
A Machine Learning Framework for Predictive
Maintenance of Wind Turbines

by

Katherine Wang

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Masters of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2020

© Massachusetts Institute of Technology 2020. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

January 29, 2020

Certified by. .
Kalyan Veeramachaneni

Principal Research Scientist
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

A Machine Learning Framework for Predictive Maintenance

of Wind Turbines

by

Katherine Wang

Submitted to the Department of Electrical Engineering and Computer Science
on January 29, 2020, in partial fulfillment of the

requirements for the degree of
Masters of Engineering in Electrical Engineering and Computer Science

Abstract

Wind energy is one of the fastest growing energy sources in the world. However, the
failure to detect the breakdown of turbine parts can be very costly. Wind energy
companies have increasingly turned to machine learning to improve wind turbine
reliability. Thus, the goal of this thesis is to create a flexible and extensible machine
learning framework that enables wind energy experts to define and build models
for the predictive maintenance of wind turbines. We contribute two libraries that
provide experts with the necessary tools to solve prediction problems in the wind
energy industry.

The first is GPE, which translates and uses the desired prediction problem to
generate machine learning training examples from turbine operations data. The other
library, CMS-ML, provides the architecture for building machine learning models using
vibration data generated by turbine sensors within the Condition Monitoring System
(CMS). With this architecture, we can easily create modular feature engineering and
machine learning pipelines for the CMS signal data. Finally, we demonstrate the
application of these two libraries on proprietary wind turbine data and analyze the
effects of their parameters.

Thesis Supervisor: Kalyan Veeramachaneni
Title: Principal Research Scientist

3

4

Acknowledgments

I would like to offer my special thanks to my advisor, Kalyan Veeramachaneni, for

his guidance, mentorship, and support. The work presented in this thesis would not

have been possible without him.

I would like to extend my thanks to the members of the Data to AI Lab of MIT

LIDS for their support and resources. I am particularly grateful for the assistance

given by Carles Sala. He provided invaluable guidance and feedback towards the

design and implementation of the software packages developed as part of this work,

in order to ensure the software quality is high and applicable in industry. In addition,

I would like to thank Arash Akhgari for his help in creating the diagrams for this

thesis and Cara Giaimo and Michaela Henry for their assistance in editing this work.

I would also like to thank the following projects which have provided the infras-

tructure and basis for this work: GitHub, PyPI, Tox, Pandas, Scikit Learn, Scipy,

and PyWavelets. I would especially like to give thanks to the MLPrimitives, BTB,

and MLBlocks libraries, as this thesis heavily utilizes these three modules.

In addition, this project would not have been possible without the support of

Iberdrola. I would especially like to express my gratitude towards Timothy Fletcher

and Robert Jones for their insights about the wind energy industry.

Finally, I wish to thank my parents, Ying and Donghui, and my friends for contin-

uing to encourage and support me and my choices throughout my academic studies.

5

6

Contents

1 Introduction 17

1.1 Machine Learning for Wind Energy 18

1.2 Feature Engineering . 20

1.3 Pipeline Technologies . 21

1.4 Main Contribution . 23

1.5 Thesis Organization . 24

2 GreenGuard Prediction Engineering 27

2.1 Target Times . 27

2.1.1 Target . 28

2.1.2 Target Entity . 28

2.1.3 Cutoff Time . 28

2.2 Engineering Prediction Problems . 29

2.3 Merging Event Data . 30

2.4 Prediction Engineering . 33

2.4.1 Prediction Engineering Parameters 33

2.4.2 Prediction Engineering for Wind Turbines 34

2.5 Design Considerations . 35

2.6 Library Overview . 36

2.6.1 Project Structure . 36

2.6.2 Data Input Format . 36

2.7 Data Pre-processing . 37

2.7.1 Parsing and Initial Processing 38

7

2.7.2 Linking Data Tables . 38

2.7.3 Processing Output . 39

2.8 Target Generation . 39

2.8.1 Labeling Functions . 40

2.8.2 Target Generation Function 41

2.8.3 Prediction Engineering Parameters 41

2.8.4 Integration with Compose . 42

2.9 GreenGuard . 42

2.9.1 GreenGuard Process . 42

3 Machine Learning Framework for Condition Monitoring Data 45

3.1 CMS Data . 45

3.2 Design Considerations . 47

3.3 Library Overview . 47

3.3.1 Project Structure . 48

3.3.2 Data Input . 48

3.3.3 Data Pre-processing . 49

3.3.4 Primitives . 49

3.3.5 Pipelines . 51

3.4 User Interaction . 53

4 Analysis and Evaluation 55

4.1 Data Overview and Analysis . 55

4.1.1 Data Overview . 55

4.1.2 Exploratory Analysis . 56

4.2 Initial Prediction Problems . 56

4.2.1 Yaw Failures . 57

4.2.2 Gearbox Problems . 57

4.3 GPE Parameters . 58

4.3.1 Processing Parameters . 58

4.3.2 Representation of Prediction Tasks 58

8

4.3.3 Prediction Engineering Parameters 59

4.4 CMS-ML Usage . 61

4.4.1 Data Preparation . 62

4.4.2 Pipeline Details . 63

4.4.3 Results . 63

4.5 Concluding Remarks . 64

5 Conclusion 67

5.1 Future Work . 67

5.1.1 Improvement of Pipelines . 67

5.1.2 GPE User Interface . 68

5.1.3 Direct Integration . 69

A Pipelines 71

9

10

List of Figures

2-1 Generating a target from a data slice using a labeling function. The

labeling function in this case is searching for whether or not the yaw

keyword exists within the comments column. If this is the case for a

data slice, then the labeling function returns a target of 1, representing

true. Otherwise, the function returns 0, representing false. 30

2-2 Time overlap cases. (a) shows an example of the two full overlap

cases, which both have an overlap percentage of 1.0. In (b), there is no

overlap, which results in an overlap percentage of 0.0. Both cases in

(c) have the same partial overlap percentage, because it is calculated

in terms of the smallest interval. 32

2-3 Visualization of prediction engineering concepts. The training, fore-

cast, and prediction windows all have a length of five days, and the

labeling function generates a target of 1. 34

2-4 Example usage of generalized labeling functions to create specific ones.

We use keyword_in_text to create functions searching for the key-

words gear and pump within designated columns. 40

2-5 Relating the readings and target times. This diagram visualizes

the process of extracting the training examples for each target based

on the cutoff time and turbine id. The resulting data slice can

then be passed to the machine learning model. 43

11

3-1 Example FFT spectrum with the y-values, offset, and delta (∆).

The x-axis contains the frequency values, while the y-axis contains the

amplitude values. 46

3-2 Metaprimitive usage. Metaprimitives can apply the primitive to ei-

ther axis of the input matrix X, and can take in additional data and

parameters. 52

3-3 Pipeline containing the metaprimitive which applies the primitive

cms_ml.statistics.crest_factor to the data. 52

3-4 Feature engineering pipeline workflow. Within the dotted boundaries

is the metaprimitive, which creates a chain with other metaprimitives

if necessary. 53

3-5 An example of directly calling the function that extracts features from

the CMS data. The aggregations applied are mean and rms. The

CMS data is read in from the ./data folder. Since an output path

is specified, the feature engineering result is written to a file in the

./output folder and nothing is returned. 53

3-6 Command line interface with mean and rms as the aggregations. This

command is equivalent to the Python function shown in Figure 3-5. . 54

3-7 An example of using the MLBlocks interface to make predictions with

a CMS-ML pipeline. cms-ml-pipeline is the name of the pipeline.

X_train is a data frame containing the turbine ids and cutoff

times of the training data and y_train is a vector containing the asso-

ciated targets. X_test contains the turbine ids and cutoff times

of the testing data. readings is the processed CMS data. 54

4-1 Visualization of target times generated for the three prediction tasks.

These targets represent the problem of predicting yaw-related mainte-

nance events and are generated for a single turbine. 61

12

4-2 The effects of the min_data parameter on the generated target times

for a single turbine. If min_data is an integer, it represents the number

of entries before starting the search process. min_data can also be a

period of time. 61

4-3 The effects of the gap parameter on the generated target times for a

single turbine. If the gap is an integer, it represents the number of

entries to use a gap. gap can also be a period of time. 61

4-4 The effects of changing the threshold for converting the power loss

output for a single turbine into a binary label. 62

4-5 Machine learning pipeline used to generate predictions from CMS data. 64

13

14

List of Tables

2.1 Target times example with turbine id as the target entity. 29

2.2 The translation of prediction problems into labeling functions that can

be used to generate targets. 30

2.3 Description of prediction engineering parameters. 41

2.4 GreenGuard data input file format. 43

3.1 Descriptions of aggregation primitives. 50

3.2 Descriptions of transform primitives. 50

4.1 Exploratory statistics of the data sources. 56

4.2 Effects of the GPE pre-processing parameters on the % of stoppages

that correspond to a work order and notification. 59

4.3 Problem statements for prediction tasks given by wind subject matter

experts and their translation into corresponding parameters for train-

ing window, forecast window, prediction window. 60

4.4 Prediction task target time statistics. 60

4.5 Statistics on the feature engineering output for various parameters. . 65

4.6 CMS-ML prediction results. These metrics are not representative of what

can be achieved once we refine the targets and optimize the machine

learning pipeline. This is purely meant to demonstrate how the soft-

ware works. 65

15

16

Chapter 1

Introduction

As machine learning has become more ubiquitous, it is now applied to an increasing

number of domain-specific problems that were traditionally handled solely by experts

[23]. However, models built for problems defined by machine learning engineers are

not necessarily very useful, as the ML engineers can lack domain knowledge and

not know what is specifically important in the domain. These systems may not

offer the flexibility to suit the changing prediction needs of subject matter experts.

Beyond identifying important problems, experts provide insights that can improve

how the data is represented for machine learning. In addition, many machine learning

frameworks do not focus on large-scale industrial deployment as the end goal, failing

to provide a solution that is easily extensible to fit with existing systems and system

formats. Through interactions with industry experts, we have found that these issues

exist within the wind energy domain. Thus, a primary contribution of this thesis is

providing a flexible machine learning framework towards the goal of enabling wind

energy subject matter experts to easily process data and construct models for their

desired prediction problems1.

Wind energy has become one of the fastest growing sources of energy in the world

due to its availability [10, 26]. However, maintenance of wind turbine parts can be

costly and difficult, especially if the parts are difficult to access [1]. Thus, machine

1This project is under active development within the Data to AI Lab. While the thesis presents
the first version of the software, much of the libraries, abstractions, and methods presented are in
active development.

17

learning for the predictive maintenance of turbines is very important. Machine learn-

ing for wind energy is also of interest due to its challenging nature, in part due to the

significant size of its signal data and the sparsity and occasionally difficult extraction

of specific maintenance events.

This project has been carried out in partnership with a wind energy company

which has provided both key insights and a significant amount of data related to

their turbines, including signals and turbine operations data over the last few years.

The industry experts have presented important information regarding the data and

active feedback on the framework and models built using it.

Using the inputs from the subject matter experts (SME), we contribute the fol-

lowing components. The first is developing a framework to streamline the process

of converting an outcome that a SME is interested in and the operations data into

desired machine learning prediction problems. We also focus on the data from one of

the sources of provided signals, called the Condition Monitoring System (CMS). CMS

is further introduced in this chapter. We provide a modular framework for creating

representations and building machine learning models for the raw CMS data.

This chapter introduces the motivation and context for a machine learning frame-

work for use by wind energy experts, especially for the predictive maintenance of

wind turbine parts. In this chapter, we provide an overview of previous work done in

applying machine learning to wind energy systems. We also present an overview of

the main concepts and technologies utilized in this work. This includes feature engi-

neering, prediction engineering, and the pipeline technologies used to help build the

framework. Finally, we discuss the main contributions of this thesis, along with its or-

ganizational details. This thesis is part of an ongoing project and reflects the current

state of the associated libraries. The libraries will evolve as the project continues.

1.1 Machine Learning for Wind Energy

For wind energy companies, remote monitoring and early detection of events is ex-

tremely important due to the high cost of corrective maintenance and the impact of

18

outages. This is important because generators and other parts may be difficult to

access immediately, especially for offshore wind farms [1]. The space has also become

increasingly popular within the machine learning community, especially as wind en-

ergy becomes one of the fastest growing power sources [10]. It has a unique set of

challenges due to the stringent performance and reliability requirements and the large

size of the data [9].

Currently, many wind energy companies employ condition monitoring systems

(CMS) to actively monitor for emerging problems, often through spectral analysis

techniques [1, 28]. CMS systems typically consist of vibration-based sensors on tur-

bine parts, especially expensive and essential parts like drive trains and blade compo-

nents [28]. Vibration changes can potentially be indicative of a fault. When rotating

parts suffer damages, it can often lead to significant vibrations, and different defects

can generate different vibration patterns at specific frequencies [7]. Typical analysis

methods span both the time and frequency domain, ranging from statistics to ad-

vanced spectral analysis techniques [7]. There is a lot of potential for extracting more

insights from the CMS data based on the processing and analysis techniques that are

chosen. Thus, due to its unique data source and the importance of its representation,

the CMS data is a large focus of this thesis.

Along with CMS sensors, data is also collected through the large number of sensors

within the supervisory control and data acquisition (SCADA) system. The SCADA

system keeps track of both signals and alarms, usually at 10 minute intervals [28].

If the dataset is thorough, the dataset will include 10-minute averages, standard

deviations, minimums, and maximums [7]. SCADA data includes, among others,

data on external conditions and operational values from a variety of positions. These

systems are set up so that when certain parameters exceed a threshold, the turbine

stops [24].

Previous work related to predicting wind energy events are generally focused on

the susceptibility-to-failure of certain turbines. Most works pursue one of three differ-

ent approaches: turbine and sub-component models, signal processing models based

on CMS data, and models based on the large amount of data provided through

19

SCADA systems [21]. Analyses and models using SCADA data are more common

since the system is more widespread; virtually all modern turbines have the SCADA

system installed [17]. For this project, access to both CMS and SCADA data is pro-

vided, allowing for the proposal of a wider range of models and a potentially better

result, especially for the lesser explored CMS data.

Many models have used SCADA data to make short-term predictions of turbine

stoppages and outages, generally through anomaly detection, classification methods

and other machine learning techniques [4, 17, 24]. Other works, recognizing the im-

pact that stoppage duration has on power generation, proposed a model for predicting

stoppage duration, while others have created methods for failure detection during ex-

treme events such as weather [5, 12]. But, one such group of authors, who were using

neural networks for outage prediction, pointed out that a weakness of their system

was that it was never deployed and tested, and they had no domain knowledge into

how applicable their system would actually be [24].

It is clear that there are a large range of problem types that subject matter

experts may want to predict or model, but most works do not engage experts to

gain insights or determine what is useful, nor do they offer the flexibility for multiple

problem types. There are works that have involved experts, but many do not have

the flexibility or interactability that we propose in this thesis. For example, R.L. Hu,

who has done much research in the wind energy space, involves knowledge garnered

from subject matter experts to help manually create artificial features [10] or select

for useful features [11].

1.2 Feature Engineering

This work applies the concepts of feature engineering to time series signal data in order

to improve the performance of machine learning models. Specifically, feature engi-

neering is the task of altering the representation of raw data to better fit a predictive

modeling algorithm [15]. Feature engineering can help create better representations

of data with incompatibilities, data with missing data values and data across multi-

20

ple databases [18]. Feature engineering can also help create smaller representations

of very large datasets, a property that we utilize in this work.

The performance of machine learning models are fairly dependent on feature repre-

sentation, resulting in a lot of time spent on data transformations [2]. The derivation

of successful feature engineering representations typically involves domain knowledge

and a labor-intensive trial-and-error method [15]. The set of representations shown in

this work has been developed with significant subject matter expert input and builds

upon previous work done on feature extraction on vibration signal data.

1.3 Pipeline Technologies

This project builds on top of work done on machine learning back-end automation

and abstractions designed by members of the MIT Data to AI (DAI) Group. Specif-

ically, this work builds on MLBlocks2, MLPrimitives3, and Bayesian Tuning and

Bandits (BTB4). To understand the usage of the architecture of these three libraries,

we introduce a few concepts:

• A primitive is a fundamental data processing block that performs a single,

well-defined computation on the data and produces an output. A primitive has

clearly specified inputs and outputs and, in some cases, hyperparameters that

control how it works. There are two types of primitives:

– The simplest type of primitive only has a data processing stage. Within

this stage, called the produce stage, the primitive takes in input data and

produces an output.

– The other type of primitive also has a fit stage, preceding the produce one,

where the primitive learns parameters from the data. These will be used

later on to produce the output.

2https://hdi-project.github.io/MLBlocks/
3https://hdi-project.github.io/MLPrimitives/
4https://hdi-project.github.io/BTB/

21

• One or more primitives can be run sequentially to form a pipeline5, where

the output of one primitive is used as the input to the next. Pipelines have fit

and predict stages. Within the fit stage, primitives are sequentially fitted and

immediately used to produce transformed data used by the next primitive. In

the predict stage, the primitives are only used to produce transformed data.

MLBlocks, is a Python-based open-source library, that provides a simple framework

for creating machine learning pipelines out of primitives from a huge ecosystem of

Python data science libraries [22]. It provides a JSON-based language to annotate

pipelines and primitives, along with a run time to execute them. For primitives, the

annotation specifies the inputs and outputs, as well as the hyperparameters and how

to tune them. The pipeline annotation includes the sequence of primitives, their ini-

tialization parameters, and information about how to connect them, if needed. As the

hyperparameters belong to the primitives, MLBlocks also extracts the hyperparame-

ters from the primitive specifications into a machine-readable format so the pipeline

can be tuned as a whole.

MLPrimitives is the open-source library that contains primitive and pipeline an-

notations, along with the code for custom primitives. The primitives include both

custom and third-party methods from data science and machine learning libraries

such as Scikit Learn, Pandas, and Keras. The primitive annotation also contains

the hyperparameters that can be used, along with a carefully-selected ideal optimiza-

tion range. MLPrimitives contains a selection of pipelines using these primitives.

These pipelines are ready-to-use to solve a number of pre-defined machine learning

problems.

To tune the hyperparameters extracted by MLBlocks, we use BTB, an open-sourced

library which provides a framework for hyperparameter tuning, and pipeline selection

[22] [8]. MLPrimitives, MLBlocks and BTB serve as the basis for both the GreenGuard

and CMS-ML systems described in Chapters 2 and 3 respectively.

5In some contexts, a pipeline can be referred to as a template as it can be used to build similar
pipelines.

22

1.4 Main Contribution

This work aims to empower subject matter experts by providing them the necessary

end-to-end architecture and abstractions to construct models for relevant problems.

The main contribution towards this is the development of two distinct libraries which

contribute to the machine learning process for predictive maintenance on wind tur-

bines.

The first library contributed by this work is a prediction engineering library called

GreenGuard Prediction Engineering or GPE. GPE provides processing and linking meth-

ods for related operations data, and applies prediction engineering methods on the

pre-processed data. GPE can ingest a variety of formats and operations data types.

GPE allows users to easily define new prediction problems to generate data for, giving

subject matter experts the flexibility to define problems as needs arise. GPE supplies

the inputs for another library called GreenGuard, which together provide a complete

machine learning solution.

The second library is a machine learning framework for the CMS data called

CMS-ML. As powerful training data can be derived from CMS signal data, the goal

is to provide users with a way to easily use and transform this data. We present a

pipeline system with a common interface where different feature representations can

be easily interchanged or even combined. New feature representations can also be

easily added to allow users who may be more familiar with the input signal data to

utilize their insight in the feature engineering process.

By extending the pipelines used for feature engineering to include machine learning

primitives, we are able to build end-to-end, modular machine learning models. We

are also able to incorporate hyperparameter tuning. Finally, other than providing an

easy-to-use infrastructure, we also provide tested, ready-to-use pipelines that we have

built for modeling predictive maintenance problems.

Finally, we also provide an exploratory analysis of the data sources, key wind

machine learning insights based on interactions with industry experts, and the results

from applying the libraries.

23

To summarize, with this thesis the following was achieved:

1. The creation of a prediction engineering library specifically for operations data

(GPE).

2. The demonstration of the effects of GPE parameters on inputs for machine learn-

ing.

3. The creation of a feature engineering and machine learning library for wind

turbine CMS signal data (CMS-ML).

4. The development of feature engineering and machine learning pipelines in CMS-ML.

5. Insights towards predictive maintenance machine learning from wind energy

experts.

Overall, these contributions provide the infrastructure for machine learning for

wind turbine predictive maintenance. They have been developed with constant feed-

back from our industry partners and are instrumental in progressing towards a de-

ployable system for large wind energy companies to use. The work completed not

only includes some ready-made examples, but also allows for future solutions to be

easily built.

1.5 Thesis Organization

The structure of this thesis is as follows:

Chapter 2 and 3 introduce the design and implementation of the two main com-

ponents of this work: the GPE and CMS-ML libraries respectively. GPE is a prediction

engineering library for wind operations events, while CMS-ML is a machine learning

library for CMS data. Within the GPE chapter, we also introduce GreenGuard, the

last component of the machine learning architecture for turbine predictive mainte-

nance. All have been designed to fit the needs of wind energy experts based on their

extensive feedback.

24

Chapter 4 shows the analysis of the data and the evaluation of the software. The

effects of user-inputted parameters are explored. Various machine learning pipelines,

built using the components of this work, were attempted in order to solve a series

of initial predictions problems. Chapter 5 summarizes the contributions made in the

thesis, along with future goals for the project.

25

26

Chapter 2

GreenGuard Prediction Engineering

GreenGuard Prediction Engineering, or GPE, is a library that uses operations data

from wind farms and finds past occurrences of events in order to generate training

examples for machine learning. GPE automates and provides abstractions for the

process of representing a prediction problem given raw data. It also offers flexibility

and ease-of-use with regards to file formatting, the designation of parameters, and

the definition of problems. In this chapter, we introduce the GPE library and relevant

concepts, discuss the design principles, and delve into the implementation details of

the data processing and functionalities that generate training examples.

2.1 Target Times

In this section, we introduce the concept of target times. Target times are a set of

tuples that consist of three components: target, target entity, and cutoff time.

Target times are important for machine learning because they tell the algorithm when

in the past an event or a outcome that we are interested in predicting happened, so

it can learn from those experiences. We now briefly describe each of the components.

27

2.1.1 Target

The target1 is the value that we want to predict, and is representative of the problem

we are aiming to solve. In this thesis, the target is either a binary or numerical value.

An example would be a target denoting whether or not a system failure occurred.

The target would be true if there was a system failure, and false otherwise.

2.1.2 Target Entity

The target entity is the real-world object on which we make predictions. In most cases,

this means that the data used to produce a specific target is only associated with a

singular instance of the target entity. In the specific case of this thesis, our target

entity is a turbine, which has an associated unique id we refer to as the turbine

id. This means we are making predictions for the turbine. A turbine also has signal

readings from a multitude of sensors. We chose turbines instead of something like the

signals to be able to use as many signals in the readings as needed.

2.1.3 Cutoff Time

Finally, the cutoff time is a datetime variable that is the point in time after which

no data can be considered for a prediction. We use the cutoff time to help filter for

signal readings that we can use as training data for predicting a certain target. The

cutoff time can be important in the representation of prediction tasks. For example,

if we wanted to make a prediction now for an event one week in the future, the cutoff

time ensures that no data beyond the current point can be accessed for predicting

the target.

An example of a set of target times is shown in Table 2.1.

1target and label are used interchangeably.

28

turbine id cutoff time target
T001 2019-07-31 1
T002 2019-08-15 0

Table 2.1: Target times example with turbine id as the target entity.

2.2 Engineering Prediction Problems

To generate the target times data frame, we need not only past data, but a process

for representing the prediction problem that translates the past data into targets.

We want to be able to functionally capture the definition of the outcome that subject

matter experts are interested in predicting. However, setting the outcome and finding

these past occurrences can be difficult. Though some outcomes can be easily com-

puted by searching through the fields of the event data, some are difficult to compute

and must be verified with a subject matter expert.

For those outcomes that are readily computable, we are able to capture the mean-

ing of issues experts want to predict within a function called labeling function. A

labeling function is a function applied to the data to calculate targets. The labeling

function takes in a window of data that may or may not contain a past occurrence

in order to generate a target. We call this specific window the prediction window,

while a segment of data is generally referred to as a data slice. An example of

applying of a labeling function to a data slice is shown in Figure 2-1.

We give an example where a subject matter expert wants to predict whether

a turbine is going to stop due to issues with the yaw motor. This can then be

translated into a labeling function that sets the target as true if the yaw keyword

is in the comments column of a data slice containing a list of stoppage events, and

false otherwise. We have represented the yaw stoppage with the existence of yaw

in comments. Other examples of prediction problems and their associated labeling

functions are shown in Table 2.2.

Once we have this method representing the problem that is to be predicted, we

then need to search through the data for the appropriate data slices that we will

apply these labeling functions to. We call the streamlined search process prediction

29

Gear breakdown
Yaw in Comments

Labeling function

1

Yaw in Comments 0

Target

Yaw failure

Bearing problem

Data Slice

T001

T001

T001

turbine id ... comments ...

Bearing problem

High temp stoppage

Gear issue

T001

T001

T001

turbine id ... comments ...

Figure 2-1: Generating a target from a data slice using a labeling function. The
labeling function in this case is searching for whether or not the yaw keyword exists
within the comments column. If this is the case for a data slice, then the labeling
function returns a target of 1, representing true. Otherwise, the function returns 0,
representing false.

Problem
Prediction

Function
Labeling

going to require repair?
Predict if a yaw motor

& repair in text fields
Check for the existence of yaw & motor

going to require inspection?
Predict if a gearbox bearing

& inspect or investigate in text fields
Check for the existence of gearbox & bearing

Table 2.2: The translation of prediction problems into labeling functions that can be
used to generate targets.

engineering, which is further detailed in section 2.4. Before prediction engineering

can be applied, we need to be able to combine the disparate files to fully utilize the

past data, a process which we introduce in the next section.

2.3 Merging Event Data

Ideally, any event-related data would be presented as one unified dataset, especially

since our prediction engineering process currently expects a single table of events as

an input2. However, more often than not, this is not possible. The ‘parent’ source of

2In future revisions, we can expect to accept multiple tables.

30

past occurrences and related ‘child’ data may be stored and recorded across different

databases or tables, especially if the data can be generated from many independent

sources.

The data we use for this thesis, for example, is sourced from independent processes.

The ‘parent’ source of data is turbine stoppages, which are often automatically gen-

erated, while other ‘child’ sources of event data, such as work orders, are generated

by technicians in the field and entered into a separate system. Thus, in order to fully

utilize all of the data sources for producing target times, the data must be merged.

If two sets of data have the same primary key, the merging process is simple.

However, if they have no relationship explicitly defined within the data, we try to

infer the implicit relationship between entries of the two sets. One way to find this

linkage is by calculating the time overlap percentage between the timestamps of entries

of different tables and checking whether it is above a defined threshold. In our specific

case, the ‘parent’ and ‘child’ table each have two timestamps, start and end. For

stoppages, the start and end denote the period when the turbine was stopped,

while for work orders the start and end indicate when the work on the turbine was

conducted.

The time overlap percentage is calculated as follows, where 𝑠1, 𝑒1, 𝑠2, 𝑒2 mark the

endpoints of the two intervals (interchangeable):

max(0,
min(𝑒1, 𝑒2) − max(𝑠1, 𝑠2)

min(𝑒2 − 𝑠2, 𝑒1 − 𝑠1)
)

This formula was derived to cover the three cases of interval overlap situations demon-

strated in Figure 2-2. The first is when one interval entirely covers another interval.

Regardless of which interval is enclosed, the overlap should be 1.0. If there is no

overlap at all, we want to ensure the percentage is exactly 0.0. Finally, if the time

intervals of two entries partially overlap, overlap percentage is calculated in terms of

the smallest interval. This is because we may have, on average, much longer time

ranges for one type of data compared to another. If almost all of one entry is within

the time frame of another, then we should consider that a high amount of overlap.

31

Examples of relevant cases are shown in Figure 2-2.

To give an example of how the time overlap percentage is used to link data entries,

we consider a case where our minimum overlap threshold is 0.5. If an entry from the

‘parent’ table has a calculated overlap of 0.8 with an entry from the ‘child’ table,

these will be merged to form a single entry.

We may run into the problem that even with a time-based linkage, the relationship

between the entries in the ‘parent’ and ‘child’ can be ambiguous. This is especially the

case if we find time linkages to multiple ‘parent’ entries for a ‘child.’ To combat this,

we can filter out linkages using information present in the text fields of the entries.

While our library covers this case, it is beyond the scope of description here.

01-01 01-02 01-03 01-04 01-05 01-06 01-07 01-08 01-09 01-10

01-01 01-02 01-03 01-04 01-05 01-06 01-07 01-08 01-09 01-10

(a) Full Overlap

01-01 01-02 01-03 01-04 01-05 01-06 01-07 01-08 01-09 01-10

(b) No Overlap

01-01 01-02 01-03 01-04 01-05 01-06 01-07 01-08 01-09 01-10

01-01 01-02 01-03 01-04 01-05 01-06 01-07 01-08 01-09 01-10

(c) Partial Overlap

Figure 2-2: Time overlap cases. (a) shows an example of the two full overlap cases,
which both have an overlap percentage of 1.0. In (b), there is no overlap, which
results in an overlap percentage of 0.0. Both cases in (c) have the same partial
overlap percentage, because it is calculated in terms of the smallest interval.

32

2.4 Prediction Engineering

Prediction engineering describes the conversion of timestamped data into feature

vectors and targets [14]. In this thesis, prediction engineering is used in particular

to represent the process of extracting labeled target times from related event files.

The process borrows heavily from Kanter et al. [14], who define and outline the

prediction engineering process in their work. They created a framework for prediction

engineering consisting of 3 main actions: label, segment, and featurize [14]. Within

the label step, the method for extracting targets from a slice of data is defined,

and the data is traversed to search for targets. Each target is associated with a

cutoff time, which marks the start of the data slice’s window. The segment step

generates data slices based on a number of prediction engineering parameters. The

parameters are described in sections 2.4.1 and 2.8.3, as well as in [14]. Feature

engineering is then applied to the data slice prior to the cutoff time to produce a

feature vector for machine learning. The Label-Segment-Featurize model forms a

basis for the prediction engineering methods used to develop the machine learning

framework in this thesis.

2.4.1 Prediction Engineering Parameters

• The training window is the amount of past data that is used for the training

a model that predicts the future after the cutoff time.

• The forecast window is the window between the end of the training window

and the start of the prediction window. This window represents how far ahead

to predict. For example, if we wanted to predict an event a week in advance,

the forecast window would be one week. The length of the forecast window is

also called the lead.

• The prediction window is the window after the forecast window. It is the

window of data that is used to calculate the target. More specifically, the data

in the prediction window is fed into the labeling function to generate a target.

33

A time series example using the prediction engineering terms defined above is shown

in Figure 2-3.

2019/01/01 01/02 01/03 01/04 01/05 01/06

cutoff time

01/07 01/08 01/09 01/10 01/11 01/12 01/13 01/14 01/15

Training window Forecast window Prediction window

Training window Forecast window Prediction window

Label = 1

2019/01/01 01/02 01/03 01/04 01/05 01/06 01/07 01/08 01/09 01/10 01/11 01/12 01/13 01/14 01/15

Figure 2-3: Visualization of prediction engineering concepts. The training, forecast,
and prediction windows all have a length of five days, and the labeling function
generates a target of 1.

2.4.2 Prediction Engineering for Wind Turbines

In this thesis, prediction engineering is applied to operations data from wind farms.

This includes information about turbine stoppages, work orders, and notifications,

as described below. All of these sources of historical data contain information that

can be used to derive targets for a number of predictive problems. Although they are

related, each source is made up of slightly different wind events that can be leveraged.

Turbine stoppages occur due to maintenance events, as well as high or low ambient

wind speeds or other environmental restrictions. Stoppages can be either manual

and automatic. The stoppages events data includes information about the cause,

comments regarding the stoppage, the duration of the stoppage and the estimated

generated power loss.

The work order data contains a summary of the maintenance work done on the

turbines. Work order entries are usually generated by technicians in the field. Each

34

work order entry contains information on the work done, along with dates related

to each step of the work order process. Similarly, notifications contain information

about the parts that caused the stoppage, whether or not there was a breakdown, the

priority of the incident, and other qualitative observations. Thus, each data source

has event observations that, if extracted correctly with prediction engineering, provide

important targets for the machine learning process.

2.5 Design Considerations

Because one goal of GPE is to enable wind domain experts to utilize prediction engi-

neering, much of the design of this library focuses on usability. The design reflects

the prioritization of the following goals, though others were considered as well.

1. Flexibility. GPE should work for multiple formats and types of operations data.

We found that while our specific dataset only contained three files, other wind

farms may have more. Thus, the framework should be able to ingest that. The

users should have the ability, through a common interface, to define arguments

that represent their changing machine learning needs.

2. Robustness. Though GPE should be flexible, it should also be safe to use.

Users should know immediately when and why processing or target generation

cannot be carried out. It should also be well-tested for a variety of scenarios so

it can be safely applied in a industrial setting.

3. Ease of use. With the goal of enabling subject matter experts, the user in-

terface must be easy to use. The library should provide the building blocks for

experts to be able to define labeling functions beyond the ones that already ex-

ist in the library. They should also be able to easily choose desired parameters

or call the methods without the need for parameter definition.

35

2.6 Library Overview

This section provides an overview of the GPE library and its various components. The

library installation, the input data expectation, the components, and the user inter-

action are described. The library aims to enable subject matter experts to utilize the

full prediction engineering process, from the merging of data sources to the generation

of targets and cutoff times.

2.6.1 Project Structure

GPE is a Python package hosted on a GitHub repository that is pip-installable via

a private PyPI package, as it is currently not open-source. The library has the

components described below.

• gpe contains the code for processing the data and applying labeling functions

to produce targets.

• gpe.labeling is a sub-package that contains both specific and generalized la-

beling functions for input into the target generation function.

• Configuration and make files.

2.6.2 Data Input Format

The library expects the aforementioned stoppages, work orders, and notifications

data as inputs. Since one of our design priorities is input flexibility, the input allows

for the following cases:

• Stoppages, work orders, and notifications, each within their own excel files.

• Work orders and notifications already merged, with stoppages in a separate file.

• Either stoppages and notifications only or stoppages and work orders only, with

each as a separate file.

36

• Any of the combinations above, with an added file with additional data (e.g.

parts replaced data).

There is flexibility not only in how the data is ingested, but in the format of the

input as well. Most fields are flexible, as only those required for processing have their

data types strictly checked. Additionally, if the required fields exist in the inputted

data under a different name, the user is able to provide a mapping from the names

in their data to the default names used by the module. Field and data type checking

is again done on the labeling function level, but only for fields that are required for

its application. The formats expected from the input excel files are as follows:

• Stoppages. Each raw entry must have a reference start and end timestamp, a

turbine ID, and the duration of the stoppage.

• Work Orders. Each raw entry must contain the IDs of the work order and

its associated notification. It must also contain the functional location of where

the work order was carried out.

• Notifications. Similar to work orders, each raw entry must contain the IDs

the notification and the associated work order, and the functional location of

the notification. The entry must also contain the duration of the breakdown

that caused the notification.

• Additional Data. Additional data must have the IDs of the turbine, work

order, and notification. If any other data type requirements for the fields are

inputted along with the data, those are checked as well.

2.7 Data Pre-processing

Given a combination of stoppages, work orders, notifications, and additional data,

we first pre-process the data for target extraction. For the purposes of this section,

we will refer to a data frame composed of merged work orders, notifications, and

additional data as wna. Pre-processing involves two main steps: data parsing and

initial processing, followed by data linking and merging.

37

2.7.1 Parsing and Initial Processing

Given the source file paths, the data is first extracted from the excel files. During

the extraction process, date and time fields referring to same time measurement are

merged to form a separate timestamp field. The required fields in the data are

then checked. Finally, the duration of events in the data are unit standardized,

and the turbine id is extracted from the functional location for the work orders and

notifications.

2.7.2 Linking Data Tables

After the work orders, notifications, and additional data are parsed and processed,

they are then merged by the IDs of the turbine, work order, and notification to

produce the wna data frame. We then try to find a linkage between the stoppages and

wna data. Linkages can only be found between data from the same turbine. If a valid

linkage is found, it is recorded as a stoppage id for each wna entry. For simplicity,

we decided to only allow a 1 to n correspondence for the linkage: a single stoppage

to multiple work orders correspondence. The stoppages and wna are considered to be

the ‘parent’ and ‘child’ datasets respectively.

In order to determine valid linkages, we first find condition-based linkages. Con-

ditions are inputted by the user via a dictionary, and each condition includes the

stoppage column, the wna column, and the keyword(s) that represent the condition.

For example, if a condition included Comments as the stoppage column, Malfunction

information as the wna column, and yaw as the keyword, then stoppage entries with

yaw in the Comments column would be considered to have a condition-based linkage

to wna entries with yaw in the Malfunction information. Condition-based linkages

are determined as follows:

• If there is only a single keyword and a single condition, then the keyword must

be present in the both of the identified columns.

• If multiple keywords are specified, any of the keywords can help create the

linkage.

38

• If multiple conditions are provided, the output is the union of the condition-

based linkages found.

• If no conditions are provided, then linkage determination relies on time overlap,

which is described further below.

However, a linkage is only considered valid if both a condition-based and time-

based linkage are found for a pair of entries. Users input the threshold they consider to

be the minimum overlap threshold to qualify the stoppage and wna entry as linked. If

the users do not give a threshold, then any time window overlap would be considered

a time linkage. The time overlap is calculated based on the method defined in section

2.3.

2.7.3 Processing Output

If a merged output is requested, the pre-processing method returns all of the extracted

data as a single data frame. The stoppages and wna are merged based on the linkages.

If entries of the wna are not linked to stoppages, they will not appear in the output.

Otherwise, if a merged output is not requested, the stoppages and the merged work

orders, notifications, and additional data (or a subset depending on the input) are

returned separately and in their entirety.

2.8 Target Generation

The pre-processed data contains turbine events that can be used to generate targets.

The GPE library provides the functionality to generate target times from a single

processed data frame. Target generation involves several components: a labeling

function sub-package, the defining of prediction engineering parameters, integration

with an external library called Compose, and target post-processing.

39

2.8.1 Labeling Functions

Through the library’s labeling function sub-package, we provide users with functions

to generate targets given a data slice. The defined labeling functions are also one of

two types: specific labeling functions, or generalized functions used to generate other

labeling functions. Specific labeling functions are labeling functions used to generate

targets for one specific prediction problem — for example, the presence of a converter

failure or the total power lost.

Generalized labeling functions, on the other hand, can generate new functions

representing prediction problems. They use their inputs to produce specific functions

applicable to a data slice. Current generalized labeling functions include those that

search for keywords in specific columns, merge other labeling functions based on a

connector, or calculate duration given a timestamp column. The keyword search

function (keyword_in_text), for example, takes in a keyword and columns, and

outputs a function that targets a data slice based on whether the specific keyword is

in the designated columns.

def gear_presence(df):
return keyword_in_text(

'gear',
columns=[

'Comments',
'Description'

]
)(df)

def pump_presence(df):
return keyword_in_text(

'pump',
columns=['Description']

)(df)

Figure 2-4: Example usage of generalized labeling functions to create specific ones.
We use keyword_in_text to create functions searching for the keywords gear and
pump within designated columns.

Thus, generalized functions can be used as the building blocks for other functions.

As more problems are defined and more labeling functions are needed, they can

assist subject matter experts in adding specific functions to the labeling function

sub-package.

40

2.8.2 Target Generation Function

The target generation function called by a user takes in data and a labeling function

as its primary arguments. The data is checked for the required arguments and data

types used by the labeling function. Each function, whether specific or created by a

general function, has annotations about its arguments as an attribute. The labeling

function is then applied on each slice of the input data. These data slices are generated

using the prediction engineering parameters. The target of the data slice is either the

output of the labeling function or a binary label created from setting a threshold on

the output.

2.8.3 Prediction Engineering Parameters

When generating targets, we apply various prediction engineering parameters in order

to better represent a problem or achieve an optimal result. Users provide these

parameters through direct argument input or by loading them via a JSON file. The

prediction engineering parameters are defined in Table 2.3, with the effects on the

outputted data further explored in section 4.3.3.

Parameter Description
target_entity entity on which to generate targets
window_size size of the prediction window

num_examples_per_instance value
number of examples per unique target entity

min_data generation
minimum data or time before starting label

gap time or number of entries between examples
drop empty whether to drop the empty data slices

threshold generation
minimum numerical threshold for binary label

lead forecast window size

Table 2.3: Description of prediction engineering parameters.

41

2.8.4 Integration with Compose

In order to generate target times while appropriately applying prediction engineer-

ing parameters, methods from the Compose3 library are used. The library provides

tools for the automation of the prediction engineering process, based on the methods

described in [14]. We initially attempted our own prediction engineering implementa-

tion; however, as Compose is open source and actively maintained, we decided instead

to use it as the framework for our target generation interface. Specifically, Compose

provides methods to generate data slices and associated cutoff times using the afore-

mentioned prediction engineering parameters (Table 2.3).

2.9 GreenGuard

In this section we introduce the GreenGuard4 library, which takes the output of GPE

as an input. GreenGuard is an open-source Python package developed by DAI Lab

members to create a pipeline framework for energy data. The library is built using

BTB, MLBlocks, and MLPrimitives. With the GreenGuard framework, the user can

either use the tested pipelines already created within the library or easily build new

pipelines for machine learning. These pipeline files follow the MLBlocks pipeline

format. They simply require a user to define primitives (eg. encoders, classifiers,

etc.), initial parameters, input names, and output names. The framework provides

the infrastructure to utilize the primitives, tune the hyperparameters, and execute

the defined pipeline. GreenGuard takes two file types as inputs: target times and

readings. The fields of the two types are shown in Table 2.4.

2.9.1 GreenGuard Process

For the native pipelines in GreenGuard, the two types of files are sourced from the

outputs of GPE and the processed output of signal readings. target times is the

output produced using GPE’s target generation functionality.
3https://github.com/FeatureLabs/compose
4https://d3-ai.github.io/GreenGuard/

42

Filename

Fields

readings target times
turbine id turbine id
signal id cutoff time
timestamp target

value

Table 2.4: GreenGuard data input file format.

The processed signal readings make up the readings. These can either be in-

putted from a data frame or loaded from a collection of files. Each file in this collec-

tion contains the readings for a single turbine over a single month. readings become

associated with target times if the timestamp of a reading falls within a target’s

training window — the window of data before its cutoff time. The size of the training

window is specified by the GreenGuard user during loading.

Training
window= 7d

turbine id

Target times

Readings

cutoff time target

T001

T001

T002

T001

T0022020-01-10 2020-01-10

2020-01-06

2020-01-03

2020-01-10

2020-01-03

...
...

...
...

...
...

1

time

turbine id signal id timestamp value

Related readings

T001

T001
..

..

..
..

..
..

..
..

T001

turbine id signal id timestamp value

Figure 2-5: Relating the readings and target times. This diagram visualizes the
process of extracting the training examples for each target based on the cutoff
time and turbine id. The resulting data slice can then be passed to the machine
learning model.

43

44

Chapter 3

Machine Learning Framework for

Condition Monitoring Data

In this chapter we describe CMS-ML, a library for applying feature engineering and

machine learning to Condition Monitoring System (CMS) data. The primary pur-

pose of this library is to use vibration and other sensor data gathered by the CMS

from sensors on different components to predict those components’ failures. To do

so, CMS-ML provides specific data processing techniques and an end-to-end modular

framework for feature engineering and machine learning. This chapter goes over the

motivations for CMS-ML, an overview of the library, and the details of its design and

implementation.

3.1 CMS Data

Condition Monitoring Systems, as introduced in section 1.1, are vibration-based sys-

tems that gather data from sensors placed on important turbine parts. The CMS

data in this thesis is specifically the output extracted from the Gram & Juhl tur-

bine condition monitoring (TCM) system, which is installed in more than 80% of all

offshore turbines [13].

The CMS data contains both signal readings and contextual information, ranging

from the ambient wind speed to the units of the readings. The signal readings are often

45

y

offset ∆

0.0

[0.5, 12.5, 1, 1, 4.5, 2.5, 3, 1, 4, 1.5, 2.5, 0.5]

0.5

2

4

6

8

10

12

1.0 1.5 2.52.0

Figure 3-1: Example FFT spectrum with the y-values, offset, and delta (∆).
The x-axis contains the frequency values, while the y-axis contains the amplitude
values.

represented in the frequency domain as FFT values, although other representations

may exist. In the CMS dataset, the FFT spectrum values are represented by three

components:

• y-values. The y-axis values of the FFT spectrum.

• offset. The distance from the origin to the first value on the x-axis.

• delta. The constant distance between the x-values.

The x-values can be easily generated from or decomposed into the offset and delta.

The three components are shown on spectrum in Figure 3-1. The FFT values also

have associated context data, such as the signal id, sensor name, turbine id, and

timestamp.

CMS data values are often represented as FFT values because vibrations due to

turbine issues can be associated with particular frequencies, making the cause of the

issue easier to discover [19]. In addition, anomalies can often be seen more easily in

the frequency domain.

Much of the motivation behind the dedication of a specific machine library to

CMS data comes from the fact that analysis of the spectral values can clearly provide

46

important insights toward predicting component issues. The CMS data also presents

some unique challenges due to its nested data format and the pre-processing needs of

the vibration signals, which are further detailed in this chapter.

3.2 Design Considerations

CMS-ML allows users to extract data and build pipelines for prediction problems us-

ing CMS data. Thus, the library’s design is largely focused on bolstering the user

experience. We sought a flexible, adjustable system where domain experts can easily

create more pipelines beyond the scope of the ones already defined within the library.

We focused on the following goals for the design of the CMS-ML library, although our

library reflects other goals as well.

1. Modularity and Abstraction. Modularity is important in order for eas-

ily providing as many machine learning and feature engineering solutions as

possible. Different parts of the pipeline can be joined, replaced, and adjusted

as necessary. For simplicity, this is best done by creating a common abstract

interface for all implemented methods.

2. Efficiency. Due to the large size of the CMS data (detailed in section 4.1.2),

the CMS-ML methods must be both time and space efficient. Any unused data

stored in memory should be effectively disposed of to ensure there is enough

memory to process the CMS data.

3. Ease of Use. To best enable subject matter experts, CMS-ML should provide

the user with an easy-to-use interface. Experts should be able to easily choose

desired parameters for custom solutions and extend the current library.

3.3 Library Overview

This section provides an overview of the CMS-ML library and its various components.

Specifically, we present how the library is installed, the expected data format, and

47

the contributions of each of its methods and components.

3.3.1 Project Structure

CMS-ML, like GPE, is a pip-installable package hosted on a private GitHub repository.

It contains the following components:

• cms_ml contains the code for parsing the raw JSON inputs and applying func-

tions to the processed data. It also contains aggregation functions, which

are functions that group rows of data together to output a single summary

value, and transform functions for the CMS data. These are considered the

primitives of the CMS pipelines.

• cms_ml.primitives contains the JSON representations of the primitives.

• cms_ml.pipelines contains the JSON annotations of feature engineering and

machine learning pipelines.

• Configuration and make files.

3.3.2 Data Input

The library expects JSON files containing the CMS data. Each JSON file contains

context and vibration readings for a signal in a certain power bin range for a turbine.

The processing function takes, as input, a path pointing to a folder of sub-folders,

each containing the CMS JSONs for a single turbine. The JSONs themselves have a

nested structure where different collections of information are grouped together.

Fields regarded as the context of the entry include many that originate from

the SCADA system, which the CMS system is able to integrate with [6]. These fields

include wind speed, yaw angle, gear oil temperature, and active power for determining

the power bin [25]. The entry’s dataset is given by the y-axis values of the vibration

data, which has an associated x-axis offset and x-axis value delta.

48

3.3.3 Data Pre-processing

The data is processed per file per turbine, and contains only the specified turbines

being processed. Since the files have an extremely nested structure, a data frame,

containing the nested fields as columns, is first parsed from each JSON file. This

frame is then merged with the rest of those parsed from the same turbine. This

process is done separately for the context and the signal readings dataset due to the

large size of the data. Since the context will contain the same information across

all aggregations applied on the data, we reduce the memory usage and processing

time by only generating the context once for each unique set of values. All fields

except for y-values are extracted and returned as the context. For the dataset, only

signal id, timestamp, and y-values are extracted. The signal id is composed of

the signal name, sensor name, and applied function.

After either the context or the dataset is extracted, the extracted values are then

filtered by the desired time range and the type of signal. The filtering at this step

also helps reduce the size of the output. We also collect garbage during the processing

steps in order to reduce the amount of memory used.

3.3.4 Primitives

Base Primitives

To help create CMS pipelines, we provide a library of functions for use as base prim-

itives. These include single-value aggregation and signal transform primitives. New

primitives can be easily contributed as well. The current aggregation and trans-

form primitives were developed using feedback from discussions with subject matter

experts and previous work in vibration analysis [3].

To use these methods in the development of the pipelines, each primitive has a

corresponding JSON annotation. There are also JSON annotations for primitives

from external modules that were deemed useful, from libraries including PyWavelets

and SciPy. The JSON primitive annotations follow the standard format described

in [22]: They contain metadata about the input and output, along with any hyper-

49

parameters. Current primitives with associated JSON annotations for single-value

aggregations and signal transforms are described in Table 3.1 and 3.2 respectively.

Primitive Description

Mean Average dataset value: 1
𝑁

Σ𝑁
𝑖=1𝑥𝑖

RMS Root mean square:
√︁

1
𝑁

Σ𝑁
𝑖=1𝑥

2
𝑖

Variance Measure of dispersion around the mean: 1
𝑁−𝐷𝑜𝐹

Σ𝑁
𝑖=1(𝑥𝑖 − 𝑥)2

STD Standard deviation, square root of variance:
√︁

1
𝑁−𝐷𝑜𝐹

Σ𝑁
𝑖=1(𝑥𝑖 − 𝑥)2

Kurtosis Measure of the ‘tailedness’ of the data: 1
𝑁 ·𝜎4 Σ𝑁

𝑖=1(𝑥𝑖 − 𝑥4)

Skew Measure of the lack of symmetry: 1
𝑁 ·𝜎3 Σ𝑁

𝑖=1(𝑥𝑖 − 𝑥3)

Crest Factor Measure of peak extremity: 1
𝑅𝑀𝑆

· 𝑥𝑚𝑎𝑥

Identity Original dataset values: 𝑥

Table 3.1: Descriptions of aggregation primitives.

Primitive Description

IFFT Inverse discrete Fourier Transform from FFT amplitudes

DWT Discrete Wavelet Transform from a time series

STFT Short Time Fourier Transform from a time series

Welch Welch’s power spectral density estimation from a time series

Frequency Band Filters data for a particular frequency band

Frequency Bin Divides the data for into frequency bins

Table 3.2: Descriptions of transform primitives.

Metaprimitives

In order to apply the primitives to the data, we utilize metaprimitives, which

are in essence connectors between the data processing output and the primitives.

Metaprimitives allow the application of aggregation or transform primitives by column

or by row. Metaprimitives are necessary for a few reasons:

50

• The aggregation and transform primitives take a single array of values as an

input. However, the outputs of the initial extraction of CMS data are large

tables with thousands of rows containing dataset arrays. The primitive needs

to be applied on the dataset array itself.

• If there are multiple frequency bands and bins, each band or bin has its own

corresponding array of values, which is the input to the primitive.

• In addition, for the sake of reducing memory usage and output size, we only gen-

erate the dataset context once per unique value set. However, the context may

be necessary for calculating the primitive result. For example, if the x-value

delta is necessary for a signal transformation, we need to retrieve that from

the context.

Metaprimitives can take in series, matrices, and data frames, and a user can

select the desired column(s) for use if necessary. Metaprimitives ensure that all the

necessary inputs are ingested by zipping any external columns to the dataset. Along

with values from other data sources, metaprimitives also take in parameters for the

primitives they are used with. For example, if a metaprimitive is used to calculate the

standard deviation of each row, it can accept parameters such as degrees of freedom.

A diagram showing the application is shown in Figure 3-2.

The metaprimitive is annotated by a JSON file in the same manner as a normal

primitive. Within a pipeline, it effectively replaces the primitive, as the metaprimitive

process handles creating and applying the block representing the primitive. Within

the JSON annotation of a pipeline, the metaprimitive would be represented as demon-

strated in Figure 3-3

3.3.5 Pipelines

The CMS-ML library contains custom primitives and pipelines for processing and run-

ning models on the CMS signal data. Though MLBlocks and MLPrimitives provide

the framework for creating and running the pipelines, the CMS-ML library contributes

51

Figure 3-2: Metaprimitive usage. Metaprimitives can apply the primitive to either
axis of the input matrix X, and can take in additional data and parameters.

{
"primitives": [

"cms_ml.meta.ApplyPrimitive",
],
"init_params": {

"cms_ml.meta.ApplyPrimitive#1": {
"primitive_name":
"cms_ml.statistics.crest_factor",
"keywords": {"X": "values"},
"axis": 1

}
}

}

Figure 3-3: Pipeline containing the metaprimitive which applies the primitive
cms_ml.statistics.crest_factor to the data.

additional functionalities, as its pipelines include the primitives and metaprimitives

for applying aggregations and transformations to the CMS data. Integrating the

CMS-ML framework with existing pipeline technologies also gives the ability to tune

the hyperparameters of the primitives, which can be used to get the best results for

both the full machine learning process and the feature engineering output.

The CMS-ML pipelines can either be feature engineering pipelines, or machine learn-

52

ing pipelines that contain the feature engineering pipelines as sub-pipelines. The

feature engineering pipelines generally follow the same workflow, which is shown in

Figure 3-4. In a machine learning pipeline, the feature engineering output is then

processed and encoded to develop a model using applicable MLPrimitives.

Apply

primitive

signal id timestamp value feature id timestampvalue valueSet

Figure 3-4: Feature engineering pipeline workflow. Within the dotted boundaries is
the metaprimitive, which creates a chain with other metaprimitives if necessary.

The processed CMS data contributes signal readings for the pipelines to use;

however, to model a prediction problem, the target times must also be provided.

This can be done with prediction engineering, but for this thesis the target times and

values are given directly by the subject matter experts, along with comments and

explanations regarding the events. Results from exploring various pipelines for initial

prediction problems are described in section 4.4.

3.4 User Interaction

Users are able to interact with the CMS-ML library in multiple ways. For feature

engineering, they can directly call the Python function for aggregation application

with the desired aggregation functions, which they can import or define to extract a

specific output. An example of the direct function call is shown in Figure 3-5.

extract_cms_features(aggregations={"rms": cms_ml.statistics.rms,
"mean": numpy.mean},

jsons_path='./data',
output_path='./output')

Figure 3-5: An example of directly calling the function that extracts features from
the CMS data. The aggregations applied are mean and rms. The CMS data is read
in from the ./data folder. Since an output path is specified, the feature engineering
result is written to a file in the ./output folder and nothing is returned.

CMS-ML also has a command line interface to enable direct use of this function,

53

shown in Figure 3-6. Users can also build pipelines solely for feature engineering.

These pipelines are made up of the aggregation and transform function primitives

and metaprimitives further described in section 3.3.4.

Figure 3-6: Command line interface with mean and rms as the aggregations. This
command is equivalent to the Python function shown in Figure 3-5.

Users can also use CMS-ML to create prediction models based on the CMS data.

This is done via tunable, end-to-end pipelines, which contain aggregation, transform,

and machine learning primitives. Currently, the pipelines are created and run using

the standard MLBlocks interface, shown in Figure 3-7. The pipeline expects, in the fit

stage, the turbine ids and cutoff times of the training data, and the associated

targets. It also expects readings in the form of a processed CMS data frame with an

array of raw signal values per row. The predict stage expects the turbine ids and

cutoff times of the testing data and readings in order to generate predictions. The

CMS-ML library has tested pipelines ready for use, and new pipelines can be easily

created.

from mlblocks import MLPipeline

pipeline = MLPipeline('cms-ml-pipeline')
pipeline.fit(X_train, y_train, readings=readings)
predictions = pipeline.predict(X_test, readings=readings)

Figure 3-7: An example of using the MLBlocks interface to make predictions with
a CMS-ML pipeline. cms-ml-pipeline is the name of the pipeline. X_train is a
data frame containing the turbine ids and cutoff times of the training data and
y_train is a vector containing the associated targets. X_test contains the turbine
ids and cutoff times of the testing data. readings is the processed CMS data.

54

Chapter 4

Analysis and Evaluation

4.1 Data Overview and Analysis

4.1.1 Data Overview

The primary dataset contains data from four sources, describing 140 turbines from

the same wind farm. All data from these sources have at least one timestamp and

are associated with a turbine. The first data source is the operations data used as

the input to the GPE library, as introduced in sections 2.4.2 and 2.6.2. Another data

source is the vibrations signal data from the CMS systems, introduced in section 3.3.2

as the input to the CMS-ML software. The other two sources, OEM SCADA data and

SCADA high temporal resolution data, are also primarily comprised of data readings.

The signal readings within the SCADA data are currently being used by GreenGuard

as inputs. Both SCADA datasets were extracted and processed from database access

files into the following format:

turbine_id signal_id timestamp value

55

4.1.2 Exploratory Analysis

After initial processing of the provided data, an exploratory analysis was conducted

both to get a better understanding of the data and to verify with subject matter

experts that, at first glance, it was correctly extracted. As introduced above, the

data comes from four sources: CMS signal data, OEM SCADA 10-minute data and

SCADA high temporal resolution data, and operations data records. Each row in

the CMS data contains vibration and other turbine-related data, some of which is

extracted from the SCADA data. The vibration data comes from several different

sensors, including those on the generator and the main bearing. The CMS dataset

contains FFT spectrums, cepstrums, and envelopes and is sampled irregularly.

The OEM SCADA data contains over 600 different types of signal, including

component temperatures, wind speed, and power generation. These signals include

those representing the mean, range, standard deviation, and end value of signals over

a 10-minute interval. The SCADA high-resolution data on the other hand only has

raw values and is irregularly sampled at a much higher frequency. The exploratory

statistics found for each of the source types are shown in Table 4.1.

data source per turbine
data points date range

CMS 300, 000 2015 - 2018

OEM SCADA 300, 000, 000, 000 2009 - 2018

High Resolution SCADA 50, 000, 000, 000 2015 - 2018

Operations Data 200, 000 2011 - 2018

Table 4.1: Exploratory statistics of the data sources.

4.2 Initial Prediction Problems

To evaluate the effectiveness of our framework, we define a few classes of initial

prediction problems, which we can then apply prediction engineering to and build

56

machine learning models for. These problems were selected based on the preferences

of subject matter experts.

4.2.1 Yaw Failures

Yaw systems are essential for the optimal functioning of wind turbines. Yaw systems

typically consist of many moving parts, including yaw bearings, yaw drives (with yaw

motors), yaw brakes, and other gears [16]. They ensure that, to maximize power input,

the turbine is aligned with the incoming wind direction [16]. Thus, a yaw system

failure can greatly affect power generation. Faulty yaw systems can also contribute to

significant load fluctuations, potentially threatening the turbine’s safety [26]. Based

on the results of reliability studies, yaw systems are shown to be the second most

common mechanical contributor to both the overall turbine failure rate and turbine

downtime [27] (as cited in [16]). Once broken, they can also be difficult to repair [26].

As predictive and preventive maintenance for yaw systems is clearly an important

problem, it was chosen as a prediction problem used to evaluate this work.

4.2.2 Gearbox Problems

The gearbox — which, along with the generator, makes up the drive train — is

an essential part of most wind turbines’ ability to produce electricity. The gearbox

transfers shaft power from a lower-speed rotor to a higher-speed generator [20]. This is

especially necessary in large turbines which rotate much more slowly. While the failure

rate of gearboxes is generally not high, they have an important role in most turbine

operations, so failures can cause significant downtime and have high maintenance

costs [20].

Given the importance of gearboxes, previous works have been conducted using

CMS vibration data for gearboxes, mainly for the diagnosis and early detection of

potential issues. Some techniques used by previous work include the use of wavelet

transform techniques, Empirical Mode Decomposition (EMD), and higher-order sta-

tistical techniques [21]. We try some of the signal processing techniques recommended

57

by previous works. Since we do not currently have confirmed gearbox failures for our

data, we focus on the problem of predicting any general gearbox problem.

4.3 GPE Parameters

4.3.1 Processing Parameters

Choosing parameters for the pre-processing step of GPE can have an effect on the

data used for generating targets, as shown in Table 4.2. The threshold and linkage

conditions can impact how many work orders and notifications appear in the pre-

processing output. Conditions that are too stringent can cause a loss of valuable

information, while those that are too loose can link entries that are not actually

connected. In addition, if different timestamps within the same data entry vary a lot,

this can also affect the linkages.

4.3.2 Representation of Prediction Tasks

Prediction engineering parameters, especially the sizes of the training window, fore-

cast window, and prediction window, can help represent different prediction tasks.

Collaborating with wind subject matter experts, we defined three different tasks,

translating their functional meanings into window size parameters. Note that apply-

ing the desired training window is not part of the prediction engineering process —

it is instead done within the pipeline through time series processing primitives.

Using a labeling function that searched for yaw-related maintenance events within

the notifications and work orders and data outputted by the GPE pre-processing func-

tion with the default arguments, we generated targets for each of these tasks. This

was done using the maintenance start time as the time index, which is a reference

time for the notifications data. We generated target times for a single turbine to show

a clear example of the parameter effects. Table 4.4 gives an overview of the generated

targets, while 4-1 provides a visualization of the target times.

Given the spread of the notification data for the selected turbine, there is not much

58

threshold conditions reference timestamp with linkages
% of stoppages

0.0 — End of Malfunction
Start of Malfunction 12.56

0.5 — End of Malfunction
Start of Malfunction 12.53

1.0 — End of Malfunction
Start of Malfunction 12.01

0.0 — End of Work Order
Start of Work Order 12.61

0.0 —

Required
End of Notification

Required
Start of Notification

12.48

0.0
Information
Maintenance

gear in Comments,

End of Malfunction
Start of Malfunction 0.64

0.0
Notification Text Columns

Work Order &
gear in Comments,

End of Malfunction
Start of Malfunction 0.69

Table 4.2: Effects of the GPE pre-processing parameters on the % of stoppages that
correspond to a work order and notification.

visual difference between the first two prediction tasks. However, the timestamps are

less shifted in the second prediction task, and there are slightly more targets due to

the smaller data slices. In contrast, for the third prediction task, larger data slices

mean there are fewer targets and the targets are more spread out and uniform.

4.3.3 Prediction Engineering Parameters

We also explored the effects of other prediction engineering parameters on the gen-

erated targets for yaw failure prediction, choosing to focus on the first predictive

task (ie. normal or proactive maintenance). Tables 4-2, 4-3, and 4-4 display various

statistics regarding how the prediction engineering output was affected by changing

59

training window forecast window prediction window

1. Normal or proactive maintenance planning

1 week 1 week 1 week

2. Unlimited technicians or short term interventions to influence availability

3 day 3 day 3 day

3. Batch maintenance or long term maintenance planning

3 months 0 day 3 months

Table 4.3: Problem statements for prediction tasks given by wind subject matter
experts and their translation into corresponding parameters for training window,
forecast window, prediction window.

window
forecast

window
prediction

targets
total

targets
positive

timestamp
first

timestamp
last

1 week 1 week 26 9 05-22-11 04:24 09-15-18 04:24

3 day 3 day 28 8 05-26-11 04:24 09-19-18 04:24

0 day 3 months 17 8 05-29-11 04:24 08-05-18 04:24

Table 4.4: Prediction task target time statistics.

the parameters.

Figure 4-2 shows the effects of varying the min_data parameter for a turbine,

which specifies the amount of indices or time before we start searching for targets.

Figure 4-3 presents the results from varying the gap between data slices, which can

also be in terms of indices or time periods. The data clearly shows that the gap is

important for properly spacing the targets and preventing or encouraging window

overlap if necessary. Finally, in Figure 4-4, we use a numerical labeling function for

the total kilowatt-hour power loss. The numerical threshold value that determines

the binary output of the data directly affects the balance of positive and negative

targets in the resulting targets.

60

Figure 4-1: Visualization of target times generated for the three prediction tasks.
These targets represent the problem of predicting yaw-related maintenance events
and are generated for a single turbine.

Figure 4-2: The effects of the min_data parameter on the generated target times for
a single turbine. If min_data is an integer, it represents the number of entries before
starting the search process. min_data can also be a period of time.

Figure 4-3: The effects of the gap parameter on the generated target times for a single
turbine. If the gap is an integer, it represents the number of entries to use a gap. gap
can also be a period of time.

4.4 CMS-ML Usage

In this section, we demonstrate the application of the CMS-ML pipelines with the initial

prediction problems. We present statistics describing the feature engineering output
61

Figure 4-4: The effects of changing the threshold for converting the power loss
output for a single turbine into a binary label.

and some preliminary results from running the selected machine learning pipelines.

The models provide basic examples of the software’s utilization and the impact of

using different primitives, instead of as meaningful models for the prediction problems.

4.4.1 Data Preparation

To evaluate CMS-ML, we developed a couple of feature engineering and machine learn-

ing pipelines for use with the initial prediction problems. For the yaw prediction prob-

lem, we focused on predicting whether an expert-confirmed yaw gear failure would

happen or not. For gearbox, since we did not have confirmed failures for the time

range of the CMS data, we instead focused on predicting if any type of gearbox prob-

lem would occur. We represented these problems with targets that were manually

extracted from the operations data.

Since the date range of the operations data (from 2011 to 2018) is larger than that

of the CMS data (from mid-2015 to mid-2018), the targets first had to be filtered. In

addition, because we were only given information about whether a problem occurred

or not, we needed to pick some points in time that represented ‘normal’ operational

circumstances. For simplicity, even though the non-problem to problem ratio is high,

we sampled operational points until we had a balanced dataset. For the yaw gear

failure and gearbox problem prediction problems, we used balanced, binary datasets

that included 88 and 66 targets respectively.

62

4.4.2 Pipeline Details

The machine learning pipeline contained the following steps:

• After the CMS-ML primitives were applied to the data, the data was then re-

sampled on a daily basis, imputed to fill in any missing values, and scaled.

• Then, using a training window of seven days, a time series matrix was extracted.

This matrix consists of training examples, each represented by the signal values

per each timestamp.

• Finally, the data was fitted to keras.Sequential.LSTMTimeSeriesClassifier,

which was used to generate targets for new data.

Using BTB, we also ran each pipeline for five hyperparameter tuning iterations. An

example JSON annotation of a full pipeline is shown in Appendix A, while a visual-

ization of the pipeline’s machine learning section is shown in Figure 4-5.

4.4.3 Results

To show the importance of primitive selection for the CMS-ML output, individual

primitives and chains of primitives were tested. Due to the design of CMS-ML, the

feature engineering process was simple. We were able to switch out primitives very

easily by substituting the primitive name and initialization parameters within the

metaprimitive block. We could also chain primitives by simply adding more consec-

utive metaprimitive blocks.

The statistics of the feature engineering output from the attempted primitives and

primitive combinations are shown in Table 4.5. As shown, the choice of primitive(s)

can impact the data value. In addition, as there are signals providing different types

of measurements across many parts, the variance of the primitive output across the

whole dataset can be relatively high.

The results from running the LSTM time series classifier with primitives for both

the yaw gear failure and the gearbox problem are shown in Table 4.6. The values

presented are the best results out of five attempts per pipeline. Though the results are

63

Figure 4-5: Machine learning pipeline used to generate predictions from CMS data.

not strong, they demonstrate the valid usage of CMS-ML pipelines to create end-to-end

machine learning solutions using the CMS data.

4.5 Concluding Remarks

In this section, we demonstrated the usages of GPE and CMS-ML. For GPE, we have

demonstrated how parameters can be used to portray prediction tasks. The selection

of GPE’s parameters, both during pre-processing and target generation, have a signif-

icant impact on how past data is represented. Though not shown, this in turn affects

64

primitive(s) mean std min max

mean 11.2 122.6 0.0 1560.6

rms 11.4 122.6 0.0 1560.7

kurtosis 277.4 319.5 -3.0 4291.5

variance 17.6 329.6 0.0 162390.3

variance ∘ Daubechies 2 wavelet 52.8 1007.0 0.0 325472.4

variance ∘ Daubechies 2 wavelet ∘ IFFT 5.7 66.9 0.0 1012.9

Table 4.5: Statistics on the feature engineering output for various parameters.

primitive(s) problem accuracy F1 score

mean⌢rms yaw 0.59 0.64

gearbox 0.59 0.36

kurtosis yaw 0.63 0.63

gearbox 0.53 0.55

variance yaw 0.59 0.61

gearbox 0.53 0.64

variance ∘ Daubechies 2 wavelet yaw 0.55 0.69

gearbox 0.41 0.44

variance ∘ Daubechies 2 wavelet ∘ IFFT yaw .64 .67

gearbox 0.59 0.46

Table 4.6: CMS-ML prediction results. These metrics are not representative of what
can be achieved once we refine the targets and optimize the machine learning pipeline.
This is purely meant to demonstrate how the software works.

the models produced by GreenGuard. This work clearly motivates a future need to

explore parameter selection in the context of wind machine learning models.

As mentioned previously, although we did not produce meaningful results from

running the full CMS-ML pipelines, we were still effective in demonstrating the ease

of their usage and the effects of primitive decisions. In addition, end-to-end tuning

could be a promising advantage of this pipeline-based infrastructure. With further

65

exploration, more data, and better targets, we anticipate that this work can serve as

a base for exploring increasingly better machine learning pipelines based on the CMS

data.

66

Chapter 5

Conclusion

5.1 Future Work

Though great progress has been made towards developing a complete machine learning

solution for wind turbine predictive maintenance, there are clear steps that should

be taken to improve this project. The two immediate steps are detailed in the next

subsection.

5.1.1 Improvement of Pipelines

The pipelines shown in this thesis showcase the usage of the wind machine learning

libraries and how manageable they are to create and modify. While conducting this

work and creating demonstrative pipelines, we identified various avenues of explo-

ration to improve both the performance and usage of the pipelines. We focused on

the following:

• The output of the pipelines is fairly reliant on the feature engineering per-

formed by the aggregation and transform primitives. In our initial exploration,

we tested the effects of a small number of primitives and combinations of prim-

itives. Within the library, we also provided the primitives for additional signal

transformations and aggregations. Further work should be done towards creat-

ing and testing more primitives and combinations for CMS feature engineering.

67

Given the feedback from the subject matter experts, we believe that the fre-

quency band and bin primitives could be of particular interest. In addition,

the models themselves can be further optimized or exchanged for different time

series models.

• The process, given the size of the CMS data, can be fairly slow and memory

consuming. We have made steps towards solving this through garbage collection

and code optimization. However, further adjustments can be made, including

signal filtering for data size reduction and threading. Signal filtering could

leverage domain knowledge by obtaining insights from the experts about the

importance of certain signals. A similar problem exists with the OEM and

High Temporal Resolution SCADA data.

5.1.2 GPE User Interface

When users currently interface with GPE, they can easily generate sets of targets

with a simple function call. However, we recognize that they must input prediction

engineering parameters based on their best guess as to what they should be. They

also need to know the name and usage of the labeling function that corresponds

with the problem they are aiming to solve. This means that users may need some

prior knowledge about how prediction engineering works and how the library has

been implemented. Thus, GPE needs a better interface where users can easily explore

both the parameters and labeling functions. This solution could take the form of a

lightweight web app built with a REST API.

We also want to conduct user testing of GPE to get a better understanding of

expert interaction and to iteratively improve the interface. We want to get feedback

on how usable and learnable the interface is, and how well it suits their needs for

prediction engineering.

68

5.1.3 Direct Integration

The current implementation of the wind machine learning system has been designed

with integration and flexibility in mind. However, these libraries were created to in-

gest offline outputs from industry systems. Since a goal is for these systems to have

significant exposure and be used towards solving a breadth of prediction problems,

the data inputs and outputs of these systems must be easily integrable with exist-

ing databases. With this integration, there may be other priorities that need to be

considered, such as security and data access controls.

69

70

Appendix A

Pipelines

{
"primitives": [

"pandas.DataFrame.pop",
"cms_ml.meta.ApplyPrimitive",
"pandas.DataFrame.set",
"pandas.DataFrame.resample",
"pandas.DataFrame.unstack",
"pandas.DataFrame.pop",
"pandas.DataFrame.pop",
"sklearn.impute.SimpleImputer",
"sklearn.preprocessing.MinMaxScaler",
"pandas.DataFrame",
"pandas.DataFrame.set",
"pandas.DataFrame.set",
"mlprimitives.custom.timeseries_preprocessing.cutoff_window_sequences",
"keras.Sequential.LSTMTimeSeriesClassifier"

],
"init_params": {

"pandas.DataFrame.pop#1": {"item": "value"},
"cms_ml.meta.ApplyPrimitive#1": {

"primitive_name": "scipy.stats.kurtosis",
"keywords": {"X": "a"},
"axis": 1

},
"pandas.DataFrame.set#1": {"key": "value"},
"pandas.DataFrame.resample#1": {

"rule": "1D",
"on": "timestamp",
"groupby": ["turbine_id", "signal_id"],
"aggregation": "mean",
"reset_index": false

},
"pandas.DataFrame.unstack#1": {"level": "signal_id", "reset_index": true},
"pandas.DataFrame.pop#2": {"item": "turbine_id"},
"pandas.DataFrame.pop#3": {"item": "timestamp"},
"sklearn.preprocessing.MinMaxScaler#1": {"feature_range": [-1, 1]},

71

"pandas.DataFrame#1": {},
"pandas.DataFrame.set#2": {"key": "turbine_id"},
"pandas.DataFrame.set#3": {"key": "timestamp"},
"mlprimitives.custom.timeseries_preprocessing.cutoff_window_sequences#1": {

"window_size": 7,
"cutoff_time": "cutoff_time",
"time_index": "timestamp"

},
"keras.Sequential.LSTMTimeSeriesClassifier": {

"epochs": 35,
"input_shape": [7, 108]

}
},
"input_names": {

"pandas.DataFrame.pop#1": {"X": "readings"},
"cms_ml.meta.ApplyPrimitive#1": {"X": "values"},
"pandas.DataFrame.set#1": {"X": "readings", "value": "values"},
"pandas.DataFrame.resample#1": {"X": "readings"},
"pandas.DataFrame.unstack#1": {"X": "readings"},
"pandas.DataFrame.pop#2": {"X": "readings"},
"pandas.DataFrame.pop#3": {"X": "readings"},
"sklearn.impute.SimpleImputer#1": {"X": "readings"},
"sklearn.preprocessing.MinMaxScaler#1": {"X": "readings"},
"pandas.DataFrame#1": {"X": "readings"},
"pandas.DataFrame.set#2": {"X": "readings", "value": "turbine_id"},
"pandas.DataFrame.set#3": {"X": "readings", "value": "timestamp"},
"mlprimitives.custom.timeseries_preprocessing.cutoff_window_sequences#1": {

"timeseries": "readings"
}

},
"output_names": {

"pandas.DataFrame.pop#1": {"item": "values"},
"cms_ml.meta.ApplyPrimitive#1": {"X": "values"},
"pandas.DataFrame.resample#1": {"X": "readings"},
"pandas.DataFrame.unstack#1": {"X": "readings"},
"pandas.DataFrame.pop#2": {"item": "turbine_id"},
"pandas.DataFrame.pop#3": {"item": "timestamp"},
"sklearn.impute.SimpleImputer#1": {"X": "readings"},
"sklearn.preprocessing.MinMaxScaler#1": {"X": "readings"},
"pandas.DataFrame#1": {"X": "readings"}

}
}

Example of a full CMS-ML pipeline.

72

Bibliography

[1] Y. Amirat, M.E.H. Benbouzid, E. Al-Ahmar, B. Bensaker, and S. Turri. A brief
status on condition monitoring and fault diagnosis in wind energy conversion
systems. Renewable and Sustainable Energy Reviews, 13(9):2629 – 2636, 2009.

[2] Yoshua Bengio, Aaron C. Courville, and Pascal Vincent. Unsupervised fea-
ture learning and deep learning: A review and new perspectives. CoRR,
abs/1206.5538, 2012.

[3] Wahyu Caesarendra and Tegoeh Tjahjowidodo. A review of feature extraction
methods in vibration-based condition monitoring and its application for degra-
dation trend estimation of low-speed slew bearing. Machines, 5(4), 2017.

[4] B. Chen, P. C. Matthews, and P. J. Tavner. Automated on-line fault prognosis
for wind turbine pitch systems using supervisory control and data acquisition.
IET Renewable Power Generation, 9(5):503–513, 2015.

[5] P. Chen and M. Kezunovic. Fuzzy logic approach to predictive risk analysis in
distribution outage management. IEEE Transactions on Smart Grid, 7(6):2827–
2836, Nov 2016.

[6] C.J. Crabtree, D. Zappala?, and P.J. Tavner. Survey of commercially available
condition monitoring systems for wind turbines. Technical report, DU, May
2014.

[7] Katharina Fischer and Diego Coronado. Condition monitoring of wind tur-
bines: State of the art, user experience and recommendations. VGB PowerTech,
2015:51–56, 07 2015.

[8] Laura Gustafson. Bayesian tuning and bandits: An extensible, open source
library for automl. M. eng thesis, Massachusetts Institute of Technology, Cam-
bridge, MA, June 2018.

[9] Justin Heinermann and Oliver Kramer. Machine learning ensembles for wind
power prediction. Renewable Energy, 89:671 – 679, 2016.

[10] R. L. Hu, K. Leahy, I. C. Konstantakopoulos, D. M. Auslander, C. J. Spanos, and
A. M. Agogino. Using domain knowledge features for wind turbine diagnostics.
pages 300–307, Dec 2016.

73

[11] R.L. Hu, J. Granderson, D.M. Auslander, and A. Agogino. Design of machine
learning models with domain experts for automated sensor selection for energy
fault detection. Applied Energy, 235:117 – 128, 2019.

[12] A. Jaech, B. Zhang, M. Ostendorf, and D. S. Kirschen. Real-time prediction
of the duration of distribution system outages. IEEE Transactions on Power
Systems, 34(1):773–781, Jan 2019.

[13] Gram & Juhl. Gram & juhl’s tcm aftermarket solutions for the scottish cms
market. 09 2018.

[14] James Max Kanter, Owen Gillespie, and Kalyan Veeramachaneni. Label, seg-
ment, featurize: a cross domain framework for prediction engineering. 2016.

[15] Udayan Khurana, Horst Samulowitz, and Deepak S. Turaga. Feature engineering
for predictive modeling using reinforcement learning. CoRR, abs/1709.07150,
2017.

[16] M-G Kim and P H Dalhoff. Yaw systems for wind turbines – overview of concepts,
current challenges and design methods. 524:012086, jun 2014.

[17] Kevin Leahy, Colm Gallagher, Ken Bruton, Peter O’Donovan, and Dominic T.J.
O’Sullivan. Automatically identifying and predicting unplanned wind turbine
stoppages using SCADA and alarms system data: Case study and results. Jour-
nal of Physics: Conference Series, 926:012011, nov 2017.

[18] Kelvin Lu. Feature engineering and evaluation in lightweight systems. M. eng
thesis, Massachusetts Institute of Technology, Cambridge, MA, June 2019.

[19] Jason Mais. Spectrum analysis: The key features of analyzing spectra. SKF
USA Inc., 05 2002.

[20] S. McFadden and B. Basu. 7 - wind turbine gearbox design with drivetrain
dynamic analysis. In Chong Ng and Li Ran, editors, Offshore Wind Farms,
pages 137 – 158. Woodhead Publishing, 2016.

[21] Mengyan Nie and Ling Wang. Review of condition monitoring and fault diagnosis
technologies for wind turbine gearbox. Procedia CIRP, 11:287 – 290, 2013. 2nd
International Through-life Engineering Services Conference.

[22] Micah J. Smith, Carles Sala, James Max Kanter, and Kalyan Veeramachaneni.
The machine learning bazaar: Harnessing the ml ecosystem for effective system
development. arXiv e-prints, page arXiv:1905.08942, 2019.

[23] Yangqiu Song and Dan Roth. Machine learning with world knowledge: The
position and survey. CoRR, abs/1705.02908, 2017.

[24] Peng Sun, Jian Li, Junsheng Chen, and Xiao Lei. A short-term outage model of
wind turbines with doubly fed induction generators based on supervisory control
and data acquisition data. Energies, 9(11), 2016.

74

[25] Liang Tao, Qian Siqi, Yingjuan Zhang, and Huan Shi. Abnormal detection of
wind turbine based on scada data mining. Mathematical Problems in Engineer-
ing, 2019:1–10, 08 2019.

[26] Shuting Wan, Lifeng Cheng, and Xiaoling Sheng. Effects of yaw error on wind
turbine running characteristics based on the equivalent wind speed model. En-
ergies, 8(7):6286–6301, Jun 2015.

[27] M Wilkinson and B Hendriks. Reliawind – report on wind turbine reliability
profiles tech. rep. gh. 2011.

[28] Wenxian Yang, P.J. Tavner, Christopher Crabtree, Yanhui Feng, and Yingning
Qiu. Wind turbine condition monitoring: Technical and commercial challenges.
Wind Energy, 17, 05 2014.

75

