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Abstract 

In metazoans, microRNAs (miRNAs) are short pieces of RNA that load into Argonaute (AGO) 
proteins and base-pair to complementary sequences in mRNAs. Upon binding an mRNA, AGO–
miRNA complexes recruit machinery that translationally represses and degrades the mRNAs. 
Mammalian genomes encode hundreds of miRNAs, and most mRNAs in mammals have 
evolutionarily conserved target sites to at least one of these miRNAs. Because of the widespread 
and varied roles of miRNAs in regulating gene expression, there have been many efforts over the 
past decade to predict the extent of targeting between a miRNA and an mRNA from their 
sequences alone. This targeting relationship between a miRNA and an mRNA depends on the 
binding affinities for the AGO–miRNA complex to target sites on the mRNA, which are poorly 
predicted by nearest-neighbor rules used for predicting RNA–RNA duplex stabilities. This is 
presumably because AGO modulates the energetics of duplexes formed between its loaded 
miRNA and mRNA target sites. 
 
The recent development of a high-throughput method of measuring RNA-binding affinities, 
RNA bind-n-seq (RBNS), has allowed us to determine the relative KD values for AGO–miRNA 
complexes binding to hundreds of thousands of potential target sites. In this work, we use these 
biochemical parameters to build a quantitative model of miRNA targeting that predicts mRNA 
repression by a miRNA in cells better than existing in silico models. We then expand this 
approach to all miRNAs, including those for which we have not measured binding affinities for, 
by training a convolutional neural network (CNN) to predict the binding affinity between 
arbitrary miRNA and target sequences. We show that CNN-predicted KD values parallel the 
utility of experimentally determined KD values in predicting the repression of mRNAs in cells. 
 
By measuring the binding affinities between miRNAs and their targets, we can also estimate how 
much binding affinity contributes to miRNA-mediated targeting. Although the majority of the 
variance in targeting is attributable to binding affinity, about 40% of the variance remains 
unexplained, motivating future efforts to expand the deep learning framework to learn important 
features of mRNAs outside of target sites that influence miRNA activity. 
 
Thesis Advisor: David P. Bartel 
Title: Professor of Biology 
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Chapter 1. Introduction 

Complexity through gene regulation 

Across all known domains of life, organisms encode the necessary instructions for living and 

growing in their genomes. While larger genomes can contain more information and allow for 

more complex and potentially beneficial activities, they in turn require more physical storage 

space and longer copying times. Organisms have therefore evolved multilayered gene regulatory 

networks that combinatorially expand the space of possible gene expression states from a 

relatively small number of genes. The human genome, for example, only contains around 20,000 

genes, and yet it can specify countless numbers of molecular, cellular, and organismal processes. 

Extensive regulation occurs at all levels of gene expression and can affect the production rate, 

degradation rate, localization, and structural conformation of each intermediate gene product. 

In eukaryotes, many of the key regulatory steps occur at the messenger RNA level, as 

splicing largely determines the ultimate protein sequence that will be produced (Nilsen and 

Graveley 2010), and the levels of mature mRNAs in the cytoplasm are major determinants of 

protein levels (Gygi et al. 1999; Schwanhüusser et al. 2011). While steady-state mRNA levels in 

cells are mostly set by transcription rates (Schwanhüusser et al. 2011), degradation rates are 

important for determining how quickly mRNA levels respond to shifts in gene regulation, with 

rapidly-degraded mRNAs being more sensitive than more stable mRNAs (Yang et al. 2003). 

Unlike the transcription rate of mRNAs, which can be encoded in promotor or enhancer 

sequences (Kwak et al. 2013; Core et al. 2014), much of the information dictating the 

degradation rate of an mRNA needs to be written on the mRNA molecule itself so that it remains 

with the mRNA after exiting the nucleus. 
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The role of miRNAs in modulating mRNAs 

For plant and animal mRNAs, one such degradation signal is recognized by a short (~22 

nucleotides in length) RNA called a microRNA (miRNA) that is loaded into an Argonaute 

(AGO) protein to form an RNA-induced silencing complex (RISC) (Bartel 2009). In plants, the 

majority of the interactions between miRNAs and their target mRNAs involve Watson-Crick 

base-pairing along the entire length of the miRNA and result in AGO-catalyzed cleavage of the 

mRNA molecules (Jones-Rhoades, Bartel, and Bartel 2006). While this mode of mRNA 

silencing can happen in animals (Bartel 2018), the predominant way animal miRNAs lead to the 

decay of their targets, particularly in mammals, is by pairing with positions 2–7 of the miRNA 

(Doench and Sharp 2004; Lewis, Burge, and Bartel 2005), known as the “seed region,” and 

recruiting deadenylation and decapping proteins (Rehwinkel et al. 2005; Wu, Fan, and Belasco 

2006; C. Y. A. Chen et al. 2009). In humans, there are four AGO proteins (AGO 1–4), with 

AGO2 generally being the most abundant and the only one capable of cleaving mRNA targets 

(Liu et al. 2004), although all four are capable of recruiting TNRC6, causing the downstream 

deadenylation of their targets (C. Y. A. Chen et al. 2009). 

Because of the short pairing requirement for being targeted by a miRNA and the fact that 

animals can express hundreds of distinct miRNA species, virtually all mRNAs are potential 

targets of a miRNA. The number of possible miRNA–target interactions decreases when 

considering that many miRNAs and mRNAs have tissue-specific expression or are only 

expressed during certain developmental windows (Bartel 2018). However, it has been estimated 

that the majority of mammalian mRNAs harbor evolutionarily conserved target sites for 

endogenous miRNAs (Friedman et al. 2009) and are thus likely to be functional targets of 

miRNAs in the organism. 
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Upon stably binding their target mRNAs, animal miRNAs recruit degradation enzymes 

through the intermediate protein TNRC6 (Jonas and Izaurralde 2015) (Figure 1), which contains 

a long, largely unstructured domain with glycine–tryptophan (GW) repeats that can engage the 

tryptophan binding pockets found on AGO (Pfaff et al. 2013). TNRC6, in turn, recruits the 

deadenylases CCR4-NOT and the PAN2/PAN3 complex (Jonas and Izaurralde 2015) and 

decapping proteins DCP1 and DCP2 (Rehwinkel et al. 2005). In addition to causing the decay of 

mRNAs, TNRC6 also recruits DDX6, which further recruits factors that block translation 

initiation, causing the mRNAs to be translationally repressed as well (Jonas and Izaurralde 2015; 

Kamenska et al. 2016). In post-embryonic cells, this period of translational repression is shortly 

followed by mRNA decay, such that the mRNA decay process dominates the total effect of 

miRNAs on protein production (Eichhorn et al. 2014). However, during embryogenesis (at least 

in the context of zebrafish embryos) deadenylation of mRNAs, including by miRNAs, leads to 

further translational repression, rather than degradation (Subtelny et al. 2014).  

 

Figure 1. RISC complexes target mRNAs for translational repression and degradation. 
A miRNA (red) loaded into AGO (pink) recognizes target sequences complementary to 
positions 2–7 of the miRNA on an mRNA (black) and recruits TNRC6 (blue line), which 
recruits a combination of proteins that deadenylate, decap, and translationally repress the 
mRNA. 
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Evolutionary history of miRNAs 

MicroRNAs arose early in animal evolution and have been found in almost all metazoan species 

so far examined (Grimson et al. 2008). Over time, gene duplication events have resulted in 

groups of miRNAs arising from the same ancestral gene. These miRNAs often retain the same 

seed sequence as the ancestral gene, perhaps due to the evolutionary pressure for a functional 

miRNA to keep its seed sequence as changing the seed sequence by just one nucleotide can 

drastically alter its cohort of transcript targets. miRNAs with the same seed sequence are 

grouped into families, and although family members are usually paralogs, a few have 

independently converged to the same seed sequence (Bartel 2018). This categorization of 

miRNAs into families is useful because targeting specificity relies so much on the miRNA seed 

region. 

 Of the miRNA families found in humans, about 27 have been conserved since the 

emergence of bilaterian animals (Bartel 2018) more than 550 million years ago (Martin et al. 

2000) and miRNAs as a class of RNAs have been found in as distant of a relative to humans as 

Amphimedon queenslandica, a sea sponge (Grimson et al. 2008), though no miRNAs are 

conserved between humans and sponges. miRNA evolution in general seems to have been quite 

dynamic, with no miRNAs shared between poriferans, cnidarians, and bilaterians (Grimson et al. 

2008). Thus while the conserved miRNAs in humans were mostly discovered computationally 

(Lim et al. 2003), poorly conserved miRNAs in humans are continuously being annotated with 

the advent of high-throughput small-RNA sequencing techniques (Kozomara, Birgaoanu, and 

Griffiths-Jones 2019). 
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Biological roles of miRNAs 

As modulators of mRNA decay rates, miRNAs have roles in maintaining and tuning mRNA 

levels in spatially and temporally specific ways. For example, miR-122, which constitutes the 

majority of the expressed miRNAs in hepatocytes, is thought to be responsible for keeping these 

cells terminally differentiated (Hsu et al. 2012), and deletion of miR-122 in mice leads to a 

number of liver diseases, including hepatitis and liver cancer (Hsu et al. 2012; Tsai et al. 2012). 

A number of other miRNAs have similarly crucial roles in the development and function of 

various tissues in model organisms, including the heart (Heidersbach et al. 2013; Wei et al. 

2014), brain (Sanuki et al. 2011), immune cells (Lovat et al. 2015; Lu et al. 2010, 2015), and 

pancreas (Latreille et al. 2014). Perhaps the most dramatic effects of miRNAs are observed in 

early developmental contexts. For example, during the maternal-to-zygotic transition in zebrafish 

embryogenesis, miR-430 is one of the factors responsible for turning over maternally-deposited 

transcripts, clearing the way for the zygotic transcriptome (Giraldez et al. 2006). Knocking out 

both maternal and zygotic Dicer, which are critical for miRNA biogenesis, causes gastrulation 

and brain development defects in zebrafish during embryogenesis which can be rescued by 

injecting mature miR-430 into the developing embryos (Giraldez et al. 2006).  

However, large-scale miRNA knockout experiments in various model organisms have 

revealed that while many miRNAs are crucial for normal development and function in their 

respective organisms, the majority of miRNAs in worms (Alvarez-Saavedra and Horvitz 2010; 

Miska et al. 2007), about 20% of miRNAs in flies (Y. W. Chen et al. 2014), and the majority of 

miRNAs in mice (C. Y. Park et al. 2012) seem to have unappreciable phenotypes when deleted. 

This is partly due to incomplete phenotypic studies; later studies have identified knockout 

phenotypes for most conserved miRNAs in mice (Bartel 2018). Some miRNAs may also appear 
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to not have a phenotype when knocked out because they play a role in important processes that 

are not usually observed in lab settings. For example, miR-143 and miR-145 are co-transcribed 

miRNAs conserved throughout vertebrates, and yet mice lacking these two miRNAs appear to 

develop and function normally. A defect was only observed upon intestinal injury, after which 

mice lacking miR-143/145 were unable to regenerate their intestinal epithelia and died from the 

resulting complications whereas wild-type mice were able to recover fully in 9 days (Chivukula 

et al. 2014). MicroRNA families may also function redundantly with each other, which is 

supported by the finding that a majority of worm miRNAs surveyed do have knockout 

phenotypes when the knockouts are performed in sensitized backgrounds where the miRNA 

biogenesis pathway activity is reduced (Brenner et al. 2010). 

 Aside from helping to set mRNA levels in the cell, miRNAs have also been reported to 

play a role in reducing gene expression noise by driving higher transcription rates, primarily for 

lowly expressed mRNAs (Schmiedel et al. 2015). Lowly expressed mRNAs are the most 

impacted by stochasticity in gene expression, and miRNAs, which preferentially target lowly 

expressed mRNAs (Sood et al. 2006; Farh et al. 2005), may provide a mechanism for cells to 

ensure the steady production of these mRNAs. 

 

Mechanisms of miRNA biogenesis and targeting 

The modularity of the process of loading miRNAs into AGO makes miRNA-mediated mRNA 

repression versatile for both the cell and for researchers attempting to modulate gene expression. 

While some miRNAs are loaded better than others (Schwarz et al. 2003; Frank, Sonenberg, and 

Nagar 2010; Suzuki et al. 2015), AGO proteins can load any piece of RNA with any primary 

sequence as long as it is between 21 and 25 nucleotides in the length, contains a 5′-
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monophosphate, and is paired with a complementary or nearly complementary companion 

sequence (known as a passenger strand or miRNA* strand) with ~2 nucleotides of 3′ overhang 

on each side (Bartel 2018). The passenger strand is usually the strand with the weaker base-

pairing at its 3′-end (Khvorova, Reynolds, and Jayasena 2003; Schwarz et al. 2003), and is 

ejected upon successful loading of the miRNA (Kawamata and Tomari 2010) (Figure 2). Even 

though any such sequence, endogenous or otherwise, can load into AGO, pair to mRNAs, and 

recruit degradation machinery, most endogenous miRNAs arise from RNA hairpins within 

genomically-encoded transcripts and are processed via the canonical miRNA biogenesis pathway 

(Figure 2). This process starts in the nucleus, where the RNA molecule containing the hairpin 

(called a pri-miRNA) is recognized and cleaved by the enzyme DROSHA (Lee et al. 2003) to 

Figure 2. Canonical miRNA biogenesis 
pathway. After transcription, the pri-
miRNA is recognized and cleaved (grey 
triangles) by Microprocessor in the 
nucleus, which consists of DROSHA 
(blue) and two copies of DGCR8 (green). 
Microprocessor measures and cleaves 
the pri-miRNA approximately 11 base-
pairs away from the basal junction. The 
resulting pre-miRNA is then exported to 
the cytoplasm, where it is recognized and 
cleaved by Dicer (orange) near the 
single-stranded loop into a mature 
miRNA duplex. One strand of this 
duplex is loaded into AGO (pink), while 
the other strand is ejected and degraded. 
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produce a short hairpin with the first 3′ overhang. DROSHA is assisted by two copies of 

DGCR8, uses a combination of structural and sequence motifs to specify which RNA hairpins 

are eventually processed into miRNAs (Fang and Bartel 2015), and cuts them approximately 11 

base-pairs away from the basal junction of the pri-miRNA stem-loop (Nguyen et al. 2015). The 

cleavage product, termed the pre-miRNA, is exported to the cytoplasm where it is further 

processed by the enzyme Dicer near the loop to produce the mature miRNA duplex (Zhang et al. 

2004), which is competent to load into AGO (Figure 2).  

Once a miRNA is loaded into AGO, structural work has revealed that nucleotides 2–5 of 

the miRNA are pre-formed into a helical structure by AGO, anticipating the conformation it 

would adopt upon binding its mRNA target and facilitating rapid searching of potential targets in 

the sea of mRNA sequences in the cytoplasm (Klum et al. 2018). Canonically, there are six types 

of target sites (Bartel 2009), the top four of which have been shown to robustly lead to 

downstream repression of their host mRNAs (Figure 3). These all involve some amount of 

contiguous Watson-Crick base-pairing to 

nucleotides 2–7 of the miRNA, with the best 

sites also base-pairing to position 8 of the 

miRNA and containing an A nucleotide 

opposite the first nucleotide of the miRNA 

(Lewis, Burge, and Bartel 2005). This 

preference for an A across from the 5′-most 

nucleotide of the miRNA, regardless of the 

sequence of the miRNA at this position, is 

conferred by a binding pocket within AGO, 

Figure 3. Canonical site-types. miR-1 loaded 
into AGO (pink) base-pairing to an 8mer site 
embedded in an mRNA. The other 5 canonical 
site types are listed below the 8mer site in 
descending order of efficacy. 
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rather than base-pairing to the miRNA itself (Schirle et al. 2015). Although a small handful of 

functional noncanonical site types have been reported (Chi, Hannon, and Darnell 2012; Kim et 

al. 2016), the AGO–miRNA complex is generally intolerant of mismatches, bulges, and wobble 

pairings to the seed region of its miRNA (Doench and Sharp 2004), which greatly enhances the 

specificity a miRNA can have for its targets. Indeed, single-molecule studies have shown that 

while miRNAs have similar on-rates of binding to different target sequences, there is a sharp 

increase in off-rate when comparing miRNAs binding a “seed-matched” target and the same 

miRNA binding other sequences (Chandradoss et al. 2015). 

 In some cases, nonoptimal pairing to the seed region can be rescued by extensive 

complementarity (often at least five nucleotides) to the 3′-end of the miRNA (Bartel 2009). Due 

to their greater pairing constraints, these so-called compensatory sites are much more rare than 

canonical sites and harder to retain evolutionarily. However, they offer a way for mRNAs to be 

targeted specifically by a miRNA while avoiding cross-targeting by another miRNA with the 

same seed sequence. Two of the first examples discovered of a miRNA and target interaction of 

any kind was a pair of compensatory sites for the miRNA let-7 in the 3′ UTR sequence of the lin-

41 mRNA in C. elegans (Reinhart et al. 2000; Brennecke et al. 2005). Seed-matched sites can 

also benefit from pairing to the 3′-end of the miRNA, and such “supplemental sites” constitute 

around 5% of the seed-matched sites in the human genome (Bartel 2009). In some cases, 

particularly when the 3′-pairing extends through to the very 3′-end of the miRNA, a target 

sequence can trigger the decay of the miRNA (Ameres et al. 2010). The mechanisms of this 

process of target RNA-directed miRNA degradation (TDMD) are currently unknown, and only a 

few endogenous examples have been found (Ameres et al. 2010; De La Mata and Großhans 

2018; Bitetti et al. 2018; Kleaveland et al. 2018). However, the effects can be substantial, 
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decreasing the half-life of a miRNA from days (which is typical of the average miRNA) to hours 

(Kingston and Bartel 2019). 

 Regardless of the mode of pairing, target sites to miRNAs are the most effective in the 3′ 

UTR of an mRNA, starting about 15 nucleotides downstream of the stop codon (Grimson et al. 

2007). This is most likely due to scanning and translating ribosomes precluding AGO from 

binding 5′ UTR and ORF sequences and/or dislodging AGO complexes that have bound in these 

regions. During translation termination, this ribosome protection extends about 15 nucleotides 

into the 3′ UTR such that miRNA-binding sites can only avoid ribosome interference when they 

are 15 nucleotides downstream of the stop codon. In fact, an ineffective ORF site directly 

upstream from a stop codon can be converted to an effective site by moving the stop codon 

upstream of the site (Grimson et al. 2007), showing that the ribosome, rather than sequence 

context, is responsible for the reduced efficacy of sites outside the 3′ UTR. Within the 3′ UTRs 

of mRNAs, bioinformatic analyses have shown that sites closer to either the stop codon or the 

very 3′-end of the mRNA are more effective than sites in the center of the 3′ UTR (Grimson et al. 

2007), although the mechanisms causing this phenomenon are currently unknown. 

 

miRNA target prediction 

Because the human genome encodes upwards of 300 different conserved miRNAs, and each one 

can interact with hundreds to thousands of targets, which can shift depending on the expression 

profiles of different cell-types, experimentally measuring each miRNA–target interaction would 

be a monumental feat. On top of the endogenous miRNAs, a virtually countless number of 

possible synthetic duplexes are competent for loading into AGO. These are mostly used by 

researchers to knock down transcripts through the AGO-mediated slicing pathway, and they 
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would ideally be designed to reduce repression of off-targets. For all these reasons, there has 

been a long-standing interest in developing algorithms that can quantitatively predict the miRNA 

targeting efficacy for any arbitrary miRNA and mRNA. 

 One of the first successful approaches for predicting miRNA targeting involved looking 

for mRNAs with potential target sites in their 3′ UTRs that were complementary to positions 2–8 

of a miRNA and evolutionarily conserved (Lewis et al. 2003). Because a single mismatch to the 

seed region of a miRNA can abrogate miRNA affinity, there was a need for a method to score 

the conservation level of an entire site, rather than the individual nucleotides in a site. This led to 

the development of the probability of conserved targeting (PCT) metric (Friedman et al. 2009), 

which calculates the branch-length score of a target site sequence relative to the background 

level of conservation of the entire 3′ UTR of the mRNA. This value is further normalized to the 

same metric calculated for control sequences in order to control for the differing amounts of 

conservation that may be conferred by dinucleotide content, rather than miRNA targeting. 

Other methods have been developed to score potential target sites to a miRNA that 

incorporate features such as local sequence context of the site, the degree of possible 

supplementary pairing to the 3′-end of the miRNA, the predicted structural accessibility of the 

site in its 3′ UTR context, and the predicted RNA duplex stability between the miRNA and a site 

(Kiriakidou et al. 2004; Krek et al. 2005; Grimson et al. 2007; Garcia et al. 2011; Gumienny and 

Zavolan 2015; Agarwal et al. 2015). These features are regressed against some measurement of 

miRNA-dependent repression of the mRNA housing the site. One of the most straight-forward 

ways to measure miRNA activity in cells is to transfect a miRNA of interest into a cell-line that 

does not normally express that miRNA and measure the mRNA abundance fold-changes 

between transfected and mock-transfected populations either using microarrays or RNA-seq. 
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Because transfection datasets evaluated using microarrays are the most widely available, most 

miRNA target prediction models are trained on these transfection datasets and often validated on 

orthogonal datasets. 

In addition to models that simply combine a list of features that may correlate with 

miRNA activity, some efforts to predict miRNA targeting efficacy attempt to construct a 

biochemical model of miRNA occupancy (Krek et al. 2005; Khorshid et al. 2013). 

Unfortunately, these models require knowledge of the binding affinities between AGO–miRNA 

complexes and their target mRNAs. Because only a few of these values have been determined 

experimentally (Wee et al. 2012; Salomon et al. 2015; Schirle, Sheu-Gruttadauria, and MacRae 

2014; Schirle et al. 2015; Jo et al. 2015; Klum et al. 2018; Chandradoss et al. 2015), they must be 

estimated computationally. A popular method of estimating the affinity between a miRNA and a 

target sequence is by using nearest-neighbor (NN) rules for estimating RNA–RNA duplex 

stabilities (Xia et al. 1998). However, the handful of experimentally-measured binding affinities 

between miRNAs and their targets have shown that AGO substantially alters the energetics of 

binding between its loaded miRNA and a potential target (Salomon et al. 2015). 

Others have attempted to use data from cross-linking and immunoprecipitation (CLIP) 

experiments to learn the energetics of pairing between miRNAs and their targets (Khorshid et al. 

2013). In these experiments, RISC bound to RNA is cross-linked to that RNA using ultraviolet 

light. The resulting complexes are then immunoprecipitated, and the bound RNA is isolated and 

sequenced (Chi et al. 2009). These experiments provide a much more direct read-out of miRNA 

binding than transfection experiments because they reflect the engagement of RISC complexes 

on individual targets, rather than repression of entire mRNAs. However, CLIP data are subject to 

cross-linking biases (Lambert et al. 2014), CLIP data often contain large amounts of background 



 21 

binding events (Jaskiewicz et al. 2012), and it is impossible to determine fundamental binding 

constants from CLIP enrichments without knowledge of the concentrations of RISC in the CLIP 

experiments. As a result, miRNA target prediction algorithms that use CLIP data to learn 

miRNA–target binding affinities (Khorshid et al. 2013; Gumienny and Zavolan 2015) perform 

no better than the best miRNA prediction algorithms that use NN rules and site-type information 

(Agarwal et al. 2015) in predicting the repression of mRNAs in cells.  

 

A high-throughput method for measuring binding affinities for RNA-binding proteins 

Recently, Lambert et al. have developed a technique called RNA bind-n-seq (RBNS) for 

measuring the affinities of RNA-binding proteins to a random library of potential RNA binding 

partners in vitro (Lambert et al. 2014). In this technique, the RNA-binding protein of interest is 

tagged with an epitope that binds streptavidin, purified, and incubated with a random library of 

RNA molecules flanked by sequencing primers. The RNA-binding proteins are then pulled down 

using streptavidin beads, along with any bound RNA, the bound RNA is isolated and sequenced, 

and the enriched sequences are compared to those obtained by sequencing the input pool of RNA 

Figure 4. RNA bind-n-seq protocol. RNA-binding proteins tagged with a streptavidin binding 
tag are purified and incubated with a pool of random RNA. The RNA-binding proteins are then 
pulled down with streptavidin beads and their associated RNA molecules are reverse 
transcribed to make a cDNA library and sequenced. A range of different protein concentrations 
are used to capture a wide range of binding affinities. Figure adapted from Figure 1A of 
Lambert et al., 2014. 
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molecules (Figure 4). Sequence motifs that interact with the RNA-binding protein become 

enriched over other sequences in the pull-down library, and enrichments for individual k-mers 

can be determined (with k being dependent on how deeply the libraries are sequenced). This 

process is repeated with several different concentrations of the RNA-binding protein such that 

both high- and low-affinity binding interactions can be captured and quantified. This method has 

revealed the binding preferences for 78 human RNA-binding proteins (Dominguez et al. 2018), 

proving its utility and adaptability to any RNA-binding protein. RBNS is therefore an attractive 

method for measuring the binding affinities between RISC and its targets. The data obtained 

from RBNS are also theoretically sufficient for fitting the binding constants between RNA-

binding proteins and k-mers, in addition to enrichments of k-mers. 

 

Recent applications of neural networks for learning sequence binding preferences  

In addition to experimental advancements that may aid miRNA target prediction, the large 

amounts of high-throughput sequencing data collected in recent years have fueled the 

development of more data-driven models of nucleic acid binding preferences. Alipahani et al. 

developed a deep learning model, DeepBind, that learns the binding specificities of DNA- and 

RNA-binding proteins and showed their model could learn from a wide range of different nucleic 

acid binding assays. DeepBind was also shown to outperform all other existing methods for 

predicting binding partners for transcription factors and RNA-binding proteins (Alipanahi et al. 

2015). These types of models can pick up on hierarchically-dependent features and learn 

nonlinear interactions between features and can therefore be especially helpful for learning the 

binding specificities of RNA-binding proteins, which often have single nucleotide, di-nucleotide, 

and structural preferences (Y. Park and Kellis 2015). However, DeepBind and other similar 
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models do not train on any features of the DNA- or RNA-binding proteins themselves, which 

means that a new model must be trained for each new DNA- or RNA-binding protein of interest. 

This would have to be overcome if deep learning were applied to the problem of predicting 

miRNA targets because each new AGO–miRNA complex is essentially a new RNA-binding 

protein with its own unique binding profile. Given that there are hundreds of conserved 

endogenous miRNAs in humans and 47 = 16,384 unique miRNA seed sequences possible, 

miRNA target prediction algorithms need to be able to generalize to arbitrary miRNA sequences 

without acquiring more data for each new miRNA sequence. 
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Abstract 

MicroRNAs (miRNAs) act within Argonaute proteins to guide repression of mRNA  

targets. Although various approaches have provided insight into target recognition, the sparsity 

of miRNA–target affinity measurements has limited understanding and prediction of targeting  

efficacy. Here, we adapted RNA bind-n-seq to enable measurement of relative binding affinities 

between Argonaute–miRNA complexes and all ≤12-nucleotide sequences. This approach 

revealed noncanonical target sites unique to each miRNA, miRNA-specific differences in 

canonical target-site affinities, and a 100-fold impact of dinucleotides flanking each site. These  

data enabled construction of a biochemical model of miRNA-mediated repression, which was 

extended to all miRNA sequences using a convolutional neural network. This model 

substantially improved prediction of cellular repression, thereby providing a biochemical basis 

for quantitatively integrating miRNAs into gene-regulatory networks.  

 

Introduction 

MicroRNAs (miRNAs) are ~22-nt regulatory RNAs that derive from hairpin regions of precursor 

transcripts (Bartel 2018). Each miRNA associates with an Argonaute (AGO) protein to form a 

silencing complex, in which the miRNA pairs to sites within target transcripts and the AGO 

protein promotes destabilization and/or translational repression of bound target (Jonas and 

Izaurralde 2015). miRNAs are grouped into families based on the sequence of their extended 

seed (nucleotides 2–8 of the miRNA), which is the region of the miRNA most important for 

target recognition (Bartel 2009). The 90 most broadly conserved miRNA families of mammals 

each have an average of >400 preferentially conserved targets, such that mRNAs from most 

human genes are conserved targets of at least one miRNA (Friedman et al. 2009). Most of these 
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90 broadly conserved families are required for normal development or physiology, as shown by 

knockout studies in mice (Bartel 2018). 

Deeper understanding of these numerous biological functions would be facilitated by a 

better understanding of miRNA targeting efficacy, with the ultimate goal of correctly predicting 

the effects of each miRNA on the output of each expressed gene. In principle, targeting efficacy 

should be a function of the affinity between AGO–miRNA complexes and their target sites, in 

that greater affinity to a target site would cause increased occupancy at that site and thus 

increased repression of the target mRNA. Until very recently, binding affinities have been 

known for only a few target sequences of only three miRNAs (Wee et al. 2012; Salomon et al. 

2015; Schirle, Sheu-Gruttadauria, and MacRae 2014; Schirle et al. 2015; Jo et al. 2015; Klum et 

al. 2018; Chandradoss et al. 2015). In a recent study, high-throughput imaging and cleavage 

analyses provide extensive binding and slicing data for two of these three miRNAs, let-7a and 

miR-21 (Becker et al. 2019). Although these measurements provide insight and enable a 

quantitative model that predicts the efficiency of miR-21–directed slicing in cells (Becker et al. 

2019), the sparsity of binding-affinity data still limits insight into how targeting might differ 

between different miRNAs and prevents construction of an informative biochemical model of 

targeting efficacy relevant to the vastly more prevalent, non-slicing mode of miRNA-mediated 

repression. 

With insufficient affinity measurements, the most informative models of targeting 

efficacy rely instead on indirect inference through correlative approaches. These models focus on 

mRNAs with canonical 6–8-nt sites matching the miRNA seed region (Fig. 1A) and train on 

features known to correlate with targeting efficacy (including the type of site as well as various 

features of site context, mRNAs, and miRNAs), using datasets that monitor mRNA changes that 
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occur after introducing a miRNA (Grimson et al. 2007; Agarwal et al. 2015; Gumienny and 

Zavolan 2015; Paraskevopoulou et al. 2013). Although the correlative model implemented in 

TargetScan7 performs as well as the best in vivo crosslinking approaches at predicting mRNAs 

most responsive to miRNA perturbation, it nonetheless explains only a small fraction of the 

mRNA changes observed upon introducing a miRNA (r2 = 0.14) (Agarwal et al. 2015). This low 

value indicates that prediction of targeting efficacy has room for improvement, even when 

accounting for the fact that experimental noise and secondary effects of inhibiting direct targets 

place a ceiling on the variability attributable to direct targeting. Therefore, we adapted RNA 

bind-n-seq (RBNS) (Lambert et al. 2014) and a convolutional neural network (CNN) to the study 

of miRNA–target interactions, with the goal of obtaining the quantity and diversity of affinity 

measurements needed to better understand and predict miRNA targeting efficacy. 

 

Results 

The site-affinity profile of miR-1 

As previously implemented, RBNS provides qualitative relative binding measurements for an 

RNA-binding protein to a virtually exhaustive list of binding sites (Lambert et al. 2014; 

Dominguez et al. 2018). A purified RNA-binding protein is incubated with a large library of 

RNA molecules that each contain a central random-sequence region flanked by constant primer-

binding regions. After reaching binding equilibrium, the protein is pulled down and any co-

purifying RNA molecules are reverse transcribed, amplified, and sequenced. To extend RBNS to 

AGO–miRNA complexes (Fig. 1B), we purified human AGO2 loaded with miR-1 (Flores-Jasso, 

Salomon, and Zamore 2013) (fig. S1A) and set up five binding reactions, each with a different 

concentration of AGO2–miR-1 (range, 7.3–730 pM, logarithmically spaced) and a constant 
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concentration of an RNA library with a 37-nt random-sequence region (100 nM). We also 

modified the protein-isolation step of the RBNS protocol, replacing protein pull-down with 

nitrocellulose filter binding, reasoning that the rapid wash step of filter binding would improve 

retention of low-affinity molecules that would otherwise be lost during the wash steps of a pull-

down. This modified method was highly reproducible, with high correspondence observed 

between the 9-nt k-mer enrichments of two independent experiments using different preparations 

of both AGO2–miR-1 and RNA library (fig. S1B; r2 = 0.86). 

When analyzing our AGO-RBNS results, we first examined enrichment of the canonical 

miR-1 sites, comparing the frequency of these sites in RNA bound in the 7.3 pM AGO2–miR-1 

sample with that of the input library. As expected from the site hierarchy observed in meta-

analyses of site conservation and endogenous site efficacy (Bartel, 2009), the 8mer site (perfect 

match to miR-1 nucleotides 2–8 followed by an A) was most enriched (38 fold), followed by the 

7mer-m8 site (perfect match to miR-1 nucleotides 2–8, enrichment 14 fold), then the 7mer-A1 

site (perfect match to miR-1 nucleotides 2–7 followed by an A, enrichment 7.2 fold), and the 

6mer site (perfect match to miR-1 nucleotides 2–7, enrichment 3.0 fold) (Fig. 1, A and C). Little 

if any enrichment was observed for either the 6mer-A1 site (perfect match to miR-1 nucleotides 

2–6 followed by an A) or the 6mer-m8 site (perfect match to miR-1 nucleotides 3–8) at this 

lowest concentration of 7.3 pM AGO2–miR-1 (Fig. 1, A and C), consistent with their weak 

signal in previous analyses of conservation and efficacy(Friedman et al. 2009; Agarwal et al. 

2015; Kim et al. 2016). Enrichment of sites was quite uniform across the random-sequence 

region, which indicated minimal influence from either the primer-binding sequences or 

supplementary pairing to the 3′ region of the miRNA (fig. S1D). Although sites with 

supplementary pairing can have enhanced efficacy and affinity (Bartel, 2009; Brennecke, Stark, 
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Russell, & Cohen, 2005; Wee et al., 2012), the minimal influence of supplementary pairing 

reflected the rarity of such sites in our library. 

Analysis of enrichment of the six canonical sites across all five AGO2–miR-1 

concentrations illustrated two hallmarks of this experimental platform (Lambert et al. 2014). 

First, as the concentration increased from 7.3 pM to 73 pM, enrichment for each of the six site 

types increased (Fig. 1D), which was attributable to an increase in signal over a constant low 

background of library molecules isolated even in the absence of AGO2–miR-1. Second, as the 

AGO2–miR-1 concentration increased beyond 73 pM, 8mer enrichment decreased, and at the 

highest AGO2–miR-1 concentration, enrichment of the 7mer-m8 and 7mer-A1 site decreased 

(Fig. 1D). These waning enrichments indicated the onset of saturation for these high-affinity 

sites (Lambert et al. 2014). These two features, driven by AGO–miRNA-independent 

background and partial saturation of the higher-affinity sites, respectively, caused differences in 

enrichment values for different site types to be highly dependent on the AGO2–miR-1 

concentration; the lower AGO2–miR-1 concentrations provided greater discrimination between 

the higher-affinity site types, the higher AGO2–miR-1 concentrations provided greater 

discrimination between the lower-affinity site types, and no single concentration provided results 

that quantitatively reflected differences in relative binding affinities. 

To account for background binding and ligand saturation, we developed a computational 

strategy that simultaneously incorporated information from all concentrations of an RBNS 

experiment to calculate relative KD values. Underlying this strategy was an equilibrium-binding 

model that predicts the observed enrichment of each site type across the concentration series as a 

function of the KD values for each miRNA site type (including the “no-site” type), as well as the 

stock concentration of purified AGO2–miR-1 and a constant amount of library recovered as 
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background in all samples. Using this model, we performed maximum likelihood estimation 

(MLE) to fit the relative KD values, which explained the observed data well (Fig. 1D). Moreover, 

these relative KD values were robustly estimated, as indicated by comparing values obtained 

using results from only four of the five AGO2–miR-1 concentrations (r2 ≥0.994 for each of the 

ten pairwise comparisons, fig. S1, F and G). These quantitative binding affinities followed the 

same hierarchy as observed for site enrichment, but the differences in affinities were of greater 

magnitude (Fig. 1D and fig. S1C). 

Up to this point, our analysis was informed by the wealth of previous computational and 

experimental data showing the importance of a perfect 6–8-nt match to the seed region (Bartel, 

2009). However, the ability to calculate the relative KD of any k-mer of length ≤12 nt (the 12-nt 

limit imposed by the sparsity of reads with longer k-mers) provided the opportunity for a de novo 

search for sites, without bias from any previous knowledge. In this search, we 1) calculated the 

enrichment of all 10-nt k-mers in the bound RNA in the 730 pM AGO2–miR-1 sample, which 

was the sample with the most sensitivity for detecting low-affinity sites, 2) for the ten most 

enriched k-mers, determined the extent of complementarity to the miR-1 sequence, 3) assigned a 

site most consistent with the observed k-mers, and 4) removed all reads containing this newly 

identified site from both the bound and input libraries. These four steps were iterated until no 10-

nt k-mer remained that was enriched ≥10-fold, thereby generating 14 sites for AGO2–miR-1. We 

then applied our MLE procedure to calculate relative KD values for this expanded list of sites 

(Fig. 1, E and F).  

This unbiased approach demonstrated that the 8mer, 7mer-m8, 7mer-A1, and 6mer sites 

to miR-1 were the highest-affinity site types of lengths ≤10 nt. It also identified eight novel sites 

with binding affinities resembling those of the 6mer-m8 and the 6mer-A1 (Fig. 1F). Comparison 
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of these sites to the sequence of miR-1 revealed that miR-1 can tolerate either a wobble G at 

position 6 or a bulged U somewhere between positions 4 and 6 and achieve affinity at least 7–11 

fold above that of the remaining no-site reads, and that it can tolerate either a mismatched C at 

position 5 or a mismatched U at position 4 and achieve affinity 4–5 fold above that of the no-site 

reads. The GCUUCCGC motif also passed our cutoffs, which was more difficult to explain, as it 

had contiguous complementarity to positions 2–5 of miR-1 flanked by noncomplementary GC 

dinucleotides on both sides. Nonetheless, among the 1,398,100 possible motifs ≤10 nt, this was 

the only one that satisfied our criteria yet was difficult to attribute to miRNA pairing. 

Our analytical approach and its underlying biochemical model also allowed us to infer 

the proportion of AGO2–miR-1 bound to each site (Fig. 1G). The 8mer site occupied 3.8–17% of 

the silencing complex over the concentration course, whereas the 7mer-m8, by virtue of its 

greater abundance, occupied a somewhat greater fraction of the complex. In aggregate, the 

marginal sites, including the 6mer-A1, 6mer-m8, and seven noncanonical sites, occupied 6.1–

9.8% of the AGO2–miR-1 complex. Moreover, because of their very high abundance, library 

molecules with no identified site occupied 32–53% of the complex (Fig. 1G). These results 

support the inference that the summed contributions of background binding and low-affinity sites 

to intracellular AGO occupancy is of the same order of magnitude as that of canonical sites, 

suggesting that an individual AGO–miRNA complex spends about half its time associated with a 

vast repertoire of background and low-affinity sites (Denzler et al. 2014, 2016). This 

phenomenon would help explain why sequences without recognizable sites often crosslink to 

AGO in cells. 

Our results confirmed that AGO2–miR-1 binds the 8mer, 7mer-m8, 7mer-A1, and 6mer 

sites most effectively and revealed the relative binding affinities and occupancies of these sites. 
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In addition, our results uncovered weak yet specific affinity to the 6mer-A1 and 6mer-m8 sites 

plus seven noncanonical sites, all with affinities outside the dynamic range of recent high-

throughput imaging experiments (Becker et al. 2019). Although alternative binding sites for 

miRNAs have been proposed based on high-throughput in vivo crosslinking studies (Chi, 

Hannon, and Darnell 2012; Loeb et al. 2012; Helwak et al. 2013; Khorshid et al. 2013; 

Grosswendt et al. 2014), our approach provided quantification of the relative strength of these 

sites without the confounding effects of differential crosslinking efficiencies, potentially 

enabling their incorporation into a quantitative framework of miRNA targeting. 

 

Distinct canonical and noncanonical binding of different miRNAs 

We extended our analysis to five additional miRNAs, including let-7a, miR-7, miR-124, and 

miR-155 of mammals, chosen for their sequence conservation as well as the availability of data 

examining their regulatory activities, intracellular binding sites, or in vitro binding affinities 

(Bartel 2018; Wee et al. 2012; Salomon et al. 2015; Chi, Hannon, and Darnell 2012; Loeb et al. 

2012), and lsy-6 of nematodes, which is thought to bind unusually weakly to its canonical sites 

(Garcia et al. 2011) (Fig. 2 and fig. S2, B and C). In the case of let-7a, previous biochemical 

analyses have determined the KD values of a few sites (Wee et al. 2012; Salomon et al. 2015), 

and our values agreed well, which further validated our high-throughput approach (fig. S1H). 

The site-affinity profile of let-7a resembled that of miR-1, except the 6mer-m8 and 6mer-

A1 site for let-7a had greater binding affinity than essentially all of the noncanonical sites (Fig. 

2A). As with miR-1, the noncanonical sites each paired to the seed region but did so imperfectly, 

typically with a single wobble, single mismatch, or single-nucleotide bulge, but these 

imperfections differed from those observed for miR-1 (Figs. 1F and 2A). 
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The site-affinity profiles of miR-124, miR-155, lsy-6, and miR-7 resembled those of 

miR-1 and let-7a. All but one included the six canonical sites (with miR-7 missing the 6mer-m8 

site), and all contained noncanonical sites with extensive yet imperfect pairing to the miRNA 

seeds, the imperfections tending to occur at different positions and with different mismatched- or 

bulged-nucleotide identities for different miRNAs, (Fig. 2, B and C, and fig. S2, B and C). In 

contrast to the noncanonical sites of miR-1 and let-7a, more of the noncanonical sites of the other 

four miRNAs had affinities interspersed with those of the top four canonical sites. Moreover, the 

profiles for miR-155, miR-124, and lsy-6 also included sites with extended (9–11-nt) 

complementarity to the miRNA 3′ region. These sites had estimated KD values that were derived 

from reads with little more than chance complementarity to the miRNA seed, and they had 

uniform enrichment across the length of the random-sequence region (fig. S1E), which indicated 

that these sites represented an alternative binding mode dominated by extensive pairing to the 3′ 

region without involvement of the seed region (Fig. 2, B and C, and fig. S2B). We named them 

“3′-only sites.” 

In some respects the 3′-only sites resembled noncanonical sites known as centered sites, 

which are reported to function in mammalian cells (Shin et al. 2010). Like 3′-only sites, centered 

sites have extensive perfect pairing to the miRNA, but for centered sites this pairing begins at 

miRNA positions 3 or 4 and extends 11–12-nt through the center of the miRNA (Shin et al. 

2010). Our unbiased search for sites did not identify centered sites for any of the six miRNAs. 

We therefore directly queried the region of each miRNA to which extensive noncanonical 

pairing was favored, determining the affinity of sequences with 11-nt segments of perfect 

complementarity to the miRNA sequence, scanning from miRNA position 3 to the 3′ end of the 

miRNA (Fig. 3A). For miR-155, miR-124, and lsy-6, sequences with 11-nt sites that paired to 
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the miRNA 3′ region bound with greater affinity than did those with a canonical 6mer site, 

whereas for let-7a and miR-1, and miR-7, none of the 11-nt sites conferred stronger binding than 

did the 6mer. Moreover, for all six miRNAs, the 11-nt sites that satisfied the criteria for 

annotation as centered sites conferred binding ≤2-fold stronger than that of the 6mer-m8 site, 

which also starts at position 3 but extends only 6 nt. These results called into question the 

function of centered sites, although we cannot rule out the possibility that centered sites are 

recognized by some miRNAs and not others. Indeed, the newly identified 3′-only sites 

functioned for only miR-155, miR-124, and lsy-6, and even among these, the optimal region of 

pairing differed, occurring at positions 13–23, 9–19, and 8–18, respectively (Fig. 3A). 

When evaluating other types of noncanonical sites proposed to confer widespread 

repression in mammalian cells (Kim et al. 2016; Chi, Hannon, and Darnell 2012), we found that 

all but two bound with affinities difficult to distinguish from background. One of these two was 

the 5-nt site matching miRNA positions 2–6 (5mer-m2.6) (Kim et al. 2016), which was bound by 

miR-1, let-7a, and miR-7 but not by the other three miRNAs (fig. S3). The other was the pivot 

site (Chi, Hannon, and Darnell 2012), which was bound by miR-124 (e.g., 8mer-bG(6.7); Fig. 

2C) and lsy-6 (e.g., 8mer-bA(6.7); fig. S2B) but not by the other four miRNAs (fig. S4). Thus, 

these two previously identified noncanonical site types resembled the newly identified 

noncanonical sites with extensive yet imperfect pairing to the seed region, in that they function 

for only a limited number of miRNAs. 

In addition to the differences in noncanonical site types observed for each miRNA, we 

also observed striking miRNA-specific differences in the relative affinities of the canonical site 

types. For example, for miR-155, the affinity of the 7mer-A1 nearly matched that of the 7mer-

m8, whereas for miR-124, the affinity of the 7mer-A1 was >9-fold lower than that of the 7mer-



 42 

m8. These results implied that the relative contributions of the A at target position 1 and the 

match at target position 8 can substantially differ for different miRNAs. Although prior studies 

show that AGO proteins remodel the thermodynamic properties of their loaded RNA guides 

(Wee et al. 2012; Salomon et al. 2015), our results show that the sequence of the guide strongly 

influences the nature of this remodeling, leading to differences in relative affinities across 

canonical site types and a distinct repertoire of noncanonical site types for each miRNA. 

 

The energetics of canonical binding 

With the relative KD values for the canonical binding sites of six miRNAs in hand, we examined 

the energetic relationship between the A at target position 1 (A1) and the match at miRNA 

position 8 (m8), within the framework analogous to a double-mutant cycle (Fig. 3B, left). The 

apparent binding-energy contributions of the m8 and A1 (∆∆Gm8 and ∆∆GA1, respectively) were 

largely independent, as inferred from the relative KD values of the four site types. That is, for 

each miRNA, the ∆∆Gm8 inferred in presence of the A1 (using the ratio of the 8mer and 7mer-A1 

KD values) resembled that inferred in the absence of the A1 (using the ratio of the 7mer-m8 and 

6mer KD values), and vice versa (Fig. 3B). 

The relative KD values for canonical sites of six miRNAs provided the opportunity to 

examine the relationship between the predicted free energy of site pairing and measured site 

affinities. We focused on the 6mer and 7mer-m8 sites, because they lack the A1, which does not 

pair to the miRNA (Fig. 1A) (Schirle et al. 2015; Lewis, Burge, and Bartel 2005). Consistent 

with the importance of base pairing for site recognition and the known relationship between 

predicted seed-pairing stability and repression efficacy (Garcia et al. 2011), affinity increased 

with increased predicted pairing stability, although this increase was statistically significant for 
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only the 7mer-m8 site type (Fig. 3C, p = 0.09 and 0.005, for the 6mer and 7mer-m8 sites, 

respectively). However, for both site types, the slope of the relationship was significantly less 

than expected from KD = e−∆G/RT (p = 0.008 and 8 × 10−5, respectively). When considered 

together with previous analysis of a miRNA with enhanced seed pairing stability, these results 

indicated that in remodeling the thermodynamic properties of the loaded miRNAs, AGO not only 

enhances the affinity of seed-matched interactions but also dampens the intrinsic differences in 

seed-pairing stabilities that would otherwise impose much greater inequities between the 

targeting efficacies of different miRNAs (Salomon et al. 2015). Thus, although lsy-6, which has 

unusually poor predicted seed-pairing stability (Garcia et al. 2011), did indeed have the weakest 

site-binding affinity of the six miRNAs, the difference between its binding affinity and that of 

the other miRNAs was less than might have been expected. 

 

Correspondence with repression observed in the cell 

To evaluate the relevance of our in vitro binding results to intracellular miRNA-mediated 

repression, we examined the relationship between the relative KD measurements and the 

repression of endogenous mRNAs after miRNA transfection into HeLa cells. When examining 

intracellular repression attributable to 3′-UTR sites to the transfected miRNA, we observed a 

striking relationship between AGO-RBNS–determined KD values and mRNA fold-changes (Fig. 

3, D to I, r2 = 0.80–0.97). For instance, the different relative affinities of the 7mer-A1 and 7mer-

m8 sites, most extremely observed for sites of miR-155 and miR-124, was nearly perfectly 

mirrored by the relative efficacy of these sites in mediating repression in the cell (Fig. 3, F and 

G). A similar correspondence between relative KD values and repression was observed for the 

noncanonical sites that had both sufficient affinity and sufficient representation in the HeLa 
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transcriptome to be evaluated using this analysis (Fig. 3, D to I). These included the pivot sites 

for miR-124 and lsy-6, the AA-6mer-m8 site for miR-124, and the bulge-G7-containing sites for 

lsy-6 and miR-7 (Fig. 3, G to I). 

Analysis of mRNA changes following miRNA transfection was not suitable for 

measuring efficacy of the highest-affinity noncanonical sites because these sites lacked sufficient 

representation in endogenous 3′ UTRs. Therefore, we implemented a massively parallel reporter 

assay designed to examine the efficacy of every site type identified by AGO-RBNS—each in 

184 different 3′ UTR sequence contexts (fig. S5A). This assay showed that 3′-only sites and 

other high-affinity-but-rare noncanonical site types do mediate repression in cells and that their 

efficacies tend to track with their affinities (fig. S5B). In sum, we found a strong correspondence 

between intracellular repression and in vitro binding affinity, regardless of miRNA identity, and 

regardless of whether the target site is canonical or noncanonical, or within an endogenous or a 

reporter mRNA. This result supported a model in which repression is a function of miRNA 

occupancy, as dictated by site affinity, and thus miRNA- and site-specific differences in binding 

affinities explain substantial differences in repression. 

 

The strong influence of flanking dinucleotide sequences 

AU-rich nucleotide composition immediately flanking miRNA sites has long been associated 

with increased site conservation and efficacy in cells (Grimson et al. 2007; Lewis, Burge, and 

Bartel 2005; Nielsen et al. 2007), but the mechanistic basis of this phenomenon had not been 

investigated, presumably because of the sparsity of affinity measurements. The AGO-RBNS data 

provided the means to overcome this limitation. We first separated the miR-1 8mer site into 256 

different 12-nt sites, based on the dinucleotide sequences immediately flanking each side of the 
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8mer, and determined relative KD values for each (Fig. 4A). This analysis revealed a ~100-fold 

range in values, depending on the identities of the flanking dinucleotides, with binding affinity 

strongly tracking the AU content of the flanking dinucleotides. Extending this analysis across all 

miR-1 site types (Fig. 4B), as well as to sites to the other five miRNAs (fig. S6, A to E), yielded 

similar results. The effect of flanking-dinucleotide context was of such magnitude that it often 

exceeded the affinity differences observed between miRNA-site types. Indeed, for each miRNA, 

at least one 6-nt canonical site in its most favorable context had greater affinity than that of the 

8mer site in its least favorable context (Fig. 4B and fig. S6, A to E). 

To identify general features of the flanking-dinucleotide effect across miRNA sequences 

and site types, we trained a multiple linear-regression model on the complete set of flanking-

dinucleotide KD values corresponding to all six canonical site types of each miRNA, fitting the 

effects at each of the four positions within the two flanking dinucleotides. The output of the 

model agreed well with the observed KD values (Fig. 4C, left, r2 = 0.63), which indicated that the 

effects of the flanking dinucleotides were largely consistent between miRNAs and between site 

types of each miRNA. The output of the model also corresponded with the efficacy of 

intracellular repression, which indicated that these effects on KD values were consequential in 

cells (fig. S6F). A and U nucleotides each enhanced affinity, whereas G nucleotides reduced 

affinity, and C nucleotides were intermediate or neutral (Fig. 4C, right). Moreover, the identity 

of the 5′ flanking dinucleotide, which must come into close proximity with the central RNA-

binding channel of AGO (Schirle, Sheu-Gruttadauria, and MacRae 2014), contributed ~2-fold 

more to binding affinity than did the 3′ flanking sequence (Fig. 4C, right). 

One explanation for this hierarchy of flanking nucleotide contributions, with A ≈ U > C > 

G, is that it inversely reflected the propensity of these nucleotides to stabilize RNA secondary 
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structure that could occlude binding of the silencing complex. To investigate this potential role 

for structural accessibility in influencing binding, we compared the predicted structural 

accessibility of 8mer sites in the input and bound libraries of the AGO2–miR-1 experiment, 

using a score for predicted structural accessibility previously optimized on data examining 

miRNA-mediated repression (Agarwal et al. 2015; Tafer et al. 2008). This score is based on the 

predicted probability that the 14-nt segment at target positions 1–14 is unpaired. We found that 

predicted accessibilities of sites in the bound libraries were substantially greater than those for 

sites in the input library, and the difference was greatest for the samples with the lower AGO2–

miR-1 concentrations (fig. S6G), as expected if the accessibility score was predictive of site 

accessibility and if the most accessible sites were the most preferentially bound. 

To build on these results, we examined the relationship between predicted structural 

accessibility and binding affinity for each of the 256 flanking dinucleotide possibilities. For each 

input read with a miR-1 8mer site, the accessibility score of that site was calculated. The sites 

were then differentiated based on their flanking dinucleotides into 256 12-nt sites, and the 

geometric mean of the structural-accessibility scores of each of these extended sites was 

compared with the AGO-RBNS–derived relative KD value (Fig. 4D and fig. S6H). A striking 

correlation was observed (r2 = 0.82, p < 10−15), with all 16 sites containing a 5′-flanking GG 

dinucleotide having both unusually poor affinities and unusually low accessibility scores. 

Moreover, sampling reads from the input library to match the predicted accessibility of sites in 

the bound library recapitulated the flanking dinucleotide preferences observed in the bound 

library (fig. S6I, r2 = 0.79). Taken together, our results demonstrated that local sequence context 

has a large influence on miRNA–target binding affinity, and indicated that this influence results 
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predominantly from the differential propensities of flanking sequences to form structures that 

occlude site accessibility. 

 

A biochemical model predictive of miRNA-mediated repression 

Inspired by the finding that measured affinities strongly corresponded to the repression observed 

in cells (Fig. 3, D to I), we set out to build a biochemical framework that predicts the degree to 

which a miRNA represses each mRNA. Biochemical principles have been used to model miR-

21–directed mRNA slicing (Becker et al. 2019). However, previous efforts that used biochemical 

principles to model aspects of the predominant mode of miRNA-mediated repression, including 

competition between endogenous target sites (Denzler et al. 2016; Bosson, Zamudio, and Sharp 

2014; Jens and Rajewsky 2015) and the influence of miRNAs on reporter gene–expression noise 

(Schmiedel et al. 2015), were severely limited by the sparsity of the data. Our ability to measure 

the relative binding affinity of a miRNA to any 12-nt sequence enabled modeling of the 

quantitative effects of the six miRNAs on each cellular mRNA. 

We first re-analyzed all six AGO-RBNS experiments to calculate, for each miRNA, the 

relative KD values for all 262,144 12-nt k-mers that contained at least four contiguous nucleotides 

of the canonical 8mer site (Fig. 5A). These potential binding sites included the canonical sites 

and most of the noncanonical sites that we had identified, each within a diversity of flanking 

sequence contexts (Figs. 1F and 2). For each mRNA m and transfected miRNA t, the steady-state 

occupancy Nm,t (i.e., average number of AGO–miRNA complexes loaded with miRNA t bound 

to mRNA m) was predicted as a function of the KD values of the potential binding sites contained 

within the mRNA ORF and 3′ UTR, as well as the concentration of the unbound AGO–miRNAt 

complex at, which was fit as a single value for each transfected miRNA (Fig. 5B, equation 1). 
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This occupancy value enabled prediction of a biochemically informed expectation of repression, 

assuming that the added effect of the miRNA on the basal decay rate scaled with the basal rate 

and Nm,t (Fig. 5B, equation 2). To isolate the effects of a transfected miRNA over background, 

we further offset our prediction of repression by a background binding term (Fig. 5B, Nm,t, 

background). 

The calculation of predicted repression required an estimate of how much a single bound 

RISC complex affected the mRNA decay rate (Fig. 5B, b), which was fit as a global value. 

Additionally, to account for the observation that sites in open reading frames (ORFs) are less 

effective than those in 3′ UTRs (Bartel 2009), our model included a penalty term for sites in 

ORFs, which was also fit as a global value (Fig. 5B). Because no appreciable repression was 

observed from sites in 5′ UTRs, our model did not consider these sites. 

Our biochemical model was fit against repression observed in HeLa cells transfected with 

one of five miRNAs with RBNS-derived measurements (let-7a was excluded because let-7 has 

high endogenous expression in HeLa cells). A strong correspondence was observed when 

comparing mRNA changes measured upon miRNA transfection to those predicted by the model 

(fig. S7A, r2 = 0.30–0.37). 

The overall performance of our biochemical model (r2 = 0.34, Fig. 5C) exceeded those of 

the 30 target-prediction algorithms (r2 ≤ 0.14) that were also tested on changes in mRNA levels 

observed in response to miRNA transfection (Agarwal et al. 2015). We reasoned that in addition 

to our biochemical framework and the use of experimentally measured affinity values, other 

aspects of our analysis might have contributed to this improvement. For example, the miRNAs 

chosen for RBNS have high efficacy in transfection experiments, and our RNA-seq datasets 

generally had stronger signal over background compared to microarray datasets used to train and 
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test previous target-prediction algorithms. Indeed, when evaluated on the same five datasets, the 

performance of the latest TargetScan model (TargetScan7) improved from an r2 of 0.14 to an r2 

of 0.25 (fig. S7B). To explore the possibility that TargetScan7 might also benefit from training 

on this type of improved data, we generated transfection datasets for 11 additional miRNAs and 

retrained TargetScan7 on the collection of 16 miRNA-transfection datasets (again omitting the 

let-7a dataset), putting aside one dataset each time in a 16-fold cross-validation. Training and 

testing TargetScan on improved datasets further increased the r2 to 0.28 for the five miRNAs 

with AGO-RBNS data (Fig. 5D). Nonetheless, the biochemical model still outperformed the 

retrained TargetScan by >20%, which showed that the use of measured affinity values in a 

biochemical framework substantially increased prediction performance. 

Many features known to correlate with targeting efficacy were captured by our 

biochemical model. Indeed, the contribution of certain features, such as site type (Bartel 2009), 

predicted seed-pairing stability (Garcia et al. 2011), and nucleotide identities at specific 

miRNA/site positions (Agarwal et al. 2015), are expected to be represented more accurately in 

the miRNA-specific KD values of the 12-nt k-mers than when generalized across miRNAs. 

However, these KD values did not fully capture other factors that that influence the affinity 

between miRNAs and their target sites in cells, including the structural accessibility of sites 

within their larger mRNA contexts and the contribution of supplementary pairing to the miRNA 

3′ region, which influences approximately 5% of sites (Bartel 2009). Without sufficient 

biochemical data quantifying these effects, we approximated their influence using scoring 

metrics known to correlate with miRNA targeting efficacy (Grimson et al. 2007; Agarwal et al. 

2015) and allowed them to modify the KD values linearly in log-space (i.e., linearly in free-

energy space). Incorporating each of these metrics slightly improved the performance of the 
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biochemical model, as did incorporating a score for the evolutionary conservation of the site 

(Friedman et al. 2009), which helped account for additional unknown or imperfectly captured 

factors that influence targeting efficacy (fig. S7C). Simultaneously incorporating all three 

metrics to generate what we call the “biochemical+ model” improved the r2 by 9% to 0.37 (Fig. 

5E). 

To examine how well our models generalized to another cell type and to a miRNA family 

not used for fitting (let-7), we evaluated them on repression data collected after transfecting let-

7c into HCT116 cells that had been engineered to not express endogenous miRNAs (Linsley et 

al. 2007). Although these data had a considerably lower signal-to-noise ratio, which lowered all 

r2 values, our biochemical models substantially out-performed TargetScan7 (Fig. 5G. This 

improvement extended to predicting repression after transfecting miR-124 and miR-7 into 

HEK293 cells (Hausser et al. 2009) (fig. S8A). Additional analyses showed that the 

biochemical+ model performed at least as well as in vivo crosslinking (CLIP-seq) approaches in 

identifying the mRNAs most repressed upon miRNA transfection or most derepressed upon 

miRNA knockout (fig. S8, B to D). Furthermore, for individual CLIP clusters enriched upon 

miR-155 knockout, we observed a strong relationship between the cluster occupancy predicted 

by our KD values and the observed enrichment of the cluster (rs = 0.46, p < 10−7, fig. S8E), 

supporting the conclusion that KD values measured in vitro reflect intracellular AGO binding. 

When provided KD values for only the 12-nt k-mers that contained one of the six 

canonical sites, the biochemical+ model captured somewhat less variance (Fig. 5F, green bars, r2 

= 0.35), and conversely when provided KD values for only the 12-nt k-mers without a canonical 

site, the model still retained some predictive power (Fig. 5F, purple bars, r2 = 0.06, p < 10−15, 

likelihood ratio test). As a control, we repeated the analysis after replacing the noncanonical sites 
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(and their KD values) of each miRNA with those of another miRNA, performing this shuffling 

and reanalysis for all 309 possible shuffle permutations. When using each of these shuffled 

controls, performance decreased, both when considering all sites (Fig. 5F, light-blue bars) and 

when considering only the noncanonical sites (Fig. 5F, pink bars), as expected if the modest 

improvement conferred by including noncanonical sites were due, at least in part, to miRNA 

pairing to those sites. This advantage of cognate over shuffled noncanonical sites was largely 

maintained when evaluating the results for individual miRNAs (Fig. 5F). Together, our results 

showed that noncanonical sites can mediate intracellular repression but that their impact is 

dwarfed by that of canonical sites because high-affinity noncanonical sites are not highly 

abundant within transcript sequences. 

 

Convolutional neural network for predicting site KD values from sequence 

Our findings that binding preferences differ substantially between miRNAs and that these 

differences are not well predicted by existing models of RNA duplex stability in solution posed a 

major challenge for applying our biochemical framework to other miRNAs. Because performing 

AGO-RBNS for each of the known miRNAs would be impractical, we attempted to predict 

miRNA–target affinity from sequence using the six sets of relative KD values and 16 miRNA-

transfection datasets already in hand. Bolstered by recent successful applications of deep 

learning to predict complex aspects of nucleic acid biology from sequence (Alipanahi et al. 2015; 

Jaganathan et al. 2019; Tunney et al. 2018; Cuperus et al. 2017), we chose a convolutional neural 

network (CNN) for this task. 

 The overall model had two components. The first was a CNN that predicted relative KD 

values for the binding of miRNAs to 12-nt k-mers (fig. S9A), and the second was the previously 
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described biochemical model that links intracellular repression with relative KD values (Fig. 6A). 

The training process simultaneously tuned both the neural network weights and the parameters of 

the biochemical model to fit both the relative KD values and the mRNA repression data, with the 

goal of building a CNN that accurately predicts the relative KD values for all 12-nt k-mers of a 

miRNA of any sequence. 

 For the CNN, we chose to include only the first 10 nucleotides of the miRNA sequence, 

which includes the position 1 nucleotide, the seed region, and the two downstream nucleotides 

that could pair to a 12-nt k-mer. Because the k-mers were not long enough to include sites with 3′ 

supplementary pairing, we excluded the 3′ region of the miRNA. Pairs of 10-nt truncated 

miRNA sequences and 12-nt k-mers were each parameterized as a 10 × 12 × 16 matrix, with the 

third dimension representing the 16 possible pairs of nucleotides that could be present at each 

pair of positions in the miRNA and target. The first layer of the CNN was designed to learn 

important single-nucleotide interactions, the second layer was designed to learn dinucleotide 

interactions, and the third layer was designed to learn position-specific information. 

 The training data for the CNN consisted of over 1.5 million relative KD values from six 

AGO-RBNS experiments and 68,112 mRNA expression estimates derived from 4,257 transcripts 

in 16 miRNA transfection experiments. Five miRNAs had data in both sets. Because some 

repression was attributable to the passenger strands of the transfected duplexes (fig. S9B), the 

model considered both strands of each transfected duplex, which allowed the neural network to 

learn from another 16 AGO-loaded guide sequences. 

To test how well the CNN-predicted relative KD values enabled our approach to be 

generalized to other miRNAs and another cell type, we generated 12 miRNA-transfection 

datasets in HEK293FT cells, choosing miRNAs that were not appreciably expressed in HEK293 
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cells (Landgraf et al. 2007) and that had not been used in any training (fig. S10). For each 

miRNA duplex in the test set, the CNN was used to predict relative KD values for 12-nt k-mers to 

both the miRNA and passenger strands. As observed with the experimentally derived relative KD 

values (Fig. 3, D to I), striking correspondence was observed between CNN-predicted relative 

KD values for the six canonical site types of the transfected miRNAs and mean repression that 

these site types conferred in cells (Fig. 6B and fig. S11). This correspondence (r2 = 0.76) 

substantially exceeded that observed for predictions of RNA-duplex stability in solution (Lorenz 

et al. 2011) and predictions derived from crosslinking results (Khorshid et al. 2013) (Fig. 6C, r2 

= 0.21 and 0.56, respectively). Aside from accurately predicting the relative efficacy of sites to 

the same miRNA, the CNN was uniquely able to stratify sites of the same type to different 

miRNAs (e.g., Fig. 6B, purple dots, r2= 0.52, p = 0.02). Analysis of other site types suggested 

that the CNN had some ability to identify effective noncanonical sites for new miRNAs (fig. 

S11).  

When the CNN-predicted KD values and HeLa-derived global parameters were used as 

input for the biochemical and biochemical+ models to predict repression of individual mRNAs in 

HEK293FT cells, the results mirrored those observed when using relative KD values derived 

from AGO-RBNS. Median (r2 = 0.21) and overall performance (r2 = 0.18) for the test set both 

exceeded those of TargetScan (r2 = 0.12 and 0.13, respectively); overall performance improved 

(r2 = 0.20) when using the biochemical+ model, implying a 54% improvement over TargetScan, 

and performance dropped slightly when either shuffling or omitting noncanonical sites (Fig. 6D 

and fig. S12A, the main exception being the results for miR-190a, for which the performance of 

the biochemical+ model resembled that of TargetScan when only considering the canonical sites 

but substantially dropped when also considering noncanonical sites). The overall improvement 
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over TargetScan was maintained when focusing on mRNAs that were expressed in HEK293FT 

cells but not HeLa cells (Fig. 6D). The CNN-predicted relative KD values also enabled the 

biochemical+ model to outperform TargetScan and crosslinking approaches in predicting the 

effects of deleting or adding a miRNA in other cellular contexts (fig. S12, B to D). 

Although our models were improved over previous models, the highest r2 value achieved 

by our models for any of our datasets was 0.37 (Fig. 5F and fig. S12A), implying that they 

explained only a minority of the variability in mRNA fold changes occurring upon introducing a 

miRNA. However, even perfect prediction of the direct effects of miRNAs was not expected to 

explain all of the variability; some variability was due to the secondary effects of repressing the 

primary targets, and some was due to experimental noise. To estimate the maximal r2 that could 

be achieved by predicting the primary effects of miRNA targeting, we attempted to quantify and 

subtract the fraction of the fold-change variability attributable to the other two causes. For each 

dataset, the fraction attributable to experimental noise was estimated by examining the 

reproducibility between replicates in our transfection experiments, and the fraction attributable to 

secondary effects was inferred by assuming that primary miRNA effects only repress mRNAs, 

whereas secondary effects affect mRNAs in either direction (with effects distributed log-

normally). After accounting for these other sources of variability, the biochemical+ model 

provided with experimentally determined affinity values explained ~60% of the variability 

attributable to direct targeting (fig. S12E, median of five datasets), and when provided with 

CNN-predicted values it explained ~50% of the variability attributable to direct targeting (fig. 

S12F, median of twelve datasets). 
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Insights into miRNA targeting 

Our results provide new insight into both the canonical and noncanonical miRNA site types. For 

each miRNA, the canonical 8mer site was the highest-affinity site identified, illustrating its 

primacy in miRNA targeting. However, the canonical 7mer-m8 was the not always the second-

most effective site; miR-155 had one noncanonical site with greater affinity than that of this 

canonical site, and miR-124 had three (Fig. 2, B and C). Moreover, four of the six miRNAs had 

noncanonical sites with greater affinity than that of the canonical 7mer-A1 sites. Indeed, miR-

124 had 25 noncanonical sites with greater affinity than that of the canonical 7mer-A1 site and 

33 noncanonical sites with greater affinity than that of the canonical 6mer site. (Fig. 2 and fig. 

S2).  

The observation that canonical sites are not necessarily those with the highest affinity 

raises the question of how canonical sites are distinguished from noncanonical ones and whether 

making such a distinction is useful. Our results show that two criteria readily distinguished 

canonical sites from noncanonical ones. First, all six canonical site types were identified for five 

of the six miRNAs (the sole exception being the 6mer-m8 site for miR-7), whereas the 

noncanonical site types were typically identified for only one miRNA, and never for more than 

three. Second, the four highest-affinity canonical sites occupied most of the specifically bound 

AGO2, even for miR-124, which had the largest and highest-affinity repertoire of noncanonical 

sites (Figs. 1F and 2 and fig. S2, B and C). This greater role for canonical sites was presumably 

because perfect pairing to the seed region is the most efficient way to bind the silencing 

complex; to achieve equivalent affinity, the noncanonical sites must be longer and are therefore 

less abundant. For example, although the miR-124 7mer-m8 site had lower affinity than a 11-nt 

noncanonical site, the canonical 7-nt site occupied much more AGO2–miR-124 because of its 
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256-fold greater abundance. The ubiquitous function and more efficient binding of canonical 

sites explains why these site types have the greatest signal in meta-analyses of site conservation, 

thereby explaining why they were the first site types to be identified (Lewis, Burge, and Bartel 

2005) and justifying the continued distinction between canonical and noncanonical site types. 

The potential role of pairing to miRNA nucleotides 9 and 10 has been controversial. 

Although some target-prediction algorithms (such as TargetScan) do not reward pairing to these 

nucleotides, most algorithms assume that such pairing enhances site affinity. Likewise, although 

one biochemical study reports that such pairing can reduce site affinity (Salomon et al. 2015), 

another reports that it slightly increases affinity (Becker et al. 2019). We found that extending 

pairing to nucleotides 9 and 10 neither enhanced nor diminished affinity in the context of seed 

matched sites (Fig. 4), whereas pairing to nucleotides 9 and 10 enhanced affinity in the context 

of 3′-only sites (Fig. 2, C and D). These results support the idea that extensive pairing to the 

miRNA 3′ region unlocks productive pairing to nucleotides 9–12, which is otherwise 

inaccessible (Bartel 2018). Moreover, we found that although the nucleotides at target positions 

9 and 10 seem unable to pair to the miRNA in the context of most canonical sites, nucleotide 

composition at positions 9 and 10 can have a dramatic influence on the affinity of canonical sites 

through an effect on site accessibility (Fig. 4). 

The success of our biochemical model in predicting how each mRNA would respond to a 

transfected miRNA (Fig. 5) supports the conclusion that site binding affinity is the major 

determinant of miRNA-mediated repression and that noncanonical sites measurably contribute to 

this repression in the cell. The biochemical parameters fit by our model provided additional 

insights into miRNA targeting. In the framework of our model, the fitted value of 1.8 observed 

for the parameter b suggested that a typical mRNA bound to an average of one silencing 
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complex will experience a near tripling of its decay rate, which would lead to a ~60% reduction 

in its abundance. In the concentration regimes of our transfection experiments, this occupancy 

can be achieved with two to three median 7mer-m8 sites. In addition, our fitted value for the 

ORF-site penalty suggested that the translation machinery reduces site affinity by 5.5-fold. 

Another parameter was at, i.e., the intracellular concentration of AGO2 loaded with the 

transfected miRNA and not bound to a target site. Whereas values of the other parameters could 

be fit globally in HeLa cells and then used for testing, at was fit separately for each miRNA and 

passenger strand of each transfection experiment. Nonetheless, when at values were deviated 

from the fitted values, the biochemical+ model still outperformed TargetScan in predicting test-

set repression over a 100-fold range of values (Fig. 6E), which indicated that even with rough 

estimates of miRNA abundances our modeling framework had an advantage over other 

predictive methods in new contexts. Information that might be used to more accurately estimate 

at values should come with the determination of these values for more miRNAs in more cellular 

contexts, together with the observation that, as expected, fitted at values are higher for miRNAs 

with lower predicted target abundance and lower general affinity for their targets (Fig. 6F). 

Our work replaced the correlative models of targeting efficacy with a principled 

biochemical model that explains and predicts about half the variability attributable to the direct 

effects of miRNAs on their targets, raising the question of how the understanding and prediction 

of miRNA-mediated repression might be further improved. Acquiring site-affinity profiles for 

additional miRNAs with diverse sequences will improve the CNN-predicted miRNA–mRNA 

affinity landscape and further flesh out the two major sources of targeting variability revealed by 

our study, i.e., the widespread differences in site preferences observed for different miRNAs and 

the striking influence of local (12-nt) site context. We suspect additional improvement will come 
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with increased ability to predict the other major cause of targeting variability, which is the 

variability imparted by mRNA features more distant from the site. This variability is captured 

only partially by the three features added to the biochemical model to generate the biochemical+ 

model. Perhaps the most promising strategy for accounting for these more distal features will an 

unbiased machine-learning approach that uses entire mRNA sequences to predict repression, 

leveraging substantially expanded repression datasets as well as site-affinity values. In this way, 

the complete regulatory landscape, as specified by AGO within this essential biological pathway, 

might ultimately be computationally reconstructed. 
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Figures and figure legends 

 

Fig. 1. AGO-RBNS reveals binding affinities of canonical and novel miR-1 target sites. (A) 

Canonical sites of miR-1. These sites have contiguous pairing (blue) to the miRNA seed (red), 

and some include an additional match to miRNA nucleotide 8 or an A opposite miRNA 

nucleotide 1 (B, not A; D, not C). (B) AGO-RBNS. Purified AGO2–miR-1 is incubated with 

excess RNA library molecules that each have a central block of 37 random-sequence positions 

(N37). After reaching binding equilibrium, the reaction is applied to a nitrocellulose membrane 

and washed under vacuum to separate library molecules bound to AGO2–miR-1 from those that 



 60 

are unbound. Molecules retained on the filter are purified, reverse transcribed, amplified, and 

sequenced. These sequences are compared to those generated directly from the input RNA 

library. (C) Enrichment of reads containing canonical miR-1 sites in the 7.3 pM AGO2–miR-1 

library. Shown is the abundance of reads containing the indicated site (key) in the bound library 

plotted as a function of the respective abundance in the input library. Dashed vertical lines depict 

the enrichment in the bound library; dashed diagonal line shows y = x. Reads containing multiple 

sites were assigned to the site with greatest enrichment. (D) AGO-RBNS profile of the canonical 

miR-1 sites. Plotted is the enrichment of reads with the indicated canonical site (key) observed at 

each of the five AGO2–miR-1 concentrations of the AGO-RBNS experiment, determined as in 

(C). Points show the observed values, and lines show the enrichment predicted from the 

mathematical model fit simultaneously to all of the data. Also shown for each site are KD values 

obtained from fitting the model, listing the geometric mean ± the 95% confidence interval 

determined by resampling the read data, removing data for one AGO-miR-1 concentration and 

fitting the model to the remaining data, and repeating this procedure 200 times (40 times for each 

concentration omitted). (E) AGO-RBNS profile of the canonical and the newly identified 

noncanonical miR-1 sites (key). Sites are listed in the order of their KD values and named and 

colored based on the most similar canonical site, indicating differences from this site with b 

(bulge), w (G–U wobble), or x (mismatch) followed by the nucleotide and its position. For 

example, the 8mer-bU(4.6) resembles a canonical 8mer site but has a bulged U at positions that 

would normally pair to miRNA nucleotides 4, 5, or 6. Otherwise, as in (D). (F) Relative KD 

values for the canonical and the newly identified noncanonical miR-1 sites determined in (E). 

Sites are classified as either 7–8-nt canonical sites (purple), 6-nt canonical sites (cyan), 

noncanonical sites (pink), or a sequence motif with no clear complementarity to miR-1 (gray). 
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The solid vertical line marks the reference KD value of 1.0 assigned to reads lacking an annotated 

site. Error bars, 95% confidence interval on the geometric mean, as in (D). (G) The proportion of 

AGO2–miR-1 bound to each site type. Shown are proportions inferred by the mathematical 

model over a range of AGO2–miR-1 concentrations spanning the five experimental samples, 

plotted in the order of site affinity (top to bottom), using colors of (E). At the right is the pairing 

of each noncanonical site, diagrammed as in (A), indicating Watson–Crick pairing (blue), 

wobble pairing (cyan), mismatched pairing (red), bulged nucleotides (compressed rendering), 

and terminal non-complementarity (gray; B, not A; D, not C; H, not G; V, not U). The 

GCUUCCGC motif is omitted because it did not match miR-1 and did not mediate repression by 

miR-1 (fig. S5B). 
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Fig. 2. Distinct canonical and noncanonical binding of different miRNAs. (A to C) Relative 

KD values and proportional occupancy of established and newly identified sites of let-7a (A), 

miR-155 (B), and miR-124 (C). The two miR-124 sites that were present as a 5′-AA-extended 
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form in addition to an unextended form are shown on the same line (C). Relative KD values are 

plotted as in Fig. 1F but in some cases with additional categories, either for 3′-only sites (green) 

(B and C) or for 6-nt canonical sites enhanced by either additional wobble-pairing or additional 

Watson–Crick complementarity separated by a bugled nucleotide (blue) (B and C). The 

proportion of AGO2–miRNA bound to each site type is estimated and shown as in Fig. 1G. 

These analyses also detected a GCACUUUA motif for let-7a and AACGAGGA motif for miR-

155, which were assigned relative KD values of 7.1 ± 0.8 × 10−2 and 6 ± 1 × 10−2, respectively. 

These motifs are excluded because each did not match its respective miRNA and did not mediate 

repression by its respective miRNA (fig. S5B). 
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Fig. 3. Additional analyses of binding affinities and the correspondence between binding 

affinity and repression efficacy. (A) Diverse functionality and position dependence of 11-nt 3′-

only sites. Relative KD values for each potential 11-nt 3′-only site are plotted for the indicated 
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miRNAs (key). For reference, values for the 8mer, 6mer, and 6mer-m8 sites are also plotted. The 

solid vertical line marks the reference KD value of 1.0, as in Fig. 1F. The solid and dashed lines 

indicate geometric mean and 95% confidence interval, respectively, determined as in Fig. 1D. 

(B) The independent contributions of the A1 and m8 features. At the left a double mutant cycle 

depicts the affinity differences observed among the four top canonical sites for miR-1, as 

imparted by the independent contributions of the A1 and m8 features and their potential 

interaction. At the right the apparent binding contributions of the A1 (∆∆GA1, blue and cyan) or 

m8 (∆∆Gm8, red and pink) features are plotted, determined from the ratio of relative KD values of 

either the 7mer-A1 and the 6mer (blue), the 8mer and the 7mer-m8 (cyan), the 7mer-m8 and the 

6mer (red), or the 8mer and the 7mer-A1 (pink), for the indicated AGO2–miRNA complexes. 

The r2 reports on the degree of ∆∆G similarity for both the m8 and A1 features using either of 

the relevant site-type pairs across all six complexes. (C) The relationship between the observed 

relative KD values and predicted pairing stability of the 6mer (filled circles) and 7mer-m8 (open 

circles) sites of the indicated AGO–miRNA complex (key), under the assumption that the KD 

value for library molecules without a site was 10 nM for all AGO–miRNA complexes. The two 

black lines are the best fit of the relationship observed for each of the site types (gray regions, 

95% confidence interval). The gray line shows the expected relationship with the predicted 

stabilities given by KD = e−∆G/RT. (D to I) The relationship between repression efficacy and 

relative KD values for the indicated sites of miR-1 (D), let-7a (E), miR-155 (F), miR-124 (G), 

lsy-6 (H), and miR-7 (I). The number of sites of each type in the 3′ UTRs is indicated 

(parentheses). To include information from mRNAs with multiple sites, multiple linear 

regression was applied to determine the log fold-change attributable to each site type (error bars, 

95% confidence interval). The relative KD values are those of Figs. 1 and 2 and fig. S2 (error 
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bars, 95% confidence interval). Lines show the best fit to the data, determined by least-squares 

regression weighting residuals using the 95% confidence intervals of the log fold-change 

estimates. The r2 values were calculated using similarly weighted Pearson correlations. 

 

 

Fig. 4. The influence of flanking dinucleotide sequence context. (A) AGO-RBNS profile of 

miR-1 sites, showing results for the 8mer separated into 256 different 12-nt sites based on the 

identities of the two dinucleotides immediately flanking the 8mer. For each 12-nt site, the points 

and line are colored based on the AU content of the flanking dinucleotides (key). For context, 

results of Fig. 1E are re-plotted in gray. Otherwise as in Fig. 1E. (B) Relative KD values for the 

each miR-1 site identified in Fig. 1F separated into 144–256 sites as in (A) based on the 

identities of the flanking dinucleotides. The points are colored as in (A). Error bars, median 95% 

confidence interval across all KD values. Otherwise, as in Fig. 1F. (C) Consistency of flanking-

dinucleotide effect across miRNA and site type. At the left is a comparison of observed relative 
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KD values and results of a mathematical model that used multiple linear regression to predict the 

influence of flanking dinucleotides. Plotted are results for all flanking dinucleotide contexts of all 

six canonical site types, for all six miRNAs, normalized to the average affinity of each canonical 

site. Predictions of the model are those observed in a six-fold cross validation, training on the 

results for five miRNAs and reporting the predictions for the held-out miRNA. The r2 quantifies 

the agreement between the predicted and actual values. At the right the model coefficients 

(multiplied by −RT, where T = 310.15 K) corresponding to each of the four nucleotides of the 5′ 

(5p) and 3′ (3p) dinucleotides in the 5′-to-3′ direction are plotted (error bars, 95% confidence 

interval). (D) Relationship between the mean structural-accessibility score and the relative KD for 

the 256 12-nt sites containing the miR-1 8mer flanked by each of the dinucleotide combinations. 

Points are colored as in (A). Linear regression (dashed line) and calculation of r2 were performed 

using log-transformed values. For an analysis of the relationship between 8mer flanking 

dinucleotide KD and structural accessibility over a range of window lengths and positions relative 

to the 8mer site, see fig. S6G. 
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Fig. 5. AGO-RBNS KD values enable a predictive model of miRNA-mediated repression in 

cells. (A) The 262,144 12-nt k-mers with at least four contiguous matches to the extended seed 

region of miR-1, for which relative KD values were determined. Relative KD values were 
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similarly determined for the analogous k-mers of the other five miRNAs. (B) Biochemical model 

for estimating miRNA-mediated repression of an mRNA using the relative KD values of the 12-

nt k-mers in the mRNA. (C) Performance of the biochemical model as evaluated using the 

combined results of five miRNAs. Plotted is the relationship between mRNA changes observed 

after transfecting a miRNA and those predicted by the model. Each point represents the mRNA 

from one gene after transfection of a miRNA and is colored according to the number of 

canonical sites in the mRNA 3′ UTR (key). For easier visual comparison between mRNAs, y-

axis points for the same mRNA are adjusted by the extrapolated expression level of the mRNA 

with no transfected miRNA. The Pearson's r2 between measured and predicted values is for 

unadjusted values and is reported in the upper right. (D). Performance of the retrained 

TargetScan7 model. Otherwise, as in (C). (E) Performance of the biochemical+ model. 

Otherwise, as in (C). (F) Model performances and the contribution of cognate noncanonical sites 

to performance of the biochemical+ model. Results for each model (key) are plotted for 

individual miRNAs and for all five miRNAs combined (error bars, standard deviation). (G) 

Performances of models tested on mRNA changes observed after transfecting let-7c into 

HCT116 cells engineered to have reduced endogenous miRNA expression (Linsley et al. 2007). 

This analysis used the average at fit for the five miRNAs in (F). Otherwise, as in (F). 
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Fig. 6. A CNN for predicting binding affinity from sequence. (A) Schematic of overall model 

architecture for training on RBNS data and transfection data simultaneously. "Loss" refers to 

squared loss. Tables with hash marks indicate model-predicted values, rather than experimentally 

measured values. (B) The relationship between repression efficacy and CNN-predicted relative 

KD values for the canonical sites for the 12 test miRNAs. Otherwise, as in Fig. 3D to I. (C) The 

relationship between repression efficacy and RNAduplex-predicted free energy values (Lorenz et 

al. 2011) (top) or MIRZA scores (Khorshid et al. 2013) (bottom) for the canonical sites of the 12 

test miRNAs. Otherwise, as in (B). (D) Performance of the biochemical and biochemical+ 

models when provided the CNN-predicted relative KD values and tested on the 12 datasets 

examining the effects of transfecting miRNAs into HEK293FT cells. On the left are results 

obtained when considering all mRNAs, and on the right are results obtained when considering 

mRNAs expressed in HEK293FT cells but not in HeLa cells. Otherwise, this panel is as in Fig. 

5F, except shuffling results were for 250 random permutations rather than all possible 

permutations. (E) Performance of the biochemical+ model on the HEK293FT test set while 

deviating the at values away from the optimal fitted values. (F) Relationship between fitted at 

and estimated target-site abundance (Garcia et al. 2011) for the guide strands of the 12 

transfected miRNA duplexes. Points are colored by the average relative KD value of the 8mer site 

to each miRNA. The Spearman r and p value for the relationship are shown. 
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Methods 

Experimental methods 

1 Purification of AGO2–miRNA complexes 

5′ phosphorylated RNAs of each miRNA duplex were synthesized (IDT), purified on a 15% 

polyacrylamide urea gel, and resuspended in water. A 5′-OH version of the guide strand was also 

synthesized (IDT) and gel purified, and 5 pmol of this RNA was 5′ radiolabeled by incubation 

with T4 Polynucleotide Kinase (New England Biolabs, M0201S), 2.5 μM [γ-32P]-ATP 

(PerkinElmer, NEG035C001MC), and 1 U/μL SUPERase•In (Thermo Fisher, AM2696) at 37°C 

for 1 h, then passed through a P30 column (Bio-Rad, 7326250), precipitated, gel purified, and 

resuspended in 10 μL of annealing buffer (30 mM Tris, pH 7.5, 100 mM NaCl, 1 mM EDTA). 

Non-radiolabeled miRNA duplexes were generated by mixing 500 pmol of each strand, EtOH-

precipitating the mixture, resuspending in 15 μL of annealing buffer, heating to near 100°C and 

then slow-cooling to 37°C by removing the heat block from its base. The duplex was then 

purified on a nondenaturing 15% polyacrylamide gel run at 8 W and 4°C for 2 h. Purified duplex 

was resuspended at 1 μM in annealing buffer. Radiolabeled miRNA duplexes were generated in 

the same way, but starting with 4 μL of radiolabeled guide strand and 20 pmol of non-

radiolabeled passenger strand, heating in a 10 μL annealing reaction, and final resuspension of 

the sample in 10 μL of annealing buffer. The labeled duplex was treated as 50 nM, assuming a 

50% loss with each gel purification. 

Specific AGO–miRNA complexes were prepared using a protocol inspired by that of the 

Zamore lab (Flores-Jasso, Salomon, and Zamore 2013). Human embryonic kidney 293T (HEK-

293T) cells were transfected with an AGO2-overexpression plasmid containing the pcDNA3.3 

(Invitrogen, K8300-01) backbone driving expression from the human AGO2 coding sequence 
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appended with an N-terminal 3X FLAG sequence separated with a di-alanine spacer. 

Transfection was performed with Lipofectamine 2000 (Thermo Fisher, 11668019) in Opti-MEM 

(Thermo Fisher, 31985062), as per manufacturer instructions. After 48 h, cytoplasmic S100 

extract was prepared as described (Dignam, Lebovitz, and Roeder 1983), except cells were lysed 

by passing the hypotonic suspension through a 23G needle ∼10 times. The S100 extract was 

flash frozen in 0.5–1 mL aliquots and stored in liquid nitrogen. Stock solutions of non-

radiolabeled and radiolabeled miRNA duplexes were mixed at a 10:1 ratio, and added at a 1:9 

ratio to an aliquot of S100 extract to achieve final duplex concentrations of 90 and 0.45 nM, 

respectively. After incubation at 20°C for 2 h, 200 μL of a slurry of magnetic beads pre-bound to 

500 pmol of capture oligonucleotide was added to the reaction. The magnetic-bead suspension 

was prepared using Dynabeads MyOne Streptavidin C1 (Invitrogen, 65002) and a biotinylated 

capture oligonucleotide with an 8mer site to the miRNA as per the manufacturer protocol, except 

that the beads were resuspended in equilibration buffer (18 mM HEPES, pH 7.4, 100 mM 

potassium acetate, 1 mM magnesium acetate, 0.01% IGEPAL® CA-630 [Sigma-Aldrich, I3021], 

0.01 mg/mL yeast tRNA [Life Technologies, 15401011], and 0.1 mg/mL BSA [New England 

Biolabs, B9000S]). After incubation at 20°C for 30 min, the beads were washed five times with 

200 μL of equilibration buffer, and then five times with 200 μL of equilibration buffer 

supplemented with 2 M potassium acetate. The sample was eluted by incubating for 2 h with 10 

μM competitor oligonucleotide, which was complementary to the capture oligo, in 100 μL of 

equilibration buffer supplemented with 1 M potassium acetate. Tagged AGO2 was then further 

purified using 20 μL of Anti-FLAG M2 magnetic beads (Sigma-Aldrich, M8823), as per the 

manufacturer protocol but using equilibration buffer rather than the buffer suggested by the 

manufacturer. The AGO2–miRNA complex was eluted from the Anti-FLAG beads by 
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incubating with 60 μL of equilibration buffer containing 146 ng/μL 3X FLAG peptide (Sigma-

Aldrich, F4799) at 22°C and shaking at 1300 rpm for 1 h. DTT and glycerol were each added to 

the eluate to reach the final concentration of the protein storage buffer (13 mM HEPES, pH 7.4, 

72 mM potassium acetate, 0.72 mM magnesium acetate, 2.2 mM Tris-HCl, pH 7.4, 4.3 mM 

NaCl, 0.0072% [v./v.] IGEPAL CA-630, 0.0072 mg/mL yeast tRNA, 0.072 mg/mL BSA, 5 mM 

DTT, and 20% [v./v.] glycerol). The stock concentration of each purified AGO2�miRNA 

complex ranged from 0.42�1.1 nM, as estimated by autoradiography of 1 �L of the sample 

spotted onto a Hybond nylon (Thermo Fisher, 45001147) filter membrane alongside 1 �L of the 

initial S100 extract loaded with ∼90 nM miRNA duplex. 

Three independent preparations of AGO2–miR-1 were made. The first and second were used 

to determine the consistency of AGO-RBNS results (fig. S1B); the second was used for de novo 

site identification and all other analyses performed, and the third was used as a replicate for de 

novo site identification (section 10). Two independent preparations of AGO2–miR-124 and 

AGO2–miR-7 were also made, with the first prepared as described above and the second 

prepared with the following changes: 1) S100 extracts were prepared from HEK293FT cells 

rather than HEK293T cells, 2) cells were harvested 24 h after transfection, 3) miRNA duplexes 

were not gel purified prior to transfection, 4) AGO2–miR-124 was eluted from the capture 

oligo–bead slurry with 7.5 µM competitor oligo in 100 µL of equilibration buffer, and 5) AGO2–

miR-7 was incubated with a slurry of magnetic beads pre-bound to 50 pmol of capture 

oligonucleotide and subsequently eluted from the capture oligo–bead slurry with 0.75 µM 

competitor oligonucleotide in 100 µL of equilibration buffer. These second preparations each 

had substantially reduced residual competitor oligo and were used as replicates for de novo site 
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identification, which helped prevent sites from being identified by virtue of complementarity to 

the competitor oligo (section 10). 

2 Small-RNA sequencing of AGO–miRNA preparations 

Purified AGO2–miR-1 and purified AGO2–miR-155 were each extracted with TRI Reagent 

(Sigma-Aldrich, T9424), and before separating aqueous and organic phases, two non-human 

miRNAs (dme-miR-14-5p and xtr-miR-427, were added for inter-library comparison, and 

radiolabeled 18- and 30-nt standards were added for size selection. After gel purification on a 

15% polyacrylamide urea gel, RNA was ligated to a pre-adenylated 3′ adapter using T4 RNA 

Ligase 2, truncated KQ (New England Biolabs, M0373S) in a reaction supplemented with 10% 

(v./v.) PEG 8000 (Sigma-Aldrich, 25322-68-3). After gel purification on a 10% polyacrylamide 

urea gel, RNA was ligated to a 5′ adapter using T4 RNA Ligase I (New England Biolabs, 

M0204) in a reaction supplemented with 10% (v./v.) PEG 8000. To reduce ligation biases, this 

adapter had 14 random-sequence nucleotides at its 3′ end. After gel purification on an 8% 

polyacrylamide urea gel, RNA was reverse transcribed with SuperScript II (Thermo Fisher, 

18064014), and the cDNA was amplified for 8–12 cycles with Phusion (New England Biolabs, 

M0530) DNA polymerase. Amplified DNA was purified on an 8% polyacrylamide, 90% 

formamide gel and submitted for sequencing. A step-by-step protocol for constructing libraries 

for small-RNA sequencing is available at http://bartellab.wi.mit.edu/protocols.html. Libraries 

were sequenced on the Illumina HiSeq platform with 40-nt single reads. To count the miRNAs in 

each library, the sequence corresponding to the first 18 nucleotides following the 5′ adapter were 

queried against a list of the first 18 nucleotides of human miRNAs annotated in miRbase_v21, 

supplemented with the 5′ and 3′ adapter sequences, the 18- and 30-nt marker sequences, and the 

dme-miR-14-5p and xtr-miR-427 sequences. Counts were normalized to the total number of 
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counts corresponding to human miRNAs to obtain the counts-per-million (cpm) values reported 

in fig. S1A. 

3 Preparation of RNA libraries for AGO-RBNS 

Four libraries of DNA oligonucleotides, each containing a central region of 37 random-sequence 

positions, were synthesized (IDT) and purified on 6% polyacrylamide urea gels. Each RNA 

library was then generated from a 500 μL in vitro transcription reaction using T7 RNA 

polymerase (Rio 2013), 1 μM gel-purified template DNA, 1 μM T7 forward primer, 8 mM GTP, 

5 mM CTP, 5 mM ATP, 2 mM UTP, 5 mM DTT, 40 mM Tris-HCl, pH 7.9, 2.5 mM 

Spermidine, 26 mM MgCl2, and 0.01% (v./v.) Triton X-100, at 37°C for 2.5 h. The reaction was 

then incubated with 10 μL of TURBO DNase (Thermo Fisher, AM2238) at 37°C for 10 min, and 

then the RNA purified on a 6% polyacrylamide urea gel. 200 pmol of library was then 5′-cap 

labeled with Vaccinia Capping System (New England Biolabs, M2080S) in a reaction containing 

0.1 mM GTP and 3.33 μM [α-32P]-GTP (PerkinElmer, BLU006H250UC), according to the 

manufacturer�s protocol. The sample was then extracted with phenol–chloroform, precipitated, 

resuspended in 5 μL of H2O, dephosphorylated using Calf Intestinal Phosphatase (CIP, New 

England Biolabs, M0290S) at 37°C for 45 min according to the manufacturer�s protocol, and 

then gel purified. 

4 Preparation of AGO-RBNS quantification standards 

Defined RNAs were added to each AGO-RBNS sequencing library at the step of the Proteinase 

K incubation (section 5) to enable quantitative comparison of the RNA recovered in each binding 

sample. These quantification standards were generated by in vitro transcription of the 

corresponding PCR templates followed by TURBO DNase treatment, gel purification, CIP 

treatment, and gel purification, as described for the RNA libraries (section 3). 
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5 AGO-RBNS 

Each AGO-RBNS experiment included five binding reactions that spanned a 100-fold 

concentration range of AGO–miRNA complex. For each experiment, the greatest concentration 

was that in which the stock solution of the complex comprised 40% (v./v.) of the binding 

reaction, and for each of the four additional reactions in each series, this stock was serially 

diluted 3.16–fold into protein storage buffer, resulting in the 100-fold range of the complex over 

five reactions. Each experiment also included a mock binding reaction using protein storage 

buffer without AGO–miRNA complex. Each binding reaction was performed in 10 μL, and in 

addition to the AGO–miRNA complex, each reaction contained 100 nM RNA library (section 3), 

16 mM HEPES, pH 7.4, 89 mM potassium acetate, 0.89 mM magnesium acetate, 0.043 ng/μL 

3X FLAG peptide, 0.87 mM Tris-HCl, pH 7.5, 1.7 mM NaCl, 0.0029% IGEPAL CA-630, 

0.0089 mg/mL yeast tRNA, 0.029 mg/mL BSA, 7 mM DTT, 1 U/μL SUPERase•In, and 8% 

(v./v.) glycerol. Reactions were incubated for 2 h at 37°C and then filtered through stacked 

Protran nitrocellulose (Sigma-Aldrich, Z670898) and Hybond nylon filter membranes. To ensure 

constant temperature throughout the procedure, incubations and filtering were performed in a 

37°C constant-temperature room, using supplies that had been pre-equilibrated to 37°C. Filtering 

was through circular membranes (0.5-inch diameter) that had been punched from stock, pre-

equilibrated with filter-binding buffer (18 mM HEPES, pH 7.4, 100 mM potassium acetate, and 

1 mM magnesium acetate), stacked with the nitrocellulose membrane atop the nylon membrane 

onto the internal pedestal of a Whatman filter holder (Sigma-Aldrich, WHA420100) that was 

inserted into a closed valve of a Visiprep vacuum manifold (Sigma-Aldrich, 57250-U). For filter 

binding, 100 μL of filter-binding buffer was applied to the top filter, the valve was opened, the 

binding reaction was applied, and the membrane stack was immediately washed with 100 μL of 
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ice-cold wash buffer (filter-binding buffer supplemented with 5 mM DTT). The two membranes 

were then separated and allowed to air-dry. After phosphorimaging to monitor binding, the 

nitrocellulose membranes were each incubated with 1 μg/μL Proteinase K (Life Technologies, 

25530049) in 400 μL of Proteinase K buffer (50 mM Tris-HCl, pH 7.4, 50 mM NaCl, and 10 

mM EDTA). A Proteinase K reaction was also prepared with 1.5 pmol of the 5′ cap-labeled input 

library. Quantification standards were added to each reaction at an expected ratio of 1:1000, 

allowing for quantitation of RNA recovery. After 10 min at 37°C, SDS was added at 0.5% 

(w./v.) final concentration, and reactions were incubated at 65°C for 45 min with shaking on a 

thermomixer. Samples were then phenol–chloroform extracted, EtOH-precipitated, resuspended 

in 5 μL of water, and reverse transcribed in a 30 µL reaction using SuperScript II (removing 3 

µL prior to addition of enzyme as an “RT-minus” control). RNA was degraded by adding 5 and 

0.5 µL of 1 M NaOH to the RT-plus and RT-minus reactions, respectively, and incubating at 

90°C for 10 min. The reactions were then neutralized by adding 25 and 2.5 µL of 1 M HEPES, 

pH 7.0, to the RT-plus and RT-minus reactions, respectively. Each reaction was then brought to 

60 µL with water and passed through a P30 column, and then 4 µL of each reaction was 

amplified in a 50 µL reaction with Phusion. Both the RT-plus and RT-minus–derived reactions 

were run on an 8% polyacrylamide, 90% formamide gel, and the RT-plus–derived amplicons 

were purified and then sequenced on an Illumina HiSeq 2500 with 40-nt single-end reads. 

6 miRNA transfections and mRNA-seq library preparation 

RNAs of each miRNA duplex were synthesized (IDT), resuspended at 200 μM in IDT Duplex 

Buffer (30 mM HEPES, pH 7.5, and 100 mM potassium acetate), annealed as described above, 

and transfected without gel purification. For each transfection of HeLa and HEK293FT cells, 2.5 

and 2.1 million cells, respectively, were plated in a 10 cm dish supplied with 10 mL of media 
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(DMEM + 10% FBS). After 24 h of culture, the cells were supplied with fresh media and 

transfected with 1 nmol of RNA duplex using Lipofectamine RNAiMAX (Thermo Fisher, 

13778150) and Opti-MEM (Thermo Fisher, 31985062) as per the manufacturer’s protocol 

modified to achieve a final duplex concentration of 100 nM. After 24 h, cells were harvested, 

and total RNA was extracted using TRI Reagent (Sigma-Aldrich, T9424) according to the 

manufacturer�s protocol. RNA-seq libraries were prepared from 10 μg of total RNA per sample 

using the Bioo Nextflex Directional Rapid RNA-seq kit with poly(A)-selection beads 

(PerkinElmer, #NOVA-5138-07). Transfection and library preparation were performed in 

replicates, with the two replicates of each miRNA duplex performed in different batches, 

performing a total of five batches for the HeLa transfections and three batches for the 

HEK293FT transfections. Sequencing was on an Illumina HiSeq 2500 with 40-nt single-end 

reads for the HeLa transfections, and 50-nt single-end reads for the HEK293FT transfections. 

7 Massively parallel reporter library design and preparation 

A reporter-plasmid library was designed to assay the efficacy of all 163 miRNA sites originally 

identified in the initial AGO-RBNS replicates of this study (McGeary et al. 2018), each within 

many different sequence contexts. Each library member was designed to express (from the 

pEF1a promoter) a GFP mRNA with a 146-nt variable-sequence region spanning positions 34–

179 of its 306-nt 3′ UTR. Each variable-sequence region harbored a single miRNA site centered 

either at position 106 or between positions 106 and 107, depending on whether the site was of 

odd or even length. The remaining positions of each variable-sequence region were chosen by 

weighted sampling of dinucleotides according to the average frequency of each over all human 3′ 

UTR sequences, while excluding any additional site to any of the six miRNAs. Each of the 163 

sites was designed to be presented in 184 contexts, yielding 29,993 UTR possibilities. 
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The parental plasmid was based on pCMV-GFP (Addgene, plasmid #11153), but with 

positions 4405–4479 and 1–580 (a 655-bp contiguous segment spanning the ends of the 

deposited plasmid map) replaced with positions 2632–3792 of pJA291 (Addgene, plasmid 

#74487) and positions 1335–1339 replaced with a 16-nt sequence containing a BstXI site 

(ATAACCACGCTGATGG), with positions 1669–2842 of eSpCas9(1.1) (Addgene, plasmid 

#71814) immediately downstream. The first modification conferred the eGFP pre-mRNA with 

an intron so as to better resemble endogenous genes. The second modification removed the 5′ 

splice site consensus sequence overlapping the STOP codon, and introduced two BstXI sites 

separated by 1229 nucleotides into the 3′ UTR. The DNA library of variable-region sequences 

(Twist Biosciences, Oligo Pools order) was amplified with primers adding 1) homology to the 5′ 

PCR primer used for small RNA-seq library preparation, and 2) homology to each of the BstXI 

sites at the very 5′ and 3′ ends of the amplicon. This amplicon was incubated with the large 

fragment from a BstXI digest of the parental plasmid in a Gibson assembly reaction (New 

England Biolabs, E2611S) to produce the reporter-plasmid library. The Gibson reaction was 

electroporated into OneShot Top10 Electrocomp E. coli (Thermo Fisher, C404050), and bacteria 

from all ten electroporations were plated onto 66 10 cm LB agar plates. After 16 h of bacterial 

growth under ampicillin selection, bacteria were harvested, and the reporter-plasmid library was 

purified by MAXI-prep (Qiagen, 12362). 

8 Massively parallel reporter assay 

Each massively parallel reporter assay was performed first by plating 0.724 million HeLa cells in 

a 10 cm dish supplied with 10 mL media (DMEM + 10% FBS). After 24 h of culture, the cells 

were supplied with fresh media and transfected with one of the six miRNA duplexes or a mock 

using Lipofectamine RNAiMAX as per the manufacturer’s protocol modified to achieve a final 
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duplex concentration of 144 nM (or 0 nM in the case of the mock). After 24 h of culture, the 

cells were supplied with fresh media and transfected with 5.8 µg of reporter library diluted in 

28.9 µg of pUC19 carrier plasmid using Lipofectamine 2000 (Thermo Fisher, 11668019) as per 

the manufacturer’s protocol. After 24 h, cells were harvested by decanting the media, washing 

and decanting twice with ice-cold PBS, and then adding 362 µL of lysis buffer (10 mM Tris-

HCl, pH 7.4, 5 mM MgCl2, 100 mM KCl, 1% (v./v.) Triton X-100, 2 mM DTT, 0.02 U/μL 

SUPERase•In, and 1 tablet per 10 mL cOmplete EDTA-free Protease Inhibitor) evenly over the 

surface of the plate. Cells were then scraped off the plate and transferred to a 1.5 mL 

microcentrifuge tube, and lysed by gently passing the cell suspension through a 26G needle four 

times. The lysed cells were then pelleted at 1300 × g for 10 min, and the supernatants (~450 µL) 

each transferred to a new tube. Total RNA was extracted by first splitting each sample into three 

separate aliquots (~150 µL each) and adding 1 mL of TRI Reagent to each aliquot and pooling 

the extracted RNA. Half of the recovered RNA from each sample was then treated with TURBO 

DNase, using 1 µL of enzyme in 50 µL of total reaction volume per 10 µg of total RNA, 

incubating at 37°C for 30 min. The samples were then re-extracted with phenol–chloroform, 

EtOH-precipitated, and resuspended in water to their original volumes. Reverse transcription, 

PCR, and formamide gel purification to generate amplicons for RNA-seq were performed as 

described (section 5) with the following modifications: 1) the RT primer was designed to reverse 

transcribe the variable 3′ UTR region of the reporter library and add homology to the 3′ PCR 

primer used for small RNA-seq library preparation, 2) the volumes of the RT reactions were 

scaled up, using 1 µL of SuperScript II in 30 µL of total reaction per 5 µg of total RNA, 3) after 

base-hydrolysis of the RT reactions and neutralization with HEPES, each RT reaction was 

EtOH-precipitated and resuspended in 60 µL of water before the P30 step, and 4) after 
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performing a pilot PCR using 4 µL of the cDNA in a 50 µL reaction to determine the minimal 

number of cycles to achieve amplification, the remaining 56 µL of cDNA was amplified in seven 

100 µL PCR reactions. These seven reactions were combined, and DNA was precipitated and 

resuspended for formamide-gel purification. These modifications, which scaled up the input and 

the amplification volume, were designed to increase the number of distinct library mRNAs 

contributing to the measured expression of each variant. All seven conditions (the six miRNA 

duplex transfections and the mock transfection) were performed in duplicate, and the fourteen 

samples were sequenced with multiplexing on two lanes of an Illumina HiSeq 2500 run in rapid 

mode with 100-nt single-end reads. 

 

Computational and mathematical methods 

9 RBNS read quality control 

Each RBNS sequencing read was used if it satisfied the following criteria: 1) it passed the 

Illumina chastity filter, as indicated by the presence of the number 1 rather than 0 in the final 

position of the fastq header line, 2) it did not contain any “N” base calls, 3) it did not contain any 

positions with a Phred quality score (Q) of B or lower, 4) the sequenced 6-nt sample-

multiplexing barcode associated with the read was identical to one of the barcodes used when 

generating the small-RNA sequencing library, 5) it did not match either strand of the phi-X 

genome, 6) it did not nearly match (allowing up to two single-nucleotide-

substitutions/insertion/deletions) the standards added to the samples during library workup, and 

7) it contained a TCG at positions 38–40 in the case of the first AGO2–miR-1 experiment, or a 

TGT at these positions for all other experiments. 

10 De novo site identification 
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To identify sites of an AGO–miRNA complex using RBNS results, we performed an analysis in 

which we repeatedly 1) calculated the enrichment of all 10-nt k-mers in the sample library 

corresponding to the binding reaction with the greatest concentration of AGO–miRNA, 2) 

defined a site by computationally-assisted manual curation of the ten most highly enriched 10-nt 

k-mers, as outlined below, and 3) removed all reads containing the identified site from both the 

input and the bound libraries corresponding to that AGO-RBNS experiment. This three-step 

process was repeated until no 10-nt k-mer with an enrichment >10-fold remained. For miR-1, 

miR-124, and miR-7, this process was performed with two separate AGO-RBNS experiments, in 

which each experiment used a separately purified AGO–miRNA complex (section 1). 

To identify a miRNA site at each iteration, we queried each of the ten most highly enriched 

k-mers for its extent of complementarity to the miRNA. This was performed by first testing for 

perfect complementarity to 10 contiguous positions of the miRNA. In the case of imperfect 

complementarity, the k-mer was further tested for any of the following: 1) complementarity to 

nine contiguous miRNA positions, allowing a single internal bulged target nucleotide, 2) 

complete complementarity to the miRNA at all ten positions while allowing for wobble pairing, 

3) complementarity to the miRNA at nine positions of the 10-nt k-mer with an internal non-

wobble mismatch position, 4) complementarity to the miRNA at nine positions of the 10-nt k-

mer, while allowing wobble pairing and a single bulged target nucleotide, or 5) complementarity 

to the miRNA at eight positions within the 10-nt k-mer, allowing both a bulged nucleotide and an 

internal mismatch position. k-mers with miRNA complementarity starting between miRNA 

positions 1–5 and ending beyond position 8 were defined as ending at position 8, to prevent 

falsely characterizing flanking nucleotide content at positions 9 and 10 as a preference for 

complementarity to miRNAs with an A or a U at these positions. Any identified pairing 
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configurations without full Watson–Crick complementarity were stored, and then the process 

was repeated on the two 9-nt sub-k-mers within the 10-nt k-mer, the three 8-nt sub-k-mers within 

the 10-nt k-mer, etc., until a sub-k-mer was identified as having full Watson–Crick 

complementarity to a region of the miRNA. 

The list of candidate sites identified for that 10-nt k-mer were then ranked using a scoring 

system that rewarded 1) each Watson–Crick pair within the site (preferentially to nucleotides 2–

8, 12–16, 17–22 or 23, and 9–11, in that order), 2) each dinucleotide of Watson–Crick pairing 

(uniformly across the miRNA sequence), 3) contiguous pairing to miRNA nucleotides 2–5, and 

4) A/U content external to the sub-k-mer classified as participating in the miRNA–target 

interaction, and penalized 1) bulged nucleotides, 2) wobble pairs, 3) mismatched pairs, and 4) G 

content outside of the internal region of the 10-nt k-mer defined as participating in the miRNA–

target interaction. The weights associated with each reward and penalty were tuned such that the 

site identified within each 10-nt k-mer was consistent with that identified by visual inspection, 

with the rationale that correctly identified sites <10 nt in length would be present in more than 

one of the ten most enriched 10-nt k-mers—each instance in a different flanking context, with a 

preference for A and U nucleotides within this flanking sequence. This inherently ad hoc 

approach was used to evaluate sites in a consistent manner for all miRNAs, thereby mitigating 

two major sources of ambiguity when identifying miRNA sites: 1) the variable extent of 

sequence redundancy within miRNAs (e.g., miR-1: UGGAAUGUAAAGAAGUAUGUAU, let-

7a: UGAGGUAGUAGGUUGUAUAGGU), and 2) the potential for conflating favorable site 

context with extended pairing when analyzing A/U-rich miRNAs (e.g., the choice of designating 

AUAAUUCCA as a miR-1 8mer-w7bA(6.7) site or as an instance of a 6mer-A1 site [AUUCCA] 

in a favorable flanking nucleotide context [AUA]). 
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If the most enriched 10-nt k-mer paired (allowing wobbles) throughout its length to the 3′ end 

of the miRNA sequence, enrichment of all 11-nt k-mers was also calculated, and if the most 

highly enriched 11-nt k-mer containing the 10-nt k-mer also fully paired to the miRNA, the site 

was designated as an 11-nt site. Likewise, if the site ascribed to the most enriched 10-nt k-mer 

was a 7mer-m8-like site with flanking A/U nucleotides only in the 5′ region of the k-mer and if 

the nucleotide at miRNA position 2 paired to the 10th position of the k-mer (and if the 8mer-like 

version of the site hadn’t yet been identified), the enrichment of 11-nt k-mers was calculated, and 

the site type was designated as the 8mer-like form if the most highly enriched 11-nt k-mer 

containing the 7mer-m8-like site included an A at target position 1. 

When identifying sites with no obvious pairing to the miRNA (i.e., ≤4 nt of pairing, 

including wobble pairing, or 5 nt of pairing but with non-A/U-rich sequences flanking the 

proposed segment of pairing), the top 9-nt sub-k-mer was preliminarily assigned as the site. In 

the case of miR-1, miR-124 and miR-7, for which the de novo site identification was performed 

independently for two AGO-RBNS replicates (section 1), a 9-nt k-mer was retained only if a 

similar k-mer was identified in the other replicate. In the cases of let-7, miR-155, and lsy-6, for 

which only one AGO-RBNS experiment was performed, sites with no obvious pairing to the 

miRNA were not retained if they had ≥6 contiguous pairs to the competitor oligo used for 

purification of the AGO–miRNA complex. The 9-nt k-mers still under consideration included the 

CGCUUCCGC motif for miR-1, the UGCACUUUA, AGCACUUUA, and CGCACUUUA 

motifs for let-7a, the AACGAGGAA, UAACGAGGA, AACGAGGAU, AACGAGGAG, and 

AUAACGAGG motifs for miR-155, the AACGAGGAA motif for lsy-6, and the 

CGCUUCCGC, CUUCCGCUG, and GCUUCCGUU motifs for miR-7. Owing to the apparent 

similarity of these 9-nt k-mers for each miRNA, the representative site was chosen to be the most 
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enriched 8-nt sub-k-mer contained within one of the 9-nt k-mers listed here, determined at the 

first iteration of site removal for which one of these 9-nt k-mers was found within the top10-nt k-

mer. These were the GCUUCCGC motif for miR-1, the GCACUUUA motif for let-7a, the 

AACGAGGA motif for miR-155, the AACGAGGA motif for lsy-6, and the GCUUCCGC motif 

for miR-7. 

We note that our requirement of a >10-fold enrichment of 10-nt k-mers did not necessarily 

yield sites with KD values >10-fold better than the no-site value. For example, the miR-1 6mer-

m8 site was identified through this procedure, despite its KD value being only 3.5-fold better than 

the no-site value (Fig. 1F). This site was identified because some 10-nt k-mers with the 6mer-m8 

site had the site within a favorable sequence context (e.g., with A/U-rich dinucleotides flanking 

both sides of the site), and these k-mers that presented the site in a favorable context were 

enriched >10 fold. With our protocol, the shorter sites had more opportunity to benefit from 

favorable flanking nucleotides than did the longer sites. 

The procedure for identifying sites was modified for miR-124, for which various sites with 

imperfect pairing to the seed (due to internal bulges, wobble pairing, or mismatched nucleotides) 

had unusually high binding affinity when preceded by an AA 5′-flanking dinucleotide. Because 

the effect of this 5′ flanking dinucleotide was substantially greater than the general flanking-

dinucleotide effect (Fig. 4 and fig. S6), only for these sites, and only for miR-124, they are 

reported as AA-[site type] to distinguish them from the generic benefit of A/U-rich flanking 

dinucleotides (Fig. 2C). 

11 Determination of KD values from AGO-RBNS data 

11.1 Overview of maximum likelihood estimation–based approach 



 87 

Relative KD values for a set of sites were simultaneously determined by maximum likelihood 

estimation (MLE). In this statistical method, the parameter values  of a mathematical model 

are fit to maximize the log-likelihood function 

  (11.1.1) 

where  is the probability of observing the sequencing counts y given the model-

simulated abundances (itself a function of ). We first describe the derivation of  

and then of , a cost function scaling monotonically with  and therefore 

having a minimum value coincident with the MLE parameter estimates. We then derive the 

gradient of the cost function 

   (11.1.2) 

The optimization routine was performed with the optim function in R (R Foundation for 

Statistical Computing. 2018) using the L-BFGS-B method, supplying both  and  

to the optimizing function as compiled C scripts through the .C interface. This enabled efficient, 

simultaneous estimation of a large set (>50,000) of KD values per AGO-RBNS experiment. 

11.2 Derivation of  

The function  produces an m×n matrix where each element  specifies a model estimate 

of the concentration of library RNA molecules of site type i recovered from binding reaction j for 

a particular AGO-RBNS experiment. The dimensions m and n are therefore determined by the 

number of distinct types of sites (where library RNA molecules that do not contain a site 

constitute the mth site type) and the total number of binding reactions comprising that AGO-

θ

lnL(θ | y) = ln p( y | x(θ )),

p( y | x(θ ))

x(θ ) θ x(θ )

fcost (x) ln p( y | x(θ ))

fgrad (θ ) = ∇fcost (x(θ )).

fcost (x) fgrad (x)

x(θ )

x(θ ) xij
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RBNS experiment (which was 5 for all experiments), respectively. This calculation requires as 

input the total concentration of each site type  the total concentration of AGO–

miRNA complex (hereafter referred to as “AGO”) in each binding reaction  the 

KD value describing the binding between AGO and each site type , and the 

concentration of library RNA recovered due to nonspecific binding to the nitrocellulose filter b, 

which is assumed to be constant across all five samples and therefore given by a single 

parameter. The vector l is estimated using 

  (11.2.1) 

where  is the vector of read counts corresponding to each site type as measured in the 

sequencing of the input library. Each element  of  is calculated from the experimentally 

determined dilution series 

   (11.2.2) 

where a is the stock (pre-dilution) concentration of AGO, and so only the parameter a is included 

in . The set of parameters to be optimized is therefore 

   (11.2.3) 

Because these parameters represent either binding affinities or concentrations, for which negative 

values are physically meaningless,  performs an exponential transformation on : 

l = (l1,  …,  lm ),

a = (a1,  …,  an ),

K = (K1,  …,  Km )

l = y l

yi
l

i=1

m

∑
×100 nM,

y l

aj a

a = a × s

= a × (0.4%, 1.27%, 4%, 12.7%, 40%),

θ

(K1,  K2 ,  …,  Km ,  a,  b).

x(θ ) θ
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   (11.2.4) 

such that any negative parameter values queried during the optimization routine will correspond 

to a value between 0 and 1 within the biochemical equations of . 

 The recovered concentration of site type i in sample j is given by 

   (11.2.5) 

where  and  are the concentration of AGO-bound and nonspecifically recovered forms of 

the site type, respectively. The nonspecifically recovered RNA is assumed to only come from 

the unbound sites in the binding reaction, such that 

   (11.2.6) 

where  represents the concentration of the unbound form of site type i in sample j, and  is a 

sample-specific proportionality constant. Making the assumption that the total concentration of 

nonspecifically recovered RNA (summed over all m site types) is equal to b ( ), yields 

   (11.2.7) 
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 Substituting for  in equation (11.2.6) using equation (11.2.7), and further substituting 

for  in equation (11.2.5) yields 

   (11.2.8) 

By invoking the conservation of mass for each site type (i.e., ), equation (11.2.8) can 

be expressed as 

   (11.2.9) 

where  represents the total concentration of the RNA library in the reaction 

(experimentally set to 100 nM), and  represents the total concentration of bound 

RNA library in sample j. 

 Equation (11.2.9) gives the model-predicted values  in terms of only known quantities 

( , its sum L, and b), and the concentration of bound form of each site type . This quantity can 

be expressed as a function of the  (=  where ) parameter values by invoking the 

definition of KD: 

   (11.2.10) 
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where  represents the concentration of unbound AGO in sample j. As before,  is substituted 

by invoking the conservation of mass, yielding 

   (11.2.11) 

which is rearranged to give 

   (11.2.12) 

Using equation (11.2.12) to substitute for  in equation (11.2.9) yields 

   (11.2.13) 

and since , 

   (11.2.14) 

This is the final form of the function, wherein read abundances are modeled from the fixed 

vector l (and its sum L) and the parameter vector  where  for , , and 

and , and whose values are iteratively updated during the optimization routine. Equation 

(11.2.14) cannot be used directly; it requires a value for the concentration of unbound AGO in 

sample j, . This value is obtained by invoking the conservation of mass for AGO in sample j: 

   (11.2.15) 
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Because each  value is itself a function of l, K, and a according to equation (11.2.12), equation 

(11.2.15) specifies a single value of . However, this equation cannot be rearranged to an 

explicit expression for . Therefore, each time  is calculated during the optimization routine 

requires that first be numerically approximated by finding the root of 

   (11.2.16) 

within the interval 0 < < . This was performed using compiled C code modified from the 

zeroin C/Fortran root-finding subroutine. 

11.3 Derivation of  

The cost function  is derived from the product of the negative log multinomial 

probability mass function for each column j 

   (11.3.1) 

where  is the expected frequency of each site type i in sample j according to the model values 

, and . Each expected frequency vector  is trivially given by  (where 

), thereby providing the link between the model simulation and subsequent 
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   (11.3.2) 

After discarding the third and fourth terms in equation (11.3.2) because they do not contain any 

terms of , and are therefore not related to the MLE estimation of , the final cost function is 

given by 

   (11.3.3) 

11.4 Derivation of  

The function  returns the derivative of the cost function with respect to each component 

of : 

   (11.4.1) 

Invoking a new subscript , we now derive an expression for each component, 

using the notation of  rather than , reserving the  notation for formalizing the isolated 

dependencies of  on , , and , and of  on  and , while holding all over model 

parameters and values constant. We derive  using the chain rule: 
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   (11.4.2) 

 is obtained by differentiating equation (11.3.3) 

   (11.4.3) 

and both  and  are obtained by differentiation of equation (11.2.9) 

   (11.4.4) 

   (11.4.5) 

where (or equivalently ) is the Kronecker delta function, defined as: 

   (11.4.6) 

Substituting for ,  and  into (11.4.2) using (11.4.3), (11.4.4), and (11.4.5), 
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   (11.4.7) 

 Inspection of equation (11.4.7) reveals that the derivatives associated with the KD and 

AGO concentrations in the reaction (i.e., ) use only the second and third terms 

within the last factor due to the Kronecker delta function, whereas the derivative associated with 

the parameter describing the nonspecifically recovered RNA (i.e., k = m + 2) uses only the first 

term, because calculation of  does not depend on b. Using equation (11.4.7) requires an 

expression for  and its sum over all site types, . Application of the chain rule yields 

   (11.4.8) 

and differentiation of equation (11.2.15) yields 

   (11.4.9) 

Substituting for  in equation (11.4.8) with equation (11.4.9) results in 

   (11.4.10) 
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where . This indicates that solving for  requires first a solution for . 

Summing both sides of equation (11.4.10) for all site types  yields 

   (11.4.11) 

Rearranging equation (11.4.11) yields 

   (11.4.12) 

For the purposes of clarity, we define  
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Equation (11.4.12) now reads as 

   (11.4.16) 

where  is the indicator function, defined as: 

   (11.4.17) 

Substituting for  into equation (11.4.10) using equation (11.4.16) yields 

   (11.4.18) 

Because of complexity of equations, the full solution of  is not shown. It is given by 

substituting for  and  in equation (11.4.7) using equations (11.4.18) and (11.4.16), 

respectively. The mth component of the gradient is set to 0 throughout the optimization routine, 

which forces the value of this parameter to stay fixed at its initialized value (section 9.5). 

11.5 Parameter initialization for relative KD estimation 
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   (11.5.1) 

where as before  represents the read counts associated with site type i in sample j,  is the 

concentration of site type i in the RNA library, and  and  are their respective sums. 

The initial value of the parameter  is initialized and fixed at 0, which corresponds to a no-site 

KD value of 1 nM. We note that fixing such that the no-site KD value were 10 nM rather than 1 

nM causes the KD values of the other sites to also increase by 10 fold. For this reason, we report 

the site type KD values as relative KD values despite their correspondence to units of nM within 

the model. Finally, we initialize the parameter values of  and  (which correspond to the 

stock concentration of the AGO–miRNA complex and the concentration of nonspecific library 

RNA recovered in the experiment, respectively), at 2.997532 and −2.302585, corresponding to 

values of 20 nM and 0.01 nM, respectively. Prior to proceeding with the optimization, the values 

are partially randomized by adding to each parameter  a value drawn from a normal 

distribution with mean 0 and standard deviation of either 0.1 or 0.01 when optimizing KD values 

for defined site lists (Figs 1 to 4 , and figs. S1 to S6) and 12-nt k-mers (Figs. 5 and 6, and figs. S7 

to S12), respectively. 

11.6 Estimation of 95% confidence intervals for relative KD values 

There is no pre-existing approach for estimating the error associated with relative KD values 

derived from RBNS and biochemical modeling. We devised a strategy using bootstrapping that 

took into account 1) error caused by sample-to-sample variation, and 2) error caused by the 

inherent multinomial down-sampling of RNA library molecules during sequencing. We 

performed the relative KD optimization 200 times for each experiment, with each iteration i of 
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the optimization having AGO-binding sample  withheld from matrix y, and with the 

read counts in the input sequencing and y resampled using the total and column-wise 

multinomial frequencies of each site type, respectively, with the 2.5th- and 197.5th-percentile 

values of each parameter used to define the plotted 95% confidence intervals. When textually 

reporting relative KD values, the indicated range is given by the difference between the relative 

KD value corresponding to the logarithmic mean of all 200 iterations and that of the 2.5th-

percentile relative KD value. 

 When calculating relative KD values from the AGO-RBNS experiment using the first 

preparation of AGO2–miR-7, this procedure was modified because the stock AGO–miRNA 

complex was not as highly concentrated as the others, which led to decreased saturation in the 

higher-concentration AGO samples and therefore greater error attributable to which column j is 

withheld during bootstrapping. To overcome this, we first performed the optimization using all 

five samples, set the parameters  and (corresponding to a and b) to the corresponding 

values estimated from this initial optimization, and fixed these values by setting their respective 

components of the gradient function (section 11.4) to 0. 

11.7 Read assignments 

Assignment of each read to a site category was performed by searching for all possible sites 

within the 47-nt portion of the library molecule encompassing the 37-nt random-sequence region 

and 5 nucleotides of constant primer-binding sequence on either side, except in the case of miR-

1. For the AGO-RBNS experiments performed with the first and second preparation of AGO2–

miR-1, the libraries contained a 40-nt random-sequence region while erroneously lacking the 

TCG at the 5′ end of its 3′ constant sequence required for pairing to the Illumina reverse primer 

j = ceil i
40

⎛
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y l
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sequence during bridge-amplification. This caused a TCG at positions 38–40 to be near-

uniformly observed in the sequencing data. We therefore restricted site identification for miR-1 

to a 41-nt region corresponding to the first 36 nucleotides of the random-sequence region and the 

preceding 5 nucleotides of constant primer-binding sequence. Reads that had multiple instances 

of distinct sites (e.g., a read containing an 8mer site starting at position 2 of the random sequence 

and a 6mer site starting at position 15), as well as reads that had partially overlapping sites (e.g., 

a read in the miR-124 experiment containing GTGCCTTAAGTGTCCTT, which has an 8mer 

site [GTGCCTTA] overlapping an AA-7mer-m8bU6 site [AAGTGTCCTT]) were not included, 

such that the procedure for estimating KD values used only reads containing single sites. When 

analyzing the relative affinity of all possible 11-nt registers of pairing (Fig. 3A), of sites 

identified in Kim et al. (Kim et al. 2016) (fig. S3), or of sites with all possible single-nucleotide 

bulges and deletions (fig. S4), we identified reads that contained either an instance of the 

aforementioned pairing category or one of the six canonical sites, discarding any reads that 

contained multiple sites. Because the multisite reads made up only a small fraction (<3%) of any 

library, the omission of multi-site reads did not substantially distort the relative KD values. 

 When calculating relative KD values for 12-nt k-mers of a particular miRNA (Figs. 5 and 

6, and figs. S7 to S12), counts from reads with more than one 12-nt k-mer were apportioned 

equally across those k-mers (i.e., a read containing three 12-nt k-mers would contribute 1/3rd to 

the total count of each). 

11.8 Input-library sequencing 

Because longer sites were rare in the input libraries, accurate quantification of their enrichment 

required extensive sequencing of the input libraries. To achieve the required sequencing depth, 

we combined sequencing results of input from experiments that used library 3. These input reads 
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were used to assign all KD for let-7a, miR-155, miR-124, and lsy-6. They were also used to 

assign the flanking dinucleotide KD values for miR-1. 

12 Modeling flanking-dinucleotide effects on site KD values 

To test the consistency of the flanking-dinucleotide effect across site types and miRNAs, and to 

quantify the contributions of the different flanking positions, we used multiple linear regression 

to build a mathematical model that predicted the effect of flanking dinucleotides. The predicted 

affinity  for each combination of miRNA i, site-type j, and flanking-dinucleotide context k 

was fit as 

   (12.1.1) 

where  is the coefficient representing the core binding affinity associated with miRNA i and 

site type j;  represents the contribution to binding of nucleotide n (= A, C, G, or U) at 

position p across from the four possible positions within flanking dinucleotide context k, 

counting from the 5′ end of the target; and  represents any further contribution given by 

the interaction of the two adjacent nucleotides making up either of the two flanking dinucleotides 

d (= AA, AC, …, or UU), where p = 1 or 2 refers to the 5′ and 3′ flanking dinucleotide, 

respectively. 

Leave-one-out cross validation of this model was performed for each of the six miRNAs, 

leaving out the miRNA and fitting the model on the other five to obtain  and  coefficients, 

using the lm function in R. Because the four possible nucleotide identities at each position 

comprised only three degrees of freedom, there was no explicit  coefficient for the nucleotide 
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A, resulting in 3 × 4  coefficients. For each the 5′ and 3′ flanking dinucleotides, there were 

correspondingly 9 coefficients describing the deviation in effect of the 9 non-A-containing 

dinucleotides from a linear combination of the effects of the dinucleotides that contained at least 

one A nucleotide, yielding a total of 9 × 2 coefficients. The plotted values and r2 in Fig. 4C 

(left) were calculated from the Pearson correlation coefficient describing the agreement of the 

observed log-transformed relative KD values and the values predicted by the model, after 

normalizing all values to the average relative KD value of the corresponding canonical site. The 

∆∆G coefficients plotted in Fig. 3 (right) are given by including a  of 0 for the nucleotide 

identity A, mean-centering the four coefficients corresponding to each position, and multiplying 

by RT (1.99 × 10−3 kcal K−1 mol−1 × 310.15 K). 

13 Prediction of structural accessibility within the AGO-RBNS RNA libraries 

Prediction of structural accessibility was performed by first appending each read with its 

appropriate 5′ and 3′ constant sequences, and folding the entire RNA library molecule in silico 

using RNAplfold (Lorenz et al. 2011), with the parameters –L and –W both set to the length of 

the molecule, and the –u parameter set to the desired window length w. This produced for each 

read an output matrix in which the value at row i and column j corresponded to the probability 

that positions [j − i + 1.. j] are all unpaired. From this matrix the value in row w corresponding to 

a window centered on the target nucleotide pairing to miRNA position 8 or centered between 

those of pairing to miRNA nucleotides 7 and 8, depending on whether w was of odd or even 

length, was extracted and converted to a per-nucleotide probability by taking its wth root. The 

parameter w (and therefore the value after the –u flag) was either set to 15 in previous studies 

β p

γ p

γ p

β p
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(Fig. 4D and figs. S6, G and I) (Agarwal et al. 2015) or was allowed to span a range of values 

from 0 to 30 (fig. S6H). 

14 RNA-seq analysis for HeLa cells 

Reads were aligned to the human genome (reference assembly hg19) using STAR v2.2 with 

parameters –outFilterMultimapNmax 1 –outFilterMismatchNoverLmax 0.04 –

outFilterIntronMotifs RemoveNoncanonicalUnannotated –outSJfilterReads Unique), and those 

that mapped uniquely and to ORFs were counted using htseq-count. Transcript annotations were 

from (Agarwal et al. 2015). Analyses focused on the genes for which a single 3� UTR isoform 

accounted for >90% of the transcripts in HeLa cells (Agarwal et al. 2015) and those with �10 

reads in each of the libraries. The logTPM values were batch-normalized by fitting a linear 

model for each mRNA m to the batch identity b and transfected miRNA identity t where  is 

the batch effect and  is the batch-normalized expression value used for downstream 

analyses: 

   (14.1.1) 

 Batches were designed such that replicates for the same miRNA transfection were done 

in different batches. 

15 RNA-seq analysis for HEK293FT cells 

Reads were aligned as they were for RNA-seq analyses in HeLa cells. Transcript annotations 

were made using 3P-Seq data in HEK293 (Nam et al. 2014) to identify the genes for which a 

single 3′ UTR isoform accounted for >90% of the transcripts in HEK293 cells. The transfections 

βm,b

βm,t

logTPMm,t ,b = βm,b + βm,t .
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spanned three batches, and the logTPM values were calculated and batch-normalized using 

equation (14.1.1) as per those of the HeLa transfection experiments. 

16 Calculation of average site-type efficacy in cells 

All site types identified with a relative KD ≤ 0.1 and represented in at least 20 instances within 

the 3′ UTRs of HeLa mRNAs were queried for their typical efficacy of repression in the HeLa 

transfection experiments (Fig. 3, D to I, and fig. S6F). This was done by first calculating the 

repression of each mRNA m by miRNA t as 

   (16.1.1) 

where  is its batch-normalized expression of in units of logTPM (section 14), and  is its 

averaged expression in all other miRNA transfection experiments in which the 3′ UTR 

(excluding the first 15 nucleotides) contains neither an 8mer, 7mer-m8, 7mer-A1, 6mer, 6mer-

m8, or 6mer-A1 site to the guide strand nor an 8mer, 7mer-m8, 7mer-A1, or 6mer site to the 

passenger strand of the transfected miRNA duplex. With these  we performed multiple linear 

regression 

   (16.1.2) 

where  is the number of instances of site type j to miRNA t (of which there are N total) in 

the 3′ UTR of mRNA m, and  is the coefficient for the average repression conferred by site 

type j. Each coefficient  and corresponding 95% confidence interval were calculated using the 

lm and confint functions in R. 

rm,t = βm,t − βm*,t ,

βm,t βm*,t

rm,t

rm,t = nm,t , jc j
j=1

N

∑ ,

nm,t , j

cj

cj
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17 Calculation of relative KD values for 12-nt k-mers 

Relative KD values for all 12-nt k-mers harboring at least 4 nt of complementarity to a miRNA 

and with the central 8 nt of the k-mer opposite miRNA positions 1–8 (Figs. 5 and 6) were 

calculated as described (section 9) over five separate batches. Each batch contained all possible 

12-nt k-mers with a particular 4-nt complementary sequence (i.e., the first batch for miR-1 

calculated the relative KD of 12-nt k-mers defined by NNNNNNTCCANN, the second batch 

calculated that of those defined by NNNNNTTCCNNN, etc.). To minimize any systematic 

differences in relative KD values calculated across the five batches, the batches were standardized 

by adding a constant offset (in log-space) to each batch that maximized the agreement of 

calculated relative KD values of k-mers found in more than one batch. 

18 Biochemical model for predicting repression 

18.1 Modeling AGO occupancy and mRNA repression 

Given the free concentration of miRNA-loaded AGO2, , the occupancy of the complex on a 

target site with a particular KD value in the 3′ UTR of mRNA m is given by 

   (18.1.1) 

Because ORF sites are less efficacious than sites with the same sequence in 3′ UTRs, we fit a 

global penalty term  for sites in the mRNA ORFs: 

   (18.1.2) 

at

θm,UTR3 =
at

at + KD
.

cORF

θm,ORF =
at

at + cORFKD
.
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Under the assumption that the binding sites act independently, an mRNA molecule with p 

potential binding sites for a miRNA in its ORF and q potential binding sites for a miRNA in its 

3′ UTR has a miRNA occupancy of 

   (18.1.3) 

 For a given mRNA m and miRNA t in a transfection experiment, let  be the 

occupancy of the transfected miRNA on the mRNA,  be the mRNA transcription rate,  be 

the portion of the mRNA decay rate that is not due to the transfected miRNA, and b represent the 

amplification of the decay rate introduced by the binding of one AGO–miRNA complex. We 

model the abundance of the mRNA in transfected cells, , according to its transcription rate 

and aggregate decay rate: 

   (18.1.4) 

At steady-state, the abundance of the mRNA in transfected cells is therefore 

   (18.1.5) 

If the mRNA were not bound by the transfected miRNA at all (i.e., ), its steady-state 

abundance would be 

Nm,t =
at

at + cORFKD ,i
+

at
at + KD , jj=1

q

∑
i=1

p

∑ .

Nm,t

αm βm

ym,t

dym,t
dt

=αm − βm(1+ bNm,t )ym,t .

ym,t =
αm

βm(1+ bNm,t )
.

Nm,t = 0
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   (18.1.6) 

The fold-change r caused by the transfected miRNA is therefore 

   (18.1.7) 

We assumed that TPM values for a given transcript follow a log-normal distribution, so the 

fitting was done using log(expression) and log(fold change) values: 

   (18.1.8) 

18.2 Fitting the biochemical model to RNA-seq measurements 

We could not measure , and thus  directly. However, we do not explicitly need this value 

to fit the model with the assumption that  does not change between different transfection 

experiments (i.e., the basal decay rates of mRNAs not bound by transfected miRNAs are 

unchanged between transfection experiments). Under this assumption, we can fit mean-centered 

expression values against mean-centered repression values. Consider the repression of mRNA m 

by miRNA t out of T miRNA transfection experiments, 

ym,0 =
αm

βm
.

rm,t =
ym,t
ym,0

= 1
1+ bNm,t

.

log rm,t = − log(1+ bNm,t ).

ym,0 rm,t

ym,0
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   (18.2.1) 

 For M mRNAs and T miRNAs, we minimized the following loss function with respect to 

the parameters b, , and , where  are the predicted repression values and y are the 

measured expression values: 

   (18.2.2) 

These values were used to calculate the r2 values. For plotting, we extrapolated the values for 

 by finding the intercept of the linear relationship between the predicted repression values 

and the measured expression values (Fig. 5, C to E) for each mRNA. To prevent extreme 

intercepts in the limit of no variability in the predicted repression, a weak Bayesian prior of 

 was applied to the slope estimate, where  is the variance of the error of the 

linear fit. This causes a transcript with very little predicted miRNA binding to any of the 

transfected miRNAs to have baseline values that approach the average expression of the 

transcript in all the transfection experiments. 

18.3 Calculating features for the biochemical+ model 

log rm,t − logrm = (log ym,t − log ym,0 )−
1
T

(log ym,i − log ym,0
i=1

T

∑ )

= (log ym,t − log ym,0 )−
1
T

log ym,i
i=1

T

∑ + 1
T

log ym,0
i=1

T

∑

= (log ym,t − log ym,0 )−
1
T

log ym,i
i=1

T

∑ + log ym,0

= log ym,t −
1
T

log ym,i
i=1

T

∑

= log ym,t − log ym.

at cORF r̂

L = ((log ym,t − logym )− log(log r̂m,t − log r̂m ))
2

t=1

T

∑
m=1

M

∑ .
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N (0,  0.01×σ 2 ) σ 2
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For each 12-nt k-mer in an mRNA, its raw structural-accessibility score was calculated using 

RNAplfold (Lorenz et al. 2011) with the flags –L 40 –W 80 –u 15 and taking the log10 value of 

the unpaired probability for a 14-nt region centered on the match to miRNA nucleotides 7 and 8 

(Agarwal et al. 2015). Because the KD values already reflect the average structural accessibility 

of a 12-nt k-mer in random contexts, the raw RNAplfold output for each site in its endogenous 

context was then offset by the average RNAplfold output of the same site in 200 random 40-nt 

contexts. Folding 200 random contexts for all 12-nt k-mers was laborious, so this process was 

only carried out for the 12-nt k-mers containing one of the six canonical sites. For all other 12-nt 

k-mers, the average structural accessibility for canonical sites to the same miRNA was used. 

 For each 12-nt k-mer in an mRNA containing a canonical site, the 3′ supplementary 

pairing score was calculated as previously (Grimson et al. 2007). This score was set to 0.0 for 

12-nt k-mers without a canonical site. PCT values were calculated for each 12-nt k-mer in an 

mRNA 3′ UTR containing a 7mer-m8, 7mer-A1, or 8mer site using multiple alignments from 84 

species as previously (Agarwal et al. 2015). This score was set to 0.0 for all other sites. 

18.4 Calculating site occupancy in the biochemical+ model 

All the additional features modified in the KD values linearly in log space (e.g., linear in ∆G 

space). For each 12-nt k-mer with , structural-accessibility score , 3′ supplementary 

pairing score , and PCT score , 

   (18.4.1) 

where , , and  were fit alongside the other parameters (at, b, and cORF) fit in the 

biochemical model. 

KD ,i SA i

Threepi PCTi

logKD ,i,biochem+ = logKD ,i + cSASA i + cThreepThreepi + cPCTPCTi ,

cSA cThreep cPCT
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18.5 Refitting TargetScan7 

The original TargetScan7 model (Agarwal et al. 2015) was only trained on miRNA–mRNA pairs 

where the miRNA had a single 6mer, 7mer-A1, 7mer-m8, or 8mer site to the mRNA 3′ UTR. 

This may have biased the training set towards mRNAs with short 3′ UTRs. When predicting 

scores for mRNAs with multiple sites, scores for the individual sites were summed. To allow 

TargetScan7 to be trained on all mRNAs, we fit the loss function given in (18.2.2) using the 16 

transfection experiments of miRNA duplexes into HeLa cells. 

19 Combined CNN and biochemical model 

19.1  CNN architecture 

The CNN architecture was as described in fig. S9A, with two convolutional layers and two fully 

connected layers. The first fully connected layer could, in principle, take into account every 

register of interaction between the miRNA and target sequences, including large bulges in either 

sequence that would significantly offset the register of pairing. However, we did not expect these 

types of sites to have higher-than-background binding affinities, so we applied a mask to this 

layer such that all interactions that would require more than a 4-nt offset in register were not 

considered. This improved convergence time without affecting predictive performance during 

cross-validation. 

19.2 Input data and training 

The training dataset contained RBNS data for six miRNAs, repression data for five of those 

miRNAs, and repression data for 11 additional miRNAs. Because the relative KD values for all 

the 12-nt k-mers were heavily skewed towards low-affinity sites, we increased the probability of 

sampling a high-affinity site during training. To do this, we assigned the 12-nt k-mers to bins by 

rounding their log KD values to the nearest 0.25. We then assigned a weight to all the 12-nt k-
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mers in a bin such that their weighted sum would not exceed 2000 (i.e. 12-nt k-mers in highly 

populated bins received lower weights). During training, 12-nt k-mers were sampled according to 

their weights. We initially trained the model 11 times, each time leaving out one of the 11 

additional transfection datasets, training on the six RBNS datasets and the 15 remaining 

transfection datasets, and testing on the held-out datasets. This 11-fold cross-validation allowed 

us to pick optimal hyperparameters. The final model was then trained on all six RBNS datasets 

and all 16 transfection datasets. Each mini-batch consisted of 1) RBNS measurements for 50 

pairs of miRNAs and 12-nt k-mers and 2) repression data for 16 mRNAs for all 16 miRNAs. The 

10 RBNS inputs were passed through the CNN to produce predicted logKD values, which were 

then compared to the measured logKD values for those RBNS inputs to calculate the RBNS loss: 

   (19.2.1) 

 For each of the 32 miRNAs, all 12-nt k-mers with at least four contiguous nucleotides of 

the 8mer site to the 16 miRNAs were extracted from their 3′ UTR and ORF sequences. For 12-nt 

k-mers for the same miRNA that overlapped, the 12-nt k-mer with the higher priority match to 

the 8mer site was chosen. The priority order for the match was match2–5 > match3–6 match1–4 

> match4–7 > match5–8. All of the miRNAs and 12-nt k-mers were passed through the same 

CNN as above to produce predicted KD values. These KD were then combined for 12-nt matches 

to the same miRNA on the same mRNA according to the biochemical model to produce 

predicted log fold-change values. These predictions were used to calculate the repression loss 

term, as in equation (18.2.2). Here, t enumerates the 16 miRNAs in the training set, m 

enumerates the 16 mRNAs in the mini-batch, and , , , and  

Lrbns = (logKD ,i − log K̂D ,i )
2

i=1

10

∑ .

nm,t
guide,ORF nm,t

pass,ORF nm,t
guide,3′UTR nm,t

pass,3′UTR
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represents the number of 12-nt matches in the ORF or 3′ UTR of mRNA m to the guide or 

passenger strands, respectively, of miRNA t: 

   

   (19.2.2) 

   (19.2.3) 

The total loss was calculated as a weighted sum of the two loss terms, along with an  

regularization term on the CNN weights (w1, w2, w3, w4). Because the transfected miRNAs are 

expected to have similar at values, an regularization term was also applied to the differences 

between guide-strand at values and the average guide-strand at value to prevent these values 

from drifting too far apart initially. 

  

   (19.2.4) 

The RBNS loss weight, repression loss weight, CNN weight regularizer, and the at offset weights 

are , , , and  respectively. 

   (19.2.5) 

 The model was implemented in TensorFlow and trained by minimizing the total loss 

using the Adam optimizer with an initial learning rate of 0.003 for 100 epochs and 
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 The CNN weights were initialized randomly using 

Xavier initialization. 

19.3  Evaluation of CNN predictions on the test set of miRNAs transfected into HEK293FT cells 

For each miRNA in the test set, we generated the complete list of 262,144 12-nt k-mers with at 

least 4 nt of complementarity to the miRNA and predicted their KD values using the CNN. To 

identify high-affinity noncanonical sites, we isolated the 12-nt k-mers without canonical sites to 

the miRNA, grouped them based on the 8-nt sequences centered in each 12-nt sequences, and 

sorted each group. If the 32 sequences in a group with the highest predicted affinity values 

contained the same 9-nt sequence encompassing the 8-nt centered sequence, the 9-nt sequence 

was identified as a site and assigned the average KD value of 12-nt k-mers with that 9-nt 

sequence. Otherwise, the 8-nt sequence was identified as a site and assigned the average KD 

value of 12-nt k-mers with that 8-nt sequence. In either case, the 12-nt k-mers with the new site 

were removed from the pool, and the processed repeated. Afterwards, only new sites with an 

average predicted lnKD < –2 (equivalent to log10KD < –0.87) were kept. These sites were further 

consolidated into shorter 7-nt sequences if several versions of the 7-nt sequence appeared in the 

new site list with a different flanking nucleotide. The average site-type efficacy in cells for all 

the canonical and annotated noncanonical sites for each miRNA was calculated as in section 16. 

19.4 Predictions of miRNA–target interaction energy using other methods 

To calculate the free-energy of binding for canonical site-types to each miRNA (Fig. 6C), the 

RNAduplex program (Lorenz et al. 2011) was supplied the site sequence and miRNA sequence. 

The predicted free-energies were reported in units of kcal/mol. To calculate MIRZA scores, we 

downloaded the MIRZA (Khorshid et al. 2013) algorithm from 

http://www.clipz.unibas.ch/mirzag/. The algorithm was run with the option to update priors and 

λk = 0.05, λr = 0.95, λw = 0.0001, λd = 0.001.
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was supplied each miRNA sequence and 1000 examples of each canonical site in random 40-nt 

contexts (sequences of equal length between 30 and 55 nt were required). The algorithm also 

required relative miRNA abundances, but because each miRNA was evaluated separately, this 

was set to 1000 arbitrarily and did not affect output. The reported scores were the average score 

for the 1000 examples of each site type. 

20  Processing of and model evaluation on external datasets 

mRNA fold change data for let-7c transfection into HCT116 cells (Linsley et al. 2007), miR-124 

and miR-7 transfections into HEK293 cells (Hausser et al. 2009), and miR-302/367 knockdown 

in hESC cells (Lipchina et al. 2011) were obtained as in (Agarwal et al. 2015). For gene 

expression changes upon knockout of miR-122 in mouse liver cells, raw RNA-Seq reads were 

downloaded from the GEO (GSE61073), aligned to the mouse genome mm10, and annotated 

using the set of representative transcripts curated in TargetScanMouse v7.1 (Agarwal et al. 

2015). We required mRNA expression levels to exceed 10 TPM in either the wildtype or 

knockout samples. 

Top targets identified by crosslinking experiments upon transfection of miR-124 or miR-7 

into HEK293 cells (Hafner et al. 2010), knockout of miR-155 in mouse T cells (Loeb et al. 

2012), and knockdown of miR-302/367 in hESC cells (Lipchina et al. 2011) were obtained as in 

(Agarwal et al. 2015). Gene expression changes and eCLIP-identified targets upon 

overexpression of miR-20a in HeLa cells (Zhang et al. 2018) were kindly provided to us by the 

authors. 

For each dataset, biochemical and biochemical+ model predictions were generated by using 

global biochemical parameters fit using the transfection data into HeLa cells. For the let-7c, miR-

124, miR-7, and miR-155 datasets, experimentally-determined relative KD values (section 17) 
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were used, whereas CNN-predicted KD values were used for the miR-302/367, miR-122, and 

miR-20a datasets using mRNA sequences from miRbase release 22 (Kozomara, Birgaoanu, and 

Griffiths-Jones 2019). When predicting mRNA changes upon miR-155 knockout in mouse T 

cells, the average at value of passenger strands fit for the HeLa transfection datasets was used. 

For all other datasets, the average at value of miRNA strands fit for the HeLa transfection 

datasets was used. 

21  Estimation of maximal r2 values 

For each transfection experiment, we define the following random variables: 

   

The goal is to determine the variance of X compared to the variance of Y. While the distribution 

of X is unknown, we can approximate it using a discrete distribution with m discrete bins 

spanning the range of realistic log repression values  with probabilities 

. In practice, we used 50 bins spanning –3 to 0 in log space (–4.33 to 0 in log2 

space). To calculate the probability of observing the measured repression values given 

(  + ) , w, and p 

   (21.1.1) 
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We then fit values for (  + ) and p by maximizing the likelihood of observing the data y 

using tensorflow.contrib.opt.ScipyOptimizerInterface(method=“SLSQP”) under the constraint 

that . We estimated  , and thus , by examining the reproducibility between two 

biological replicates 

   (21.1.2) 

  

   (21.1.3) 

and estimated the expected value and variance of X given w, and p: 

   (21.1.4) 

  

   (21.1.5) 

The estimated maximal r2 value is given by dividing . 
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Supplementary figures and legends 
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Fig. S1. Reproducibility of AGO-RBNS results. (A) MicroRNAs observed in AGO2–miR-1 
and AGO2–miR-155 preparations, as quantified using small-RNA sequencing. Shown are the 
counts per million mapped miRNA reads for miR-1, miR-155, and contaminating miRNAs, 
listing the ten most abundant contaminants observed when averaging the counts of the two 
samples. (B) Correspondence between the results of two independent AGO-RBNS binding 
reactions that used different preparations of purified AGO2–miR-1 and different RNA libraries, 
with each library generated from a different DNA synthesis. Compared is the enrichment of all 
9-nt k-mers that contain either 8mer (purple), 7mer-m8 (red), 7mer-A1 (blue), 6mer (cyan), 
6mer-m8 (violet), or 6mer-A1 (light blue) sites, as well as the enrichment of 10,000 arbitrarily 
chosen 9-nt k-mers not containing any of these sites (gray). The r2 was calculated using the log-
transformed values. The dashed line shows y = x. (C) Relationship between affinity and AGO-
RBNS enrichment. The enrichments of reads containing each of the six canonical sites in 
addition to no-site reads (Fig. 1D) are plotted their corresponding relative KD values, for each of 
the five AGO2–miR-1 concentration samples. Grayscale lines denote each sample, with the 7.3 
pM and 730 AGO2–miR-1 samples in light gray and black, respectively. Enrichments are 
normalized to that of the no-site reads in each sample. (D) Enrichment of canonical sites as at 
each position within the library molecules. Random-sequence positions are numbered from the 5′ 
end with respect to the 30 possible positions of an 8mer site. Points represent enrichment of the 
indicated canonical site (key) at each position for the most-concentrated AGO2–miRNA sample 
within each AGO-RBNS experiment. The high enrichments persisting in the 5′-most positions of 
the random-sequence region, where the miRNA 3′ region is opposite the non-complementary 
primer-binding sequence and therefore cannot paired, suggested minimal influence of 3′-
supplementary pairing on the enrichments further 3′. Also, while neighboring primer-binding 
sequence sometimes had a modest influence at one end of the random-sequence region, this had 
a negligible effect on the overall enrichment observed for each site type (horizontal lines). (E) 
Enrichment of 3′-only sites as a function of their position within the library molecules. Random-
sequence positions are numbered with respect to the 27 possible positions of an 11-nt site. 
Otherwise, as in (D). When analyzing the uniformity of enrichment of canonical (D) and 3′-only 
sites (E), we identified reads that contained only a single instance of a site, considering all the 
sites identified by k-mer enrichment analysis (supplemented with the 6mer-m8 site in the case of 
miR-7), all single-nucleotide mismatch variants of the 8mer, the 7mer-m8, the 7mer-A1, and the 
6mer, and the four contiguous 5mer sites within the seed region (i.e., the 5mer-A1, 5mer-m2.6, 
5mer-m3.7, and the 5mer-m8 sites). This was to ensure that the positional site enrichments 
detected were not influenced by the presence of any weaker sites elsewhere within the read. (F 
and G) Robust estimation of relative KD values and other parameters. To estimate the uncertainty 
of the fitted model parameters (key), the MLE procedure was repeated five times, each time 
excluding data from one of the five AGO2–miR-1 concentrations. The Pearson r2 was calculated 
between each of the 10 pairwise possibilities as in (F), which shows the comparison of the least 
well correlated pair (that when omitting the 23 and 730 pM AGO2–miR-1 samples, respectively) 
(dashed line, y = x). All ten pairwise comparisons are reported in (G). (H) The correspondence 
between the relative KD values determined by AGO-RBNS with KD values reported by two prior 
studies (Salomon et al. 2015; Becker et al. 2019). Plotted are values for the indicated sites to let-
7a (key). To account for the potential effects of flanking nucleotides in the target RNAs of 
(Salomon et al. 2015), for each comparison we use the relative KD value of the 12-nt k-mer that 
contains the site and flanking sequence context of the corresponding target RNA. Because each 
of the four canonical-site KD values reported in (Becker et al. 2019) represents the median for 
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multiple target RNAs containing that site, for each comparison we use the relative KD value of 
the site determined without consideration of flanking sequences (Fig. 2A). 
 

 
Fig. S2. Additional sites identified through AGO-RBNS. (A) Enriched motifs that were 
identified for miR-155 and lsy-6 yet lacked complementarity to the respective guide sequence, 
aligned to highlight their complementarity to the competitor oligo used to purify the AGO–
miRNA complex. Because these motifs each had ≥6 nt of complementarity to the competitor 
oligo and relatively little complementary to the miRNA, they were excluded as sites to the 
miRNA. The red nucleotides indicate the region of the competitor oligo that is identical to 
positions 1–8 of the miRNA. (B and C) Relative KD values and proportional occupancy of 
established and newly identified sites of lsy-6 (B) and miR-7 (C), as in Fig. 2. These analyses 
also detected an AACGAGGA motif for lsy-6 and a GCUUCCGC motif for miR-7, which were 
assigned relative KD values of 1.58 ± 0.07 × 10−1 and 1.1 ± 0.5 × 10−2, respectively. These two 
motifs were not considered miRNA sites because each did not match its respective miRNA and 
each did not mediate repression in our reporter assays (fig. S5B).
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Fig. S3. Relative KD values of site types reported in Kim et al. (2016). (A to E) Analysis was 
as in Fig. 1F but performed using the site types of (Kim et al. 2016), which include the canonical 
sites (Fig. 1A), an offset 7mer (which pairs to miRNA nucleotides 3–9), as well as four context-
dependent noncanonical site types (CDNST) that are proposed to substantially extend the scope 
of miRNA–mRNA regulatory interactions. The offset 7mer site bound with similar affinity as its 
nested 6mer-m8 site, with effects of flanking nucleotide composition (Fig. 4) explaining any 
minor differences. The context-dependent noncanonical site type 1 (CDNST 1) pairs to miRNA 
nucleotides 2–6 and lacks both a match at position 7 and an A at target position 1 (equivalent to 
the 5mer-m2.6 site); for each miRNA, this site bound better than no site, and for miR-1, and let-
7a its affinity exceeded the thresholds for site identification in our analyses, conferring 3.6- and 
9.5-fold greater affinity over no site–containing reads, respectively (Figs. 1F and 2A). This site 
was also detected in analysis of our first miR-7 replicate. CDNST 2 is a 7mer-A1 site with a 
mismatch at position 5; this site includes the 7mer-A1xU5 site identified for miR-155 (Fig. 2B), 
but otherwise bound with affinity below the thresholds of our analyses. CDNST 3 and CDNST 4, 
which each have three mismatches to the seed, bound with affinity resembling that of no site. For 
each CDNST with an internal mismatch, the relative KD value represents the aggregate value for 
all mismatched variants.  
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Fig. S4. Analysis of the effects of bulged nucleotides. (A) The proposed pathway for paring 
between miR-124 and its pivot site (or 8mer-bG(6.7)) (Chi, Hannon, and Darnell 2012). For 
pivot sites, the target nucleotide that pairs to miRNA nucleotide 6 is repeated to create a bulge 
that ambiguously maps to positions 6 or 7. (B to G) Relative KD values examining the effect of a 
bulged target nucleotide (left) or a bulged miRNA nucleotide (right) within a site to either miR-1 
(B), let-7a (C), miR-155 (D), miR-124 (E), lsy-6 (F), or miR-7 (G). Analysis was as in Fig. 1F 
but values are plotted for 8mer sites with a bulged or deleted nucleotide (left and right, 
respectively), as indicated in each key. Values for the six canonical sites are also plotted for 
reference (filled gray circles). Dashed horizontal lines connect points for different bulged 
nucleotides at the same position. Points representing bulged or deleted nucleotides at ambiguous 
positions are connected with vertical lines. For example, three green points showing the result for 
ACAUUUCCA (a miR-1 site that has a bulged U at either target positions 4, 5, or 6) are 
connected with a green line in (A). Some of the sites with ambiguous bulged positions are 
classified as pivot sites (Chi, Hannon, and Darnell 2012), (e.g., the ACAAUUCCA site for miR-
1); points representing pivot sites are filled and connected with a wide vertical lines. Although 
the pivot sites for miR-124 and lsy-6 bound with affinities substantially exceeding those of their 
nested 6mer-A1 sites and were thus identified as unique sites in our analysis (Fig. 2, 8mer-
bG(6.7) and 8mer-bA(6.7), respectively), pivot sites for the other miRNAs bound with affinities 
resembling those of their nested 6mer-A1 sites, with effects of flanking nucleotide composition 
(Fig. 4) explaining any minor differences (e.g., the let-7a 8mer-bA(6.7) sequence CUAACCUCA 
also corresponds to a 6mer-A1 (underlined) with a favorable UA dinucleotide context). 
Moreover, for miR-1 (8mer-bU(4.6)), miR-155 (8mer-bU(3.5) and miR-7 (8mer-bG7), other 
types of bulged sites bound substantially better than did the pivot sites. 
The pivot site is proposed to mediate widespread targeting (Chi, Hannon, and Darnell 2012). 
This noncanonical site has canonical pairing to the seed region, except that the target residue 
matching position 6 of the miRNA is repeated, which forces a single-nucleotide bulge at position 
6 or 7 of the target (Chi, Hannon, and Darnell 2012). Our de novo search for sites supported 
pivot sites of miR-124 and lsy-6. For example, the miR-124 8mer-bG(6.7) site (an 8mer site but 
with an extra G bulged at either position 6 or 7) is a 9-nt pivot site with affinity exceeding that of 
the canonical 7mer-A1 site, and the lsy-6 8mer-bA(6.7) is a 9-nt pivot site with affinity matching 
that of the canonical 7mer-m8 site (Fig. 2C and fig. S2B). However, even though these pivot 
sites for miR-124 and lsy-6 were among the highest-affinity noncanonical sites identified, we did 
not identify pivot sites for any of the other four miRNAs (Figs. 1F, and 2, A and B, and fig. 
S2C), and a systematic analysis of all possible single-nucleotide bulges at each position 
confirmed that the pivot sites to miR-1, let-7a, miR-155, and miR-7 conferred no better binding 
than the canonical 6mer-A1 site nested within them. Thus, our results supported the pivot sites 
proposed for two of the six miRNAs but called into question the generality of this noncanonical 
site type. Moreover, our approach detected binding of other types of bulged sites, each with a 
specific bulged nucleotide at target nucleotides 5, 6, 7, or 8, depending on the miRNA (fig. S4). 
Bulged nucleotides within the miRNA strand abrogated binding, presumably due to steric 
constraints imposed by AGO. 
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Fig. S5. Massively parallel reporter assay to monitor the effects of sites identified by AGO-
RBNS. (A) Schematic of the EGFP pre-mRNA expressed upon transfection of the library of 
reporter plasmids. The top, middle, and bottom diagrams respectively depict the pre-mRNA, the 
3′ UTR, and a region within the 3′ UTR containing the miR-1 8mer site (red) and its flanking 
nucleotides (blue). The 163 sites queried corresponded to an earlier list of sites (McGeary et al. 
2018), which differed slightly from the current list because it was not informed by the additional 
AGO-RBNS replicates performed for miR-1, miR-124, and miR-7. (B) The relationship between 
reporter repression efficacy and relative KD values for all of the queried sites. The relative KD 
values are those that were determined when the sites were initially identified (McGeary et al. 
2018). When queried in the context of its cognate miRNA, the fold-change (log2) value of a site 
was determined by comparing the sum of the counts of all 184 variants corresponding to that site 
to the average summed counts for these variants observed in the other five transfection 
experiments (colored points). When queried in the context of each noncognate miRNA, the fold-
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change (log2) value of a site was determined by comparing to the average summed counts from 
the four other noncognate miRNA transfection experiments (gray points). Each legend lists the 
sites that mediated repression exceeding twice the standard deviation of the fold-change (log2) 
values observed for all the sites not targeted by the transfected miRNA (dashed line).  
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Fig. S6. The influence of flanking dinucleotide context. (A to E) Relative KD values for each 
flanking dinucleotide combination for each site identified for let-7a (A), miR-155 (B), miR-124 
(C), lsy-6 (D), and miR-7 (E). Otherwise, as in Fig. 4B. For the larger sites (e.g., the 11-nt 3′-
only sites of miR-155, miR-124, and lsy-6), subdividing the low numbers of reads into 144–256 
categories based on flanking dinucleotide identity resulted in much wider confidence intervals 
for their respective relative KD values, and for some pairs of flanking dinucleotides, the number 
of reads in the input library were too low to estimate a KD value. (F) The relationship between 
repression efficacy and relative KD for the 256 flanking dinucleotide combinations. The x-axis 
values are from the linear model in Fig. 4C, and they y-axis values are from the repression 
observed in cells, after using a multiple linear regression to distinguish the effect of flanking 
dinucleotides from that of site type (focusing on repression mediated by 8mer, 7mer-m8, and 
7mer-A1 sites). The line shows the best fit to the data (gray region, 95% confidence interval of 
the trend), determined by least-squares regression weighting residuals using the 95% confidence 
intervals of the log fold-change estimates. The r2 value was calculated using similarly weighted 
Pearson correlation (p = 5.6 × 10−20). The fitted slope of the relationship between fold change 
(log2) and relative KD (log10) for flanking dinucleotide context (0.28 ± 0.06) was in strong 
agreement with that of the six miRNA site relationships in Fig. 3, D to I (mean value of 0.26). 
(G) The cumulative distributions of structural accessibility scores for miR-1 8mer sites in the 
input (black), the 7.3 pM AGO2–miR-1 (pink), the 73 pM AGO2–miR-1 (purple) and the 730 
pM AGO2–miR-1 (blue) libraries. The geometric mean corresponding to each of the four 
distributions is 2.3 × 10−3, 2.5 × 10−2, 2.4 × 10−2, and 1.3 × 10−2, respectively. (H) The 
correspondence between relative KD values for all 256 miR-1 8mer flanking dinucleotide 
combinations and the geometric mean of the predicted structural-accessibility scores observed 
for corresponding reads in the input library, as a function of both the length and the position of 
the sequence segment used for calculating site accessibility. Previous analysis of miRNA 
targeting indicates that a 14-nt window opposite miRNA positions 1–14 is optimal for 
calculating the structural-accessibility score, which agrees with an earlier analysis of siRNA 
efficacy (Agarwal et al. 2015; Tafer et al. 2008). Our analysis also showed that this 14-nt 
window worked well (gray box, r2 = 0.82), with performance approaching that of the optimum, 
which was a 10-nt window opposite miRNA positions 1–10 (black box, r2 = 0.84). (I) The 
influence of site accessibility after accounting for nucleotide sequence composition of flanking 
dinucleotides. Plotted are cumulative distributions of structural-accessibility scores of the 8mer 
sites of the input library (black), 8mer sites of the bound library from the 7.3 nM sample (red), 
8mer sites of the input library from reads sampled to match the accessibility scores of 8mers of 
the bound library (blue), and 8mer sites of the input library from reads sampled to match the 
flanking dinucleotide composition of 8mers of the bound library (purple). The geometric mean of 
the distribution when sampling to match the flanking dinucleotide composition of 8mers of the 
bound library spanned 21.6% of the difference in geometric means observed between the bound-
library and input-library experimental distributions. At the right are the frequencies of 
dinucleotide combinations flanking miR-1 8mer sites observed in the 7.3 pM AGO2–miR-1 
library (left, red line) plotted as a function of the frequencies observed among input reads 
sampled to match the structural accessibility scores of the reads in the 7.3 pM AGO2–miR-1 
library (left, blue line). The r2 was calculated from the Pearson correlation of log-transformed 
mean values. 
 Although we cannot rule out the possibility that the flanking dinucleotide preferences 
were caused by direct contacts to AGO with sequence preferences that happened to correlate 
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strongly with those of predicted structural accessibility, the high correspondence of predicted site 
accessibility and relative KD—one being the averaged result of a computational algorithm 
applied to reads from the input library, the other being a biochemical constant derived from 
AGO-RBNS analyses—strongly implied that site accessibility was the primary cause of the 
different binding affinities associated with flanking-dinucleotide context (Fig. 4D and fig. S6H). 
Supporting this interpretation, we found that when the 8mer-containing reads of the input library 
were sampled to match the flanking dinucleotide distribution of the 8mer-containing reads in the 
7.3 pM AGO2–miR-1 library, flanking dinucleotide identities explained only a minor fraction of 
the enrichment of structurally accessible reads observed in the bound libraries (fig. S6I, left). 
Extending the analysis to data from the other four AGO2–miR-1 concentrations yielded 
consistent results, with the results from matched sampling of flanking dinucleotides never 
explaining >25% of the increased mean accessibility score. By contrast, sampling 8mer-
containing reads from the input to match the accessibility scores of the bound reads yielded 
flanking dinucleotide preferences that corresponded to those of the bound library (fig. S6I, right).  
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Fig. S7. Additional analyses of the biochemical models. (A) Performance of the biochemical 
model as evaluated for each of the five miRNAs individually. Otherwise, as in Fig. 5C. (B) 
Performance of the published version of the TargetScan7 model as evaluated using the combined 
results of five miRNAs. Otherwise as in (A). (C) Performances of the biochemical model, the 
biochemical+ model, and three intermediate models as evaluated using the results of the five 
miRNAs, both in combination (5 miRNAs) and individually. For each of the three intermediate 
models, a single extra feature of the biochemical+ model (either structural accessibility, 3′-
pairing score, or probability of conserved targeting) was incorporated into the biochemical 
model.  
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Fig. S8. Evaluation of the biochemical models using other published datasets. (A) 
Performances of the biochemical and biochemical+ models compared to those of both the 
published and refit versions of TargetScan7, as evaluated using mRNA fold changes observed 
after transfecting either miR-124 or miR-7 into HEK293 cells (Hausser et al. 2009). (B and C) 
The ability of the biochemical+ model to identify mRNAs highly responsive to miRNA 
transfection, compared to that of high-throughput in vivo crosslinking. Plotted are cumulative 
distributions of mRNA fold changes observed after transfection of either miR-124 (B) or miR-7 
(C) into HEK293 cells (Hausser et al. 2009), comparing results for the top targets identified by 
differential photoactivatable-ribonucleoside-enhanced CLIP (PAR-CLIP) (Hafner et al. 2010) 
(green) to the results for same number of top targets predicted by the biochemical+ model (blue) 
and those of all mRNAs (black). (D) The ability of the biochemical+ model to identify mRNAs 
highly responsive to miRNA knockout, compared to that of high-throughput in vivo crosslinking. 
Results for top targets predicted by the biochemical+ model are compared to those of targets 
identified by differential CLIP upon knockout of miR-155 in mouse T cells (Loeb et al. 2012). 
Otherwise as in (B). (E) Relationship between enrichment of reads observed at differential CLIP 
peaks (comparing reads in wild-type to those in miR-155–knockout T cells) and the occupancy 
of miR-155–AGO on these CLIP-supported sites as predicted by the biochemical+ model. The 
Spearman correlation coefficient and p-value for this relationship are reported in the bottom 
right. Points are colored by the identity of the best canonical site type in each CLIP-peak 
sequence. This relationship was observed for only this CLIP dataset, which was the highest-
quality CLIP dataset we evaluated; it had 12 replicates and was the only one that could match the 
biochemical+ model in identifying top targets (D).  
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Fig. S9. Additional analyses and data related to training the CNN. (A) Schematic of the 
CNN architecture. Each miRNA and 12-nt k-mer pair was represented by a 10×12×16 matrix, 
where [i, j, 1 : 16] represented the one-hot encoding of the ith nucleotide of the miRNA and the 
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jth nucleotide of the 12-nt k-mer. This input was passed through a 1×1 convolution with 4 
neurons, followed by batch normalization and leaky ReLU activation. This fed into a 2×2 
convolutional layer with 16 neurons, batch normalization, and leaky ReLU. The third layer was a 
fully connected layer with 16 neurons, batch normalization, and leaky ReLU, which fed into a 
final fully connected layer to produce the predicted relative KD value. (B) Response of mRNAs 
to transfected miRNAs used for training. Each plot shows the cumulative distributions of fold-
change values in HeLa cells. Results are shown for mRNAs with either a 7–8-nt canonical 3′-
UTR site to the transfected miRNA strand (red), a 7–8-nt canonical 3′-UTR site to the 
transfected passenger strand (blue), or no canonical site (6mer, 7mer-A1, 7mer-m8, or 8mer) to 
either strand (black).  
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Fig. S10. Response of mRNAs to transfected miRNAs used for testing. Each plot shows 
cumulative distributions of fold-change values of mRNAs in HEK293FT cells. Otherwise, as in 
fig. S9B.  
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Fig. S11. Relationship between mean fold change conferred by each site type in HEK293FT 
cells and CNN-predicted relative KD values. Results are shown for the six canonical site types 
and the predicted noncanonical sites found by examining the 12-nt k-mers that had the highest-
affinity CNN-predicted KD values but lacked a canonical site. Otherwise, as in Fig. 3, D to I.  
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Fig. S12. Additional evaluation of the biochemical models using CNN-predicted KD values. 
(A) Performance of the models and the contribution of cognate noncanonical sites to 
performance of the biochemical+ model. Results are shown for each of the 12 miRNAs of the 
test set used in Fig. 6. Otherwise, as in Fig. 6D. (B) Performance of the biochemical+ model 
using CNN-predicted KD values compared to that of differential CLIP (left) and TargetScan 
(right), as evaluated using mRNA changes observed upon overexpression of miR-20a in HeLa 
cells (Zhang et al. 2018). Otherwise, as in fig. S8, A and B. (C) Performance of the biochemical+ 
model using CNN-predicted KD values compared to that of differential PAR-CLIP (left) and 
TargetScan (right), as evaluated using mRNA changes observed upon knockdown of miR-
302/367 in hESC cells (Lipchina et al. 2011). Otherwise as in (B). (D) Performance of the 
biochemical and biochemical+ models using CNN-predicted KD values compared to that of 
TargetScan7, as evaluated using mRNA fold changes observed upon miR-122 knockout in 
mouse liver cells (Eichhorn et al. 2014). Otherwise, as in fig. S8A. (E) Performance of the 
biochemical+ model (blue) compared with estimated maximal r2 values (grey) for each of the 
five miRNAs in Fig. 5C. (F) Performance of the biochemical+ model using CNN-predicted 
relative KD values compared with estimated maximal r2 values for each of the 12 test miRNAs in 
Fig. 6. Otherwise, as in (E).  
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Tables 

Table S1. Coefficients of linear effects in model of miRNA, site, and flanking-dinucleotide 

sequence contribution to site binding affinity; related to Fig. 4D. The four flanking dinucleotide 

positions are labeled 5p1, 5p2, 3p1, and 3p2, in the 5′-to-3′ direction (e.g., 

5′-N5p1N5p2ACAUUCCAN3p1N3p2-3′ for the flanking dinucleotide context of the miR-1 8mer 

site). 

 
 ∆ln(KD) 

 Value Lower CI (2.5%) Upper CI (97.5%) 
miRNA coefficients 

miR-1 −7.30 −7.39 −7.21 
let-7a −8.36 −8.45 −8.27 

miR-155 −6.52 −6.61 −6.43 
miR-124 −7.22 −7.31 −7.13 

lsy-6 −6.16 −6.25 −6.07 
miR-7 −7.99 −8.08 −7.90 

Site coefficients (with 8mer = 0) 
7mer-m8  0.94  0.85  1.03 
7mer-A1  1.55  1.46  1.64 

6mer  2.44  2.34  2.54 
6mer-m8  5.37  5.28  5.46 
6mer-A1  4.45  4.36  4.54 

5p1 coefficients (with A = 0) 
C  0.57  0.50  0.63 
G  0.86  0.80  0.93 
U  0.16  0.10  0.23 

5p2 coefficients (with A = 0) 
C  0.62  0.56  0.69 
G  1.09  1.03  1.16 
U −0.10 −0.16 −0.04 

3p1 coefficients (with A = 0) 
C  0.17  0.10  0.24 
G  0.52  0.45  0.59 
U −0.17 −0.24 −0.10 

3p2 coefficients (with A = 0) 
C  0.07 −0.01  0.14 
G  0.59  0.52  0.67 
U −0.01 −0.09  0.06 
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Table S2. Coefficients of pairwise interaction terms of the model described in table S1 and Fig. 

4D. 

 ∆ln(KD) 
 Value Lower CI (2.5%) Upper CI (97.5%) 

miRNA × site coefficients (with all miRNA × 8mer and all miR-1 × site pairs = 0) 
let-7a × 7mer-m8  0.02 −0.10  0.15 

miR-155 × 7mer-m8  0.30  0.17  0.42 
miR-124 × 7mer-m8  0.04 −0.08  0.17 

lsy-6 × 7mer-m8  0.64  0.52  0.77 
miR-7 × 7mer-m8 −0.13 −0.25 −0.00 
let-7a × 7mer-A1  0.61  0.49  0.74 

miR-155 × 7mer-A1 −0.18 −0.31 −0.06 
miR-124 × 7mer-A1  2.04  1.91  2.16 

lsy-6 × 7mer-A1  0.73  0.59  0.86 
miR-7 × 7mer-A1  1.34  1.21  1.46 

let-7a × 6mer  0.63  0.50  0.77 
miR-155 × 6mer  0.19  0.06  0.33 
miR-124 × 6mer  2.13  1.99  2.27 

lsy-6 × 6mer  1.20  1.05  1.35 
miR-7 × 6mer  1.23  1.09  1.37 

let-7a × 6mer-m8 −0.26 −0.38 −0.13 
miR-155 × 6mer-m8 −0.93 −1.06 −0.81 
miR-124 × 6mer-m8 −1.68 −1.81 −1.55 

lsy-6 × 6mer-m8 −1.14 −1.26 −1.01 
miR-7 × 6mer-m8  0.17  0.04  0.29 
let-7a × 6mer-A1 −0.39 −0.52 −0.26 

miR-155 × 6mer-A1  0.21  0.08  0.33 
miR-124 × 6mer-A1 −0.09 −0.22  0.04 

lsy-6 × 6mer-A1 −0.80 −0.92 −0.67 
miR-7 × 6mer-A1 −1.09 −1.21 −0.96 

5p1 × 5p2 coefficients (with all A × N and to N × A = 0) 
C × C −0.09 −0.18 −0.00 
G × C −0.10 −0.19 −0.01 
U × C  0.06 −0.03  0.14 
C × G −0.02 −0.11  0.07 
G × G  0.42  0.33  0.52 
U × G  0.01 −0.08  0.10 
C × U  0.45  0.36  0.54 
G × U  0.21  0.11  0.30 
U × U  0.29  0.20  0.38 

3p1 × 3p2 coefficients (with all A × N and to N × A = 0) 
C × C  0.15  0.05  0.24 
G × C −0.11 −0.21 −0.02 
U × C  0.11  0.01  0.20 
C × G −0.11 −0.21 −0.01 
G × G −0.13 −0.23 −0.04 
U × G  0.01 −0.09  0.10 
C × U  0.07 −0.03  0.17 
G × U −0.03 −0.13  0.06 
U × U −0.03 −0.12  0.07 
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Chapter 3. Future directions 

Expanding the deep learning approach for predicting miRNA targets 

Our work so far has shown that binding affinity is the major determinant of miRNA targeting 

efficacy (Chapter 2), and predictions of binding affinities between miRNAs and their targets will 

only improve with more binding-affinity measurements. However, even when the binding 

affinities are experimentally determined, the calculated occupancy of AGO–miRNA complexes 

on an mRNA cannot explain more than 60% of the reproducible variability in mRNA abundance 

changes induced by a miRNA. There must therefore be other factors that help determine the 

extent of miRNA targeting efficacy, including the structural accessibility of the site in the 

mRNA, the cellular localization of the mRNA, competition or enhancement from other RNA-

binding proteins, and other yet unknown factors. We attempted to manually curate and estimate 

the effects of some of these factors, but the improvement to target prediction was modest 

(Chapter 2). 

The most promising avenue for substantially improving miRNA target predictions may 

be an unbiased machine learning approach where the model can learn from entire mRNA 

sequences. Such an approach has been successful in other similar contexts, including predicting 

the translational output of yeast mRNAs from their 5′-UTR sequences (Cuperus et al. 2017) and 

predicting splice sites from pre-mRNA sequences (Jaganathan et al. 2019). These models have 

the opportunity to learn long-range effects and nonlinear interactions between features at the 

expense of reduced interpretability. Some of these features, such as pairing of a potential target 

site to 3′-end of the miRNA, may be miRNA specific and require input of the miRNA sequence, 

similar to the current CNN that predicts binding affinities from miRNA and target sequences 

(Chapter 2). Other features may be specific to the cell-type in which the training data is 
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collected, such as those caused by interactions between AGO and other RNA-binding proteins 

with cell-type specific expression profiles. While these features would only be useful for 

predicting miRNA activity in those cell-types, they could elucidate previously unappreciated 

interactors with the miRNA targeting pathway that only interact with AGO in certain contexts. 

Still other features could be global features of mRNAs that affect miRNA targeting, such 

as cooperativity between miRNA target sites. Previous work (Sætrom et al. 2007; Grimson et al. 

2007), as well as additional analysis in Appendix 3, have shown that two target sites that are 

close together on an mRNA (but not so close that two AGO complexes cannot bind at the same 

time) confer more repression than two target sites that are further away from each other. While 

estimates on the exact range for observable cooperativity differ slightly, the effect seems to be 

robust. Because the exact mechanism causing the cooperative effect is unknown, there is 

currently no way to quantitatively estimate its effect from first principles. However, a data-

driven approach could potentially learn the extent of cooperativity between two sites given the 

sequences of the two sites and the linker region. 

Another global feature that affects miRNA targeting is the structural accessibility of 

target sites. While in silico predictions of RNA accessibility have been marginally useful in 

assisting the prediction of miRNA targets (Agarwal et al. 2015), they depend on nearest-

neighbor rules derived from in vitro measurements of RNA pairing activity, which do not 

accurately reflect intracellular environments, especially in terms of salt concentrations (Becker et 

al. 2019). mRNA molecules in eukaryotic cells are also generally less structured than those 

observed in vitro, as determined by chemical probing (Rouskin et al. 2014; Guo and Bartel 

2016), suggesting that factors in the cytoplasm may be preventing the folding of mRNAs or 

actively unfolding them. While this is expected to be due, in part, to ribosomes unfolding mRNA 
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structures during translation, this disparity in mRNA accessibility between in vivo and in vitro 

has been observed to be similar between coding and untranslated regions (Rouskin et al. 2014). 

Large-scale miRNA transfection datasets could therefore potentially be incredibly useful 

for developing a model to predict RNA accessibility in vivo. Dozens of miRNA duplexes with 

diverse sequences could be transfected, included non-endogenous ones, that could evenly cover 

the 3′-UTR sequences of endogenous mRNAs, and the CNN developed in Chapter 2 can be used 

to predict the expected binding affinity between any transfected miRNA and potential target site. 

The discrepancy between predicted occupancy and observed repression can then be used by a 

model to learn rules governing RNA accessibility from millions of examples of miRNA–target 

interactions, and these rules could be made more robust by training on data collected from many 

different cell-types. The modularity of the miRNA and AGO system, the finding that more AGO 

binding leads to more repression in a predictable way, and the existence of a global binding 

predictor for miRNAs are all key to this strategy. It is perhaps fitting that while RNA structure-

prediction algorithms have long been used to improve predictions of miRNA targeting efficacy, 

miRNA occupancy predictions may in turn be able to improve predictions of RNA structural 

accessibility. 
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Mammalian X and Y Chromosomes evolved from an ordinary autosomal pair. Genetic decay of the Y led to X Chromosome
inactivation (XCI) in females, but some Y-linked genes were retained during the course of sex chromosome evolution, and
many X-linked genes did not become subject to XCI. We reconstructed gene-by-gene dosage sensitivities on the ancestral
autosomes through phylogenetic analysis of microRNA (miRNA) target sites and compared these preexisting characteris-
tics to the current status of Y-linked and X-linked genes in mammals. Preexisting heterogeneities in dosage sensitivity, man-
ifesting as differences in the extent of miRNA-mediated repression, predicted either the retention of a Y homolog or the
acquisition of XCI following Y gene decay. Analogous heterogeneities among avian Z-linked genes predicted either the re-
tention of a W homolog or gene-specific dosage compensation following W gene decay. Genome-wide analyses of human
copy number variation indicate that these heterogeneities consisted of sensitivity to both increases and decreases in dosage.
We propose a model of XY/ZW evolution incorporating such preexisting dosage sensitivities in determining the evolution-
ary fates of individual genes. Our findings thus provide a more complete view of the role of dosage sensitivity in shaping the
mammalian and avian sex chromosomes and reveal an important role for post-transcriptional regulatory sequences
(miRNA target sites) in sex chromosome evolution.

[Supplemental material is available for this article.]

The mammalian X and Y Chromosomes evolved from a pair of or-
dinary autosomes over the past 300 myr (Lahn and Page 1999).
Only 3% of genes on the ancestral pair of autosomes survive on
the human Y Chromosome (Skaletsky et al. 2003; Bellott et al.
2010) compared with 98% on the X Chromosome (Mueller et al.
2013). In females, one copy of the X Chromosome is silenced by
X-inactivation (XCI); this silencing evolved on a gene-by-gene
basis following Y gene loss in males and X up-regulation in both
sexes (Jegalian and Page 1998; Ross et al. 2005; Berletch et al.
2015; Tukiainen et al. 2017), and some genes escape XCI in hu-
mans (Carrel and Willard 2005) and other mammals (Yang et al.
2010). Dosage compensation refers to any mechanism restoring
ancestral dosage following gene loss from the sex-specific chromo-
some. In mammalian males, therefore, dosage compensation con-
sisted solely of X up-regulation, as it returned X-linked gene
expression to ancestral levels following Y gene loss. In females,
dosage compensation involved both X up-regulation and the ac-
quisition of XCI, which increased and decreased X-linked expres-
sion levels, respectively. Since females did not undergo any
initial decrease in ancestral dosage due to Y gene loss, X up-regula-
tion and the acquisition of XCI together restored ancestral expres-
sion levels.

In parallel, the avian Z andW sex chromosomes evolved from
a different pair of autosomes than the mammalian X and Y
Chromosomes (Nanda et al. 1999; Ross et al. 2005; Bellott et al.

2010). Decay of the female-specific W Chromosome was similarly
extensive, but birds did not evolve a large-scale inactivation of Z-
linked genes analogous to XCI in mammals (Itoh et al. 2007).
Dosage compensation, as measured by a male/female expression
ratio close to one, has been observed for some Z-linked genes in
some tissues (Mank and Ellegren 2009; Uebbing et al. 2015;
Zimmer et al. 2016). Thus, genes previously found on the ancestral
autosomes that gave rise to the mammalian or avian sex chromo-
someshaveundergone significant changes in genedosage. Inmod-
ernmammals, thesemolecular events have resulted in three classes
of ancestralX-linkedgenes representingdistinct evolutionary fates:
those with a surviving Y homolog, those with no Y homolog and
subject to XCI, and those with no Y homolog but escaping XCI.
In birds, two clear classes of ancestral Z-linked genes have arisen:
thosewith orwithout aWhomolog,with additional heterogeneity
amongZ-linked geneswithout aWhomologas a result of gene-spe-
cific dosage compensation. Identifying gene-by-gene properties
that distinguish classes of X- and Z-linked genes is thus crucial to
understanding the selective pressures underlying the molecular
events of mammalian and avian sex chromosome evolution.

Emerging evidence suggests a role for gene dosage sensitivity
in mammalian and avian sex chromosome evolution. X- and Z-
linked genes with surviving homologs on themammalian Y or avi-
an W Chromosomes are enriched for important regulatory func-
tions and predictors of haploinsufficiency compared with those
lacking Y or W homologs (Bellott et al. 2014, 2017); similar
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observations have been made in fish (White et al. 2015) and
Drosophila (Kaiser et al. 2011). Human X- and chicken Z-linked
genes that show the strongest signatures of dosage compensation
in either lineage also show signs of dosage sensitivity as measured
by membership in large protein complexes (Pessia et al. 2012) or
evolutionary patterns of gene duplication and retention (Zimmer
et al. 2016). Despite these advances, little is known regarding selec-
tive pressures resulting from sensitivity to dosage increases, as
these studies either focused on haploinsufficiency or employed
less direct predictors of dosage sensitivity. Furthermore, it is not
known whether heterogeneities in dosage sensitivity among clas-
ses of sex-linked genes were acquired during sex chromosome evo-
lution, or predated the emergence of sex chromosomes, as there
has been no explicit, systematic reconstruction of dosage sensitiv-
ity on the ancestral autosomes that gave rise to the mammalian
and avian sex chromosomes.

To assess the role of preexisting dosage sensitivities in XY and
ZW evolution, we sought to employ a measure of dosage sensitiv-
ity that could be (1) demonstrably informativewith respect to sen-
sitivity to dosage increases and (2) explicitly reconstructed on the
ancestral autosomes. We focused on regulation by microRNAs
(miRNAs), small noncoding RNAs that function as tuners of gene
dosage by lowering target mRNA levels through pairing to the 3′

untranslated region (UTR) (Bartel 2009). The repressive nature of
miRNA targeting is informative with respect to sensitivity to dos-
age increases, allowing for a more complete understanding of the
role of dosage sensitivity in sex chromosome evolution. Both
miRNAs themselves and their complementary target sites can be
preserved overmillions of years of vertebrate evolution, facilitating
the reconstruction of miRNA targeting on the ancestral autosomes
through cross-species sequence alignments. As miRNA targeting
occurs post-transcriptionally, reconstruction of its ancestral state
is decoupled from transcriptional regulatory mechanisms such as
XCI that evolved following X-Y differentiation.

Results

Analysis of human copy number variation indicates conserved
miRNA targeting of genes sensitive to dosage increases
We first sought to determine whether conserved targeting by
miRNAs correlates with sensitivity to dosage increases across the
human genome. To estimate pressure to maintain miRNA target-
ing, we used published probabilities of conserved targeting (PCT
scores) for each gene–miRNA interaction in the human genome.
The PCT score reflects an estimate of the probability that a given
gene–miRNA interaction is conserved due tomiRNA targeting, ob-
tained by calculating the conservation of the relevant miRNA tar-
get sites relative to the conservation of the entire 3′ UTR (Friedman
et al. 2009). In this manner, the PCT score intrinsically controls for
differences in background conservation and sequence composi-
tion, both of which vary widely among 3′ UTRs due to differing
rates of expression divergence and/or sequence evolution.We refer
to these PCT scores as “miRNA conservation scores” in the remain-
der of the text.

A recent study reported a correlation between these miRNA
conservation scores and predicted haploinsufficiency (Pinzón
et al. 2017), indicating that conserved miRNA targeting broadly
corresponds to dosage sensitivity. However, such a correlation
does not isolate the effects of sensitivity to dosage increases, which
we expect to be particularly important in the context ofmiRNA tar-
geting. We reasoned that genes for which increases in dosage are

deleterious should be depleted from the set of observed gene dupli-
cations in healthy human individuals. We used a catalog of rare
genic copy number variation among 59,898 control human
exomes (Exome Aggregation Consortium [ExAC]) (Ruderfer et al.
2016) to classify autosomal protein-coding genes as exhibiting
or lacking duplication or deletion in healthy individuals (see
Methods). We compared duplicated and nonduplicated genes
with the same deletion status in order to control for differences
in sensitivity to underexpression. We found that nonduplicated
genes have significantly higher miRNA conservation scores than
duplicated genes, irrespective of deletion status (Fig. 1A,B).
Nondeleted genes also have significantly higher scores than delet-
ed genes irrespective of duplication status (Supplemental Fig. S1),
but duplication status has a greater effect on miRNA conservation
scores than does deletion status (Fig. 1C, blue vs. orange boxes).
Thus, conserved miRNA targeting is a feature of genes sensitive to
changes in gene dosage in humans and is especially informative
with regards to sensitivity to dosage increases, consistent with
theknownroleofmiRNAs in tuninggenedosageby lowering target
mRNA levels.

X-Y pairs and X-inactivated genes have higher miRNA
conservation scores than X escape genes
Wenext assessed whether the three classes of X-linked genes differ
with respect to dosage sensitivity as inferred by conserved miRNA
targeting. To delineate these classes, we began with the set of an-
cestral genes reconstructed through cross-species comparisons of
the human X Chromosome and orthologous chicken autosomes
(Bellott et al. 2010, 2014, 2017; Hughes et al. 2012; Mueller et al.
2013). We designated ancestral X-linked genes with a surviving
humanYhomolog (Skaletsky et al. 2003) as X-Y pairs and also con-
sidered the set of X-linked genes with a surviving Y homolog in
any of eight mammals (Bellott et al. 2014) to increase the

Figure 1. Conserved miRNA targeting of autosomal genes stratified by
copy number variation in 59,898 human exomes. Probabilities of con-
served targeting (PCT) of all gene–miRNA interactions involving nondupli-
cated and duplicated genes, further stratified as (A) deleted (gray, n =
69,339 interactions from 4118 genes; blue, n = 80,290 interactions from
3976 genes) or (B) not deleted (orange, n = 51,514 interactions from
2916 genes; purple, n = 72,826 interactions from 3510 genes). (∗∗∗) P <
0.001, two-sided Kolmogorov–Smirnov test. (C) Mean gene-level PCT
scores. (∗∗) P < 0.01, (∗∗∗) P < 0.001, two-sided Wilcoxon rank-sum test.
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phylogenetic breadth of findings regarding X-Y pairs. A number of
studies have cataloged the inactivation status of X-linked genes in
various human tissues and cell types.We used ameta-analysis that
combined results from three studies by assigning a “consensus”X-
inactivation status to each gene (Balaton et al. 2015) to designate
the remainder of ancestral genes lacking a Y homolog as subject
to or escaping XCI. In summary, we classified genes as either: (1)
X-Y pairs, (2) lacking a Y homolog and subject to XCI (X-inactivat-
ed), or (3) lacking a Y homolog but escaping XCI (X escape).

We found that humanX-Ypairs have the highestmiRNAcon-
servation scores, followed by X-inactivated and finally X escape
genes (Fig. 2A,B). The expanded set of X-Y pairs across eight mam-
mals also has significantly highermiRNA conservation scores than
ancestral X-linked genes with no Y homolog (Supplemental Fig.
S2). Observed differences between miRNA conservation scores
are not driven by distinct subsets of genes in each class, as indicat-
ed by gene resampling with replacement (Supplemental Fig. S3).
The decrease in miRNA conservation scores of X escape genes rel-
ative to X-inactivated genes and X-Y pairs is not driven by genes
that escape XCI variably across individuals (Supplemental Fig.
S4), and was consistent even when including ambiguous genes
as either X-inactivated or X escape genes (Supplemental Fig. S5).
We also verified that these differences were not driven by artificial-
ly inflated or deflated conservation scores of certain target sites due
to nonuniformity in 3′ UTR conservation (Methods; Supplemental
Fig. S6).

Finally, we assessed whether miRNA conservation scores dis-
tinguish the three classes by providing additional information not
accounted for by known factors (Bellott et al. 2014) influencing
evolutionary outcomes. We used logistic regression to model, for
each gene, the probability of falling into each of the three classes
(X-Y pair, X-inactivated, or X escape) as a linear combination of
haploinsufficiency probability (pHI) (Huang et al. 2010); human
expression breadth (The GTEx Consortium 2015); purifying selec-
tion, measured by the ratio of nonsynonymous to synonymous
substitution rates (dN/dS) between human and mouse orthologs
(Yates et al. 2016); and mean gene-level miRNA conservation
scores. We note that pHI is a score composed of several genic fea-
tures, one of which is the number of protein–protein interactions,
consistent with the idea that members of large protein complexes
tend to be dosage-sensitive (Papp et al. 2003; Pessia et al. 2012).

Removing either miRNA conservation or pHI as predictors from
the full model resulted in inferior model fits as measured by the
Akaike information criterion (AIC) (full model, AIC 321.5; full
model minus miRNA conservation, AIC 327.7; full model minus
pHI, AIC 327.3; higher AIC indicates inferior model). Therefore,
miRNA conservation and pHI contribute independent informa-
tion that distinguishes the three classes of X-linked genes. Based
on our analyses of autosomal copy number variation (Fig. 1), we
attribute this independence to the fact that miRNA conservation
scores aremost informativewith regards to sensitivity to dosage in-
creases. Taken together, these results indicate significant heteroge-
neity in dosage sensitivity, as inferred by miRNA target site
conservation, among the three classes of ancestral X-linked genes:
X-Y pairs are the most dosage-sensitive, while X-inactivated genes
are of intermediate dosage sensitivity, and X escape genes are the
least dosage-sensitive.

Heterogeneities in X-linked miRNA targeting were present on the
ancestral autosomes
We next asked whether differences in miRNA targeting were pre-
sent on the ancestral autosomes that gave rise to the mammalian
X and Y Chromosomes. To reconstruct the ancestral state of
miRNA targeting, we first focused on miRNA target sites in the 3′

UTR of human orthologs that align with perfect identity to a site
in the corresponding chicken ortholog; these sites were likely pre-
sent in the common ancestor of mammals and birds (Fig. 3A). We
found that X-Y pairs have themost human–chicken conserved tar-
get sites, followed byX-inactivated genes, and thenX escape genes
(Fig. 3B, top). Unlike the miRNA conservation scores used earlier,
this metric does not account for background conservation; we
therefore estimated the background conservation of each 3′ UTR
using shuffled miRNA family seed sequences (see Methods). X-Y
pairs, X-inactivated genes, and X escape genes do differ signifi-
cantly with respect to background conservation (Supplementary
Fig. S7), but these differences cannot account for the observed dif-
ferences in true human–chicken conserved sites (Fig. 3B, bottom).
We observed similar results for the expanded set of X-Y pairs across
eight mammals (Supplemental Fig. S8A).

Differences in the number of human–chicken conserved sites
among the three classes of X-linked genes could be explained by
heterogeneity in miRNA targeting present on the ancestral auto-
somes or by ancestral homogeneity followed by different rates of
target site loss during or following X-Y differentiation. To distin-
guish between these two possibilities, we took advantage of previ-
ous reconstructions of human sex chromosome evolution (Fig. 3A;
Bellott et al. 2014), which confirmed that, following the diver-
gence of placental mammals from marsupials, an X-autosome
chromosomal fusion generated the X-added region (XAR)
(Watson et al. 1990). Genes on the XAR are therefore X-linked in
placental mammals but autosomal inmarsupials such as the opos-
sum. We limited our analysis to genes in the XAR and target sites
conserved between orthologous chicken and opossum 3′ UTRs, ig-
noring site conservation in humans; these sites were likely present
in the common ancestor of mammals and birds, and an absence of
such sites cannot be explained by site loss following X-Y differen-
tiation.We observed the same pattern as with the human–chicken
conserved sites, both before and after accounting for background
3′ UTR conservation (Fig. 3C, three gene classes; Supplemental
Fig. S8B, X-Y pairs across eight mammals). These results demon-
strate that the autosomal precursors of X-Y pairs and X-inactivated
genes were subject to more miRNA-mediated regulation than X

Figure 2. X-Y pairs and X-inactivated genes have higher miRNA conser-
vation scores than X escape genes. PCT score distributions of all gene–
miRNA interactions involving (A) human X-Y pairs (n = 371 interactions
from 15 genes), X-inactivated genes (n = 6743 interactions from 329
genes), and X escape genes (n = 1037 interactions from 56 genes). (∗∗)
P < 0.01, two-sided Kolmogorov–Smirnov test. (B) Mean gene-level PCT
scores. (∗) P < 0.05, (∗∗) P < 0.01, two-sided Wilcoxon rank-sum test.

Naqvi et al.

476 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on October 2, 2019 - Published by genome.cshlp.orgDownloaded from 



escape genes. Combined with our earlier results, we conclude that
present-day heterogeneities in dosage sensitivity on the mamma-
lian X Chromosome existed on the ancestral autosomes from
which it derived.

Z-W pairs have higher miRNA conservation scores than other
ancestral Z-linked genes
We next assessed whether classes of avian Z-linked genes, those
with and without a W homolog, show analogous heterogeneities
in sensitivity to dosage increases. We used the set of ancestral
genes reconstructed through cross-species comparisons of the avi-
an Z Chromosome and orthologous human autosomes and fo-
cused on the set of Z-W pairs identified by sequencing of the
chicken W Chromosome (Bellott et al. 2010, 2017). To increase
the phylogenetic breadth of our comparisons, we also included
candidate Z-Wpairs obtained through comparisons ofmale and fe-
male genome assemblies (four-species set) or inferred by read-
depth changes in female genome assemblies (14-species set; for de-
tails, see Methods) (Zhou et al. 2014). The more complete 3′ UTR
annotations in the human genome relative to chicken allow for

a more accurate assessment of conserved miRNA targeting.
Accordingly, we analyzed the 3′ UTRs of the human orthologs of
chicken Z-linked genes.

We found that the human orthologs of Z-Wpairs have higher
miRNA conservation scores than the humanorthologs of other an-
cestral Z genes (Fig. 4A,B). Differences in miRNA conservation
scores between Z-Wpairs and other ancestral Z genes remained sig-
nificant when considering the expanded sets of Z-W pairs across
four and 14 avian species (Supplemental Fig. S9). These differences
are not driven by distinct subsets of genes, as indicated by gene re-
sampling with a replacement (Supplemental Fig. S10), and cannot
be accounted for bywithin-UTR variation in regional conservation
(Supplemental Fig. S11). Logistic regression models indicate that
miRNA conservation scores provide additional information not
captured by known factors (Bellott et al. 2017) influencing survival
of W-linked genes (full model, AIC 127.1; full model minus
miRNA conservation, AIC 137.8; full model minus pHI, AIC
132.7; higher AIC indicates inferiormodel). Together, these results
indicate that Z-linked genes with a survivingWhomolog are more
sensitive to changes in dosage—both increases and decreases—
than are genes without a surviving W homolog.

Figure 3. Heterogeneities in X-linked miRNA targeting were present on the ancestral autosomes. (A) Example reconstruction of an ancestral miR-96 tar-
get site in the 3′ UTR of KDM6A, an X-linked gene in the X-added region (XAR) with a surviving Y homolog. (Left) Species tree overlaid with events in mam-
malian sex chromosome evolution. (Right) Multiple sequence alignment; dots in nonhuman species indicate identity with human sequence; dashes indicate
gaps in alignment. (B) Distributions of sites conserved between 3′ UTRs of human and chicken orthologs (top) or comparisons to background expectation
(bottom; seeMethods) for human X-Y pairs (n = 16), X-inactivated genes (n = 251), and X escape genes (n = 42). (C) Statistics as in B, but using sites conserved
between chicken and opossum 3′ UTRs only for genes in the XAR: X-Y pairs (n = 11), X-inactivated genes (n = 58), and X escape genes (n = 27).
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While there are two clear classes of Z-linked genes—those
with or without a W homolog—studies of Z-linked gene expres-
sion have suggested additional heterogeneity among Z-linked
genes without a W homolog due to gene-specific dosage compen-
sation (Mank and Ellegren 2009; Uebbing et al. 2015; Zimmer et al.
2016). If Z-linked genes with no W homolog exist upon a contin-
uum fromnoncompensated to dosage compensated, those that are
more compensated should have more conserved miRNA target
sites, reflective of greater dosage sensitivity.We quantified the dos-
age compensation by using RNA sequencing data (Marin et al.
2017) to compare, in four somatic tissues, the chickenmale/female
expression ratio to the analogous ratio in human and Anolis (see
Methods). In the brain, kidney, and liver, Z-linked genes with no
W homolog and higher mean miRNA conservation scores had
male/female expression ratios closer to one (Supplemental Fig.
S12). Thus, in addition to the above-described differences between
Z-linked genes with or without a W homolog, Z-linked genes with
noWhomolog but withmore effective dosage compensation have
more conserved miRNA target sites than noncompensated genes.

Heterogeneities in Z-linked miRNA targeting were present on the
ancestral autosomes
Wenext asked whether differences inmiRNA targeting between Z-
W pairs and other ancestral Z-linked genes were present on the an-
cestral autosomes that gave rise to the avian Z and W
Chromosomes. We found that chicken Z-W pairs have more hu-
man–chicken-conserved miRNA target sites than their Z-linked
counterparts without surviving W homologs, both before (Fig.
5B, top) and after (Fig. 5B, bottom) accounting for the background
conservation of each individual 3′ UTR. To confirm that these dif-
ferences represent ancestral heterogeneity rather than differential
site loss during or following Z-W differentiation, we instead con-
sidered the number of sites conserved between human and
Anolis lizard, which diverged from birds prior to Z-W differentia-
tion (Fig. 5A). Chicken Z-W pairs contain an excess of human–
Anolis conserved miRNA target sites, both before (Fig. 5C, top)
and after (Fig. 5C, bottom) accounting for the background conser-
vation of each individual 3′ UTR. We observed similar results with
the predicted four-species (Supplemental Fig. S13) and 14-species
(Supplemental Fig. S14) sets of Z-Wpairs. Thus, the autosomal pre-
cursors of avian Z-W pairs were subject to more miRNA-mediated

regulation than the autosomal precursors of Z-linked genes that
lack a W homolog. Furthermore, in the liver and brain, Z-linked
genes with noWhomolog with an excess of human–chicken-con-
served miRNA sites had male/female expression ratios closer to
one, implyingmore effective dosage compensation (Supplemental
Fig. S15). Together, these results indicate heterogeneity in dosage
sensitivity among genes on the ancestral autosomes that gave
rise to the avian Z Chromosome.

Analyses of experimental data sets validate miRNA target site
function
Our results to this point, which indicate preexisting heterogene-
ities in dosage constraints among X- or Z-linked genes as inferred
by predicted miRNA target sites, lead to predictions regarding
the function of these sites in vivo. To test these predictions, we
turned to publicly available experimental data sets consisting
both of gene expression profiling following transfection or knock-
out of individual miRNAs, and of high-throughput crosslinking-
immunoprecipitation (CLIP) to identify sites that bind
Argonaute in vivo (see Methods). If the above-studied sites are ef-
fective in mediating target repression, targets of an individual
miRNA should show increased expression levels or Argonaute
binding followingmiRNA transfection and showdecreased expres-
sion levels following miRNA knockout. Together, our analyses of
publicly available data sets fulfilled these predictions, validating
the function of these sites inmultiple cellular contexts and species
(Fig. 6). From the gene expression profiling data, we observed re-
sults consistent with effective targeting by (1) 11 different
miRNA families in human HeLa cells (Supplemental Fig. S16), (2)
four different miRNAs in human HCT116 and HEK293 cells
(Supplemental Fig. S17), and (3) miR-155 inmouse B and Th1 cells
(Supplemental Fig. S18). In the CLIP data, the human orthologs of
X- or Z-linked targets of miR-124 are enriched for Argonaute-
bound clusters that appear following miR-124 transfection, while
a similar but nonsignificant enrichment is observed for miR-7
(Supplemental Fig. S19). Thus, conserved miRNA target sites
used to infer dosage constraints onX-linked genes, and the autoso-
mal orthologs of Z-linked genes can effectively mediate target re-
pression in living cells.

Discussion
Here, through the evolutionary reconstruction of miRNA target
sites, we provide evidence for preexisting heterogeneities in dosage
sensitivity among genes on the mammalian X and avian Z
Chromosomes. We first showed that, across all human autosomal
genes, dosage sensitivity—as indicated by patterns of genic copy
number variation—correlates with the degree of conserved
miRNA targeting.We found that conserved targeting correlates es-
pecially strongly with sensitivity to dosage increases, consistent
with miRNA targeting serving to reduce gene expression.
Turning to the sex chromosomes of mammals and birds, genes
that retained a homolog on the sex-specific Y or W
Chromosome (X-Y and Z-W pairs) have more conserved miRNA
target sites than genes with no Y or W homolog. In mammals,
genes with no Y homolog that became subject to XCI have more
conserved sites than those that continued to escape XCI following
Y gene decay. In birds, across Z-linked genes with no W homolog,
the degree of conserved miRNA targeting correlates with the de-
gree of gene-specific dosage compensation.We then reconstructed
the ancestral state of miRNA targeting, observing significant

Figure 4. Z-W pairs have higher miRNA conservation scores than other
ancestral Z-linked genes. (A) PCT score distributions of all gene–miRNA in-
teractions involving the human orthologs of chicken Z-W pairs (n = 832 in-
teractions from 28 genes) and other ancestral Z genes (n = 16,692
interactions from 657 genes). (∗∗∗) P < 0.001, two-sided Kolmogorov–
Smirnov test. (B) Mean gene-level PCT scores. (∗∗∗) P < 0.001, two-sided
Wilcoxon rank-sum test.
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heterogeneities in the extent of miRNA targeting, and thus dosage
sensitivity, on the ancestral autosomes that gave rise to the mam-
malian and avian sex chromosomes. Finally, through analysis of
publicly available experimental data sets, we validated the func-
tion, in living cells, of the miRNA target sites used to infer dosage
sensitivity.We thus conclude that differences in dosage sensitivity
—both to increases and to decreases in gene dosage—among genes
on the ancestral autosomes influenced their evolutionary trajecto-
ry during sex chromosome evolution, not only on the sex-specific
Y and W Chromosomes, but also on the sex-shared X and Z
Chromosomes.

Our findings build upon previous work in three important
ways. First, our analysis of miRNA-mediated repression indicates
that these heterogeneities consist of sensitivities to dosage increas-
es and decreases, whereas previous studies had either focused on
sensitivity to underexpression or could not differentiate the two.
Second, our reconstruction of miRNA targeting on the ancestral
autosomes provides direct evidence that heterogeneities in dosage
sensitivity among classes of X- and Z-linkedwere preexisting rather
than acquired during sex chromosome evolution. Finally, by
pointing to specific regulatory sequences (miRNA target sites)

functioning to tune gene dosage both prior to and during sex chro-
mosome evolution, our study provides a viewof dosage compensa-
tion encompassing post-transcriptional regulation.

Human disease studies support the claim that increased dos-
age of X-Y pairs and X-inactivated genes is deleterious to fitness.
Copy number gains of the X-linked gene KDM6A, which has a sur-
viving humanYhomolog, are found in patients with developmen-
tal abnormalities and intellectual disability (Lindgren et al. 2013).
HDAC6, CACNA1F, GDI1, and IRS4 all lack Y homologs and are
subject to XCI in humans. A mutation in the 3′ UTR of HDAC6
abolishing targeting by miR-433 has been linked to familial chon-
drodysplasia in both sexes (Simon et al. 2010). Likely gain-of-func-
tion mutations in CACNA1F cause congenital stationary night
blindness in both sexes (Hemara-Wahanui et al. 2005). Copynum-
ber changes of GDI1 correlate with the severity of X-linked mental
retardation in males, with female carriers preferentially inactivat-
ing the mutant allele (Vandewalle et al. 2009). Somatic genomic
deletions downstream from IRS4 lead to its overexpression in
lung squamous carcinoma (Weischenfeldt et al. 2017). Males
with partial X disomy due to translocation of the distal long arm
of the X Chromosome (Xq28) to the long arm of the Y

Figure 5. Heterogeneities in Z-linked miRNA targeting were present on the ancestral autosomes. (A) Example reconstruction of an ancestral miR-145
target site in the 3′ UTR of RASA1, a Z-linked gene with a surviving W homolog. (Left) Species tree overlaid with events in avian sex chromosome evolution.
(Right) Multiple sequence alignment; dots in nonhuman species indicate identity with human sequence; dashes indicate gaps in alignment. (B) Numbers of
sites conserved between 3′ UTRs of human and chicken orthologs (top) or comparisons to background expectation (bottom) for chicken Z-W pairs (n = 27)
and other ancestral Z genes (n = 578). (C) Statistics as in B, but using sites conserved between human and Anolis 3′ UTRs.
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Chromosome show severe mental retardation and developmental
defects (Lahn et al. 1994). Most genes in Xq28 are inactivated in
46,XX females but escape inactivation in such X;Y translocations,
suggesting that increased dosage of Xq28 genes caused the cogni-
tive and developmental defects. We anticipate that further studies
will reveal additional examples of the deleterious effects of increas-
es in gene dosage of X-Y pairs and X-inactivated genes.

We and others previously proposed that Y gene decay drove
up-regulation of homologous X-linked genes in bothmales and fe-
males and that XCI subsequently evolved at genes sensitive to in-
creased expression from two active X-linked copies in females
(Ohno 1967; Jegalian and Page 1998). Our finding that X-inacti-
vated genes have highermiRNA conservation scores thanX escape
genes is consistent with this aspect of the model. However, recent
studies indicating heterogeneity in dosage sensitivity between
classes of mammalian X- or avian Z-linked genes (Pessia et al.
2012; Bellott et al. 2014, 2017; Zimmer et al. 2016), combined
with the present finding that these dosage sensitivities existed
on the ancestral autosomes, challenge the previous assumption
of a single evolutionary pathway for all sex-linked genes.

We therefore propose a revised model of X-Y and Z-W evolu-
tion in which the ancestral autosomes that gave rise to the mam-
malian and avian sex chromosomes contained three (or two, in

the case of birds) classes of genes with differing dosage sensitivities
(Fig. 7A,B). For ancestral genes with high dosage sensitivity, Y orW
gene decay would have been highly deleterious, and thus the Y- or
W-linked genes were retained. According to our model, these
genes’ high dosage sensitivity also precluded up-regulation of
the X- or Z-linked homolog and, in mammals, subsequent X-inac-
tivation; indeed, their X-linked homologs continue to escape XCI
(Bellott et al. 2014). For ancestral mammalian genes of intermedi-
ate dosage sensitivity, Y gene decay did occur and was accompa-
nied or followed by compensatory up-regulation of the X-linked
homolog in both sexes; the resultant increased expression in fe-
males was deleterious and led to the acquisition of XCI.
Ancestral mammalian genes of low dosage sensitivity continued
to escape XCI following Y decay; heterogeneity in X up-regulation
may further subdivide such genes (Fig. 6A). These genes’ dosage in-
sensitivity set them apart biologically, and evolutionarily, from
the other class of X-linked genes escaping XCI—those with a sur-
viving Y homolog.

Our revisedmodel relates preexisting, gene-by-gene heteroge-
neities in dosage sensitivity to the outcomes of sex chromosome
evolution. However, the suppression of X-Y recombination did
not occur on a gene-by-gene basis, instead initiating Y gene decay
and subsequent dosage compensation through a series of large-

Figure 6. Analyses of experimental data sets validatemiRNA target site function. Responses to transfection (A–C) or knockout (D) of indicatedmiRNAs in
human (A–C) or mouse (D) cell types. Each panel depicts corresponding changes in mRNA levels (A,B), in fraction of Argonaute-bound genes (C), and in
mRNA stability and translational efficiency as measured by ribosome protected fragments (RPF; D). In each case, X-linked genes and the human orthologs
of Z-linked genes containing target sites with an assigned PCT score (red) for the indicated miRNA were compared with all expressed genes lacking target
sites (black); gene numbers are indicated in parentheses. (A,B,D) (∗∗∗) P < 0.001, two-sided Kolmogorov–Smirnov test. (C) (∗) P < 0.05, two-sided Fisher’s
exact test.
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scale inversions encompassing many genes (Lahn and Page 1999).
The timings and boundaries of these evolutionary strata varied
among mammalian lineages, thus leading to unique chromo-
some-scale evolutionary dynamics across mammals. These large-
scale changes would have then allowed for genic selection to
take place according to the preexisting dosage sensitivities out-
lined above. In this way, the course of sex chromosome evolution
inmammals is a composite of (1) preexisting, gene-by-gene dosage
sensitivities and (2) the manner in which the history of the X
and Y unfolded in particular lineages via discrete, large-scale
inversions.

In this study, we have focused on classes of ancestral X-linked
genes delineated by the survival of a human Y homolog or by the
acquisition of XCI in humans, but such evolutionary states can
differ among mammalian lineages and species. In mouse, for in-
stance, both Y gene decay (Bellott et al. 2014) and the acquisition
of X-inactivation (Yang et al. 2010) are more complete than in hu-
mans or othermammals, as exemplified by RPS4X, which retains a
Y homolog and continues to escapeXCI in primates but has lost its
Y homolog and is subject to XCI in rodents. These observations
could be explained by shortened generation times in the rodent
lineage, resulting in longer evolutionary times, during which the
forces leading to Y gene decay and the acquisition of X-inactiva-
tion could act (Ohno 1967; Charlesworth and Crow 1978;
Jegalian and Page 1998). Another case of lineage differences in-
volves HUWE1, which lacks a Y homolog and is subject to XCI
in both human and mouse but retains a functional Y homolog
in marsupials, where it continues to escape XCI. In the future,
more complete catalogs of X-inactivation and escape in additional
mammalian lineages would make it possible to examine whether
analogous, preexisting dosage sensitivities differentiate the three
classes of X-linked genes (X-Y pairs, X-inactivated genes, and X es-
cape genes) in other species.

Previous studies have sought evidence of X-linked up-regula-
tion during mammalian sex chromosome evolution using com-
parisons of gene expression levels between the whole of the X

Chromosome and all of the autosomes, with equal numbers of
studies rejecting or finding evidence consistent with up-regulation
(Xiong et al. 2010; Deng et al. 2011; Kharchenko et al. 2011; Julien
et al. 2012; Lin et al. 2012). This is likely due to gene-by-gene het-
erogeneity in dosage sensitivities that resulted in a stronger signa-
ture of up-regulation at more dosage-sensitive genes (Pessia et al.
2012). Similarly, studies of Z-linked gene expression in birds pro-
vide evidence for the gene-by-gene nature of Z dosage compensa-
tion, as measured by comparisons of gene expression levels
between ZZ males and ZW females (Itoh et al. 2007; Mank and
Ellegren 2009; Uebbing et al. 2015), and indicate a stronger signa-
ture of dosage compensation at predicted dosage-sensitive genes
(Zimmer et al. 2016). By showing that such dosage sensitivities ex-
isted on the ancestral autosomes and consist of sensitivity to both
increases and decreases, our findings highlight an additional as-
pect of dosage compensation that affects both birds andmammals.

In addition to revealing similarities between mammals and
birds, our study provides a viewof dosage compensation that high-
lights post-transcriptional regulatory mechanisms, pointing to
specific noncoding sequences with known mechanisms (miRNA
target sites) functioning across evolutionary time. A recent study
in birds showed a role for a Z-linked miRNA, miR-2954-3p, in dos-
age compensation of some Z-linked genes (Warnefors et al. 2017).
Our study suggests an additional, broader role for miRNA target-
ing, with hundreds of differentmiRNAs acting to tune gene dosage
both before and during sex chromosome evolution. Furthermore,
our finding of greater conserved miRNA targeting of X-inactivated
genes relative to X escape genes shows that it is possible to predict
the acquisition of a transcriptional regulatory state (XCI) during
sex chromosome evolution on the basis of a preexisting, post-tran-
scriptional regulatory state. Perhaps additional post-transcription-
al regulatorymechanisms and their associated regulatory elements
will be shown to play roles in mammalian and avian dosage
compensation.

Recent work has revealed that the sex-specific chromosome—
the Y in mammals and the W in birds—convergently retained

Figure 7. An evidence-basedmodel of preexisting heterogeneities in dosage sensitivity shapingmammalian and avian sex chromosome evolution. In this
model, preexisting heterogeneities in dosage sensitivity determined the trajectory of Y/W gene loss in both mammals and birds, and of subsequent X-in-
activation in mammals and dosage compensation in birds. Colored arrow widths are scaled approximately to the number of ancestral genes in each class.
(A) The dashed orange line represents the possibility that a subset of X-linked genes may have not undergone compensatory X up-regulation following Y
gene decay. (B) Ancestral Z genes with noW homolog follow a gradient of preexisting dosage sensitivity (top; gray to white), which determined the degree
of dosage compensation following W gene loss (bottom; gray to white).
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dosage-sensitive genes with important regulatory functions
(Bellott et al. 2014, 2017). Our study, by reconstructing the ances-
tral state of post-transcriptional regulation, provides direct evi-
dence that such heterogeneity in dosage sensitivity existed on
the ancestral autosomes that gave rise to the mammalian and avi-
an sex chromosomes. This heterogeneity influenced both survival
on the sex-specific chromosomes in mammals and birds and the
evolution of XCI in mammals. Thus, two independent experi-
ments of nature offer empirical evidence thatmodern-day amniote
sex chromosomes were shaped, during evolution, by the proper-
ties of the ancestral autosomes from which they derive.

Methods

Statistics
Details of all statistical tests (type of test, test statistic, and P-value)
used in this article are provided in Supplemental Table S1.

Human genic copy number variation
To annotate gene deletions and duplications, we used data
from the ExAC (ftp://ftp.broadinstitute.org/pub/ExAC_release/re-
lease0.3.1/cnv/), which consists of autosomal genic duplications
and deletions (both full and partial) called in 59,898 exomes
(Ruderfer et al. 2016). Further details are provided in the
Supplemental Methods in the section titled “Human genic copy
number variation.” These gene assignments are provided in
Supplemental Table S2.

X- and Z-linked gene sets
We utilized our previous reconstructions of the ancestral mamma-
lian X (Bellott et al. 2014) and avian Z (Bellott et al. 2017)
Chromosomes, as well as information on multicopy and ampli-
conic X-linked genes (Mueller et al. 2013) and XCI status in hu-
mans (Balaton et al. 2015) to delineate classes of X- and Z-linked
genes. Further details are provided in Supplemental Methods un-
der the sections titled “X-linked gene sets” and “Z-linked gene
sets.” Information on X-linked genes is provided in Supplemental
Table S3. Information on Z-linked genes is provided in
Supplemental Table S4.

miRNA target sites
Precalculated PCT scores for all gene–miRNA family interac-
tions (http://www.targetscan.org/vert_71/vert_71_data_download/
Summary_Counts.all_predictions.txt.zip) and site-wise alignment
information (http://www.targetscan.org/vert_71/vert_71_data_down
load/Conserved_Family_Info.txt.zip) were obtained from TargetScan
Human v7. Details on the filtering of miRNAs and resampling-
based assessment of PCT scores are provided in Supplemental
Methods in the section titled “microRNA target site PCT scores.”
Details regarding analysis of human–chicken or human–Anolis
conserved sites, as well as approaches to control for background
conservation, are provided in Supplemental Methods in the sec-
tion titled “Human-chicken conserved microRNA target sites.”

Variation in within-UTR conservation bias
To address the possibility that nonuniformity in regional 3′ UTR
conservation could artificially inflate or deflate conservation
scores of certain target sites, we implemented a step-detection al-
gorithm to segment 3′ UTRs into regions of homogeneous back-
ground conservation and calculated miRNA site conservation
relative to these smaller regions. These regionally normalized

scores, corresponding to all gene–miRNA interactions, are provid-
ed in Supplemental Table S5. Details of the step-detection algo-
rithm are provided in Supplemental Methods in the section
titled “Variation in within-UTR conservation bias.”

Logistic regression
Logistic regression models were constructed using the function
“multinom” in the R package “nnet” (Venables and Ripley
2002). We used previously published values for known factors in
the survival of Y-linked (Bellott et al. 2014) and W-linked
(Bellott et al. 2017) genes except for human expression breadth,
which we recalculated using data from the GTEx Consortium v6
data release (The GTEx Consortium 2015). Briefly, kallisto was
used to estimate transcript per million (TPM) values in the 10
male samples with the highest RNA integrity numbers (RINs)
from each of 37 tissues, and expression breadth across tissues
was calculated as described by Bellott et al. (2014), using median
TPM values for each tissue.

Assessing Z-linked dosage compensation using cross-species
RNA-sequencing data
Raw data from Marin et al. (2017) was obtained, and kallisto and
limma/voom were used for abundance quantification and differ-
ential expression, respectively. Further details are provided in the
Supplemental Methods in the section titled “Assessing Z-linked
dosage compensation using cross-species RNA-sequencing data.”

Gene expression profiling and crosslinking data sets
Fold-changes in mRNA expression and targets of Argonaute as de-
termined byhigh-throughputCLIPwere obtained fromavariety of
publicly available data sets. Further details are provided in
Supplemental Methods in the section titled “Gene expression pro-
filing and crosslinking datasets.” All fold-changes and CLIP targets
are provided in Supplemental Table S6.

Software availability
A custom Python (RRID:SCR_008394) script utilizing Biopython
(RRID:SCR_007173) was used to generate shuffled miRNA family
seed sequences. Identification of miRNA target site matches using
shuffled seed sequences was performed using the “targetscan_70.
pl” Perl script (http://www.targetscan.org/vert_71/vert_71_data_
download/targetscan_70.zip). 3′ UTR segmentation was per-
formed with the “plot_transitions.py” Python script. Code is
available at https://github.com/snaqvi1990/Naqvi17-code and as
Supplemental Code.
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Summary  

For all but a few mRNAs, the dynamics of metabolism are unknown. Here, we developed 

an experimental and analytical framework for examining these dynamics for mRNAs 

from thousands of genes. mRNAs of mouse fibroblasts exit the nucleus with diverse 

intragenic and intergenic poly(A)-tail lengths. Once in the cytoplasm, they have a broad 

(1000-fold) range of deadenylation rate constants, which correspond to cytoplasmic 

lifetimes. Indeed, with few exceptions, degradation appears to occur primarily through 

deadenylation-linked mechanisms, with little contribution from either endonucleolytic 

cleavage or deadenylation-independent decapping. Most mRNA molecules degrade only 

after their tail lengths fall below 25 nt. Decay rate constants of short-tailed mRNAs vary 

broadly (1000-fold) and are more rapid for short-tailed mRNAs that had previously 

undergone more rapid deadenylation. This coupling helps clear rapidly deadenylated 

mRNAs, enabling the large range in deadenylation rate constants to impart a similarly 

large range in stabilities. 

 

 

Highlights: 

• mRNAs enter the cytoplasm with diverse intra- and intergenic lengths  

• mRNA deadenylation rates span a 1000-fold range and correspond to mRNA half-lives 

• After their tails become short, mRNAs decay at rates that span a 1000-fold range 

• More rapidly deadenylated mRNAs decay more rapidly upon reaching short tail lengths  

  

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/763599doi: bioRxiv preprint first posted online Sep. 9, 2019; 



	 3 

Introduction 

mRNAs corresponding to different genes are degraded at substantially different rates, 

with some mRNAs turning over in minutes and others persisting for days (Dölken et al., 

2008). Different conditions or developmental contexts can modify these rates, resulting in 

the destabilization of previously stable mRNAs, or vice versa (Rabani et al., 2011). These 

rate changes influence the dynamics of mRNA accumulation and, ultimately, the steady-

state abundance of mRNAs.  

Many proteins that promote mammalian mRNA degradation also can recruit 

deadenylase complexes. These include Pumilio (Van Etten et al., 2012), SMG5/7 

(Muhlemann and Lykke-Andersen, 2010), GW182 (Fabian et al., 2011), BTG/TOB 

factors (Mauxion et al., 2009), Roquin (Leppek et al., 2013), YTHDF2 (Du et al., 2016), 

and HuR, TTP, and other proteins that bind AU- and GU-rich elements (Vlasova-St 

Louis and Bohjanen, 2011; Fabian et al., 2013). That these diverse modifiers of mRNA 

stability converge on deadenylation suggests that differences in deadenylation rates might 

explain a substantial fraction of the variation observed in mRNA stability.  

In the past, the dynamics of mRNA deadenylation have been examined on a gene-

by-gene basis, involving pulsed expression and subsequent mRNA analysis using RNase 

H to cleave the mRNA and RNA blots to probe for the poly(A)-tailed 3′ fragment. 

Because this procedure has been performed for only a handful of cellular mRNAs in 

yeast (Decker and Parker, 1993; Muhlrad et al., 1994; Hilgers et al., 2006) and mammals 

(Mercer and Wake, 1985; Wilson and Treisman, 1988; Shyu et al., 1991; Chen and Shyu, 

1995; Gowrishankar et al., 2005), some fundamental questions, including the extent to 
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which a global relationship exists between deadenylation rate and mRNA stability, have 

remained unanswered.  

Here, we developed experimental and analytical tools for the global analysis of 

tail-length dynamics. Applying these tools to the mRNAs of cultured mouse fibroblasts 

generated a unique resource of initial cytoplasmic tail lengths, deadenylation rates, and 

decay parameters for mRNAs of thousands of individual genes, which in turn provided 

fundamental insights into cytoplasmic mRNA metabolism. 

 

Results 

Global Profiling of Tail-Length Dynamics 

Two high-throughput sequencing methods, each with distinct advantages, were initially 

developed to profile poly(A)-tail lengths. One of these is PAL-seq (poly(A)-tail-length 

profiling by sequencing), which reports the cleavage-and-polyadenylation site for each 

polyadenylated molecule (Subtelny et al., 2014), whereas the other is TAIL-seq, which 

can measure poly(A)-tails that have been terminally modified with non-adenosine 

residues (Chang et al., 2014; Lim et al., 2016). Here, we developed PAL-seq v2, which 

combines these advantages and has the further benefit over both previous methods of 

more robust compatibility with contemporary Illumina sequencing platforms (Figure S1). 

To observe the tail-length dynamics of endogenous mRNAs, we employed a 

metabolic-labeling approach in which mRNAs of different age ranges were isolated and 

analyzed (Figure 1A). To initiate labeling, we added 5-ethynyl uridine (5EU) to 3T3 

cells. After incubating for time periods ranging from 40 min to 8 h, cytoplasmically 

enriched lysates were collected, and RNA containing 5EU was isolated by virtue of the 
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reactivity between the 5EU and a biotin-containing tag. Poly(A)-tail lengths of captured 

mRNAs, as well as total-lysate mRNA, were measured using PAL-seq v2 (hereafter 

called PAL-seq). In parallel, we performed RNA-seq, which provided measurements of 

abundance for mRNAs of each time interval. Spike-ins of RNA standards enabled 

estimates of recovery and measurement accuracy over a broad range of tail lengths, as 

well as absolute quantification of RNA measured by each method. These experiments 

were each performed using each of two independently passaged 3T3 cell lines. Unless 

stated otherwise, all figures show the results obtained for cell line 1. Nonetheless, the 

results of the two cell lines were highly reproducible at each time interval (Rs ≥ 0.81 for 

mean tail-length measurements). Moreover, results from either PAL-seq v1, PAL-seq v2, 

or our implementation of TAIL-seq were highly correlated (Figure S2A–D; Rs = 0.83–

0.88 for each of the two-way comparisons), which indicated that our conclusions were 

independent of the method used for tail-length profiling. 

As expected if tail lengths become shorter over time in the cytoplasm (Sheiness 

and Darnell, 1973), mRNAs collected after the shortest labeling period (40 min) had the 

longest poly(A)-tail lengths, with a median length of 133 nt (Figure 1B). As the average 

age of each labeled mRNA population increased with longer labeling periods, tail-length 

distributions shifted towards the steady-state distribution (median length of 91 nt), with 

results from the 8 h period most closely resembling those of the steady state with respect 

to both length and abundance (Figure 1B). At each time interval, 10–20 nt tails 

preferentially possessed a 3′ terminal U (Figure S2E), although < 6.8% of tails had 3′ U 

residues in any sample, in keeping with previous reports on the fraction of short tails with 

terminal uridines at steady state (Chang et al., 2014; Lim et al., 2014). Analyses of mean 
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poly(A)-tail lengths for mRNAs corresponding to thousands of individual genes showed 

that tails from mRNAs of essentially every gene shortened over time in the cytoplasm 

(Figure 1C–D).  

 

Correspondence Between mRNA Half-life and Deadenylation Rate 

After 2 h of labeling, a broad range of mean tail lengths was observed, as mean tail 

lengths for mRNAs of some genes approached their steady-state values, whereas those 

for others still resembled their initial values (Figure 1C). These different rates of 

approach to steady-state tail lengths presumably at least partly reflected differences in 

mRNA degradation rates, as short-lived mRNAs were expected to reach their steady-state 

abundance and poly(A)-tail length more rapidly than were long-lived mRNAs.  

To determine these degradation rates, we fit the yield of PAL-seq tags obtained 

for each gene at each time interval (normalizing to the spike-in controls) to the 

exponential function describing the approach to steady state, while also fitting a global 

offset to account for a delay between the time that 5EU was added and the time that 

labeled mRNAs appeared in the cytoplasm. This offset ranged from 27–36 min, 

depending on the experiment, a range consistent with single-gene measurements of the 

time required for mRNA transcription, processing, and export (Shav-Tal et al., 2004; Mor 

et al., 2010). Our half-life values (Table S1) correlated well with those previously 

reported for mRNAs of 3T3 cells growing in similar conditions (Schwanhäusser et al., 

2011) (Figure S3A; Rs = 0.68–0.77), although our absolute values were substantially 

shorter (Figure S3B–D, median 2.1 h for mRNAs of the 3T3 cell line 2, as opposed to 9 h 

for previously reported values). This difference was attributable to potential divergence in 
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the cell lines used in the two labs, as well as our focus on cytoplasmically enriched RNA 

and our absolute quantification of labeled RNA (made possible by adding standards to 

each sample prior to library preparation). 

Previous analyses of the relationship between mRNA half-life and mean tail 

length have been limited to steady-state tail length measurements, for which no positive 

relationship has been observed (Subtelny et al., 2014), despite the established role of 

poly(A) tails in conferring mRNA stability. Our current datasets, which provided the 

opportunity make this comparison using half-life and tail-length measurements 

determined in the same study from the same cells, reinforced this finding; we observed 

no positive relationship between mRNA half-life and mean steady-state tail length 

(Figure S3G, Rs = –0.24). This result held when incorporating results of PAL-seq 

implemented with direct ligation to mRNA 3′ termini, which better detected very short or 

highly modified tails (Figure 2A, Rs = –0.02). Indeed, the mean tail lengths of long-lived 

mRNAs, including those of ribosome-protein genes (RPGs), closely resembled tail 

lengths of short-lived mRNAs, including those of immediate-early genes (IEGs) (Figure 

2A).     

A very different picture emerged when considering pre-steady-state tail-length 

measurements. After 2 h of labeling, half-life strongly corresponded to mean tail length 

(Figure 2B; Rs = 0.83). At this labeling interval, IEG mRNAs and other short-lived 

mRNAs had the shortest mean tail lengths, RPG mRNAs and other long-lived mRNAs 

had the longest mean tail lengths, and other mRNAs had mean tail lengths falling 

somewhere in between. The simplest explanation for this result is that the deadenylation 

rate dictates the stability of most mRNAs, and mean tail length at 2 h provides a proxy 
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for deadenylation rate. Thus, slow deadenylation of RPG mRNAs and other long-lived 

mRNAs explains both why they have longer tails after 2 h of labeling and why they have 

such long half-lives, and rapid deadenylation of IEG mRNAs and other short-lived 

mRNAs explains why they have shorter tails after 2 h of labeling and why they have such 

short half-lives.     

Several notable outliers had half-lives that were shorter than expected from their 

mean tail lengths, suggesting that their degradation and deadenylation rates were 

incongruous. Rassf1, Mat2a, Serpine1, and two Gadd45 paralogs are known or suspected 

substrates for either nonsense-mediated decay (NMD) or other pathways that recruit 

UPF1 (Forrest et al., 2004; Tani et al., 2012; Park and Maquat, 2013; Bresson et al., 

2015; Nelson et al., 2016). Another outlier, the Marveld1 mRNA, has not yet been 

reported to interact with UPF1, but its protein product does interact with UPF1 in human 

cells and regulates UPF1 activity (Hu et al., 2013). Association with UPF1 can trigger 

endonucleolytic cleavage of mammalian mRNAs, which would decouple the rates of 

decay and deadenylation (Muhlemann and Lykke-Andersen, 2010), disrupting the 

relationship between half-life and tail length at intermediate labeling intervals. 

Nonetheless, the most notable feature of the outliers was their scarcity; the striking 

overall correspondence observed between half-life and mean tail lengths after 2 h of 

labeling implied that for the vast majority of endogenous mRNA molecules of mouse 

fibroblasts, the rate of mRNA deadenylation largely determines the rate of degradation. 

 

Initial Tail Lengths of Cytoplasmic mRNAs 
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Analysis of tail-length distributions for individual genes and the changes in these 

distributions over increased labeling intervals supported and extended the conclusions 

drawn from global analyses of abundances and mean tail lengths. This analysis confirmed 

that tail-length dynamics of mRNAs with short half-lives (e.g., Metrnl) substantially 

differed from those of mRNAs with longer half-lives (e.g., Lsm1 and Eef2), with the 

short-lived mRNAs reaching their steady-state abundance and tail-length distribution 

much more rapidly (Figure 3). The stacked pattern of the distributions observed over 

increasing time intervals also illustrated that the longest-tailed mRNAs observed at 

steady state were essentially all recently transcribed, whereas the shortest-tailed mRNAs 

were mostly the oldest mRNAs (Figure 3). 

Our tail-length data from short labeling periods provided the opportunity to 

examine the initial tail lengths of mRNAs soon after they entered the cytoplasm. The 

calculated 27–36 min delay in the appearance of labeled cytoplasmic mRNAs implied 

that most mRNAs isolated after 40 min of labeling were subject to cytoplasmic 

deadenylation for < 13 min. Thus, for all but the most rapidly deadenylated mRNAs, the 

tail lengths observed after 40 min of labeling should have approximated the tail lengths of 

mRNAs that first entered the cytoplasm. 

Without data to the contrary, previous studies of tail-length dynamics have 

assumed that initial cytoplasmic tail lengths observed for mRNAs of one gene also apply 

to the mRNAs of all other genes. However, we observed substantial intergenic variation 

for average tail lengths at the shortest labeling period (Figure 1C, Figure 3, and Figure 

S3F), with the spread of the 5th to 95th percentile values at least that of steady state (112.2 

± 4.7 to 194.7 ± 6.0 nt for the 40 min samples and 84.8 ± 1.3  to 124.6 ± 2.1 nt for the 
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steady-state samples, respectively, values ± s.d.), which suggested that mRNAs from 

different genes exit the nucleus with tails of quite different lengths. To examine whether 

deadenylation occurring soon after nucleocytoplasmic export might have influenced this 

result, we focused on mRNAs with half-lives > 8 h. On average, mean tail lengths for 

these genes exhibited less than 4% change when comparing the 40 min and 1 h time 

intervals, implying that they also underwent little cytoplasmic deadenylation during the 

first 40 min of labeling. Average tail lengths observed at 40 min for mRNAs from these 

genes spanned a broad range, exceeding that observed at steady state (spread of the 5th to 

95th percentile values 128.3 ± 5.2 to 242.1 ± 16.1 nt for the 40 min samples and 81.0 ± 

1.0 to 119.4 ± 1.4 nt for the steady-state samples, respectively, values ± s.d.), although 

these tail-length values observed at 40 min had little correspondence with those observed 

at steady state (Rs = 0.12).  

When comparing mRNAs from the same gene, tail-length distributions were also 

quite broad for the newly exported mRNAs, as illustrated for mRNAs from three genes 

(Figure 3), and further demonstrated by the mean coefficient of variation (c.v.) of 0.41 for 

mRNAs of all measured genes (Figure S3H), compared to a c.v. of 0.20 for the 160 nt 

standard in the 40 min sample. These c.v. values were reproducible between biological 

replicates and had little correspondence with mRNA half-life (Figure S3I–J). Although 

we cannot rule out the formal possibility that mRNA tails undergo exceedingly rapid and 

variable transient deadenylation immediately upon nuclear export, we interpret our 

results at short labeling periods to indicate that mRNAs exit the nucleus with 

considerable but reproducible intergenic and intragenic tail-length variability. 
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A Quantitative Model of mRNA Deadenylation and Decay 

Our ability to isolate mRNAs of different age ranges for each gene and analyze their 

abundance and tail lengths (Figure 3) provided the unique opportunity to calculate the 

deadenylation rates and other metabolic rates and parameters for these mRNAs, thereby 

expanding the number of metabolically characterized mammalian mRNAs far beyond the 

four (Mt1, Fos, Hbb, and IL8) that have been examined using single-gene measurements 

(Mercer and Wake, 1985; Wilson and Treisman, 1988; Shyu et al., 1991; Gowrishankar 

et al., 2005). In contrast to mRNA half-lives, which are fit directly to the approach to 

steady state, other rates are not as simple to calculate. For each gene, the number of 

mRNA molecules with a given tail length is a function of 1) the rate of mRNA entering 

the cytoplasm, a function of the rates of transcription, processing, and nucleocytoplasmic 

export, 2) the tail-length distribution of mRNA entering the cytoplasm, 3) the 

deadenylation rate, 4) the tail length below which the mRNA is no longer protected from 

decapping, and 5) the decapping rate of short-tailed mRNAs (with decapping assumed to 

trigger rapid decay of the mRNA body). Therefore, we developed a mathematical model 

to determine, for mRNAs of thousands of genes, values for each of these parameters. 

Our model was based on a system of differential equations that describe the rates 

of change of abundance of mRNA intermediates (Figure 4A and Table S2), an approach 

resembling that used to model metabolism of RNAs from single-gene reporters (Cao and 

Parker, 2001; Jia et al., 2011). For each gene, transcription, nuclear processing, and 

export (hereafter abbreviated as “production”) generates, with rate constant k0, a 

distribution of initial poly(A)-tail lengths. Over time, deadenylation shortens the tail, one 

nucleotide at a time, with rate constant k1. Decapping, with rate constant k2, can occur 
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alongside deadenylation and monotonically increases as the poly(A)-tails get shorter. 

Because the body of each decapped mRNA is rapidly degraded (instantly in our model), 

decapping reduces the abundance of mRNAs in the pool. Note that although this model 

parameter is named “decapping” based on the idea that mRNA decay proceeds primarily 

through decapping and subsequent 5′-to-3′ decay, decay of a short-tailed mRNA body by 

other mechanisms would also be consistent with our model.  

For individual mRNAs generated from the same gene, the production terms varied 

according to a negative binomial distribution—a distribution routinely used to model the 

probability of a failure after a series of successes (in our case, creating an mRNA of tail 

length n + 1 after successfully creating an mRNA of tail length n) (Figure 4A and Table 

S2). The decapping rate constant followed a logistic function, which accelerated 

decapping as tails shortened. The two parameters of this function (md and vd) were fit as 

global constants, while the scaling parameter (β) was fit to each gene (Table S2). Solving 

the differential equations of the model estimated both the tail-length distribution and the 

mRNA abundance at each time interval for mRNAs from each gene.  

Before arriving at the final version of the model (Figure 4A), we considered 

alternative models with varying levels of complexity. For example, building on the 

proposal that most mRNAs are substrates for both the Pan2/Pan3 and Ccr4/Not 

deadenylase complexes, with Pan2/Pan3 acting on tails > 110 nt and Ccr4/Not acting on 

shorter tails (Yamashita et al., 2005), we tested the performance of a model with two 

deadenylation rate constants, in which the transition between the two occurred at a tail 

length of 110 nt (Figure S4A). This model yielded residuals that were only marginally 

improved (Figure S4B), and for each mRNA the two deadenylation rates resembled each 
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other (Figure S4C). A model in which the transition between the deadenylation rates 

occurred at 150 nt (Yi et al., 2018) yielded similar results (Figure S4D–E). These results 

indicated that, for endogenous mRNAs in 3T3 cells, either a single deadenylase complex 

dominates—as recently proposed for mRNAs with tail lengths ≤ 150 (Yi et al., 2018)—or 

both complexes act with indistinguishable kinetics. Thus, we chose not to implement a 

more complex model with two deadenylation rate constants.  

Fitting the final version of the model to the tail-length and abundance 

measurements for mRNAs from thousands of genes yielded average initial tail lengths 

and rate constants for production, deadenylation, and decapping for each of these mRNAs 

(Table S2). The correspondence between the output of the model and the experimental 

measurements is illustrated for genes selected to represent different quantiles of fit based 

on the distribution of R2 values (Figure 4B and Figure S4F). Mean tail-length values 

generated by the model corresponded well to measured values (Figure 4C, Rs = 0.94, Rp = 

0.90). Moreover, values fit for starting tail length, production, deadenylation, and 

decapping were reproducible between biological replicates and robust to parameter 

initialization as well as multinomial sampling (bootstrap analysis) (Figure S4G–J). 

 

The Dynamics of Cytoplasmic mRNA Metabolism 

Of the six yeast mRNAs and four mammalian mRNAs that have been metabolically 

characterized, the data for four yeast mRNAs and two mammalian mRNAs are of 

sufficient resolution to derive deadenylation rates. The two mammalian mRNAs, Fos and 

Mt1, have deadenylation rate constants that differ by 60-fold (20 and 0.33 nt/min, 

respectively) (Mercer and Wake, 1985; Shyu et al., 1991). Our analysis, which 
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metabolically characterized 2778 mammalian mRNAs, greatly expanded the set of 

mRNAs with measured deadenylation rates and showed that deadenylation rate constants 

of mammalian mRNAs can differ by > 1000-fold—as fast as > 30 nt/min and as slow as 

0.03 nt/min (Figure 5A). Concordant with our direct analysis of the primary data, which 

revealed a strong correspondence between mRNA half-life and pre-steady-state mean tail 

length, thereby implying that most mRNAs degrade through a mechanism involving tail 

shortening (Figure 1F), mRNA half-lives corresponded strongly to deadenylation rate 

constants fit to our model (Rs = –0.95, Figure S5A).  

Our model and its fitted parameters allowed us to compute the decapping rates for 

all measured genes at all tail lengths and thereby infer the tail lengths at which mRNAs 

were decapped and degraded (Figure 5B). This analysis indicated that nearly all 

decapping occurred after the tail lengths fell below 100 nt, which agreed with previous 

analyses of reporter genes (Yamashita et al., 2005). Decapping greatly accelerated as tail 

lengths fell below 50 nt (with > 92% of mRNAs decapped below this length), a length 

less than the 54 nt footprint of two cytoplasmic poly(A)-binding protein (PABPC) 

molecules (Baer and Kornberg, 1983; Yi et al., 2018). However, most mRNA molecules 

(> 55%) were not decapped until their tail lengths fell below 25 nt, a length less than the 

27 nt footprint of a single PABPC molecule (Figure 5B).  

When analyzing the mean tail length of decapping for mRNAs of each gene, the 

results generally concurred with those observed for all mRNA combined, with mRNAs 

from most genes decapped at short mean tail lengths (Figure 5C, > 97% decapped at 

mean tail length < 50 nt and > 69% decapped at mean tail length < 25 nt). As expected, 

most mRNAs previously found to have discordant deadenylation and decay rates (Figure 
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1F) were also outliers in this analysis, with H2afx, Mat2a, Gadd45b, and Marveld1, 

degrading at a mean tail length of 75, 70, 62, and 59 nt, respectively. The estimates of 

mean decapping tail lengths together with initial tail lengths and deadenylation rate 

constants enabled estimates of the time required to reach the mean tail length of 

decapping, which corresponded to lifetime slightly better than did the deadenylation rate 

constants on their own to half-life (Figure S5A–B, Rs = –0.96 and –0.95, respectively.) 

Once tails reached a short length, the decapping rate constants of short-tailed 

mRNAs varied widely, with short-tailed mRNAs from some genes undergoing decapping 

at rate constants > 1000-fold greater than those of short-tailed mRNAs from other genes 

(Figure 5D).  Fos, a rapidly deadenylated mRNA, is degraded much faster upon reaching 

a short tail length than is Hbb, a less rapidly deadenylated mRNA (Shyu et al., 1991). If 

general for other mRNAs, a more rapid degradation of short-tailed mRNAs that had been 

more rapidly deadenylated would help prevent buildup of short-tailed isoforms of rapidly 

deadenylated mRNAs. However, such buildup sometimes does occur, as observed in 

Drosophila cells for three mRNAs characterized during heat shock (Dellavalle et al., 

1994; Bönisch et al., 2007) and in mammalian cells for Csf2 (Chen et al., 1995; Carballo 

et al., 2000), raising the question of the extent to which decay rates of short-tailed 

mRNAs are coupled to their deadenylation rates. To answer this question, we examined 

the relationship between rate constants for deadenylation and those for decay of short-

tailed mRNAs (the latter calculated for mRNAs with 20 nt tails). As reported for Fos, 

more rapidly deadenylated mRNAs tended to be degraded more rapidly upon reaching 

short tail lengths (Figure 5E, Rs = 0.59).  
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A Modest Buildup of Short-Tailed Isoforms of Short-Lived mRNAs 

Having found this more rapid clearing of mRNAs that had been more rapidly 

deadenylated, we investigated whether this phenomenon was able to prevent a large 

build-up of short-tailed isoforms of rapidly deadenylated mRNAs. For this investigation, 

we analyzed the steady-state dataset that incorporated results of PAL-seq implemented 

with direct ligation to mRNA 3′ termini, which better detected very short or highly 

modified tails. Despite the rapid decay of short-tailed mRNAs that had been more rapidly 

deadenylated, less stable mRNAs generally did have a somewhat higher fraction of short-

tailed transcripts (Figure 6A and Figure S5C, Rs = –0.56). Nonetheless, the buildup of 

short-tailed isoforms of these unstable RNAs usually failed to exceeded 30% of all 

transcripts (Figure 6A).  

This preferential buildup of short-tailed isoforms of unstable RNAs was clearly 

visualized in a meta-transcript analysis of the tail-length distribution at steady state. 

Short-lived mRNAs (half-lives < 20 min) had two peaks of short-tailed isoforms, a major 

peak centering at 7–15 nt and a minor peak at 0–2 nt, whereas long-lived mRNAs (half-

lives > 10 h) were depleted of tails of < 20 nt (Figure 6B).  Closer inspection of these two 

peaks revealed that these short-tailed isoforms of short-lived mRNAs were dramatically 

enriched in mono- and oligouridylated termini (Figure 6C, D and Figure S5D), consistent 

with studies showing that uridylation occurs preferentially on shorter tails and helps to 

destabilize mRNAs (Kwak and Wickens, 2007; Rissland et al., 2007; Rissland and 

Norbury, 2009; Chang et al., 2014; Lim et al., 2014), and further suggesting that 

uridylation preferentially occurs on short-lived mRNAs.  
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The observation of a 0–1 nt peak in the steady-state tail-length distribution 

prompted examination of fully deadenylated isoforms of mRNAs that were initially 

polyadenylated. Molecules without tails were often also missing the last few nucleotides 

of the 3′ UTR (Figures 6E and Figure S5E), suggesting that after removing the tail, the 

deadenylation machinery (or some other 3′-to-5′ exonuclease) usually proceeds several 

nucleotides into the mRNA body. Analysis of mRNAs with tails indicated that, with few 

exceptions, the last nucleotide of the 3′ UTR was consistently defined (Figure S5F–H), 

which supported the idea that the missing nucleotides of tailless molecules had not been 

lost during the process of cleavage and polyadenylation. Analysis of the final 

dinucleotides of tailless tags revealed no consistent pattern after accounting for the 

genomic background, suggesting that other factors, such as proteins or more distal 

nucleotide composition, influence the position at which the exonuclease stops. 

Despite their presence, the two peaks of short-tailed isoforms did not dominate 

the distribution, as most short-lived mRNAs (70%) had tails exceeding 30 nt (Figure 6B).  

Indeed, compared to long-lived mRNAs, these short-lived mRNAs also had modest 

enrichment for very long tails (> 175 nt) (Figure 6B and Figure S5I–J), perhaps due to an 

initial lag in assembling deadenylation machinery as mRNAs enter the cytoplasm, which 

would the cause a relatively larger fraction of short-lived mRNAs to exist in the 

cytoplasm prior to an initial encounter with a deadenylase. The increased fractions of 

both short-tail and long-tail isoforms for short-lived mRNAs led to broader overall tail-

length distributions (Figure 5B) with increased standard deviations in tail length (Figure 

6F, Rs = –0.41). Moreover, the increased fractions of shorter and longer isoforms offset 

each other when calculating mean tail length, leading to similar mean tail lengths for the 
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short- and long-lived mRNAs (Figure S5K, median mean tail lengths = 89 and 92 nt for 

short- and long-lived mRNAs, resepectively), which contributed to the lack of correlation 

between half-life and mean tail length at steady state (Figure 2A). Most importantly, the 

low magnitude of the buildup supported our conclusion that for most mRNAs the steps of 

deadenylation and subsequent decay are kinetically coupled: short-tailed mRNAs that had 

previously undergone more rapid deadenylation are more rapidly decayed. This coupling 

prevents a large buildup of short-tailed isoforms of rapidly deadenylated RNAs, thereby 

enabling the large range in deadenylation rate constants to impart a similarly large 

range in mRNA stabilities. 

 

Deadenylation and Decay Dynamics of Populations of Synchronous mRNAs 

Our continuous-labeling experiments were designed to measure dynamics of mRNA 

metabolism in an unperturbed cellular environment. However, this framework required 

deadenylation and decapping parameters to be inferred as mRNAs from each gene 

approached their steady-state expression levels and tail lengths, with their populations 

becoming progressively less synchronous, causing the signal for the end behavior of 

mRNAs to be diluted. For orthogonal measurements of these parameters, we performed a 

pulse-chase–like experiment that more closely resembled previous studies with single-

gene reporters, in that it monitored synchronous populations of mRNAs from each gene. 

After a 1 h pulse of 5EU, 3T3 cells were treated with actinomycin D (actD) to block 

transcription, and the abundances and poly(A)-tail lengths of the mRNAs produced 

during the 5EU-labeling period were measured over the next 15 h, thereby revealing the 

behavior of synchronized mRNA populations as they age (Figure 7A).  
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 As expected, the tail lengths of labeled mRNAs progressively decreased after 

transcriptional inhibition, with median tail lengths shortening from 123 to 51 nt over the 

course of the experiment (Figure 7B). Examination of mean tail lengths of mRNAs from 

each gene revealed a similar trend (Figure 7C). At later time points the mean tail-length 

distributions peaked between 45–50 nt (Figure 7C), far below the 100–105 nt mode of the 

steady-state distribution, which included mRNAs of all ages (Figure 1C).  

The actD treatment had some side effects. At later time points, a ~30 nt 

periodicity emerged in the single-molecule tail-length distributions (Figure 7B). Although 

such phasing of tail lengths, with a period resembling the size of a PABPC footprint, has 

been observed in mammalian cells following CCR4 knockdown (Yi et al., 2018) and in 

C. elegans (Lima et al., 2017), only subtle phasing was observed in unperturbed 

mammalian cells (Figure 6B). This more prominent periodicity observed after prolonged 

actD treatment was presumably the result of more dense packing of PABPC on poly(A) 

tails in the context of a diminishing mRNA pool. A second side effect of actD treatment 

concerned mRNA half-lives, which increased from a median of 2.1 h in the continuous-

labeling experiment to a median of 3.8 h in the transcriptional-shutoff experiment (Figure 

S3E). This increase was observed even for the mRNAs with the shortest half-lives, which 

indicated that it occurred before actD could have influenced protein output, i.e., in less 

time than that required for mRNA nucleocytoplasmic export and translation. This result 

generalized previous observations concerning the effects of actD on reporter-mRNA 

stabilities (Chen et al., 1995).   

Despite the side effects of actD, the rank order of mRNA half-lives determined 

from the transcriptional-shutoff experiment agreed well with that from the continuous-
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labeling experiment (Figure S3E, Rs = 0.78), indicating that the transcriptional-shutoff 

experiment captured key aspects of the unperturbed behavior. In addition, mRNA half-

lives calculated from the continuous-labeling experiment strongly corresponded to mean 

tail length observed 1 h after actD treatment (Figure 7D; note that 1h after actD treatment 

was 2 h after 5EU labeling and thus most comparable to Figure 2B). Indeed, the strength 

of the correspondence between half-life and 1 h tail length (Rs = 0.88) provided 

compelling support for our conclusion that the vast majority of mRNAs are primarily 

degraded through deadenylation-linked mechanisms.  

To further analyze results of the transcriptional-shutoff experiment, we grouped 

mRNAs into cohorts based on their half-lives and monitored the abundance and average 

tail length of mRNAs from individual genes at each time point (Figure 7E). Regardless of 

mRNA half-life, tails initially shortened with little change in abundance until mean tail 

lengths fell below 100 nt. The minimal degradation of long-tailed molecules disfavored 

the idea that preferential degradation of long-tailed mRNAs might help explain the shift 

in tail lengths observed with increasing time intervals in the continuous-labeling 

experiment. As expected based on the strong correspondence between half-life and 1 h 

tail length (Figure 7D), mRNAs with shorter half-lives underwent more rapid tail 

shortening (Figure 7E). Once mean tail lengths fell below 50 nt (implying that a 

substantial fraction of tails fell below 25 nt), degradation accelerated. This acceleration 

was more prominent for mRNAs with shorter half-lives, which confirmed our conclusion 

that short-tailed mRNAs that had undergone more rapid deadenylation are also more 

rapidly degraded (Figure 7E).  
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To examine how well our model predicted this behavior, we used it to predict the 

results of the transcriptional-shutoff experiment, using the rate constants measured earlier 

from the continuous-labeling experiment. When simulating a shorter time course to 

account for the more rapid deadenylation, decapping, and decay observed without actD, 

the results predicted by the model agreed well with the experimental observations (Rs = 

0.93 and 0.61 for mean tail length and abundance, respectively, n = 11,273 values above 

the abundance threshold for 2687 mRNAs), including the precipitous decline in 

abundance when mean tail lengths fell below 50 nt and the faster degradation of short-

tailed mRNAs that had undergone faster deadenylation (Figure 7F). The striking 

correspondence between the predictions of the model, which had been trained on the 

continuous-labeling experiment, and the observations of the transcriptional-shutoff 

experiment validated the results and conclusions from both experiments as well as from 

our analytical framework.  

 

Discussion 

Previous mechanistic studies of mRNA turnover provide information on deadenylation 

and degradation dynamics for four mammalian mRNAs and some derivatives, with 

deadenylation rates reported for two of these four (Mercer and Wake, 1985; Wilson and 

Treisman, 1988; Shyu et al., 1991; Chen et al., 1995; Gowrishankar et al., 2005; 

Yamashita et al., 2005). Our examination of the dynamics of deadenylation and 

degradation for mRNAs from thousands of endogenous genes provided a more 

comprehensive resource for deriving the principles of cytoplasmic mRNA metabolism. 

Initial analyses of our data revealed unanticipated intra- and intergenic variability in 
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initial tail lengths and indicated that almost all endogenous mRNAs are degraded 

primarily through deadenylation-linked mechanisms, implying that the deadenylation rate 

of each mRNA largely determines its half-life with surprisingly little contribution from 

other mechanisms, such as endonucleolytic cleavage and deadenylation-independent 

decapping. 

Mathematical modeling of our data expanded the known range in deadenylation 

rate constants from 60-fold to 1000-fold and showed that the link between deadenylation 

rate and decay generally operates at two levels. First, mRNAs with faster deadenylation 

rate constants more rapidly reach the short tail lengths associated with decapping and 

destruction of the mRNA body. With respect to the reason that short tail lengths trigger 

decay, our estimates of the tail lengths at which most mRNAs decay supported the 

prevailing view that loss of PABPC binding to the poly(A) tail enhances decay, with the 

idea that occupancy is somewhat lower on tails too short for cooperative binding of a 

PABPC dimer (tail lengths ~50 nt) and much lower on those too short for efficient 

binding of a single PABPC molecule (tail lengths ~20 nt).  

This more rapid approach to short-tailed isoforms is not the whole story. mRNAs 

with identical 20-nt tails but from different genes can have widely different decay rate 

constants (1000-fold). Moreover, there is a logic to these differences—a logic conferred 

by the second link between deadenylation rate and decay: mRNAs that had previously 

undergone more rapid deadenylation decay more rapidly upon reaching short tail lengths. 

The coherent regulation of deadenylation and decapping rates functionally integrates 

mRNA turnover into a single process to ensure that mRNAs that are rapidly deadenylated 

are also rapidly cleared from the cell, which enables the large range in deadenylation rate 
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constants to impart an equally large range in mRNA stabilities. With respect to 

mechanism, perhaps changes that occur as mRNA–protein complexes are remodeled to 

enhance deadenylation also recruit the decapping machinery and its coactivators. 

Physical connections between the Ccr4–Not deadenylase complex and the decapping 

complex (Haas et al., 2010; Ozgur et al., 2010; Jonas and Izaurralde, 2015) as well as the 

intracellular colocalization of these complexes (Parker and Sheth, 2007) presumably also 

help coordinate deadenylation and decapping rates. 

The large differences observed for both deadenylation and decapping rate 

constants of mRNAs from different genes raise the question of what mRNA features 

might specify these differences. MicroRNAs and other factors that help recruit 

deadenylase complexes typically bind to sites in 3′ UTRs, implying that the presence or 

absence of these 3′-UTR sites helps to specify the differences (Mauxion et al., 2009; 

Muhlemann and Lykke-Andersen, 2010; Vlasova-St Louis and Bohjanen, 2011; Van 

Etten et al., 2012; Fabian et al., 2013; Leppek et al., 2013; Du et al., 2016; Bartel, 2018). 

However, despite the prevalence of regulatory factors that bind to 3′-UTR sites, global 

analyses of tandem UTR isoforms indicate that the magnitude of the differences 

conferred by 3′-UTR sequences in NIH 3T3 cells is relatively modest (Spies et al., 2013). 

Codon composition can also contribute to differences in mRNA stability, but this 

contribution explains only a small fraction of the variability observed for endogenous 

mRNAs of mammalian cells (Presnyak et al., 2015; Radhakrishnan et al., 2016; Forrest et 

al., 2018; Wu et al., 2019). Additional insight will be required to account more fully for 

the large differences in stabilities observed for different mRNAs. Our results indicate that 
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the focus should be on sequences and processes that influence or correlate with 

deadenylation rates. 

Our global observation that mRNAs typically degrade only after their tail lengths 

shorten extended to the mammalian transcriptome the notion that exponential decay is not 

fully appropriate for modeling mRNA degradation (Shyu et al., 1991; Cao and Parker, 

2001; Trcek et al., 2011; Deneke et al., 2013). For the exponential model to be 

appropriate, an mRNA would need to have the same probability of decaying at any point 

after entering the cytoplasm. In contrast, our global analyses indicated that recently 

exported, long-tailed mRNAs typically undergo little if any decay, which supported the 

restricted-degradation model in which mRNAs are provided a discrete time window to 

function in the cytoplasm. During this window, the body of the mRNA is unaltered, but 

its age and lifespan are tracked and determined through the action of tail-length 

dynamics. Nonetheless, for some analyses we used the exponential model and referred to 

its decay parameter as ‘half-life’ when fitting abundance changes over time because in 

those cases a more complex model did not provide additional insight, and using mRNA 

half-lives is still common practice in the field. In most analyses, however, we used our 

mathematical model of the kinetics of deadenylation and decay to capture critical features 

of mRNA metabolism missed by naïve exponential decay. 

 Despite the utility of our mathematical model, it did not capture some finer details 

of mRNA metabolism. For example, it was not designed to model the burst of 

deadenylation that typically accompanies loss of each terminal PABPC molecule 

(Webster et al., 2018). However, when considering the aggregate behavior of multiple 

mRNAs from the same gene, these bursts become blurred, with some molecules in the 
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burst phase and others between bursts. Accordingly, we fit a single, continuous 

deadenylation rate constant for the mRNAs of each gene. Likewise, we fit a single, 

continuous production rate constant for the mRNAs of each gene, despite the known 

burst behavior of transcription initiation when examined in single cells (Cai et al., 2008). 

The uniform deadenylation rate constants of the model were also not suitable for 

capturing aspects of tail behavior that occurred as tails fell below 20 nt. For example, our 

analysis of steady-state data revealed buildups of isoforms of short-lived mRNAs at two 

tail-length ranges: 0–1 nt and 7–15 nt (Figure 6B). A model with uniform deadenylaiton 

rate constants can potentially explain a peak at 0 nt but not one at an intermediate tail 

length, such as 7–15 nt. Recognizing this limitation but still wanting to accurately 

account for the build-up of isoforms with tails < 20 nt observed for short-lived mRNAs, 

we fit the abundance of tails < 20 nt by averaging abundance over this length range and 

comparing this average to that predicted by the model. Several more parameters would be 

required to model a buildup of 7–15 nt tails, which might be warranted if further study 

shows that the fate of mRNAs with 7–15 nt tails differs from that of mRNAs with 0 nt 

tails—studies that can be contemplated now that the existence of this buildup is known.  

Another aspect of mRNA metabolism remaining to be incorporated into a 

mathematical model is terminal uridylation. Modeling the extensive terminal uridylation 

of the short-tailed isoforms of short-lived mRNAs that accumulate (Figure 6C) might 

provide insight into the function of this modification. Previous studies report that 

terminal uridylation of the poly(A) tail stimulates decapping of mRNAs in Aspergillus 

and fission yeast, and of histone mRNAs in HeLa cells, and high-throughput studies link 

terminal uridylation more generally to mammalian mRNA stability (Mullen and 
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Marzluff, 2008; Rissland and Norbury, 2009; Morozov et al., 2010; Chang et al., 2014; 

Lim et al., 2014). Based on these previous findings and the results of our analyses, we 

speculate that uridylation of non-histone mammalian mRNAs is preferentially deployed 

to short-tailed isoforms of more rapidly deadenylated transcripts to promote more rapid 

decapping, which helps prevent a larger buildup of these short-tailed isoforms. 

Regardless of the role for uridylation, the observation of these buildups of preferentially 

uridylated 0–1 and 7–15 nt tails for short-lived mRNAs helps explain the observations 

that, compared to long-lived mRNAs, short-lived RNAs have both a higher fraction of 

uridylated tails and a higher fraction of short-tailed isoforms that are uridylated (Chang et 

al., 2014; Lim et al., 2014). 

A recent study observed that cytoplasmic noncanonical poly(A)-polymerases can 

extend tails, acting on longer-tailed mRNAs and adding mostly A residues but also 

sometimes generating a mixed tail in which a G or occasionally another non-A nucleotide 

has been incorporated (Lim et al., 2018). Because most mRNAs with these mixed tails 

would not be detected by PAL-seq, these mRNAs would have appeared to have been 

degraded in our analysis. Thus, our observation of little-to-no degradation of long-tailed 

mRNAs indicated that, in 3T3 cells, mRNAs with mixed tails comprised only a small 

fraction of the mRNA molecules at any point in time and did not impact the overall 

conclusions of our study.  

Although our current approach does not model all aspects of mRNA metabolism, 

there is every reason to believe that the broad behaviors observed in these initial analyses 

will continue to be observed in more detailed representations of mRNA metabolism. 

With acquisition of suitable pre-steady-state data, the dynamics of tail-length changes in 
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the 0–20 nt range, of terminal uridylation, and of cytoplasmic polyadenylation could be 

better characterized—ultimately enabling incorporation of these phenomena into a 

comprehensive model of mRNA metabolism. Our methods and analytical framework 

offer inspiration as well as a foundation for these future efforts. 
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Methods 

Cell culture 

Clonal 3T3 cell lines engineered to express miR-155 (cell line 1) or miR-1 (cell line 2) 

upon doxycycline treatment were previously described (Eichhorn et al., 2014). Cells were 

grown at 37°C in 5% CO2 in DMEM supplemented with 10% BCS (Sigma-Aldrich) and 

2 µg/mL puromycin. For metabolic-labeling time courses, cells from each line were 

plated onto 500 cm2 plates at 6.6 million cells per plate and cultured for two days such 

that they reached ~70–80% confluency, at which point growth media was supplemented 

with 5-ethynyluridine (5EU, Jena Biosciences) (Jao and Salic, 2008) at a final 

concentration of 400 µM. After the desired labeling intervals cells were harvested (Figure 

2A). Four plates were harvested for each 40 min time interval, three plates for each 1 h 

time interval, and two plates for each other time interval. A plate that had never received 

5EU was harvested in parallel for each condition.  

Cells were harvested at 4°C, washed twice with 50 mL ice-cold 9.5 mM PBS, pH 

7.3 containing 100 µg/mL cycloheximide and then used to prepare cytoplasmically 

enriched lysate as described (Subtelny et al., 2014). An aliquot of cleared lysate was flash 

frozen for use in ribosome profiling (Eisen et al., 2019), and the rest of the lysate was 

added to 5 volumes of TRI reagent (Ambion) and frozen at –80°C. Samples stored in TRI 

reagent were thawed at room temperature, and RNA was purified according to the 

manufacturer’s protocol and used for RNA-seq or PAL-seq v2.  

 

RNA standards 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/763599doi: bioRxiv preprint first posted online Sep. 9, 2019; 



	 36 

Two sets of tail-length standards (set 1 and set 3, Table S3) were described previously 

(standard mix 2 and standard mix 1) (Subtelny et al., 2014). The other set of standards 

(set 2, Table S3) was prepared based on a 705 nt fragment of the Renilla luciferase 

mRNA, which was transcribed and gel purified as described (Subtelny et al., 2014) and 

then capped using a Vaccinia capping system (2000 µL reaction containing 500 µg RNA, 

1000 U Vaccinia capping enzyme (NEB), 1X Capping Buffer (NEB), 0.1 mM S-adenosyl 

methionine, 0.5 mM GTP, 50 nM [α–32P]-GTP, 2000 U SUPERaseIn (ThermoFisher) at 

37°C for 1 h), monitoring the amount of incorporated radioactivity to ensure that capping 

was quantitative. Following the capping reaction, the 2′,3′ cyclic phosphate at the 3′ end 

was removed using T4 polynucleotide kinase (Subtelny et al., 2014).  The capped, 

dephosphorylated product was joined by splinted ligation to each of seven different 

poly(A)-tailed barcode oligonucleotides (Subtelny et al., 2014). These seven 3′ ligation 

partners included 110 and 210 nt poly(A) oligonucleotides prepared as described 

(Subtelny et al., 2014), and five gel-purified synthetic oligonucleotides (IDT), one with a 

10 nt poly(A) tract and the other four with a 29 nt poly(A) tract followed by either A, C, 

G, or U. Ligation products were gel purified, mixed in desired ratios, with final ratios of 

the different-sized species confirmed by analysis on a denaturing polyacrylamide gel.  

Short and long standards were used to monitor enrichment of 5EU-containing 

fragmented RNA or non-fragmented RNA, respectively. Short 5EU standards were 

prepared by in vitro transcription of annealed DNA oligos to produce a 30 nt and 40 nt 

RNA, with the latter containing a single 5EU (Table S3). In vitro transcription was 

performed with the MEGAscript T7 transcription kit (ThermoFisher) according to the 

manufacturer’s protocol, except UTP was replaced with 5-ethynyluridine-triphosphate 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/763599doi: bioRxiv preprint first posted online Sep. 9, 2019; 



	 37 

(Jena Biosciences) when transcribing the 40 nt RNA. Long standards were prepared by in 

vitro transcription of sequences encoding firefly luciferase and GFP using the 

MEGAscript T7 transcription kit and 0.1 µM PCR product as the template. When 

transcribing GFP, a 20:1 ratio of UTP to 5-ethynyluridine-triphosphate was used. Short 

and long standards were gel purified and stored at –80°C. Prior to use, a portion of each 

standard was cap-labeled and gel purified again, which enabled measurement of the 

recovery of the 5EU-containing standard relative to that of the uridine-only standard. 

 Three 28–30 nt RNAs (Table S3) were synthesized (IDT) for use as quantification 

standards in RNA-seq. These standards were gel purified, and 0.1 fmol of each was 

added to each sample immediately prior to library preparation.   

 

Biotinylation of 5EU labeled RNA 

The RNA-seq libraries analyzed in this study were from fragmented RNAs, size selected 

to match ribosome-profiling libraries (Eisen et al., 2019). For these libraries, poly(A) 

RNA was purified from 50 µg total RNA of the 40 min, 1, 2, and 4 h samples and 25 µg 

total RNA of the 8 h sample using oligo(dT) Dynabeads (ThermoFisher) according to 

manufacturer’s protocol. RNA was fragmented and 27–33 nt fragments were isolated as 

described (Subtelny et al., 2014), short standards that monitored 5EU enrichment were 

added, and then Cu(II) catalysis was used to biotinylate 5EU in a 20 µL reaction 

containing 50 mM HEPES, pH 7.5, 4 mM disulfide biotin azide (Click Chemistry Tools), 

2.5 mM CuSO4, 2.5 mM Tris(3-hydroxypropyltriazolylmethyl)amine (THPTA, Sigma-

Aldrich), and 10 mM sodium ascorbate, incubated at room temperature for 1 h. Reactions 

were stopped with 5 mM EDTA and then extracted with phenol–chloroform (pH 8.0). 
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For the steady-state samples, 5 µg of RNA from the 40 min sample was poly(A) selected 

and fragmented, and size-selected 27–33 nt fragments were carried forward without 

enriching for 5EU.   

 For PAL-seq v2, long standards used to monitor 5EU enrichment and recovery 

were added to total RNA (using a 1:10 ratio of 5EU-containing standard to non-5EU-

containing standard), and samples were click labeled as above in reactions with 2.5 

µg/µL RNA.  For samples from the cell line 1 time course, click reactions were 

performed with 500, 500, 250, 200, or 100 µg total RNA for the 40 min, 1 h, 2 h, 4 h, or 

8 h samples. For samples from the cell line 2 time course, click reactions were performed 

with 800, 525, 350, or 200 µg total RNA for the 40 min, 1 h, 2 h, or 4 h, respectively. For 

both cell lines, the steady-state samples did not undergo click reactions or pull-down.  

 

Purification of biotinylated RNA 

For RNA-seq, Dynabeads MyOne Streptavidin C1 beads (ThermoFisher) for each set of 

samples were combined and batch washed, starting with 200 µL of beads per reaction. 

Beads were washed twice with 1X B&W buffer (5 mM Tris-HCl, pH 7.5, 0.5 mM 

EDTA, 1 M NaCl and 0.005% Tween-20), twice with solution A (0.1 M NaOH, 50 mM 

NaCl), twice with solution B (0.1 M NaCl), and then twice with water, using for each 

wash a volume equal to that of the initial bead suspension.  Following the last wash, 

beads were resuspended in an initial bead volume of 1X high salt wash buffer (HSWB, 

10 mM Tris-HCl, pH 7.4, 1 mM EDTA, 0.1 M NaCl, 0.01% Tween-20) supplemented 

with 0.5 µg/mL yeast RNA (ThermoFisher) and incubated at room temperature for 30 

min with end-over-end rotation, again using a volume equal to that of the initial bead 
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suspension. Beads were then washed three times with 200 µL 1X HSWB per reaction and 

split for each reaction during the last wash. After the wash was removed, sample RNA 

resuspended in 200 µL 1X HSWB was added to blocked beads and incubated with end-

over-end rotation at room temperature for 30 min. Beads were washed twice with 800 µL 

50°C water, incubating at 50°C for 2 min for each wash, and then twice with 800 µL 10X 

HSWB. RNA was eluted from beads by incubating with 200 µL 0.5 M tris(2-

carboxyethyl)phosphine (TCEP, Sigma-Aldrich) at 50°C for 20 min with end-over-end 

rotation. The initial eluate was collected, and beads were resuspended in 150 µL water 

and eluted again, combining the two eluates for each sample. RNA from the eluate was 

then ethanol precipitated using linear acrylamide as a carrier.  

 Purifications of non-fragmented RNA were performed as above, except bead 

volumes were adjusted based on estimates of the amount of labeled RNA in each sample. 

For the cell line 1 samples, 292, 431, 410, 598, and 500 µL of beads were used for the 40 

min, 1 h, 2 h, 4 h, and 8 h samples, respectively. For the cell line 2 samples, 467, 452, 

575, and 598 µL streptavidin beads were used for the 40 min, 1 h, 2 h, and 4 h samples, 

respectively.  

 Pilot experiments designed to optimize the 5EU biotinylation and purification 

confirmed that RNAs containing at least one 5EU could be purified efficiently, with over 

80% of a model RNA substrate containing a single 5EU becoming biotinylated in a 1 h 

reaction (Eisen et al., 2019). This high reaction efficiency was important for the RNA-seq 

samples, as RNA fragments from these libraries, generated to match ribosome-profiling 

samples (Eisen et al., 2019), were only ~30 nt long and estimated to typically contain at 

most a single 5EU. Indeed, for each of the three protocols, which started with either full-
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length RNA (PAL-seq) or fragmented RNA (RNA-seq), metabolically labeled RNA was 

substantially enriched above background (Eisen et al., 2019).  

 

PAL-seq v2 

This method starts with the same mRNA workup as PAL-seq v1 (Subtelny et al., 2014), 

except the design of the 3′ adapter allows for ligation to tails ending with a uridine 

nucleotide, as implemented in an improved version of TAIL-seq (Lim et al., 2016). PAL-

seq v2 also includes a primer-extension reaction that occurs on the Illumina flowcell, 

with the goal of extending the sequencing primer all of the way through the poly(A) tail, 

so that the first sequencing read identifies both the mRNA and its cleavage-and-

polyadenylation site, as in PAL-seq v1 (Subtelny et al., 2014). The poly(A)-tail length is 

then measured by direct sequencing of the poly(A) tail, as in TAIL-seq (Chang et al., 

2014) (Figure S1A).  

We used RNA standards of defined tail lengths to monitor library preparation, 

sequencing, and the computational pipeline for improved versions of PAL-seq and our 

implementation of TAIL-seq. Depletion of long-tailed sequences was the most prevalent 

source of measurement error. For TAIL-seq, this depletion seemed highly dependent on 

the sequencing protocol, with the best results obtained on a HiSeq machine in high-output 

mode using the v3 reagent kit.  

Steady-state RNA (25 µg of unselected RNA from the 40 min sample) or half of 

the RNA eluted from each 5EU-selected sample was used to prepare PAL-seq libraries. 

Tail-length standard mixes (1 ng of set 1 and 2 ng of set 2 for each 5EU-selected sample, 

and twice these amounts for the steady-state sample), and trace 5′-radoiolabeled marker 
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RNAs (Table S3) were added to each sample to assess tail-length measurements and 

ligation outcomes, respectively. Polyadenylated ends including those with a terminal 

uridine were ligated to a 3′-biotinylated adapter DNA oligonucleotide (1.8µM) in the 

presence of two splint DNA oligonucleotides (1.25µM and 0.25µM for the U and A-

containing splint oligos, respectively, Table S3) using T4 Rnl2 (NEB) in an overnight 

reaction at 18°C. Following 3′-adapter ligation the RNA was extracted with phenol–

chloroform (pH 8.0), precipitated, resuspended in 1X RNA T1 sequence buffer 

(ThemoFisher), heated to 50°C for 5 min and then put on ice. RNase T1 was then added 

to a final concentration of 0.006 U/µL, and the reaction was incubated at room 

temperature for 30 min, followed by phenol–chloroform extraction and RNA 

precipitation. Precipitated RNA was captured on streptavidin beads, 5′ phosphorylated, 

and ligated to a 5′ adapter as described (Subtelny et al., 2014) but using a modified 5′ 

adapter sequence (Table S3). Following reverse transcription using SuperScript III 

(Invitrogen) with a barcode-containing DNA primer, cDNA was purified as described 

(Subtelny et al., 2014), except a 160–810 nt size range was selected. Libraries were 

amplified by PCR for 8 cycles using Titanium Taq polymerase according to the 

manufacturer’s protocol with a 1.5 min combined annealing/extension step at 57°C. PCR-

amplified libraries were purified using AMPure beads (Agencourt, 40 µL beads per 50 

µL PCR, two rounds of purification) according to the manufacturer’s instructions. 

The use of a splinted ligation of the 3′ adapter to the poly(A) tail had the 

advantage of specifically ligating to mRNAs without the need to deplete ribosomes or 

other abundant RNAs. However, this approach was not suitable for acquiring 

measurements for mRNAs with tails that were either very short (< 8 nt) or extended by 
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more than one uridine, because such tails would ligate less efficiently (or not at all) when 

using a splinted ligation to the 3′ adapter. To account for these mRNAs with either very 

short or highly modified tails, we implemented a protocol that used single-stranded (ss) 

ligation and different mRNA enrichment steps to prepared libraries from steady-state 

RNA isolated from each of the two cell lines. For each sample, 5 µg of total RNA was 

depleted of rRNA using RiboZero Gold HMR (Illumina) and further depleted of the 5.8s 

rRNA by subtractive hybridization. Subtractive hybridization was performed by mixing 

2x SSC buffer (3M sodium chloride, 300mM sodium citrate, pH 7.0), total RNA, and 

4.8µM of each 5.8s subtractive-hybridization oligo (Table S3) in a 50 µL reaction, 

heating the reaction to 70°C for 5 min, then cooling it at 1°C/min to 37°C to anneal the 

oligos to the RNA. During this cooling, 250 µL of Dynabeads MyOne Streptavidin C1 

beads per sample (ThermoFisher) were washed twice with 1X B&W buffer (5 mM Tris-

HCl, pH 7.5, 0.5 mM EDTA, 1 M NaCl and 0.005% Tween-20), twice with solution A 

(0.1 M NaOH, 50 mM NaCl), twice with solution B (0.1 M NaCl), and then resuspended 

in 50 µL of 2X B&W buffer. After cooling, the entire 50µL RNA/oligo mixture was 

added to 50 µL of washed beads, then incubated at room temperature for 15 min with 

end-over-end rotation. The sample was then magnetized and the supernatant was 

withdrawn and precipitated by adding 284 µL of water, 4 µL of 5 mg/mL linear 

acrylamide, and 1 mL of ice-cold 96% ethanol. After resuspension, RNA was ligated to a 

3′ adapter containing four random-sequence nucleotides and an adenylyl group at its 5′ 

end (Table S3) in a 70 µl reaction containing 10 µM adapter, 1X T4 RNA Ligase 

Reaction Buffer (NEB), 20 U/µL T4 RNA Ligase 2 truncated KQ (NEB), 0.3 U/µL 

SUPERaseIn (ThermoFisher), and 20% PEG 8000. The reaction was incubated at 22°C 
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overnight and then stopped by addition of EDTA (3.5 mM final after bringing the 

reaction to 400 µL with water). RNA was phenol–chloroform extracted, precipitated, and 

subsequent library preparation was as for the splinted-ligation libraries.   

 PAL-seq v2 libraries were sequenced on an Illumina HiSeq 2500 operating in 

rapid mode. Hybridization mixes were prepared with 0.375 fmol PCR-amplified library 

that had been denatured with standard NaOH treatment and brought to a final volume of 

125 µL with HT1 hybridization buffer (Illumina, 3 pM library in final mix). Following 

standard cluster generation and sequencing-primer hybridization, two dark cycles were 

performed for the splint-ligation libraries (i.e., two rounds of standard sequencing-by-

synthesis in which imaging was skipped), which extended the sequencing primer by 2 nt, 

thereby enabling measurement of poly(A) tails terminating in non-adenosine bases. For 

the direct-ligation libraries, six dark cycles were performed instead of two, which 

extended the sequencing primer past the four random-sequence nucleotides in the 3′ 

adapter and then the last two residues of the tail.  

Following the two dark cycles, a custom primer-extension reaction was performed 

on the sequencer using 50 µM dTTP as the only nucleoside triphosphate in the reaction. 

To perform this extension, the flow cell temperature was first set to 20°C. Then, 120 µL 

of universal sequencing buffer (USB, Illumina) was flowed over each lane, followed by 

150 µL of Klenow buffer (NEB buffer 2 supplemented with 0.02% Tween-20). Reaction 

mix (Klenow buffer, 50 µM dTTP, and 0.1 U/µL Large Klenow Fragment, NEB) was 

then flowed on in two aliquots (150 µL and 100 µL). The flow-cell temperature was then 

increased to 37°C at a rate of 8.5°C per min and the incubation continued another 2 min 

after reaching 37°C. 150 µL of fresh reaction mix was then flowed in, and following a 2 
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min incubation, 75 µL of reaction mix was flowed in eight times, with each flow 

followed by a 2 min incubation. The reaction was stopped by decreasing the flow cell 

temperature to 20°C, flowing in 150 µL of quench buffer (Illumina HT2 buffer 

supplemented with 10 mM EDTA) and then washing with 75 µL of HT2 buffer. The flow 

cell was prepared for subsequent sequencing with a 150 µL and a 75 µL flow of HT1 

buffer (Illumina). 50 cycles of standard sequencing-by-synthesis were then performed to 

yield the first sequencing read (read 1). XML files used for this protocol are provided at 

https://github.com/kslin/PAL-seq. 

 The flow cell was stripped, a barcode sequencing primer was annealed, and seven 

cycles of standard sequencing-by-synthesis were performed to read the barcode. The flow 

cell was then stripped again, and the same primer as used for read 1 was hybridized and 

used to prime 250 cycles of standard sequencing-by-synthesis to generate read 2. Thus, 

each PAL-seq tag consisted of three reads: read 1, read 2, and the indexing (barcode) 

read. For cases in which a tag corresponded to a polyadenylated mRNA, read 1 was the 

reverse complement of the 3′ end of the mRNA immediately 5′ of the poly(A) tail and 

was used to identify the mRNA and cleavage-and-polyadenylation site of long-tailed 

mRNAs. The indexing read was used to identify the sample, and read 2 was used to 

measure poly(A)-tail length and identify the mRNA and cleavage-and-polyadenylation 

site of short-tailed mRNAs. The intensity files of reads 1 and 2 were used for poly(A)-tail 

length determination, along with the Illumina fastq files.  

 

PAL-seq v2 data analysis 
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Tail lengths for the splinted-ligation data were determined using a Gaussian hidden 

Markov model (GHMM) from the python2.7 package ghmm (http://ghmm.org/), 

analogous to the model used in TAIL-seq (Chang et al., 2014) and described in the next 

paragraph. Read 1 was mapped using STAR (v2.5.4b) run with the parameters ‘--

alignIntronMax 1 --outFilterMultimapNmax 1 --outFilterMismatchNoverLmax 0.04 --

outFilterIntronMotifs RemoveNoncanonicalUnannotated --outSJfilterReads’, aligning to 

an index of the mouse genome built using mm10 transcript annotations that had been 

compressed to unique instances of each gene selecting the longest transcript and 

removing all overlapping transcripts on the same strand (Eichhorn et al., 2014). The 

genome index also included sequences of the quantification spikes and the common 

portion of the poly(A)-tail length standards. The sequences that identified each RNA 

standard (the last 20 nt of each standard sequence, Table S3) were not aligned using 

STAR. Instead, the unix program grep (v2.16) was used to determine which reads 

matched each standard (allowing no mismatches), and these reads were added to the 

aligned reads from the STAR output. Tags corresponding to annotated 3′ UTRs of 

mRNAs were identified using bedtools (v2.26.0), and if the poly(A)-tail read (read 2) 

contained a stretch of ≥ 10 T residues (the reverse complement of the tail) in an 11-nt 

window within the first 30 nt, this read was carried forward for GHMM analysis. If read 

2 failed to satisfy this criterion but began with ≥ 4 T residues, the tail length was called 

based on the number of contiguous T residues at the start of read 2; by definition, these 

tails were < 10 nt and thus easily determined by direct sequencing. 

For each read 2 that was to be input into the GHMM a ‘T signal’ was first 

calculated by normalizing the intensity of each channel for each cycle to the average 
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intensity of that channel when reading that base in read 1 and then dividing the thymidine 

channel by the sum of the other three channels. Sometimes a position in a read would 

have a value of 0 for all four channels. A read was discarded if it contained more than 

five such positions.  Otherwise, the values for these positions were imputed using the 

mean of the five non-zero signal values upstream and downstream (ten positions total) of 

the zero-valued position. A three-state GHMM was then used to decode the sequence of 

states that occurred in read 2. It consisted of an initiation state (state 1), a poly(A)-tail 

state (state 2), and a non-poly(A)-tail state (state 3). All reads start in state 1. From state 1 

the model can remain in state 1 or transition to state 2. From state 2 the model can either 

remain in state 2 or transition to state 3. The model was initialized with the following 

transition probabilities:  

 

The initial emissions were Gaussian distributions with means of 100, 1, and –1 and 

variances of 1, 0.25 and 0.25, respectively. In general, the emission Gaussians for the 

model corresponded to the logarithm of the calculated T signal at each sequenced base in 

read 2. The initial state probabilities were 0.998, 0.001, and 0.001 for states 1, 2 and 3, 

respectively.  

After initializing the model, unsupervised training was performed on 10,000 

randomly selected PAL-seq tags, and then the trained model was used to decode all tags, 

with the number of state 2 cycles reporting the poly(A)-tail length for a tag. Only genes 

from \ to state1 state2 state3
state1 0.001 0.95 0.049
state2 0.001 0.95 0.049
state3 0.001 0.001 0.998
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with ≥ 50 poly(A)-tail length measurements were considered for analyses involving mean 

poly(A)-tail lengths. 

 

Analysis of PAL-seq data from the ss-ligation protocol 

To account for mRNAs with very short tails or extensive terminal modifications, we 

implemented a version of PAL-seq that did not use splinted ligation. Tail lengths from 

these ss-ligation datasets, acquired for steady-state samples from both cell lines, were 

determined using a modified version of the PAL-seq analysis pipeline written for 

python3. The T-signal in this pipeline was modified to allow more accurate quantification 

of 0-length tails. Instead of normalizing the intensity of each channel for each cycle to the 

average intensity of that channel when reading that base in read 1, the intensity of each 

channel was normalized to the average intensity of the channels for the other three bases 

in read 1. The intensity of the T channel was then divided by the sum of the other channel 

intensities to calculate the T signal, and tails were called using the hmmlearn package 

(v0.2.0). Tags representing short tails, including short tails that ended with many non-A 

residues, were identified as those for which read 1 and read 2 mapped to the same mRNA 

3′ UTR (usually ~4% of the tags). Tail lengths for these tags were called without the use 

of the GHMM. Instead, their tail lengths were determined by string matching, allowing 

any number of untemplated U residues but no more than two G or C residues to precede 

the A stretch. Tags not identified as representing short-tails were analyzed using the 

GHMM, excluding from further analysis occasional outliers determined by the GHMM to 

have tails ≤ 8 nt.  
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Most of the tags that had either only a very short tail or no tail did not correspond 

to mRNA cleavage-and-polyadenylation sites. Therefore, to be carried forward in our 

analysis, short-tailed tags were required to have a 3′-most genome mapping position (as 

determined from read 1 but requiring that read 2 also map uniquely to the same 3′ UTR) 

that fell within a 10 nt window of a PAL-seq–annotated cleavage-and-polyadenylation 

site.  

Although the single-stranded ligation protocol provided the opportunity to 

account for mRNAs with very short or highly modified tails, examination of the recovery 

of internal standards indicated that tags representing longer tails (≥ 100 nt) were not as 

well recovered in the datasets in which we implemented ss ligation. Therefore, for 

steady-state samples from each cell line, we generated composite tail-length distributions 

in which the ss-ligation dataset contributed to the distribution of tails < 50 nt, and the 

splint-ligation dataset contributed to the distribution of tails ≥ 50 nt. For example, 

Slc38a2 had 635 standard PAL-seq tags, 169 of which (~27%) had tails < 50 nt, and this 

same gene had 703 ss-ligation PAL-seq tags, 393 of which (~56%) had tails < 50 nt. The 

composite tail-length distribution replaced the 169 short-tailed splint-ligation PAL-seq 

tags with the 393 short-tailed ss-ligation PAL-seq tags, normalizing the latter cohort by a 

scaling factor. This scaling factor was determined from the ratio of the counts of the 

splint-ligation tags with tail lengths between 30–70 nt (135 tags) to the counts of the 

corresponding tags in the ss-ligation dataset (153 tags).  

3′-end annotations were generated from PAL-seq tags with tails ≥ 11 nt, using an 

algorithm previously developed for data from poly(A)-position profiling by sequencing 

(3P-seq) (Jan et al., 2011). Each PAL-seq read 1 that mapped (with at least 1 nt of 
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overlap) to an annotated 3′ UTR (Eichhorn et al., 2014) was compiled by the genomic 

coordinate of its 3′-most nucleotide. The position with the most mapped reads was 

annotated as a 3′ end. All reads within 10 nt of this end (a 21 nt window) were assigned 

to this end and removed from subsequent consideration. This process was repeated until 

there were no remaining 3′ UTR-mapped reads. For each gene, the 3′-end annotations 

were used in subsequent analyses if they accounted for ≥ 10% of the 3′ UTR-mapping 

reads for that gene.  

Documentation and code to calculate and analyze T signals and determine tail 

lengths are available for both the splint-ligation and ss-ligation pipelines 

at https://github.com/kslin/PAL-seq. 

 

TAIL-seq library preparation, sequencing, and analysis 

The 2 h time-interval TAIL-seq used for comparison with PAL-seq was prepared using 

the same library cDNA as was used for PAL-seq v2 libraries, but amplifying the library 

using different primers (Table S3). Amplification and purification were as for PAL-seq 

v2. Samples were sequenced with either a paired-end 50-by-250 run (2 h time-interval 

sample) using a HiSeq 2500 operating in normal mode using a v3 kit. Other Illumina 

sequencing chemistries (including v1, v2, and v4 kits run in rapid and normal modes) did 

not yield accurate tail-length measurements when used in paired-end mode. Analysis was 

as described for PAL-seq v2, except a five-state GHMM was used (Chang et al., 2014) to 

accommodate the difference in the nature of the T-signal output imparted by the different 

mode of sequencing. The five states were an initiation state, a poly(A) state, a poly(A) 

transition state, a non-poly(A) transition state, and a non-poly(A) state. 
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RNA-seq 

Fragmented poly(A)-selected RNAs were supplemented with three short quantification 

standards (Table S3), and then ligated to adapters, reverse-transcribed, and amplified to 

prepare the RNA-seq and ribosome-profiling libraries, respectively (Subtelny et al., 

2014). These libraries were sequenced on an Illumina HiSeq 2500. For all RNA-seq data, 

only reads mapping to ORFs of annotated gene models (Eichhorn et al., 2014) were 

considered, excluding the first 50 nt of each ORF, which was implemented to match 

ribosome-profiling data of a contemporary study examining the effects of miRNAs 

(Eisen et al., 2019). A cutoff of ≥ 10 reads per million mapped reads (RPM) was applied 

to each sample. 

 

Calculation of mRNA half-lives 

Half-lives were estimated independently from both RNA-seq data and PAL-seq tag 

abundance. Prior to half-life fitting, mRNA abundances were normalized across time 

intervals based on the quantification standards added to each sample prior to library 

preparation.  

Half-lives were determined by fitting to the equation 

! !! = !
! (1− !!!(!!!!!""))(δ)	 (1) 

 

in the case of the continuous-labeling experiment, or to the equation 

!(!!) = !! !
!!!! + ! 

	

(2) 
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in the case of the transcriptional shutoff experiment, where ! !!  is the expression of an 

mRNA at a given time i, α is the rate of mRNA production, β is the rate of mRNA 

degradation, !!"" is a global time offset,� is a global scaling parameter to adjust the 

steady-state time point, and c is a baseline for the final expression of the gene in the 

transcriptional-shutoff experiment. Because the quantification standards were not 

applicable to the steady-state sample, the steady-state sample was normalized by a 

globally-fitted constant (setting !! to 100 h for this time interval). 

Because the half-life fitting for the continuous-labeling experiment required the 

global parameters !!"" and δ, half-lives for all genes needed to be fit simultaneously. 

Accordingly, we minimized the least-square errors loss function (L2). 

 

!! ! = (
!

!

!

!
ln (!!" ! )− ln (!"#"!"))! , 

	

 
(3) 

for the simulated number of normalized tags x at time point i for gene j. The total number 

of time points and genes are denoted by I and J, respectively. L2 depends on the 

parameters p (αi,j, βi,j, !!"" , and !). The optimization for αi,j, βi,j, !!"" , and ! was 

performed using the L-BFGS-B method in the optim function in R.  

 To increase the efficiency of the optimization, we also implemented an analytical 

gradient for this model. This gradient computed the quantity !!!!"  which, when passed to 

the optimizer, decreased the number of iterations required to minimize the loss. This 

quantity was computed for each of the parameters as follows 
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!"!
!!!

 = (
!

!
! 1
!!

(1− ! !!!(!!!!!"") ))(!) 
 
(4.1) 

	
!!!
!!!

 = (
!

!
! !!
!!!

! !!! !!!!!"" − !!
!!!

+ !!
!!

!!! !!! !!!!!"" −	

!!
!!

!!""! !!!(!!!!!"") )(!)	

 
 
(4.2) 

	
!!!
!!!""

 = (
!

!

!

!
! −!! ! !!! !!!!!"" ) (!), 

 
(4.3) 

 

!!!
!"  = (

!

!

!

!
! !!
!!

(1− ! !!!(!!!!!"") )) , 
 
(4.4) 

where ! is the first component of the derivative of the loss function 

! = 2 ln !!
!!

1− ! !!! !!!!!"" !

− ln (!"#"!")
!!

!"!(1− ! !!! !!!!!"" )
  , 

 

	

 
(5.1) 

and � is further defined by the piecewise function 

! =  !! for !! =  !!!
1 otherwise   .  

(5.2) 

 Ranges of rates constants fit to this exponential model and the subsequent 

deadenylation model were truncated to reflect the lack of confidence in values of and 

differences between extreme outliers. Half-live values were truncated to fall between 6 

min and 100 h, deadenylation rate constants were truncated to fall between 0.03 and 30 
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nt/min, decapping rate constants at 20 nt were truncated to fall between 0.003 and 3 min–

1, and production rate constants were truncated to fall between 10–8 and 10–5 min–1. All 

calculations (including correlations) were performed on the non-truncated values.  

 

Model of mRNA production, deadenylation, and decay 

The model of mRNA production, deadenylation, and decapping (decay) was a system of 

differential equations 

!!!
!" = !! − (!! + !!)(!!)	

 
(6.1) 

!!!!!
!" = !! + !!(!!)− (!! + !!)!!!!	

 
(6.2) 

!!!!!
!" = !! + !!(!!!!)− (!! + !!)!!!!	

 
(6.3) 

⋮ 
!(!!)
!" = !! + !!(!!)− !!(!!) ,	

 
 
(6.4) 

 

where An is an mRNA with tail length n, and k0, k1 and k2 are rate constants that describe 

the production, deadenylation and decapping rates, respectively. The final deadenylation 

product (A0) has a deadenylation rate constant of zero, as it has no tail. The rate constants 

k0 and k2 are themselves functions of tail length (l), specified by the respective negative 

binomial and logistic functions  

!! ! =  α! !! + !
!!! !!

!!
!! +!!

! !!
!! +!!

!!
 

 
(7.1) 
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!! ! =  !

!!!!
!!!!
!!

  ,  
(7.2) 

where the parameters α, β, vp, mp, md, vd, are fitted parameters. The parameters α and β 

are scaling terms for production and decapping distributions, respectively. The 

parameters mp and md describe the expected value of those distributions, and vp and vd 

describe the spread.  

Equations (6) were re-written as a linear, time-invariant (LTI) system (Dahleh et 

al., 2004) 

  ,   (8) 

 

or, more succinctly, as 

 , (9) 

where the coefficient matrix, C, is specified by the coefficients of the differential 

equations (6), and the source vector D is specified by the production rate. C is a 

bidiagonal 251×251 matrix, whereas D, x(t), and ẋ are 251×1 vectors. In the case of the 

continuous-labeling experiment, ! ! = 0 =  !. The transcriptional-shutoff experiment 

begins with ! ! = – 1  h =  !, but ! ! = 0  is determined by the values of the system 

after 1 h of simulation.   

 Equation (9) has the analytical solution 

!x =

−k1 − k2 (ln ) 0 … 0 0
k1 −k1 − k2 (ln−1) 0
! " " !
0 −k1 − k2 (l1) 0
0 0 … k1 −k2 (l0 )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

x(t)+

k0 (ln )
k0 (ln−1)
!

k0 (l1)
k0 (l0 )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

!x =Cx(t)+D
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 , (10) 

where I is the identity matrix and  is the matrix exponential of the coefficient matrix 

scaled by time. Both this analytical solution and numerical integrators (which do not 

require an analytical solution) can be used to compute the result. We found that 

numerical stability and computational efficiency were optimal when using the LSODE 

solver with parameters set for a banded Jacobian matrix in the deSolve package (v1.21) 

of R, with the model written in C and dynamically loaded into R. Increasing the number 

of allowed tail-length states from 250 to 300 had little effect on the resulting fitted rate 

constants but greatly increased computation time.  

The model yielded abundances for each tail-length isoform at each time interval, 

using seven parameters for each gene, three of which were shared across all of the genes 

(Table S2). From these abundances, the residual sum of squares was computed from the 

corresponding standard-normalized PAL-seq datasets. Although tail lengths ≥ 250 nt 

were modeled, measurements for these lengths were not available from PAL-seq v2, and 

thus were excluded from the fitting. Likewise, tail-lengths < 20 were modeled for all time 

intervals, but because the abundance of tail lengths < 20 nt was only available for steady 

state, these lengths were excluded from fitting all but the steady-state interval. As a 

result, for the continuous-labeling experiment using cell line 1, parameters for each gene 

were fit to 1400 data points (230 tail lengths × 5 time intervals + 250 for the steady-

state), and for the experiment using the cell line 2, parameters for each gene were fit to 

1170 data points. The optimization was performed using the L-BFGS-B method in the 

optim function of R, or, in the case of the global fitting, using the L-BFGS-B method in 

the NLopt package (v1.0.4) of R. 

x(t) =C(eCt − I )D

eCt
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A simple L2 loss function skewed the fits to the time intervals that had larger 

values. A common solution to this problem is to fit to log-transformed values, but 

because our data were sparse, with many tail-length positions having zero tags, pseudo-

counting to allow log-space fitting resulted in poor fits. Therefore, residuals were 

variance weighted using the loss function 

!! ! = (
!

!

!

!

(!!"#(!)− !"#"!"#)!
Var(!"#"!)

)
!

!
 ,  

(11) 

where i, j, and k are the time-interval, gene, and tail length with I, J and K as the maximal 

values of time-intervals, genes, and tail lengths. The variance of a dataset at a single time-

interval is given by Var(!"#"!).  

  The model is constrained by the 0-tail-length species, which builds up when 

decapping is slow with respect to deadenylation. Such a buildup was observed in the 

steady-state tail-length distribution of short-lived mRNAs but occurred primarily between 

0 and 20 nucleotides (Figure 6C). Because of this discrepancy, a composite residual was 

calculated for the model and the data. Abundances for tails < 20 nt were averaged and 

this average was used to replace the abundances for each tail length < 20 for the steady-

state data. In addition, when comparing the associated short tails from the data and the 

model, the residuals for tails < 20 were weighted by either 6- or 5-fold (cell lines 1 and 2, 

respectively) to account for opting not to fit to measurements for tails < 20 nt in the non-

steady–state samples.  

 As with gene-specific parameters, global parameters vp, md, and vd were fit using 

pre-steady-state measurements of tails ranging from 20–249 nt. The composite steady-

state tail-length distributions of Figure 2A were also used, which constrained buildup of 
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short-tailed mRNAs. Fitting was performed on subsets of 100 genes (selected randomly 

without replacement from genes with composite steady-state distributions, yielding 22 

and 15 subsets for cell lines 1 and 2, respectively), including vp, md, and vd in the 

parameter vector. Median values of the global parameters (Table S1) were then used to fit 

each gene-specific parameter. 

 

Bootstrap analysis 

Tags in the cell line 1 PAL-seq dataset were resampled 10 times with replacement and 

assigned to a gene and tail length based on a multinomial probability distribution 

generated from the counts for each tail length in the original dataset. These resampled 

datasets were then used for background subtraction, global parameter determination, and 

model fitting.  

 

Background subtraction and normalization for PAL-seq data 

Although the efficacy of the 5EU purification enabled efficient enrichment of labeled 

RNAs at short time intervals (Eisen et al., 2019), we also modeled and corrected for 

residual background caused by non-specific binding of the unlabeled RNA to the 

streptavidin beads (Figure S2F).  

We designed our background model under the assumption that the background in 

the time courses stems primarily from the capture of a fixed amount of non-5EU labeled 

mRNA during the 5EU purification. Accordingly, we subtracted a fraction (0.3%) of the 

steady-state data from each continuous-labeling dataset. This fraction of input sample 

was chosen such that at 40 min long-lived genes (half-life ≥ 8 h) had no mRNAs with tail 
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lengths ≤ ~100 nt on average, but short-lived genes (half-life ≤ 30 min) were unaffected 

(Figure S2F). Likewise, we subtracted standard-normalized time-interval–matched input 

data from each transcriptional-inhibition dataset, as actD influenced which unlabeled 

cellular mRNAs were available to contribute to the background. The fraction of each 

input sample to subtract was chosen such that at 0 h long-lived genes (half-life ≥ 8 h) had 

no mRNAs with tail lengths ≤ ~100 nt on average, but short-lived genes (half-life ≤ 30 

min) were unaffected. Genes were included in the final background-subtracted set only if 

the sum of their background-subtracted tag counts was ≥ 50 tags. 

After background subtraction, PAL-seq datasets were scaled to each time interval 

by matching the total number of background-subtracted tags for all genes at all tail 

lengths to the total number of tags for all genes for the corresponding time interval in the 

RNA-seq data. The scaled PAL-seq data were then used to compute half-lives for each 

gene, scaling the steady-state sample using a globally fitted constant. 

 

ActD treatment 

Cell line 2 was cultured as in the continuous-labeling experiments. We prepared 2, 2, 2, 

3, and 4 500 cm2 plates for the 0, 1, 3, 7 and 15 h time intervals, respectively. 5EU (400 

µM final) was added to each plate (with one non-5EU plate prepared in parallel), and 

after 1 h actD (5 µg/mL final concentration, Sigma-Aldrich) was added. Cells were 

harvested as described for the continuous-labeling experiments, except that a quantitative 

spike RNA containing 5EU and corresponding to the chloramphenicol-resistance gene 

sequence (Table S3) was added to the lysis buffer at a concentration of 0.57 ng/mL, or 2 
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ng/plate. This RNA was prepared using an in vitro transcription reaction as above, with a 

5EUTP-to-UTP ratio of 1:20. 

 

Accession numbers 

Raw and processed RNA-seq, PAL-seq, and TAIL-seq data is available at the GEO, 

accession number GSE134660. Code for configuring an Illumina HiSeq 2500 machine 

for PAL-seq and for calculation of tail lengths from PAL-seq or TAIL-seq data is 

available at https://github.com/kslin/PAL-seq. 
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Figure Legends 

Figure 1. Global Tail-Length Dynamics of Mammalian mRNAs 

(A) Schematic of 5EU metabolic-labeling. Experiments were performed with two 3T3 

cell lines designed to induce either miR-155 or miR-1 (cell lines 1 and 2, respectively) 

but cultured without microRNA induction. The 8 is in parenthesis because an 8 h labeling 

period was included for only one line (cell line 1). For simplicity, all subsequent figures 

show the results for cell line 1, unless stated otherwise. 

(B) Tail-length distributions of mRNA molecules isolated after each period of 5EU 

labeling (key). Left: Distributions were normalized to each have the same area. Right: 

Distributions were scaled to the abundance of labeled RNA in each sample and then 

normalized such that the steady-state sample had an area of 1. The steady-state sample 

was prepared with unselected RNA from the 40 min time interval. Each bin is 2 nt; 

results for the bin with tail lengths ≥ 250 nt are not shown. 

(C) Distibutions of mean poly(A)-tail lengths for mRNAs of each gene after the indicated 

duration of 5EU labeling. Values for all genes that passed the tag cutoffs for tail-length 

measurement at all time intervals were included (n = 3048). Each bin is 2 nt. Genes with 

mean mRNA tail-length values greater than ≥ 250 nt were assigned to the 250 nt bin. 

(D) Tail lengths over time. Mean tail lengths for mRNAs from each gene (n  = 3048) are 

plotted along with box-and-whiskers overlays (line, median; box, 25th to 75th percentiles; 

whiskers, 5th to 95th percentiles). See also Figures S1 and S2. 

 

Figure 2. Correspondence Between mRNA Half-life and Deadenylation Rate 
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(A) Relationship between half-life and mean steady-state tail length of mRNAs in 3T3 

cells. For mRNAs of each gene, standard PAL-seq data were used to determine the length 

distribution of tails ≥ 50 nt, and data generated from a protocol that used single-stranded 

ligation to the mRNA 3′ termini (rather than a splinted ligation to the tail) were used to 

determine both the length distribution of tails < 50 nt and the fraction of tails < 50 nt. 

Compared to the tail-length distribution generated by only standard PAL-seq data, this 

composite distribution better accounted for very short and highly modified tails. 

Nonetheless, using the standard PAL-seq data without this adjustment produced a similar 

result (Figure S3G). Results for mRNAs of ribosomal protein genes (RPGs) and 

immediate early genes (IEGs) (Tullai et al., 2007) are indicated (blue and red, 

respectively). 

(B) Relationship between mRNA half-life and mean tail length of metabolically labeled 

mRNAs isolated after 2 h of labeling. Otherwise as in (A).  

See also Figures S3A–D, S3G. 

 

Figure 3. Tail-Length Dynamics of mRNAs with Different Half-Lives 

Tail-length distributions for mRNAs from individual genes. For each time interval (key), 

the distribution is scaled to the abundance of labeled RNA in the sample (top), and the 

distribution is represented as a heatmap (bottom), with the range of coloration 

corresponding to the 5–95 percentile of the histogram density. Each bin is 5 nt. Bins for 

tails < 10 nt are not shown because the splinted ligation to the tail used in the standard 

PAL-seq protocol depletes measurements for tails < 8 nt. Bins for tails ≥ 250 nt are also 

now shown. 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/763599doi: bioRxiv preprint first posted online Sep. 9, 2019; 



	 62 

See also Figures S3F, S3H–J. 

 

Figure 4. Computational Model of mRNA Deadenylation and Decay Dynamics 

(A) Schematic of the computational model. Poly(A)-tail lengths of mRNAs are 

represented by An, where n is the length of the poly(A) tail. k0, k1, and k2 are terms for 

mRNA production, deadenylation, and decapping, respectively, and ∅ represents the loss 

of the mRNA molecule. The curves (right) indicate the distributions used to model 

probabilities of production and decapping as functions of tail length. They are 

schematized using the globally fitted parameters (vp, md, and vd) that defined each 

distribution (Table S2). The parameter mp controls the mean (µ) of the negative binomial 

distribution (left curve), whereas the decapping rate constant, β, scales the decapping 

distribution (right curve) (Table S2). 

(B) Correspondence between the fit of the model and the experimental data. Results for 

mRNAs of these four genes are shown as representative examples because their fits fell 

closest to the 10th, 25th, 75th, and 90th percentiles of the distribution of R2 values for all 

genes that passed expression cutoffs in the PAL-seq datasets (Figure S4F, n = 2778). For 

each time interval, the blue line shows the fit to the model, and the red line shows the 

distribution of observed tail-length species, plotted in 2 nt bins and scaled to standards as 

in Figure 1B. 

(C) Correspondence between mean tail lengths generated from the model simulation and 

tail lengths measured in the metabolic labeling experiment. Shown for each gene are 

mean tail lengths for mRNAs at each time interval (key) from the simulation plotted as a 

function of the values observed experimentally. The discrepancy observed for some 
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mRNAs at early time intervals was attributable to low signal for long-lived mRNAs at 

early times. The dashed line indicates y = x. 

See also Figures S4, S5A–B, and Tables S1–S2. 

 

Figure 5. Dynamics of Cytoplasmic mRNA Metabolism 

(A) Distribution of deadenylation rate constants (k1 values), as determined by fitting the 

model to data for mRNAs from each gene (n = 2778). 

(B) Tail lengths at which mRNAs are decapped, as inferred by the model. The model rate 

constants were used to simulate a steady-state tail-length distribution for each gene. The 

abundance of each mRNA intermediate was then multiplied by the decapping rate 

constant k2 to yield a distribution of decapping events over all tail lengths. Plotted is the 

combined distribution for all mRNA molecules of all 2778 genes. Results were 

indistinguishable when the distribution from each gene was weighted equally. Values for 

tails < 20 nt are shown as a dashed line because the model fit steady-state tail lengths < 

20 nt as an average of the total abundance of tails in this region, and thus did not provide 

single-nucleotide resolution for decapping rates of these species.  

(C) Mean tail lengths at which mRNAs from each gene (n = 2778) were decapped, as 

inferred by the model. Otherwise, as in (B). 

(D) Distribution of decapping rate constants (k2 values) for mRNAs with 20 nt tail 

lengths, as determined by fitting the model to data for mRNAs from each gene (n = 

2778). 

(E) Correlation between the deadenylation rate constant (k1) and the decapping rate 

constant (k2) at a tail length of 20 nt. The dashed line indicates y = x.  
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See also Figure S4. 

 

Figure 6. A Modest Buildup of Short-Tailed Isoforms of Short-Lived mRNAs 

(A) Relationship between the steady-state fraction of tails < 20 nt and mRNA half-life. 

For mRNAs of each gene, the fraction of tails < 20 nt was calculated from a composite 

distribution generated as in Figure 2A, which accounted for very short and highly 

modified tails.   

(B) Metatranscript distributions of steady-state tail lengths of short- and long-lived 

mRNAs (red and blue, respectively), with mRNAs from each gene contributing density 

according to their abundance. Results were almost identical when mRNAs were weighted 

such that each gene contributed equally. This analysis used the composite distributions as 

in (A).  

(C) Uridylation of short-lived mRNAs with short poly(A) tails. For mRNAs with half-

lives < 20 min, the fraction of molecules with the indicated poly(A)-tail length at steady-

state is plotted, indicating for each tail length the proportion of tails appended with 0 

through 10 U nucleotides (key). For mRNAs with poly(A)-tail length of 0, U residues 

were counted only if they could not have been genomically encoded. As poly(A) tails 

approached 20 nt the ability to map reads with ≥ 3 terminal U residues diminished, but 

the ability to map reads with 1–2 terminal U residues was retained for poly(A) tails of 

each length.  

(D) Uridylation of long-lived mRNAs (half-lives > 10 h) with short poly(A) tails. 

Otherwise as in (C).  
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(E) Distribution of tailless tags (regardless of half-life) as a function of their distance 

from the annotated 3′ end of the UTR. Tags with a terminal A (or with a terminal A 

followed by one or more untemplated U) were excluded, even if the A might have been 

genomically encoded. The proportion of tails appended with 0 through 10 U nucleotides 

is shown (key).  

(F) Relationship between the standard deviation of steady-state tail length and mRNA 

half-life. Otherwise as in (A). 

See also Figure S5C–J. 

 

Figure 7. Deadenylation and Decay Dynamics of Synchronous mRNA Populations. 

(A) Schematic of 5EU metabolic-labeling and actD treatments used to analyze 

synchronized cellular mRNAs. Cells from cell line 2 were treated for 1 h with 5EU, then 

treated with actD continuously over a time course spanning 15 h.  

(B) Tail-length distributions of labeled mRNA molecules observed at the indicated times 

after stopping transcription (key). Left: Distributions were normalized to all have the 

same area. Right: Distributions were scaled to the abundance of labeled RNA in each 

sample and then normalized such that the 0 h time interval had an area of 1. Each bin is 2 

nt; results for the bins with tail lengths < 8 nt and ≥ 250 nt are not shown. At 0 h, 7% of 

the tails were still ≥ 250 nt, which helps explain why the density for the remainder of the 

tails fell below that observed at 1 h.  

(C) Distributions of mean poly(A)-tail lengths for labeled mRNAs of each gene after the 

indicated duration of transcriptional shutoff. Values for all mRNAs that passed the 
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cutoffs for tail-length measurement at all time points were included (n = 2155). Each bin 

is 2 nt. 

(D) Relationship between half-life and mean tail length of labeled mRNAs from each 

gene after 1 h of actD treatment. 

(E) Labeled mRNA abundance as a function of mean tail length over time. Results are 

shown for mRNAs grouped by half-life quantiles (95%, 75%, 50%, 25%, and 5%, left to 

right, with mRNAs in the 5% bin having shortest half-lives). Each half-life bin contains 

100 genes. mRNA abundance was determined from paired RNA-seq data. Each line 

connects values for mRNA from a single gene.  

(F) Simulation of mRNA abundance as a function of mean tail length over time. For each 

gene in (E), model parameters fit from the continuous-labeling experiment were used to 

simulate the initial production of mRNA and its mean tail length from each gene, as well 

as the fates of these mRNAs and mean tail lengths after production rates were set to 0. 

Results are plotted as in (E), but using a shorter time course (key) to accommodate the 

faster dynamics observed without actD.  

See also Figure S3E. 
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Supplemental Figure Legends 

Figure S1. PAL-seq v2 Methodology and Benchmarking, Related to Figure 1 

(A) Schematic of PAL-seq v2. The original version of PAL-seq (Subtelny et al., 2014) 

was modified to include an additional splint oligonucleotide capable of ligating to tails 

with a terminal U (step 1); two dark cycles prior to the primer-extension reaction (step 

13), which prevented non-adenosine terminal residues from terminating the subsequent 

primer extension; primer extension through the tail with dTTP as the only nucleoside 

triphosphate (step 14); sequencing on a HiSeq machine, with the opportunity for 

multiplexing (steps 16 and 17); an additional read using the read 1 sequencing primer 

(read 2), which collected sequence and intensity information used to call poly(A)-tail 

lengths, as in TAIL-seq (Chang et al., 2014) (steps 18 and 19).  

(B) Recovery of RNA standards. Before preparing libraries, two sets of RNA standards 

were added to each of the 34 RNA samples analyzed by PAL-seq v2 in this study and an 

accompanying study (Eisen et al., 2019). Set 1 contained seven RNAs with different tail 

lengths, and set 2 contained four RNAs with different tail lengths (Table S3). For each set 

of standards, the relative abundance of each standard in the final sequencing output was 

compared its relative abundance in the initial standard mixture, and this recovery ratio is 

plotted for each sample on a log scale. The relative recovery of standards varied 

somewhat, with no systematic bias that would indicate substantial depletion of poly(A)-

tails of certain lengths. The 30 nt standard from set 2 was excluded from this analysis 

because it is an equal mixture of four different standards that end in a terminal A, C, G or 

U (Table S3), which was added to assess the ability to detect tails with a terminal U, as 

described in the next panel.  
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(C) Terminal nucleotide compositions of RNAs with tail measurements ≥ 5 nt. Libraries 

were prepared using a 5:1 mixture of splint oligos that would hybridize perfectly to either 

the 3′ end of RNAs ending in eight adenosines or the 3′ end of RNAs ending in seven 

adenosines followed by a terminal uridine, respectively. Left: Terminal nucleotide 

composition of PAL-seq v2 tags from the RNA standards for which poly(A) tails were 

prepared using poly(A) polymerase and ATP. These standards were expected to terminate 

exclusively with adenosine. Middle: Terminal nucleotide composition of PAL-seq v2 

tags from the synthetic 30 nt standard, which was prepared with a tail designed to have an 

equal mixture of terminal A, C, G, or U. Although the splint oligonucleotides perfectly 

matched the versions ending A and U, the terminal U was somewhat depleted compared 

to the terminal A, and a substantial fraction of terminal G was also captured, perhaps due 

to wobble-pairing between the T in the splint and the terminal G in the standard. Right: 

Terminal nucleotide composition of PAL-seq v2 tags from mRNAs. 

(D) The tail length distributions of the synthetic RNA standards, as measured by PAL-seq 

v2.  Plotted is the cumulative distribution of poly(A)-tail lengths for each standard in the 

steady-state sample from cell line 1. The poly(A)-tail lengths measured by 

polyacrylamide gel electrophoresis (Subtelny et al., 2014) are indicated (key). 

(E) Mean poly(A)-tail lengths of the two sets of synthetic standards, as measured by 

PAL-seq v2. For each standard, the mean tail length in each of the 34 samples in this 

study and an accompanying study (Eisen et al., 2019), as measured using PAL-seq v2, is 

plotted (black points). Also plotted is the mean tail length of each standard, as determined 

using denaturing gels (red crosses). Tails that exceeded 250 nt were not expected to be 
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measured accurately, because their length exceeded the length of the sequencing read 

used to measure the tail. 

(F) Comparison of the frequencies in which UTR 3′ ends were called by biological 

replicates of PAL-seq v2 (left) or the two different versions of PAL-seq (right). Each 

point is the number of tags that mapped to a genomic position, adding a pseudo-count of 

0.1 tags. Dashed lines represent equivalency, after accounting for different sequencing 

depths. 

 

Figure S2. Reproducibility of PAL-seq v2, Related to Figure 1 

(A) Comparisons of biological replicates for different library preparation and tail-

profiling protocols. For each gene that passed a 50-tag cutoff, mean poly(A)-tail lengths 

after 2 h of continuous labeling are shown for PAL-seq (left panel), our implementation 

of TAIL-seq (Lim et al., 2016), (middle panel), or PAL-seq v2 (right panel). Whereas the 

RNA examined using TAIL-seq and PAL-seq v2 datasets was isolated using 5EU 

labeling, the RNA examined using PAL-seq v1 dataset was isolated using 4-thiouridine 

labeling. The 2 h time interval was chosen for this analysis because its broad range of 

average tail lengths made it most suitable for comparing the results of different methods 

(Figure 1C). The dashed line represents y = x. 

(B) Comparisons between different tail-profiling protocols. Compared are mean tail 

lengths generated by TAIL-seq and PAL-seq v2 (left panel), PAL-seq v1 and PAL-seq v2 

(middle panel), and TAIL-seq and PAL-seq v1 (right panel). Otherwise, as in (A). 

(C) Recovery of tail standards in the PAL-seq v1, TAIL-seq (splinted ligation) and PAL-

seq v2 steady-state (single-stranded ligation) datasets. For analyses of the recovery of tail 
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standards in PAL-seq v2 (splint-ligation) datasets, see Figure S1B. All six libraries 

contained seven standards from standard set 1; the TAIL-seq libraries contained three 

standards from standard set 2; and the PAL-seq v1 library contained seven standards 

from standard set 3. Tail lengths of the standards as determined by polyacrylamide-gel 

electrophoresis (Subtelny et al., 2014) are indicated (key) and shown as x-axis labels. The 

30 nt standard from set 2 was excluded from this analysis because it was an equal mixture 

of four different standards that ended in A, C, G or U (Table S3) and was added to assess 

the ability to detect tails with a terminal U. The relative abundances of the standards in 

the sequencing data were quantified and compared to their relative starting abundance, 

and this recovery ratio is plotted for all samples. The values of each library were 

normalized to the abundance of the 107 nt standard in set 1.  

(D) Mean tail lengths of the standards shown in (C) and the 30 nt standard. Otherwise, as 

in (C). For analysis of mean tail lengths of the standards in PAL-seq v2 (splint-ligation) 

datasets, see Figure S1E. 

(E) Uridylation frequency as a function of tail length. The fraction of single uridine 

residues at the 3′ end of mRNA-mapping tags is plotted as a function of tail lengths ≥ 5 nt 

(black) along with a LOESS smoothing kernel (blue, with 5th–95th percent confidence 

intervals in grey) for either cell line 2 (top panels) or cell line 1 (bottom panels). These 

values were scaled by a factor of 5.23 to correct for the depletion of tags containing a 

terminal uridine, estimated from the ratio of tags mapping to the 30 nt standards 

terminating with either A or U, which had been added to the libraries at an equal molar 

ratio (Figure S1C). Uridine fractions corresponding to tail lengths ≥ 246 nt were 

combined into one bin at 246 nt. 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/763599doi: bioRxiv preprint first posted online Sep. 9, 2019; 



	 71 

(F) Effects of background subtraction of PAL-seq data at the earliest (40 min) time 

interval. Distributions of the unsubtracted (blue) and background-subtracted (red) tail 

lengths for short-lived (half-life < 30 min, n = 293 for both unsubtracted and background 

subtracted) and long-lived (half-life > 8 h, n = 379) mRNAs. The background subtraction 

differentially affected the long half-life mRNAs, as these had a proportionally smaller 

amount of labeled relative to unlabeled RNA at short time intervals, and thus unlabeled 

RNAs contributed a larger fraction of their reads at these intervals. 

 

Figure S3. Half-life and Initial Tail-Length Measurements, Related to Figures 2 and 

3 

(A) Pairwise correlations (Rs) of half-life measurements. n = 4485, 4748, 3048, 1743, and 

4658 genes for cell line 1 poly(A)-selected, cell line 2 poly(A)-selected, cell line 1 PAL-

seq, cell line 2 PAL-seq, and Schwanhäusser et al. 2011 samples, respectively.  

(B) Distributions of half-lives for mRNAs from all genes (n = 3048), ribosomal-protein 

genes (RPGs, n = 31), or immediate-early genes (IEGs, n = 19) (Tullai et al., 2007) 

obtained using PAL-seq data from cell line 1. 

(C) Distribution of mRNA half-lives obtained using PAL-seq data from cell line 1 (n = 

3048).  

(D) Comparison of published half-life measurements (Schwanhäusser et al., 2011) with 

those obtained from 5EU continuous labeling. Dashed line is y = x.  

(E) Comparison of half-life measurements from the transcriptional-shutoff experiment 

and those obtained from the continuous-labeling experiment. Dashed line is y = x. 
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(F) Comparison of mean poly(A)-tail lengths of mRNAs isolated from cell line 2 after 40 

min of labeling with those isolated from cell line 1 after 40 min of labeling. Dashed line 

is y = x. 

(G) Relationship between half-life and mean steady-state tail length of mRNAs in 3T3 

cells. Tail lengths and half-lives were determined using only standard PAL-seq data, in 

which the adapter oligo was appended to the tail using splinted ligation. Otherwise, as in 

Figure 2A.  

(H) The distribution of c.v. values of tail lengths after 40 min of labeling for mRNAs 

from each gene. Each c.v. value is the average of two biological replicates.  

(I) Comparison of c.v. values of tail lengths after 40 min of labeling between two 

biological replicates.  

(J) Relationship between mRNA half-life and c.v. values of tail lengths after 40 min of 

labeling. Each c.v. value is the average of two biological replicates.   

 

Figure S4. Model Development and Testing, Related to Figures 4 and 5 

(A) Schematic of the model with two deadenylation rates. Deadenylation is 

parameterized with two rate constants, one that describes deadenylation of tail lengths > 

110 nt (k1) and one that describes deadenylation of tails ≤ 110 nt (k1′). The transition 

between these rates is determined by a generalized logistic function with a transition 

parameter arbitrarily set to 1 (a sharp transition). Otherwise, as in Figure 4A. 

(B) Comparison of the residual sum of squares (RSS) between the model with two 

deadenylation rates (A) and the model with one deadenylation rate. Dashed line is y = x. 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/763599doi: bioRxiv preprint first posted online Sep. 9, 2019; 



	 73 

(C) Relationship between the second (k1′) and the first (k1) deadenylation rate constant fit 

for mRNAs of each gene using the model in (A). Dashed line is y = x. 

(D) Comparison of a model with two deadenylation rates in which the transition between 

the rates occurs at a tail length of 150 nt and the model with one deadenylation rate. 

Otherwise, as in (B). 

(E) Relationship between the second (k1′) and the first (k1) deadenylation rate fit for 

mRNAs of each gene using the model in (D). Dashed line is y = x. 

(F) Distribution of R2 values for all genes fit by the model (n = 2778). Dashed lines 

indicate the R2 values of the four genes shown in Figure 4B.  

(G) Analysis of the robustness of fitted rate constants to input parameter identities. The 

distributions of s.d. values of rate constants for all fitted genes over 10 rounds of fitting 

with varying input parameters are displayed as empirical cumulative distributions. The 

input parameters were randomly selected from a uniform distribution bounded by the 10th 

to 90th percentiles of rate constants of all genes during a previous round of fitting. Using 

an unbounded randomized parameter selection resulted in larger variation but also larger 

final residuals. The s.d. values for 90% of genes were less than 3.7 × 10−5, 3.5 × 10−5, 5.8 

× 10−5, and 2.4 × 10−4 for rate constants for starting tail length, production, deadenylation, 

and decapping, respectively (with all parameters shown as s.d. of the log10 of the value). 

(H) Bootstrapping analysis of fitted rate constants. For each dataset, the total number of 

tags was resampled ten times based on a multinomial probability distribution specified by 

the original tag counts for every tail length position for each gene. These resampled 

datasets were then background subtracted and fit to the computational model. Shown for 

each fitted gene-specific parameter is the cumulative distributions of its c.v. values for all 
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fitted genes. The s.d. for 90% of genes were less than 0.01 , 0.03, 0.06, and 0.49, for rate 

constants for starting tail length, production, deadenylation, and decapping, respectively  

(with all parameters shown as s.d. of the log10 of the value). The greater variation 

observed for the decapping parameter reflected the relatively few data points effectively 

used for its fitting, as this parameter related primarily to the short-tailed region of the 

distribution. 

(I) Relationship between production rate from an exponential fit to the data and the 

production rate as determined by the computational model. Dashed line is y = x.  

(J) Model reproducibility across biological replicates. Plots show the relationship 

between mean starting tail lengths (mp, left panel), production-rate scaling terms (α, 

middle left panel), deadenylation rate constants (δ, middle right panel) or decapping-rate 

scaling terms (β, right panel) for mRNAs from the same genes in the two cell lines. 

Dashed line is y = x. 

 

Figure S5. Analyses of Deadenylation Rate Constants and Steady-State Tail Lengths 

and Modifications, Related to Figures 5 and 6 

(A) Relationship between mRNA half-life, as determined by an exponential fit to 

abundance, and deadenylation rate constant, as determined by the model. Because the 

structure of the computational model enhanced the correspondence between half-life and 

deadenylation rate constants, analyses performed with primary data (Figure 2B and 

Figure 7D) provide a more accurate indication of the correspondence between mRNA 

half-life and deadenlylation rate. 
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(B) Relationship between measured mRNA lifetime and mRNA lifetime inferred by the 

model. For mRNAs from each gene, the number of tail nucleotides separating the mean 

starting tail length (Figure S4J) and the mean tail length at decapping (Figure 5C) was 

multiplied by the deadenylation rate constant (Figure 5A). Measured lifetime (the inverse 

of the degradation rate from an exponential fit) was then compared to this inferred 

lifetime. The dashed line indicates y = x. 

(C) Relationship between the steady-state abundance of short-tailed transcripts and 

mRNA half-life. For each tail length from 1–100 nt, the fraction of mRNAs with tail 

lengths that fell below that position was calculated for each gene, and the relationship 

(Rs) between this fraction falling below the tail-length cutoff and half-life was determined 

as in Figure 6A. These 100 Rs values are plotted as a function of the tail-length cutoff 

used to classify short-tailed transcripts. This analysis started with the composite steady-

state tail-length distribution generated for the analysis of Figure 2A, which accounted for 

very short and highly modified tails. (n = 2778).  

(D) The distribution of terminal uridylation on short- and long-lived mRNAs at steady 

state. The tail-length distributions of Figure 6B are replotted and colored by uridylation 

frequency (key). 

(E) Examples of mRNA 3′-end isoforms plotted in Figure 6E. For the genomic locus 

corresponding to the dominant cleavage-and-polyadenylation site of Actb, several 

possible 3′-end isoforms lacking poly(A) tails are shown, along with distance from the 

dominant 3′ end and whether or not the isoform would be included in the plot of Figure 

6E.  Also depicted is a long-tail mRNA used to annotate the 3′ end of the UTR for the 

analyses of Figure 6E and Figures S6F–I. 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/763599doi: bioRxiv preprint first posted online Sep. 9, 2019; 



	 76 

(F) Distribution of tags as a function of the distance between the inferred 3′ end of their 

UTR and the dominant 3′ end. Only tags with a poly(A)-tail longer than 30 nt were used 

in this analysis.  

(G) Fraction of tail-containing tags for each gene as a function of the distance between 

the inferred 3′ end of their UTR and the dominant 3′ end. As each dominant 3′ end was 

defined as the position represented by the most tags in a 21 nt window, in principle, no 

gene should have > 50% of its tags at a position other than the dominant end. However, 

because dominant 3′ end annotations were determined using data from a separate 

experiment (standard PAL-seq with splinted ligation to the mRNA 3′ end), > 50% of tags 

for some genes mapped to a position other than 0; these outliers represent discrepancies 

between biological replicates. 

(H) Nucleotide composition near cleavage-and-polyadenylation sites. For each tag 

mapping to within 10 nt of an annotated 3′ end of an mRNA 3′ UTR, the frequency of 

each genomic nucleotide is plotted as a function of the distance from the annotated 3′ 

end. The depletion of A at position 0 and its enrichment at position 1 were artifacts of 3′-

end annotation because any A at the final nucleotide of a 3′ UTR was assigned to the 

poly(A) tail, even if that A might have been genomically encoded.  

(I) Relationship between the steady-state fraction of tails > 175 nt and mRNA half-life. 

Otherwise as in Figure 6A. 

(J) Relationship between the steady-state abundance of long-tailed transcripts and mRNA 

half-life. For each tail length from 250–100, the fraction of mRNAs with tail lengths that 

fell above that position was calculated for each gene, and the relationship (Rs) between 
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this fraction falling above the tail-length cutoff and half-life was determined as in (I) and 

plotted as in (C). 

(K) Mean tail lengths for mRNAs from each gene plotted in Figure 6B. Violin plots show 

distributions of short- and long-lived mRNAs, with the median of each distribution 

shown as a horizontal line (and indicated above each group). Otherwise as in Figure 6B. 

 

Table S1. Parameters of the Computational Model, Related to Figure 4 and Table 1. 

Table of fitted parameters for the computational model. Staring tail lengths (mp), 

production rate scaling terms (α), deadenylation rate constants (δ), and decapping rate 

scaling terms (β) were fit to the computational model. The global parameters vp, md, and 

vd were 16.27, 263.95, and 11.05 for cell line 1 and 15.5, 265.44, and 13.97 for cell line 

2. mRNA half-lives were fit to an exponential model. 
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Appendix 3. Effects of cooperativity on miRNA targeting 

When target sites to miRNAs are sufficiently close together, it has been observed that they tend 

to confer more repression than would be expected by two independent sites (Doench and Sharp 

2004; Grimson et al. 2007; Sætrom et al. 2007; Broderick et al. 2011). The collection of 28 

RNA-seq datasets from miRNA transfection experiments with high signal-to-noise ratios 

(Chapter 2), allows us to probe this cooperative effect with high resolution. I started by isolating 

the miRNA and mRNA pairs for which the miRNA has exactly two 7mer sites (i.e. 7mer-A1 or 

7mer-m8) and no other 6mer-containing sites in the mRNA 3′ UTR. I then calculated the 

distances between the end of the first site and the beginning of the second site for each of these 

miRNA–mRNA pairs. For each possible range of distances from 0 to 200, I averaged the 

repression values observed for miRNA–mRNA pairs for which the two sites to the miRNA in the 

mRNA were in that range and plotted the results (Figure 1). For example, the square at position 

20 on the y-axis and 40 on the x-axis corresponds to all miRNA–mRNA pairs for which the two 

sites to the miRNA in the mRNA were between 20 and 40 nucleotides apart, inclusively. For 

mRNAs in which the two sites are closer than 15 nucleotides apart, I observed no better 

repression than that conferred by a single 7mer site (Figure 2), indicating that two RISC 

complexes cannot engage the same mRNA at the same time if they are binding sites that are 15 

nucleotides apart or less. The cutoff after which two sites no longer act cooperatively is not as 

sharp of a boundary, presumably because mRNA secondary structure between two sites can 

change the effective distance between two sites. However, this upper bound appears to be 

somewhere between 60 and 80 nucleotides, and a strong cooperative effect was observed for 

sites between 15 and 60 nucleotides apart (Figure 2). 
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Figure 1. Exploration of mRNA fold-changes (key) conferred by two 7mer sites separated by 
anywhere from 0 to 200 nucleotides. Ranges with fewer than 20 examples were omitted.  

 
Figure 2. Cumulative distributions of 
mRNAs with two 7mer sites that are 
either too close together to both bind 
AGO at the same time (blue), in the 
optimal range for cooperativity 
(orange), or outside the optimal range 
for cooperativity (green) compared to 
mRNAs containing a single 7mer site 
(black) or no 6mer site at all (grey). 
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