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Nonparametric System identification of Stochastic Switched Linear

Systems

Tuhin Sarkar Alexander Rakhlin Munther Dahleh

Abstract— We address the problem of learning the param-
eters of a mean square stable switched linear systems(SLS)
with unknown latent space dimension, or order, from its noisy
input–output data. In particular, we focus on learning a good
lower order approximation of the underlying model allowed
by finite data. This is achieved by constructing Hankel-like
matrices from data and obtaining suitable approximations via
SVD truncation where the threshold for SVD truncation is
purely data dependent. By exploiting tools from theory of model
reduction for SLS, we find that the system parameter estimates
are close to a balanced truncated realization of the underlying
system with high probability.

I. INTRODUCTION

Finite time system identification is an important problem

in the context of control theory, times series analysis and

robotics among many others. In this work, we focus on

parameter estimation and model approximation of switched

linear systems (SLS), which are described by

xk+1 = Aθkxk +Buk + ηk+1 (1)

yk = Cxk + wk

Here at time k, xk ∈ R
n, yk ∈ R

p, uk ∈ R
m are the

latent state, output and input respectively. θk ∈ {1, 2, . . . , s}
is the discrete state, mode or switch with ηk, wk being

the process and output noise respectively. We assume that

{θk}∞k=1 is an i.i.d process with P(θk = i) = pi. The

goal is to learn (C, {pi, Ai}si=1, B) from observed data

{yk, uk, θk}Nk=1 when the latent space dimension n is un-

known. In many cases n > p,m and it becomes difficult to

find suitable parametrizations that allow for provably efficient

learning. For the special case of LTI systems, i.e., s = 1,

these issues were discussed in detail in [1]. It was suggested

there that one can learn lower order approximations of the

original system from finite noisy data. To motivate the study

of such approximations, consider the following example:

Example 1. Let s = 2, pi = 0.5, |γ| < 1. Consider M1 =

TS,AR,MD are with Massachusetts Institute of Technology, Cambridge,
MA 02139 (email: tsarkar,rakhlin, dahleh@mit.edu)

{C,A1 ∈ R
n×n, B},M2 = {C,A2 ∈ R

n×n, B} given by

B =








0
...

0
1







, C = B⊤, A1 =








0 0 . . . 0
0 0 . . . 0
...

...
...

...

0 . . . 0 γ








A2 =









0 1 . . . 0

0 0
. . . 0

...
...

...
. . .

a 0 . . . 0









(2)

Assume that na << 1. This SLS is of order n which may

be large. However, it can be suitably modeled by a lower

dimensional SLS (“effective” order is ≤ 2 and can be

checked by a simple computation of {CAiAjB}2i,j=1).

The previous example suggests that in many cases the true

order is not important; rather a lower order model exists that

approximates the true system well. Furthermore, finite noisy

data limits the complexity of models that can be effectively

learned (See discussion in [2]). The existence of an “effec-

tive” lower order and finite data length motivate the question

of finding “good” lower dimensional approximations of the

underlying model from finite noisy data.

A. Related Work

The study of switched linear systems has attracted a lot

of attention [3], [4], [5] to name a few. These have been

used in neuroscience to model neuron firing [6], modeling

the stock index [7] and more generally approximate non–

linear processes [8] with reasonable accuracy. The problem

of realization, i.e., whether there exists a SLS that satisfies

the given data (in the noiseless case), has been studied in [9],

[10], [11] and references therein. Specifically, [9] provides

a purely algebraic view of realization where the switching

is a function of discrete input symbols. The authors in [10]

consider the case when discrete events are external inputs

and there are linear reset maps that reset the state after

switching. Finally, the theory of realization for generalized

bilinear systems is studied in [11] and typically relies on

the finite rank property of a certain Hankel–like matrix.

Identification of a special class of SLS known as switched

ARX systems has been widely studied [8], [12], [13], [14],

[15], [16]. Under the assumption that an upper bound on the

model order is known, an algebro–geometric approach to

system identification is proposed under the assumption that

{θk}∞k=1 are not observed. The algorithms there typically

involve clustering and as a result suffer exponential in order

http://arxiv.org/abs/1909.04617v1


sample complexity [17]. From a system theory perspective,

model approximation of SLS has been very well studied

[18], [19], [20]. These methods mimic balanced truncation–

like methods for model reduction and provide error guar-

antees between the original and reduced system. Despite

substantial work on realization theory, identification and

model reduction of SLS, there is little work on purely data

driven approaches to model approximation. More recently,

[1], [21] study data driven approaches to learning reduced

order approximations of the original model. However, [21]

does not assume any noise in the data generating process.

This work is an extension of the work in [1] to the case of

SLS.

B. Contributions

In our work we study the case when {yk, uk, θk}Nk=1 is

observed and we would like to learn (C, {Ai, pi}si=1, B)
from observed data. Such a case is relevant when the

switches are exogenous but not a control input; for example

traffic congestion (continuous state) as a function of weather

conditions (discrete switches: snow, heavy rains etc.). The

contributions of this paper can be summarized as follows:

• We extend the techniques introduced in [1] for SLS

identification. Specifically, central to our approach is

finding a system Hankel–like matrix for the SLS. We

show that, similar to LTI systems, an appropriate SVD

of the doubly infinite system Hankel matrix gives the

individual system parameters (up to similarity transfor-

mation).

• Due to the presence of noisy finite data, we provide a

p( s
N−1
s−1 )×m( s

N−1
s−1 ) dimensional estimate of the doubly

infinite system Hankel matrix. We show that if we let

N grow carefully with the number of samples, we can

obtain an accurate (with PAC guarantees) estimate of

the system Hankel matrix.

• By leveraging tools from the theory of model order

reduction of SLS, we provide an algorithm to obtain

“good” lower order approximations of the original sys-

tem directly from data. To this end, we also provide a

model order selection rule to choose the best approxi-

mation of the underlying SLS than can be learned from

data with high probability. The model selection rule

essentially involves a hard singular value thresholding

and can be shown to be minimax optimal.

II. SYSTEM MODEL AND ALGORITHM

Recall the SLS dynamics in Eq. (1). Denote by l
j
i =

{θj, θj−1, . . . , θi} ∈ [s]j−1+1 an arbitrary sequence of

switches from i to j and A
l
j
i
= AθjAθj−1 . . . Aθi . For two

switch sequences {θ2, θ1}, {φ2, φ1} define a concatenation

operator ‘:’ as {θ2, θ1} : {φ2, φ1} = {θ2, θ1, φ2, φ1}. Then

li1 : l
j
1 is concatenation of li1, l

j
1. We state our assumptions

below

• We have

sup
N≥0

{ ∑

lN1 ∈[s]N

||CAlN1
B||2F ,

∑

lN1 ∈[s]N

||CAlN1
||2F

}

≤ β2

• {ηt, wt}∞t=1 are i.i.d zero mean subGaussian noise pro-

cess with subGaussian norm 1 (see Def. 2.5.6 in [22]).

• SLS is mean–square stable or equivalently
∑s

i=1 piAi⊗
Ai is Schur stable. (Theorem 2.1 in [18])

• There exist X1, X2 ≻ 0 such that
∑s

i=1 piAiX1A
⊤
i +

BB⊤ = X1 and
∑s

i=1 piA
⊤
i X2Ai + C⊤C = X2.

• Let σi = λi(X1X2) and assume that σi+1 < σi.

Furthermore, let τ+ = inf1≤i≤n−1(1 − σi+1

σi
).

The third assumption ensures minimality, i.e., controllability

and observability, of the data generating SLS (See [11]).

The goal is to identify {C, {pi, Ai}si=1, B} from data

{yk, uk, θk}∞k=1 when n (or its upper bound) is unknown.

The final assumption mimics the distinct Hankel singular

value assumption for LTI systems. For simplicity we call

pmax = sup1≤i≤s pi.

It is clear that for any sequence of observed switches lN1 ,

we have the corresponding output yN as

yN =

N−1∑

j=2

CAθN−1AθN−2 . . . AθjBuj−1 + CBuN−1

+

N−1∑

j=2

CAθN−1AθN−2 . . . Aθjηj−1 + CηN−1 + wN

(3)

Finally a measure of distance between two switched linear

systems with probabilistic switches is the stochastic L2 gain

given by

Definition 1 (Definition 2.2 in [18]). Let the noise

{ηk, wk}∞k=1 = 0. Let θ = (θ1, θ2, . . .) ∈ [s]∞, u =

(u1, u2, . . .) ∈ R
∞ and y

(θ,u)
M , y

(θ,u)
Mr

∈ R
∞ be the output

sequence, in response to input u and switch sequence θ,

of system M and Mr respectively. Then the stochastic L2

distance between M and Mr denoted by ∆M,Mr
is

∆2
M,Mr

= sup
||u||2≤1

Eθ[||y(θ,u)M − y
(θ,u)
Mr

||22]

The first question we pose is if there exists a Hankel matrix

based representation for SLS as in the case of LTI systems

that captures important properties about the system. In par-

ticular, whether it is possible to find the system parameters

from input–output data in the ideal case of infinite noiseless

data. We will now construct a system Hankel–like matrix

that indeed answers this question positively. First, we will

arrange {li1 ∈ [s]i}Ni=0 in a lexicographic order. This can be

done for example as in [23]. To summarize, every sequence

lN1 has a unique index L(lN1 ) = θNsN−1 + . . . + θ1 with

N = 0 =⇒ L(lN1 ) = 0. Then the p( s
N+1−1
s−1 )×m( s

N+1−1
s−1 )

Hankel–like matrix,

[H(N)]pL(li1)+1:pL(li1)+p,mL(l
j
1)+1:mL(l

j
1)+m =

√
p

li1:l
j
1
CA

li1:l
j
1
B

(4)

∀0 ≤ i, j ≤ N − 1. Define H(N)
k as

[H(N)
k ]pL(li1)+1:pL(li1)+p,mL(l

j
1)+1:mL(l

j
1)+m

=[H(N)]pL(li1:{k})+1:pL(li1:{k})+p,mL(l
j
1)+1:mL(l

j
1)+m (5)



Note that if s → 1, i.e., LTI system, then H(N) becomes

p(N + 1) × m(N + 1) matrix and becomes the standard

Hankel matrix for LTI systems. Let H(∞) = limN→∞ H(N),

i.e., its doubly infinite extension. To give some intuition we

present an example below

Example 2. Let s = 2. Then L(φ) = 0, L({1}) =
1, L({2}) = 2, L({1, 1}) = 3, L({1, 2}) = 4, . . .. As a result










CB
√
p1CA1B

√
p2CA2B . . .√

p1CA1B
√

p21CA2
1B

√
p1p2CA1A2B . . .√

p2CA2B
√
p1p2CA2A1B

√

p22CA2
2B . . .

√

p21CA2
1B

√

p31CA3
1B

√

p21p2CA2
1A2B . . .

...
...

...
...










︸ ︷︷ ︸

=H(∞)

(6)

√
pk










CAkB
√
p1CAkA1B . . .√

p1CA1AkB
√

p21CA1AkA1B . . .√
p2CA2AkB

√
p1p2CA2AkA1B . . .

√

p21CA2
1AkB

√

p31CA2
1AkA1B . . .

...
...

...










︸ ︷︷ ︸

=H(∞)
k

(7)

Proposition 1. H(∞) is a well defined operator with

rank(H(∞)) = n. Let H(∞) = UΣV ⊤ and H(∞)
k be as

Eq. (5). Then [UΣ1/2]1:p,: = C, [Σ1/2V ⊤]:,1:m = B

√
pkAk = Σ−1/2U⊤H(∞)

k V Σ−1/2

for every 1 ≤ k ≤ s.

Proof. Note that

H(∞) =











C√
p1CA1

...√
pli1

CAli1
...











︸ ︷︷ ︸

=O

[B,
√
p1A1B, . . . ,

√
pli1

Ali1
B, . . .]

︸ ︷︷ ︸

=R

(8)

Then O⊤O = X2,RR⊤ = X1 and the result follows by

Sylvester rank inequality. Now, H(∞)
k is such that we only

choose the block matrices in O that end in Ak , i.e., H(∞)
k =

ÕR where each of the submatrices in Õ end in Ak. Since the

occurence of a switch is independent we get the desiderata

by noting that Õ =
√
pkOAk.

Proposition 1 indicates that H(∞) plays the role of tradi-

tional Hankel matrix in LTI systems theory for SLS. Similar

subspace based methods for system identification has been

discovered in mildly different forms for HMM parameter

recovery in [23], [24] or weighted automaton parameter

identification in [25].

Unfortunately, we do not have access to H(∞); rather

we only possess finite noisy data and consequently need

to obtain an accurate estimate Ĥ(N) of H(∞). In order to

find an estimate for the system Hankel matrix we assume

that the switched linear system can be restarted multiple

times. Although we believe that it is possible to relax this

requirement, we enforce this assumption to ease exposition.

Define the number of restarts as NS , also referred as the

sample complexity. In each restart, we let the SLS run for N

time steps, also known as rollout length. Let θ
(t)
k , y

(t)
k , u

(t)
k

denote the switch, output and input respectively at rollout

time k for sample t. Clearly t ≤ NS, k ≤ N . Now define

the set Nml
as

Nml
= {(t, k)|(θ(t)k+i−1, θ

(t)
k+i−2, . . . , θ

(t)
k ) = ml ∈ [s]i} (9)

Nml
is the set of occurrences of the switch sequence ml

with Nml
= |Nml

|. Our next result bounds the error rates

obtained from the regression. The proof of the following re-

sult follows standard analysis in statistical learning literature

such as [26].

Proposition 2. Fix δ > 0 and sequence l
i
1 ∈ [s]i. Let Θ̂i be

the following solution

Θ̂l
i
1
= arg inf

Θ

∑

(t,k)∈N
li
1

||y(t)k −Θu
(t)
k ||2F

where {u(t)
k }∞t,k=1 are i.i.d isotropic Gaussian (or subGaus-

sian) random variables. Then whenever Nli1
≥ α(m+ log 2

δ )
we have with probability at least 1− δ that

||CAli1
B − Θ̂li1

||F ≤ αβ

√

m+ log 1
δ

Nl
i
1

(10)

An important thing to note about the bound above is that

it does not hold when Nli1
< α(m+ log 1

δ ) we set Θ̂li1
= 0,

i.e., when we have scarce data for a certain sequence we

can not use the regression estimate as it becomes unreliable.

In such cases (and some others) we set Θ̂li1
= 0; the exact

details are specified below.

A. Regression Estimates

Recall Proposition 2, for any sequence li1 of length i

the result holds with probability at least 1 − δ only if we

have Nli1
≥ α(m + log 2

δ ). The regression estimate for

li1 is unreliable when we do not have enough occurrences.

In such a case we propose a simple estimate, i.e., we

set the regression estimate to 0. Let us assume we have

roll out length of N̂ , then we need to ensure that for all

sequences of length at most N̂ the regression estimates hold;

in that case by applying a union bound we have that for

all sequences simultaneously we have with probability at

least 1− δ that ||CA
l
j
1
B − Θ̂

l
j
1
||2 ≤ αβ

l
j
1

√

m+log sN̂+1−1
(s−1)δ

N
l
j
1

if

N
l
j
1
≥ α(m + log 2(sN̂+1−1)

(s−1)δ ). The sN̂+1−1
s−1 appears because

we are taking a union bound over sN̂+1−1
s−1 sequences. One

observation is that we cannot ensure the high probability

bound simultaneously over all sequences up to length NS

because if N̂ = Θ(NS) then the regression estimate error



bound becomes trivial. As a result, we define Nup an

upper bound for rollout length up to which we can ensure

high probability bound. Define a sequence length dependent

threshold γk = α(m+ log 2(sk+1−1)
(s−1)δ ) then

Nup = inf {N |Nl2N1
< γ2N ∀l2N1 ∈ [s]2N} (11)

Intuitively, 2Nup is the least sequence length such that none

of the sequences of that length can be reliably learned by

regression, i.e., all sequences with length up to Nup occur

often enough. Furthermore, since the probability decays as

the length of the sequence it suggests that no longer sequence

can be learned reliably either. We show in Proposition 9 that

Nup is logarithmic in NS with high probability. With this we

can construct an estimate of the system Hankel–like matrix

as follows. Let N̂ be the rollout length then define

p̂
li1:l

j
1
=







N
li
1
:l
j
1

NS(N̂−i−j+1)
, if i+ j > 0

1, otherwise

p̂
li1:l

j
1

is an unbiased estimator for p
li1:l

j
1
. To see this, recall

the experiment set up: we run NS identical samples of the

SLS for length N̂ . Then for each sample i ≤ NS , any

sequence lk1 can start at position 1, 2, . . . , N̂ − k + 1. Thus

for sample i the number of occurrences of lk1 is given by
∑N−k+1

l=1 1
(i)

{lk1 starts at position l}, then Nlk1
is given by

Nlk1
=

NS∑

i=1

N̂−k+1∑

l=1

1
(i)

{lk1 starts at position l} (12)

and it is clear that E[Nlk1
] = plk1

NS(N̂ − k + 1). For the

estimates of CAli1
B we have

Θ̂li1
=

{

Regression estimate of Prop. 2, if Nli1
≥ γ2Nup

0, otherwise

[Ĥ(N)]pL(li1)+1:pL(li1)+p,mL(l
j
1)+1:mL(l

j
1)+m =

√

p̂
li1:l

j
1
Θ̂

li1:l
j
1

(13)

The road map for system identification can be summarized

as follows.

• For a given NS we do model order selection by choos-

ing two numbers N̂ , r which are functions of NS .

• Following that we create a finite dimensional estimate

ĤN̂ of H(∞), and from ĤN̂ we obtain the system pa-

rameters of r–dimensional approximation of the original

SLS using a balanced truncation procedure.

• The error between the estimated r–dimensional approx-

imation and the true r–dimensional approximation can

be bounded by subspace perturbation bounds [1].

We now describe details of the balanced truncation below.

B. Balanced Truncation

Given the parameters of SLS in Eq. (1) define the follow-

ing SLS

x̃(t+ 1) =
√
pθtAθt x̃(t) +

√
pθtBu(t)

ỹt =
√
pθtCx̃(t) (14)

By our assumption the SLS in Eq. (14) is strongly stable

(See [20]). Now we can use the results in [19] (specifically

Eq. (25a), (25b)). To summarize there exists a linear trans-

formation S such that

S⊤X1S = S−1X2S
−⊤ = Σ (15)

where Σ is diagonal with entries arranged in descending

order, then note that Σ satisfies (by definition of X1, X2)

piÃ
⊤
i ΣÃi −Σ+ piC̃

⊤C̃ � 0, piÃiΣÃ
⊤
i −Σ+ piB̃B̃⊤ � 0

where Ãi = S⊤AiS
−⊤, C̃ = CS−1⊤, B̃ = S⊤B. Partition

Ãi, B̃, C̃ as follows

Ãi =

[

A
(r)
i Ã

(12)
i

Ã
(21)
i Ã

(22)
i

]

, B̃i =

[
B(r)

B̃(2)

]

, C̃ = [C(r), C̃(2)]

(16)

where A
(r)
i ∈ R

r×r, B(r) ∈ R
r×1, C(r) ∈ R

1×r and are the

r–order balanced truncated version of the true SLS. Then the

discussion in Section 4.2 in [19] provides error guarantees

between the true model and its approximation. Note that in

the setting of Section 4.2 in [19] αi(k) =
√
p
i
1{θk=i}. This

observation combined with some linear algebra similar to

Section 21.6 of [27] gives us the following proposition.

Proposition 3. Assume {ηt, wt}∞t=1 = 0. Denote by M

the SLS in Eq. (1) and the reduced model corresponding

(C(r), {A(r)
i , pi}si=1, B

(r)) described in Eq. (16) as Mr. Mr

is mean square stable and furthermore

∆M,Mr
≤ 2s

n∑

l=r+1

σl

where σl are the singular values of the Gramian in Eq. (15).

Next, we show how to obtain the reduced order models

(C(r), {A(r)
i }si=1, B

(r)) directly from system Hankel matrix

H(∞). Recall the SVD from Proposition 1, H(∞) = UΣV ⊤

where

UΣ1/2 =











C̃√
p1C̃Ã1

...
√
pli1

C̃Ãli1
...











︸ ︷︷ ︸

=O
Σ1/2V ⊤ = [B̃,

√
p1Ã1B̃, . . . ,

√
pli1

Ãli1
B̃, . . .]

︸ ︷︷ ︸

=R

(17)

with O⊤O = RR⊤ = Σ.

Proposition 4. Fix r ≤ n and H(∞) = UΣV ⊤. Then the r–

order balanced truncated model (C(r), {A(r)
i }si=1, B

(r)) is

given by

C(r) = [UΣ1/2]1:p,1:r, B
(r) = [Σ1/2V ⊤]1:r,1:m

and √
piA

(r)
i = Σ−1/2

r U⊤
r H(∞)

i VrΣ
−1/2
r



where Ur, Vr,Σr correspond to top r left singular vectors,

right singular vectors and singular values respectively.

Proposition 4 makes it clear that to find r–order balanced

truncated models we only need top r–singular vectors (and

singular values). This observation is important because in

the presence of finite noisy data estimating singular vectors

corresponding to very low singular values typically requires

a lot of data. Instead one could focus on simply estimat-

ing the significant singular vectors via balanced truncation.

Furthermore, the stochastic L2 distance between the original

SLS and its r–order balanced truncated version is given by

Proposition 3. We can now summarize our algorithm below.

Algorithm 1 Learning SLS

Input m: Input dimension, p: Output dimension

NS : Sample complexity, N̂ : Rollout length, r: order

Output System Parameters (C̃, {Ãi, p̂i}si=1, B̃)

1: for j = 1 to NS do

2: Sample {u(j)
l ∼ N (0, Im×m)}N̂l=1

3: Collect output (y
(j)
1 , . . . , y

(j)

N̂
) in response to input

(u
(j)
1 , . . . , u

(j)

N̂
)

4: Collect switch sequence (θ
(j)
1 , . . . , θ

(j)

N̂
)

5: Estimate Ĥ(N̂) by regression as in Eq. (13).

6: Ĥ(N̂) = ÛΣ̂V̂ ⊤ and estimate p̂i =

∑
l,j 1

{θ
(j)
l

=i}

NSN̂
7:

8: C̃ = [ÛrΣ̂
1/2
r ]1:p,1:r, B̃ = [Σ̂

1/2
r V̂ ⊤

r ]1:r,1:m

9: Ãi = p̂
−1/2
i Σ̂

−1/2
r Û⊤

r Ĥ(N̂)
i V̂rΣ̂

−1/2
r

10: Return: (C̃, {Ãi, p̂i}si=1, B̃)

III. MODEL SELECTION

Algorithm 1 has two hyperparameters N̂ , r. In this sec-

tion we discuss how to choose these hyperparameters as a

function of NS .

A. Selecting N̂

Since the Hankel matrix is p( s
N̂+1−1
s−1 ) ×m( s

N̂+1−1
s−1 ), N̂

cannot be too large as it will make any algorithm infeasible

(and estimation error will suffer) and indeed it cannot be too

small as that will mean we only learn a small part of the

dynamics (high truncation error). The key idea is to grow

N̂ in a controlled fashion with respect to NS . Formally, let

H̄(N̂) be H(N̂) padded with zeros to make it doubly infinite

and define

T 2
N̂

= ||H̄(N̂) −H(∞)||2F
︸ ︷︷ ︸

Truncation Error

, E2
N̂

= ||H(N̂) − Ĥ(N̂)||2F
︸ ︷︷ ︸

Estimation Error

(18)

Observe that the Frobenius norm of the difference H̄(N̂) −
H(∞) can be represented as ||H̄(N̂) − H(∞)||2F ≤
∑

i+j≥2N̂−1 pli1:l
j
1
||CA

li1:l
j
1
B||2F . Clearly as N̂ increases the

truncation error decreases. For the case of estimation error

we can use Proposition 2. Intuitively, it would make sense

that EN̂ grows with N̂ (keeping NS fixed) as we are trying

to estimate a larger matrix. As a result, for large enough

NS , there exists N̂ < ∞ such that TN̂ ≤ αEN̂ for

some absolute constant α ≥ 1. The key idea will be to

choose N̂ such that TN̂ ≤ αEN̂ . This idea is formalized

in Proposition 10. Furthermore, for such a choice of N̂ we

have ||H(∞)−Ĥ(N̂)||2F ≤ (1+α2)T 2
N̂

implying that we can

estimate the system Hankel matrix well if TN̂ is low.

Proposition 5. Fix N̂ ,NS and δ. Then with probability at

least 1− δ we have

EN̂ = ||H(N̂) − Ĥ(N̂)||2F ≤ 2Eδ,N̂(NS)

with Eδ,N̂ = α2N̂2 β2(m+s0)
NS

( s
2N̂+1−1
s−1 ). Here α ≥ 1 is a

known absolute constant and s0 = log (sNup+1−1)
(s−1)δ .

Proof. Let s0 = log (sNup+1−1)
(s−1)δ . By definition we have

[H(N̂) − Ĥ(N̂)]L(li1),L(l
j
1)

=
√
p

li1:l
j
1
CA

li1:l
j
1
B −

√

p̂
li1:l

j
1
Θ̂

li1:l
j
1

=
(
√
p

li1:l
j
1
−
√

p̂
li1:l

j
1

)

CA
li1:l

j
1
B

︸ ︷︷ ︸

=E
1,li1:l

j
1

+
√

p̂
li1:l

j
1
(CA

li1:l
j
1
B − Θ̂

li1:l
j
1
)

︸ ︷︷ ︸

=E
0,li1:l

j
1

First we analyze E1,li1:lj1 . It is clear that

∑

0≤i,j≤N̂−1

||E1,li1:lj1 ||
2
F

≤
∑

0≤i,j≤N̂−1

(
√
p

li1:l
j
1
−
√

p̂
li1:l

j
1

)2

||CA
li1:l

j
1
B||2F

≤
2N̂−2∑

k=0

(k + 1)
∑

lk1∈[s]k

(
√
plk1

−
√

p̂lk1

)2

||CAlk1
B||2F

The k+1 is the number of times a k–length sequence appears

in the Hankel–like matrix. Using Proposition 8 with proba-

bility at least 1 − δ,
∑

0≤i,j≤N̂−1 ||E1,li1:lj1 ||
2
F ≤ 2αN̂2β2s0

NS
.

For E0,li1:lj1 we have

∑

||E0,li1:lj1 ||
2
F ≤

∑

0≤i,j≤N̂−1

p̂
li1:l

j
1
||CA

li1:l
j
1
B − Θ̂

li1:l
j
1
||2F

Recall that whenever N
li1:l

j
1
< s0, i.e., scarce data, we set

Θ̂
li1:l

j
1
= 0. Then we get

∑

p̂
li1:l

j
1
||CA

li1:l
j
1
B − Θ̂

li1:l
j
1
||2F ≤

∑

N
li
1
:l
j
1
<s0

p̂
li1:l

j
1
||CA

li1:l
j
1
B||2F

+
∑

N
li1:l

j
1
≥s0

p̂
li1:l

j
1
||CA

li1:l
j
1
B − Θ̂

li1:l
j
1
||2F (19)

We now use Proposition 2 (applied with union bound to all



sequences) with probability at least 1− δ

∑

N
li
1
:l
j
1
≥s0

N
li1:l

j
1
||CA

li1:l
j
1
B − Θ̂

li1:l
j
1
||2F

NS(N̂ − i− j + 1)

≤ α2
∑

N
li
1
:l
j
1
≥s0

β2(m+ s0)

NS(N̂ − i− j + 1)

≤ α2
2N̂−2∑

k=0

(k + 1)
∑

lk1∈[s]k

β2(m+ s0)

NS(N − k + 1)

≤ 2α2N̂2 sup
k≤2N̂

∑

lk1∈[s]k

β2sk(m+ s0)

NS

≤ 2α2N̂2β
2(m+ s0)

NS

(s2N̂+1 − 1

s− 1

)

(20)

From first part in Proposition 7 we get with probability at

least 1− δ

∑

N
li1:l

j
1
<s0

||CA
li1:l

j
1
B||2F p̂li1:l

j
1
≤ 2α2N̂2s0

NS
sup
k

∑

lk1∈[s]k

||CAlk1
B||2F

≤ 2α2β2N̂2s0

NS
(21)

Then combining these observations we get
∑

p̂
li1:l

j
1
||CA

li1:l
j
1
B − Θ̂

li1:l
j
1
||2F ≤ Eδ,N̂ .

Proposition 5 provides an upper bound on E2
N̂

almost

entirely in terms of data dependent quantities. From here

on we will use Eδ,N̂ (NS) as a proxy for E2
N̂

. For shorthand

Eδ,N̂ = Eδ,N̂ (NS). Given this dependence of estimation error

on N̂,NS , we find that if we set N̂ in a data dependent

fashion as follows:

N̂
∆
= N̂(NS) = inf

{

l
∣
∣
∣||Ĥ(l) − Ĥ(h)||2F ≤ α0Eδ,h

∀Nup ≥ h ≥ l
}

(22)

where α0 is a known absolute constant and Nup is given in

Eq. (11).

Theorem 1. Fix δ > 0. For large enough NS , pick N̂ as in

Eq. (22). Then with probability at least 1− δ we have

|| ¯̂H(N̂) −H(∞)||2F ≤ 2α2 N̂
2s2N̂β2(m+ log

sNup

δ )

NS

where
¯̂H(N̂) is the zero padded version of Ĥ(N̂) to make it

compatible with H(∞) and α ≥ 1 is an absolute constant.

Here sk = sk+1−1
s−1 .

Proof. We sketch the details of the proof here. We assume

all matrices are size compatible by padding with zeros.

The large enough NS is required only to ensure that there

exists N̂ < ∞ such that TN̂ ≤ Eδ,N̂ . Define N̂∗ =

inf {N |TN ≤ Eδ,N}. In general N̂∗ is unknown as it is

complex function of unknown system parameters (because

of TN ). By Proposition 10 such N̂∗ exists. However, by

leveraging results from [1] specifically Proposition 12.1 and

12.2 we can show that

N̂(NS) ≤ N̂∗ ≤ log (α0)N̂(NS)

with probability at least 1 − δ. We show N̂∗ ≥ N̂(NS) in

Proposition 11. The other inequality follows the same steps

as Prop 12.2 in [1]. Based on this observation we note for

any l ≥ N̂

√

α0Eδ,N̂∗ ≥ ||Ĥ(N̂) − Ĥ(N̂∗)||F
≥ ||Ĥ(N̂) −H(∞)||F − ||H(∞) − Ĥ(N̂∗)||F

This gives

||Ĥ(N̂) −H(∞)||F ≤
√

α0Eδ,N̂∗ + ||H(∞) − Ĥ(N̂∗)||F

Since EN̂∗ ≥ TN̂∗ we have that ||Ĥ(N̂∗) − Ĥ(N̂∗)||F ≤
2Eδ,N̂∗

. Then it implies that

||Ĥ(N̂) −H(∞)||2F ≤ (α0 + 2)Eδ,N̂∗

(23)

Our claim follows by noting that Eδ,N̂∗ ≤ Eδ,log (α0)N̂ .

The key insight of Theorem 1 is that for the choice of

N̂(NS) in Eq. (22) we can get a good upper bound on the

error between the true system Hankel matrix, H(∞), and

its estimate Ĥ(N̂). Furthermore this bound does not depend

on the system order, n, but only data dependent quantities

and some energy metrics which can be measured easily. The

result in Proposition 10 (and Eq. (29)) shows that

|| ¯̂H(N̂) −H(∞)||2F = O(N−δs) (24)

where δs =
(

log 1
pmax

)(

log s
pmax

)−1

. Eq. (24) shows that

decay in error between the true system Hankel–like matrix

and its estimator is roughly 1√
N−δs

(ignoring the log factors)

and the error between
¯̂H(N̂),H(∞) goes to zero asymptoti-

cally as NS → ∞.

B. Selecting r

Now that we have a consistent statistical estimator for

H(∞). We provide a way to choose r such that we can find

a r–order balanced representation of the SLS. For shorthand,

we will refer to the data dependent error ǫ2 = 4α0Eδ,N̂ . This

implies ||H(∞) − Ĥ(N̂)||F ≤ ǫ and we can use Wedin–type

subspace perturbation bounds [28]. Consider the following

rule for selecting r

r = sup
{

l
∣
∣
∣τ+σl(Ĥ(N̂)) ≥ 4ǫ

}

(25)

The existence of τ+ is not required for our results as

the same discussion of Section 11.3 in [1] would apply

here. Furthermore, we can also substitute τ+ by τ̂+ =

inf1≤i≤n(1− σi+1(Ĥ(N̂))

σi(Ĥ(N̂))
) and that performs sufficiently well.



Theorem 2 (Theorem 5.2 [1]). For large enough NS , we

have for the choice of N̂ , r in Eq. (22), (25) respectively

that

sup {||C̃ − C(r)||2, ||B̃ −B(r)||2} ≤ O
( ǫ√

σr

)

sup
1≤i≤s

||Ãi −A
(r)
i ||2 ≤ O

( ǫ

σr

)

where ǫ2 = O
(

N−δs
S

)

and δs =
(

log 1
pmax

)(

log s
pmax

)−1

.

Here C̃, Ãi, B̃ is the output of Algorithm 1 and

(C(r), A
(r)
i , B(r)) are r–order balanced truncated model

given in Eq. (16).

Theorem 2 indicates that finding an r–order balanced

truncated model depends inversely on the rth singular value

of Σ in Eq. (15). Note that in Eq. (25) as NS increase ǫ

decreases, i.e., the estimate H(N̂) becomes better and indeed

if ǫ = 0 =⇒ H(N̂) = H(∞) =⇒ r = n.

IV. DISCUSSION

In this work we provide finite sample error guarantees

for learning realizations of SLS when stability radius or

order is unknown. Specifically, we construct a Hankel–like

matrix of size N̂ , chosen in a data dependent fashion. From

this Hankel–like matrix we recover system parameters using

a data dependent threshold rule in Eq. (25). Under stated

assumptions, we obtain O(
√
N−δs) error rates which are

also the parametric estimation error rates and are known

to be optimal for the case when s = 1 (See for e.g.: [1]).

Furthermore, from a computational perspective our algorithm

is polynomial in the number of samples, NS , because we are

doing SVD on a matrix of dimension at most psN̂ ×msN̂

but N̂ is logarithmic in NS with high probability and as a

result the matrix size is polynomial in NS .

Due to the nature of the analysis we believe that this work

can be easily extended to the case when {θt}∞t=1 evolution

is more complex, for e.g.: state dependent or a markov

chain. Furthermore, we assumed in this paper the discrete

switches are completely observable. However, in many cases

the discrete state itself might be noisy or not observed. In

such cases it important to predict the switch sequence and

following that use the procedure described. This appears to

be an interesting avenue for future work.

V. APPENDIX

Proposition 6 (Bernstein’s Inequality). Let {Xi}i=1 be zero

mean random variables. Suppose that |Xi| ≤ M almost

surely, for all i. Then, for all positive t,

P(|
n∑

i=1

Xi| > t) ≤ exp
(

−
1
2 t

2

∑
E[X2

j ] +
1
3Mt

)

(26)

Recall from Eq. (12) that

p̂lk1
=

Nlk1

NS(N − k + 1)
=

1

NS

NS∑

i=1

N−k+1∑

l=1

1
(i)

{lk1 starts at l}
(N − k + 1)

︸ ︷︷ ︸
xi

where 0 ≤ xi ≤ 1 and {xi}NS

i=1 are i.i.d random variables.

Since E[xi] = plk1
. We can use Bernstein’s inequality on

∑NS

i=1(xi − plk1
). Note E[(xi − plk1

)2] ≤ plk1
. Then by

Bernstein’s inequality we have

Proposition 7. Fix δ,N > 0. For all sequences l
k
1 with k ≤

N we have simultaneously with probability at least 1− δ

∣
∣
∣

NS∑

i=1

xi−p
l
k
1
NS

∣
∣
∣ ≤

{
α log sN

δ , if α log sN
δ > plk1

NS
√

p
l
k
1
NS log sN

δ , otherwise

for some known absolute constant α ≥ 1 and sN = sN+1−1
s−1 .

Proposition 8. Fix 0 ≤ N̂ ≤ NS , then with probability at

least 1− δ we have

∑

lk1∈[s]k

(
√
plk1

−
√

p̂lk1

)2

||CAlk1
B||2F ≤ 2αβ2

NS
log

(sN̂+1 − 1)

(s− 1)δ

where α ≥ 1 is a known absolute constant.

Proof. Let s0 = α log
(

sN+1−1
(s−1)δ

)

. Now we break the sum in

two parts

∑

lk1∈[s]k

(
√
plk1

−
√

p̂lk1

)2

||CAlk1
B||2F

≤
∑

p
lk1
NS≤s0

(
√
plk1

−
√

p̂lk1

)2

||CAlk1
B||2F

︸ ︷︷ ︸

(i)

+
∑

p
lk
1
NS>s0

(
√
plk1

−
√

p̂lk1

)2

||CAlk1
B||2F

︸ ︷︷ ︸

(ii)

(27)

For (i) combine (√plk1
−

√

p̂lk1
)2 ≤ |plk1

− p̂lk1
| and use

Proposition 7 which gives (i) ≤ ∑

lk1∈[s]k

s0||CA
lk1
B||2F

NS
. For

(ii), it follows from the second part in Proposition 7 that

(√plk1
−

√

p̂lk1
)2 ≤ plk1

(
√

1 +
√

s0
p

lk
1
NS

− 1)2 ≤ α s0
NS

. Then

we get that (ii) ≤ ∑

lk1∈[s]k

αs0||CA
lk
1
B||2F

NS
. By assumption

we have
∑

lk1∈[s]k ||CAlk1
B||2F ≤ β2.

Proposition 9. For Nup defined in Eq. (11) we can show

with probability at least 1− δ that

Nup = O
( logNS

log 1
pmax

)

where pmax = max1≤i≤s pi. Here O(·) also hides a depen-

dence of log log 1
δ .

Proof. Due to a shortage of space we only sketch the proof

here. Note from Proposition 7 that for all sequences of length

N , NlN1
≤ α log sN+1−1

(s−1)δ with high probability if

α
(

m+ log
(sN+1 − 1

(s− 1)δ

))

≥ plN1
NS



since plN1
≤ pNmaxNS , if we ensure pNmaxNS = α

(

m +

log
(

sN+1−1
(s−1)δ

))

we get our desired result for all sequences

of length up to N .

Proposition 10. Let T 2
N̂

= ||H̄(N̂) −H(∞)||2F . Then for a

large enough NS there exists N̂ such that

T 2
N̂

≤ Eδ,N̂ (NS)

In fact, N̂ = O(logNS) where O(·) hides system level

dependence.

Proof. Define s0 = log
(

sNup+1−1
δ(s−1)

)

. Since the SLS is mean-

square stable and by our assumptions we have

∑

i+j≥2N̂−1

p
li1:l

j
1
||CA

li1:l
j
1
B||2F =

∑

k≥2N̂−1

plk1
(k + 1)||CAlk1

B||2F

≤
∑

k≥2N̂−1

∑

lk1∈[s]k

(k + 1)||CAlk1
B||2F pkmax

This gives us
∑

k≥2N̂−1

∑

lk1∈[s]k k||CAlk1
B||2F pkmax ≤

∑

k≥2N̂−1(k + 1)pkmaxβ
2 ≤ 2N̂2p2N̂−1

max β2

1−pmax
. Then clearly N̂∗

is less than N̂ that satisfies

Eδ,N̂ (NS) = α2N̂2β
2(m+ s0)

NS

(s2N̂+1 − 1

s− 1

)

≥ 2N̂2p2N̂−1
max β2

1− pmax
≥ T 2

N̂
(28)

The last inequality is satisfied for all N̂∗ such that lN̂1 occurs

often enough. Furthermore, from the proof of Proposition 9,

N̂∗ < Nup, since Nup satisfies α
(

m+ log
(

sNup+1−1
(s−1)δ

))

≈
p
2Nup−1
max NS . Then by solving the functional equation in

Eq. (28) we get N̂∗ ≤ 1
2 (

logNS

log s
pmax

). This gives us the error

Eδ,N̂∗ ≤ O(N−δs
S ) (29)

where δs =
(

log 1
pmax

)(

log s
pmax

)−1

and O(·) hides log-

arithmic factors in NS . Note that δ1 = N−1
S which is the

correct rate for LTI systems.

Proposition 11. Let N̂∗ = inf {N |TN ≤ Eδ,N}, then N̂ ≤
N̂∗.

Proof. We prove this by showing for l, h ≥ N̂∗ satisfies

||Ĥ(l) − Ĥ(h)||2F ≤ 9Eδ,h. To see this

||Ĥ(l) − Ĥ(h)||F ≤ ||Ĥ(l) −H(l)||F + ||Ĥ(h) −H(h)||F
+ ||H(l) −H(h)||F (30)

Since ||Ĥ(l) − H(l)||2F ≤ Eδ,l ≤ Eδ,h and further more

||H(l) − H(h)||2F ≤ ||H(l) − H(∞)||2F ≤ Eδ,l. Combining

all of this we get ||Ĥ(l) − Ĥ(h)||2F ≤ 3Eδ,h and this means

that N̂ ≤ N̂∗.
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