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Abstract

In many scientific experiments, it is imperative to minimize the unintended effects
of variables other than the independent variables. Temperature, pressure, and gas
levels are factors controlled to a certain extent using expensive climate-controlling
technology, yet the resolution for monitoring their levels is generally low. The down-
ward scaling of communication-enabled electronics in size, cost, and energy provides
a potential toolset for tracking such data with high spatial and temporal resolutions.
We establish a data collection methodology through a low-cost, small footprint dis-
tributed network system of modules that records data in a remote server. The system
architecture allows for increased spatial resolutions, demonstrates high precision of
measurements, and investigates room dynamics. Modules are fabricated using com-
mercial sensors such as the ESP8266, BME680, and TCS34725. In this paper, we
propose a temperature prediction model using adaptive filter methodologies to learn
the relationship between thermal fluctuations at distinct locations within a lab envi-
ronment.

Thesis Supervisor: Joseph D. Steinmeyer
Title: Principal Lecturer
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Chapter 1

Introduction

1.1 Background

In the life sciences, logging the environmental conditions of experiments is often crit-

ical to ensuring reproducibility. Temperature, pressure, humidity, gas concentration,

and lux typically play important roles in biological experiments; slightly different

values of such metrics for the same experiment can significantly change the results.

As such, an incomplete picture of these factors may confound the underlying mech-

anisms being monitored and mislead researchers, causing the researchers to rerun

experiments to ensure that marginal fluctuations did not lead to varying results [1].

For that reason, it is vital to accurately monitor the experimental environment.

Controlling and monitoring environmental factors have been made possible through

intricate climate-controlled buildings using a heating, ventilating, and air condition-

ing system [2] and cell culture incubators that require precise handling [3, 4, 5].

However, their resolution of control is limited to setting environmental factors to one-

dimensional values, and knowing whether environmental conditions are completely

uniform or how they vary across the environment is not trivial. When measured at

locations meters apart, environmental factors can significantly differ and experience

varying levels of fluctuations throughout the day [6]. Placing sensors at every rele-

vant location does not practically scale, for sensors at numerous relevant locations

can quickly strain financial costs and become obtrusive in an experimental setting.
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However, understanding how fluctuations from one location pervades and affects en-

suing fluctuations at another location can help with understanding the dynamics of a

closed environment. To do so, it is crucial to track these fluctuations at a high spatial

and high temporal resolution.

The recent rise in the Internet of Things (IoT) has promoted wireless sensor net-

works (WSN) as an alternate means for environmental monitoring. WSNs are spa-

tially flexible and effectively capture metrics from various parts of a local environment

[7]. This property has allowed WSNs to be used for various tasks related to environ-

mental monitoring such as tracking [8, 9], localization [10], data reduction [11], and

energy conservation [12]; it makes a WSN a suitable candidate to log the environ-

mental fluctuations at different locations within a confined space. However, knowing

the number and configuration of sensor nodes necessary to properly monitor an envi-

ronment is difficult. A WSN without enough nodes or a proper configuration can fail

to capture important signals in the environment. Recognizing how a node’s measure-

ments can be interpolated from neighbor nodes’ measurements is essential in order to

save energy, transmit less redundant information, and simplify the complexity of the

WSN.

In order to understand how fluctuations from different locations affect each other,

we created a WSN with a low cost and a small footprint design, developed a system

to collect and store measurements, and set up several experiments targeting temper-

ature fluctuations. We present a novel approach towards modeling how temperature

signals at arbitrarily sparse locations within an environment can be predicted. A

correct model not only provides more transparency into how environmental factors

pervade their environment but also simplifies the monitoring system by identifying

and removing inessential nodes whose measurements can be interpolated. Our belief

is that a temperature signal’s high temporal fluctuations are correlated to both its

and nearby temperature signals’ previous values.

18



1.2 Contributions

In this paper, we show how a WSN created from commercially available sensors and

microcontrollers can be used to model room dynamics. More specifically, our work

contributes towards the methodology of using a LMS-based adaptive filter to predict

temperatures monitored by a WSN. The main goal of this paper is to test the hypoth-

esis that, within an environment, temperatures at different locations are inherently

related, and their future values can be determined by learning high temporal trends

in their past values.

In doing so, we constructed an end-to-end system where multiple wireless sensor

nodes asynchronously log measurements in a central server. The primary function of

this system was to capture various environmental factor signals at distinct locations

at a high frequency to avoid aliasing, the misidentification of a signal due to improper

sampling. We trained our adaptive filter model with these measurements to identify

the attributes of temperature signals that reveal thermal trends.

With an accurate characterization of how environmental factors propagate through-

out a room, we can simplify the data models describing those dynamics. Furthermore,

simplification of information networks by removing nonessential sensor nodes allows

WSNs to transmit less redundant data and reduce energy consumption.

This thesis explores temperature prediction through high-temporal trends with

four principal contributions:

1. demonstrating that significant high temporal trends do not provide value in our

configuration for predicting temperatures with room-temperature fluctuations

2. revealing that distinguishability between two temperature signals in a general

room positively correlates to the physical distance in between them

3. providing evidence that a static linear model does not adequately characterize

the dynamics between temperature fluctuations

4. introducing a scalable low-cost and small footprint WSN to monitor tempera-

ture, humidity, pressure, gas, and lux
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1.3 Organization

Chapter 2 introduces existing applications of WSNs and LMS-based filters. Chapter 3

presents an overview of our system’s architecture. Chapter 4 details our procedure for

training and evaluating a LMS-based model for predicting temperatures. Chapter 5

dives into different WSN configuration setups and the performance analysis of the

trained models. Chapter 6 concludes the paper with a summary of our work, our

results, and their implications. Chapter 7 introduces supplemental work done for the

project.
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Chapter 2

Related Work

Using a WSN for a prediction focused, LMS-based scheme is novel. However, there

exist several other studies of using WSNs for other applications, and LMS filters

have been used to predict temperature on a smaller scale. The following are some

applications of our WSN and their comparison to how other related works have been

used in the field.

2.1 Tracking

Our WSN tracks fluctuations throughout a room by frequently recording environ-

mental factors. In doing so, the WSN passively tracks events, which we define as

the underlying mechanisms that induce fluctuations throughout the room, such as

convection currents for heat transfer. This differs from other WSNs that actively

identify and track events to conserve energy by turning off sensor nodes that are far

from the event [8]. Another work, unlike both of these cases where the sensors of the

WSN are statically situated, directly tracks moving objects by physically attaching

sensors to the objects [9].
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2.2 Localization

Through our methodology, we aim to have our sensor nodes learn to predict their

future values based on other nodes’ previous values. We believe that relations between

these nodes can be constructed even without knowing distances between nodes or their

absolute locations within their environment, so we opt to exclude location information

from our model. We expect since a room is generally well behaved in terms of thermal

and environmental gradients, that nodes closer together will have a stronger impact

in predictions and that these patters should be learned by our model during training.

Some other works place more significance in determining relative spatial coordinates

of their nodes, for their nodes perform actions dependent on location [10].

2.3 Data Reduction

Due to the importance of fluctuations in our model, we aim for sensor nodes to capture

as much information about the environment as possible for purposes of avoiding

aliasing. Our system logs data at a rate of 45 measurements per node per minute,

far faster than any reasonable environmental gradient that we expect to encounter.

After successfully identifying patterns in the data, our models can be optimized to

recognize which nodes are unnecessary for data estimation and identify the optimal

rate of measurements to estimate accurately, thereby reducing data transmissions and

hardware needs. As a result of the high throughput of data being logged, our sensor

nodes post their data in batches to avoid congestion while the server writes the data

to a database. Other works place more importance in optimizing bandwidth, energy,

and data throughput usage, and employ a more complex adaptive data aggregation

scheme to wirelessly transfer information [11]. In some schemes data aggregation

eliminates redundancy in information collected by nodes, thus reducing transmissions

and energy usage [12].
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2.4 LMS-based Prediction Scheme

Other works have used a LMS-based temperature prediction scheme to maximize the

performance of their systems ranging from the chip level to the level of a power plant

[13, 14]. Similar to how our system applies a LMS filter to learn how fluctuations

influence distinct locations within a space to predict temperature readings, another

work focuses on energy efficiency by applying a LMS filter to predict data and reduce

transmissions [15].
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Chapter 3

System Overview

There are three main components of our system as shown below in Figure 3-1. The

first is the physical environment in which temperature, humidity, pressure, gas, and

lux fluctuations are being monitored. Next is the WSN that comprises of independent

sensor nodes that each asynchronously post aforementioned measurements to our

server’s web application endpoint. The last is the centralized data server that hosts

the web application and records the measurements in a SQLite database.

Figure 3-1: System Architecture - environment, sensor nodes, and data server
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Figure 3-2: Outline of room 38-500 on MIT campus

3.1 System Environment

For our environment, we chose to use lab room 38-500 on MIT campus. It features

a spacious and air conditioned environment that is easily accessible. Though it is a

public space for those affiliated with MIT, there are many discreet places to station

the sensor nodes, such as on window sills and on the top shelves of lab benches.

Figure 3-2 depicts an outline of the lab space.

3.2 Wireless Sensor Nodes

A secondary goal for our work was to produce an inexpensive and small solution for

environmental monitoring, so we sought to build our own wireless sensor nodes. In

total, we built eight nodes to collect data across the lab.

3.2.1 Components

The physical makeup of our wireless sensor nodes consists of Espressif’s ESP8266

system-on-a-chip microcontroller on the D1 mini breakout board, Bosch Sensortec’s

BME680 environmental sensor on Adafruit’s breakout board, and the TCS34725 color

26



sensor on Adafruit’s breakout board. The ESP8266, popular for its low price, has

Wi-Fi capabilities that allow for our nodes to operate wirelessly from our server.

Each node monitors a variety of environmental factors within the lab by using the

BME680 to capture temperature, humidity, barometric pressure, and volatile organic

compounds (VOC) and the TCS34725 to measure illuminance. Below, Figure 3-3

demonstrates how the three components can be hooked up on a breadboard.

Figure 3-3: Sensor Node comprised of the ESP8266, BME680, and TCS34725

3.2.2 Firmware

The firmware programmed onto the ESP8266 microcontroller directs each node to

collect and send data to the server. Capturing data at a high temporal resolution is

essential to ensure that we did not overlook subtle yet significant changes in data.

Our nodes performed readings at a rate of 45 measurements every minute. However,

synchronizing measurement timings among nodes proved challenging, so we opted

to have each node retrieve the local time from the server when posting their data

and independently associate timestamps with each measurement. To reduce data

transmission frequency to the server, nodes store measurements in memory and sent

them in a batch once they reached a fixed number of 60 measurements.
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Figure 3-4: Example rows in SQLite database

3.3 Data Server

The server on the receiving end of data transmissions from sensor nodes hosts a

flask-based web application with an endpoint specific for nodes to post data and

for generating plots of posted data for viewing. Upon receiving and parsing the

transmitted data, the server writes to a table in a SQLite database, recording the node

identifier, the measurement time stamp, and the various environmental metrics as

shown in Figure 3-4. Afterwards, the server returns the local time to the transmitting

node to update the node’s measurement timing. Moreover, the server plots each

node’s measurements over time, as shown in Figure 3-5. That way, trends can be

visually identified, and any node outages can be easily discovered.
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(a) Temperature (b) Pressure

(c) Humidity (d) Gas

(e) Lux (f) Red Green Blue Intensity

Figure 3-5: Example plots of measurements from one node
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Chapter 4

Problem Setup, LMS-based Model,

and Experimental Procedure

In this chapter, we start with introducing the ideas of adaptive Wiener filters and

the highly regarded LMS algorithm. We proceed with formalizing the problem and

examine how our model looks to solve it. We then detail the steps in our experimental

procedure for processing data, training the model, and evaluating the model.

4.1 Wiener Filters

Wiener filters, a class of adaptive linear filters, minimize the mean squared error

(MSE) between a desired random process’s signal and an estimated signal generated

via a linear combination of past and present values of signals related to that random

process. Typically, many realizations of the signals’ statistics are required for these

filters to estimate reliably. However, these filters can be designed with the assumption

that the signals are ergodic, meaning that they are stationary and their statistical

averages are equivalent to their time averages. Adaptive linear filters commonly

come in the form of a transversal structure, as shown in Figure 4-1, where the output

signal is estimated by linearly combining delayed samples of one signal, and a linear

combiner structure, as shown in Figure 4-2, where the output signal is estimated by

linearly combining several different signals.
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Figure 4-1: Transversal Filter Structure

Figure 4-2: Linear Combiner Structure

4.2 LMS Algorithm

The LMS algorithm is the most popular solution to determining Wiener filter coeffi-

cients and is a stochastic implementation of the steepest-descent algorithm. It aims

to minimize the MSE between the output and desired signals, and, for our purposes,

our only requirement is that weights converge for our filter.

4.3 Problem Definition

A WSN is located in a spacious lab environment with several independent nodes ar-

bitrarily spaced out from one another, as shown in Figure 3-2. Each node frequently

measures its local temperature. We design a model that can predict future temper-

ature values at the node locations without relying on spatial relations between the

nodes or how the lab space is controlled.
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4.4 Transversal Filter and Linear Combiner Model

The fluctuations in temperatures at precise locations are hard to determine. Treating

temperature signals as a random process, we apply the idea of a Wiener filter with a

transversal structure to use past and present values of the temperature signal at one

node to predict the signal’s future values. Moreover, we believe there are correlations

between temperature fluctuations at distinct parts of the room. Therefore, we expand

our filter structure with a flavor of the linear combiner structure by including other

nodes’ past and present values of their temperature signals as inputs.

More formally, with 𝑁 distinct nodes, we define temperature signals at the node

locations as 𝑋1, 𝑋2, ..., 𝑋𝑁 . For each temperature signal, 𝑋𝑖, we build a Wiener filter

with desired output as that temperature signal, 𝑋𝑖, and filter input based on histories

of all the temperature signals. By nature, the measurements are discrete-time signals,

so with history length 𝐻, our input, 𝑥(𝑛), of size 𝑁 *𝐻 is of the form:

𝑥(𝑛) = [𝑥1(𝑛), 𝑥2(𝑛), ..., 𝑥𝑁(𝑛)] = [𝑋1[−1], 𝑋1[−2], ..., 𝑋1[−𝐻],

𝑋2[−1], 𝑋2[−2], ..., 𝑋2[−𝐻],

...,

𝑋𝑁 [−1], 𝑋𝑁 [−2], ..., 𝑋𝑁 [−𝐻]]

(4.1)

With filter tap weights for each input, 𝑤𝑖(𝑛), our filter is depicted in Figure 4-3.

This leads to a filter output, 𝑦(𝑛), as shown below in Equation 4.2.

𝑦(𝑛) =
𝑁−1∑︁
𝑖=0

𝐻−1∑︁
𝑗=0

𝑤𝑖[𝑗]𝑥𝑖[𝑗] (4.2)

We optimize tap weights 𝑤𝑖(𝑛) such that the estimation error 𝑒(𝑛) = 𝑥𝑖(𝑛)− 𝑦(𝑛) is

minimized by using the LMS algorithm.
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Figure 4-3: Adaptive Transversal Filter and Linear Combiner

4.5 Procedure

Using the Wiener filter model discussed prior, we lay out the steps taken in training

and evaluating the model. At a high level, our procedure begins with preparing the

data to train the Wiener filter. We then take measures to find the best datasets

for training weight coefficients by looking for significant changes. Determining sig-

nificance is not straightforward, so we elaborate on an extensive process to elevate

periods with stronger fluctuations. Afterwards, we feed those datasets into the LMS

algorithm to obtain optimal weight coefficients. Because we are looking to predict

temperature values for every sensor node, the number of weight coefficient sets is

equivalent to the number of nodes. We end with comparing weight coefficient dis-

tributions among those sets and evaluating our model by using each weight set to

predict future temperature signal values.
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4.5.1 Data Preprocessing

Wiener filters generally require priori knowledge of the desired signal. However, with

the assumption that the desired signal is ergodic, time averages of the signals can be

used in lieu of having the priori. Therefore, the data is preprocessed into discretized

time averages before being fed into the LMS algorithm and filter model. Moreover,

time averages overcome the lack of time synchronous measurements between different

sensor nodes as mentioned in subsection 3.2.2, providing measurement normalization.

4.5.2 Locating Training Spots

Through a rigorous process, we deliberately identify periods of data to best train

our model. Naturally, temperatures fluctuate throughout the day, noticeably rising

while the sun is out and falling throughout the night. As such, we suspect that there

are certain time periods where an event has occurred to better train our model than

others time periods where no event has occurred. Therefore, before training weight

coefficients, we search through the data for such events that act as a unit input to our

system and our filter. However, the duration of an event and the extent that mea-

surements fluctuate during an event are not obvious. For that reason, we investigate

multiple temporal resolutions of fluctuations by parsing datasets and measuring the

temperature fluctuations between data points separated by various time deltas.

Time Deltas

We expect significant changes within the time frame of an hour or less to indicate that

an event has occurred. The exact length of time at which an event occurs is unknown,

so we look for quick swings in temperature at varying temporal resolutions from one

minute to one hour. Doing this helps avoid misclassification of random noise at high

temporal resolutions and overall daily temperature trends at low temporal resolutions

as significant events. With the data in the form of time averages from the process

detailed in subsection 4.5.1, we iterate through each node’s temperature data and

compute the temperature changes for varying time deltas ranging from temperatures
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measured one minute apart to those measured one hour apart. In doing so, we obtain

multiple sets of temperature fluctuations for each node’s temperature data.

Significant Periods

Determining whether one time period is significant enough to indicate an event is not

trivial. However, we can use the following observations to quantify significance.

1. If an event has occurred, we expect it to function as a unit impulse to our system

and reflect significant fluctuations for its time period regardless of the temporal

resolution of the fluctuations; significant fluctuations between data points a few

minutes apart will aggregate and manifest between data points further apart.

For that reason, we can determine significance in a manner self-contained to

time deltas. We aggregate time period significance over all time deltas to cause

events to stand out.

2. Distinct sensor nodes may experience varying magnitudes of temperature change

for the same time period. One node’s most significant temperature difference

may be considered small in comparison to a node in a more volatile location. As

such, we compare a node’s temperature fluctuation only to other fluctuations

of that same node to determine significance.

3. Temperature fluctuations in distinct locations in the lab area may be negatively

correlated. For example, temperature changes in one part of the lab may trigger

heating and cooling vents to counteract them. Thus, a sensor node at that part

of the room may experience a temperature change opposite to one near a vent.

Therefore, we are concerned more with the magnitude of temperature differences

rather than their values.

With the aforementioned premises, we have scoped the problem of locating sig-

nificant events to ascertaining what fluctuations qualify as significant for each sensor

node. For this problem, we employ standard deviation as our main statistic. Within
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each set of temperature fluctuation magnitudes for a particular sensor node, we com-

pute the standard deviation. Thereafter, we quantify a time period’s significance by

its fluctuations’ deviations from the mean fluctuation.

Procedure To Locate Training Spots

The procedure to locate training spots is laid out in pseudocode in algorithm 1,

and an example plot of accumulating standard deviations by following the procedure

can be found in Figure 4-4. Peaks in the plot indicate the points in time where an

event has most likely occurred to cause significant fluctuations in the data, so we

train our model with data from the those time periods. However, troughs indicate

time periods where temperature fluctuations were lower than average. With multiple

sets of temperature fluctuations as discussed in section 4.5.2 and a way to quantify

significance, we detail our procedure for locating training spots in the dataset at a

high level in three steps below.

1. Separate all fluctuation data sets according to time deltas. Accumulate each

time delta’s averages of significance values.

2. To get each time delta’s averages of significance values, separate the time delta’s

fluctuations set by sensor nodes. Compute the time period deviations for each

node, and average over all nodes.

3. To compute the time period deviations for each node, compute the standard

deviation of fluctuations for that node for the corresponding time delta, and

divide every fluctuation value by that standard deviation.
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Data: Various temperature fluctuation magnitudes for different time deltas for

each sensor node

Result: Finding time periods to train the adaptive Wiener filter.

cumulativeDeviation = []

for time delta 𝑑 do
totalDeviations = []

for sensor node 𝑛 do
fluctuations = get_fluctuations(𝑑, 𝑛)

stDev = get_stDev(fluctuations)

deviations = fluctuations/stDev

totalDeviations.append(deviations)

end

averageDeviation = average(totalDeviations)

cumulativeDeviation.append(averageDeviation)

end
Algorithm 1: Algorithm to locate training periods

Figure 4-4: Plot of Cumulative Standard Deviations Over Time
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4.5.3 LMS Filter Weights

After locating suitable time periods to train the model on, we proceeded to use

the well-regarded LMS algorithm discussed in section 4.2. Because we are looking

to predict temperature values for each sensor node, the LMS algorithm is run and

optimized per sensor node temperatures, generating a set of weights for every specific

temperature predictor.

4.5.4 Weight Heat Maps

The weights converged on from running the LMS algorithm may provide insight

into how fluctuations from one location in the lab space affects future fluctuations

in other locations. Lower weight coefficients signify that the corresponding input

does not contribute towards predicting, whereas high coefficients indicate that the

input highly correlates with the desired signal. To better visualize weight values, we

generate their heat maps, such as the one shown in Figure 4-5. Each cell in the heat

map corresponds to a particular input to the model. Recalling the model structure

from section 4.5, inputs are previous temperature values, as represented by columns,

recorded for each sensor node, as represented by rows.

4.5.5 Temperature Predicting

The final step in our procedure is to evaluate our temperature predicting models.

With weight coefficients trained on a selected time period, we proceed to estimate

the measured data from the sensors immediately following that time period. The

structure for predicting temperature closely follows that of Figure 4-3, except the

errors are not fed back into modifying weight coefficients. The data used for prediction

range from an hour following the training period to an entire day following the training

period, respectively resulting in the short term and long term performances. In

addition to plotting the errors from prediction, we also measure the root mean square

error (RMSE) of the errors to quantify the performance of our predictor. Figure 4-6

below shows an example plot of errors for one sensor node’s temperature predictor.
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Figure 4-5: Example Heat Map for 8 sensor nodes with history length 5

Figure 4-6: Example Error plot with RMSE calculated
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Chapter 5

Performance

With our data models and system infrastructure in place, we began to monitor the

lab environment and measure prediction performance. The data was collected by the

eight sensor nodes in three separate stages. The first stage had half of the sensors

clustered together in one location and the other half unclustered in a semi-circle

formation from the cluster. In the next, we split the cluster in two and left the other

sensors in place, forming a well spread out semi-clustered formation. In the final

stage, we dispersed the sensors even further so that they nearly spanned the entire

lab space. In each setup, we map the node layout, discuss the temperatures collected,

different training spots, and heatmaps of weight coefficients, and ultimately evaluate

the predictors’ short-term performance over one hour and long-term performance

over one day. Afterwards, we include further implementation details and discuss our

findings from our analysis.

5.1 Clustered Setup

In the clustered setup, we placed our WSN nodes at locations depicted below in

Figure 5-1. By having nodes clustered together, we anticipated that fluctuations

from these nodes would have a greater impact on the future fluctuations of these

nodes when compared to the fluctuations originating from the other locations. In

addition, the node on the top left of the diagram is right next to a window. As such,
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we anticipated its temperature values to significantly differ from the rest.

Figure 5-1: Clustered Formation of Wireless Sensor Nodes indicated by circles

5.1.1 Temperature Data Results

Figure B-1 shows plots of the data collected from the all the nodes in the clustered

setup. Figure B-2 and Figure B-3 depicts the unclustered node temperature measure-

ments and the clustered node temperature measurements, respectively. From these

plots, there are a number of key aspects to note.

1. During the data collection process, two sensor nodes went down, hence the two

visibly linear lines in the first half. As a result, we will avoid the time periods

in between from training and evaluating.

2. As expected, the node by the window consistently has temperature measure-

ments lower than the rest. To make sure the sensor isn’t faulty, we decided to

swap it with another node in the next setup.
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3. Temperature signals from the nodes have highly similar trends in how their

temperature measurements fluctuate throughout the measuring period. It ap-

pears that the temperature signals are close to being the same signal at different

offsets, but they are still distinct. As such, we expect our input signals to have

varying weights for estimating the desired signal. More specifically, we expect

the past values of the desired signal to contribute the most to the estimation.

4. Temperatures are easily distinguishable between nodes not part of the cluster, as

shown in Figure B-2. Yet in Figure B-3, one can hardly distinguish temperatures

measured by clustered nodes. From this, we see that different locations within

the lab space experience similar temperature fluctuation shapes. As such, we

spaced out nodes further during the next temperature collection period.

5.1.2 Training Spots

Figure B-4 shows the cumulative standard deviations of all time deltas generated by

the process discussed in subsection 4.5.2. For this setup, we look at the top three most

significant time periods indicated by peaks, an arbitrary average significance period

indicated by the rest level, and the least significant period indicated by troughs. We

training on multiple data sets to determine fluctuation significance utility in signal

estimation.

5.1.3 Weight Heatmaps

Feeding the top three most significant, an average significance, and the least significant

time periods in Figure B-4 into the LMS algorithm, we obtain heatmaps in Figure B-5

through Figure B-9 in Appendix B.

A couple of realizations can be gleaned from these heatmaps. The heatmaps of

weights among all the temperature predictors for each time period look identical, but

the actual weight values are not the same. This counters our speculations of what

the filter weights would look like in subsection 5.1.1. For the temperature signal

being estimated, we expected its own past values to contribute the most towards
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its estimation, hence having the highest weight coefficients. Moreover the weight

coefficients for the historical inputs are nearly identical. This is because temperature

measurements a few seconds apart don’t fluctuate greatly. Thus, the inputs are close

to being the same value, causing weights to converge to similar values for a linear

model.

5.1.4 Temperature Predictor Performance

Using the weight coefficients trained from the most significant, the average signifi-

cance, and the least significant time periods, we evaluate the respective temperature

predictors for each node.

We evaluate over the short term of one hour and the long term of one day, and

generate the short term error plots in Figure B-10, Figure B-11, and Figure B-12 and

long term error plots in Figure B-13, Figure B-14, and Figure B-15. The respective

RMS errors can be found in Table A.1 and Table A.2.

The results indicate that most temperature predictors trained over data from the

least significant time period performed the best in predicting temperatures one hour

into the future. Over the period of a day, a majority of the temperature predictors

performed better when trained over the most significant time period. Contrary to

expectations, periods of high fluctuations do not act as a unit impulse to our system

in the short-run.

5.2 Semi-Clustered Setup

In the semi-clustered setup, we placed our WSN nodes at locations depicted below in

Figure 5-2. As seen in the clustered setup, temperature values between nodes were

fairly equal due to half of them clustering. By splitting up the cluster, we expect

more variation in temperatures recorded. Also to ensure that the sensor node by the

window wasn’t faulty, we swapped it with another halfway through, hence there are

two sets of temperature measurements for this set up.
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Figure 5-2: Semi-Clustered Formation of Wireless Sensor Nodes, indicated by circles

5.2.1 Temperature Data Collected

Figure B-16 and Figure B-17 show plots of the data collected during the semi-clustered

setup. From the data collected, we notice the following.

1. Between the two data collection periods in the semi-clustered setup, two nodes,

one of which was next to the window, had been swapped. Even after the

swap, the node by the window consistently experienced colder temperatures.

Therefore, we have confidence that sensors are reporting correct temperatures.

2. At times, temperature measurement trends between the nodes agree with each

other, yet unlike the clustered setup, there are periods where trends clearly

diverge. As such, we hope to see more variety in weight ratios resulting from

the LMS algorithm.

3. There are more instances where temperature measurements cross, and signals

appear more distinct in this setup compared to the previous setup, so we hope
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to glean more knowledge about how fluctuations at distinct locations affect each

other.

5.2.2 Training Spots

Figure B-18 and Figure B-19 show the cumulative standard deviations for the semi-

clustered setup. For each, we look at the most significant time period, an arbitrary

average significance period, and the least significant period. By training and evaluat-

ing on each, we again test the importance of fluctuation significance in training our

model.

5.2.3 Weight Heatmaps

Feeding the time periods corresponding to the most significant, average significance,

and least significant time periods in Figure B-18 and Figure B-19 into the LMS

algorithm, we obtain the following weight distributions displayed as heatmaps in

Figure B-20 through Figure B-25 in Appendix B.

Despite higher distinctiveness between temperature signals, the heatmaps of weights

among all the temperature predictors for each time period still look identical. The

actual weight values are not the same, but this refutes our expectation that the LMS

algorithm would produce larger weight coefficients for the inputs belonging to the

desired signal. We proceed to make temperature signals more distinct in the next

setup by isolating sensor nodes even further and spreading them across the entire lab

space.

5.2.4 Temperature Predictor Performance

The performance error plots can be found from Figure B-26 through Figure B-37.

The respective RMS errors can be found in Table A.3, Table A.4, Table A.5 and

Table A.6.

Similar to the results from the clustered setup, short term performance favors

training over periods of least significance. However, for long term performance, train-
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ing over periods of average fluctuation significance leads to better performance.

5.3 Spread Out Setup

When splitting up the clusters from the clustered to semi-clustered setups, temper-

ature signals were more easily distinguishable. Following this idea, we proceeded to

spread out the node sensors even further as depicted below in Figure 5-3. We predict

that temperature signals will be even more distinct.

Figure 5-3: Spread Out Formation of Wireless Sensor Nodes, indicated by circles

5.3.1 Temperature Data Collected

Figure B-38 shows a plot of the data collected during the spread out setup, and the

following details can be observed:

1. One temperature signal is extremely volatile, and experienced stronger fluctu-

ations than other nodes for a significant portion of the data collection period.
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2. Signals are more easily distinguishable than in either the clustered or semi-

clustered setups.

3. For the most part, signals undergo similar trends.

5.3.2 Training Spots

Figure B-39 shows the cumulative standard deviations for the spread out setup. Con-

tinuing to test the importance of fluctuation significance, we look at the most signif-

icant time period, an arbitrary average significance period, and the least significant

period.

5.3.3 Weight Heatmaps

Feeding the time periods corresponding to the most significant, average significance,

and least significant time periods in Figure B-39 into the LMS algorithm, we ob-

tain the following weight distributions displayed as heatmaps in Figure B-40 through

Figure B-42 in Appendix B.

By spreading out the nodes even further, we see that the weights are less uniform

among the different node inputs. However, the weight ratios among the temperature

predictors for each time period are still indistinguishable.

5.3.4 Temperature Predictor Performance

The performance error plots can be found Figure B-43 through Figure B-48. The

respective RMS errors can be found in Table A.7 and Table A.8.

Even with more distinct signals, training over the least significant time period

results in lower RMS error values in the short run. With parallels to the semi-

clustered out setup, the performance over the long run is better when training over a

period of average fluctuations.
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5.4 Implementation Details and Results

For our procedure, there were a number of parameters that we needed to set to process

the data, feed it into the LMS algorithm, and evaluate performance.

We preprocessed our data with time averages every two seconds. By doing so,

we capture most of the measurements while normalizing the timing between them.

As mentioned in subsection 3.2.2, nodes measured at a rate of 45 measurements per

minute. As such, two second averages were the highest temporal resolution possible.

Taking longer averages would oppose our investigation of high temporal trends in

temperature signals.

For our use case, we did not fine tune the learning rate and weight initialization

parameters fed into the LMS algorithm. Our use of the LMS algorithm was primarily

to converge on weights that characterized the system, so we initialized the weights

to zero. As it turns out in our configuration, the weight ratios of filter inputs among

the different temperature predictors were similar, hence the heat maps looked similar

across temperature predictors for a particular data set. By nature of the linear model

and dealing with room temperature fluctuations, the weight ratios corresponded to

ratios between the averages of the temperature signals.

When feeding our data sets into the LMS algorithm, our time steps between input

vectors was also two seconds. In other words, we fed our time averages one after

another for the model to learn high temporal trends. The history length that we

targeted for our filter model was primarily five measurements in the past. Together,

this meant that our input vector contained temperatures from all nodes two four, six,

eight, and ten seconds in the past to estimate the next temperature value.

As shown in the results of our temperature predictors’ performances, ultimately we

could not use high temporal trends in our temperature signals for prediction. In fact,

using periods of low fluctuations to predict in the near future worked better because

room temperature fluctuations will not change significantly step-by-step. However,

over a longer period of time, training over periods of average fluctuation significance

and high fluctuation significance predicted better. Despite this, our estimations sig-
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nificantly deviated from the actual measurements, suggesting that a linear model does

not characterize temperature fluctuations well. On the other hand, as supported by

our temperature collection over three distinct setups, temperature signals are more

distinguishable the further apart they are in distance.
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Chapter 6

Conclusion

In this paper, we proposed a temperature prediction scheme that focused on learning

how temperature fluctuations at distinct locations in a room interrelate and perva-

sively affect future temperatures. Through analyzing the data collected by our custom

wireless sensor nodes in three distinct configurations, we computed fluctuation sig-

nificance for periods of measurements to train the temperature predictors. Using a

transversal filter and linear combiner model, we trained weight coefficients via the

LMS algorithm and evaluated performance over data succeeding the training data.

Our findings indicate that temperature signals at two different locations are visibly

more distinguishable the further apart they are. Training our transversal filter and

linear combiner model with data sets containing high temporal trends of high fluc-

tuation significance does not predict temperatures better than trends of no or little

fluctuation significance. Predicting these temperature signals with constant weight

coefficients results in significant deviation between the estimated and actual signals in

the long run, and thus our model does not characterize how temperature fluctuations

affect each other.

Our system architecture provides a convenient and scalable process to collect

data, allowing numerous sensor nodes to function independently of each other. The

data infrastructure is an extensible system which stores measurements in lightweight

databases and allows monitoring in real time. Moreover, each sensor node can capture

and report several environmental factors with as few as three components. Potential
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future work for our hardware solution includes completing a printed circuit board

form factor, further reducing the node’s footprint.
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Chapter 7

Supplemental Work

In addition to the work detailed above, our research includes other explorations that

looked to better our solution by lowering the cost, decreasing the footprint, as well

as utilizing the state-of-the-art hardware. Though we did not manage to make the

improvements we wanted, they are suggestions for possible future work related to the

project.

7.1 Design

One of the original premises of our work was to create a small-footprint solution

that would allow researchers to monitor the environmental factors in a lab setting.

Our desire was that the solution would be compact and work out-of-the-box. We

iterated on several printed circuit board (PCB) prototypes of the wireless sensor

nodes. We managed to narrow down the exact chips and components necessary for the

nodes to work and placed them all on one circuit board. Moreover, we attempted to

power the nodes with a battery to facilitate placement unrestricted by power outlets.

However, issues such as improper thermal isolation between the microcontroller and

BME680 chip, long lead times, misconnected pins, and brownouts from improper

current draw were unexpected delays in the project. Thus, we forewent the PCB

design and proceeded to collect data with the breadboard design powered through a

power outlet, depicted in Figure 3-3.
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7.2 ESP32

Instead of using the ESP8266, we originally used its successor in Espressif’s line of

System on a Chip, the ESP32. With the ESP32, we attempted to program the sensor

nodes with MicroPython, which is a microcontroller compatible version of the popular

programming language, Python. However, due to limited robust functionality with

the ESP32 at the time, we opted to use Arduino instead. When attempting to collect

data with the ESP32, our sensor nodes occasionally malfunctioned and disconnected

from Wi-Fi, which is undesired for frequent data collection. We suspected that the

problem arose from package libraries that we used to interface the microcontroller

with the BME680 environmental sensor. With these issues, we decided to switch

from using the ESP32 to using the ESP8266 to progress the project.
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Appendix A

Tables

Predictor Least Significant Average Significance Most Significant
𝑆0 1.363 6.460 9.715
𝑆1 1.111 6.135 10.346
𝑆2 2.504 11.694 5.789
𝑆3 4.044 14.229 6.479
𝑆4 0.541 2.506 8.507
𝑆5 0.786 4.058 10.035
𝑆6 1.133 0.949 11.553
𝑆7 2.170 1.402 6.126

Table A.1: Clustered Setup Short Term Performance RMS Error

Predictor Least Significant Average Significance Most Significant
𝑆0 95.172 85.189 207.25
𝑆1 162.334 141.002 62.743
𝑆2 113.854 88.775 175.905
𝑆3 572.923 479.900 437.840
𝑆4 136.238 127.436 69.028
𝑆5 144.440 133.596 72.353
𝑆6 146.903 148.660 75.969
𝑆7 148.279 154.841 104.199

Table A.2: Clustered Setup Long Term Performance RMS Error
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Predictor Least Significant Average Significance Most Significant
𝑆0 1.403 3.374 2.779
𝑆1 0.580 1.538 4.085
𝑆2 1.382 2.818 4.824
𝑆3 3.648 6.883 13.770
𝑆4 1.158 1.705 6.380
𝑆5 0.971 1.993 5.754
𝑆6 1.283 3.265 9.591
𝑆7 1.201 2.230 11.112

Table A.3: Semi-Clustered Setup Short Term Performance RMS Error Before Swap

Predictor Least Significant Average Significance Most Significant
𝑆0 1.481 4.780 12.817
𝑆1 0.999 9.339 20.301
𝑆2 1.204 3.590 6.268
𝑆3 1.511 10.738 3.490
𝑆4 0.525 5.405 21.590
𝑆5 0.863 5.023 20.201
𝑆6 1.115 1.597 22.861
𝑆7 1.098 1.319 20.858

Table A.4: Semi-Clustered Setup Short Term Performance RMS Error After Swap

Predictor Least Significant Average Significance Most Significant
𝑆0 229.912 95.250 87.805
𝑆1 127.680 39.825 108.222
𝑆2 87.969 148.043 92.400
𝑆3 519.961 59.561 176.414
𝑆4 146.112 38.642 104.918
𝑆5 153.971 40.362 103.731
𝑆6 225.767 56.747 145.479
𝑆7 198.227 49.431 143.418

Table A.5: Semi-Clustered Setup Long Term Performance RMS Error Before Swap
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Predictor Least Significant Average Significance Most Significant
𝑆0 232.535 382.020 184.754
𝑆1 52.678 67.607 148.925
𝑆2 95.259 123.542 111.625
𝑆3 137.940 85.009 103.216
𝑆4 69.134 55.396 117.018
𝑆5 67.990 54.459 111.267
𝑆6 143.036 74.412 69.390
𝑆7 150.323 61.586 56.492

Table A.6: Semi-Clustered Setup Long Term Performance RMS Error After Swap

Predictor Least Significant Average Significance Most Significant
𝑆0 2.670 18.553 2.525
𝑆1 0.634 1.851 4.637
𝑆2 4.665 11.697 14.770
𝑆3 0.948 1.489 8.242
𝑆4 1.462 2.638 4.124
𝑆5 1.417 9.448 2.611
𝑆6 1.533 3.551 3.805
𝑆7 1.481 17.098 18.096

Table A.7: Spread Out Setup Short Term Performance RMS Error

Predictor Least Significant Average Significance Most Significant
𝑆0 334.178 191.647 267.156
𝑆1 83.314 78.758 113.642
𝑆2 247.266 180.196 316.570
𝑆3 158.587 147.471 211.170
𝑆4 122.698 101.639 164.973
𝑆5 114.840 190.319 152.497
𝑆6 152.006 184.996 309.632
𝑆7 549.459 1157.583 1132.655

Table A.8: Spread Out Setup Long Term Performance RMS Error

57



58



Appendix B

Figures
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Figure B-1: Temperatures of Sensor nodes in Clustered Set up

Figure B-2: Temperatures of Unclustered Sensor nodes in Clustered Set up
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Figure B-3: Temperatures of Clustered Sensor nodes in Clustered Set up

Figure B-4: Clustered Setup Cumulative Standard Deviations
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(a) 𝑆0 (b) 𝑆1 (c) 𝑆2 (d) 𝑆3

(e) 𝑆4 (f) 𝑆5 (g) 𝑆6 (h) 𝑆7

Figure B-5: Heatmaps from Most Significant Time Period

(a) 𝑆0 (b) 𝑆1 (c) 𝑆2 (d) 𝑆3

(e) 𝑆4 (f) 𝑆5 (g) 𝑆6 (h) 𝑆7

Figure B-6: Heatmaps from 2nd Most Significant Time Period

62



(a) 𝑆0 (b) 𝑆1 (c) 𝑆2 (d) 𝑆3

(e) 𝑆4 (f) 𝑆5 (g) 𝑆6 (h) 𝑆7

Figure B-7: Heatmaps from 3rd Most Significant Time Period

(a) 𝑆0 (b) 𝑆1 (c) 𝑆2 (d) 𝑆3

(e) 𝑆4 (f) 𝑆5 (g) 𝑆6 (h) 𝑆7

Figure B-8: Heatmaps from Average Significance Time Period
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(a) 𝑆0 (b) 𝑆1 (c) 𝑆2 (d) 𝑆3

(e) 𝑆4 (f) 𝑆5 (g) 𝑆6 (h) 𝑆7

Figure B-9: Heatmaps from Least Significant Time Period
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(a) 𝑆0 Predictor (b) 𝑆1 Predictor

(c) 𝑆2 Predictor (d) 𝑆3 Predictor

(e) 𝑆4 Predictor (f) 𝑆5 Predictor

(g) 𝑆6 Predictor (h) 𝑆7 Predictor

Figure B-10: Clustered Short Term Performances For Most Significant Time Period
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(a) 𝑆0 Predictor (b) 𝑆1 Predictor

(c) 𝑆2 Predictor (d) 𝑆3 Predictor

(e) 𝑆4 Predictor (f) 𝑆5 Predictor

(g) 𝑆6 Predictor (h) 𝑆7 Predictor

Figure B-11: Clustered Short Term Performances For Average Significance Time Pe-
riod
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(a) 𝑆0 Predictor (b) 𝑆1 Predictor

(c) 𝑆2 Predictor (d) 𝑆3 Predictor

(e) 𝑆4 Predictor (f) 𝑆5 Predictor

(g) 𝑆6 Predictor (h) 𝑆7 Predictor

Figure B-12: Clustered Short Term Performances For Least Significant Time Period
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(a) 𝑆0 Predictor (b) 𝑆1 Predictor

(c) 𝑆2 Predictor (d) 𝑆3 Predictor

(e) 𝑆4 Predictor (f) 𝑆5 Predictor

(g) 𝑆6 Predictor (h) 𝑆7 Predictor

Figure B-13: Clustered Long Term Performances For Most Significant Time Period
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(a) 𝑆0 Predictor (b) 𝑆1 Predictor

(c) 𝑆2 Predictor (d) 𝑆3 Predictor

(e) 𝑆4 Predictor (f) 𝑆5 Predictor

(g) 𝑆6 Predictor (h) 𝑆7 Predictor

Figure B-14: Clustered Long Term Performances For Average Significance Time Pe-
riod
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(a) 𝑆0 Predictor (b) 𝑆1 Predictor

(c) 𝑆2 Predictor (d) 𝑆3 Predictor

(e) 𝑆4 Predictor (f) 𝑆5 Predictor

(g) 𝑆6 Predictor (h) 𝑆7 Predictor

Figure B-15: Clustered Long Term Performances For Least Significant Time Period
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Figure B-16: Temperatures of Sensor nodes in Semi-Clustered Set up

Figure B-17: Temperatures of Sensor nodes in Semi-Clustered Set up
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Figure B-18: Semi-Clustered Setup Cumulative Standard Deviations

Figure B-19: Semi-Clustered Setup Cumulative Standard Deviations
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(a) 𝑆0 (b) 𝑆1 (c) 𝑆2 (d) 𝑆3

(e) 𝑆4 (f) 𝑆5 (g) 𝑆6 (h) 𝑆7

Figure B-20: Heatmaps from Most Significant Time Period Before Swap

(a) 𝑆0 (b) 𝑆1 (c) 𝑆2 (d) 𝑆3

(e) 𝑆4 (f) 𝑆5 (g) 𝑆6 (h) 𝑆7

Figure B-21: Heatmaps from Most Significant Time Period After Swap
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(a) 𝑆0 (b) 𝑆1 (c) 𝑆2 (d) 𝑆3

(e) 𝑆4 (f) 𝑆5 (g) 𝑆6 (h) 𝑆7

Figure B-22: Heatmaps from Average Significance Time Period Before Swap

(a) 𝑆0 (b) 𝑆1 (c) 𝑆2 (d) 𝑆3

(e) 𝑆4 (f) 𝑆5 (g) 𝑆6 (h) 𝑆7

Figure B-23: Heatmaps from Average Significance Time Period After Swap
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(a) 𝑆0 (b) 𝑆1 (c) 𝑆2 (d) 𝑆3

(e) 𝑆4 (f) 𝑆5 (g) 𝑆6 (h) 𝑆7

Figure B-24: Heatmaps from Least Significant Time Period Before Swap

(a) 𝑆0 (b) 𝑆1 (c) 𝑆2 (d) 𝑆3

(e) 𝑆4 (f) 𝑆5 (g) 𝑆6 (h) 𝑆7

Figure B-25: Heatmaps from Least Significant Time Period After Swap
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(a) 𝑆0 Predictor (b) 𝑆1 Predictor

(c) 𝑆2 Predictor (d) 𝑆3 Predictor

(e) 𝑆4 Predictor (f) 𝑆5 Predictor

(g) 𝑆6 Predictor (h) 𝑆7 Predictor

Figure B-26: Semi-Clustered Short Term Performances For Most Significant Time
Period Before Swap
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(a) 𝑆0 Predictor (b) 𝑆1 Predictor

(c) 𝑆2 Predictor (d) 𝑆3 Predictor

(e) 𝑆4 Predictor (f) 𝑆5 Predictor

(g) 𝑆6 Predictor (h) 𝑆7 Predictor

Figure B-27: Semi-Clustered Short Term Performances For Most Significant Time
Period After Swap
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(a) 𝑆0 Predictor (b) 𝑆1 Predictor

(c) 𝑆2 Predictor (d) 𝑆3 Predictor

(e) 𝑆4 Predictor (f) 𝑆5 Predictor

(g) 𝑆6 Predictor (h) 𝑆7 Predictor

Figure B-28: Semi-Clustered Short Term Performances For Average Significance Time
Period Before Swap
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(a) 𝑆0 Predictor (b) 𝑆1 Predictor

(c) 𝑆2 Predictor (d) 𝑆3 Predictor

(e) 𝑆4 Predictor (f) 𝑆5 Predictor

(g) 𝑆6 Predictor (h) 𝑆7 Predictor

Figure B-29: Semi-Clustered Short Term Performances For Average Significance Time
Period After Swap
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(a) 𝑆0 Predictor (b) 𝑆1 Predictor

(c) 𝑆2 Predictor (d) 𝑆3 Predictor

(e) 𝑆4 Predictor (f) 𝑆5 Predictor

(g) 𝑆6 Predictor (h) 𝑆7 Predictor

Figure B-30: Semi-Clustered Short Term Performances For Least Significant Time
Period Before Swap
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(a) 𝑆0 Predictor (b) 𝑆1 Predictor

(c) 𝑆2 Predictor (d) 𝑆3 Predictor

(e) 𝑆4 Predictor (f) 𝑆5 Predictor

(g) 𝑆6 Predictor (h) 𝑆7 Predictor

Figure B-31: Semi-Clustered Short Term Performances For Least Significant Time
Period After Swap
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(a) 𝑆0 Predictor (b) 𝑆1 Predictor

(c) 𝑆2 Predictor (d) 𝑆3 Predictor

(e) 𝑆4 Predictor (f) 𝑆5 Predictor

(g) 𝑆6 Predictor (h) 𝑆7 Predictor

Figure B-32: Semi-Clustered Long Term Performances For Most Significant Time
Period Before Swap
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(a) 𝑆0 Predictor (b) 𝑆1 Predictor

(c) 𝑆2 Predictor (d) 𝑆3 Predictor

(e) 𝑆4 Predictor (f) 𝑆5 Predictor

(g) 𝑆6 Predictor (h) 𝑆7 Predictor

Figure B-33: Semi-Clustered Long Term Performances For Most Significant Time
Period After Swap
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(a) 𝑆0 Predictor (b) 𝑆1 Predictor

(c) 𝑆2 Predictor (d) 𝑆3 Predictor

(e) 𝑆4 Predictor (f) 𝑆5 Predictor

(g) 𝑆6 Predictor (h) 𝑆7 Predictor

Figure B-34: Semi-Clustered Long Term Performances For Average Significance Time
Period Before Swap
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(a) 𝑆0 Predictor (b) 𝑆1 Predictor

(c) 𝑆2 Predictor (d) 𝑆3 Predictor

(e) 𝑆4 Predictor (f) 𝑆5 Predictor

(g) 𝑆6 Predictor (h) 𝑆7 Predictor

Figure B-35: Semi-Clustered Long Term Performances For Average Significance Time
Period After Swap
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(a) 𝑆0 Predictor (b) 𝑆1 Predictor

(c) 𝑆2 Predictor (d) 𝑆3 Predictor

(e) 𝑆4 Predictor (f) 𝑆5 Predictor

(g) 𝑆6 Predictor (h) 𝑆7 Predictor

Figure B-36: Semi-Clustered Long Term Performances For Least Significant Time
Period Before Swap
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(a) 𝑆0 Predictor (b) 𝑆1 Predictor

(c) 𝑆2 Predictor (d) 𝑆3 Predictor

(e) 𝑆4 Predictor (f) 𝑆5 Predictor

(g) 𝑆6 Predictor (h) 𝑆7 Predictor

Figure B-37: Semi-Clustered Long Term Performances For Least Significant Time
Period After Swap
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Figure B-38: Temperatures of Sensor nodes in Spread Out Set up

Figure B-39: Spread Out Setup Cumulative Standard Deviations
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(a) 𝑆0 (b) 𝑆1 (c) 𝑆2 (d) 𝑆3

(e) 𝑆4 (f) 𝑆5 (g) 𝑆6 (h) 𝑆7

Figure B-40: Heatmaps from Most Significant Time Period

(a) 𝑆0 (b) 𝑆1 (c) 𝑆2 (d) 𝑆3

(e) 𝑆4 (f) 𝑆5 (g) 𝑆6 (h) 𝑆7

Figure B-41: Heatmaps from Average Significance Time Period
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(a) 𝑆0 (b) 𝑆1 (c) 𝑆2 (d) 𝑆3

(e) 𝑆4 (f) 𝑆5 (g) 𝑆6 (h) 𝑆7

Figure B-42: Heatmaps from Least Significant Time Period

90



(a) 𝑆0 Predictor (b) 𝑆1 Predictor

(c) 𝑆2 Predictor (d) 𝑆3 Predictor

(e) 𝑆4 Predictor (f) 𝑆5 Predictor

(g) 𝑆6 Predictor (h) 𝑆7 Predictor

Figure B-43: Spread Out Short Term Performances For Most Significant Time Period
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(a) 𝑆0 Predictor (b) 𝑆1 Predictor

(c) 𝑆2 Predictor (d) 𝑆3 Predictor

(e) 𝑆4 Predictor (f) 𝑆5 Predictor

(g) 𝑆6 Predictor (h) 𝑆7 Predictor

Figure B-44: Spread Out Short Term Performances For Average Significance Time
Period
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(a) 𝑆0 Predictor (b) 𝑆1 Predictor

(c) 𝑆2 Predictor (d) 𝑆3 Predictor

(e) 𝑆4 Predictor (f) 𝑆5 Predictor

(g) 𝑆6 Predictor (h) 𝑆7 Predictor

Figure B-45: Spread Out Short Term Performances For Least Significant Time Period
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(a) 𝑆0 Predictor (b) 𝑆1 Predictor

(c) 𝑆2 Predictor (d) 𝑆3 Predictor

(e) 𝑆4 Predictor (f) 𝑆5 Predictor

(g) 𝑆6 Predictor (h) 𝑆7 Predictor

Figure B-46: Spread Out Long Term Performances For Most Significant Time Period
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(a) 𝑆0 Predictor (b) 𝑆1 Predictor

(c) 𝑆2 Predictor (d) 𝑆3 Predictor

(e) 𝑆4 Predictor (f) 𝑆5 Predictor

(g) 𝑆6 Predictor (h) 𝑆7 Predictor

Figure B-47: Spread Out Long Term Performances For Average Significance Time
Period
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(a) 𝑆0 Predictor (b) 𝑆1 Predictor

(c) 𝑆2 Predictor (d) 𝑆3 Predictor

(e) 𝑆4 Predictor (f) 𝑆5 Predictor

(g) 𝑆6 Predictor (h) 𝑆7 Predictor

Figure B-48: Spread Out Long Term Performances For Least Significant Time Period
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