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Staging of space propulsion systems would allow lifetime limitations inherent to

small propulsion systems to be bypassed in order to enable high-∆V capabilities for

small spacecraft, in particular mass and volume constrained CubeSats. In addition,

staging can be used to provide redundancy in the propulsion system, counteract

thruster degradation, or open up new avenues of mission optimization. Analytical

approximations are developed in order to provide a computationally-simple approach

to the design, analysis, definition of propulsion technology requirements, and online

autonomous decision making for systems that make use of staging of propulsion ele-

ments. In addition, the analytical approximations provide insight into the dependen-

cies of performance metrics on system parameters. Equations are developed for any

mission, defined by its ∆V, and then specialized for escape trajectories.

1 Doctoral Candidate, Department of Aeronautics and Astronautics, oliverjr@mit.edu, Student Member AIAA
2 Professor, Department of Aeronautics and Astronautics, plozano@mit.edu, Associate Fellow AIAA

1



Nomenclature

ap = propulsive acceleration

c = exhaust velocity

F = propulsion system thrust

g = standard acceleration due to gravity

Isp = specific impulse

L = stage lifetime

m̄ = time-averaged spacecraft mass

m0 = initial spacecraft wet mass

mf = fuel mass

ms = stage dry mass

N = number of stages

r0 = initial orbital radius

S = escape time scalar factor

tesc = escape time

Ts = staged trajectory firing time

Tu = un-staged trajectory firing time

v0 = initial orbital velocity

γ = ratio of propulsive to gravitational accelerations

µ = gravitational parameter

σL = stage lifetime distribution

τ = firing time ratio

ζ = thrust reduction factor

I. Introduction

The use of staging has long been implemented on launch vehicles as a strategy to maximize

payload delivered to orbit given the high ∆V requirements of a launch trajectory. Once in orbit, the

paradigm for spacecraft has been to use a single “stage” due in part to the lower ∆V requirements
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and in part to the ability to use low-thrust but high-efficiency electric propulsion systems. However,

for small spacecraft such as CubeSats, the complexity of miniaturizing propulsion devices in general

has so far prevented the development of high-∆V propulsion systems compatible with the small

form factor [1].

The lack of high-∆V propulsion systems has limited the types of missions that can be performed

with CubeSats [2]. In particular, any deep-space mission where such a small spacecraft indepen-

dently propels itself from Earth orbit and into deep-space is not possible with current propulsion

technology [3]. To date, only two CubeSats have left Earth orbit as part of the Mars Cube One

(MarCO) mission. Both spacecraft had to rideshare with the InSight lander as their propulsion

systems were only capable of ∼40 m/s of ∆V and were intended for attitude control and trajectory

correction maneuvers [4]. In order to open up deep-space and leverage the affordability of small

spacecraft, high-∆V propulsion capabilities need to be developed.

Electrospray propulsion is a promising technology due to its high efficiency and compactness

and several devices using microfabrication techniques have been proposed [5–9]. In this work,

the ion Electrospray Propulsion System (iEPS) is used [9]. These thrusters use near-zero vapor

pressure ionic liquids as the propellant [10–12] which allows the propellant to be exposed to the

vacuum of space without boiling, thereby eliminating the need for pressurized tanks and complex

propellant management systems. In addition, bipolar operation of pairs of electrospray thrusters

can eliminate the need for a neutralization cathode [13]. Figure 1 shows the ∆V versus wet mass for

iEPS, with parameters given by Table 1, as well as CubeSat propulsion systems based in cold-gas,

monopropellant, and electric propulsion technology [14] when used on a 4 kg, 3U CubeSat. In order

to enable independent deep-space missions with CubeSats, it is assumed that the largest starting

orbital radius of the spacecraft is geostationary orbit. In this case, the propulsion system needs to

be capable of producing at least 2.7 km/s of ∆V to achieve escape when low-thrust gravity losses

have been accounted for. All available propulsion systems fall short of the 2.7 km/s ∆V cutoff

by at least an order of magnitude. However, compared to the other options, iEPS has the best

performance-to-mass ratio.

While electrospray thrusters have a high performance-to-mass ratio, the ∆V that can be pro-
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Fig. 1 Comparison of ∆V versus wet mass for 3U CubeSat Propulsion systems

Table 1 ion Electrospray Propulsion System performance metrics

Metric Value

Thrust 0.64 mN

Specific impulse 1000 s

Lifetime 500 hr

Stage dry mass 0.1 kg

duced by an electrospray thruster system is limited by the operational lifetime of the thrusters

themselves [15, 16]. For iEPS thrusters, the two main life-limiting mechanisms are propellant accu-

mulation on the extractor grid as well as arcing between isolated tips on the emitter array and the

extractor grid. The beam of ions which is extracted from an emitter tip leaves in a conical shape

with observed half angles of up to 60 degrees [9]. The beam can therefore impact the extractor grid

and allow propellant to accumulate on the extractor grid or backspray onto the emitter array. If

enough propellant accumulates, an ionic liquid connection can form between the emitter array and

extractor grid causing an electrical short on the thruster and rendering it inoperable [8]. In addition,

not all tips on the emitter array will be identical due to difficulties with repeatable manufacturing

and inherent material non-uniformity [17, 18]. The non-uniformity between emitter tips can lead

to non-uniformity in the emitted current over a particular array [19]. While most emitter tips will

operate as intended, some emitter tips might have unstable menisci [20] which can lead to erratic

liquid emission and occasional electrical discharges between the emitter tip and extractor grid [21]
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Fig. 2 Conceptual image of staging on a 3U CubeSat

degrading the thruster over time.

In order to develop a high-∆V propulsion system based around electrospray thrusters, all of

these lifetime limitations need to be overcome. Two strategies could be taken: improve the life-

time of individual thrusters through a better understanding and mitigation of these mechanisms

or bypass the lifetime limitations of individual thrusters through the use of staging. While the

former strategy is continuously being explored and likely will bring lifetime improvements in the

future, the latter presents itself as a strategy that could enable high-∆V capabilities with existing

electrospray technology. Furthermore, the use of staging systems in interplanetary missions would

provide additional redundancy and reliability, even for thrusters with improved lifetime, as sets of

fresh units could replace functioning, albeit degraded ones.

Staging of electrospray thrusters was originally analyzed in [22] to explore reductions in the

transfer time of a lunar mission. Since the spacecraft drops off structural mass at each staging

event, the acceleration of each stage is increased relative to a single-stage system. Staging with

electrospray thrusters was further analyzed in [3] for enabling deep-space exploration with CubeSats.

A laboratory demonstration of an electrospray-thruster-based staging system was conducted in [23]

in order to demonstrate the mechanical and electrical feasibility of such a configuration. Figure 2

shows a conceptual image of an electrospray thruster staging system on a 3U CubeSat. Each stage is

composed of an array of electrospray thrusters. As they reach their lifetime limits, they are ejected

from the spacecraft exposing a new array of thrusters to continue the mission.
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Fig. 3 ∆V versus wet mass for a 3U CubeSat compatible stage-based system

In terms of ∆V production, Fig. 3 shows an example of ∆V versus wet mass for systems with

one to nine stages and performance metrics given by Table 1 as well as a theoretical single-stage

system with the same performance metrics. An eight-stage system can provide enough ∆V to

reach deep space and does not significantly increase the mass of the propulsion system compared

to the theoretical single-stage system. However, while the single-stage system is not possible with

current propulsion technology, the stage-based system is. The concept and mechanical feasibility of

a staging approach with electrospray thrusters has been vetted by previous work [3, 22, 23]. This

paper focuses on the analysis of these propulsion systems.

To analyze the impact of using this propulsion system, an analytical approach is taken. The

analytical approach provides equations that explicitly show the dependencies of the system’s per-

formance on the parameters of the individual stages which would be impractical to generate with

numerical approaches. In addition, they provide the framework to move towards online autonomous

decision making on spacecraft by providing a computationally simple method, through estimating

the results of optimizations and Monte Carlo analysis with an algebraic equation, for determining

propulsion system performance. Both of these attributes are important as they can provide insight

into what propulsion system parameters to focus developments on, and allow practical implementa-

tion of autonomous decision making on small spacecraft where computational power and memory

are limited.

The goal of the analytical approach is to develop equations that can answer key questions
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about the performance of the propulsion system and provide insight about dependencies on system

parameters. Specifically: how many stages are required, what are the dependencies on propulsion

system parameters, how do staged and unstaged propulsion systems compare, and what is the

probability of mission success? The answers to these questions stem from an approximation of

the ∆V of the propulsion system. An approximation of the ∆V is developed, both in cases where

fuel mass depletion is neglected and where fuel mass depletion is accounted for, that can easily be

manipulated in order to answer the key questions above. In addition, the approximation of ∆V will

be conservative, meaning that results derived from it will bound the true result. These analytical

approximations can then be used in preliminary propulsion system and mission design, focusing of

propulsion system technology developments, and online autonomous decision making.

II. ∆V Approximation

Neglecting fuel mass depletion, the ∆V for a stage-based propulsion system is given by

∆V =

N∑
i=1

FL

m0 − (i− 1)ms
(1)

where F is the propulsion system thrust, L is the lifetime of each stage, m0 is the initial spacecraft

wet mass, ms is the dry mass of each stage, and N is the total number of stages. This sum

does not have an analytical solution for general values of the parameters due to the singularity if

m0 = (i − 1)ms. However, its value can be approximated by assuming that the impulse of each

stage is applied to the time-averaged mass of the spacecraft, m̄, which is given by

m̄ = m0 −
1

2
(N − 1)ms (2)

This approximation eliminates the summation index and allows for a simple approximation of the

∆V for the staging system

∆V ≈ NFL

m0 − 1
2 (N − 1)ms

(3)

The mass-averaging technique can be extended to account for the effects of fuel mass depletion.

Assuming that each stage is identical in terms of thrust, specific impulse, and lifetime, then the

total fuel mass used by the system, mf, is

mf = N
FL

c
(4)
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Fig. 4 Percent error in ∆V approximation versus number of stages

where c is the ideal exhaust velocity (Ispg). Including the fuel mass in the time-averaged mass

simply introduces a third term

m̄ = m0 −
1

2
(N − 1)ms −

1

2
N
FL

c
(5)

and allows for an approximation of the propulsion system ∆V when accounting for fuel mass deple-

tion

∆V ≈ NFL

m0 − 1
2 (N − 1)ms − 1

2N
FL
c

(6)

Figure 4 shows the percent error in the ∆V approximation relative to the true ∆V of the system

as defined by the rocket equation versus number of stages when accounting for fuel mass depletion.

Results are plotted using propulsion system performance metrics from Table 1 as well as for a

specific impulse of 2500 s and when fuel mass is negligible. As the specific impulse increases, the

error in the ∆V approximation decreases. However, even for the lowest specific impulse considered

(1000 s) the error in the ∆V approximation is small (< 5%), including cases with a large number of

stages. In the limit, as fuel mass becomes negligible, the error for a 10 stage system will approach

∼0.7%. In all cases, the approximation underestimates the ∆V of the system. Therefore, results

derived from the approximation, such as the number of stages required to complete a mission, will

be conservative and provide a tight bound of the true value.

It is worth noting that evaluating the ∆V of a staged propulsion system is not a difficult

calculation nor is the approximation above the most accurate approximation that can be developed.
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The value of this approximation is that it can easily be manipulated to approximate parameters of

interest where algebraic solutions do not currently exist such as the number of stages, required stage

impulse, or total firing time for a particular mission. In addition, the mass-averaging technique can

be used to estimate the probability of mission success when the lifetime of each stage is a random

variable. The remainder of this paper is focused on the manipulation of the ∆V approximation in

order to approximate parameters of interest.

III. Required Number of Stages

Perhaps the main figure of merit for a staging system is how many stages are required to

complete a mission. More stages implies a larger and more massive propulsion system and can

greatly increase its mechanical complexity. Leveraging the ∆V approximation, the number of stages

required to complete a mission, defined by its ∆V, can be approximated given the parameters of

the propulsion system.

Rearranging Eq. 6 to solve for N , the number of stages, gives

N ≈
m0 + 1

2ms
1
2ms + FL

∆V + 1
2
FL
c

(7)

The analytical formulation gives the dependencies of the number of stages on propulsion system

parameters. There are some dependencies that are expected, such as increasing the thrust and/or

lifetime of each stage will reduce the number of stages required to complete the mission. Perhaps

counterintuitively, the dependency on exhaust velocity is such that greater exhaust velocities (typ-

ically associated with better propulsion systems) increases the required number of stages. This is

an effect that can be seen from the mass averaging technique - a lower exhaust velocity means more

fuel mass resulting in a lower average spacecraft mass.

The approximation for number of stages does permit non-integer values. In this case, the last

stage in the staging system is only used to some fraction of its lifetime limit. When determining

the required number of stages for the propulsion system, the output of Eq. 7 needs to be rounded

up to the next highest integer value but the raw, non-integer, value can provide further insight into

the safety margin of the propulsion system’s ∆V.

Figure 5 shows a comparison of analytical and numerical calculations of the required number of
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Fig. 5 Comparison of analytical and numerical calculations of required number of stages

stages for a 3U CubeSat with a propulsion system with performance metrics given by Table 1 for

various ∆V requirements. For the analytical solution, the output of Eq. 7 has been rounded up to

the next highest integer value for this comparison. The numerical solution is calculated for each ∆V

by incrementally increasing the number of stages until the ∆V of the system is above the desired

∆V. The first integer value of number of stages for which this happens gives the required number

of stages the system needs in order to produce a given ∆V. The analytical approximation predicts

the true required number of stages quite well with differences occurring for high-∆V requirements.

As fuel mass becomes more negligible, the approximation of the required number of stages becomes

practically exact with only a 9 m/s difference (0.3% error) in the prediction of the transition ∆V

between an 8 and 9 stage system.

In all cases, the analytical approximation acts as a tight bound on the required number of stages.

As the specific impulse of the propulsion system is increased and fuel mass depletion becomes less

significant, the bound on the required number of stages from the analytical approximation will

become tighter.

A. Parameter Tradeoff

While the purpose of this propulsion system is to improve propulsion capabilities without waiting

for developments in propulsion technology, this analysis can be used to guide where to focus efforts

in improvements for the underlying propulsion technology. Based on Eq. 7, the thrust and lifetime
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of the propulsion system are the main drivers of the required number of stages and there is a weak

dependence on the exhaust velocity.

Rearranging Eq. 7 to solve for the impulse of each stage, FL, gives

FL =
∆V
N

(
m0 − 1

2 (N − 1)ms

1 + 1
2

∆V
c

)
(8)

which explicitly says that for a given mission and fixed number of stages, the impulse of each stage

must be constant. This is not a surprising result, since for a fixed ∆V and number of stages,

which sets the time-average mass of the spacecraft, the total impulse must be a constant. However,

the value of this equation is to show the dependency of the required impulse of each stage versus

mission and system parameters and to provide a computationally simple way for analyzing the

tradeoff between thrust and lifetime.

Figure 6 shows the required number of stages to achieve 2.5 km/s ∆V with a propulsion system

with baseline performance metrics given by Table 1 on a 3U CubeSat. Both the thrust and stage

lifetime are varied from their baseline value to 4x and 2x their baseline value respectively and

normalized by their respective baseline values. The regions between lines correspond to thrust

and lifetime values that lead to a given number of required stages. The analytical and numerical

solutions agree with no visually discernible difference between the two solutions. In fact, discernible

differences between the solutions only start to occur at ∆V requirements of 7.5 km/s and greater.

Therefore, the analytical solution provides a tight approximation of the tradeoff between thrust and

lifetime for a large range of mission scenarios.

The analytical solution is plotted with Eq. 8 for integer values of number of stages. The

numerical solution is found by posing the problem as a multi-objective optimization and solving

with a genetic algorithm. For a fixed number of stages, spacecraft initial wet mass, and stage dry

mass the objective of the optimization is to minimize the required thrust and stage lifetime in order

to achieve the given ∆V. The solution to the optimization provides a Pareto front, for a given

number of stages, that describes the tradeoff between stage thrust and lifetime. The optimization

is first solved assuming that only a single stage is used. Then, the number of stages is incremented

and the optimization problem is solved again. The number of stages continues to be incremented

until the minimum values of thrust and lifetime are inside the resulting Pareto front. Use of the
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Fig. 6 Tradeoff in required number of stages between thrust and stage lifetime

analytical solution allows the repeated optimization to be avoided. This is particularly useful in

cases where a large number of stages is required or when different values of ∆V are surveyed. In

both cases, the optimization needs to be repeatedly solved whereas the analytical solution allows

the trade-space to be quickly computed.

Knowledge of the tradeoff in thrust and lifetime can help direct propulsion technology devel-

opment. For some systems, it might be easier to increase the thrust versus the lifetime while for

others the opposite might be true. In either case, proportional increases in either parameter pro-

duce identical results in terms of required number of stages and the required fuel mass. However,

there will be differences in system and mission architectures, for example mission times and power

requirements.

IV. Comparison of Mission Time

The ∆V approximation can also be used to compare the amount of firing time required to

complete a mission. While staging is used to enable missions which cannot be done with current

propulsion technology, it also influences the resulting trajectory and this influence needs to be

considered when designing missions.

The firing time for an un-staged trajectory is

Tu =
m0c

F

(
1− e−∆V/c

)
(9)

The firing time for the staged trajectory can be estimated with the required number of stages from
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Fig. 7 Ratio of firing times for staged to un-staged propulsion systems

Eq. 7 as

Ts = NL =
m0 + 1

2ms
1
2ms + FL

∆V + 1
2
FL
c

L (10)

Calculating the firing time ratio, τ , gives

τ =
Ts

Tu
=

1

1− e−∆V/c

(
1 + 1

2
ms
m0

1
2 + 1

2
msc
FL + c

∆V

)
(11)

Figure 7 shows analytical and numerical calculations of the ratio of firing times for staged to

un-staged propulsion systems. The analytical solution is from Eq. 11 and the numerical solution is

calculated from propagating the acceleration from the propulsion system through time, accounting

for fuel mass depletion and staging events, until a desired ∆V is reached. The spacecraft is assumed

to be a 3U CubeSat carrying a propulsion system with performance metrics from Table 1. The

analytical solution predicts the true numerical ratio quite well with a ∼1% error at 3 km/s of ∆V

which is in line with the predicted ∆V error in Fig. 4. An additional benefit of staging, which can

be seen in this figure, is that the firing time required to reach deep space is reduced by about 10%

over a conventional system. This is due to the increased spacecraft acceleration as excess structural

mass decreases when stages are ejected. The predicted 10% reduction from the analytical solution

is also consistent with the observed 10% reduction in mission time seen in [22].

At low ∆V requirements (< 300 m/s), the analytical solution predicts that the stage propulsion

system actually requires more firing time than the un-staged system. This is an artifact from the

mass averaging technique when estimating the ∆V of the staged propulsion system in Eq. 5. The
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mass averaging technique treats the stage-based system as an un-staged system that acts on the

average mass of the spacecraft. In the situation that N < 1, which occurs when the mission can be

completed in only a fraction of the lifetime of a single stage, the mass average is actually greater

than the initial mass of the spacecraft, m0. This causes the subsequent approximations of firing

time to be artificially inflated when, in reality, they should exactly equal the un-staged system’s

firing times.

V. Mission Success Probability

Throughout the previous analysis, it was assumed that the lifetime of each stage was known

exactly. However, this is not true to reality - the lifetime of a propulsion system, and therefore

a stage, can have a significant degree of uncertainty. Uncertainty in stage lifetime will lead to

uncertainty in the ∆V output of the propulsion system. Therefore, it is valuable to estimate the

probability density of ∆V based on distributions of the stage lifetimes.

The ∆V of a propulsion system with variable stage lifetime is

∆V =
F

m̄

N∑
i=1

ti (12)

Where the mass average in this case is the average time-averaged mass. While this approximation

will be close to the true time-averaged mass of the spacecraft, care will have to be taken when the

distribution of the stage lifetimes is very wide and the firing times between stages varies significantly.

Assuming that the lifetime of each stage is normally distributed as

Ls ∼ N
(
L, σ2

L
)

(13)

then the distribution of the propulsion system ∆V will also be normally distributed with statistics

µ =
F

m̄
NL (14)

σ =
F

m̄

√
NσL (15)

Figure 8 shows a comparison of the analytical calculation of the ∆V probability density for a

five stage propulsion system with performance metrics given by Table 1 on a 3U CubeSat versus a

Monte Carlo analysis of the true density. The statistics of the stage lifetime were assumed to have
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Fig. 8 ∆V probability density for a stage-based propulsion system

a mean given by Table 1 and a standard deviation of 50 hours. The analytical distribution is a

fairly good fit for the Monte Carlo analysis but has a slight negative shift of the mean of 0.8% and

a slight reduction in the standard deviation of 9%. As fuel mass depletion becomes less significant,

the analytical solution will better fit the Monte Carlo analysis.

With the analytical approximation of the ∆V distribution, the probability of mission success

can be approximated. Assuming that a 99.9% probability of success is desired, the cutoff ∆V can

be calculated as three standard deviations away from the mean

∆V∗ =
F

m̄

(
NL− 3

√
NσL

)
(16)

For any missions with ∆V ≤ ∆V∗ the mission will have at least a 99.9% probability of success. If a

different probability of success is desired, then ∆V∗ can easily be calculated based on the number

of standard deviations away from the mean.

A. Deciding when to Stage

The approximation of ∆V distributions can also be used to determine when to eject a partially

degraded stage. It is possible during the course of a mission, particularly with an array of electro-

spray thrusters, that instead of an entire stage failing, its thrust is simply reduced by some factor.

For a distributed array of electrospray thrusters, this situation would be representative of a few

thrusters having lower lifetimes than the rest of the stage. Alternatively, it might represent a stage

that starts with an abnormally low thrust or natural thruster degradation.
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In all representations, during the course of the mission the thrust of a particular stage, n,

suddenly drops from its nominal thrust, F , to a degraded thrust, ζF , where ζ ∈ (0, 1), at some

time t−n into its firing time. From a ∆V perspective, it is never advantageous to eject a partially

degraded stage - the stage still has the capability to provide ∆V to the mission. However, from a time

perspective a partially degraded stage should be ejected immediately as lower thrust corresponds to

longer firing times for a given mission. To resolve this dispute, the problem can be viewed instead

from the perspective of mission success probability: how long does a partially degraded stage need

to be kept in order to guarantee a particular probability of mission success? Such a solution balances

the need to provide enough ∆V to complete the mission with the desire not to operate with reduced

thrust.

Assuming that the thrust reduction occurs on stage n then the ∆V produced by stages 1 to

n− 1, ∆V1:n−1, is

∆V1:n−1 = F

n−1∑
i=1

ti
m0 − (i− 1)ms

(17)

which is a known value and does not require approximation. Given that the thrust reduction occurs

some time, t−n , into the firing time of stage n then the ∆V produced by stage n prior to failure,

∆V−
n , is

∆V−
n =

F t−n
m0 − (n− 1)ms

(18)

and is known. The ∆V for the remaining stages in the system, ∆Vn+1:N , is unknown and is a random

variable. However, the cutoff ∆V∗ from Eq. 16 can be used to determine what the minimum value

of ∆Vn+1:N will be in 99.9% of scenarios. Therefore, in the “worst-case” scenario, ∆Vn+1:N is given

by

∆Vn+1:N =
F

m̄n+1:N

[
(N − n)L− 3

√
N − nσL

]
(19)

where the time averaged spacecraft mass over the remaining stages is

m̄n+1:N = m0 −
1

2
(N + n− 1)ms −

1

2
(N − n)

FL

c
(20)

Therefore, the ∆V that the reduced thrust stage needs to produce, ∆V+
n , in order to guarantee
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99.9% probability of mission success is

∆V+
n = ∆Vd −∆V1:n−1 −∆V−

n −∆Vn+1:N (21)

where ∆Vd is the desired total ∆V for the mission. The required firing time can then be calculated

as

t+n =
m0 − (n− 1)ms

ζF
∆V+

n (22)

There are three regimes of value that t+n can take. If t+n ≤ 0 then stage n can safely be ejected.

If 0 < t+n ≤ t∗ where t∗ is a reasonably low firing time to expect the reduced thrust stage to be

capable of firing for, then the stage can be kept and a mission success probability of 99.9% can

be expected. However, if t+n > t∗, then it’s unlikely that the reduced thrust stage will be able to

produce ∆V+
n and the mission success probability will be lower than 99.9%. The exact calculation

of t∗ will be highly dependent on the system as it will have to take into account coupling between

the failure already observed on the stage and potential future failures, as well as the potential that

further discrete drops in thrust may occur on the same stage. However, this analysis provides the

framework for potential autonomous decision making regarding when to eject partially failed stages

on spacecraft equipped with this kind of propulsion system.

For an example scenario, a five stage propulsion system with performance metrics given by

Table 1 on a 3U CubeSat is desired to produce 1,250 m/s of ∆V. It is assumed that the lifetime of

each stage is distributed with the mean given by Table 1 and standard deviation of 50 hours. The

first stage in the system is allowed to fire for 100 hours at nominal thrust levels before experiencing

a partial failure which causes a thrust reduction of 25%. Two situations are analyzed through Monte

Carlo analysis with 106 samples each: the first stage is ejected immediately after experiencing the

partial failure (immediate eject) and the first stage is fired at its reduced thrust level for a firing

time based on Eq. 22 before ejection (hold and eject).

Figure 9 shows the resulting propulsion system ∆V probability density for both situations. In the

immediate eject situation, the mission does not have a 99.9% probability of success and a substantial

portion of the density is below ∆Vd. In fact, the numerical estimate of success probability is only

72.8%. However, in the hold and eject situation, the density is shifted such that the vast majority
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Fig. 9 Effect of holding partially failed stage before ejecting on ∆V probability density of the

entire propulsion system

of the density is greater than ∆Vd. Numerically, the probability of success is estimated at 99.9%.

In this scenario, to achieve 99.9% probability of success, the first stage was required to fire for 342

hours at reduced thrust level. This brings the total firing time of the first stage to 442 hours.

VI. Application to Escape

Specializing the above equations to escape missions requires approximating the ∆V required for

escape. Wiesel [24] analyzes circle-circle coplanar orbit transfers and escape trajectories with a con-

stant low-thrust propulsive acceleration from an energy perspective and provides an approximation

of the escape time as

tesc =
v0

ap

[
1− (2γ)1/4

]
(23)

where v0 is the initial orbital velocity and γ is the ratio of the propulsive acceleration, ap, to the

gravitational acceleration at the start of the trajectory. While the approximation for the escape

time is quite good, it can be improved based on numerical results. Solving for the scalar factor,

“21/4,” and assigning it the variable S,

S =
1− ap

v0
tesc

γ1/4
(24)

Table 2 shows the scalar factor for various acceleration ratios based on numerical propagation of

the escape trajectories for both angular pointing and velocity pointing control laws. In the angular
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Table 2 Escape time scalar factor for various acceleration ratios

γ Angular Pointing Velocity Pointing

10−2 0.7551 0.8053

10−3 0.7554 0.8081

10−4 0.7555 0.8082

10−5 0.7555 0.8082

pointing control law, the thrust is aligned with the component of the spacecraft’s velocity that is

perpendicular to the position vector. In both cases, the scalar factor is fairly constant and converges

to a value as γ is decreased. For reference, a propulsion system with performance metrics given by

Table 1 on a 3U CubeSat starting in geostationary orbit has a γ of 7×10−4. Based on the numerical

results, a better approximation for the escape time is

tesc =
v0

ap

(
1− Sγ1/4

)
(25)

where S = 0.7555 for an angular pointing control law and S = 0.8082 for a velocity pointing control

law. The required ∆V for escape can then be calculated as

∆Vesc = aptesc = v0

(
1− Sγ1/4

)
(26)

With this estimate for ∆Vesc, the analytical approximations developed previously can be spe-

cialized to escape missions. The required number of stages is

N =
m0 + 1

2ms
1
2ms + FL

v0(1−Sγ1/4)
+ 1

2
FL
c

(27)

the required impulse that each stage needs to produce is

FL =
1

N

m0 − 1
2 (N − 1)ms
1

v0(1−Sγ1/4)
+ 1

2
1
c

 (28)

and the ratio of firing times for staged versus un-staged trajectories is

τ =
1

1− e−
v0
c (1−Sγ1/4)

 1 + 1
2
ms
m0

1
2 + 1

2
msc
FL + c

v0(1−Sγ1/4)

 (29)

The probability of mission success can also be analytically estimated. Figure 10 shows the

probability of achieving escape versus the standard deviation of stage lifetimes given a propulsion
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Fig. 10 Probability of mission success versus standard deviation of stage lifetime

system with mean performance metrics from Table 1 on a 3U CubeSat. For stage lifetime standard

deviations below 40 hours the probability of mission success is quite high (> 99.7%) and then

decreases linearly for larger stage lifetime standard deviations.

VII. Conclusion

This work contributes towards the development of stage-based propulsion systems by providing

tight analytical approximations of: ∆V output, required number of stages, tradeoff in propulsion

system parameters, comparison of firing time for un-staged versus staged propulsion systems, and

probability of mission success.

Approximations of ∆V output are conservative with errors on the order of 1% for a stage-based

electrospray propulsion system capable of propelling a 3U CubeSat to escape from geostationary

orbit. The ∆V approximation allows for the required number of stages to be predicted with errors

on the order of 0.1% in the prediction of the transition ∆V between steps in the required number

of stages. In addition, the tradeoff in propulsion system thrust and lifetime can be analyzed to see

how the required impulse of each stage depends on the mission and spacecraft parameters.

Analysis of the firing time for un-staged versus staged propulsion systems allows the impact

of stage-based propulsion system on mission time and fuel mass consumption to be accounted for

during preliminary mission design. Errors in the analytical prediction of the ratio of staged to un-

staged firing times, and therefore fuel mass consumption, are on the order of 1% for a 3 km/s ∆V
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mission.

Lastly, the distribution of ∆V due to uncertainty in stage lifetime can also be predicted with

errors on the order of 1% for the mean ∆V output and below 10% for the standard deviation.

The approximation for the ∆V distribution can then be extended to determine when to stage a

partially failed stage in order to guarantee a specified mission success probability. The prediction was

numerically verified to guarantee 99.9% probability of mission success where immediately ejecting

the partially failed stage would result in only 72.8% probability of mission success.

All of the approximations developed in this work can be combined with analytical approxima-

tions of the ∆V required to achieve escape to specify the approximations for escape trajectories.

The probability of mission success can be calculated for varying stage lifetime uncertainties in order

to determine the required stage-lifetime distribution in order to guarantee specified levels of mission

success probability thereby eliminating the need for repeated Monte Carlo analysis.
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