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Abstract: The covariant phase space method of Iyer, Lee, Wald, and Zoupas gives an

elegant way to understand the Hamiltonian dynamics of Lagrangian field theories without

breaking covariance. The original literature however does not systematically treat total

derivatives and boundary terms, which has led to some confusion about how exactly to

apply the formalism in the presence of boundaries. In particular the original construction

of the canonical Hamiltonian relies on the assumed existence of a certain boundary quan-

tity “B”, whose physical interpretation has not been clear. We here give an algorithmic

procedure for applying the covariant phase space formalism to field theories with spatial

boundaries, from which the term in the Hamiltonian involving B emerges naturally. Our

procedure also produces an additional boundary term, which was not present in the original

literature and which so far has only appeared implicitly in specific examples, and which is

already nonvanishing even in general relativity with sufficiently permissive boundary con-

ditions. The only requirement we impose is that at solutions of the equations of motion the

action is stationary modulo future/past boundary terms under arbitrary variations obeying

the spatial boundary conditions; from this the symplectic structure and the Hamiltonian for

any diffeomorphism that preserves the theory are unambiguously constructed. We show

in examples that the Hamiltonian so constructed agrees with previous results. We also

show that the Poisson bracket on covariant phase space directly coincides with the Peierls

bracket, without any need for non-covariant intermediate steps, and we discuss possible

implications for the entropy of dynamical black hole horizons.
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1 Introduction

The most basic problem in physics is the initial-value problem: given the state of a system

at some initial time, in what state do we find it at a later time? This problem is most

naturally discussed within the Hamiltonian formulation of classical/quantum mechanics. In

relativistic theories however it is difficult to use this formalism without destroying manifest

covariance: any straightforward approach requires one to pick a preferred set of time slices.

Such a choice is especially inconvenient in theories which are generally-covariant, such as

Einstein’s theory of gravity.

The standard approach to this problem is to de-emphasize the Hamiltonian formalism,

restricting classically to Lagrangians and quantum mechanically to path integrals. This

works fine for many applications, but there remain some topics, such as the initial-value
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problem, for which the Hamiltonian formalism is too convenient to dispense with. For

example it is only in the Hamiltonian formalism that one can do a proper accounting of

the degrees of freedom in a system, and thermodynamic quantities such as energy and

entropy are naturally defined there.

In relativistic field theories there is an elegant formalism due to Iyer, Lee, Wald, and

Zoupas, which, building on earlier ideas from [1–4], presents Hamiltonian mechanics in a

manner that preserves manifest Lorentz or diffeomorphism invariance: the covariant phase

space formalism [5–9].1 This method is well-known in the relativity community, where in

particular it was used by Wald to derive a generalization of the area formula for black hole

entropy to higher-derivative gravity [6], and it has been showing up fairly often in recent

discussions of the AdS/CFT correspondence (see e.g. [11–19]), the asymptotic symmetry

structure of gravity in Minkowski space [20, 21], and in attempts to define “near-horizon”

symmetries associated to black holes [22–24].

This note grew out of the authors’ attempts to understand the covariant phase space

formalism. Its primary goal is pedagogical: to present that formalism in a way that avoids

some confusions which the authors, and apparently also others, ran into in studying the

original literature. These confusions have to do with the role of boundary terms and

total derivatives in the formalism, which in the standard presentation [7] were treated in

a somewhat cavalier manner. Indeed in [7] boundary terms and total derivatives were

ignored for most of the initial discussion, but then the existence of the Hamiltonian was

presented as requiring the existence of a boundary quantity called B obeying a certain

integrability condition.2 Moreover no general reassurance as to when such a quantity

exists was given, which is surprising from the point of view of the ordinary canonical

formalism: usually the Hamiltonian can be obtained from the Lagrangian algorithmically

via the equation H = paq̇
a−L. In a formalism which treats boundary terms systematically,

the existence of the Hamiltonian should be automatic (as for example is the case in the

non-covariant analysis of general relativity given in [26, 27]). Our goal in this note is to

give such a systematic treatment within the covariant phase space formalism. As a bonus,

we will find that the formula given in [7] for the canonical Hamiltonian is not correct in

general: there is an additional boundary term which is nonzero even in general relativity for

sufficiently permissive boundary conditions, and which is generically nonzero for theories

with sufficiently many derivatives. After presenting our general formalism, we illustrate it

in several examples, recovering known results.

1This description of the history is somewhat over-simplified, see the introduction of [10] for a more

detailed discussion of the antecedents of the formalism (which at least go back to ideas of Bergmann in the

1950s). Also the construction of phase space in [1–4] proceeds in a more direct manner than that in [5–9]:

the former first restricts to solutions of the equations of motion and then quotients by the zero-modes of a

pre-symplectic form on those solutions, while the latter first quotients by zero modes of the pre-symplectic

form on configuration space, then imposes the equations of motion, and then performs a further quotient by

any new zero modes which appeared. In this paper we will adopt the simpler first approach, but fortunately

most equations are the same either way.
2This was also the style of argument in the classic discussion [25] of the asymptotic symmetries of general

relativity in asymptotically-flat space, where (using non-covariant techniques) the form of the Hamiltonian

was motivated using consistency requirements instead of derived systematically.
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We emphasize that in this paper, the boundary conditions at any spatial boundaries are

viewed as part of the definition of a field theory. For example a scalar field in a cavity with

Dirichlet walls and a scalar field in a cavity with Neumann walls are different Hamiltonian

systems. The Hamiltonian formulation of mechanics is global in nature, so to construct it

properly we need to say what the rules are everywhere in space. To avoid the question of

convergence we have written most of the paper assuming that any spatial boundaries are

finitely far away. Finite boundaries are of direct physical relevance e.g. in condensed matter

systems and electromagnetic cavities, and they are also sensible in the context of linearized

gravity. On the other hand finite boundaries are difficult to implement in non-linear gravity

(what would happen when a black hole meets a finite boundary?), and it is more natural

to consider “asymptotic” boundaries that are infinitely far away. The logic of our paper

should apply to asymptotic boundaries as well provided one is careful about manipulating

infinite quantities; we discuss this further in section 4.3 at the end of the paper.

Our results are simple enough that we can briefly describe them here. Indeed we

consider a classical field theory action

S =

∫
M
L+

∫
∂M

`, (1.1)

where L is a d-form and ` is a (d − 1)-form. ∂M in general includes both spatial and

future/past pieces, in this paper we do not consider null boundaries. The variation of L

always has the form

δL = Eaδφ
a + dΘ, (1.2)

where Ea = 0 are the equations of motion and Θ is a (d − 1)-form which is linear in the

variations of the dynamical fields φa. Stationarity of the action up to future/past boundary

terms requires

(Θ + δ`) |Γ = dC, (1.3)

where Γ is the spatial boundary and C is a (d− 2)-form defined on Γ that is also linear in

the field variations. The (pre-)symplectic form of this system is given by

Ω̃ =

∫
Σ
δ (Θ− dC) , (1.4)

where Σ is a Cauchy slice and the precise meaning of the second variation implicit in this

formula is explained below (basically we re-interpret δ as the exterior derivative on the space

of field configurations). Finally if ξµ is a vector field generating a one-parameter family

of diffeomorphisms which preserve the boundary conditions, and under which L, `, and C

transform covariantly, then the Hamiltonian which generates this family of diffeomorphisms

is given by

Hξ =

∫
Σ
Jξ +

∫
∂Σ

(ξ · `−Xξ · C) . (1.5)

Here “ξ · `” indicates insertion of ξ into the first argument of `, “Xξ ·C” denotes replacing

δφa in C by the Lie derivative Lξφa, and Jξ = Xξ ·Θ− ξ · L is the “Noether current”. In

theories where L is covariant under arbitrary diffeomorphisms, such as general relativity,
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it was shown in [7, 28] that there must be a local (d − 2)-form Qξ such that Jξ = dQξ.

Thus in such theories the Hamiltonian conjugate to ξ is a pure boundary term:

Hξ =

∫
∂Σ

(Qξ + ξ · `−Xξ · C) . (1.6)

The remainder of this paper explains these formulas in more detail and illustrates them

using examples. In a final section we show that the Poisson bracket in the covariant phase

space formalism is generally equivalent to the Peierls bracket, we give a proof of Noether’s

theorem for continuous symmetries within the covariant phase space approach, and we com-

ment on some subtleties arising in the application of our results to asymptotic boundaries.

The inclusion of boundary terms in the covariant phase space formalism was previously

considered in [8, 12, 14, 20, 29–33], each of which has some nontrivial overlap with our

discussion. In particular setting C = 0 in our formalism one obtains a formalism described

in [8], but as we explain below this is an inappropriate restriction. A formalism with

nonzero C was introduced in [12, 14, 20], but the covariance properties of C were not

studied and its contribution to canonical charges such as the Hamiltonian was shown only

in general relativity with specific boundary conditions. An alternative formalism in which

many of the same issues can be addressed was given in [34, 35]; we have not studied in detail

the relationship between that formalism and ours, but it requires integrability assumptions

of the type we avoid and the treatment of boundary terms seems to be less general than

ours.3 Effects which can be interpreted as arising from our C term were found for general

relativity with a noncompact asymptotic boundary in [36–38]. We believe our treatment of

boundary terms is the most complete so far, and also perhaps the most efficient. We have

not systematically treated fermionic fields or topologically nontrivial gauge connections,

but we foresee no difficulty with incorporating them along the lines of [39].

1.1 Notation

In this paper we make heavy use of differential forms, our conventions for these are that if

ω is a p form and σ is a q form, we have

(ω ∧ σ)µ1...µpν1...νq
=

(p+ q)!

p!q!
ω[µ1...µpσν1...νq ]

(dω)µ0...µp = (p+ 1)∂[µ0
ωµ1...µp]

(?ω)µ1...µd−p =
1

p!
ε
ν1...νp

µ1...µd−pων1...νp . (1.7)

Here “[·]′′ denotes averaging over index permutations weighted by sign, so for example

ω[µσν] = 1
2 (ωµσν − ωνσµ), and ε is the volume form. The Lie derivative of any differential

form ω with respect to a vector field X is related to the exterior derivative via Cartan’s

magic formula

LXω = X · dω + d(X · ω), (1.8)

where · denotes inserting a vector into the first argument of a differential form (if ω is

a zero-form we define X · ω = 0). Throughout the paper we will use “d” to indicate the

3We thank Geoffrey Compère for explaining several aspects of the formalism of [34, 35].
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exterior derivative on spacetime and “δ” to indicate the exterior derivative on configuration

space (and also its pullback to pre-phase space and phase space), a notation we discuss

further around equation (2.21).

We take spacetime to be a manifold with boundary M , whose boundary we call ∂M ,

and we are often interested a Cauchy surface Σ and its boundary ∂Σ. We here set up some

conventions about how to assign orientations to these various submanifolds of M . Given

an orientation on an orientable manifold with boundary M , there is a natural orientation

induced on ∂M such that Stokes’ theorem∫
M
dω =

∫
∂M

ω (1.9)

holds. If M has a metric, as it always will for us, then we can describe this induced

orientation by saying we require that the boundary volume form ε∂M is related to the

spacetime volume form ε by

ε = n ∧ ε∂M , (1.10)

where n is the “outward pointing” normal form defined by equation (2.34) below. We

will always use this orientation for ∂M . We will also adopt the orientation on Σ given by

viewing it as the boundary of its past in M , and we will adopt the orientation on ∂Σ given

by viewing it as the boundary of Σ. So for example if we take M to be the region with

x ≤ 0 in Minkowski space, with volume form ε = dt ∧ dx ∧ dy ∧ dz, and we take Σ to be

the surface t = 0, then the volume form ε∂M on ∂M is −dt ∧ dy ∧ dz, the volume form εΣ
on Σ is dx ∧ dy ∧ dz, and the volume form ε∂Σ on ∂Σ is dy ∧ dz. Note in particular that

the volume form on ∂Σ is not obtained by viewing ∂Σ as the boundary of its past within

∂M , these differ by a sign. Sometimes we will discuss a Cauchy surface Σ− which is the

past boundary of a spacetime M , the most convenient way to maintain our conventions

is to say that when this surface appears implicitly as part of ∂M we give it the opposite

orientation from when it appears explicitly as Σ−.

2 Formalism

2.1 Hamiltonian mechanics

Hamiltonian mechanics is often presented as the dynamics of a phase space labeled by

position and momentum coordinates qa, pa, with any scalar function H on this phase

space generating dynamical evolution via Hamilton’s equations

q̇a =
∂H

∂pa

ṗa = −∂H
∂qa

. (2.1)

Unfortunately this split of coordinates into positions and momenta makes it difficult to

preserve covariance. There is however an elegant geometric formulation of Hamiltonian

mechanics which allows us to avoid making such a split. Namely we instead view phase

space as an abstract manifold P, endowed with a closed non-degenerate two-form Ω called
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the symplectic form [40]. A manifold equipped with such a form is called a symplectic

manifold. We now briefly review Hamiltonian mechanics from this point of view.

Let P be a symplectic manifold, with symplectic form Ω. We can view Ω as a map

from vectors to one-forms via Ω(Y )(X) ≡ Ω(X,Y ), and since Ω is non-degenerate this

map will have an inverse, Ω−1, which we can also view as an anti-symmetric two-vector

mapping a pair of one-forms to a real number via Ω−1(ω, σ) ≡ ω(Ω−1(σ)). Given any

function H : P → R, we can then define a vector field XH on P via

XH(f) ≡ Ω−1(δf, δH), (2.2)

where f : P → R is an arbitrary function on P. Here we introduce a notation where

we denote the exterior derivative on phase space by δ to distinguish it from the exterior

derivative d on spacetime which appears below. The idea is then to view the integral

curves of XH in P as giving the time evolution of the system generated by viewing H as

the Hamiltonian. We can express this using the Poisson bracket of two functions f and g

on P, defined by

{f, g} ≡ Ω−1(δf, δg) = Ω(Xg, Xf ), (2.3)

in terms of which we have the time evolution

ḟ ≡ XH(f) = {f,H} (2.4)

for any function f : P 7→ R. Clearly Ω must be non-degenerate for this dynamics to

be well-defined. It is less obvious why Ω is required to be closed, and in fact there are

dynamical systems where it isn’t, but in such systems the Poisson bracket is not preserved

under time evolution by an arbitrary Hamiltonian so it cannot become a commutator in

quantum mechanics.4 The old-fashioned version of the Hamiltonian formalism using qa

and pa is recovered from these definitions by taking

Ω =
∑
a

δpa ∧ δqa. (2.5)

The standard interpretation of the phase space of a dynamical system is that it labels

the set of distinct initial conditions on a time slice. This interpretation is not covariant, as

we need to specify the time slice. The main idea of the covariant phase space formalism,

going back (at least) to [1–4], is, roughly speaking, to instead define phase space as the

set of solutions of the equations of motion. To the extent that the initial value problem is

well-defined, these should be in one-to-one correspondence with the set of initial conditions

on any time slice. This definition however needs some improvement for theories with

4One way to see this is the following: conservation of the Poisson bracket is equivalent to saying that

the Lie derivative LXH Ω vanishes. From (1.8) we then have

LXH Ω = XH · δΩ + δ(XH · Ω)

= XH · δΩ + δ(−δH)

= XH · δΩ,

so for this to vanish for arbitrary H we need δΩ = 0.

– 6 –
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continuous local symmetries, since for such theories the initial value problem is not well-

defined [41]. For example a solution Aµ of Maxwell’s equations can always be turned

into another equally good solution by a gauge transformation which has zero support in

a neighborhood of any particular time slice. In the above language, this problem arises

because the naive symplectic form one derives from the Maxwell Lagrangian is degenerate

(we review this example further in section 3.3 below).

Fortunately there is a nice way to deal with this: one instead refers to the set of

solutions of the equations of motion (obeying any needed boundary conditions) as pre-

phase space P̃, and the phase space P is then obtained by an appropriate quotient. We

will soon see that in any Lagrangian field theory this pre-phase space is always naturally

equipped with a pre-symplectic form Ω̃, which is a closed two-form on P̃ that we will

assume has constant but not necessarily full rank. The physical phase space P is then

obtained by quotienting P̃ by the action of the group of continuous transformations whose

generators are zero modes of Ω̃ [1–4].5 More explicitly, if X̃ and Ỹ are vector fields on P̃
which are everywhere annihilated by Ω̃, then their commutator [X̃, Ỹ ] ≡ L

X̃
Ỹ will also be

everywhere annihilated by Ω̃. Indeed using δΩ̃ = 0, X̃ · Ω̃ = Ỹ · Ω̃ = 0, and (1.8), we have

L
X̃
Ỹ · Ω̃ = L

X̃
(Ỹ · Ω̃)− Ỹ · L

X̃
Ω̃

= −Ỹ ·
(
X̃ · δΩ̃ + δ(X̃ · Ω̃)

)
= 0. (2.6)

The set of zero-mode vector fields of Ω̃ thus form a (possibly infinite-dimensional) Lie

algebra, and by Frobenius’s theorem they are jointly tangent to a set of submanifolds

which foliate P̃. These submanifolds can be thought of as the orbits of the connected

subgroup G̃ of the diffeomorphisms of P̃ whose Lie algebra corresponds to the zero modes

of Ω̃. The physical phase space P is then defined as the quotient of P̃ by this action:

P ≡ P̃/G̃. (2.7)

Thus the action of G̃ is a redundancy of description that leaves no imprint on P; in local

field theories it is typically realized as a set of continuous gauge transformations which

become trivial sufficiently quickly at any boundaries.6

To complete the construction of the phase space P, we must also define a symplectic

form Ω. This is done in the following way. Let π : P̃ → P be the map that sends each

point in P̃ to its G̃-orbit, let p be a point in P, and let X and Y be vectors in the tangent

space TpP. We can always find a point q ∈ P̃ and vectors X̃ and Ỹ in TqP̃ such that X

and Y are the pushforwards of X̃ and Ỹ by π. We then define

Ω(X,Y ) ≡ Ω̃(X̃, Ỹ ). (2.8)

5We again highlight here the alternative covariant phase space construction used in [5], where prior to

imposing the equations of motion one already quotients the set of all field configurations by the zero modes

of the pre-symplectic form. One then has to perform a second quotient over any new zero modes which

appear after the equations of motion are imposed. This approach can be useful in identifying the set of

valid initial data on a Cauchy slice, but we have chosen to adopt the more direct construction of [1–4].
6Discrete gauge symmetries do not lead to zero modes of the pre-symplectic form, but in going from P̃

to P we should still quotient by some or all of them depending on the boundary conditions.
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For this Ω to be well-defined, we need to show that it is independent of the arbitrariness

involved in choosing q, X̃, and Ỹ . We first note that two vectors X̃ and X̃ ′ in TqP̃ which

both push forward to the same X ∈ TpP can differ only by addition of a vector annihilated

by Ω̃ at p: this ambiguity thus has no effect in (2.8). Secondly we observe that by definition

any two points q, q′ ∈ P̃ which both map to p are related by the group action: q′ = gq

for some g ∈ G̃. This implies that the pushforward X̃ ′ ∈ Tq′P̃ of X̃ ∈ TqP̃ by g maps via

pushforward by π to the same element of TpP that X̃ does (this follows from π ◦ g = π).

Moreover Ω̃ is invariant under pushforward by g: this follows from the fact that by (1.8)

for any zero mode X̃ of Ω̃ we have

L
X̃

Ω̃ = X̃ · δΩ̃ + δ(X̃ · Ω̃) = 0. (2.9)

Together these results imply that (2.8) is indeed unambiguous. Finally we argue that Ω is

non-degenerate. Indeed let’s assume that for some p ∈ P there exists X ∈ TpP such that

X 6= 0 but X ·Ω = 0. This X must be the pushforward of some X̃ ∈ TqP̃, and by (2.8) we

must have X̃ · Ω̃ = 0. Since Ω̃ has constant rank, we can extend X̃ to a vector field which is

annihilated by Ω̃ throughout P. Therefore the pushforward of this vector field by π must

vanish, which contradicts our assumption that X 6= 0. Thus Ω has full rank at each point

in P and is indeed a symplectic form.

This discussion has so far been abstract; an example may be helpful. Consider a free

non-relativistic particle, with action

S =
m

2

∫
dtẋ2. (2.10)

There is a two-parameter set of solutions

x(t) =
p0

m
t+ x0, (2.11)

so we can use (x0, p0) as coordinates on phase space. The symplectic form (here G̃ is trivial

so no quotient is needed) is δp0∧δx0, and the Hamiltonian evolution on this set of solutions

generated by the Hamiltonian H =
p2

0
2m is

p0(t′) = p0

x0(t′) =
p0

m
t′ + x0. (2.12)

We emphasize the difference in interpretation between equations (2.11) and (2.12): the

former gives a parametrization of the set of solutions by saying what is going on at t = 0,

while the latter gives an evolution on that set which is nontrivial even though each solution

“already knows” its own evolution.7 This distinction is especially clear if we evolve in this

phase space using a Hamiltonian other than
p2

0
2m ; we discuss this further in section 4 below.

There are several mathematical subtleties in the construction of P and Ω which we

will mention here but not address in detail. First of all the manifolds P̃ and P are often

7It may seem that the time t = 0 is special here, but we only used it to choose coordinates on P. The

evolution is defined geometrically, and can be described using whatever coordinates we like.
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infinite-dimensional, and thus require some care to properly manipulate. We expect that

a rigorous treatment based on interpreting them as Banach manifolds should be possible,

as on such manifolds the main tools we use (exterior derivatives, Cartan’s magic formula,

vector flows, and Frobenius’s theorem) continue to make sense [42], but we have not pursued

this in detail so our treatment of these spaces should be viewed as heuristic. Secondly there

may be special points in P̃ which are invariant under a nontrivial subgroup of G̃, in which

case P will be singular at those configurations [4, 43, 44]. For example in general relativity

there can be special geometries which have continuous isometries, and if those isometries

vanish in a neighborhood of any boundaries then they will correspond to zero modes of Ω̃

(this situation also violates our assumption of Ω̃ having constant rank, but we may also want

to include discrete isometries in G̃, for which fixed points do not imply a change in rank).

At worst however this affects only a measure zero set of points in P, and even that seems

unlikely to happen in asymptotically-AdS or asymptotically-flat spacetimes since isometries

which are non-vanishing at the boundary are not generated by zero modes of Ω̃. Finally G̃

might fail to be a group due to flows which reach infinity in P̃ in finite time (as might happen

for solutions which develop singularities in finite time).8 In that case we can still define P
as the set of submanifolds which are tangent to the zero modes of Ω̃, but its structure (and

that of Ω) may become more intricate. We expect that the formalism could be sharpened

to systematically address these issues, but in this paper we will not attempt it.9

2.2 Local Lagrangians

In Lagrangian field theories we can make the discussion of the previous section more

concrete using the formalism of [5–9] (re-interpreted using the phase space construction

of [1–4]). In this formalism the Lagrangian density is converted into a Lagrangian d-form

L, which is a local functional of the dynamical fields φ and their derivatives, and also

potentially of some non-dynamical background fields χ and their derivatives. For example

for a self-interacting scalar field theory we have

L = −
(

1

2
∇µφ∇νφgµν + V (φ)

)
ε, (2.13)

where φ is a dynamical field, gµν is a non-dynamical background metric, and ε is the

spacetime volume form. To avoid confusion, we emphasize that in saying that L is a d-

form, we mean that it transforms as a d-form under diffeomorphisms which act on both the

dynamical and background fields. In the following subsection we will discuss the special

case of covariant Lagrangians, which transform as d-forms also under diffeomorphisms

which act only the dynamical fields.

In [5–9] the Lagrangian form was viewed as only being defined up to the addition of a

total derivative, but since we are being careful about boundary terms we will not allow the

8We thank Anton Kapustin for suggesting this possibility.
9We emphasize however that our construction below of a pre-symplectic form Ω̃ and Hamiltonian Hξ

obeying Hamilton’s equation (2.40) is rigorous: these mathematical issues are only potentially relevant once

we try to interpret (2.40) in terms of the theory of Hamiltonian flows on symplectic manifolds, which likely

needs to be somewhat generalized to include all interesting examples.
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Lagrangian to be arbitrarily modified by the addition of a total derivative. Indeed when

we integrate the Lagrangian d-form to define an action, we will include a boundary term

obtained by integrating over ∂M a (d − 1)-form ` built out of the restrictions of φ and χ

to the boundary ∂M , and also possibly their normal derivatives there:

S =

∫
M
L+

∫
∂M

`. (2.14)

Thus we may shift L by a total derivative only if we shift ` in a compensating manner that

preserves S, and for the most part we will not do this.

The basic idea of Lagrangian mechanics is that, after imposing appropriate boundary

conditions at ∂M , we should look for configurations φc about which the action is stationary

under arbitrary variations of the dynamical fields which obey those boundary conditions.

In fact the truth is slightly more subtle, due to the fundamentally different meaning of

boundary conditions at spatial boundaries and boundary conditions at future/past bound-

aries. The former are part of the definition of the theory, while the latter specify a state

within that theory. If we wish to allow variations that change the state, which indeed we

do, then we do not wish to impose any boundary conditions at future/past boundaries.

Stationarity of the action under such variations would be too strong of a requirement, typ-

ically it would lead to a problem with few or no solutions. The right approach is instead to

only require that the action be stationary up to terms which are localized at the future and

past boundaries. If we decompose ∂M = Γ∪Σ−∪Σ+, where Γ is the spatial boundary, Σ−
is the past boundary, and Σ+ is the future boundary, then we should look for configurations

Φc about which

δS =

∫
Σ+

Ψ−
∫

Σ−

Ψ, (2.15)

where the variation obeys the boundary conditions at Γ and Ψ is locally constructed out of

the dynamical and background fields at Σ±. In what follows it will be convenient to refer

to the set of dynamical field configurations on spacetime obeying the boundary conditions

at Γ, but not necessarily the equations of motion, as configuration space, denoted by C.
In classical mechanics configuration space is the arena in which the variational principle

operates, while quantum mechanically it is the set of configurations one integrates over in

the path integral.10

To discuss this more explicitly, it is convenient to note that, by way of “integration by

parts”-style manipulations, any local Lagrangian form must obey

δL = Eaδφ
a + dΘ, (2.16)

where a is an index running over the dynamical fields φa (we are using the Einstein sum-

mation convention), δφa are variations of those fields in configuration space C, d is the

spacetime exterior derivative, Θ is a local functional of the dynamical/background fields

and their derivatives, and is also a homogeneous linear functional of the δφa and their

10In particle mechanics the term “configuration space” is sometimes used to describe the set of positions

of particles at a fixed time. Our configuration space instead is the set of possible histories for those particles

prior to imposing the equations of motion.
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derivatives. The Ea are local functionals of the dynamical/background fields and their

derivatives. Θ is a (d − 1)-form on spacetime, and is called the symplectic potential. It is

defined only up to addition of a total derivative dY for Y some local (d − 2) form. The

variation of the action (2.14) is thus

δS =

∫
M
Eaδφ

a +

∫
∂M

(δ`+ Θ) , (2.17)

where we have used Stokes’ theorem (1.9). For this to obey (2.15) for arbitrary variations

obeying the boundary conditions at Γ about a configuration φc, and since we can always

adjust such variations arbitrarily in the interior of M , we see that φc must obey the

equations of motion

Ea[φc] = 0. (2.18)

We moreover see that to avoid a term at the spatial boundary Γ in (2.15), we need the

second term in (2.17) to only have support on Σ±. A first guess is that we therefore should

require (δ`+ Θ)|Γ = 0 for all variations obeying the boundary conditions at Γ. Given the

ambiguity of shifting Θ by a total derivative, however, this is unnatural. A more general suf-

ficient condition, which we believe (but have not shown) is also necessary, is to require that

(Θ + δ`)|Γ = dC, (2.19)

where C is a local (d− 2)-form on Γ which is constructed from the dynamical/background

fields, the variations δφa, and derivatives of both. As with L and `, any addition to Θ of

a total derivative dY must be complemented by an addition of Y to C, such that (2.19) is

preserved.11 Making use of (2.19) in (2.17), we thus have

δS =

∫
M
Eaδφ

a +

∫
Σ+−Σ−

(Θ + δ`) +

∫
Γ

(Θ + δ`)

=

∫
M
Eaδφ

a +

∫
Σ+−Σ−

(Θ + δ`) +

∫
∂Γ
C

=

∫
M
Eaδφ

a +

∫
Σ+−Σ−

(Θ + δ`− dC) , (2.20)

which is indeed of the form (2.15) for variations about configurations obeying the equations

of motion Ea = 0 with Ψ = Θ + δ` − dC (writing it this way requires us to extend C to

Σ± in an arbitrary manner, but only its values at ∂Σ± actually contribute).

To set up the Hamiltonian formalism, we must now introduce a pre-phase space and

pre-symplectic form. We define the pre-phase space P̃ to be those elements of the configu-

ration space C which also obey the equations of motion (2.18). We do not impose boundary

conditions in the future/past, and any background field configurations are held fixed. In

defining the symplectic form, it is very useful to first note that there is a convenient change

11Allowing C 6= 0 may at first seem like a trivial generalization, since after all we could extend C

arbitrarily into the interior of M and then define Θ′ = Θ − dC and C′ = 0. It will however be quite

convenient below to take Θ to be covariant, and dC generally will not extend to M in a covariant manner.

This is also the reason why we have not redefined L′ = L+ d` and `′ = 0 to get rid of ` in the action.
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of notation which allows us to re-interpret quantities like Θ and C as one-forms on C [3].

The idea is that instead of viewing the quantity δφa(x) as an infinitesimal variation, we

can (and from now on will) view it as a coordinate differential on C. In other words, δ now

denotes the exterior derivative for differential forms on C, and the action of δφa(x) on a

vector field is given by

δφa(x)

(∫
ddx′f b(φ, x′)

δ

δφb(x′)

)
= fa(φ, x). (2.21)

Thus if we wish to convert δφa(x) from a one-form back to a variation, we act with it on a

vector whose components are the desired variation. With this notation Θ and C are one-

forms on configuration space, and we may then pull them back to one-forms on pre-phase

space by restricting their action to those vectors which are tangent to P̃.12

Using this new interpretation of δ we can now introduce our version of the pre-

symplectic current from [5–8], which we define as the pullback to P̃ of the quantity δΨ:

ω ≡ δΨ|P̃ = δ(Θ− dC)|P̃ . (2.22)

Here we have used δ2 = 0. Since the pullback and exterior derivative are commuting oper-

ations, ω is closed as a two-form on P̃. Moreover ω vanishes on Γ, since by (2.19) we have

ω|Γ = δ(Θ + δ`− dC)|P̃,Γ = 0. (2.23)

ω is also closed as a (d− 1)-form on spacetime:

dω = dδ(Θ− dC) = δdΘ = δ(δL− Eaδφa) = −δEa ∧ δφa = 0. (2.24)

Here we have used that Ea = 0 on P̃, and also that d and δ commute. Finally we define

the pre-symplectic form on P̃ as

Ω̃ ≡
∫

Σ
ω, (2.25)

where Σ is any Cauchy slice of M . (2.23) and (2.24) ensure that Ω̃ is independent of the

choice of Σ. Moreover from (2.22) we have

Ω̃ = δ

(∫
Σ

Θ−
∫
∂Σ
C

)
, (2.26)

so Ω̃ is independent of how we chose to extend C into the interior of M . Ω̃ will be degen-

erate if there are continuous local symmetries, but once we quotient P̃ by the subgroup

G̃ of pre-phase space diffeomorphisms generated by the zero modes of Ω̃ (and possibly its

extension by other discrete gauge symmetries) then the resulting symplectic form Ω on

phase space will be non-degenerate (and closed since ω is closed on P̃).

12Tangent vectors to P̃ are precisely those whose components fa(φ, x) obey the linearized equations of

motion, in the sense that Ea[φc + f ] = 0 to linear order in f .
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2.3 Covariant Lagrangians

The covariant phase space formalism is especially useful for systems whose dynamics are

invariant under at least some continuous subgroup of the spacetime diffeomorphism group.

We first recall that by definition the variation of any dynamical tensor field φ under the

infinitesimal diffeomorphism generated by a vector field ξµ is

δξφ = Lξφ, (2.27)

with the right hand side being the Lie derivative of φ with respect to ξ [45]. To make

contact with the notation of the previous section we can define a vector field

Xξ ≡
∫
ddxLξφa(x)

δ

δφa
(2.28)

on configuration space, in terms of which we have

δξφ
a(x) = LXξφ

a(x) = Xξ · δφa(x). (2.29)

Here “·” again denotes the insertion of a vector into the first (and in this case only) argu-

ment of a differential form. More generally the infinitesimal diffeomorphism transformation

of any configuration-space tensor σ, such as the one-forms Θ and C or the two-form ω, is

given by

δξσ ≡ LXξσ. (2.30)

In particular from (1.8) we have

δξδφ
a(x) = δ(Xξ · δφa(x)) = δ(Lξφa(x)), (2.31)

so “the diffeomorphism of a variation is the variation of a diffeomorphism”, as is the case

for the standard interpretation of the symbol δφa(x) as an infinitesimal function.

We now introduce a key definition: a configuration-space tensor σ which is also a

spacetime tensor locally constructed out of the dynamical and background fields is covariant

under the infinitesimal diffeomorphism generated by a vector field ξµ if

δξσ = Lξσ, (2.32)

where we emphasize that Lξ is the spacetime Lie derivative. This is to be distinguished from

the configuration-space Lie derivative LXξ appearing in (2.30): the latter implements the

diffeomorphism on dynamical fields only, while the former implements it on both dynamical

and background fields. This distinction is important because symmetries are only allowed

to act on dynamical fields, so for σ to transform correctly under a diffeomorphism symmetry

it must be covariant.

The simplest way for a configuration space and spacetime tensor σ locally constructed

out of dynamical and background fields to be covariant under some ξ is for all background

fields involved in its construction to be invariant under ξ, in the sense that Lξχi = 0 where

i runs over background fields χi. For example the Lagrangian form (2.13) is covariant

under any diffeomorphisms which are isometries of the background metric g, but it is not
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covariant under general diffeomorphisms. More generally some non-invariant background

fields are allowed as long as the combinations in which they appear in σ are invariant. An

extreme case is for σ to not depend on any nontrivial background fields at all, as happens

for the Einstein-Hilbert Lagrangian in general relativity, in which case it will be covariant

under arbitrary diffeomorphisms.13 In fact it was shown in [7] that this is the only way for

a Lagrangian form to be covariant under arbitrary diffeomorphisms: it must be built only

out of a dynamical metric gµν , its associated Riemann tensor Rαβγδ, tensorial dynamical

matter fields, and covariant derivatives of the latter two.14 Moreover it was also shown that

for such Lagrangians the symplectic potential Θ can always be taken to be covariant under

arbitrary diffeomorphisms, essentially because the derivation of (2.16) can always be done

using “integration by parts” manipulations on covariant derivatives. Indeed even if there

are nontrivial background fields, we can still choose Θ to be covariant under the subgroup

of diffeomorphisms which preserve all background fields. This is because we could always

choose to consider a different theory where all background fields become dynamical, in

which case the Lagrangian form would become covariant under arbitrary diffeomorphisms,

and thus by the argument of [7] so would Θ. Therefore Θ must still be covariant in the

original theory under diffeomorphisms which preserve all background fields.

Covariance of the Lagrangian form L under the diffeomorphisms generated by a vector

field ξµ is not sufficient for those diffeomorphisms to be symmetries. For a continuous

transformation of dynamical fields to be a symmetry, this transformation must respect the

boundary conditions and the action must be invariant under that transformation up to

possible boundary terms at Σ± (see section 4.2 below for more on why this is the correct

requirement). These requirements are nontrivial, for example many diffeomorphisms do

not even preserve the location of Γ. We can write the variation of the action (2.14) by an

infinitesimal diffeomorphism under which L is covariant as

δξS =

∫
M
δξL+

∫
∂M

δξ`

=

∫
∂M

(ξ · L+ δξ`) , (2.33)

where we have used (2.32) and (1.8). To avoid contributions at the spatial boundary Γ,

we first require that at Γ the normal component of ξµ vanishes. This ensures that ξµ does

not move Γ, and also ensures that the first term in (2.33) vanishes. We then also require

that ` be covariant with respect to ξ: in this case the second term also does not give a

contribution at Γ, since we then have δξ`|Γ = Lξ`|Γ = d(ξ · `)|Γ, which integrates to an

allowed contribution at ∂Σ±. In general this covariance of ` imposes more requirements on ξ

than just a vanishing normal component at Γ. We thus will need to restrict consideration to

13A trivial background field is one which is invariant under arbitrary diffeomorphisms. One example is a

coupling constant, and another is the ε symbol.
14One small exception is that the Lagrangian in this form may be entirely independent of the metric, as

happens e.g. in Chern-Simons theory, in which case we do not need the metric to be dynamical. Also [7]

did not consider spinor fields or connections on nontrivial bundles, but their argument was generalized to

include them in [39]. In this paper we are not explicitly addressing such fields, but we expect they can be

included in our formalism with little modification.
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diffeomorphisms obeying these additional requirements (and also preserving the boundary

conditions), since otherwise they will not be symmetries.

In considering what kinds of terms may appear in ` it is useful to adopt the covariant

hypersurface formalism, which is a way of discussing the extrinsic properties of a hypersur-

face without making any choice of coordinates [45, 46]. To discuss ∂M in this formalism,

we introduce a background scalar field f on M such that

(1) There is a neighborhood of ∂M in which f ≤ 0, and in which f = 0 only on ∂M .

(2) ∂µf is either spacelike or timelike at each point in ∂M , except perhaps at finitely

many “corners” where it is not well-defined and across which its signature can switch.

Different choices of f away from ∂M give different foliations of the spacetime near the

boundary. We can then define a normal one-form field

nµ ≡
∂µf√

±∂αf∂βfgαβ
(2.34)

in the vicinity of ∂M , with the ± being determined by whether ∂µf is spacelike or timelike

on the nearby part of ∂M .15 nµ can then be used to define an induced metric

γµν ≡ gµν ∓ nµnν (2.35)

and an extrinsic curvature tensor

Kµν =
1

2
Lnγµν = γ α

µ ∇αnν , (2.36)

where we emphasize that these quantities live in a neighborhood of ∂M . Away from ∂M

in this neighborhood they obviously depend on the choice of f , but right on ∂M they do

not.16 This neighborhood will be foliated by slices of constant f , and within it γ ν
µ can be

used to project tensor indices down to ones which are tangent to those slices. It can also

be used to define a hypersurface-covariant derivative, which, acting on any tensor T that

obeys the requirement that contraction of any index with nµ or nµ vanishes, is defined by

DµT
α1...αm

β1...βn
≡ γ ν

µ γ α1
σ1

. . . γ αm
σm γ ρ1

β1
. . . γ ρn

βn
∇νT σ1...σm

ρ1...ρn . (2.37)

This is the unique derivative such that Dµγαβ = 0. γµν , nµ, and Kµν (and also their

tangential and normal derivatives) are natural quantities to use in constructing `, together

with tangential and normal derivatives of the dynamical fields.

15This notion is ambiguous in the vicinity of a corner where the signature of ∂µf changes sign, in what

follows the values of any quantities at such corners are always defined by approaching them from the spatial

boundary Γ. Also we note that this (standard) definition has the somewhat counter-intuitive property that

if nµ is timelike and f is increasing towards the future, then nµ is past-pointing.
16To see this, note that if f and f ′ both vanish on ∂M , with both of their gradients having the same

signature, then we must have f ′ = hf , with h some scalar function which is nonvanishing on ∂M . But then

on ∂M we have ∂µf
′ = h∂µf , so they define the same nµ there. γµν will then also be the same, and so will

Kµν since the second equality in (2.36) makes it clear that to define Kµν we only need to differentiate nµ
“along” ∂M .
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By construction, ` will transform as a (d − 1)-form under diffeomorphisms which act

on both dynamical and background fields, with f included among the latter. For it to

be covariant we need it to still transform as a (d − 1)-form when only the dynamical

fields transform. We’ve already seen that the covariance of L under the infinitesimal

diffeomorphisms generated by ξµ requires all ‘bulk” background fields to appear in L only

in combinations which are invariant under those diffeomorphisms. Similarly the covariance

of ` also requires some kind of invariance of f . We only need ` to be covariant at the spatial

boundary Γ, so the strongest condition we could reasonably require is that

ξν∂νf = 0 (2.38)

everywhere in some neighborhood of Γ, in which case we will say that ξµ is foliation-

preserving. ` will always be covariant with respect to foliation-preserving diffeomorphisms

(provided that any other background fields are also invariant). More generally however we

can also consider diffeomorphisms where we only require

nµ1 . . . nµn∇µ1 . . .∇µn (ξνnν) |Γ = 0 (2.39)

for all n = 0, 1, . . . k, in which case we say that ξµ is foliation-preserving at order k. Any `

which is constructed out of at most k derivatives of f will also be covariant under such diffeo-

morphisms,17 and in fact since f appears only inside of nµ, which is foliation-independent,

such an ` will actually also be covariant under foliation-preserving diffeomorphisms of order

k − 1.18

Finally we consider the covariance of the quantity C appearing in (2.19). We will

assume that given ` and Θ the demonstration of equation (2.19) involves “covariant inte-

gration by parts” manipulations on the boundary, together with imposing the boundary

conditions (see sections 3.4, 3.5 for examples of this). The C which appears will then always

be a locally constructed out of the dynamical and background fields and their derivatives,

and it will transform as a (d−2)-form under diffeomorphisms which act on both the dynam-

ical and background fields. Moreover like ` it will be covariant under foliation-preserving

diffeomorphisms which preserve any other background fields. Furthermore if ` involves at

most k derivatives of f then C will as well, so C will more generally at least be covari-

ant under foliation-preserving diffeomorphisms of order k − 1. We will need to use this

covariance of C in the following subsection.

2.4 Diffeomorphism charges

We now turn to the problem of constructing the Hamiltonian Hξ that generates the evolu-

tion in phase space corresponding to the diffeomorphisms generated by any vector field ξµ

which respects the boundary conditions and under which L, `, and C are covariant. Our

17Indeed note that if f were dynamical, we would have δξ∂µ1 . . . ∂µnf = ∂µ1 . . . ∂µn(ξν∂νf). In fact

∂µ1 . . . ∂µnf is only a background field, and thus should not transform, but we can still preserve covariance

provided that ∂µ1 . . . ∂µn(ξν∂νf) = 0 for all n ≤ k, which is equivalent to (2.39) holding for all n ≤ k.
18This is because if more than one derivative acts on f there will always be at least one which is taken

parallel to the foliation.
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strategy will be to first find a function Hξ on pre-phase space obeying

δHξ = −Xξ · Ω̃, (2.40)

with Xξ given by (2.28). For any zero mode X̃ of Ω̃ we have

X̃ · δHξ = Ω̃(X̃,Xξ) = 0, (2.41)

so Hξ will also be a well-defined function on the phase space P. Moreover since Ω̃ defines

the non-degenerate symplectic form Ω on P via (2.8), we may use its inverse there to

rewrite (2.40) as

Xξ(f) = Ω−1(δf, δHξ), (2.42)

where Xξ is now defined modulo addition by a zero mode of Ω̃ and f is a function on P.

This is nothing but Hamilton’s equation (2.2), so finding an Hξ on P̃ obeying (2.40) is

sufficient to construct the Hamiltonian on phase space.

We now compute the right hand side of (2.40), aiming to show that indeed it is equal

to δ of something. It is useful [7] to first introduce the Noether current

Jξ ≡ Xξ ·Θ− ξ · L. (2.43)

This is a scalar function on P̃, and a (d − 1)-form on spacetime. Note that we are using

“·” for the insertion of both pre-phase space and spacetime vectors. If L is covariant under

ξ then Jξ is closed as a spacetime form:

dJξ = d(Xξ ·Θ)− d(ξ · L)

= Xξ · (δL− Eaδφa)− LξL
= δξL− LξL− EaLξφa

= 0. (2.44)

In this derivation we have used (2.16), (1.8), (2.18), (2.32), and also that d(Xξ ·Θ) = Xξ ·dΘ.

We then have the following calculation:

−Xξ · ω = −Xξ · δ(Θ− dC)

= δ (Xξ · (Θ− dC))− LXξ(Θ− dC)

= δJξ + ξ · δL− LξΘ + d (δξC − δ(Xξ · C))

= δJξ + ξ · (dΘ + Eaδφ
a)− LξΘ + d (δξC − δ(Xξ · C))

= δJξ + d (δξC − δ(Xξ · C)− ξ ·Θ) . (2.45)

Here we have made liberal use of (1.8) for both pre-phase space and spacetime differential

forms, as well as (2.43), (2.16), (2.30), (2.32) (applied to Θ), and (2.18). We have not yet

applied (2.32) to C, since we are only assuming that C is covariant at Γ. We may do so
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after integrating over a Cauchy slice Σ, to obtain

−Xξ · Ω̃ =

∫
Σ
δJξ +

∫
∂Σ

(LξC − δ(Xξ · C)− ξ ·Θ)

=

∫
Σ
δJξ +

∫
∂Σ

(ξ · (dC −Θ)− δ(Xξ · C))

= δ

(∫
Σ
Jξ +

∫
∂Σ

(ξ · `−Xξ · C)

)
. (2.46)

Here we have again used (1.8), as well as (2.32) (applied to C) and (2.19), and also discarded

the integral of a total derivative over the closed manifold ∂Σ. Comparing to (2.40) we see

that we have succeeded in obtaining an exterior derivative on pre-phase space, with Hξ

given by

Hξ ≡
∫

Σ
Jξ +

∫
∂Σ

(ξ · `−Xξ · C) + constant, (2.47)

where the arbitrary additive constant is independent of the dynamical fields and reflects

the standard additive ambiguity of the energy in any Hamiltonian system. Note in partic-

ular that no “integrability condition”, such as those in equation (80) of [7] or equation (16)

of [9], needed to be introduced during this derivation: equation (2.19), which we obtained

by demanding stationarity of the action up to future/past terms, was sufficient to algorith-

mically construct Hξ.
19 Note also that Hξ is independent of choice of Cauchy surface Σ: if

we consider two slices Σ′ and Σ, whose boundaries obey ∂Σ′ − ∂Σ = ∂Ξ, with Ξ ⊂ Γ, the

difference of Hξ evaluated on these slices is given by∫
Ξ

(Jξ + d(ξ · `−Xξ · C)) =

∫
Ξ

(Xξ · (Θ− dC)− ξ · L+ d(ξ · `))

=

∫
Ξ

(−Xξ · δ`+ d(ξ · `)− ξ · L)

=

∫
Ξ

(−δξ`+ Lξ`− ξ · L)

= 0. (2.48)

Here we used (2.43), (2.19), (2.30) applied to `, (1.8), (2.32) applied to `, and that ξ has

no normal component to Ξ.

Our derivation of (2.47) only required the various quantities to be covariant with

respect to the particular diffeomorphism ξµ being considered. So for example we could

use (2.47) to write down the various Poincare generators of any relativistic Lagrangian

field theory in Minkowski space. In the special case where L is covariant under arbitrary

continuous diffeomorphisms, as happens for example in general relativity, an additional

simplification of (2.47) is possible. Indeed in this situation it was shown in [7, 28] that not

only do we have dJξ = 0, actually there will be a local covariant (d−2)-form Qξ constructed

19This is not to say that equation (16) of [9], or a version of equation (80) from [7] which accounts for

C 6= 0, does not hold: they do hold, but they are consequences of our assumption that the variational

problem is well-posed rather than additional assumptions.
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out of the dynamical fields and their derivatives, called the Noether charge, such that20

Jξ = dQξ. (2.49)

We may then make one final application of Stokes theorem in (2.47) to obtain the following

expression, true only in generally-covariant theories:

Hξ =

∫
∂Σ

(Qξ + ξ · `−Xξ · C) + constant. (2.50)

Thus in such theories the Hamiltonian for any continuous diffeomorphism is a pure bound-

ary term: this is analogous to the fact that in electromagnetism that the total electric

charge is the electric flux through spatial infinity.

Equations (2.47) and (2.50) are perhaps the main technical results of this paper; as far

as we know they have not appeared in the literature before. One can obtain equation (82)

from reference [7] by replacing `→ −B and setting C = 0: the terms involving C are not

present there because C was not included in their definition of the pre-symplectic current,

while we included it in (2.22) to ensure that ω|Γ = 0.21

The boundary terms in (2.47) can be given a nice interpretation as follows. As men-

tioned in footnote 11, if we are not interested in preserving the covariance of L and Θ

then we can remove the boundary term ` from the action and the total derivative dC from

equation (2.19) via the redefinitions

L′ ≡ L+ d`

Θ′ ≡ Θ + δ`− dC. (2.51)

In terms of these the action and presymplectic current are simply

S =

∫
M
L′

ω = δΘ′ (2.52)

We can also define a new Noether current

J ′ξ ≡ Xξ ·Θ′ − ξ · L′ + (Lξ − δξ)`
= Jξ + d(ξ · `−Xξ · C), (2.53)

where the extra terms involving ` in the definition are necessary to ensure that dJ ′ξ = 0.22

We thus may rewrite (2.47) as

Hξ =

∫
Σ
J ′ξ, (2.54)

20This name is rather misleading: Qξ is not conserved and does not generate any symmetry. “Noether

potential” would have been better, it is Hξ which is really the Noether charge.
21In [7] the possibility of such a modification of ω was considered in the discussion around equations

(46–48), but dismissed basically on grounds that C would be hard to extend covariantly into M . A

covariant extension is not necessary however, and indeed the C terms we construct in sections 3.4 and 3.5

do not have one.
22These terms also follow from the general Noether theorem we present in section 4.2 below, as we will

explain there.
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so we see that it is really J ′ξ which should be thought of as the local generator of ξ dif-

feomorphisms. Moreover if we choose f away from ∂M such that ξ is foliation-preserving

near Σ, then the ` terms in the definition of J ′ξ do not contribute to Hξ. We then have

Hξ =

∫
Σ

(
Xξ ·Θ′ − ξ · L′

)
, (2.55)

which is a version of the standard formula H = pq̇ − L.

There is an aspect of this construction which may seem mysterious: it has not required

any discussion of whether or not the equations of motion have a well-posed initial value

formulation in the usual sense of fixing some data about the dynamical fields and their

derivatives on a Cauchy slice Σ and asking for a unique time evolution off of the slice (see

e.g. [45]). In the usual non-covariant way of thinking about the Hamiltonian formalism, one

defines phase space in terms of the values of the dynamical fields and some number of their

derivatives on a Cauchy slice. A well-posed initial value formulation is then necessary in

order for the Hamiltonian and the symplectic form to be sufficiently smooth objects on this

phase space that the relevant theorems on vector flows ensure a good dynamics. The reason

we have not encountered the initial value problem in our formalism is that we have simply

defined the pre-phase space P̃ to be the set of field configurations which obey the equations

of motion throughout spacetime, so any initial data we find on any Cauchy slice must be of

the type which allows such a solution. In theories which do have a satisfactory initial value

formulation, points in our phase space P = P̃/G̃ will be in one-to-one correspondence with

some natural set of initial data on each Cauchy slice. More generally, our P will only be

some subset of the “naive” phase space one might construct on a Cauchy slice by studying

the constraints and the number of derivatives. In fact for poor choices of theory there may

be no solutions at all! Identifying the set of initial data which leads to valid solutions is

a problem about which can say little in general, as we expect it to depend on the details

of both the Lagrangian and the boundary conditions. We do expect however that on our

phase space P the Hamiltonian (2.47) and symplectic form (2.25) are sufficiently smooth

to generate the expected dynamics, and moreover we expect that if L, `, and the boundary

conditions depend on only finitely many derivatives of the dynamical fields, then the values

of the dynamical fields and some finite number of their derivatives on a Cauchy slice are

sufficient to determine a unique solution up to gauge transformations, provided that any

solution exists with that initial data.

3 Examples

We now illustrate this formalism in a series of examples, starting simple to get some practice

with our differential form technology.

3.1 Particle mechanics

We first consider the mechanics of n particles with positions qa and Lagrangian form

L = L(qa, q̇a)dt. (3.1)
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The variation of this Lagrangian form is

δL =

(
∂L
∂qa
− d

dt

∂L
∂q̇a

)
dtδqa + dΘ, (3.2)

with

Θ =
∂L
∂q̇a

δqa. (3.3)

The Noether current for the time translation ξ = d
dt is

Jξ =
∂L
∂q̇a

q̇a − L, (3.4)

so defining pa ≡ ∂L
∂q̇a we arrive at the usual formula

H = paq̇
a − L (3.5)

for the Hamiltonian in particle mechanics. Similarly the symplectic form is

Ω = δω = δpa ∧ δqa. (3.6)

3.2 Two-derivative scalar field

We next consider the scalar field theory (2.13), with Lagrangian form

L = −
(

1

2
∇µφ∇µφ+ V (φ)

)
ε. (3.7)

The variation of L is

δL = (∇µ∇µφ− V ′(φ))ε δφ+ dΘ, (3.8)

with

Θ = θ · ε, (3.9)

where we define

θµ ≡ −∇µφδφ, (3.10)

and we have used the convenient identity

d(V · ε) = (∇µV µ) ε, (3.11)

which is true for any vector field V . The restriction of Θ to ∂M is given by

Θ|∂M = nµθ
µε∂M , (3.12)

where ε∂M is the volume form on ∂M , nµ is the normal form (2.34), and we have used (1.10).

Therefore our boundary requirement (2.19) will be satisfied with `, C = 0 provided that

we adopt either Dirichlet (δφ|Γ = 0) or Neumann (nµ∇µφ|Γ = 0) boundary conditions. To

write the pre-symplectic current we need to address a notational subtlety we have so far

avoided: with two kinds of differential forms, there are also two kinds of wedge products.
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We will from here on adopt a convention where we automatically view the configuration-

space differentials δφa as anti-commuting objects. The product of two of them will therefore

implicitly be a wedge product, but we will only write “∧” for the spacetime wedge product.

With this convention, the pre-symplectic current is given by

ω = δΘ = ω̂ · ε, (3.13)

with

ω̂µ = −∇µδφ δφ, (3.14)

and the pre-symplectic form is

Ω̃ =

∫
Σ
ω =

∫
Σ

(n̂µω̂
µ) εΣ = −

∫
Σ

(n̂µ∇µδφ δφ) εΣ. (3.15)

Here n̂µ is the normal vector to Σ, which we note is past-pointing in our conventions (see

the discussion around (1.10)). This pre-symplectic form is already non-degenerate, so no

quotient is necessary and we have P = P̃ and Ω = Ω̃. Indeed comparing to (2.5), we see

that we have recovered using covariant methods the standard result that in this theory φ̇

is the canonical momentum conjugate to φ. Finally the Noether current is

Jξ = jξ · ε, (3.16)

with

jµξ = −ξν
(
∇µφ∇νφ− gµν

(
1

2
∇αφ∇αφ+ V (φ)

))
, (3.17)

where the quantity in brackets is the energy-momentum tensor Tµν . Jξ is closed on P̃ if

and only if ξµ is a Killing vector of the background metric.

3.3 Maxwell theory

We now give an example where the quotient from pre-phase space to phase space is non-

trivial. This will just be Maxwell electrodynamics, with Lagrangian form

L = −1

2
F ∧ ?F. (3.18)

Its variation is

δL = −δA ∧ d ? F − d (δA ∧ ?F ) , (3.19)

so apparently we have

Θ = −δA ∧ ?F. (3.20)

If we impose Dirichlet boundary conditions, meaning we fix the pullback of A to the spatial

boundary Γ, then the stationarity requirement (2.19) is satisfied with no need for an ` or

C. We then have the symplectic potential

ω ≡ δΘ = δA ∧ ?δF, (3.21)
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and pre-symplectic form

Ω̃ =

∫
Σ

(δA ∧ ?δF ) , (3.22)

which illustrate the usual statement that A and − ? F are canonical conjugates. Zero

modes of Ω̃ are associated with gauge transformations, which are flows in configuration

space generated by vectors of the form

Xλ ≡
∫
ddx∂µλ

δ

δAµ
. (3.23)

Indeed note that

Xλ · Ω̃ =

∫
Σ

(dλ ∧ ?δF )

=

∫
Σ
d (λ ? δF )

=

∫
∂Σ
λ ? δF. (3.24)

Our Dirichlet boundary conditions require the restriction of dλ to Γ vanishes, so λ must be

constant on Γ. Since the boundary conditions allow for
∫
∂Σ ?F to vary, Xλ will apparently

be a zero mode of Ω̃ if and only if λ|Γ = 0. Therefore in constructing the physical phase

space we should quotient only by the set of gauge transformations which vanish at the spa-

tial boundary. The ones which approach a nonzero constant there act nontrivially on phase

space, and in fact by an analogue of the discussion below (2.40) we can interpret (3.24) as

telling us that the generator of these gauge transformations on phase space is23

Qλ ≡ λ
∫
∂Σ
?F, (3.25)

as expected from Gauss’s law.

3.4 Higher-derivative scalar

We now give a simple example of a theory with nonzero C. This is a non-interacting scalar

field theory, with Lagrangian form

L = −1

2
(∇µφ∇µφ+∇µ∇νφ∇µ∇νφ) ε. (3.26)

We first note that

δL = (∇µ∇µφ−∇µ∇ν∇ν∇µφ) ε δφ+ dΘ, (3.27)

with

Θ = θ · ε, (3.28)

with θ being the vector

θµ ≡ (∇ν∇ν∇µφ−∇µφ) δφ−∇µ∇νφ∇νδφ. (3.29)

23We have switched the sign here compared to (2.40) to respect the standard convention that in quantum

mechanics a time translation is e−iHt while an internal symmetry rotation is eiλQ.
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To identify C we are interested in the pullback of Θ to the ∂M , which from (1.10) is

given by

Θ|∂M = θµnµε∂M . (3.30)

We will show that Θ|∂M is the sum of a term which vanishes with appropriate boundary

conditions and a term which is a boundary total derivative. Indeed by using (2.35) to

decompose the ∇νδφ in the third term of θµ into normal and tangential parts, we find

θµnµ =
(
nµ (∇ν∇ν∇µφ−∇µφ) +Dα

(
γαβnµ∇µ∇βφ

))
δφ

∓ (nµnα∇µ∇αφ)nβ∇βδφ

−Dα

(
γαβnµ∇µ∇βφ δφ

)
. (3.31)

Here Dα is the hypersurface-covariant derivative (2.37). Therefore if we adopt “generalized

Neumann” boundary conditions

nµ (∇ν∇ν∇µφ−∇µφ) |Γ +Dα

(
γαβnµ∇µ∇βφ

)
|Γ = 0

nµnα∇µ∇αφ|Γ = 0, (3.32)

then (2.19) holds provided we define

C ≡ c · ε∂M , (3.33)

with

cµ ≡ −γµαnβ∇α∇βφ δφ. (3.34)

This C term is not covariant in the interior of M , but by the discussion above equa-

tion (2.39) its restriction to the boundary will be covariant under foliation-preserving dif-

feomorphisms of order zero.

We expect this example is indicative of the general situation for higher derivative

Lagrangians: there will typically be a nonvanishing C term, which is covariant on the

boundary but cannot be covariantly extended into the interior of M .

3.5 General relativity

We now discuss general relativity, which we take to have

L =
1

16πG
(R− 2Λ) ε

` =
1

8πG
K ε∂M . (3.35)

Here R is the Ricci scalar, and K is the trace gαβKαβ of the extrinsic curvature (2.36).

The metric gµν is dynamical, and there are no nontrivial background fields. The relevant
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variations (see e.g. [45]) are

δε =

(
1

2
gµνδgµν

)
ε

δε∂M =

(
1

2
γµνδgµν

)
ε∂M

δΓµαβ =
1

2
gµν (∇αδgβν +∇βδgαν −∇νδgαβ)

δR = −Rµνδgµν +∇µ∇νδgµν −∇ρ∇ρgµνδgµν

δnµ =
1

2
nα
(
δβµ − γ

β
µ

)
δgαβ

δK = −1

2
Kµνδgµν +

1

2
gµνnλ∇λδgµν −

1

2
nα∇βδgαβ −

1

2
Dµ (γµνnαδgνα) , (3.36)

where Dµ is the hypersurface-covariant derivative (2.37), and we emphasize that in the last

two variations we have treated the function f identifying the location of ∂M (see (2.34))

as a background field. Using these variations we have

δL = Eµνδgµν + dΘ, (3.37)

with

Eµν =
1

16πG

(
−Rµν +

1

2
Rgµν − Λgµν

)
ε (3.38)

and

Θ = θ · ε, (3.39)

where

θµ =
1

16πG

(
gµα∇νδgαν − gαβ∇µδgαβ

)
(3.40)

and we have used (3.11). The equation of motion Eµν = 0 is of course just the Einstein

equation. Similarly we have the boundary variation

δ` =
1

16πG

(
(Kγµν −Kµν) δgµν + gαβnλ∇λδgαβ − nα∇βδgαβ −Dµ (γµνnαδgνα)

)
ε∂M .

(3.41)

Using (1.10), the pullback of Θ to ∂M is

Θ|∂M = nµθ
µε∂M . (3.42)

Therefore from (3.40) and (3.41) we have

Θ|∂M + δ` = − 1

16πG
(Kµν −Kγµν) ε∂Mδgµν + dC, (3.43)

with

C = c · ε∂M (3.44)

and

cµ = − 1

16πG
γµνnαδgνα. (3.45)

– 25 –



J
H
E
P
1
0
(
2
0
2
0
)
1
4
6

Thus (2.19) will be satisfied provided that we choose boundary conditions such that

(Kµν −Kγµν) δgµν |Γ = 0. (3.46)

The boundary conditions we will adopt, analogous those we chose for Maxwell theory in

section 3.3, are to require that the pullback of gµν to Γ is fixed. We then must have

γ α
µ γ β

ν δgαβ |Γ = γ α
µ γ β

ν δγαβ |Γ = 0. (3.47)

The set of diffeomorphisms which respect (3.47) are those for which ξµnµ|Γ = 0 and

γ α
µ γ β

ν (∇αξβ +∇βξα) |Γ = (Dµξν +Dµξν) |Γ = 0, (3.48)

so in other words ξ must approach a Killing vector of the spatial boundary metric. In

the language of section 2.3 these diffeomorphisms are foliation-preserving at order zero,

so since ` and C are constructed out of γµν , nµ, and Kµν they will be covariant. With

these boundary conditions C is typically nonzero: cµ involves the mixed normal-tangential

components of δgνα, while (3.47) only constrains the strictly tangential components.24

We now consider the Noether current and charge. From (2.43), (3.35), and (3.40) we

have

Jξ = jξ · ε, (3.49)

with

jµξ =
1

8πG

[
∇ν∇[νξµ] +

(
Rµν − 1

2
Rgµν + Λgµν

)
ξν

]
. (3.50)

The results of [7, 28] imply that on pre-phase space, where Eµν = 0, we must have Jξ = dQξ
for some locally constructed (d− 2)-form Qξ. And indeed using the fact that for any two-

form S we have

d ? S = s · ε (3.51)

with

sµ ≡ gµα∇βSαβ , (3.52)

we have

Qξ = − 1

16πG
? dξ, (3.53)

where we have viewed ξµ as a one-form. More explicitly,

(Qξ)ν1...νd−2
= − 1

16πG
εαβν1...νd−2

∇αξβ . (3.54)

24 We could also consider a stronger set of boundary conditions, where (3.47) is replaced by δγµν |Γ = 0.

We then would have to further restrict to diffeomorphisms obeying nαγ β
µ (∇αξβ +∇βξα) |Γ = 0. Since

γµνδgνλ = γµνδγνλ, with these boundary conditions we would indeed have C = 0. Moreover the theory with

these boundary conditions in fact is a partial gauge-fixing of the theory with the boundary conditions (3.47):

we therefore construct the same physical phase space either way. This ability to get rid of C with a partial

gauge-fixing is special to general relativity, the theory of the previous subsection shows that it will not

happen in general higher-derivative theories.
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To compute Hξ we are interested in the pullback of Qξ to ∂Σ, where Σ is some Cauchy

slice. Constructing this is facilitated by observing that on Γ we have

ε∂M = −τ ∧ ε∂Σ, (3.55)

where τ is the normal form of ∂Σ viewed as the boundary of its past in Γ (remember that

this implies that τµ is past-pointing). The minus sign in (3.55) follows from the discussion

of orientation below equation (1.9). Combining (1.10) and (3.55) we have

ε = τ ∧ n ∧ ε∂Σ, (3.56)

so (3.53) then gives

Qξ|∂Σ = − 1

16πG

(
ταnβ − τβnα

)
∇αξβ ε∂Σ. (3.57)

Similarly we have

ξ · `|∂Σ = − 1

8πG
ξµτµKε∂Σ (3.58)

and

Xξ · C|∂Σ =
1

16πG

(
ταnβ + τβnα

)
∇αξβ ε∂Σ. (3.59)

Therefore from (2.50) we have

Hξ = − 1

8πG

∫
∂Σ

(
ταnβ∇αξβ + ξαταK

)
ε∂Σ

= − 1

8πG

∫
∂Σ

(
−ταξβ∇αnβ + ξαταK

)
ε∂Σ

= − 1

8πG

∫
∂Σ
ταξβ (−Kαβ + γαβK) ε∂Σ. (3.60)

Introducing the Brown-York stress tensor [47]

Tαβ ≡ 2√
−γ

δS

δγαβ
= − 1

8πG

(
Kαβ − γαβK

)
, (3.61)

with the second equality following from (2.17) and (3.43), we can rewrite this as

Hξ = −
∫
∂Σ
ταξβTαβε∂Σ, (3.62)

which is the correct expression for the generator of a boundary isometry with killing vector

ξµ. For fun we show how to re-derive this result using traditional non-covariant Hamiltonian

methods in appendix A, where we revisit the analysis of [26, 27] from a slightly different

point of view and extend it to obtain (3.62) (a comparison of the lengths of the two

calculations shows the advantages of the covariant formalism).

We close this section by showing how the standard ADM Hamiltonian of general rel-

ativity in asymptotically-flat spacetime [48] with d ≥ 4 can also be directly recovered

from (2.50). Indeed in any asymptotically-flat spacetime we can choose coordinates (t, xi)

where the metric has the form

gµν = ηµν + hµν , (3.63)
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where ηtt = −1, ηij = δij , hµν ∼ 1
rd−3 with r ≡

√
xixi, and ∂αhµν ∼ 1

rd−2 . We take the

spatial boundary to be at r = rc for rc some large but finite radius that we will eventually

take to infinity, and we require that the pullback of hµν to this boundary vanish. We

discuss further the meaning of the fall-off conditions on hµν in section 4.3 below. Here our

goal is to compute the Hamiltonian Hξ for the vector

ξµ = δµt , (3.64)

which should agree with the ADM expression. In checking this it is sufficient to expand all

quantities to linear order in hµν , since any higher powers will give vanishing contributions

to Hξ as we take rc →∞.25 Defining the “unperturbed” normal vector

rµ = δµi x
i/r, (3.65)

and using (3.57), (3.59), and also that on ∂Σ we have ε = −ξ ∧ r ∧ ε∂Σ (see again the

discussion of orientations below (1.9)), we find

Qξ −Xξ · C = − 1

8πG
ταrβ∇αξβε∂Σ

=
1

16πG
ξαξβrγ (2∇αhβγ −∇γhαβ) ε∂Σ. (3.66)

In evaluating (ξ · `) |∂Σ it is very useful to use the formula for δK in (3.36) to compute the

linear term in h. Using this, and also that ξ · ε∂M = −ε∂Σ, after some algebra we find

(ξ · `)∂Σ =
1

16πG

[
− 2K0 + δijrk (∂ihjk − ∂khij) + ξαξβrγ (∇γhαβ − 2∇αhβγ)

+Kµν
(
hµν − ξλξµhνλ + ξµξνr

αrβhαβ

)
+ D̃µ

(
γ̃µνrλhνλ

) ]
. (3.67)

Here K0 is the trace of the extrinsic curvature of the surface r = rc in pure Minkowski space,

and D̃ and γ̃µν are the covariant derivative and induced metric on ∂Σ; the last term is thus

a total derivative on ∂Σ and does not contribute to Hξ. Moreover all terms proportional

to Kµν vanish, either because the pullback of hµν to the surface r = rc vanishes or because

Ktt = 0 in Minkowski space. Combining these expressions we thus find that

Hξ =
1

16πG

∫
∂Σ
δijrk (∂ihjk − ∂khij) ε∂Σ −

1

8πG

∫
∂Σ
K0ε∂Σ. (3.68)

The first term is indeed the ADM Hamiltonian, and the second is a (divergent as rc →∞)

constant on phase space.

3.6 Brown-York stress tensor

In the previous subsection we saw that in general relativity our covariant Hamiltonian (2.50)

was equivalent to the Brown-York expression (3.62). In fact this equivalence can be ex-

tended to rather general diffeomorphism-invariant theories, as first noted in [8]. We here

give an improved version of that argument, which is simpler and allows for C 6= 0.

25In d = 4 a term quadratic in hµν with no derivatives could potentially also give a non-vanishing

contribution, but all terms in Qξ and K involve at least one derivative on hµν so this does not happen.
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Our general construction of the Hamiltonian (2.50) relied on choosing boundary con-

ditions such that equation (2.19) holds. Here we will restrict to considering boundary

conditions where the pullback of gµν to ∂M is fixed. We then assume that if we allow this

pullback to vary, (2.19) is violated only as

Θ|Γ + δ` = dC +
1

2
Tµνδgµνε∂M , (3.69)

where Tµν is symmetric and obeys Tµνnν = 0.26 We found precisely this structure in

general relativity in equation (3.43), and in general we can think of Tµν as the derivative

of the action with respect to the boundary induced metric as in (3.61). We will refer to it

as the generalized Brown-York stress tensor.

To relate Tµν and the canonical Hamiltonian Hξ, we first choose two Cauchy slices Σ−
and Σ+, with Σ+ strictly in the future of Σ−, and we then introduce a new quantity

S̃ ≡
∫
M+−

L+

∫
Γ+−

`, (3.70)

where M+− denotes the points in M which lie between Σ− and Σ+ and Γ+− denoting the

points in Γ which lie between ∂Σ− and ∂Σ+. Note that we do not include any boundary

terms on Σ±. The idea is then to compute δξS̃ in two different ways, where ξµ is an

extension of an arbitrary diffeomorphism on ∂M into M , and then to compare what we

get. The first computation uses the covariance of L and `, from which we find

δξS̃ =

∫
Σ+

ξ · L−
∫
∂Σ+

ξ · `−
∫

Σ−

ξ · L+

∫
∂Σ−

ξ · `. (3.71)

The signs arise from the orientation conventions explained below (1.9). The second com-

putation instead uses (2.16) and (3.69), giving

δξS̃=

∫
∂M+−

Xξ ·Θ+

∫
Γ+−

Xξ ·δ`

=

∫
Σ+

Xξ ·Θ−
∫
∂Σ+

Xξ ·C−
∫

Σ−

Xξ ·Θ+

∫
∂Σ−

Xξ ·C+

∫
Γ+−

TαβDαξβ ε∂M . (3.72)

Equating these, and using (2.43), (2.47), and (2.49), we find

Hξ(Σ+)−Hξ(Σ−) =−
∫

Γ+−

TαβDαξβε∂M

=−
∫
∂Σ+

ταξβT
αβε∂Σ+ +

∫
∂Σ−

ταξβT
αβε∂Σ−+

∫
Γ+−

ξβDαT
αβε∂M .

(3.73)

Here all orientations are again as below (1.9), and τµ is the normal vector to ∂Σ± when

viewed as the boundary of its past in ∂M . In the first two terms on the right-hand side the

26In general this will require us to still impose boundary conditions on any matter fields, as well as possibly

on normal derivatives of metric, and we are here assuming that a choice for these boundary conditions exists

such that (3.69) holds. Moreover in (3.72) below we assume that any infinitesimal diffeomorphism of ∂M

can be extended into M in a way that respects these other boundary conditions.
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minus sign in (3.55) is cancelled by a minus sign arising from our orientation convention

that ∂Γ+− = −∂Σ+ + ∂Σ−. Since we can choose the restriction of ξµ to ∂M arbitrarily,

we can in particular choose it to vanish in the vicinity of ∂Σ± and adjust it arbitrarily

elsewhere in Γ+−. (3.73) therefore then tells us that we must have DαT
αβ = 0. Moreover

we can choose ξ to be a Killing vector of the boundary metric in a neighborhood of ∂Σ+,

and to vanish in the vicinity of ∂Σ−, in which case (3.73) tells us that

Hξ(Σ+) = −
∫
∂Σ+

ταξβT
αβε∂Σ+ . (3.74)

We may then now take ξ to be a Killing vector throughout ∂M , recovering (3.62). Thus we

see that the connection between the covariant phase space formalism and the generalized

Brown-York tensor is quite close.

3.7 Jackiw-Teitelboim gravity

Our last example will be Jackiw-Teitelboim (JT) gravity [49, 50], which is a simple theory

of gravity coupled to a scalar in 1+1 dimensions. Starting with [51] it has seen considerable

recent interest, in part based on its appearance within the low-temperature sector of the

SYK model [52–54]. A covariant Hamiltonian formulation of this theory on compact space

(i.e. on S1) was given in [55], an analysis on open space (i.e. on R) with somewhat unusual

boundary conditions leading to an empty theory was given in [56], and a Hamiltonian

formulation of the theory with the “nearly AdS2” boundary conditions appropriate for

viewing it as a model of AdS/CFT was given in [57]. In this section we describe the last

case from a covariant phase space point of view.27

We define JT gravity to have bulk and boundary Lagrangian forms

L =
(

Φ0R+ Φ(R+ 2)
)
ε

` = 2
(

Φ0K + Φ(K − 1)
)
ε∂M . (3.75)

Here Φ is a dynamical scalar field, conventionally called the dilaton, Φ0 is a non-dynamical

constant, and R and K are the intrinsic and extrinsic curvature for a dynamical metric gµν .

Using (3.36), and also that in 1 + 1 dimensions we have Rµν = 1
2Rgµν and Kµν = Kγµν ,

we find

δL = EΦδΦ + Eµνδgµν + dΘ, (3.76)

with

EΦ = (R+ 2)ε

Eµν =
(
∇µ∇νΦ−∇2Φgµν + Φgµν

)
ε

Θ = θ · ε

θµ = (Φ0 + Φ)
(
gµα∇β − gαβ∇µ

)
δgαβ

+
(
∇µΦgαβ −∇αΦgµβ

)
δgαβ , (3.77)

27The analysis in this section somewhat involved, we view it as a “stress test” of our formalism but some

readers may wish to skip ahead.
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and also

δ`=
(

2(K−1)δΦ+
(
DαΦnβ−Φγαβ

)
δgαβ

+(Φ+Φ0)
(
gαβnλ∇λδgαβ−nα∇βδgαβ

)
−Dµ ((Φ0+Φ)γµνnαδgαν)

)
ε∂M . (3.78)

Combining these we have

(Θ + δ`) |∂M =
(

2(K − 1)δΦ + (nµ∇µΦ− Φ) γαβδgαβ

)
ε∂M + dC, (3.79)

with

C = c · ε∂M
cµ = −(Φ0 + Φ)γµνnαδgνα. (3.80)

The simplest boundary conditions which respect (2.19) are therefore those where we fix Φ

and the pullback of gµν on Γ. Explicitly we will take

ds2|Γ = −r2
cdt

2

Φ|Γ = rcφb, (3.81)

where φb and rc are fixed positive constants with units of energy and length, and to recover

the full AdS2 geometry we take rc →∞. In this paper we will consider only the situation

where there are two such asymptotic boundaries, as illustrated in figure 1.

The Noether current for JT gravity is

Jξ = jξ · ε, (3.82)

with

jµξ = 2∇ν
(
−(Φ0 + Φ)∇[µξν] + 2∇[µΦξν]

)
− 2ξν

(
∇µ∇νΦ− gµν∇2Φ + gµνΦ

)
, (3.83)

and the Noether charge is

Qξ = −(Φ0 + Φ) ? dξ + 2 ? (dΦ ∧ ξ) . (3.84)

As in our analysis of general relativity, we can evaluate Qξ, ξ ·`, and Xξ ·C on ∂Σ to compute

the canonical Hamiltonian using (2.50). This again has the Brown-York form (3.62), with

Brown-York stress tensor

Tαβ = 2(nµ∇µΦ− Φ)γαβ . (3.85)

This can also be directly confirmed by comparing equations (3.69) and (3.79), which is

fortunate since by the argument of the previous subsection the canonical approach and the

Brown-York approach must agree.

So far this analysis has paralleled that of general relativity in section 3.5, but in JT

gravity with these boundary conditions one can go further and explicitly construct the phase
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space [57]. We now explain how to do this using the covariant phase space formalism. The

key observation is that up to diffeomorphism all solutions of JT gravity have the form

ds2 = −(1 + x2)dτ2 +
dx2

1 + x2

Φ = Φe

√
1 + x2 cos τ, (3.86)

where Φe is a dimensionless parameter that sets the value of Φ at the special point x = τ = 0

where the value of Φ is extremal. Therefore the pre-phase space of JT gravity is labeled

by Φe together with a choice of diffeomorphism. Our task will be to clarify what part of

that diffeomorphism is physical.

It is convenient to first say a bit more about the properties of these solutions. The

metric is just that of AdS2 in global coordinates, and x = ±∞ are its two asymptotic

boundaries. In pure AdS2 we would allow τ to also run from −∞ to ∞, but here this

would not respect the boundary condition (3.81): for τ outside of the range (−π/2, π/2)

the boundary value of Φ can be negative. Therefore it is natural to consider only the

dynamics of the shaded green region in figure 1. Another motivation for this is that

once matter fields are included we expect the null future/past boundaries of this region

to become curvature singularities, as happens in the near-extremal Reissner-Nordström

solution of which this is a dimensional reduction. At finite rc we can parametrize the two

asymptotic boundaries via

x±(t) = ±

√
r2
cφ

2
b − Φ2

e

Φe
cosh

 rcΦe√
r2
cφ

2
b − Φ2

e

(
t+ t±0

)
= ±rcφb

Φe
cosh

(
Φe

φb
(t+ t±0 )

)
+O

(
1

rc

)
(3.87)

tan τ±(t) =

√
1− Φ2

e

r2
cφ

2
b

sinh

 rcΦe√
r2
cφ

2
b − Φ2

e

(
t+ t±0

)
= sinh

(
Φe

φb
(t+ t±0 )

)
+O

(
1

r2
c

)
, (3.88)

where ± indicate the boundaries near x = ±∞ and t±0 are arbitrary shifts of time on those

boundaries. These functions are chosen so that (3.81) are satisfied, and one can think of t±0
as parametrizing the choice of time origin in each boundary. In what follows the asymptotic

expressions at large rc are sufficient for obtaining the final result. We will eventually be

interested in the energy of these solutions, if we consider a diffeomorphism generator tµ

that approaches ∂t at each boundary, the Brown-York tensor (3.85) gives a Hamiltonian

which evaluates (see e.g. [57]) to

Ht =
2Φ2

e

φb
. (3.89)

The basic technical problem we need to contend with is that in the (τ, x) coordinates

the boundary locations (3.87), (3.88) depend on Φe and t±0 , so in other words they depend
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Figure 1. The natural dynamical region for JT gravity: two asymptotic boundaries connected by

a wormhole. The dashed lines indicate the horizons of this wormhole, which cross at the extremal

point where Φ = Φe. The dotted lines show where the spatial boundaries are located at finite rc;

these boundaries are parametrized by t ∈ (−∞,∞).

on our choice of configuration and boundary Cauchy surface. This is not consistent with

our treatment of boundaries in the covariant phase space formalism, where we took the

coordinate location of the boundary to be the same for all points in configuration space

(and we accordingly restricted to diffeomorphisms that do not move this location). To solve

this problem we need to introduce new coordinates where the boundaries (and the Cauchy

surface we use in evaluating Ω̃) stay put. To achieve this we first introduce a notation

where we refer to the old coordinates as xµ = (τ, x). We then introduce new coordinates

yµ = (t, y) related to the old ones by a diffeomorphism

xµ = fµ(y), (3.90)

with

f τ (t, y±) = τ±(t)

fx(t, y±)) = x±(t). (3.91)

In other words in the yµ coordinates the spatial boundaries are at y = y±, and on those

boundaries t coincides with the boundary time appearing in (3.81). In these coordinates

we can re-express our solutions as

gµν(y) = ∂µf
α∂νf

βg
{x}
αβ (f(y))

Φ(y) = Φ{x}(f(y)), (3.92)

where we use the superscript {x} to indicate the specific functions appearing in (3.86). We

therefore can take our pre-phase space P̃ to be labeled by three real parameters Φe, t
+
0 , and

t−0 , as well as a diffeomorphism fµ obeying (3.91). The crucial subtlety is that in computing

variations of Φ and gµν , we must include not only the variations of the parameters in the
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solutions (3.86) (where only Φe appears) but also the variations of these parameters within

diffeomorphisms fµ. Once all variations have been computed, we are free to then return

to the xµ coordinates to simplify calculations.

From (3.86) and (3.92), the variations of the metric and dilaton in the y coordinates

are given by

δgµν = Lξgµν

δΦ = Φ
δΦe

Φe
+ LξΦ, (3.93)

with

ξµ(y) ≡ ∂(f−1)µ

∂xα

∣∣∣
f(y)

δfα(y). (3.94)

We emphasize that, unlike the diffeomorphisms we have considered so far, ξµ is a one-form

on pre-phase space. From (3.77), (2.43), (2.49), and (3.75), we find that on pre-phase space

we have

Θ|P̃ = Xξ ·Θ = Jξ + ξ · L = −2Φ0ξ · ε+ dQξ. (3.95)

Thus the presymplectic form is given by

Ω̃ = δ

[
−2Φ0

∫
Σ
ξ · ε+

∫
∂Σ

(Qξ −Xξ · C)

]
= δ

[
− 2Φ0

∫
Σ
ξ · ε

+ 2

∫
∂Σ

(
− τµξµnν∇νΦ + (Φ0 + Φ) (τµξµK − τµ∇µ (nνξ

ν))
)]
, (3.96)

where we have used (3.84), (3.80), and also that dΦ
dt |Γ = 0. As before, nµ is the normal

form at the spatial boundary and τµ is the normal form for ∂Σ viewed as the boundary

of its past in Γ. The integral over ∂Σ is just a sum over two points, being careful about

orientation. Computing this is a somewhat tedious exercise in working out expressions for

nµ, τµ, and ξµ in the xµ coordinates and performing the appropriate contractions. Using

the asymptotic expressions (3.87), (3.88) for τ± and x±, we find

ξµnµ|± = −δΦe

Φe
+O(1/r2

c )

ξµτµ|± =
rc
Φe

(
(t+ t±0 )δΦe + Φeδt

±
0

)
+O(1/rc). (3.97)

Another calculation28 gives

K(Φ0 + Φ)− nα∇αΦ = Φ0 +
Φ2
e

φbrc
+O(1/r2

c ). (3.98)

28This calculation is simpler in the “Schwarzschild” coordinates

ds2 = −(r2 − r2
s)dt̂

2 +
dr2

r2 − r2
s

Φ = rφb,

with rs = Φe
φb

. At finite rc the relationship between t and t̂ is t =
√

1− r2
s/r2

c t̂. These coordinates are also

convenient for the calculation that gives (3.89).
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Thus we arrive at

Ω̃ = δ

[
−2Φ0

∫
Σ
ξ · ε+ 2

∑
±

(
Φ0(ξµτ

µ)|± +
Φe

φb

(
(t+ t±0 )δΦe + Φeδt

±
0

))]
, (3.99)

where we have chosen our Cauchy slice Σ to arrive at time t on both boundaries. To

compute the final variation, it is useful to note that

δξµ = −∂(f−1)λ

∂xα
∂δfσ

∂yλ
∂(f−1)µ

∂xσ
δfα

= −∂(f−1)µ

∂xσ
∂δfσ

∂yλ
ξλ

= ξλ∇λξµ, (3.100)

where in several places we have used the antisymmetry of ξµξν arising from the implicit

wedge-product in pre-phase space. We thus have the variation

δ(ξ · ε) = ∇α (ξαξµεµνdy
ν) = −1

2
∇ν
(
ξαξβεαβ

)
dxν , (3.101)

where in the second equality we have used (3.51). From (3.97) and ε = τ ∧ n we also have

δ (τµξ
µ) = −1

2
ξαξβεαβ , (3.102)

so the terms involving Φ0 cancel in (3.99). Finally computing the variation of the remaining

boundary term, and making use of (3.89), we have

Ω̃ = −2Φe

φb
δ(t+0 + t−0 )δΦe

= δHt δ∆, (3.103)

where

∆ ≡ t+0 + t−0
2

. (3.104)

Therefore all variations of fµ at fixed Φe and t±0 correspond to zero modes of the pre-

symplectic form, as does a variation of t+0 − t
−
0 which preserves t+0 + t−0 . We thus should

take the quotient of P̃ by the group action generated by these zero modes, at last obtaining

a two-dimensional phase space parametrized by the energy Ht and its canonical conjugate

∆ [57].29 Of course it is no surprise that the Hamiltonian is the generator of time trans-

lations, what interesting here is that it is only the combined time translation ∆ which is

physical, and also that there are no other degrees of freedom. The situation is quite anal-

ogous to 1 + 1-dimensional Maxwell theory on a spatial line interval, as explained in [57].

29Our expression for the pre-symplectic form differs by a sign from the one given in [57], due to a change

of sign convention in its definition.
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4 Discussion

In this final section we consider a few interesting conceptual issues that arise in applying

the covariant phase space formalism.

4.1 Meaning of the Poisson bracket

There is a somewhat counterintuitive property of covariant phase space. Namely in Hamil-

tonian mechanics, any nonzero function on phase space generates a nontrivial evolution.

On the other hand, if we define pre-phase space as the set of solutions of the equations of

motion, it seems that each point in phase space “already knows” its full time evolution —

why do we need to evolve them at all? And moreover doesn’t this definition of phase space

pick a preferred Hamiltonian? How then are we supposed to think about evolving in this

phase space using a different Hamiltonian? We have already addressed the first question

using the example (2.10): a solution which realizes some set of initial data on a Cauchy

slice Σ1 is a different solution from the one which realizes it on a distinct Cauchy slice Σ2,

and they correspond to different points in pre-phase space. Whether or not they map to

the same point in phase space is determined by whether or not there is a diffeomorphism

connecting them which is generated by a zero mode of the pre-symplectic form: if there is

then they coincide, while if there is not then they don’t. The second two questions are best

understood by way of the Peierls bracket, which is an old proposal for a covariant definition

of the Poisson bracket [58]. We will now show that the Peierls bracket arises very naturally

within the covariant phase space formalism, and thus gives an elegant interpretation of the

Poisson bracket on covariant phase space.30

In our language the insight of Peierls was to give a construction of a vector field

Xg on pre-phase space whose pushforward to phase space is the Hamiltonian flow vector

for any G̃-invariant function g on pre-phase space (remember that G̃ is the group whose

action on pre-phase space is generated by the zero modes of Ω̃, usually it is the set of

gauge transformations which become trivial sufficiently quickly at any boundaries). By an

analogous discussion to that around equation (2.40), this means a vector field such that

δg = −Xg · Ω̃. (4.1)

Given such a vector field, the Poisson bracket between g and any other G̃-invariant function

f is easily evaluated via

{f, g} = Xg · δf, (4.2)

the right-hand side of which is Peierls’s bracket in our notation. The full evolution gener-

ated by g may then be obtained by exponentiating this bracket. Peierls’s demonstration

that his Xg obeyed an equation analogous to (4.1) used non-covariant methods and was

restricted to two-derivative theories, our goal here is to give a fully covariant demonstra-

tion which applies to arbitrary Lagrangian theories (we will however need to make a mild

assumption about the initial value problem, discussed in footnote 32).

30In the absence of boundaries the relationship between these brackets has already been shown covariantly

at a relatively high level of rigor in [10, 59], we hope the argument given here is more digestible to a physics

audience.
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Peierls’s proposal for Xg is constructed as follows. Begin with an action

S0 =

∫
M
L+

∫
∂M

` (4.3)

and boundary conditions such that (2.19) holds, and construct the associated covariant

pre-phase space P̃ and phase space P as in section 2.2. Take g to be a function on config-

uration space whose restriction to pre-phase space is G̃-invariant and which is constructed

only using the dynamical field variables φa in some finite time window lying between a

“past” Cauchy surface Σ− and a “future” Cauchy surface Σ+. We may then introduce a

deformed action

S = S0 − λg, (4.4)

whose equations of motion will differ from those of S0 in the region M+− lying between Σ−
and Σ+. More concretely, after enough integrations by parts we can write the variation of

g as

δg =

∫
M

∆g
aδφ

a, (4.5)

where the ∆g
a are spacetime d-forms that vanish outside of M+−, and which are also func-

tionals of the dynamical fields within M+−.31 We will restrict to variations which obey the

original boundary conditions for S0, in which case the new action will be stationary about

configurations obeying the deformed equations of motion

Ea − λ∆g
a = 0. (4.6)

To linear order in λ we can write any solution of these equations as

φa = φa0 + λha, (4.7)

where φa0 is a solution of the original equations of motion Ea = 0 and ha has the property

that the configuration-space vector

X{h} ≡
∫
ddxha(x)

δ

δφa(x)
(4.8)

obeys

X{h} · δEa = ∆g
a. (4.9)

In other words ha is a solution of the linearization of the deformed equations of motion

about a solution of the unperturbed equations, obeying the linearized version of the original

boundary conditions.

There are two particular ha which are useful to consider: the “advanced” solution haA
obeying

haA|J+(Σ+) = 0 (4.10)

31In general these ∆g
a will be distributional objects, involving delta-functions and so on, and may require

some short-distance regularization to make precise.
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and the “retarded” solution haR obeying

haR|J−(Σ−) = 0. (4.11)

Here J±(·) denotes the causal future/past of any set, so the advanced solution vanishes

to the future of Σ+ and the retarded solution vanishes to the past of Σ− (see figure 2 for

an illustration). These two solutions are unique up to G̃-transformations, since otherwise

the difference of two distinct retarded solutions or two distinct advanced solutions would

give a nontrivial solution of the unperturbed linearized equations of motion with the same

initial data as the trivial solution ha = 0 (see [10, 60] for more discussion of how gauge

symmetries interact with the Peierls bracket).32 The proposal of Peierls is then that we

should take

Xg ≡ X{hR−hA} = X{hR} −X{hA}. (4.12)

To see that this proposal is consistent with (4.1), we first note that from (4.9) we have

Xg · δEa = (X{hR} −X{hA}) · δEa = 0. (4.13)

In other words haR − haA is a solution of the unperturbed linearized equations of motion,

and we may thus interpret Xg as a vector field on pre-phase space. Now let Σ be a Cauchy

surface which is in the future of Σ+. We then have

−Xg · Ω̃ = −X{hR} ·
∫

Σ
δ(Θ− dC)

= −X{hR} ·
∫
J−(Σ)

δdΘ

= −
∫
J−(Σ)

X{hR} · δ(δL− Eaδφa)

=

∫
J−(Σ)

(
(X{hR} · δEa)δφa − δEa(X{hR} · δφa)

)
=

∫
J−(Σ)

∆g
aδφ

a

= δg. (4.14)

Here we have used that hA has no support on Σ, that hR has no support in the distant past,

that d and δ commute, that d2 = δ2 = 0, (2.23), (2.16), (4.9), (4.5), and that the support

of ∆g
a lies in the past of Σ. The conservation of Ω̃ ensures that the result actually holds

for any choice of Σ. Thus we confirm the equivalence of the Peierls and Poisson brackets,

a result which in Peierls’s paper was restricted to two-derivative theories and required the

introduction of non-covariant methods.

In summary the Peierls bracket gives a very intuitive meaning to the Poisson bracket on

covariant phase space: the quantity {f, g} tells us the linear response of f to a deformation

32We expect these advanced and retarded solutions to exist in theories with a reasonable initial-value

formulation, since in such theories we do not expect that deforming the action by −λg to affect the set of

valid initial data on Cauchy slices below Σ− or the set of valid final data on Cauchy slices above Σ+. In

theories where this is not true, the Peierls bracket is not well-defined.
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Figure 2. The various solutions used in computing the Peierls bracket, in the special case where

g is a local operator. The last one gives the direction in pre-phase space in which evolution by g

moves φ0.

of the action by −g. The direction in pre-phase space in which g evolves us is the direction of

a solution of the unperturbed equations of motion obtained by starting with an unperturbed

solution φa0 at early times, evolving forward using the deformed equations of motion to

obtain a configuration at late times, and then evolving that configuration backwards using

the original equations of motion. We illustrate this in figure 2.

4.2 Noether’s theorem

Noether’s theorem tells us that every continuous symmetry leads to a conserved charge, and

in a Hamiltonian formalism any conserved charge should be the generator of a continuous

symmetry. We here show how these standard results arise within the covariant phase space

formalism. In addition to the pedagogical value of this demonstration, we will need to

make use of it in the following section on asymptotic boundaries.

We define a continuous symmetry of a Lagrangian field theory to be a vector field

X on the configuration space C, which we remind the reader we define as the set of

“histories” obeying the spatial boundary conditions but not necessarily the equations of

motion, such that

X · δL = dα, (4.15)

where α is a d − 1 form locally constructed out of dynamical and background fields that

obeys a spatial boundary condition

(α+X · δ`)|Γ = dβ, (4.16)

with β some local functional of the dynamical and background fields on Γ and the variations

of the former.33 We emphasize that both of these equations are required to hold “off-shell”

— they are true everywhere in configuration space. Our goal will be to show that X

is tangent to pre-phase space (meaning that the flow it generates sends solutions of the

33One can choose to absorb β into a redefinition α′ = α − dβ, as we did in an earlier version of this

paper to simplify calculations, but as in our discussion of Θ and C doing so can lead to an α which is not

covariant. Keeping β around is thus more consistent with the general philosophy of our paper [61].
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equations of motion to other such solutions), that the quantity

HX ≡
∫

Σ
(X ·Θ− α) +

∫
∂Σ

(β −X · C) (4.17)

is conserved on pre-phase space, and that HX generates X evolution in the sense that on

pre-phase space

δHX = −X · Ω̃. (4.18)

To establish the conservation of HX , we note that

HX =

∫
Σ

(X · (Θ− dC)− α+ dβ) , (4.19)

whose integrand is a closed d− 1 form on pre-phase space:

d(X · (Θ− dC)− α) = X · dΘ− dα
= X · (δL− Eaδφa)− dα
= 0. (4.20)

Here we have used d2 = 0, (2.16), (2.18), and (4.15). Moreover the pullback of the integrand

to the spatial boundary Γ vanishes by (2.19) and (4.16). Together these observations imply

that indeed HX is independent of the choice of Cauchy surface Σ. The other claimed proper-

ties of X and HX are most easily derived by considering the variation of the modified action

S̃ ≡
∫
M+−

L+

∫
Γ+−

` (4.21)

we introduced above in section 3.6. Here M+− is the region of spacetime between a “past”

Cauchy surface Σ− and a “future” Cauchy surface Σ+, and Γ+− is the region of Γ which

is between ∂Σ− and ∂Σ+. The idea is to compute the Lie derivate LXδS̃ in two different

ways and equate them. In the first approach we have

LXδS̃ =

∫
M+−

δ(X · δL) +

∫
Γ+−

δ(X · δ`) =

∫
Σ+

δ(α− dβ)−
∫

Σ−

δ(α− dβ), (4.22)

where we have used (4.15) and (4.16). In the second approach, we instead have

LXδS̃ =

∫
M+−

δ(X · δL) +

∫
Γ+−

δ(X · δ`)

=

∫
M+−

(δEa(X · δφa) + Eaδ(X · δφa) + dδ(X ·Θ))−
∫

Γ+−

δ(X · (Θ− dC))

=

∫
Σ+

(LXΘ− dLXC)−
∫

Σ−

(LXΘ− dLXC) +

∫
M+−

(
(X · δEa)δφa + EaLXδφa

)
,

(4.23)

where we have used (2.16), (2.19), (1.8), and also that

X · δ2L = (X · δEa)δφa − (X · δφa)δEa + d(X · δΘ) = 0

X · δ2`|Γ = (d(X · δC)−X · δΘ) |Γ = 0. (4.24)
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Equating (4.22) and (4.23), and using (4.17) and (2.22), we find that throughout configu-

ration space we have the one-form equation(
δHX+X ·Ω̃

)∣∣∣
Σ+

−
(
δHX+X ·Ω̃

)∣∣∣
Σ−

=−
∫
M+−

(
(X ·δEa)δφa+EaLXδφa

)
. (4.25)

We may first evaluate this equation on solutions obeying Ea = 0 and vector fields corre-

sponding (in the sense of equation (2.21)) to variations about them which vanish in the

neighborhood of Σ± but are arbitrary in the interior of M+−, in which case we see that

we must have X · δEa = 0 everywhere: this shows that indeed X is tangent to pre-phase

space. Therefore the right-hand side of (4.25) vanishes for arbitrary variations in config-

uration space about any solution of the equations of motion. We next consider variations

in configuration space about P̃ which near Σ+ obey the linearized equations of motion

but vanish near Σ−: we thus see that we must have (4.18) when HX and Σ̃ are evaluated

on Σ+. Finally we observe that this statement will not be modified if we then restrict to

variations which obey the linearized equations of motion everywhere, and so (4.18) holds

on pre-phase space and HX is thus indeed the generator of X evolution.

Our expressions (2.47) and (2.50) for diffeomorphism generators can be viewed as a

special case of this general framework, with

α = ξ · L
β = ξ · `. (4.26)

The reader can check that for covariant theories with ξ parallel to Γ, these obey (4.15)

and (4.16) with X = Xξ, and moreover that the Hamiltonian (4.17) is precisely the one

appearing in (2.47). Indeed we could have obtained (2.47) entirely from this point of

view to begin with, but this would have obscured the sense in which our approach is a

generalization of that of [5–8].

4.3 Asymptotic boundaries

So far our general formalism has neglected the issue of the convergence of the integrals

appearing in our expressions for the symplectic form and the canonical charges. This is

no issue when the Cauchy slice Σ on which they are evaluated is a compact Riemannian

manifold with boundary and all boundary conditions are finite, but in many interesting

cases Σ will either be noncompact or only be conformally compact (the latter meaning that

Σ is compact topologically but the metric and matter fields may diverge at ∂M). From the

point of view of this article a natural way to understand such theories is to realize them as

limits of theories with an “infrared cutoff”, as indeed we did in our discussion of the ADM

energy in general relativity in section 3.5 and the symplectic structure of Jackiw-Teitelboim

gravity in section 3.7. There are however two subtleties which can arise in this procedure

which we would like to discuss:

(1) If we refer to the radial location of the infrared cutoff in some coordinates as rc,

there can be sequences of solutions obeying the boundary conditions at finite rc
which approach limits in the rc =∞ theory that have infinite energy. These limiting
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solutions are those which “have stuff all the way out”, for example in general relativity

with vanishing cosmological constant we could imagine initial data where we have an

infinite chain of equally-spaced copies of the Earth extending out to infinity. Such

configurations probably do not deserve the label of “asymptotically flat”, and in any

event since they have infinite energy the Hamiltonian is not well-defined on a phase

space which includes them.

(2) There may be symmetries of the rc =∞ theory which are not symmetries for any fi-

nite rc. Examples include boosts and spatial translations (and also potentially BMS

transformations) of asymptotically-flat space, and also special conformal transfor-

mations in asymptotically- anti de Sitter space. To construct the charges for these

symmetries, we need to generalize our formalism to allow symmetries which are “ap-

proximate” at finite rc.

The standard method for dealing with the first issue is to restrict to configurations in

the rc = ∞ theory which obey certain fall-off conditions [25, 62–65]. For example in

asymptotically flat space one typically restricts to metrics of the form

gµν = ηµν + hµν , (4.27)

where ηµν is the usual Minkowski metric in Cartesian coordinates (t, xi), and where hµν is

required to obey34

hµν = O(1/rd−3)

∂αhµν = O(1/rd−2), (4.28)

with r ≡
√
xixi. These fall-off conditions do not hold for all solutions which are limits

of finite-rc configurations, and in particular imposing them ensures that the energy will

be finite and thus excludes configurations with “stuff all the way out”. They thus must

be viewed as additional requirements that are applied to the rc = ∞ theory, beyond just

being a limit of a sequence of finite-rc configurations obeying the boundary conditions at

r = rc. This presciption may seem ad hoc, but in fact it is quite analogous to the way in

which continuum quantum field theories are constructed from their lattice counterparts:

as we take the lattice spacing to zero most of the states in the Hilbert space have “too

much structure at short distances”, and approach states of infinite energy in the continuum

limit. The Hilbert space of states with finite energy in the continuum is much smaller than

the limit of the lattice Hilbert space, and in particular it only allows a finite number of

excitations on top of the vacuum. This resemblance is not a mere analogy, in AdS/CFT

these two observations are actually dual to each other.

As for the second problem, the basic issue is that once we have an infrared regulator

surface our general formalism only applies to diffeomorphisms which preserve the location of

34These conditions are not necessarily the full set which need to be imposed, various options are possible

depending on what one is trying to achieve. For example to get a unique set of finite Poincare generators

additional “parity conditions” were imposed in [25]. These conditions have since been relaxed in various

ways, see e.g. [20], leading to a larger asymptotic symmetry group that includes BMS transformations.
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that regulator surface (such as the time translation in our discussion of the ADM energy in

section 3.5). In the limit where we remove the regulator surface, there are diffeomorphisms

which would have moved it but still preserve the asymptotic fall-off conditions, and these

should also be viewed as symmetries. This phenomenon is also quite familiar from a

lattice field theory point of view: introducing a short-distance regulator typically breaks

many of the symmetries of a theory. Which ones are preserved depends on the choice

of regulator, but in the continuum limit they all are recovered. There are various ways

that the generators for symmetries broken by the regulator can be described using our

formalism, one procedure we like is the following. Begin with a diffeomorphism generator

ξµ which preserves the asymptotic fall-off conditions but is not parallel to the cutoff surface

at r = rc. Define a flow on the regulated configuration space via

X̂ξ ≡
∫
ddx (Lξφa + fa)

δ

δφa(x)
, (4.29)

where fa is a term that “fixes” the violation of the boundary conditions at r = rc that is

caused by applying the diffeomorphism. In the limit that rc → ∞ we can and will take

fa → 0. At finite rc this “corrected” flow is not a symmetry, and in particular instead

of (4.15) we will now have

X̂ξ · δL = dα+ γ, (4.30)

with γ a d-form which is not necessarily exact, but which vanishes in the rc →∞ limit at

any specific point in M (we can and will still take α to obey (4.16)). Our proposal is then

to still define the charge for generating this approximate symmetry by equation (4.17).

Repeating the derivation of (4.25) then leads to

(
δHX̂ξ

+ X̂ξ · Ω̃
) ∣∣∣

Σ+

−
(
δHX̂ξ

+ X̂ξ · Ω̃
) ∣∣∣

Σ−
= −

∫
M+−

(
(X̂ξ · δEa)δφa+EaLX̂ξδφ

a− δγ
)
.

(4.31)

Thus if we restrict to configurations which obey fall-off conditions such that γ → 0 in the

limit that rc →∞, we see that in the same limit X̂ξ is tangent to pre-phase space and HX̂ξ

generates X̂ξ translations. We have checked this prescription in a few simple examples,

but we leave the details for future work.

4.4 Black hole entropy

One of the original applications of the covariant phase space formalism was in Wald’s

derivation of his famous entropy formula for black holes in higher-derivative gravity [6, 7].

This derivation is based on applying the covariant phase space formalism to a single exterior

subregion of an equilibrium wormhole solution; we here show that this result is not changed

by systematically including boundary terms. Indeed let Σ be a Cauchy surface in such a

solution which contains the bifurcate horizon χ, and let Σext be the subset of Σ which

lies between the bifurcate horizon and one of the two external spatial boundaries (we can

choose either of them). The idea is then to integrate equation (2.45) over Σext, with ξµ
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taken to be the Killing symmetry of the stationary black hole. Indeed we have

−
∫

Σext

Xξ · ω = δHext
ξ −

∫
χ

(δQξ + δξC − δ(Xξ · C)− ξ ·Θ)

= δHext
ξ −

∫
χ

(δQξ +Xξ · δC − ξ ·Θ)

= δHext
ξ −

∫
χ
δQξ

= 0 (4.32)

where Hext
ξ denotes the contribution to Hξ from the component of ∂Σ which is intersected

by Σext and we have chosen the orientation of χ so that its normal vector points towards

the interior of Σext. In going from the first to the second line we have used (1.8), and in

going from the second to the third we have used that ξµ vanishes at the bifurcate horizon

and also that Xξ vanishes at any point in pre-phase space where it generates a symmetry

(ie where Lξφa = 0). The fourth line follows directly from the first as a consequence of

the vanishing of Xξ. Following [6, 7] we may then interpret the equivalence of the last two

lines of (4.32) as an expression of the first law of thermodynamics dE = TdS, which leads

directly to the Wald formula.

In [7] the possibility of extending the Wald entropy formula to non-stationary black

holes was considered, but the covariant phase space method based on the Noether charge

Qξ was dismissed on the grounds that the additive ambiguity Θ′ = Θ + dY leads to an

ambiguity in Qξ which vanishes only for stationary solutions. We however would like to

suggest that this dismissal was premature, and the issue should be reconsidered in light of

the present work. The reason is that our treatment of boundary terms actually fixes this

ambiguity, leading uniquely to our −
∫
∂ΣXξ · C term in Hξ. As discussed below (2.19),

the only remaining ambiguity is a simultaneous shift of Θ and C that has no effect on

Hξ. Therefore we have some hope that a generalization of the Wald formula to dynamical

horizons may still be obtainable using covariant phase space techniques. On the other hand

even if the Noether charge is now unambiguous, there is no expectation of a first law for

perturbations of non-stationary configurations; it is only the second law which is supposed

to apply. So it seems that some new idea (such as using the Ryu-Takayanagi formula or

giving a systematic treatment of the second law) is still necessary to generalize Wald’s

derivation to non-stationary horizons. It would be interesting to see if our −
∫
∂ΣXξ · C

term is related to the “extrinsic curvature corrections” appearing in the higher-derivative

Ryu-Takayanagi formula of [66], and also if it might be of use in deriving a second law

(see e.g. [67]). To achieve this, one needs to view the exterior region as a closed dynamical

system in its own right, including a careful discussion of boundary conditions on the causal

horizon (knowing these will be part identifying the correct C there), and it is likely that

the “edge mode” or “center” degrees of freedom that arise when one defines a phase space

for gravity in a subregion [17, 68–72] will play an important role. In this paper we have

chosen not to study null boundaries, so we leave this for future work.
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A Non-covariant Hamiltonian analysis of general relativity

In this appendix we show how to obtain the canonical Hamiltonian (3.62) for any boundary-

preserving diffeomorphism generator ξµ in general relativity directly from the traditional

non-covariant approach. The idea of such a calculation goes back quite a ways [25, 48, 73],

but it was not until [26, 27] that a systematic treatment of boundary terms starting from

the action formalism was given. In that treatment the resulting Hamiltonian was presented

in a somewhat unusual form. In this appendix we redo that analysis in a somewhat different

manner, in particular we are able to allow the Cauchy slice to intersect the spatial boundary

non-orthogonally without needing to discuss Hayward terms [74], and our presentation

results in the standard Brown-York expression (3.62) for the Hamiltonian. This calculation

is not necessary for the logical flow of our paper, but we find it useful to illustrate the

relative convenience of the covariant formalism by comparison.

We begin by choosing a set of Cauchy surfaces Σt which foliate our (globally-hyperbolic)

spacetime M and are labelled by a time coordinate t. We also (nonuniquely) choose

coordinates on each slice such that we can view the spacetime as R×Σ, with Σ some d− 1

manifold which is homeomorphic to each Σt. We are interested in finding the Hamiltonian

Hξ for the diffeomorphisms generated by the vector field

ξµ = δµt , (A.1)

which we can represent using the ADM decomposition35

ξµ = −Nn̂µ +Nµ. (A.2)

Here n̂µ is the normal form to the Cauchy slices Σt (not to be confused with nµ the normal

form to the boundary ∂M), and we require that N > 0 and Nµn̂µ = 0. Explicitly,

n̂µ = Nδtµ. (A.3)

35Note that in the covariant version of the ADM formalism we use here, the quantities Nµ and n̂µ are

vectors on the full spacetime, indices are raised and lowered using the full spacetime metric gµν , and ∇µ is

the ordinary covariant derivative. All notation for normal forms and extrinsic curvatures is as introduced

around (2.34)–(2.36).
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N is called the lapse: it measures how fast proper time elapses on a geodesic normal to Σt

as we change t. Nµ is called the shift : it measures how much the coordinates we’ve chosen

on the Σt shift as we change t relative to what we would have gotten by connecting them

using normal geodesics.

We now study general relativity with the action given by (3.35). The basic idea is

to view the induced metric γ̂µν ≡ gµν + n̂µn̂ν on each Cauchy slice Σt as the “position”

degrees of freedom, identify their conjugate canonical momenta, and then compute the

Hamiltonian via the usual formula H = pq̇−L. We therefore need to re-express the action

in a way that makes manifest all occurrences of the time derivative

˙̂γµν ≡ γ̂ α
µ γ̂ β

ν Lξγ̂αβ . (A.4)

This is facilitated by the Gauss-Codacci equation

R = R̂+ K̂µνK̂
µν − K̂2 + 2∇µ (n̂µ∇ν n̂ν)− 2∇µ (n̂ν∇ν n̂µ) , (A.5)

where K̂µν ≡ γ̂ λ
µ ∇λn̂ν is the extrinsic curvature of the Σt in M (not to be confused with

Kµν the extrinsic curvature at the boundary ∂M) and R̂ is the Ricci scalar for the induced

metric on the Σt [45]. Using (A.5) on (3.35) we have

S=
1

16πG

[∫
M

(
R̂+K̂µνK̂

µν−K̂2−2Λ
)
ε+2

∫
∂M

(nµn̂
µ∇ν n̂ν−nµn̂ν∇ν n̂µ+K)ε∂M

]
.

(A.6)

The only time derivatives in the non-boundary part of this action arise from the extrinsic

curvatures via

K̂µν =
1

2N

(
D̂µNν + D̂νNµ − ˙̂γµν

)
, (A.7)

where D̂ is the hypersurface covariant derivative on Σt, defined as in (2.37). Introducing

the normal form τµ to ∂Σ within ∂M , from ε = n̂ ∧ εΣ and (3.55) we have∫
M
ε =

∫
dt

∫
Σ
NεΣ∫

∂M
ε∂M =

∫
dt

∫
∂Σ
τµξ

µε∂Σ, (A.8)

which we may then use to rewrite the action (after discarding terms at the future/past

boundaries) as

S =

∫
dtL̂, (A.9)

with

L̂ =
1

16πG

[∫
Σ
N
(
R̂+ K̂µνK̂

µν − K̂2 − 2Λ
)
εΣ

+ 2

∫
∂Σ
τρξ

ρ (nµn̂
µ∇ν n̂ν − nµn̂ν∇ν n̂µ +K) ε∂Σ

]
. (A.10)
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At this point the authors of [26] chose to set n̂µn
µ = 0, in which case the boundary

term in (A.10) just becomes the integral of the extrinsic curvature of ∂Σ within Σ, which

manifestly depends only on the induced metric on Σt and not its time derivative. We

however will not assume this (dropping this assumption was also the goal of [27]), and will

instead observe that a short calculation shows that

nµn̂
µ∇ν n̂ν − nµn̂ν∇ν n̂µ +K = D̂µ (γ̂µνnν) + (ξρ −Nρ)N−1∇ρ (nµn̂

µ) . (A.11)

Thus in addition to the time derivatives of γ̂µν arising from the extrinsic curvatures, in the

boundary term there is also a time-derivative of the quantity nµn̂
µ, which we therefore must

view as an additional dynamical degree of freedom. The canonical momenta conjugate to

γ̂µν and nµn̂
µ which follow from (A.10) are

Pµν = −
√
γ̂

16πG

(
K̂µν − γ̂µνK̂

)
p =

1

8πG

τµξ
µ

N

√
γ∂Σ, (A.12)

where γ∂Σ is the determinant of the induced metric on ∂Σ. We thus may compute the

Hamiltonian via

Hξ =

∫
Σ
dd−1xPµν ˙̂γµν +

∫
∂Σ
dd−2x p ξµ∇µ (nν n̂

ν)− L̂. (A.13)

Substituting the above formulas and doing a bit of algebra, we find

Hξ =

∫
Σ

[
−2Nµ

1√
γ̂
D̂νP

µν +
N

16πG

(
−R̂+ 2Λ +

(16πG)2

γ̂

(
PµνP

µν − 1

d− 2
P 2

))]
εΣ

+

∫
∂Σ

[
2√
γ̂
PµνrµNν +

τµξ
µ

8πG

(
N−1ξµ∇µ (nν n̂

ν)− nµn̂µ∇ν n̂ν + nµn̂
ν∇ν n̂µ −K

)]
ε∂Σ

(A.14)

In the second line the quantity rµ is the normal form to ∂Σ within Σ. rµ and τµ are related

to nµ and n̂µ via

rµ = αγ̂ ν
µ nν

τµ = αγ ν
µ n̂ν , (A.15)

with

α =
1√

1 + (nµn̂µ)2
. (A.16)

The terms multiplying Nµ and N in the first line of (A.14) are just the shift and Hamil-

tonian constraint equations of general relativity, which vanish on shell, so as expected the

on-shell Hamiltonian is a pure boundary term (the second line of (A.14)). Moreover we

can simplify the second line using the definitions of Pµν and K̂, and also (A.15) and (A.2),

to find that indeed

Hξ =
1

8πG

∫
∂Σ
ταξβ (Kαβ − γαβK) , (A.17)

as needed to match (3.62).
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