically
designed for Affective Computing applications which need to com-
bine data from multiple disparate sources, or modalities (Kandemir
et al., 2014). A kernel function is computed using the features from
each modality, and these are combined in a weighted sum. MTL is
applied by learning separate kernel weights for each task, while con-
straining all tasks’ weights to be similar. Thus, information is shared
across tasks through the kernel weights on the modalities (Kandemir
et al., 2014). While treating modeling different people as related tasks
in MTMKL allows for personalization, it does not allow the model
to generalize to a new person. In contrast, we first cluster people
based on personality and treat predicting the wellbeing of a cluster
as a task, allowing us to generalize to new users who have not input
wellbeing labels by placing them into the appropriate cluster.

MTL can also be applied to Affective Computing by treating out-
comes like arousal and valence as the related tasks in the model. This
method was used in our prior work, which applied MTMKL to the
dataset under investigation in this chapter by treating the classifi-
cation of happiness, stress, health, alertness, and energy as related
tasks (Jaques et al., 2015b). Similarly, Xia and Liu (2015) improved the
performance of a deep belief network by training it to simultaneously
recognize both valence and arousal from speech. In another study of
speech emotion recognition, the authors found that treating different
corpora, domains, or genders as related tasks in an MTL framework
offered performance benefits over learning a single model over all of
the domains, or learning a separate model for each domain (Zhang
et al., 2017).
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8.2.2 Factors related to wellbeing

There is a growing literature showing the connection between the
data collected in this study and wellbeing. Social support has been
shown to mediate stress (Cohen and Wills, 1985), protect against
depression (Peirce et al., 2000), and even improve overall health and
recovery from illness (Cohen and Herbert, 1996). In fact, positive
social relationships have been found to be the single most important
factor in wellbeing in studies across ages and cultures (Reis and
Gable, 2003). Conversely, people who lack social support are at risk
for a range of mental health issues, including depression, anxiety,
and suicide (Hawkley and Cacioppo, 2010). Because smartphone
logs provide a record of the number, duration, and type of com-
munications with social contacts, they may provide insight into an
individual’s social support and therefore stress, health, and happi-
ness. Further, simply using the phone itself may affect wellbeing
through sleep quality; the phone screen emits a large amount of ar-
tificial light, which has been shown to adversely affect the circadian
rhythm and sleep (Czeisler et al., 1986).

In fact, smartphone data (e.g. location, proximity, and communica-
tion) have been explored in a variety of studies which are surveyed in
(Lane et al., 2010). Dong et al. (2011) used smartphone data to model
the underlying structure of social interactions in a student dormitory,
while (Moturu et al., 2011) uses this data to explore the relationship
between sleep and mood. Predicting stress from smartphone logs
has been attempted by multiple researchers (e.g. Sano and Picard
(2013b); Bogomolov et al. (2014); Bauer and Lukowicz (2012)). There
have been preliminary studies demonstrating that mood can be clas-
sified using smartphone data (Bogomolov et al., 2014; LiKamWa
et al., 2013), and Bogomolov et al. (2013) have successfully predicted
happiness from a combination of smartphone data, personality, and
weather patterns.

Physiological measures such as electrodermal activity (EDA) are
also frequently used in studies related to affect and wellbeing (e.g.
Hussain et al. (2011); Healey and Picard (1998); Arroyo et al. (2009);
Vyzas (1999)). EDA measures sudomotor innervation and sweat
gland activity, which is increased through activity of the sympathetic
nervous system (SNS) (Poh et al., 2010). Because the SNS is influ-
enced by the hypothalamus and the limbic system (structures in the
brain that deal with emotion) EDA can be an effective technique for
measuring emotion and stress. The link between EDA and stress
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was directly explored in a pilot version of the study used to collect
the data analyzed in this chapter (Sano and Picard, 2013b). Other
research has investigated the link between EDA and sleep quality
(Sano and Picard, 2013a) (Sano and Picard, 2014).

8.3 User study and feature design

The data for this research were collected as part of a longitudinal,
ambulatory study run by MIT and Brigham and Women’s Hospital,
investigating the impact of behavioral and physiological measures on
wellbeing; more details and descriptive statistics about the data can
be found in Sano et al. (2015b). The study was termed ”SNAPSHOT”
for its investigation of Sleep, Networks, Affect, Performance, Stress,
and Health using Objective Techniques (Sano, 2015). Participants
were college students who were monitored for 30 days each. The
study gathers rich data, including daily smartphone, physiological,
behavioral and mood data, from which we extract 343 features from
the smartphone logs, location data, physiological sensor recordings,
and behavioral surveys obtained about participants each day. Due
to the rich, multi-scale nature of the data collected, careful feature
extraction is critically important.

Following Sano and Picard (2013b), we compute each set of physi-
ological and phone features over different time periods during the
day: 12-3AM, 3-10AM, 10AM-5PM, 5-11:59PM. These intervals were
determined by examining density plots of the times students were
most likely to be asleep (3-10AM), or in class (10AM-5PM), as shown
in Figure 8.1.

Figure 8.1: Percent of partic-
ipants sleeping, studying, in
extra-curricular activities, and
exercising throughout the day.
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8.3.1 Physiology

24-hour-a-day skin conductance (SC), skin temperature, and 3-axis
acceleration were collected at 8 Hz using wrist-worn Affectiva Q
sensors. SC is controlled by the sympathetic nervous system (SNS).
When a person experiences a physiological stress or a “fight or flight”
response, they may simultaneously experience a skin-conductance
response (SCR), in which their SC signal peaks rapidly and then
decays at an exponential rate (see the previous chapter for examples).
Using the SC signal, we automatically remove noise using a pre-
trained algorithm (as explained in the previous chapter), detect SCRs,
and compute features related to their amplitude, shape, and rate,
which are shown in Figure 8.2.

Figure 8.2: Features extracted
for each non-artifact SCR de-
tected in the SC signal.

The skin temperature and accelerometer data are also used to com-
pute features; from the latter, we extract measures of activity, step
count, and stillness. Since physical activity reduces stress and im-
proves mood (Ratey, 2008), and skin temperature is related to the
body’s circadian rhythm (Partonen, 1996), we expect these features
to be highly relevant. We also weight the SCR features by stillness
and temperature, since we are interested in SCRs due to emotion
and stress rather than exertion or heat. In total we compute 172

physiology features over different periods of the day.
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8.3.2 Smartphone features

An app on participants’ phones logs their calls, text messages (SMS),
and whenever the phone’s screen is turned on or off. Features are
computed based on the timing, duration, and type of these events
and the number of unique contacts with whom each person interacts.
An example of SMS data is shown in Figure 8.3, in which the texting
pattern on a sad day appears noticeably different than on another
day.
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Figure 8.3: SMS frequency
over four days with varying
mood. The pattern of texting
is markedly different on a day
when the participant felt sad.

We see two mechanisms through which screen and communication
information can affect wellbeing; light from the screen can disrupt
circadian rhythms and therefore sleep (Czeisler et al., 1986), and
the amount of social support in a person’s life is strongly linked to
resilience to depression (see Figure 8.3 for a possible example of a
subject’s social network potentially helping the subject move from
a sad mood back to a happy mood.) (Seligman, 2012) (Peirce et al.,
2000) (Reis and Gable, 2003). Therefore we sought to create features
that would capture these factors.

We discarded days with fewer than 5 screen on events, reasoning
that the app must have been malfunctioning. Previous research has
shown that people interact with their phone between 10-200 times
a day (Truong et al., 2014). As with physiology, the features were
computed over time intervals spanning the course of the day. These
may be important because we wish to capture the time when blue
light from one’s phone is experienced relative to the natural rhythm
of sunlight.

Because we can determine whether an SMS is incoming or outgoing,
we also compute the above features for these specific type of events.
This could be informative, for example because incoming messages
may relate more strongly to social support than outgoing messages.
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Finally, we compute the number of unique callers and unique mes-
sengers for the entire day and also for each call/SMS type. Some
researchers have hypothesized that diversity of social interactions
with a range of individuals is linked to wellbeing (Bogomolov et al.,
2014). This gives a total of 20 call, 30 SMS, and 25 screen features.

8.3.3 Behavioral surveys and extrinsic variables

The survey features relate to the number and duration of academic,
exercise, and extracurricular activities, the amount of time spent
studying, sleeping, napping, and trying to fall asleep, whether partici-
pants woke up during the night or overslept, whether they interacted
with someone in person or digitally before falling asleep (referred to
as pre-sleep interaction), and whether they had a positive or negative
social interaction that day. Additionally, students indicate whether
they consumed caffeine, alcohol, or drugs that could make them alert,
sleepy, or tired. We are interested in how these behavioral choices
and habits affect wellbeing. We include 38 features computed from
the survey features, as well as 3 extrinsic variables that would be
available to any smartphone app: the participant ID, the day of the
week, and whether it is a school night.

8.3.4 Weather

Previous studies have reported on how the weather effects mood,
particularily in relation to Seasonal-Affective Disorder (Partonen,
1996; Li et al., 2014). Additionally, it is well known that there are
particular seasons of the year (i.e. winter) that have higher rates of
poor health. Therefore, we extracted 40 features about the weather
from from DarkSky’s Forecast.io API (LLC, 2016). These features
include information about sunlight, temperature, wind, Barometric
pressure, and the difference between today’s weather and the rolling
average.

8.3.5 Location

The smartphone app logs participants’ GPS coordinates throughout
the day. Location is sampled whenever available in different frequen-
cies on different devices, so we began by downsampling the signal
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into one set of coordinates for every 5 minute segment, computed
using the median of the longitude and latitude samples within it.
Segments that contained no samples were interpolated according to
neighboring samples. We allowed interpolation of no more than three
consequent segments (15 minutes), marking segments as missing
data when necessary.

Building on previous studies (Sano and Picard, 2013b; Bogomolov
et al., 2014; Bauer and Lukowicz, 2012), we extracted statistical
descriptors of the subjects’ distances traveled throughout the day.
For each day, we computed the radius of the minimal circle enclosing
the subject’s location samples, as suggested by (Bogomolov et al.,
2014). The source of the location data (WiFi or cellular) was used to
compute an approximation of the time spent indoors and outdoors.
We used the latitude and longitude coordinates of the university’s
campus to compute the time spent on campus each day.

Noticing that many students spent most of their time either at home
or campus, we set out to model their location in a way that would
better capture irregularities in this routine. We postulate that these
irregularities would have a significant effect on measurements of
their wellbeing. Therefore we computed a Gaussian Mixture Model
(GMM) for each participants’ typical location behavior. A GMM
learns the number and location of Gaussian distributions required
in order to collectively represent a probability distribution; in this
case, the distribution over each participants’ possible locations in
2-dimensional space. More formally, each participant’s location
distribution was modeled with K Gaussian components, as in:

p(xi|θ) =
K

∑
k=1

πkN(xi|µk, Σk)

The GMM was trained on the latitude and longitude coordinates
of the participant that were collected throughout the entire study
(rather than just those seen on positive and negative days), since we
are using the GMM to model routine behavior. The model selection
process varied both the number of components, K, as well as the
type of covariance matrix (spherical, diagonal, tied and full, each
with different degrees of freedom). The trained model learns K
Gaussian components that represent Regions of Interest (ROIs)
that the participant commonly visits. We restricted the number of
components K to 20, as we believed it is unlikely for an individual to
have repetitive interest in more than 20 locations within a month. The
best model fit was chosen using the Bayesian Information Criterion
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(BIC):
BIC = −2 log p(D|θ) + d f (θ) log N

where θ is the MLE for the model and d f (θ) is the number of de-
grees of freedom in the model (Murphy, 2012). Figure 8.4 illustrates
a GMM fitted to the location data from one subject. We were able
to verify by inspecting a map of the area that the identified com-
ponents correspond to locations on the university campus and the
participant’s residence (specific coordinates have been redacted for
privacy).

Figure 8.4: GMM fitted to loca-
tion data from one participant.
Black points are locations vis-
ited; the contours mark the
probability distribution induced
by the model, with darker blue
representing more frequently
visited locations.After fitting the GMMs for each subject, they were used to compute

several features that relate to the regularity of participants’ routines.
First, the induced probability distribution was used to compute the
log likelihood for each day; this represents whether the day varied
unusually from the typical routine; we refer to it as normality of
day. Because each model learns the number and coordinates of the
locations typically visited by the participants, we can determine how
many different familiar locations were visited on a given day (ROIs).
This approach builds on an idea that was presented by Bauer and
Lukowicz (2012), where a correlation was shown between emotional
stress and a person’s number of geo-location ROIs. Finally, the model
BIC score and Akaike Information Criterion (AIC) (Murphy, 2012)
were computed using the data from each day; this represents how
well the model fits that particular day, and thus how much the day
deviates from routine.

8.3.6 Pre-study survey data

At the beginning of the SNAPSHOT study participants completed
personality and mental health inventories. These measures included
Myers-Briggs and Big Five Factor personality scores, state and trait
anxiety scores, the Short-Form 12 Mental health Composite Score
(MCS), Physical health Composite Score (PCS), Pittsburgh Sleep
Quality Index (PSQI), the Perceived Stress Scale (PSS) and the partici-
pant’s GPA and BMI (see (Sano, 2015) for details on these measures).
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While these data are not incorporated directly into the models (ex-
cept through the K-means clusters described in Section 8.5), we hy-
pothesize that it may be relevant to interpreting the models learned
with MTL.

8.4 Initial experiments

This section describes the initial results of applying basic machine
learning classifiers to the SNAPSHOT data. The goal of this research
was two-fold: 1) to understand the behavioral and physiological
factors that impact wellbeing positively and negatively, and 2) to
build a model that can detect when students become unhappy and
thus drive interventions to mitigate the risks of depression.

8.4.1 Machine learning problem and methods

Happiness Health Calmness Energy Alertness
Happiness -
Health 0.537 -
Calmness 0.664 0.480 -
Energy 0.480 0.410 0.389 -
Alertness 0.374 0.318 0.324 0.721 -

Table 8.1: Correlation matrix
for self-reported measures of
wellbeing. All correlations are
significant at the p = 0.01 level.

Participants in the study self-reported on five scales twice a day re-
lated to wellbeing: stress, health, energy, alertness, and happiness.
Although we would ideally like to be able to predict overall well-
being, how to create a ground-truth wellbeing measure from these
scales is an open question. A first impulse might be to compute a
composite measure from some of the relevant scales, for instance
by computing the ratio between happiness and stress. However
this schema would treat a highly happy and highly stressed state as
equivalent to a low happiness and low stress state. Not only is this
assumption not empirically validated, but a low happiness and low
stress state could be indicative of depression (sadness and apathy),
whereas a high happiness high stress state could actually represent
greater underlying wellbeing than a non-stressed state, given the
contribution of personal achievement and engagement with work to
overall wellbeing (Seligman, 2012). For these reasons we first attempt
to understand the relationship between these measures in order to
frame our classification problem.
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Table 8.1 shows the Pearson’s correlation coefficients between all
pairs of wellbeing measures. Note that stress was actually reported
on a scale where a low score indicated a highly stressed state and
a high score indicated calmness, so for consistency we report this
as Calmness in the following explanations. We can see that all of
the measures are highly related, with all correlations reaching sig-
nificance at the p = 0.01 level, even after applying a Bonferroni
correction to account for alpha inflation. Happiness has the highest
correlation coefficients, suggesting that if we need to limit our pre-
dictions to on measure, Happiness will give us the most insight into
the remaining scales. We are also most interested in Happiness, as it
has been shown to relate directly to depression (Cheng and Furnham,
2003).

Therefore, in this initial set of experiments, we restrict our focus to
classifying self-reported Happiness as our ground-truth measure.
Here, we are only attempting to detect students’ current happiness
on the same day, rather than predict next-day happiness. Happiness
was reported using a slider from “Sad” (a value of 0) to “Happy” (a
value of 100). We frame the problem as binary classification; days
on which a participant reported a Happiness score in the top 30%
of all Happiness scores are labeled as a positive day, and days in
which participants reported a Happiness score in the bottom 30%
are labeled as a negative day. We do not include the middle 40% of
scores. This reduces the size of our dataset to a possible 1110 points,
and thus reduces our classification power. However, the behaviors
on these days do not appear to have a strong effect on Happiness or
wellbeing, and are thus not informative for this problem.

Using the remaining data points, we randomly partitioned a training,
validation and testing dataset. The training and validation sets were
used to perform feature and model selection for each data source;
we refer to these sources as modalities. Given the complexity of our
data, we used an iterative feature design process. After designing an
initial feature set based on a review of the literature, we assessed the
relevance of each feature by measuring information gain and through
Wrapper Feature Selection (WFS) (Guyon and Elisseeff, 2003). Irrele-
vant features were removed in order to prevent overfitting, and more
features were repeatedly added and assessed, until we arrived at a
final feature set for each modality. The number of features eventually
selected optimized accuracy on the validation set.

A variety of machine learning algorithms were tested in order to find
the most appropriate model for each type of data. These include Sup-
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port Vector Machines (SVM), Random Forests (RF), Neural Networks
(NN), Logistic Regression (LR), k-Nearest Neighbour (kNN), Naïve
Bayes, and Adaboost. After finding the best classifier, the parame-
ter space of the classifier was searched, and the parameters which
optimized performance on the validation set were selected.

8.4.2 Feature evaluation

To assess the relevance of the extracted features to self-reported
happiness, we compute the information gain according to Eq. 8.1,
which involves the entropy function given in Eq. 8.2.

I(X, Y) = H(X)−H(X|Y) = H(Y)−H(Y|X) (8.1)

H(X) = −∑
i

P(xi) log P(xi) (8.2)

Information gain can be interpreted as the reduction in uncertainty
about one variable after observing the other (Murphy, 2012). In this
case, we assess how much information each feature provides about
our classification label, Happiness. We present up to 10 of the fea-
tures that had the highest information gain for each modality in Table
8.2, along with the score itself. We do not present features for which
the information gain was close to zero. Since information gain is
computed on each feature in isolation, it does not relate to how infor-
mative a collection of features may be when used in combination in
a classification model. Therefore highly similar features (such as the
multitude of screen duration features) all appear as valuable accord-
ing to information gain. For this reason the information gain scores
presented in Table 8.2 are not necessarily predictive of classification
performance for each modality.

For interest’s sake, Table 8.2 also provides an arrow indicating the
direction of the relationship between the feature and the classification
label, where an up arrow indicates that the feature affects happiness
positively. These directions were obtained from the direction of the
correlation between the feature and Happiness. For example, we
see that time indoors is negatively correlated with Happiness; the
more time spent indoors, the less likely the participant is to report
feeling happy. We seek only to provide a general trend to give the
reader some idea of how the feature affects Happiness, and have
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Physiology Survey Phone Location
0.0560 ↑ SC median 12am-6am 0.0379 ↑ Pre-sleep activity 0.0602 ↓ Screen dur. med. 0.0301 ↓ Time indoors
0.0418 ↑ SC s.d. 12am-6am 0.0240 ↑ Positive interaction 0.0456 ↓ Screen dur. med. 6pm-12am 0.0293 ↓ Normality of day
0.0408 ↑ SCR AUC total 12am-6am 0.0239 ↓ Negative interaction 0.0377 ↓ Screen dur. med. 8pm-12am
0.0390 ↑ Mag Acc. s.d. wake 0.0200 ↑ Exercise duration 0.0367 ↓ Screen dur. med. 4pm-8pm
0.0382 ↑ Mag Acc. s.d. 6pm-12am 0.0191 ↑ Exercise (true or false) 0.0235 ↓ Screen dur. med. 8am-12pm
0.0381 ↑ SC med. sleep 0.0190 ↑ Exercise count 0.0213 ↓ Screen dur. mean 4pm-8pm
0.0378 ↑ Temp. weight. SC s.d. 12am-6am 0.0140 ↓ Drugs - tired 0.0210 ↓ Screen dur. med. 12pm-6pm
0.0374 ↑ SCR AUC mean 12am-6am 0.0128 ↓ Studying duration 0.0204 ↑ Screen total num. 8am-12pm
0.0367 ↑ SCR AUC max 12am-6am 0.0106 ↑ Drugs - alcohol 0.0185 ↑ Screen total num.
0.0366 ↑ SC deriv. mean 12pm-6pm 0.0105 ↓ Extracurricular count 0.0178 ↓ Screen timestamp s.d. 12am-4am

Table 8.2: Features with the
highest information for pre-
dicting happiness gain for each
modality

not attempted to establish the statistical signifance of all of these
relationships.

Many of the physiology features relate to the SC signal and SCRs
that occur between midnight and 6am, presumably when the par-
ticipant is asleep. Note that different sleep stages are characterized
by different SC patterns; for example, SCRs are more likely to occur
during slow-wave sleep or non-REM 2 sleep (Sano and Picard, 2013a).
Therefore these features may relate to sleep quality and thus to well-
being. The survey features confirm our hypotheses that exercise and
social interaction are strongly linked to happiness, supporting current
research on the topic (e.g. Peirce et al. (2000); Reis and Gable (2003);
Ratey (2008)). It may be surprising to see that alcohol use appears
to boost happiness. Since alcohol consumption is reported in the
evening at the same time as the happiness scores, this is likely a re-
flection of the current effect of alcohol or possibly social interaction,
and does not relate to prolonged alcohol use over the long term. We
see from the phone logs that using the phone for longer periods of
time (screen duration) appears to be associated negatively with hap-
piness, especially if it occurs late in the day. Conversely, checking the
phone frequently (screen total num) has a positive association with
happiness, especially in the morning. Finally, we can see from the
location features that time indoors and the likelihood or normality
of the day as computed by the GMM are inversely related to happi-
ness. This implies that when a participant spends time outdoors or
deviates more from their typical routine, they tend to be happier.

8.4.2.1 Initial classification results

Table 8.3 presents the classification results for each modality, the
relative dataset and feature set sizes for context, and the classifier and
parameter settings that were found to optimize validation accuracy.
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Classification Accuracy
Modality Dataset Size # Features Classifier Parameter Settings Validation Baseline Test
Physiology 933 426 SVM C=100.0, RBF kernel, β = .0001 68.37% 51.79% 64.62%
Survey 1110 32 SVM C=100.0, RBF kernel, β = .01 71.26% 50.86% 62.50%
Phone 1072 289 RF Num trees = 40, Max depth = infinite 66.67% 51.98% 55.95%
Location 905 15 SVM C=100.0, RBF kernel, β = 1 69.95% 53.65% 65.10%
All 768 200 SVM C=0.1, Linear kernel 72.84% 53.94% 68.48%

Table 8.3: Initial classification
results of naively applying
generic machine learning mod-
els to classify happiness. Test
accuracy ranges from 56-68%
across modalities. Optimal clas-
sifier and parameter settings are
shown for each modality.

We found that the SVM and RF classifiers tended to produce the
best results on this dataset. Accuracy on the held-out test set (i.e. the
proportion of samples in which the classifier’s prediction matches
the true label) provides an estimation of the results we can expect on
novel data; therefore we can conclude that our best model would be
able to identify students that are unhappy with 68.48% accuracy.

Note that the size of the dataset involving all features is reduced due
to missing data, as discussed in the previous chapter. Therefore when
we combine all the modalities and restrict our focus to only those
days/participants for which data from each modality is available, the
dataset shrinks. This could make the ‘all’ dataset vulnerable to over-
fitting; therefore we applied the same feature selection techniques
and found a reduced set of 200 features to be most effective.

Ensemble classification offers an alternative approach to training a
single classifier on all of the available features. Rather, the predictions
from several classifiers are integrated, often in a weighted majority
vote (Rokach, 2009). We built an ensemble classifier which combines
the predictions of the best classifier from the best modalities by
weighting their predictions according to the classifier’s validation
accuracy. We found that using the best three modalities produced
the highest validation accuracy. The ensemble allows us to deal with
missing data in a more robust way; if a modality is missing data for
a given sample day, then that classifier simply abstains from the vote.
Each modality is able to maintain the maximum amount of training
data, while the ensemble combines data from several modalities with-
out losing information. The best accuracy achieved by the ensemble
classifier on the held-out test set was 70.17%. Table 8.4 shows the con-
fusion matrix for the predictions made by the ensemble classifier on
the held-out test set. It is slightly more likely to falsely predict that a
student is sad when she is actually happy, rather than falsely predict
that a student is happy when she is actually sad. This characteristic
suggests the system is more sensitive to detecting sadness, which is
desirable if it is to be used to detect when to intervene if a student is
becoming unhappy.



272

Predicted
Happy Sad

Actual
Happy 77 40

Sad 31 90

Table 8.4: Confusion matrix for
ensemble classifier

8.4.3 Discussion and limitations

Although the classifiers trained on each modality were able to
achieve results exceeding the baseline, performance differed across
modalities. Interestingly, location offers high performance with few
features; given the features found to be the most valuable for location,
it would appear that whether or not a person spends time outdoors
and deviates from normal routine is strongly related to whether they
will feel happy on that day. Physiology also offered relatively high
performance, suggesting that wearable devices which can monitor a
person’s physiology throughout the day may be a promising way to
detect changes in happiness, especially if those devices are capable of
monitoring sleep quality.

This initial experiment demonstrated that physiological, behavioral,
phone and location data can all be used to model happiness, and
contributed to the literature on wellbeing by examining not only
which features provide the most information about happiness and
how they affect it, but also by investigating the relationship between
happiness and other components of wellbeing, such as health, stress,
and energy. The best accuracy obtained by our models on novel data,
70.2%, may be sufficient to guide interventions intended to prevent
depression, especially if these interventions are only triggered after
the classifier detects a consistent pattern of unhappiness over several
days or weeks. However, this is questionable; the predictions may be
so inaccurate that it could contribute to potential users distrusting the
results and discontinuing use of the system.

A limitation of this work is that it does not consider individual
differences; for example, extracurricular activities could make some
students happy or be stressful for other students. The next section
examines how to overcome this drawback through the use of multi-
task learning.



273

8.5 Personalized multi-task learning

In what follows we describe several techniques for using MTL to
account for interindividual differences in the relationship between
behavior, physiology, and resulting mood and wellbeing. Each of
the models can adapt to the specific characteristics of an individual,
while still sharing information across people through a) shared layers
of a deep neural network (Section 8.5.1); b) a similarity constraint on
each task’s classifier’s weights (Section 8.5.2); or c) a common prior
shared across tasks (Section 8.5.3)

The most intuitive way to use MTL to customize a model for each
person is to treat a single person as a single task. However, this
approach may become untenable if there are few samples per per-
son. Since it requires that each person have a unique, fully trained,
task-specific model, each person would need to provide a suffi-
cient amount of labeled data. This may constitute a disincentivizing
burden on potential users. More importantly, such a model cannot
generalize to new people or make accurate predictions about new users.

Therefore, we begin by clustering users based on their personality
and gender, and treat predicting mood for a given cluster as one
prediction task. In this way, we can easily make predictions for a
new user without requiring them to input their mood on a daily
basis; we simply use their personality and gender to assign them
to the appropriate cluster. In this study, personality is computed
using the Big Five trait taxonomy (John and Srivastava, 1999), via a
questionnaire that takes approximately 10 minutes to complete. We
apply K-means clustering to participants’ Big Five scores and gender,
and assess cluster quality in an unsupervised way using silhouette
score, which is evaluated based on the intra-cluster and nearest-
cluster distance for each sample (Rousseeuw, 1987). The number of
clusters which produced the highest silhouette score was K = 37.
Using a large number of clusters allows us to create fine-grained,
highly customized models that make mood predictions for extremely
specific types of people.

8.5.1 Neural Networks

To build a MTL neural network (NN), we begin with several initial
hidden layers that are shared among all the tasks. These layers then
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connect to smaller, task-specific layers, which are unique to each
cluster. Figure 8.5 shows a simplified version of this architecture. In
reality, the network can have many shared and task-specific layers.

Figure 8.5: A simplified version
of the MTL-NN architecture.
Clusters of related people re-
ceive specialized predictions
from a portion of the network
trained with only their data.
Shared initial layers extract
features relevant to all clusters.

The intuition behind this design is that the shared layers will learn to
extract information that is useful for summarizing relevant character-
istics of any person’s day into an efficient, generalizable embedding.
The final, task-specific layers are then expected to learn how to map
this embedding to a prediction customized for each cluster. For
example, if the shared layers learn to condense all of the relevant
smartphone app data about phone calls and texting into an aggregate
measure of social support, the task-specific layers can then learn a
unique weighting of this measure for each cluster. Perhaps a cluster
containing participants with high extroversion scores will be more
strongly affected by a lack of social support than another cluster.

To train the network, we must slightly modify the typical Stochastic
Gradient Descent (SGD) algorithm. Rather than randomly selecting a
mini-batch of N training samples from any of the available data, each
mini-batch must only contain data from a single randomly selected
task or cluster. The mini-batch is then used to predict label values y′i,
based on forward propagation through the shared weights and the
appropriate cluster-specific weights. The ground-truth target labels
yi are used to compute the error with respect to that batch using the
typical cross-entropy loss function:

LH(Y, Y′) = −
N

∑
i=1

[yi log y′i + (1− yi) log(1− y′i)]

A gradient step based on the loss is then used to update both the
cluster-specific weights, as well as to adjust the weights within the
shared layers. By continuing to randomly sample a new cluster and
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update both the cluster-specific and shared weights, the network will
eventually learn a shared representation relevant to all clusters.

While deep learning is a powerful branch of ML, when training on
small datasets such as the one under discussion in this chapter it
is important to heavily regularize the network to avoid overfitting.
Although MTL itself is a strong form of regularization, we implement
several other techniques to ensure generalizable predictions. As is
common, we include the following L2 regularization term in the loss
function: −β‖W‖2

2, where W are the weights of the network. We also
train the network to simultaneously predict all three wellbeing labels
to further improve the generalizability of the embedding. Finally,
we implement dropout, a popular approach to NN regularization in
which some portion of the network’s weights are randomly “dropped
out" (set to 0) during training. This forces the network to learn re-
dundant representations and is statistically very powerful. Using a
dropout factor of 0.5 (meaning there is a 50% chance a given weight
will be dropped during training) on a NN with n nodes is equiva-
lent to training 2n NNs which all share parameters (Srivastava et al.,
2014). This is easy to verify; consider a binary variable that represents
whether or not a node is dropped out on a given training iteration.
Since there are n nodes, there are 2n possible combinations of these
binary variables. Moreover, each of these sub-networks are trained
on different, random mini-batches of data, and this bagging effect
further enhances generalization performance.

8.5.2 Multi-Task Multi-Kernel Learning

As introduced in Section 8.2, the MTMKL algorithm developed by
Kandemir et al. (2014) is a MTL technique designed for the problem
of classifying several related emotions (tasks) based on multiple data
modalities (Kandemir et al., 2014). MTMKL is a modified version
of Multi-Kernel Learning (MKL) in which tasks share information
through kernel weights on the modalities. Here, we consider the
problem of using MTMKL to build a personalized model that can
account for individual differences. Therefore, we treat each task as
predicting the wellbeing for one cluster; that is, a group of highly
similar people which share the same gender or personality traits.

MTMKL uses a least-squares support vector machine (LSSVM) for
each task-specific model. Unlike the canonical SVM, the LSSVM
uses a quadratic error on the “slack" variables instead of an L1 error.



276

As a result, the LSSVM can be learned by solving a series of linear
equations in contrast to using quadratic programing to learn an SVM
model. The LSSVM has the added benefit that when only a single
label is present in the training data, its predictions will default to
predict only that label.

The LSSVM can be learned by solving the following optimization
problem, in which N is the total number of samples, xi is the ith
feature vector, yi is the ith label, k(xi, xj) is a kernel function, and α is
the set of dual coefficients as in a conventional SVM:

maximize
α

− 1
2

N

∑
i=1

N

∑
j=1

αiαjyiyjk(xi, xj)

− 1
2C

N

∑
i=1

α2
i +

N

∑
i=1

αi

subject to
N

∑
i=1

αiyi = 0

In MKL, we build on the LSSVM by adjusting the kernel function.
In particular, we use a kernel function to compute the similarity
between feature vectors for each modality m, and the kernels are com-
bined using a weighted sum. The weights depend on the usefulness
of each modality in prediction. That is, more useful modalities will
have larger kernel weights so that differences in that data modality
are more helpful in prediction.

Concretely, we assign a kernel km to the features in modality m, as in
typical MKL. We restrict the model space by using the same kernel
function (e.g., an RBF kernel) for each modality. The modality kernels
are combined into a single kernel, kη, in a convex combination param-

eterized by the kernel weighting vector, η. Let x(m)
i be the ith feature

vector that contains only the features belonging to modality m, and
M be the total number of modalities. Then kη is defined as follows:

kη(xi, xj; η) =
M

∑
m=1

ηmkm(x
(m)
i , x(m)

j )

such that ηm > 0, m = 1, . . . , M and ∑M
m=1 ηm = 1. Thus the LSSVM-

based MKL model can be learned using the same optimization as the
LSSVM with the additional constraint of the convex combination of
kernel weights η.
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When multiple tasks are learned at the same time in MTMKL, each
task t has its own vector of kernel weights, η(t), which are regularized
globally by a function which penalizes divergence from the weights
of the other tasks. This allows information about the kernel weights
to be shared between tasks so that each task benefits from the data
of other tasks. In particular, if the model is highly regularized, then
the kernel weight on the mth modality (i.e., η

(t)
m ) will be very similar

across all tasks t. As such, each task will treat the modalities as
having similar importance. Note that even though the kernel weights
might be highly regularized, the task-specific models can still learn a
diverse set of decision boundaries within the same kernel space.

The optimal η(t) for all tasks t = 1, . . . , T can be learned by solving
a min-max optimization similar to the LSSVM-based MKL model,
but with the addition of the regularization function, Ω({η(t)}T

t=1).
A weight ν placed on the regularization function Ω(·) controls the
importance of the divergence. When ν = 0 the tasks are treated
independently, and as ν increases, the task weights are increasingly
restricted to be similar.

For simplicity of notation we denote the objective function for a
single task’s LSSVM-based MKL model as follows:

J(t)
(

α(t), η(t)
)
=− 1

2

N(t)

∑
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N(t)

∑
j=1

α
(t)
i α

(t)
j yiyjk

(t)
η (xi, xj)−

1
2C

N(t)

∑
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α2
i +

N(t)

∑
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αi

where the superscript (t) denotes the parameters or functions specific
to task t.

Thus, all of the parameters of the LSSVM-based MTMKL model can
be learned by solving the following min-max optimization problem:

minimize
{η(t)}T

t=1

maximize
{α(t)}T

t=1

νΩ
(
{η(t)}T

t=1

)
+

T

∑
t=1

J(t)
(

α(t), η(t)
)

subject to
N

∑
i=1

αiyi = 0

M

∑
m=1

η
(t)
m = 1, t = 1, . . . , T

η
(t)
m ≥ 0, ∀m, ∀t

The iterative gradient descent method proposed by Kandemir et al.
(2014) is used to train the model given an initial set of model parame-
ters. The method alternatively (1) solves a LSSVM for each task given



278

η(t) and (2) updates η in the direction of negative gradient of the joint
objective function (see Algorithm 4).

Let the joint objective function be Oη. We write the gradient as fol-
lows:

∂Oη

∂η
(t)
m

= ν
∂

∂η
(t)
m

Ω
(
{η(t)}T

t=1

)
− 1

2

N(t)

∑
i=1

N(t)

∑
j=1

α
(t)
i α

(t)
j y(t)i y(t)j km(x(m)

i , x(m)
j )

Algorithm 4: MTMKL Algorithm

1: Initialize η(t) as (1/T, ..., 1/T), ∀t while not converged do
2:

end
Solve each LSSVM-based MKL model using η(t), ∀t

3: Update η(t) in the direction of −∂Oη/∂η(t), ∀t
4:

Following Kandemir et al. (2014), we use two different regularization
functions. The first, Ω1(·), penalizes the negative total correlation, as
measured by the dot product between the two kernel weight vectors
< η(t1), η(t2) >:

Ω1({η(t)}T
t=1) = −

T

∑
t1=1

T

∑
t2=1

< η(t1), η(t2) >

The second regularization function, Ω2(·), penalizes the distance of
kernel weights in Euclidean space:

Ω2({η(t)}T
t=1) =

T

∑
t1=1

T

∑
t2=1
||η(t1) − η(t2)||2

8.5.3 Hierarchical Bayesian Logistic Regression (HBLR)

The methods we have presented so far rely on clustering participants
a priori based on their personality and demographics, in order to
build a robust model that can generalize to new people. However,
it would be preferable if we could train a model to automatically
cluster participants, not based on characteristics we assume to be
related to mood prediction, but instead directly using the unique
relationship each person has between their physiology, behavior,
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the weather, and their resulting mood. As mentioned previously,
individuals may be affected very differently by the same stimuli; e.g.,
one person may become more calm when the weather is rainy, while
another may become annoyed. The ability to group individuals based
on these differing reactions could thus be highly valuable.

Therefore, we now consider a non-parametric hierarchical Bayesian
model which can implicitly learn to cluster participants that are most
similar in terms of their relationship between the input features and
their resulting mood. Further, the model learns a soft clustering, so
that a participant does not need to be assigned to a discrete, cate-
gorical cluster, but rather can belong to many clusters in varying
degrees.

In hierarchical Bayesian MTL approaches, the model for each task
draws its parameters from a common prior distribution. As the
model is trained, the common prior is updated, allowing information
to be shared across tasks. The model we adopt, which was originally
proposed by Xue et. al. (Xue et al., 2007), draws logistic regression
(LR) weights for each task from a shared Dirichlet Process (DP) prior;
we call this model Hierarchical Bayesian Logistic Regression (HBLR).

In contrast with our prior approaches (MTL-NN and MTMKL), the
HBLR model allows us to directly define each task as predicting the
wellbeing of a single person, since the model is able to implicitly
learn its own clustering over people. While the implicit clustering
provides valuable insights into groups of people that have a different
relationship between their physiology, behavior, and wellbeing, it
also means that HBLR cannot make predictions about a new person’s
mood without first receiving at least one labeled training data point
from that person. Still, HBLR can quickly be adapted to make predic-
tions about a new person (Xue et al., 2007), and the predictions will
improve with more data.

The implicit clustering mechanism is accomplished through the
choice of the Dirichlet Process prior. The DP prior induces a partition-
ing of the LR weights into K clusters, such that similar tasks will end
up sharing the same weights. Specifically, for each task t, the model
parameters w(t) are drawn from a common prior G which is sampled
from a DP:

w(t)|G ∼ G, α ∼ Ga(τ1, τ2)

G ∼ DP(α, G0), G0 ∼ Nd(µ, Σ)

where Ga is a Gamma distribution and Nd is a d−dimensional multi-
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variate normal distribution. The distribution G0 is the base distribu-
tion and represents our prior belief about the distribution from which
the weights are drawn. Following (Xue et al., 2007), we set µ = 0
and Σ = σI, which reflects the prior belief that the weights should be
uncorrelated and centered around zero (equally likely to be positive
or negative). Here, σ is a hyperparameter. The scaling or innovation
parameter of the DP α > 0 affects the likelihood that a new cluster
will be generated; as α decreases the weights generated by the DP
will become more concentrated around only a few distinct clusters.
In this case, α is distributed according to a diffuse prior represented
by a Gamma distribution with hyperparameters τ1 and τ2.

The goal of the HBLR model is to learn a posterior distribution over
the variables defined above given the observed data. When each
task is defined as learning the decision boundary for a single person,
learning the posterior allows the model to:

(a) learn a non-parametric clustering of similar people

(b) perform MTL by jointly learning logistic regression classifiers for
each cluster.

Here, we define people as similar when the classification boundaries
of their wellbeing prediction tasks are close; that is, when their
respective weight vectors are similar. This implies that similar people
have a similar relationship between their input features and their
resulting wellbeing.

Learning the complete posterior distribution is intractable, so mean-
field variational Bayesian inference (VI) is used to approximate the
true posterior; the VI equations are derived by Xue et al. (2007).
The variational approximation of the posterior contains three sets
of parameters that the model must learn. The first is a matrix Φ ∈
RT×K, where T is the number of tasks (or participants), and K is the
number of clusters. The Φ is essentially the learned soft clustering
of users (see (a) above); each row φ(t) ∈ RK represents the degree
to which person t belongs to each of the K clusters. Although the
non-parametric nature of the model could theoretically allow for
an infinite number of clusters, there is no loss in generality if K is
limited to the number of tasks in practice. We make an additional
computational enhancement to the algorithm by removing clusters
for which all entries of φk are less than machine epsilon, which
allows for faster convergence.
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The second set of parameters are (θk, Γk) for k = 1, . . . , K, which
parameterize a unique distribution over the LR weights for each of
the K clusters (see (b) above). That is, each cluster k draws its weights
from a multivariate normal distribution as follows:

wk ∼ Nd(θk, Γk), k = 1, . . . , K

Note that in expectation (θk, Γk) center around the µ and Σ parame-
ters of the base distribution.

To learn all the parameters, we use a coordinate ascent algorithm de-
veloped by Xue et. al. (Xue et al., 2007). The parameters (Φ, {θk}K

k=1, {Γk}K
k=1)

are initialized to their respective uniform priors; that is, each task
having equal contribution to each cluster to initialize Φ and setting
θk and Γk to µ and Σ for each k. Each parameter is then iteratively
re-estimated until convergence.

To predict a new test sample x(t)∗ , we would ideally like to use the
following equation, where we integrate over the learned distribution
on the classifier’s weights:

p(y(t)∗ = 1|x(t)∗ ,Φ, {θk}K
k=1, {Γk}K

k=1)

=
K

∑
k=1

φ
(t)
k

∫
σ(w∗Tk x(t)∗ )Nd(θk, Γk)dw∗k

where σ is the sigmoid function of a typical LR classifier.

However, computing this integral is intractable. Therefore, the pre-
diction function uses an approximate form of the integral derived in
(MacKay, 1992):

p(y(t)∗ = 1|x(t)∗ , Φ, {θk}K
k=1, {Γk}K

k=1) ≈
K

∑
k=1

φ
(t)
k σ

 θT
k x(t)∗√

1 + π
8 x(t)T∗ Γkx(t)∗



8.5.4 Multi-task learning experiments

In this second set of experiments, we attempt to predict students’
next-day wellbeing in terms of their happiness, stress, and health.
Each morning and evening, participants self-reported their mood
(sad/happy), stress (stressed out/calm), and health (sick/healthy)
on a visual analog scale from 0-100. Table 8.1 shows the correlation
between these metrics. To create binary classfification labels, these
scores are split based on the median value. In the previous section
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Figure 8.6: Distribution of self-
report labels after discarding
the middle 20%. Participants
are listed on the x-axis, in or-
der of their average self-report
value for that label (each partic-
ipant is one column). Almost
all participants have data from
both label classes.

and in other prior work, we relied on discarding the most neutral
scores before creating binary labels in order to disambiguate the
classification problem; i.e., the middle 40% of scores were discarded
due to their questionable nature as either a ‘happy’ or ‘sad’ state
(Jaques et al., 2015a,b). We instead make the problem decidedly
harder by discarding only the middle 20% of scores. We also discard
participants with less than 10 days worth of data, since they could
not provide enough data to train viable models. The resulting dataset
comprises 104 users and 1842 days.

Figure 8.6 shows the raw values reported for mood, stress, and health
for each participant after the middle 20% of scores have been re-
moved. Points appearing above the removed values are assigned
a positive classification label, while points below are assigned a
negative label. As is apparent from the figures, although some par-
ticipants predominantly report one label class almost all participants’
reports span the two classes. This implies that the need for person-
alization is not simply due to the fact that some participants are
consistently sad while some are consistently happy, for example.
Personalization is required because people react differently to very
similar stimuli, and a single, impersonal classifier cannot capture
these differences.

To assess whether personalization via MTL provides significant per-
formance benefits, we compare it to two other approaches. First, we
compare each algorithm to its single task learning (STL) equivalent.
HBLR is compared to conventional LR, MTMKL to LSSVM, and
MTL-NN to a generic NN1. Second, to determine whether person-

1 Note that the dataset and classification
labels used for these experiments is
different than that of the previous
section, so we cannot directly compare
the STL results.

alization via MTL has a performance advantage over simply using
MTL itself, we also explore multitasking over the related wellbeing
measures; in other words, in this condition we treat predicting mood,
stress, and health as related tasks. Note that this moods-as-tasks ap-
proach to MTL is similar to that taken in prior work (e.g. Kandemir
et al. (2014); Jaques et al. (2015b); Xia and Liu (2015); Zhang et al.
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(2017)).

To create the datasets used for training the models and avoid testing
data contamination, a random 80/20% split was used to partition the
SNAPSHOT data into a train and test set. We then apply 5-fold cross
validation to the training set to test a number of different parameter
settings for each of the algorithms described in Section 8.5. Finally,
each model is re-trained using the optimal parameter settings, and
tested once on the held-out testing data; the test performance is
reported in the following section.

To tune the neural networks, we consistently used learning rate
decay and the Adam optimizer (Kingma and Ba, 2014), and tuned
the following settings: the number and size of hidden layers, batch
size, learning rate, whether or not to apply dropout, and the L2 β

weight. Based on previous work that has successfully trained MTL
NNs with few samples (Jin and Sun, 2008), we choose a simple, fully-
connected design with 2-4 hidden layers. For HBLR, we tuned the τ1,
τ2, and σ parameters, while for MTMKL we tuned C, β, the type of
kernel (linear vs. radial basis function (RBF)), the type of regularizer
function (Ω1(·) vs Ω2(·)), and ν. For MTMKL we also define the
following modalities: classifier, location, survey interaction, survey
activities, survey sleep, weather, call, physiology from 3am to 10am,
screen, and SMS. More detail on these modalities is provided in
Table 8.5.

All of the code for the project, which is written in Python and
TensorFlow (Abadi et al., 2015), has been released open-source at:
https://github.com/mitmedialab/personalizedmultitasklearning

8.5.4.1 Feature selection

Since the dataset is small, we apply feature selection to reduce the
chance of overfitting. While there are many ways to do this, in this
work features are selected based on assessing ANOVA F-scores
between each feature and the classification label using the training
data and removing highly correlated features, with the constraint that
at least one feature from each of the above data sources is retained.
This process gave rise to a total of 21 features, which are listed in
Table 8.5.

https://github.com/mitmedialab/personalizedmultitasklearning
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Modality Features
Classifier Day of the week

Physiology 3am-10am
% mins with >= 5 SCRs (w/o artifacts)
Temperature weighted SCR AUC

Location
Time on campus
Log likelihood of day given previous days

Call Total missed calls

SMS

Total incoming (midnight-3am )
Number of unique contacts outgoing
Number unique incoming (5-11:59pm)
Number unique outgoing (5-11:59pm)

Screen
Total duration (Midnight-3am)
Total number on/off events (5-11:59pm)

Survey Activities
Exercise duration
Study duration

Survey Interaction
Positive social interaction
Presleep in-person interaction (T/F)

Survey Sleep
Number of naps
All-nighter (T/F)

Weather
Cloud cover rolling std. dev.
Max precipitation intensity
Pressure rolling std. dev.

Table 8.5: Features selected
from each modality for the sec-
ond set of experiments. There
are a total of 21.

8.5.4.2 Method for analyzing HBLR clusters

Because the clusters learned by the HBLR model may be fundamen-
tally different than those that can be obtained using other methods,
we are interested in defining a way to analyze which type of partici-
pants are represented within each cluster. For example, does a certain
cluster tend to contain participants that have a significantly higher
trait anxiety score (as measured by the pre-study survey)?

The analysis is complicated by the fact there is no discrete assign-
ment of participants to clusters; rather, a participant may have some
degree of membership in many or all of the clusters, as defined by
φ(t). To solve this issue, we first define a matrix P ∈ RT×M, where T
is the number of participants and M is the number of pre-study mea-
sures (such as Big Five personality, PSS, etc.). Thus, Pt,m represents
person t’s score on measure m. Using P, we can then compute a score
representing the average value of each pre-study measure for each
cluster, as follows:

Qk,m =
∑t Pt,mφ

(t)
k

∑t φ
(t)
k
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where Q ∈ RK×M and K is the number of clusters learned by the
HBLR model. Qk,m can be considered a weighted average of a clus-
ter’s pre-study trait, where the weights are the degree of membership
of each participant in that cluster.

To test whether a cluster’s Qk,m value is significantly different than
the group average, we use a one-samples t-test to compare Qk,m to
the values for measure m reported by participants on the pre-study
survey. We apply a Bonferroni correction based on the number of
comparisons made across the different clusters within each outcome
label (i.e. mood, stress, health).

8.5.5 Multi-task learning results and discussion

Classifier Mood Stress Health
Baseline Majority class 50.4%, .500 50.7%, .500 54.4%, .500

STL
LSSVM 60.2%, .603 58.1%, .581 62.3%, .614

LR 56.9%, .569 59.4%, .594 55.4%, .544

NN 60.5%, .606 60.1%, .600 65.9%, .648

NN (all feats) 65.8%, .658 67.9%, .678 59.0%, .591

MTL - moods
MTMKL 59.4%, .594 58.8%, .587 62.0%, .610

HBLR 58.3%, .583 57.8%, .578 55.1%, .551

MTL-NN 60.2%, .602 60.1%, .600 65.3%, .643

MTL-NN (all feats) 67.0%, .670 68.2%, .682 63.0%, .623

MTL - people
MTMKL 78.7%, .787 77.6%, .776 78.7%, .786
HBLR 72.0%, .720 73.4%, .734 76.1%, .760
MTL-NN 77.6%, .776 78.6%, .785 79.7%, .792
MTL-NN (all feats) 78.4%, .784 81.5%, .815 82.2%, .818

Table 8.6: Prediction perfor-
mance (Accuracy and AUC)
of the STL, MTL-moods, and
MTL-user methods. Bolded
entries represent significant im-
provements over the STL model,
indicating that multitasking
for personalization is by far the
most effective approach.

The accuracy and Area Under the ROC Curve (AUC) of each of
the wellbeing prediction models is shown in Figure 8.7 and Table
8.6, along with the majority class baseline (the peformance that
can be expected from simply predicting the most frequent label in
the training data). For most models, we found that using feature
selection improved performance. Since NNs often benefit from large
input vectors, we tested the performance of the MTL-NN on the full
set of 343 features as well, and include these results in Table 8.6.

As is evident from Table 8.6 and Figure 8.7, the accuracy obtained
using traditional STL ML classifiers is poor, reaching a maximum of
only 60-66%; this is similar to prior work that trained STL classifiers
to detect mood on a simplified version of this dataset (Jaques et al.,
2015a). The performance obtained with the three MTL models when
multitasking over the related outcome labels, i.e. mood, stress, and
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Figure 8.7: Accuracy for each
type of model in the STL,
MTL-moods, and MTL-people
approaches. Note that the accu-
racy significantly (∗ = p < 0.05)
improves when using multi-
tasking over people for each
label and for each machine
learning method tested.

health is shown as MTL - moods. Evidently, multitasking in this way
does not significantly enhance performance. This could be because
the outcome labels are not sufficiently related to each other to benefit
from sharing parameters, or that the regularization imposed by MTL
limits the models’ capacity more than it benefits the generalization
performance. Therefore, it is clear that at least for this data, MTL
alone is not sufficient to improve mood prediction classifiers.

Rather, it is using MTL to account for individual differences that is
important. As is clear from both Table 8.6 and Figure 8.7, using MTL
to personalize ML models by multitasking over clusters of similar
people provides dramatic improvements to mood prediction per-
formance. The improvement in accuracy over the non-personalized
models ranges from 11-21%. McNemar tests of the predictions with
a Bonferroni correction applied within each label type revealed that
the personalized models significantly outperformed (p < .05) both
the STL and MTL - moods approaches, over all model and label types.
These scores represent state-of-the-art performance on this dataset,
surpassing prior published work by 5-13% prediction accuracy
(Jaques et al., 2015a,b).

Given the impressive performance of the personalized MTL models,
in the following sections we focus on analyzing the weights and
clusters learned by the personalized MTMKL and HBLR models,
both of which can help provide important insights into how the
wellbeing of different groups of people is affected by their physiology,
their behavior, their use of technology, and the weather.
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Figure 8.8: MTMKL kernel
modality weights, reflecting
which feature type is most
important to the classifier for
each task. The ν parameter
controls how heavily the task
weights are regularized to be
similar, and was set by the hy-
perparameter search. People are
highly individualistic in how
strongly their mood is affected
by different modalities like
weather.

8.5.5.1 MTMKL

The MTMKL model learns a weighting over the 10 modalities for
each task. As described in Section 8.5.2, the ν parameter controls how
strongly the tasks’ weights are constrained to be similar. Figure 8.8
shows the weights learned by the personalized MTMKL model for
each outcome label and each cluster of people. The figure demon-
strates that for predicting stress, the hyperparameter search selected
a large value of ν, which constrained the kernel weights to be highly
similar across all clusters. However, for mood the value of ν was
much smaller, resulting in more diverse kernel weights for the differ-
ent tasks. This could suggest that there is more individual variability
in how well these features can predict mood, while the relationship
to stress is more consistent. It appears that for mood prediction, dif-
ferences in features like weather, location, and screen are important
for some types of people but not others.

The modality weights learned by MTMKL can potentially provide
interesting insights for designing a mood prediction system. For
example, we see that for this set of features, overall the differences
in weather, SMS, and survey (representing exercise and studying
duration) tend to be more informative. This may suggest that not
only is it important to include weather in a mood prediction system,
but that developing ways to automatically and unobtrusively detect
when a participant is exercising or studying could be a valuable
time investment. Further, we see that the call features tend to be
less informative compared to the other features, so perhaps it is not
necessary to monitor participants’ call patterns to predict wellbeing.
Removing this form of data collection could potentially enhance
privacy for participants in the SNAPSHOT study.
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Figure 8.9: Resulting soft clus-
tering (Φ) when predicting the
different labels (mood, stress,
and health). Each row shows
one of the 104 participant’s
degree of membership in each
cluster. We note that there were
4,3, and 17 clusters needed in
predicting happiness, stress,
and health, respectively.

8.5.5.2 HBLR

The HBLR model learns a non-parametric soft clustering of partic-
ipants based on the relationship between their input features and
resulting mood. Figure 8.9 shows the clustering learned for predict-
ing each of the three outcome labels, where the intensity of the color
represents the degree to which each participant belongs to each clus-
ter. The number of clusters which had at least one participant with a
degree of membership exceeding machine epsilon were 4, 3, and 17

for the mood, stress, and health prediction models, respectively. How-
ever, this does not imply that there are only three types of people
which have a different relationship between the features and stress.
Because of the soft clustering, a given person can belong to many
clusters and thus combine the decision boundaries learned for each,
as explained below.

As discussed previously, each cluster in the HBLR model learns
a multivariate normal distribution over the weight vector w∗k . In
Figure 8.10 we show examples of the different marginal distributions
learned over a single feature (total number of screen on events (5pm-
midnight)) for the four mood clusters. We note that for these two
features, cluster 0 and cluster 1 have very different distributions on
the LR weights. For example, in Figure 8.10 we see that cluster 0

places a negative weight on the feature whereas cluster 1 places a
positive weight on the same feature. Thus, when participants who
belong almost exclusively to cluster 0 use their phone excessively
in the evening, the model will be more likely to predict a sad day
tomorrow. In contrast, the model is more likely to predict a happy
day tomorrow for participants belonging almost exclusively to cluster
1 based on the same behavior.
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Figure 8.10: Distribution of
HBLR weights on the total
number of screen on events (5pm-
midnight) feature for each clus-
ter when predicting tomorrow’s
mood

However, because participants do not belong exclusively to one clus-
ter or another, the marginal distribution over a weight parameter for
a given participant can be more complex than a multivariate normal.
For example, Figure 8.11 shows an example of the weight distribu-
tions for 3 different participants. For Participant 5, the model has
constructed a bimodal distribution over the weight by combining
the distributions of multiple clusters. Thus, the model is able to cus-
tomize the decision boundary for each person while still clustering
the participants into similar archetypes.
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Figure 8.11: Example of dif-
ferent weight distributions
induced by the soft clustering
for 3 different participants in
the mood prediction. Partici-
pant 3 is almost exclusively in
cluster 1, participant 5 is has
membership in clusters 0, 1,
and 2, and participant 31 is
almost exclusively in cluster 2.

As described in Section 8.5.4.2, we would like to determine if the
clusters learned by the HBLR model differ significantly in terms of
the typical personality or mental health scores of the participants.
Following the procedure outlined in that section, we computed
the average scores for each cluster on each of the pre-study trait
measures (i.e. the matrix Q), then conducted a limited number of
significance tests with a Bonferroni corrcection to determine if there
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were significant differences among the clusters for some of the traits.
Since the HBLR clustering is based on latent factors underlying the
data that are unknown before training, it is not possible to determine
a prior what traits may be particularly relevant to a given cluster.
Below, we discuss the results of these computations for some notable
traits of the mood and stress clusters. We do not show the same
analysis for health, since the 17 different clusters in the health model
render it impractical to present the results.

Table 8.7 shows the relevant trait values for the mood clusters, includ-
ing the average value for those traits computed over all participants
in the study. According to these findings, the clusters learned by the
HBLR model in predicting mood can be characterized as a) Judging
and Sensing personality types; b) people with better than average
sleep quality (PSQI); c) Agreeable people, and d) happy Extraverts
with low state and trait anxiety. This could suggest that these traits
are highly relevant for predicting how a person’s mood will change
given the input features. For example, since poor sleep quality has
been shown to have a negative effect on mood (Bower et al., 2010),
perhaps the normally high sleep quality of participants in cluster 1

makes their mood more sensitive to sleep disturbances.

Cluster Pre-study measure All participants Cluster Qk,m t p
0 Percent happy days M = 49, SD = 37 56 -1.86 > .10
0 Judging M = 61, SD = 21 73 -7.69 < .001
0 Sensing M = 47, SD = 20 57 -7.22 < .001
1 Percent happy days M = 49, SD = 37 55 -1.81 > .10
1 PSQI M = 4.7, SD = 2.3 4.1 3.48 < .01
2 Percent happy days M = 49, SD = 37 41 2.29 > .10
2 Agreeableness M = 50, SD = 28 43 3.63 < .01
3 Percent happy days M = 49, SD = 37 78 -8.00 < .001
3 Extraversion M = 49, SD = 30 76 -13.1 < .001
3 State anxiety M = 38, SD = 10 30 10.9 < .001
3 Trait anxiety M = 43, SD = 10 36 9.85 < .001

Table 8.7: Post-hoc analysis
of the clusters learned for the
HBLR mood model, using
pre-study personality and trait
measures. Bolded entries repre-
sent significant differences from
the sample average.

It is particularly interesting to relate these results to the average value
for the weights learned for these clusters, as shown in Figure 8.12.
For example, it appears that the “Agreeable” cluster (cluster 2) places
high weight on four social interaction features; this is consistent
with research indicating that those with an Agreeable personality
type value getting along with others (John and Srivastava, 1999). In
contrast with this cluster, the “High sleep quality" cluster (cluster 1)
places negative weight on features related to SMS use in the evening.
Finally, we observe that the “Judging and Sensing” cluster (cluster
0) has a positive association with exercise, but a negative association
with time spent on campus.
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Figure 8.12: Mean feature
weights for mood clusters in
HBLR model. The positive
label is “Happy” so features
with positive (negative) mean
weights contribute to being
more happy (sad) tomorrow.

Note that we also examined whether the HBLR model would simply
cluster participants with a tendency to be particularly happy or
particularly sad together, in order to more easily make accurate
predictions. As shown in Table 8.7, three of the clusters do not differ
significantly from the group average in terms of average percent of
happy days, although cluster 3 (Extroverts with low state and trait
anxiety) does correspond to particularly happy participants.

The results of the same analysis of HBLR cluster pre-study measures
for the stress model are shown in Table 8.8. In this case, none of the
clusters differed significantly from the group average in terms of
the percentage of calm days. While we did not detect any significant
differences from the group average for cluster 0, cluster 1 represents
an intuitively salient group: conscientious people with a high GPA.
It makes sense that this clustering would be relevant to predicting
stress, since conscientious students who are concerned about their
grades are likely to have strong stress reactions in an academic en-
vironment. As shown in Figure 8.13 this cluster places a positive
weight on the “likelihood of day" feature, which is a measure of how
routine the participants location patterns were that day, and will be
higher if the participant travels mainly to typical work and home
locations. Stress cluster 2 represents students who are extraverted,
with slightly increased BMI and lowered physical health. In exam-
ining Figure 8.13, we can see that cluster 2 has highly positive mean
feature weights on the SMS features, which is consistent with the
trait of Extraversion. On the contrary, cluster 1 has highly negative
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weights on the social SMS features, meaning more SMS use for these
participants would increase the likelihood of predicting a stressful
day tomorrow. One of several possible explanations is that perhaps
these conscientious, high GPA students become stressed by having to
balance their academic goals and social life.

Cluster Pre-study measure All participants Cluster Qk,m t p
0 Percent calm days M = 48, SD = 38 46 .492 > .60
1 Percent calm days M = 48, SD = 38 55 -1.88 > .10
1 GPA M = 4.4, SD = .61 4.6 -3.95 < .001
1 Conscientiousness M = 51, SD = 28 58 -3.43 < .01
2 Percent calm days M = 48, SD = 38 39 2.32 > .10
2 Extraversion M = 49, SD = 30 58 -4.50 < .001
2 BMI M = 24, SD = 4.4 25 -4.09 < .001
2 PCS M = 58, SD = 4.2 57 3.77 < .01

Table 8.8: Computed pre-study
measures for the HBLR stress
prediction clusters. Bolded
entries represent significant
differences from the sample
average.

Figure 8.13: Mean feature
weights for clusters in HBLR
model. For stress the positive
label is “Calm” so features
with positive (negative) mean
weights contribute to being
more calm (stressed) tomorrow.

8.6 Personalized regression

Treating wellbeing as a binary state (e.g., happy vs. unhappy) is a
limitation of the previous results. Such a coarse approach could miss
important distinctions relevant for clinical applications. For example,
the lowest possible mood score is treated as equivalent to a slightly
lower than average score, while it is possible that only the former is a
clinically significant sign of depression. Being able to directly predict
a fine-grained estimate of mood, rather than a binary category, could
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be extremely valuable. Further, since the system relies on continuous
collection of data from many sources in real-world, daily life settings,
the data will inevitably contain noise. A robust ML system that can
provide an estimate of the degree of uncertainty for a given mood
prediction is therefore highly desirable.

To resolve these issues, in this section we train DNNs and Gaussian
Processes (GPs) to simultaneously predict tomorrow’s mood, health
and stress intensity from the same data. Multi-task learning (MTL)
is then in the same manner to train a personalized DNN. We use a
Domain Adaptation (DA) approach to customize GPs to the individ-
ual, adjusting the models to each person by updating the posterior
distribution of the GP – a method described in detail in the next sec-
tion. Empirical results demonstrate that the proposed personalization
results in considerable performance boost. To the best of our knowl-
edge, this is the first personalized approach for automatic prediction
of fine-grained self-reported mood and wellbeing levels. These per-
sonalized predictions of future mood and wellbeing have potential
to meaningfully improve real-world monitoring and intervention
applications.

8.6.1 Gaussian Processes for personalized domain adaptation

We consider a supervised setting for domain adaptation, where we
are given a relatively large amount of labeled training data (source
domain), and a considerably smaller set of labeled data in the tar-
get domain. Furthermore, we assume a person-dependent setting,
i.e., the (non-overlapping) data of target persons are available in
the source and target domain. Thus, our goal is to learn a general
prediction model from data of all persons, and then leverage the lim-
ited data of a target person to perform the model adaptation to that
specific person. Formally, let X and Y be the input (features) and
output (labels) spaces, respectively. We assume that the input space
is composed of the source and target domains, S and T , respectively,
that may differ in feature distribution. Hence, X(s) = {x(s)ns }Ns

ns=1

and X(t) = {x(t)nt }Nt
nt=1, with x(s)ns , x(t)nt ∈ RD, and Nt � Ns. Similarly,

Y (s) = {y(s)
ns }Ns

ns=1 and Y (t) = {y(t)
nt }Nt

nt=1 are the output labels for the

source and target domains, respectively, where y{s,t}
n represents the

intensity level of the wellbeing dimension that we wish to estimate
(i.e., mood, health, or stress).
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8.6.1.1 Gaussian Processes (GPs)

Here, we introduce briefly the modeling framework of GP regression,
that we use as the base model in our personalization approach via
domain adaptation. We employ GPs for two reasons: (i) it is a non-
parametric model, which allows us to efficiently capture non-linear
relationships between input features and output labels using kernel
functions; and (ii) due to its probabilistic nature, the model adapta-
tion can be performed in a principled manner by deriving a posterior
distribution conditioned on the adaptation (target) data. The GP
regression function is defined as:

y(v)
nv = f (v)(x(v)nv ) + ε(v), (8.3)

where ε(v) ∼ N (0, σ2
v ) is i.i.d. additive Gaussian noise, and the

index v ∈ {s, t} denotes the dependence on each domain. While
in a traditional GP, all data are considered to come from the same
domain, in our DA approach we focus on adapting models to new
domains. The objective of a GP is to infer the latent functions f (v),
given the training dataset D(v) = {X(v), Y (v)}. By following the
framework of GPs (Rasmussen and Williams, 2006), we place a prior
on the functions f (v), so that the function values f (v)nv = f (v)(x(v)nv )

follow a Gaussian distribution p(F(v)|X(v)) = N (F(v)|0, K(v)). Here,
F(v) = { f (v)nv }Nv

nv=1, and K(v) = k(v)(X(v), X(v)) is the kernel covariance
function. We use the radial basis function (RBF) kernel, defined as:

k(x, x′) = σ2
f exp

(
− 1

2`2 ‖x− x′‖2
)

, (8.4)

where {`, σf } are the kernel hyper-parameters. The regression
function is then fully defined by the set of hyper-parameters (hp)
θ = {`, σf , σv}. Training of the GP consists of finding the hyper-
parameters that maximize the log-marginal likelihood:

log p(Y (v)|X(v), θ(v)) =− tr
[
(K(v) + σ2

v I)−1Y (v)Y (v)T
]

− log |K(v) + σ2
v I|+ const. (8.5)

Given a test input x(v)∗ we obtain the GP predictive distribution
by conditioning on the training data D(v) as p( f (v)∗ |x(v)∗ ,D(v)) =

N (µ(v)(x(v)∗ ), V(v)(x(v)∗ )) with

µ(v)(x(v)∗ ) = k(v)
∗

T
(K(v) + σ2

v I)−1Y (v) (8.6)

V(v)(x(v)∗ ) = k(v)∗∗ − k(v)
∗

T
(K(v) + σ2

v I)−1k(v)
∗ , (8.7)

where k(v)
∗ = k(v)(X(v), x(v)∗ ) and k(v)∗∗ = k(v)(x(v)∗ , x(v)∗ ). For convenience

we denote µ
(v)
∗ = µ(v)(x(v)∗ ) and V(v)

∗∗ = V(v)(x(v)∗ ). In most appli-
cations, the GP mean function is used as the point estimate of the
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output targets. However, this is a generic model, i.e., it is not opti-
mized to achieve the best performance on each target person. We
describe below the adaptation approach based on GPs that we devise
for personalized estimation of mood, health and stress levels for each
target person.

8.6.1.2 GP Adaptation with Posterior Adaptation

The probabilistic nature of GPs allows us to easily incorporate new
data of a target person into the model, without re-training the model.
This results in a posterior distribution of GPs, rendering a personal-
ized regression function specifically tuned to the target person. To
this end, we exploit the Bayesian adaptation approach proposed in
(Liu and Vasconcelos, 2015; Eleftheriadis et al., 2016). The GP model
adaptation consists of the following three key components:

1. A GP trained on the source data with likelihood p(Y (s)|X(s), θ)

and hp θ is trained as a base model, and is defined by Eqs. (8.6–
8.7).

2. The posterior distribution of the base GP model is then used as a
prior for the GP evaluated on target (adaptation) data p(Y (t)|X(t),D(s), θ).

3. The posterior distribution over the target data is then corrected to
account for the adaptation data D(t) of the target person.

The prior over the target data in the second step is given by applying
Eqs. (8.6–8.7) on X(t) as:

µ(t|s) = K(s)
st

T
(K(s) + σ2

s I)−1Y (s) (8.8)

V (t|s) = K(s)
tt − K(s)

st
T
(K(s) + σ2

s I)−1K(s)
st , (8.9)

where K(s)
tt = k(s)(X(t), X(t)), K(s)

st = k(s)(X(s), X(t)), and the superscript
t|s denotes the conditioning order. Given the above prior and a test
input x(t)∗ (i.e., features of target person), the correct form of the
adapted posterior after observing the target person adaptation data is
given by:

µ
(s)
ad (x(t)∗ ) = µ

(s)
∗ + V (t|s)

∗
T
(V (t|s) + σ2

s I)−1(Y (t) − µ(t|s)) (8.10)

V(s)
ad (x(t)∗ ) = V(s)

∗∗ − V (t|s)
∗

T
(V (t|s) + σ2

s I)−1V (t|s)
∗ , (8.11)

with V (t|s)
∗ = k(s)(X(t), x(t)∗ )− k(s)(X(s), X(t))

T
(K(s) + σ2

s I)−1k(s)(X(s), x(t)∗ ).
Our personalized GP model based on posterior adaptation to the
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target person data (DA-GP) is fully defined by Eqs. (8.10–8.11). Note
that the final personalized prediction is a combination of the generic
(base) model based on the source data only, and a correction term,
which shifts the GP mean toward the feature distribution of the target
person, while reducing the model’s uncertainty in the estimated
output. In this way, the model automatically adapts to the range of,
for instance, stress levels specific to the target person.

8.6.2 Regression experiments
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Figure 8.14: Distribution of
self-report labels in the data.
Students frequently report
feeling healthy and stressed.

In the previous two sections, we chose to discard the middle 20-40%
of wellbeing labels, comprising the most neutral scores (i.e. those
most near the median), in order to disambiguate the classification
labels. Here, we use regression techniques to directly predict the
ordinal label values that were reported, meaning we are able to
make predictions for any of the available days. Figure 8.14 shows the
distribution of self-report values in the data.

To ensure that we are able to train robust personalized prediction
models, we restrict our attention to only those participants who
provided at least 25 days of data in which all data sources are present.
Since the data are noisy, this reduces the dataset to a total of 69

participants and 1895 days worth of data. These samples are then
divided into non-overlapping training, validation, and testing sets
using a 60/20/20% split.

The personalized models were compared to their single-task learning
(STL) counterparts, a standard GP and NN. The code for the GP and
NN models was written using gpml Matlab code2 and Tensorflow,

2 http://www.gaussianprocess.org/gpml/code/respectively. The GP model hyper-parameters were learned using
conjugate-gradient optimization (Rasmussen and Williams, 2006).
For the adaptation setting, we used the validation data of each target
person.

In training both the STL and MTL NN, a grid search was used to
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select hyperparameters (including the number and size of hidden
layers) by assessing performance on the validation set. By initializing
the MTL NN with the pre-trained weights of the STL NN, we found
we could successfully train a much higher capacity personalized
network. In the end, we found that an architecture of four hidden
layers with sizes 2048, 1024, 512, and 256, a dropout factor of 0.25,
and no L2 regularization gave the best performance for the STL
NN, and we therefore adopted the same architecture for the MTL-
NN. However, we found that while a batch size of 32 was effective
for training the STL NN, a batch size of 1 gave the best results for
training the MTL-NN. This could be because minibatch updates are
only an unbiased estimate of the true gradient when the samples
within a minibatch are uncorrelated, which necessitates a batch size
of 1 in the MTL setting.

8.6.3 Regression results

Model Mood Stress Health Total

Traditional
GP 16.0 17.2 16.7 16.6
NN 15.0 17.1 16.5 16.2

Personalized
DA-GP 14.8 16.4 14.6 15.3
MTL-NN 13.0 14.1 12.9 13.3

Table 8.9: MAE in predicting
wellbeing on the held-out test
set, for both traditional ML
models and personalized mod-
els. Bolded entries represent
significant improvements over
the non-personalized version of
the model (p < .05).

The Mean Absolute Error (MAE) obtained for both the traditional
and personalized models is shown in Table 8.9. While both the
MTL-NN and DA-GP offer reduced MAE in predicting each of
the 3 wellbeing scores, paired-samples t-tests revealed that these
differences are only consistently significantly different for the MTL-
NN model. This difference could be due to the fact that the MTL-NN
model has implicit knowledge of each of the participants’ ID, due to
the way the model is constructed. In contrast, the DA-GP must learn
which samples are most similar to each person, which constitutes
a more difficult problem. Further, the small number of samples per
person in the validation set (∼ 5 in this case) makes it difficult for the
DA-GP to perform a robust posterior correction (Eqs.(6-7)). Note that
we also attempted learning of the base GP model using both training
and validation data, however, the results only marginally improved
over the GP trained using training data only. This clearly shows the
benefits of the proposed personalized GP adaptation scheme.

Figure 8.15 shows the MAE for each person. For 61/69 people, the
personalized MTL-NN provides lower error than the generic NN.
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Figure 8.15: MAE per person
for both the personalized and
generic models. For 61 out of
69 participants, MAE is lower
with the personalized MTL-NN
model. For GPs, personaliza-
tion is better for 40 out of 69

participants.

While this effect is not as strong for the DA-GP, having a person-
alized model still benefits the majority of people. Clearly, person-
alization can not only provide performance advantages across all
participants, but it ensures that there are fewer people for whom the
model cannot make accurate predictions.
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Figure 8.16: NN and MTL-NN
predictions for each outcome
for a randomly selected subject
compared to the ground truth
mood report data, which has
been sorted by intensity and
connected with a trend line.

Figure 8.16 shows the actual predictions of the NN and MTL-NN on
each outcome label for three randomly selected participants. As is
evident in the figure, the MTL-NN is able to provide a close fit to the
ground truth data. Figure 8.16 also helps to demonstrate the degree
of individual variability within the data; while the average Health
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report was 65.60 (SD=23.08), the participant in Figure 8.16 (c) only
reports Health scores ranging from 76-98. This could explain why
the predictions of the non-personalizd NN are so frequently drawn
downwards toward the group average; it has no ability to learn
to adapt its predictions to this participants’ unique health pattern.
Similarly, Figure 8.17 shows the predicted mean and variance of the
DA-GP over the held-out test data.

(a) Mood (b) Stress (c) Health

Figure 8.17: Predicted mean
and variance over the held-out
test data as learned by the DA-
GP. The lines in red and green
represent the reported and
predicted scores, respectively.
As can be seen from depicted
certainty levels (in gray), the
predicted values are within one
standard deviation (uncertainty)
intervals estimated by GP.

In addition to assessing the absolute differences between the model’s
predictions and the ground truth, we are interested in determining
if the models are able to capture the true trends underlying partic-
ipants’ mood and wellbeing levels; in other words, which models
provide an overall better fit to the data? We assess this using the
Intraclass Correlation Coefficient (ICC(3,1)), which not only measures
the association between the model’s predictions and the true ratings
(as in Pearson’s correlation), but also penalizes absolute distance
from the ground truth. We find that the performance benefits offered
by the personalized MTL-NN and DA-GP are substantially more
pronounced in terms of ICC, as shown in Table 8.10. In this case,
the benefit of the DA-GP is clearly apparent, as it provides a 100%
improvement above the generic GP baseline. This is likely because
the adjustment made to adapt the mean and variance of the posterior
distribution for each person allows the DA-GP to adapt its predic-
tions toward each person’s true mean mood value. This dramatic
improvement in ICC therefore suggests that the personalized models
can more accurately distinguish the participants that have the lowest
mood and health, and the highest stress - an important ability for
most clinical applications.

Model Mood Stress Health Total

Traditional
GP .176 .358 .286 .274

NN .262 .422 .373 .352

Personalized
DA-GP .461 .587 .606 .551
MTL-NN .441 .621 .613 .558

Table 8.10: ICC, a measure of
model fit, in predicting well-
being on the held-out test set.
Bolded entries indicate an im-
provement of at least 50% over
the non-personalized model.
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8.6.4 Discussion

This work has empirically demonstrated that the performance of
machine learning mood prediction systems can be meaningfully en-
hanced by personalizing those models in a principled way. We have
outlined two methods for accomplishing personalization; by using a
Domain Adaptation approach to adapt the posterior distribution of
the model towards each person’s unique mood and wellbeing level,
and by using Multitask Learning to train a deep neural network with
specialized final layers for each person. Not only do these models
provide 13-22% lower average error than traditional models in mak-
ing fine-grained predictions about participants’ outcomes, but we
find that the personalized models provide a significantly better fit
to the data, improving ICC by as much as 160% above the generic
GP baseline. These performance improvements may have impor-
tant clinical benefits, such as enabling a model to better distinguish
between participants who are severely unhappy or stressed, which
then can enable more relevant and targeted treatments for improving
wellbeing.

Clearly, personalization can provide advantages in predicting mood
and wellbeing, a problem where interindividual variability is high.
However, it is important to note that by their nature, these models
are person-dependent; that is, they require at least some labeled data
from each person in order to be trained. While the DA and MTL
approaches discussed here provide the advantage that they can be
trained even when there is not enough data per-person to train many
individual person-specific models, in our case we still require at least
15 days of training data per person. This implies that a new user of
a mood prediction system built using these models would have to
input their mood and wellbeing for 15 days to obtain the level of
performance presented here.

While asking users to report their mood for roughly two weeks is
not unreasonable, given that most users of a quantified-self device or
system continue to use it for about six months (Patel et al., 2015), it
is important to note that simple extensions to the models can allow
them to make predictions in the absence of any self-reports from
a given user. For example, the MTL-NN could make predictions
for a new user by feeding the data through each output head and
averaging the predictions; we would expect this approach to recover
approximately the performance of the impersonal NN model. For
GPs, adapting to a new person is even simpler. In the case of the
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DA-GP posterior model, with only a few days of labeled data (e.g. 5,
in this case), it is possible to notably improve the predictions. It is not
necessary that a person’s data be part of the training set to perform
the adaption. Also, multi-task extensions of GPs are another venue
to pursue when personalizing models, in order to take advantages of
the MTL paradigm.

8.7 Conclusions

This work has demonstrated that accounting for individual differ-
ences through Multi-task Learning and Domain Adaptation can
substantially improve mood and wellbeing prediction performance.
This performance enhancement is not simply due to the application
of MTL, but rather through the ability of MTL to allow each person
to have a model customized for them, but still benefit from the data
of other people through hidden layers of a deep neural network, ker-
nel weights, or a shared prior. The methods we have explored offer
different strengths, including the ability to learn how the importance
of feature types differs across tasks, and the ability to learn implicit
groupings of users.

A major limitation of this research relates to the relatively small
sample size. With data from more individuals and with longer
monitoring per person, it may be possible to build time series models
for forecasting, which could be even more accurate and powerful if
personalized. In the ideal case, we would like to be able to predict
a person’s wellbeing far into the future, rather than just one day
in advance. Given the scope of the work undertaken here, there
are many other aspects that could be enhanced. For example, the
features were selected using a generic method that did not take
the classifier type into consideration. We also do not use several
features suggested by other work as important for mental health
and wellbeing (Sano, 2015). Future work will more deeply examine
these cases and their interplay with a personal model. Further, we
can also incorporate exciting new techniques for improving MTL in
future, for example by combining the hierarchical Bayesian approach
with deep neural networks (DNNs) (Salakhutdinov et al., 2013), or
training DNNs that are able to quickly adapt parameters in order to
learn new tasks (Finn et al., 2017a). Since the publication of this work,
our group has continued research into forecasting mood, stress, and
health, and has found that using recurrent models such as LSTMs
to learn trends in behavior can lead to further improvements in
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forecasting performance (Umematsu et al., 2019).

It is worth emphasizing that the presented algorithms could provide
the ability to make predictions about a novel person who has not
provided any self-report labels. If this person is willing to complete a
personality inventory, predictions can be made immediately using the
MTL-NN and MTMKL models, which are based on K-means clusters
computed from personality and gender data. The HBLR model can
be extended to make mood predictions for a novel user who has not
provided classification labels, by applying MCMC to her data (Xue
et al., 2007). In future work, we will assess the classification accu-
racy of these models on novel participants. A strongly motivating
application goal is to be able to detect individuals with low wellbeing
or mental health in order to guide prevention or early intervention
efforts. If new users were only required to install an app that did not
depend on them inputting mood data, interventions would be able to
reach a larger population.

Another aim of this research is to generate hypotheses about prob-
lematic behaviors that are indicative of low mood and mental
health, a line of research that our group has continued to investigate
(Nosakhare and Picard, 2019). Through examination of the model
weights and clusters, we hope to gain insight into the behaviors that
are significant wellbeing predictors for people with different per-
sonalities and lifestyles. Once hypotheses related to these behaviors
have been refined, we can test them via causal inference techniques
such as counterfactual reasoning. These inferences would be useful
for anyone wishing to know what types of behaviors best promote a
happy, calm, and healthy state.

Finally, we hope that by providing the code for these techniques,
other authors will be encouraged to use them to personalize models
for a wide variety of problems in which interindividual variability is
important. When used in conjunction with the analysis techniques
outlined here, these models may not only lead to the discovery of
interesting insights across many problems, but may help to signifi-
cantly enhance performance in predicting difficult, ambiguous, and
personal outcomes.
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8.8 Statement of contributions

This chapter comprises material from 4-5 papers. The initial ex-
periments described in Section 8.4 began as a class project which
myself, Sara Taylor, Asaf Azaria, and Asma Ghandeharioun worked
on jointly, in consultation with Akane Sano and Rosalind Picard.
Asaf wrote the code for the GMM location model, while Asma, Sara
and I wrote code to extract physiology, smartphone, and survey
features. I wrote the code for the machine learning models and ran
those experiments. Later, Sara and I continued developing the data
processing code, and I wrote an algorithm to extract steps from the
accelerometer data and proposed accelerometer- and temperature-
weighted EDA features, while Sara wrote code to scrape weather
data and extract features from it. Sara also used her knowledge of
signal processing to contribute significantly to the development
of the physiology features. I proposed and conducted the feature
evaluation.

The idea for using multi-task learning to personalize machine learn-
ing models to the individual was something I pushed forward after
my Master’s thesis advisor, Cristina Conati, encouraged me to read
Melih Kandemir’s PhD thesis. I proposed adopting Kandemir’s
MTMKL model to the SNAPSHOT data. Sara and I worked together
on this idea, jointly coding MTMKL and using it to multi-task over re-
lated wellbeing labels, leading to an initial workshop publication. We
then continued in this direction by actually using MTMKL for per-
sonalization, and adding the personalized neural network and HBLR
models. I was responsible for the neural network code. Sara and I
worked together to code the HBLR model given the (often erroneous)
descriptions in the original paper; Sara took a lead role in translating
these equations into code. During this phase of the project, we also
worked with Ehi Nosakhare, who conducted a wide literature review
and consulted with us on many aspects of the project, as well as
Akane Sano who continued to provide support and advice. Rosalind
Picard advised throughout.

The personalized regression experiments were conducted in service
of a fourth paper which I wrote with Ognjen Rudovic and Rosalind.
I wrote code for and trained the neural network models, and Ognjen
wrote code for and trained the Gaussian Process models. I devised
and conducted the analysis of the results.
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9 Conclusion

Social learning is a core component of humans’ impressive intel-
ligence, enabling us to rapidly transmit knowledge and adapt to
new situations. The work presented in this dissertation developed
techniques for improving the social learning capabilities of artificial
intelligence (AI), using and improving upon the tools of machine
learning, deep learning, and reinforcement learning.

Chapter 3 introduced novel mechanisms for social learning from
other AI agents in a multi-agent system. Agents modeled the effect
of their actions on the behavior of other agents, allowing them to
coordinate and communicate more effectively. We note that multi-
agent training provides the advantage of allowing for social learning
in simulation, where it is possible to learn complex coordinated
behaviors by scaling up to millions of interactions.

However, learning from other AI agents will be insufficient to solve
many real-world tasks where humans are the ultimate authority
on good performance, such as conversation (Chapter 4), music gen-
eration (Section 4.3), or drawings and art (Chapter 5). Yet asking
humans to manually label correct performance does not scale ef-
fectively, as shown in Chapter 4. Therefore, in Chapters 4 and 5, I
showed that ML models can enhance their performance by learning
from implicit cues gleaned from interacting with humans, allowing
them to learn from human feedback without additional human ef-
fort. These models were intrinsically motivated to produce positive
reactions in humans (such as smiles).

Eventually, we would like to build an AI agent that is intrinsically
motivated to increase human wellbeing, satisfaction, and flourishing,
because such an agent is more likely to be safe and useful. Doing
so may require going beyond simple cues like facial expressions,
instead using ML to infer people’s underlying mental and affective
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states. Therefore, Chapter 6 presented techniques for detecting when
humans are enjoying a conversation and experiencing bonding
and rapport, and Chapter 8 developed methods for predicting an
individual’s stress, health, and happiness using personalized multi-
task learning.

Learning from humans presents several challenges. Data are often
limited, noisy, and even missing. Chapter 7 presents several tech-
niques for working with noisy data and inferring missing elements.
When training a system meant for human use, it may not be possible
to allow the system to learn online during interactions with humans,
because it could potentially learn unsafe or inappropriate behavior.
Chapter 4 presented novel techniques for learning from a fixed batch
of limited human interaction data using RL, even when it is not pos-
sible to learn online and explore. Finally, many of the techniques
presented in this dissertation leverage transfer learning to first train
a reasonable policy, and then fine-tune with limited human feedback.
This ensures that scarce human feedback data are used as effectively
and efficiently as possible.

9.1 Future work

This dissertation lays the groundwork for creating a unified pipeline
for training agents with enough social intelligence to flexibly coordi-
nate with and learn from humans in the real world. Training from
scratch with purely human data is unlikely to scale effectively. There-
fore, we can use multi-agent training in simulation as a first step. We
can create new social learning mechanisms inspired by human social
intelligence, and test them in simulation. Once agents have learned
reasonable policies for inferring the intentions of other agents and
coordinating with them, we can use transfer learning to deploy these
agents to interact with humans. By sensing human feedback, both
implicitly and potentially through better language understanding,
these models can continue to learn online in the real-world. Below, I
describe the steps of this research agenda in detail.

The area of multi-agent social learning has only begun to be explored.
An abundance of insights from social and cognitive psychology (e.g.
Tomasello (2009a); Laland (2017); Barkow et al. (1975); Leibo et al.
(2019); Humphrey (1976); Rendell et al. (2010)) can be leveraged
to create AI agents which are able to coordinate with other agents,
socially transmit information, and adapt more flexibly and intelli-
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gently to new environments. I have shown in this dissertation that
counterfactual reasoning and causal inference, when combined with
modeling the behavior of other agents, is a promising direction for
improving multi-agent cooperation. Counterfactual reasoning can be
used to allow an agent to understand the causal impact of its actions
on another agent. In future work, we can use similar techniques to
allow an agent to swap itself into the place of another agent, and
compute whether an action it would like to take would affect the
other agent positively or negatively. Essentially, we allow the agent
to ask, “How would I feel if the other agent did this to me?”. By re-
warding the agent for only taking actions which it predicts will help
others, we can create a golden rule incentive that can drive coopera-
tion. These cooperative approaches could be scaled to domains that
involve complex, dynamic, ad-hoc coordination between multiple
agents with different intentions.

Beyond causal reasoning, there are many ways to think about social
incentives that can improve exploration and generalization. Multi-
agent learning leads to a combinatorial explosion in the size of the
action space, making exploration extremely difficult. This could po-
tentially be alleviated by rewarding specialization among the agents
through a multi-agent version of the diversity incentive proposed by
Eysenbach et al. (2018).

Multi-agent communication could be improved through a motivation
to create messages that are attended to by multiple other agents.
Interestingly, the motivation to garner attention from others appears
to exist in both humans and primates (Barkow et al., 1975). Further,
if we assume that agents are building models of other agents, we can
give agents a motivation to be positively modeled by others, akin
to impression-management strategies in humans. This could also
help drive cooperative, prosocial behavior. Finally, curiosity over
other agents could drive more sophisticated interactions with, and
modeling of, others.

We can use human coordination games as an exciting test-bed for
whether learned multi-agent policies generalize to coordinating with
humans – an ability required of future AI systems deployed to the
human environment. Using transfer learning techniques similar to
those presented in this dissertation, agent-agent cooperative policies
learned in simulation can be deployed to interact with humans in
these games. Tools such as meta-learning could be leveraged to
ensure that agents are able to quickly adapt to new agents which
they have never encountered before. The previously developed social
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learning techniques can guide agents to inferring the intentions of
humans in these games and learning to coordinate with them.

Finally, we would like to learn from other forms of human feedback,
especially when deploying agents to the real world where rich non-
verbal social cues may provide additional information about humans’
internal affective states. While facial expressions and text are just two
modalities that humans use to express themselves, recent research
has shown that information indicative of a person’s mental state can
be automatically detected in their tone of voice (e.g. Scherer et al.
(2015)), or their body language (e.g. Jaques et al. (2016b)). Incorporat-
ing those predictions as additional feedback for training AI agents,
including physical agents such as robots, represents an important
next step.

If the efforts above are successful, it could potentially lead to the
development of not only smarter, more functional AI, but systems
that can flexibly adapt to and coordinate with humans, in order to
optimize for our goals and preferences. Many resarchers have argued
the importance of social learning for human cognitive and cultural
devleopment (Harari, 2014; Laland, 2017; Henrich, 2015; Kleiman-
Weiner, 2018; Herrmann et al., 2007; van Schaik and Burkart, 2011).
I believe that improving the social intelligence of machine learning
algorithms could be the impetus for a significant breakthrough in AI,
just as improvements in social intelligence were critical for human
development.



309

Bibliography

Abadi, M. et al. (2015). TensorFlow: Large-scale machine learning on
heterogeneous systems. Software available from tensorflow.org.

Abbeel, P. and Ng, A. Y. (2004). Apprenticeship learning via inverse
reinforcement learning. In Proceedings of the twenty-first international
conference on Machine learning, page 1. ACM.

Abdolmaleki, A., Springenberg, J. T., Tassa, Y., Munos, R., Heess, N.,
and Riedmiller, M. (2018). Maximum a posteriori policy optimisa-
tion. arXiv preprint arXiv:1806.06920.

Adedokun, O. A. and Burgess, W. D. (2011). Analysis of paired
dichotomous data: A gentle introduction to the mcnemar test in
spss. Journal of MultiDisciplinary Evaluation, 8(17):125–131.

Agarwal, R., Schuurmans, D., and Norouzi, M. (2019). Striving for
simplicity in off-policy deep reinforcement learning. arXiv preprint
arXiv:1907.04543.

Agrawal, P. (2018). Computational sensorimotor learning. PhD thesis,
University of California, Berkeley.

Aichele, S., Rabbitt, P., and Ghisletta, P. (2016). Think fast, feel fine,
live long: A 29-year study of cognition, health, and survival in
middle-aged and older adults. Psychological science, 27(4):518–529.

Ambady, N. and Rosenthal, R. (1992). Thin slices of expressive
behavior as predictors of interpersonal consequences: A meta-
analysis. Psychological bulletin, 111(2):256.

Ardila, D., Kiraly, A. P., Bharadwaj, S., Choi, B., Reicher, J. J., Peng, L.,
Tse, D., Etemadi, M., Ye, W., Corrado, G., et al. (2019). End-to-end
lung cancer screening with three-dimensional deep learning on
low-dose chest computed tomography. Nature medicine, page 1.

Argall, B. D., Chernova, S., Veloso, M., and Browning, B. (2009).



310

A survey of robot learning from demonstration. Robotics and
autonomous systems, 57(5):469–483.

Argyle, M. (1972). Non-verbal communication in human social
interaction.

Arora, S., Cohen, N., and Hazan, E. (2018). On the optimization of
deep networks: Implicit acceleration by overparameterization. arXiv
preprint arXiv:1802.06509.

Arroyo, I. et al. (2009). Emotion sensors go to school. In AIED, volume
200, pages 17–24.

Astrid, M. et al. (2010). How our personality shapes our interactions
with virtual characters-implications for research and development.
In IVA, pages 208–221.

Avola, D. et al. (2013). Human body language analysis: A preliminary
study based on kinect skeleton tracking. In ICIAP, pages 465–473.

Azizzadenesheli, K., Brunskill, E., and Anandkumar, A. (2018). Ef-
ficient exploration through bayesian deep q-networks. In 2018
Information Theory and Applications Workshop (ITA), pages 1–9. IEEE.

Bahdanau, D., Brakel, P., Xu, K., Goyal, A., Lowe, R., Pineau, J.,
Courville, A., and Bengio, Y. (2016). An actor-critic algorithm for
sequence prediction. arXiv preprint arXiv:1607.07086.

Baker, B., Kanitscheider, I., Markov, T., Wu, Y., Powell, G., McGrew,
B., and Mordatch, I. (2019). Emergent tool use from multi-agent
autocurricula. arXiv preprint arXiv:1909.07528.

Bandura, A. and Walters, R. H. (1977). Social learning theory.

Barkow, J. H., Akiwowo, A. A., Barua, T. K., Chance, M., Chap-
ple, E. D., Chattopadhyay, G. P., Freedman, D. G., Geddes, W.,
Goswami, B., Isichei, P., et al. (1975). Prestige and culture: a bioso-
cial interpretation [and comments and replies]. Current Anthropology,
16(4):553–572.

Barreira, P., Basilico, M., and Bolotnyy, V. (2018). Graduate student
mental health: Lessons from american economics departments.
Technical report, Working paper). Retrieved November 29, 2018,
from https://scholar. harvard âĂę.
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