
MIT Open Access Articles

Reactive probabilistic programming

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Baudart, Guillaume et al. “Reactive probabilistic programming.” Paper in the
Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), 2020, PLDI ’20, London UK, June 15–20, 2020, ACM: 898-912 © 2020 The
Author(s)

As Published: 10.1145/3385412.3386009

Publisher: ACM

Persistent URL: https://hdl.handle.net/1721.1/130049

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/130049
http://creativecommons.org/licenses/by-nc-sa/4.0/

Reactive Probabilistic Programming
Guillaume Baudart

MIT-IBM Watson AI Lab,

IBM Research

USA

Louis Mandel

MIT-IBM Watson AI Lab,

IBM Research

USA

Eric Atkinson

MIT

USA

Benjamin Sherman

MIT

USA

Marc Pouzet

École Normale Supérieure,

PSL Research University

France

Michael Carbin

MIT

USA

Abstract
Synchronous modeling is at the heart of programming lan-

guages like Lustre, Esterel, or SCADE used routinely for

implementing safety critical control software, e.g., fly-by-

wire and engine control in planes. However, to date these

languages have had limited modern support for modeling

uncertainty — probabilistic aspects of the software’s envi-

ronment or behavior — even though modeling uncertainty

is a primary activity when designing a control system.

In this paper we present ProbZelus the first synchronous
probabilistic programming language. ProbZelus conserva-

tively provides the facilities of a synchronous language to

write control software, with probabilistic constructs to model

uncertainties and perform inference-in-the-loop.
We present the design and implementation of the language.

We propose a measure-theoretic semantics of probabilistic

stream functions and a simple type discipline to separate

deterministic and probabilistic expressions. We demonstrate

a semantics-preserving compilation into a first-order func-

tional language that lends itself to a simple presentation of

inference algorithms for streaming models. We also redesign

the delayed sampling inference algorithm to provide efficient

streaming inference. Together with an evaluation on several

reactive applications, our results demonstrate that ProbZelus

enables the design of reactive probabilistic applications and

efficient, bounded memory inference.

CCS Concepts: • Theory of computation → Streaming
models; • Software and its engineering → Data flow
languages.

Keywords: Probabilistic programming, Reactive program-

ming, Streaming inference, Semantics, Compilation

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

PLDI ’20, June 15–20, 2020, London, UK
© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7613-6/20/06.

https://doi.org/10.1145/3385412.3386009

ACM Reference Format:
Guillaume Baudart, Louis Mandel, Eric Atkinson, Benjamin Sher-

man, Marc Pouzet, and Michael Carbin. 2020. Reactive Probabilistic

Programming. In Proceedings of the 41st ACM SIGPLAN International
Conference on Programming Language Design and Implementation
(PLDI ’20), June 15–20, 2020, London, UK. ACM, New York, NY, USA,

29 pages. https://doi.org/10.1145/3385412.3386009

1 Introduction
Synchronous languages [2] were introduced thirty years ago

for designing and implementing real-time control software.

They are founded on the synchronous abstraction [4] where

a system is modeled ideally, as if communications and com-

putations were instantaneous and paced on a global clock.

This abstraction is simple but powerful: input, output and

local signals are streams that advance synchronously and a

system is a stream function. It is at the heart of the data-flow

languages Lustre [22] and SCADE [14]; it is also the under-

lying model behind the discrete-time subset of Simulink.

The data-flow programming style is very well adapted

to the direct expression of the classic control blocks of con-

trol engineering (e.g., relays, filters, PID controllers, control

logic), and a discrete timemodel of the environment, with the

feedback between the two. For example, consider a backward

Euler integration method defined by the following stream

equations and its corresponding implementation in Zelus [8],

a language reminiscent of Lustre:

x0 = xo0 xn = xn−1 + x ′
n × h ∀n ∈ N,n > 0

let node integr (xo, x') = x where

rec x = xo -> (pre x + x' * h)

The node integr is a function from input streams xo and x'

to output stream x. The initialization operator -> returns its

left-hand side value at the first time step and its right-hand

side expression on every time step thereafter. The unit-delay
operator pre returns the value of its expression at the previ-

ous time step. The following table presents a sample timeline
showing the sequences of values taken by the streams de-

fined in the program (where h is set to 0.1).

1

ar
X

iv
:1

90
8.

07
56

3v
2

 [
cs

.P
L

]
 9

 A
pr

 2
02

0

https://doi.org/10.1145/3385412.3386009
https://doi.org/10.1145/3385412.3386009

PLDI ’20, June 15–20, 2020, London, UK

xo 0 0 0 0 0 0 0 . . .

x' 1 2 1 0 -1 -1 1 . . .

x' * h 0.1 0.2 0.1 0 -0.1 -0.1 0.1 . . .

pre x ⊥ 0 0.2 0.3 0.3 0.2 0.1 . . .

x 0 0.2 0.3 0.3 0.2 0.1 0.2 . . .

The node integr can be used to define other stream func-

tions, e.g., a PID controller, which can be called in control

structures like hierarchical automata, e.g., to express a sys-

tem that switches between automatic and manual control.

Compared to a general purpose functional language (or an

embedded DSL), the expressiveness of a synchronous lan-

guage is purposely constrained to modularily ensure safety

properties that are critical for the targeted applications: deter-

minacy, deadlock freedom (reactivity), the generation of stat-

ically scheduled code that runs in bounded time and space.

However, to date, these languages have had limited sup-

port for modeling uncertainty (e.g., a noisy sensor or channel,

a variable delay), to simulate the interaction of a software

controller and a partially unknown environment, or to in-

fer parameters from noisy observations. Moreover, uncer-

tainty is a first-order design concern for a controller that

operates under the assumption of a probabilistic model of

their environment (e.g., object tracking). Using a probabilis-

tic environment model and data gathered from observing the

environment, a controller can infer a distribution of likely

environments given the observations. Existing approaches

consist in hand-coding stochastic controllers that have a

known solution (e.g., Kalman filters) which can be tedious

and error-prone, or to simply perform off-line statistical test-

ing on the generated code of a controller. Alternatively, in

recent years, probabilistic programming has developed as

an approach to endow general purpose languages with the

ability to automate inference.

Probabilistic Programming. Probabilistic programming

languages are used to describe probabilistic models and au-

tomatically infer distributions of latent (i.e., unobserved)

parameters from observations.

A popular approach [6, 20, 32, 40–42] consists in extend-

ing a general-purpose programming language with three

constructs: (1) x = sample(d) introduces a random variable

x of distribution d, (2) observe(d, y) conditions on the fact

that a sample from distribution d produced the observation y,

and (3) infer m obs computes the distribution of the output

values of a program or model m w.r.t. the observation of the

input data obs.

Probabilistic programming languages offer a variety of

automatic inference techniques ranging from exact infer-

ence [19] to approximate inference [33] and include hybrid

approaches that combine exact and approximate techniques

when part of the program is analytically tractable [31]. How-

ever, a standing challenge for these programming languages

is that none of them meet the design goals of synchronous

reactive languages by being immediately amenable to tech-

niques to ensure that for example a program with an indefi-

nite execution time runs in bounded memory.

Inference in the Loop. In this paper we extend Zelus
1
to

provide a synchronous probabilistic programming language,

ProbZelus. ProbZelus enables one to combine deterministic

reactive data-flow programs, such as integr (above), with

probabilistic programming constructs to produce reactive

probabilistic programs.

Compared to other probabilistic languages (e.g. WebPPL,

Church, Stan) where inference is executed on terminating

pure functions, our probabilistic models are stateful stream

processors. Inference on probabilistic models runs in parallel

with deterministic processes that interact with the environ-

ment. The distributions computed by infer at each step can

thus be used by deterministic processes to compute new

inputs for the next inference step. We term this capability

inference-in-the-loop.

Streaming Inference. ProbZelus provides multiple infer-

ence algorithms, most notably the delayed sampling infer-

ence algorithm [31]. This hybrid strategy combines the ap-

proximate inference technique of particle filtering [21] with

exact inference when it is possible to symbolically determine

the exact distribution for some or all of the latent variables

of the program [17].

However, the memory consumption of delayed sampling

strictly increases with the number of random variables which

is not practical for reactive applications that operate on infi-

nite streams. We propose a novel streaming implementation

of delayed sampling that can operate over infinite streams

in constant memory for a large class of models. ProbZelus

therefore provides an expressive language for reactive proba-

bilistic programmingwith appropriatememory consumption

properties.

Contributions. We present the following contributions:

Design, Semantics, Compilation. We present ProbZelus,

the first synchronous probabilistic programming language,

combining language constructs for streams (reactivity) with

those for probabilistic programming thus enabling inference-
in-the-loop. We give a measure-based co-iterative seman-

tics for ProbZelus that forms the basis of a compiler and

demonstrate a semantics-preserving compilation strategy to

a first-order functional language µF .

Streaming Inference. We define the semantics of multiple

inference algorithms on µF including particle filtering and

delayed sampling. We then present a novel streaming delayed
sampling implementation which enables partial exact infer-

ence over infinite streams in bounded memory for a large

class of models.

1
Language distribution and manual available at http://zelus.di.ens.fr.

2

http://zelus.di.ens.fr

Reactive Probabilistic Programming PLDI ’20, June 15–20, 2020, London, UK

let proba kalman (xo, u, acc, gps) = x where

rec mu = xo -> (a *@ pre x) +@ (b *@ u)

and x = sample (mv_gaussian (mu, noise))

and () = observe (gaussian (vec_get (x, 2), 1.0), acc)

and () = present gps(pos) ->

observe (gaussian (vec_get (x, 0), 0.01), pos)

else ()

let node robot (xo, uo, acc, gps) = u where

rec x_dist = infer 1000 kalman (xo, u, acc, gps)

and u = uo -> lqr a b (mean (pre x_dist))

Figure 1.Robot controller with inference-in-the-loop. +@ and
*@ are matrix operations, vec_get x i is the ith projection.

Evaluation. We evaluate the performance of ProbZelus

on a set of benchmarks that illustrate multiple aspects of

the language. We demonstrate that streaming delayed sam-

pling drastically reduces the number of particles required to

achieve better accuracy compared to a particle filter.

The result is ProbZelus, a synchronous probabilistic lan-

guage that enables us to write, in the very same source, a

deterministic model for the control software and a proba-

bilistic model with complex interactions between the two.

On one hand, a deterministic model of a controller can rely

on predictions computed by a probabilistic model. On the

other hand, a probabilistic model can be programmed in

an expressive reactive language. ProbZelus is open source

(https://github.com/IBM/probzelus). This paper is a version
with appendices of the paper published at PLDI 2020 [1].

2 Example
In this section, we demonstrate how ProbZelus provides

probabilistic modeling, inference-in-the-loop, and bounded-

memory inference for a robot navigation system. The results

of the inference are continuously used by a controller to

correct the robot trajectory.

2.1 Inference in the Loop.
We consider a robot equipped with an accelerometer and

a GPS. We assume that the motion of the robot can be de-

scribed as: xt+1 = Axt + But where xt denotes the state of
the robot (position, velocity, and acceleration) at a given

time step t , and ut denotes the command sent to the robot.

A and B are constant matrices. In addition, the robot receives

at each step noisy observations from the accelerometer at ,
and sporadically an estimation of the position from a GPS pt .
Figure 1 presents a controller, robot, that given an ini-

tial state xo, an initial command uo, and inputs from the

accelerometer acc and the GPS gps computes a stream u of

commands that drives the robot to a given target. The body

of robot is the parallel composition of (1) the inference of a

probabilistic process kalman that estimates x_dist the stream

of distributions over the robot’s state, and (2) a deterministic

. . . xt−1

at−1

xt

at

xt+1

at+1 pt+1

xt+2

at+2

. . .

Figure 2. Kalman filter for the robot example. Variables

are either latent (white, e.g., state x) or observed (gray, e.g.,

acceleration a). The position p is only sporadically observed.

process that computes the stream u of commands. It is writ-

ten as two mutually recursive equations that define x_dist

from u and u from the previous value of x_dist.

The command u is set to the initial command uo at the

first time step, and is then computed by a Linear-Quadratic
Regulator (LQR) [38] — a stable and optimal controller for

such dynamic systems — given the estimation of the state at

the previous step. Because LQR controllers depend only on

mean posterior state, the example in Figure 1 uses the mean

function to compute the mean of x_dist before invoking the

LQR controller.

Inference. The stream x_dist of distributions of state is in-

ferred from the model defined by the probabilistic node

kalman given the initial state xo, the command u, and the

observations acc and gps. The keyword proba indicates a

probabilistic model.

In this example, the model is a Kalman Filter illustrated in
Figure 2. A Kalman filter is a time-dependent probabilistic

model used to describe inference problems such as tracking,

in which a tracker estimates the true position of an object

given noisy, sensed observations. The robot’s state xt is a la-
tent random variable in that the tracker is not able to directly

observe it. Each arrow connecting two random variables de-

notes a dependence of the variable at the head of the arrow

on the variable at the tail. In this case, the observations at

each time step depends on the current state, and the robot’s

state at a given time step depends only on its states at the

previous time step.

Sampling. Inside the kalman node, the sample operator sam-

ples a value from a probability distribution. In this case, the

expression samples the current state x from a multivariate

Gaussian with mean obtained by applying the motion model

to the previous state and the command. This code models

the trajectory of a robot where at each time step, the state is

Gaussian-distributed around an estimation computed from

the motion model.

Observations. The expression observe conditions the exe-

cution on observed data. Its first parameter denotes a distri-

bution that models the observation and its second parameter

denotes the observed value itself. In this case, at each step,

the first observe statement models a Gaussian-distributed

observation of the current acceleration vec_get x 2 given

by acc. The input gps is a signal that is only emitted when the

3

https://github.com/IBM/probzelus

PLDI ’20, June 15–20, 2020, London, UK

10
1

10
2

10
3

10
4

1 10 100 1000

LQ
R
lo
ss

Particles

Robot Accuracy

PF
SDS

10
1

10
2

10
3

10
4

10
5

1 10 100 1000

Sp
ee
d
(m

s)

Particles

Robot Latency

PF
SDS

Figure 3. Particle filter (PF) and streaming delayed sampling (SDS) performances for the robot example of Figure 1. Accuracy

is measured using the loss function of the LQR. Speed corresponds to the execution time of 500 steps.

GPS computes a new position. When a value pos is emitted

on gps, the present construct executes its left branch, further

conditioning the model by adding a Gaussian-distributed ob-

servation of the current position vec_get x 0 given by pos.

2.2 Streaming Inference
A classic operational interpretation of a probabilistic model

is an importance sampler that generates random samples

from the model together with an importance weight measur-

ing the quality of the sample. In this model, each execution

of a sample operator samples a value from the operator’s

corresponding distribution. Each execution of an observe

evaluates the likelihood of the provided observation and mul-

tiplies the current importance weight by this value. Then,

each execution step of infer yields a distribution represented

as a set of pairs (output, weight) or particles. The particles
can be re-sampled at each step to build a particle filter [16].
The integer parameter to infer determines how many

particles to use: the more particles the user specifies, the

more accurate the estimate of the distribution becomes. The

PF points in Figure 3 present this improvement in accuracy

as a function of increasing the number of particles for the

robot example. However, as the latency results presents, the

more particles the user specifies, the more computation is

required for each step because each particle requires a full,

independent execution of each time step of the model.

Streaming Delayed Sampling. Delayed sampling [31] can

reduce the number of particles required to achieve a given

desired quality of inference. Specifically, delayed sampling

exploits the opportunity to symbolically reason about the

relationships between random variables to compute closed-

form distributions whenever possible. To capture relation-

ships between random variables, delayed samplingmaintains

a graph: a Bayesian network that can be used to compute

closed-form distributions involving subsets of random vari-

ables. For instance, this inference scheme is able to compute

the exact posterior distribution for our robot example. The

SDS dots in Figure 3 show that the accuracy is independent

of the number of particles since each particle computes the

exact solution.

Figure 4 illustrates the evolution of the delayed sampling

graph as it proceeds through the first four time steps of the

robot example (for simplicity we assume that there is no

GPS activation in these four steps). A notable challenge with

the traditional delayed sampling algorithm is that the graph

grows linearly in the number of samples. This property is not

tractable in our reactive context because we would like to de-

ploy our programs under themodel that they run indefinitely,

thus requiring that they execute with bounded resources. To

address this problem, we propose a novel streaming delayed
sampling (SDS) implementation of the delayed sampling

algorithm. Specifically, in Figure 4 the node denoting the

marginal posterior for x at step 1 can be eliminated from the

graph at step 3 because the distributions for pre x and x have

fully incorporated its effect on their values and, moreover,

the program no longer maintains a reference to the node.

While the standard delayed sampling algorithm will keep

this node alive through the edge pointers it maintains, SDS

builds a pointer-minimal graph representation with a mini-

mal number of edges that 1) ensure that the graph has suffi-

cient connectivity to support operations in the traditional

delayed sampling algorithm and 2) only maintain the reacha-

bility of nodes that can effect the distribution of future nodes

in the graph. The result is that the memory consumption of

SDS is constant across the number of steps while the memory

consumption of the original delayed sampling implementa-

tion DS increases linearly in the number of steps (Figure 5).

3 Language: Syntax, Typing, Semantics
ProbZelus is a reactive probabilistic language with inference-

in-the-loop which enables interaction between probabilistic

models and deterministic processes. This capability intro-

duces two design requirements. First, a probabilistic model

must be able to receive inputs from an evolving environment.

Second, instead of awaiting the final result of the inference,

deterministic processes running in parallel need access to

intermediate results. The resulting inference-in-the-loop en-

ables feedback loops between inferred distributions from

probabilistic models and deterministic processes, which our

4

Reactive Probabilistic Programming PLDI ’20, June 15–20, 2020, London, UK

x

acc

(a) step 1

pre x x

acc

(b) step 2

pre x x

acc

(c) step 3

pre x x

acc

(d) step 4

Figure 4. Evolution of the delayed sampling graph for the model of Figure 1. Each node denotes either a value (dark gray)

or a distribution (light gray). Plain arrows represent dependencies in the underlying Bayesian network. The dotted arrow

represents the pointers in the original data-structure implementing the graph. Labels indicate the program variables.

10
0

10
3

10
3

0 50 100 150 200 250 300 350 400 450 500

th
ou

sa
nd

s
of

w
or
ds

Step

Robot Memory

SDS
DS

Figure 5. Delayed sampling (DS) and streaming delayed

sampling (SDS) memory consumption in thousands of live

words in the heap per steps for the robot example.

design controls by enforcing a separation between the se-

mantics of probabilistic and deterministic execution.

In this section, we formalize the syntax of ProbZelus, in-

troduce a type system that imposes a clear separation be-

tween deterministic and probabilistic expressions, and define

the semantics of the language in a co-iteration framework

where the semantics of probabilistic processes is adapted

from Staton’s measure-theoretic semantics for probabilistic

programs [39]. The co-iterative semantics forms the basis of

a compiler that is described in Section 4.

3.1 Syntax
We focus on the following kernel of ProbZelus. The missing

constructs (e.g., pre and ->) can be compiled into this kernel

via a source-to-source transformation.

d ::= let node f x = e | let proba f x = e | d d

e ::= c | x | (e,e) | op(e) | f (e) | last x

| e where rec E

| present e -> e else e | reset e every e

| sample(e) | observe(e, e) | infer(e)

E ::= x = e | init x = c | E and E

A program is a sequence of declarations d of stream func-

tions (node) and probabilistic stream functions (proba). An

expression e is either a constant (c), a variable (x), a pair, an ex-
ternal operator application (op), a function application (f (e)),
a delay (last x) that returns a value (x) from the previous

step, or a set of locally recursive equations (e where rec E).

A set of equations E is either an equation x = e that define x

with the stream e , the initialization of a variable with a con-

stant init x = c, or parallel composition of sets of equations.

Operators (op) include boolean and arithmetic operators.

In addition, ProbZelus offers a library of dedicated operators

to analyze distributions, such as mean and variance, that can

be used in any context (probabilistic or deterministic), e.g.,

on the result of the inference.

The control structure present e -> e1 else e2 is an acti-
vation condition that executes the expression e1 only when

the value of e is true and executes e2 otherwise. It differs
from if e then e1 else e2, where both e1 and e2 are com-

puted at each step (making their internal states evolve) and

the returned value is chosen based on the value of e .2 In the

following example, o1 and o2 are different streams:

let node cpt () = o where rec o = 0 -> pre o + 1

let node present_vs_if (b) = (o1, o2) where

rec o1 = present (b) -> cpt () else 0

and o2 = if b then cpt () else 0

b true true false true false false true ...

o1 0 1 0 2 0 0 3 ...

o2 0 1 0 3 0 0 6 ...

The reset e1 every e construct re-initializes the values of

the init equations and the corresponding last expressions

in e1 each time e is true.
The language is extended with the classic probabilistic

expressions: sample to draw from a distribution, observe to

condition on observations, and infer to compute the distri-

bution described by a model.

Scheduling. In the expression e where rec E, E is a set of

mutually recursive equations. In practice, a scheduler re-

orders the equations according to their dependencies. Ini-

tializations init x j = c j are grouped at the beginning, and

an equation x j = ej must be scheduled after the equation

xi = ei if the expression ej uses xi outside a last construct.

A program satisfying this partial order is said to be scheduled.
The compiler can also introduce additional equations to relax

the scheduling constraints and rejects programs that cannot

2
The if construct can thus be considered as an external operator.

5

PLDI ’20, June 15–20, 2020, London, UK

be statically scheduled [5]. After scheduling, the expression

e where rec E has the following form.

e where rec init x1 = c1 ... and init xk = ck
and y1 = e1 ... and yn = en

For simplicity, we also assume that every initialized variable

is defined in a subsequent equation, i.e., {xi }1..k ∩ {yj }1..n =
{xi }1..k . If it is not the case, in this kernel we can always add

additional equations of the form xi = last xi .

Kernel. All ProbZelus programs can be encoded in this ker-

nel language. For instance, the program integr of Section 1

can be rewritten in the kernel as follows:

let node integr (xo, x') = x where

rec init first = true and init x = 0.

and first = false

and x = if last first then xo else last x + (x' * h)

A stream first is defined such that last first is only true

at the first step. The -> operator is then compiled into an if

statement. The pre operator is compiled into a last operator.

The initialization value is arbitrary, the compiler’s initializa-

tion analysis guaranties that this value is never used [15].

Similarly, other constructs like hierarchical automata can be

re-written using present and reset [13].

3.2 Typing: Deterministic vs. Probabilistic
Deterministic and probabilistic expressions have distinct

interpretations. A dedicated type system discriminates be-

tween the two kinds of expressions, assigning one of two

kinds to each expression: D for deterministic, or P for prob-
abilistic. The typing judgment G ⊢k e : T states that in the

environmentG which maps variable names to their type, the

expression e has kind k and typeT . Function typesT →k T ′

are extended with the kind k of the body and we introduce

a new datatype T dist for the probability distribution over

values of type T .
The expressions sample, and observe are probabilistic but

their arguments must be deterministic. Any deterministic

expression can be lifted to a probabilistic expression using

a sub-typing rule. The transition from probabilistic to de-

terministic is realized via infer (the complete set of typing

rules is presented in Figure 12 of Appendix A.1).

G ⊢D e : T dist

G ⊢P sample(e) : T

G ⊢D e1 : T dist∗ G ⊢D e2 : T

G ⊢P observe(e1, e2) : unit

G ⊢D e : T

G ⊢P e : T

G ⊢P e : T

G ⊢D infer(e) : T dist

G ⊢D e : T dist∗

G ⊢D e : T dist

The type T dist represents distributions over values of

typeT . Distributions can be sampled (sample statement) and

analyzed with external operators such as mean and variance.

⟦x⟧iγ = ()
⟦x⟧sγ = λs . (γ (x), s)

⟦present e -> e1 else e2⟧iγ = (⟦e⟧iγ , ⟦e1⟧iγ , ⟦e2⟧iγ)
⟦present e -> e1 else e2⟧sγ =

λ(s, s1, s2). let v, s ′ = ⟦e⟧sγ (s) in
if v then let v1, s ′

1
= ⟦e1⟧sγ (s1) in (v1, (s ′, s ′

1
, s2))

else let v2, s ′
2
= ⟦e2⟧sγ (s2) in (v2, (s ′, s1, s ′

2
))�

e where rec init x1 = c1 ... and init xk = ck
and y1 = e1 ... and yn = en

�i
γ
=

((c1, . . . , ck), (⟦e1⟧iγ , . . . , ⟦en⟧iγ), ⟦e⟧iγ)�
e where rec init x1 = c1 ... and init xk = ck

and y1 = e1 ... and yn = en

�s
γ
=

λ((m1, . . . ,mk), (s1, . . . , sn), s).
let γ1 = γ [m1/x1_last] in . . . let γk = γk−1[mk/xk_last] in
let v1, s ′

1
= ⟦e1⟧sγk (s1) in let γ ′

1
= γk [v1/y1] in . . .

let vn , s ′n = ⟦en⟧sγ ′
n−1

(sn) in let γ ′n = γ
′
n−1[vn/yn] in

let v, s ′ = ⟦e⟧sγ ′
n
(s) in

v, ((γ ′n [x1], . . . ,γ ′n [xk]), (s ′1, . . . , s
′
n), s ′)

Figure 6. Semantics of deterministic expressions.

The type T dist∗ is a subtype of T dist that represents dis-

tributions known to have a density, i.e., discrete distribu-

tions (w.r.t. the counting measure) and a subset of continuous

distributions (w.r.t. the Lebesgue measure). In ProbZelus, to

simplify the semantics of the language, the observe state-

ment requires a value of type T dist∗. In Appendix A, we

extend the language with the factor statement for arbitrary

conditioning.

3.3 Co-Iterative Semantics
We now give the semantics of ProbZelus in a co-iteration

framework [12]. In this framework, a deterministic stream of

typeT is defined by an initial state of type S and a transition

function of type S → T × S .

CoStream(T , S) = S × (S → T × S)

Repeatedly executing the transition function from the initial

state yields a stream of values of type T .
The semantics of a deterministic expression (kindOf (e) = D)

is defined using two auxiliary functions. If γ is an environ-

ment mapping variable names to values, ⟦e⟧iγ denotes the

initial state, and ⟦e⟧sγ denotes the transition function:

⟦e⟧γ : CoStream(T , S) = ⟦e⟧iγ , ⟦e⟧sγ

The deterministic semantics of ProbZelus presented in

Figure 6 is an extension of [12] with the control structures

present and reset (see also Figure 13 of Appendix A.2).

6

Reactive Probabilistic Programming PLDI ’20, June 15–20, 2020, London, UK

The transition function of a variable always returns the

corresponding value stored in the environment γ .
The present e -> e1 else e2 construct introduced in Sec-

tion 2 returns the value of e1 when e is true and the value of e2
otherwise. The state (s, s1, s2) stores the state of the three
sub-expressions. The transition function lazily executes the

expression e1 or e2 depending on the value of e and returns

the updated state.

The state of a set of scheduled locally recursive defini-

tions e where rec E comprises three parts: the value of the

local variables at the previous step which can be accessed via

the last operator, the state of the defining expressions, and

the state of expression e . The initialization stores the initial

values introduced by init and the initial states of all sub-

expressions. The transition function incrementally builds

the local environment defined by E. First the environment

is populated with a set of fresh variables xi_last initialized

with the values stored in the state that can then be accessed

via the last operator. Then the environment is extended

with the definition of all the variables yi by executing all the

defining expressions (where {xi }1..k ∩ {yj }1..n = {xi }1..k).
Finally, the expression e is executed in the final environment.

The updated state contains the value of the initialized vari-

ables defined in E that will the be used to start the next step,

and the updated state of the sub-expressions.

Probabilistic extension. The semantics of a probabilistic
expression (kindOf (e) = P) follows the same scheme, but the

transition function returns ameasure over the set of possible
pairs (result, state):

CoPStream(T , S) = S × (S → (ΣT×S → [0,∞]))

Ameasure µ associates a positive number to eachmeasurable

setU ∈ ΣT×S where ΣT×S denotes the Σ-algebra ofT ×S , i.e.,
the set of measurable sets over pairs (result, state). We use

the following notation for the semantics of a probabilistic

expression e:

{[e]}γ : CoPStream(T , S) = {[e]}iγ , {[e]}sγ
The semantics of probabilistic expressions is presented in

Figure 7 (the complete semantics is in Figure 14 of Appen-

dix A.2). This measure-based semantics is adapted from [39]

to explicitly handle the state of the transition functions.

First, any deterministic expression can be lifted as a proba-

bilistic expression. The transition function returns the Dirac

delta measure (δx (U) = 1 if x ∈ U , 0 otherwise) on the pair

returned by the deterministic transition function applied on

the current state: ⟦e⟧sγ (s) : T × S .
The probabilistic operator sample(e) evaluates e which

returns a distribution µ : T dist and a new state s ′ : S , and
returns a measure over the pair (result, state) where the state

is fixed to the value s ′. observe(e1, e2) evaluates e1 and e2 into
a distribution with density µ : T dist∗ and a value v : T , and
weights execution paths using the likelihood ofv w.r.t. µ (µpdf
denotes the density function of the distribution µ).

{[e]}iγ = ⟦e⟧iγ if kindOf (e) = D

{[e]}sγ = λs . λU . δ⟦e⟧sγ (s)(U) if kindOf (e) = D

{[sample(e)]}iγ = ⟦e⟧iγ
{[sample(e)]}sγ = λs . λU . let µ, s ′ = ⟦e⟧sγ (s) in

∫
T µ(dv) δv,s ′(U)

{[observe(e1, e2)]}iγ = (⟦e1⟧iγ ,⟦e2⟧iγ)
{[observe(e1, e2)]}sγ =

λ(s1, s2). λU .
let µ, s ′

1
= ⟦e1⟧sγ (s1) in

let v, s ′
2
= ⟦e2⟧sγ (s2) in µ

pdf
(v) ∗ δ(),(s ′

1
,s2)(U){[

e where rec init x1 = c1 ... and init xk = ck
and y1 = e1 ... and yn = en

]}s
γ
=

λ((m1, . . . ,mk), (s1, . . . , sn), s). λU .
let γ1 = γ [m1/x1_last] in . . . let γk = γk−1[mk/xk_last] in
let µ1 = {[e1]}sγk (s1) in∫
µ1(dv1,ds ′

1
)let γ ′

1
= γk [v1/y1] in . . .

let µn = ⟦en⟧sγ ′
n−1

(sn) in∫
µn (dvn ,ds ′n)let γ ′n = γ ′n−1[vn/yn] in
let µ = {[e]}sγ ′

n
(s) in∫

µ(dv,ds ′) δv,((γ ′
n [x1], ...,γ ′

n [xk]),(s ′1, ...,s ′n),s ′)(U)

Figure 7. Semantics of probabilistic expressions.

The state of a set of locally recursive definitions is the

same as in Figure 6 and contains the previous value of the

initialized variables and the states of the sub-expressions.

The transition starts by adding the variables xi_last to the

environment. We note

∫
µ(dv,ds)f (v, s) the integral of f

w.r.t. the measure µ where variables v and s are the integra-
tion variables. The integration measure appears on the right

of the integral to maintain the expression order of the source

code and we allow local definitions (e.g., let x = v in . . .)
inside the integral to simplify the presentation. Local defini-

tions are interpreted by successively integrating the measure

on pairs (value, state) returned by the defining expressions.

In other words, we integrate over all possible executions.

Integrals need to be nested to capture the eventual depen-

dencies in the successive expressions. The returned value is

a measure on pairs (value, state) where the state captures

the value of the initialized variables and the state of the

sub-expressions.

Inference in the loop. The infer operator is the boundary

between the deterministic and the probabilistic expressions.

Given a probabilistic model defined by an expression e , at
each step the inference computes a distribution of results

and a distribution of possible next states. Expression e can
contain free variables thus capturing inputs from determin-

istic processes. The distribution of results can be used by

deterministic processes to produce new inputs for the next

inference step.

7

PLDI ’20, June 15–20, 2020, London, UK

⟦infer(e)⟧iγ = λU . δ⟦e⟧iγ (U)
⟦infer(e)⟧sγ = λσ . let µ = λU .

∫
S σ (ds){[e]}

s
γ (s)(U) in

let ν = λU . µ(U)/µ(⊤) in
(π1∗(ν),π2∗(ν))

The state of infer(e) is a distribution over the possible states

for e . The initial state is the Dirac delta measure on the initial

state of e . The transition function integrates the measure

defined by e over all the possible states and normalize the

result µ to produce a distribution ν : T × S dist (⊤ denotes

the entire space). This distribution is then split into a pair

of marginal distributions using the pushforward of µ across

the projections π1 and π2.

Remark. In ProbZelus deterministic processes that interact

with the environment cannot rollback on actions based on

past estimations (e.g., the command of the robot controller).

However, the inferred distribution of a random variable cap-

tured in the state may evolve at each time step based on

subsequent observations (e.g., the initial position of the ro-

bot). These two properties follow from the separation of the

distribution of results and the distribution of states in the

semantics of infer.

Alternatively, we could define a fix-point semantics of

streams based on a Scott order, as simple lazy streams in

Haskell, where the value of a stream can depend on future

computations (as illustrated Appendix A.3). However, this ap-

proach is not practical in a reactive context where processes

interact with the environment [11, 24].

4 Compilation
Following the semantics described in Section 3.3 each ex-

pression is compiled into a transition function that can be

written in a simple functional first-order language extended

with probabilistic operators we call µF . Importantly, the com-

pilation process is the same for deterministic and probabilis-

tic expressions. We can then give a classic interpretation

to deterministic terms, and a measure-based semantics to

probabilistic terms following [39]. We then show that the se-

mantics of the compiled code coincides with the co-iterative

semantics described in Section 3.3.

4.1 A First-Order Functional Probabilistic Language
The syntax of µF is the following:

d ::= let f = e | d d

e ::= c | x | (e, e) | op(e) | e(e)
| if e then e else e | let p = e in e | fun p -> e

| sample(e) | observe(e, e) | infer((fun x -> e), e)

p ::= x | (p, p)

A program is a set of definitions. An expression is either a

constant, a variable, a pair, an operator, a function call, a con-

ditional, a local definition, an anonymous function, or one

of the probabilistic operators sample, observe, or infer. The

infer operator is tailored for ProbZelus and always takes

two arguments: a transition function of the form fun x -> e,

and a distribution of states. This operator computes the dis-

tribution of results and the distribution of possible next steps.

A type system similar to the one of ProbZelus is used to dis-

tinguish deterministic from probabilistic expressions (see

Appendix B.1).

4.2 Compilation to µF

The compilation function C generates a function that closely

follows the transition function defined by the co-iterative

semantics presented in Section 3.3. Each expression is com-

piled into a function of type S → T × S which given a state

returns a value and an updated state (see Appendix C for the

complete definition). The compilation of present is thus:

C(present e -> e1 else e2) = fun (s,s1,s2) ->

let v,zs' = C(e)(s) in

if v then let v1,s1' = C(e1)(s1) in (v1,(s',s1',s2))

else let v2,s2' = C(e2)(s2) in (v2,(s',s1,s2'))

The probabilistic operators sample, and observe are treated

as external operators. The compilation generates code that

simply calls the µF version of these operators. The compi-

lation of infer passes the distribution over states to the µF
version of infer. The inference is thus aware of the distribu-

tion over states at the previous step.

C(infer(e)) = fun sigma ->

let mu, sigma' = infer(C(e), sigma)

in (mu, sigma')

The compilation of a node declaration generates two defi-

nitions: the transition function f _step and the initial state

f _init. The transition function is the result of compiling

the body of the node with an additional argument to cap-

ture the input. The initial step is generated by the allocation

function A which follows the definition of the initial state

in the semantics of Section 3.3 (see the Appendix C for the

complete definition).

C(let node f x = e) =

let f _step = fun (s,x) -> C(e)(s)
let f _init = A(e)

4.3 Semantics equivalence
We showed how to compile ProbZelus to µF a simple func-

tional language with no loops, no recursion, and no higher-

order functions, extended with the probabilistic operators.

This language is similar to the kernel presented in [39] for

which ameasure-based probabilistic semantics is defined (see

also Figure 16 of Appendix B.2).

8

Reactive Probabilistic Programming PLDI ’20, June 15–20, 2020, London, UK

We can now prove that the semantics of the generated

code corresponds to the semantics of the source language

described in Section 3.3.

Theorem. For all ProbZelus expression e , for all state s and
environment γ :

• if kindOf (e) = D then ⟦e⟧sγ (s) = ⟦C(e)⟧γ (s), and,
• if kindOf (e) = P then {[e]}sγ (s) = {[C(e)]}γ (s).

Proof. The proof is done by induction on the structure of e .
As an example consider the expression sample(e). If this

expression is well-typed and since typing is preserved by

compilation (see Lemma C.1) kindOf (C(e)) = D. Using the

induction hypothesis on ⟦C(e)⟧γ (s) = ⟦e⟧γ (s) we have:

{[C(sample(e))]}γ (s)

=

{[
fun s -> let mu, s' = C(e)(s) in

let v = sample(mu) in (v, s')

]}
γ
(s)

= λU .
∫
δ⟦C(e)⟧γ (s)(dµ,ds ′)
{[let v = sample(mu) in (v, s')]}γ [µ/mu, s ′/s'](U)

= λU . let (µ,s) = ⟦C(e)⟧γ (s) in
{[let v = sample(mu) in (v, s')]}γ [µ/mu, s ′/s'](U)

= λU . let (µ, s ′) = ⟦e⟧sγ (s) in
∫
µ(dv)δv,s ′(U)

= {[sample(e)]}sγ (s)
□

Remark. The probabilistic semantics of µF is commutative

(see [39, Theorem 4]).We can thus show that the semantics of

a ProbZelus program does not depend on the schedule used

by the compiler to order the equations of local definitions.

5 Inference
The measure-based semantics of infer presented in Sec-

tion 3.3 and Section 4.3 includes often intractable integrals.

An additional challenge is to design inference techniques

that can operate in bounded memory to be practical in a

reactive context where the inference is a non-terminating

process.

In this section, we show how to adapt particle filtering [16]

to explicitly handle the state of the transition functions. We

then present a novel implementation of delayed sampling, a
recently proposed semi-symbolic inference, which enables

partial exact inference over infinite streams in bounded mem-

ory for a large class of models including state-space models

like the robot example of Figure 1 in Section 2.

5.1 Particle Filtering
In conventional probabilistic programming, the operational

interpretation of a model is an importance sampler that ran-
domly generates a sample of the model together with an

importance weight measuring the quality of the sample.

Following the conventions of Section 3.3 we write ⟦e⟧γ for

the semantics of a deterministic expression, and {[e]}γ ,w for

the semantics of a probabilistic expression. The additional

argumentw captures the weight. The probabilistic operator

sample draws a sample from a distribution without changing

the score. observe increments the score by the likelihood of

the observation. A deterministic expression can be lifted in a

probabilistic context: the corresponding sample is the return

value of the expression and the score is unchanged. The

let construct illustrates that the score is accumulated along

the execution path (the complete semantics is presented in

Figure 19 of Appendix D).

{[sample(e)]}γ ,w = (draw(⟦e⟧γ),w)

{[observe(e1,e2)]}γ ,w = let µ = ⟦e1⟧γ in ((),w ∗ µ
pdf

(⟦e2⟧γ))
{[e]}γ ,w = (⟦e⟧γ ,w) if kindOf (e) = D

{[let p = e1 in e2]}γ ,w = let v1,w1 = {[e1]}γ ,w in {[e2]}γ [v1/p],w1

Such a sampler is the basis of a particle filter or a bootstrap
filter [16]. infer independently launchesN particles. At each

step, each particle samples the distribution of states σ ob-

tained at the previous step and executes the sampler to com-

pute a pair (result, state) along with its weight. The resulting

pairs are then normalized according to their weights to form

a categorical distribution µ over pairs of values and states (we
writewi = wi/

∑N
i=1wi for the normalized weights). This dis-

tribution is then split into the distribution of returned values

and the distribution of next states.

⟦infer(fun s -> e, σ)⟧γ =
let µ = λU .

N∑
i=1

let si = draw(⟦σ⟧γ) in
let (vi , s ′i),wi = {[fun s -> e]}γ ,1(si) in
wi ∗ δvi ,s ′i (U)

in (π1∗(µ),π2∗(µ))

Remark. The resampling step requires the ability to clone

particles in the middle of the execution. A classic technique is

to compile the model in continuation passing style (CPS) [37]
and use the probabilistic constructs sample and observe as

checkpoints for resampling. In our context, the compilation

presented in Section 4 externalizes the state of the transition

functions. Duplicating the state effectively clones a particle

during its execution. The code does not need to be compiled

in CPS form and we avoid the alignment problem [27].

5.2 Delayed Sampling
The basis of our streaming inference algorithm is delayed

sampling, which we first review to explain its conceptual ap-

proach. Delayed sampling is an inference technique combin-

ing partial exact inference with approximate particle filtering

to reduce estimation errors [26, 31].

9

PLDI ’20, June 15–20, 2020, London, UK

{[op(e)]}γ ,д,w =
let (e ′,дe ,we) = {[e]}γ ,д,w in (app(op, e ′),дe ,we)

{[if e then e1 else e2]}γ ,д,w =
let e ′,дe ,we = {[e]}γ ,д,w in
let v,дv = value(e ′,дe) in
if v then {[e1]}γ ,дv ,we else {[e2]}γ ,дv ,we

{[sample(e)]}γ ,д,w =
let µ,дe ,w ′ = {[e]}γ ,д,w in
let X ,д′ = assume(µ,дe) in (X ,д′,w ′)

{[observe(e1,e2)]}γ ,д,w =
let µ,д1,w1 = {[e1]}γ ,д,w in let X ,дx = assume(µ,д1) in
let e ′

2
,д2,w2 = {[e2]}γ ,дx ,w1

in let v,дv = value(e ′
2
,д2) in

let д′ = observe(X ,v,дv) in ((),д′,w2 ∗ µpdf (v))

Figure 8. Delayed sampling sampler. Expressions return a

pair (symbolic expression, weight).

In addition to the importanceweight, each particle exploits

conjugacy relationships between pairs of random variables to

maintains a graph: a Bayesian network representing closed-

form distributions involving subsets of random variables.

Observations are incorporated by analytically conditioning
the network. Particles are thus only required to draw sample

when forced to, i.e., when exact computation is not possible,

or when a concrete value is required.

To perform analytic computations, delayed sampling ma-

nipulates symbolic terms where random variables are refer-

enced in the graph. The semantics of an expression {[e]}γ ,д,w
takes an additional argument д for the graph and returns a

symbolic term, an updated weight, and an updated graph.

Given a graph, a symbolic term can be evaluated into a con-

crete value by sampling the random variables that appear in

the term. The graph can be accessed and modified using the

three following functions defined in [31].

v,д′ = value(e,д) evaluate a symbolic term and return a con-

crete value.

X ,д′ = assume(µ,д) add a random variable X ∼ µ to the

graph and return the variable.

д′ = observe(X ,v,д) condition the graph by observing the

value v for the variable X .

Compared to the particle filter, any expression, probabilis-

tic or deterministic, can contribute to a symbolic term. The

evaluation function {[e]}γ ,д,w partially presented in Figure 8

must thus be defined on the entire language and not only

on probabilistic constructs. For instance, the application of

an operator op(e) returns a symbolic term app(op, e ′) that
represents the application of op on the evaluation of e . Some

terms are partially evaluated when symbolic computation

is not possible. For instance, in the general case, to com-

pute the importance weight of if e then e1 else e2, each

particle must compute a concrete value for the condition e .

The probabilistic sample(e) adds a new random variable to

the graph without drawing a sample. observe(e1, e2) adds

a new random variable X ∼ µ where µ is defined by e1, then
computes a concrete value v for e2 and conditions the graph

by observing the value v for X . As for the particle filter, the

score is incremented by the likelihood of the observation.

Symbolic Computations. The functions value, assume, and
observe used in Figure 8 rely on the following mutually re-

cursive lower level operations (Y is the parent of X) [31]:

X ,д′ = initialize(µ,Y ,д) add a new node X with a distribu-

tion pX |Y = µ as a child of Y in д.

д′ = marginalize(X ,д) compute and store pX in д′ from pY
and pX |Y where pY and pX |Y are in д.

д′ = realize(X ,v,д) assign inд′ a concrete value to a random
variable X .

д′ = condition(Y ,д) computepY |X givenpX ,pX |Y , and a con-
crete value X = v where v is in д.

In the class of Bayesian networks maintained by the delayed

sampler, marginalization w.r.t. a parent node, and condition-

ing a parent on the value of a child are tractable operations.

To reflect these operations, nodes are characterized by a

state (see Figures 4 and 9). Initialized nodes are random

variables with a conditional distribution pX |Y where the par-

ent Y has no concrete value yet. Marginalized nodes are

random variables with a marginal distribution pX that incor-

porate the distributions of the ancestors. Realized nodes

are random variables that have been assigned a concrete

value via sampling or observation.

The evaluation function value(e,д) forces the realization
by sampling of all the random variables referenced in e to pro-
duce a concrete value. Similarly, the function observe(X ,v,д)
realizes a variable X with a given observation v . The realiza-
tion of a random variable comprises three steps: (1) compute

the distributionp(x) by recursivelymarginalizing the parents

from a root node, (2) sample a value, or use the observation,

and (3) use the concrete value to update the children and

condition the parent which removes the dependencies.

The function assume(µ,д) adds a new node to the graph

and is defined case by case on the shape of the symbolic

term µ. If there is a conjugacy relationship between µ and a

random variableY present in the graph, e.g., µ = Bernoulli(Y)
with Y ∼ Beta(α , β), a new initialized node X ∼ µ is added

as a child of Y . Otherwise, since symbolic computation is not

possible, dependencies are broken by realizing the random

variables that appear in µ, e.g., µ ′ = Bernoulli(value(Y ,д)),
and X ∼ µ ′ is added as a new root node.

Inference. The inference scheme is similar to the particle

filter. At each step, the inference draws N states from σ to

execute the transition function. For each particle, execution

starts with the graph computed at the previous step and

returns a pair of symbolic terms (result, state), the particle

10

Reactive Probabilistic Programming PLDI ’20, June 15–20, 2020, London, UK

. . .

pre x

(a) Initial state

. . .

pre x x

(b) init(x, pre x)

. . .

pre x x

acc

(c) init(y,x)

. . .

pre x x

✗

acc

(d) marg(x)

. . .

pre x x

acc

✗

(e) marg(y)

. . .

pre x x

acc

(f) realize(y)

. . . ✗

✗

pre x

(g) Update state

Figure 9.One step of the robot example of Figure 1 with SDS. Plain arrows represent dependencies and dotted arrows represent

pointers at runtime. The sample statement adds the initialized nodes x (b). The observe statement adds the initialized node a (c),

triggers the marginalizations of x (d) and a (e), and assigns to a its observed value (f). When the state is updated, the value x

becomes pre x. The previous values are not referenced anymore and can be removed (g).

weight, and the updated graph. The function distribution(e,д)
returns the distribution corresponding to the expression e
without altering the graph. Results are then aggregated in

a mixture distribution (concrete values are lifted to Dirac

distribution) where the distribution di operates on the value

component of U and we use the pair (symbolic term, graph)

computed by the transition function for the distribution of

state. This distribution is then split into the distribution of

returned values and the distribution of next states.

⟦infer(fun s -> e, σ)⟧γ =
let µ = λU .

N∑
i=1

let si ,дi = draw(⟦σ⟧γ) in
let (ei , s ′i),wi ,д

′
i = {[fun s -> e]}γ ,1,дi (si) in

let di = distribution(ei ,д′i) in
wi ∗ di (π1(U)) ∗ δs ′i ,д′i (π2(U))

in (π1∗(µ),π2∗(µ))

5.3 Streaming Delayed Sampling
As illustrated in Section 2.2, a notable challenge with the

traditional delayed sampling algorithm is that graph grows

linearly in the number of samples. In the original formulation

of delayed sampling [31], graph edges are only removed

when a node is realized. All nodes that have been neither

sampled nor observed are thus kept in the graph even if

they are no longer referenced by the program. In a reactive

programming context, such an implementation can consume

unbounded memory.

BoundedDelayed Sampling. A simplemitigation is to limit

the scope of symbolic computations to one time step and

discard the graph at the end of each time step. We call this

inference technique bounded delayed sampling (BDS).

BDS performs symbolic computations during the execu-

tion of a time step, and whenever possible, delays the sam-

pling until the end of the instant. Like the particle filter, BDS

guarantees a bounded-memory execution. For each particle,

the size of the graph is bounded by the number of variables

introduced during a time step, which by construction, is

bounded for any valid ProbZelus program.

Streaming Delayed Sampling. Compared to the original

delayed sampling algorithm, BDS loses the ability to perform

symbolic computations using variables defined at different

time steps. This can result in a significant loss of precision

for models with inter-steps dependencies such as the robot

example of Figure 1. To adapt delayed sampling to streaming

settings while keeping its maximum accuracy, we designed

a delayed sampler that is pointer-minimal where nodes that
are no longer referenced by the program can be eventu-

ally removed. We call this inference streaming delayed sam-
pling (SDS). SDS enables partial exact inference in bounded

memory for a large class of models.

In the original implementation of delayed sampling, graph

nodes need to access their parents and children. Marginaliza-

tion requires access to the parent to incorporate the ancestor

distribution. Realization requires access to both the parent

and the children of a node to update their respective distri-

butions with the concrete value assigned to the node.

In the pointer minimal implementation, initialized nodes

only keep a pointer to their parent to follow the ancestor

chain during marginalization and marginalized nodes only

keep a pointer to a marginalized child (Delayed Sampling

imposes that a node always has at most one marginalized

child). Compared to the original implementation, marginal

nodes only keep track of one child, andmarginalization turns

backward pointers to the parent node into forward pointers

to the marginalized child. Note that this implementation

prevents updating the children when the parent is realized,

and prevents conditioning a parent when a child is realized.

Instead, when marginalizing a node, the sampler first checks

if the parent is realized to apply the update. Symmetrically,

to realize a node, the sampler first checks if the children are

realized and, if necessary, conditions the distribution before

assigning the concrete value.

Figure 9 shows the evolution of the graph during one

step for the robot example of Figure 1. At the end of the

step, the value of pre x is updated. The previous value is

not referenced anymore by the program and the node can

be removed from the graph. In the original implementation,

backward pointers between marginalized nodes prevent the

collection (see Figure 4).

Limitations. With SDS, models like the robot example that

only maintain bounded chains of dependencies between vari-

ables are guaranteed to be executed in bounded memory. The

class of models that can be executed in bounded memory

11

PLDI ’20, June 15–20, 2020, London, UK

with our pointer-minimal implementation thus already com-

prises state-space models like Kalman filters, and models

for learning unknown constant parameters from a series

of observations (e.g., computing the bias of a coin from a

succession of flips) where variables introduced at each step

are immediately realized.

However, unbounded chains can still be formed if the pro-

gram keeps a reference to a constant variable that is never

realized. In the following example, at each step, a new vari-

able x is added as a child of pre x and then marginalized for

the observation. But p1 keeps a reference to the initial vari-

able i which is never realized and thus forms an unbounded

chain between i and x.

let proba p1 (xo, obs) = (i, o) where

rec init i = sample (gaussian (xo, 1.))

and x = sample (gaussian (i -> pre x, 1.))

and () = observe (gaussian (x, 1.), obs)

In addition, in ProbZelus, at each step the inference re-

turns a snapshot of the current distribution without forcing

the realization of any node in the graph. Compared to the

original delayed sampling implementation, initialized nodes

can be inspected without being realized. It is thus possible to

form unbounded chains of initialized nodes which cannot be

pruned even when nodes are no longer referenced in the pro-

gram due to the backward pointers to the parent in initialized

nodes. In the following example, at each step, the variable x

is added as a child of pre x, but without observation these

variables remain initialized for ever.

let proba p2 (xo) = x where

rec x = sample (gaussian (xo -> pre x, 1.))

To mitigate these issues, we can force the realization of

trailing nodes at each step as in bounded delayed sampling or
use a sliding window. Alternatively, the value (eval) function
is available to the programmer and can be used to imple-

ment any strategy to force the evaluation of the nodes. For

instance, the previous example can be adapted to execute in

bounded memory:

let proba p2' (xo) = x where

rec x = sample (gaussian (xo -> pre x, 1.))

and _ = eval (xo -> pre x)

6 Evaluation
We next evaluate the performance of ProbZelus on a set of

benchmarks that illustrate multiple aspects of the language:

inferring fixed parameters from observations, online trajec-

tory estimation, inference-in-the-loop. For these examples,

we compare the accuracy and the latency cost of the three

inference techniques: PF, BDS, and SDS. Appendix E details

our implementation as an extension of the Zelus compiler.

Table 1. Benchmarks with: inference of fixed parameters

from observations, estimation of a moving state (state-space

model), and inference-in-the-loop (IITL).

Fixed Moving IITL Metric

Beta-Bernoulli ✓ MSE

Gaussian-Gaussian ✓ MSE

Kalman-1D ✓ MSE

Outlier ✓ ✓ MSE

Robot ✓ ✓ LQR

SLAM ✓ ✓ ✓ MSE

MTT ✓ MOTA*

Benchmarks. The models used in the experiments are sum-

marized in Table 1 (a detailed description along with the code

of the benchmarks is given in Appendix F.1). Two models

infer fixed parameters from a series of observations. Beta-
Bernoulli estimates the parameter of a Bernoulli distribution

from a series of binary observations (e.g., the bias of a coin).

Gaussian-Gaussian estimates the mean and variance of a

Gaussian distribution from a series of observations. The ac-

curacy metric is theMean Squared Error (MSE) of the inferred

parameters compared to their exact values.

Two models infer the state of a moving agent from noisy

observations. Kalman-1D is a one-dimensional Kalman filter

that models an agent that estimates its trajectory from noisy

observations. Outlier adapted from [29] models the same

situation asKalman-1D, but the sensor occasionally produces
invalid readings. This models infer both the trajectory of

the agent, and the bias of the sensor. The accuracy metric

is the Mean Squared Error (MSE) of the inferred trajectory

compared to the exact positions.

Two models use inference-in-the-loop (IITL). Robot is the
robot example of Section 2 and the accuracy metric is the

LQR loss. SLAM (Simultaneous Localization and Mapping)
adapted from [17] models an agent that estimates its position

and a map of its environment. In this simplified version, the

agent moves in a one-dimensional grid where each cell is

either black or white. The robot’s wheels may slip causing

the robot to unknowingly stay in place (noisy motion), and

the sensor is not perfect and may accidentally report the

wrong color (noisy observations). At each step the robot uses

the inferred position to decide its next move. The accuracy

metric is the MSE of both the position and the map.

MTT (Multi-Target Tracker) adapted from [32] is a model

where there are a variable number of targets with linear-

Gaussian motion models with a state space of 2D position

and velocity, producing linear-Gaussian measurements of

the position at each time step. Targets randomly appear ac-

cording to a Poisson process and each disappear with fixed

probability at each step. Measurements do not identify which

target they came from, and “clutter” measurements that come

not from targets but from some underlying distribution add

12

Reactive Probabilistic Programming PLDI ’20, June 15–20, 2020, London, UK

Beta-
Bernoulli

Gaussian-
Gaussian

Kalman-1D Outlier Robot SLAM MTT

10
0

10
1

10
2

10
3

2
0
0

3
,5
0
0

1
5

6
5
0

8
5

>
1
5
,0
0
0

>
2
,5
0
0

2
0
0

9
0
0

1

6
5

7

>
9
,5
0
0

>
7
5
0

1

1
5
0

1

6
5

1

7
0
0 6
0

To
ta
lE

xe
cu
ti
on

Ti
m
e
(m

s) ■ PF ■ BDS ■ SDS

Figure 10. Execution time comparison when 90% of 1000 runs reach an accuracy similar to the baseline (median accuracy of

SDS with 1000 particles) after 500 steps. The number of particles required to reach this accuracy is shown on top of the bars.

The error bars show the 10th and 90th percentiles.

to observations, complicating inference of which measure-

ments are associated to which targets. The accuracy metric

is expectedMOTA∗ = (1/MOTA) − 1 whereMOTA ∈ [0, 1]
is the Multiple Object Tracking Accuracy [3].

Experimental Setup. All the experiments were run on a

server with 32 CPUs (2.60 GHz) and 128 GB memory. We ran

all the benchmarks for 500 steps. In all cases, the inference

runs in bounded memory (see Appendix F.3).

For each algorithm, we evaluated how much time it re-

quired to achieve 90% of runs close to a loss target (out of

1000 runs total):

| log(P90%(loss)) − log(losstarget)| < 0.5.

For each benchmark, the baseline is the median loss of

SDS at 1000 particles as losstarget for that benchmark. We

measured the number of particles required to achieve this

loss, and then measured the total execution time at this par-

ticle count for 500 steps (in Appendix F.2 we also evaluate

loss and step latency across a fixed range of particle counts).

Results. Figure 10 shows the results. The height of each bar

is the median total execution time, and the error bars are

90% and 10% quantiles, aggregated over 1000 runs. Each bar

is labeled with the minimum number of particles required

to achieve the accuracy threshold, accurate to 1.5 significant

digits (100, 150, 200, 250, . . .). We observe that SDS is able to

compute an exact solution for Beta-Bernoulli, Kalman-1D,
and Robot. In all these examples 1 particle is already enough

to reach the target accuracy. Overall, the results show that the

number of particles required to reach the desired accuracy

with PF implies a significant slowdown compared to SDS.

Moreover, the SLAM and MTT benchmarks show that, in

some cases, PF is not an option: the target accuracy was

not reached with 15, 000 and 2, 500 particles, respectively, at
which point PF was already 10 times slower than SDS and

we stopped the experiments.

As expected, BDS performance numbers are between those

of PF and SDS. At worst, when there is no possible intra-step

symbolic computations (e.g., Beta-Bernoulli), BDS behaves
like a particle filter and requires as many particles as PF. At

best, BDS performs as well as SDS (e.g., Outlier).
Additionally, Figure 10 also shows that for a given number

of particles, the overhead induced by managing the delayed

sampling graph is significant. Compared to BDS and SDS,

depending on the benchmark, it is possible to use 2 to 4

times as many particles for PF with the same execution time.

However, this is not enough to match the gain in accuracy.

Alternative Baselines. The results presented in Figure 10

do not quantify the speedup of SDS on the SLAM and MTT

benchmarks because the other inference algorithms time out.

To evaluate speedups on these two benchmarks, we used PF

as an alternative baseline instead of SDS. Figure 11 presents

the execution time of PF, BDS, and SDS to reach a loss close
to the median of PF with 2000 and 4000 particles.

We observe that SDS requires a much smaller number

of particles to reach similar accuracy which translates into

speedups ranging from 10
1
(MTT-2000) to 10

4
(SLAM-4000).

BDS requires either a similar or smaller numbers of particles.

But the overhead introduced by the graph manipulations

mostly translates in slowdowns compared to PF.

7 Related Work
Probabilistic Programming. Over the last few years there

has been a growing interest on probabilistic programming

languages. Some languages like BUGS [28], Stan [10], or

Augur [23] offer optimized inference technique for a con-

strained subset of models. Other languages likeWebPPL [20],

Edward [41], Pyro [6], or Birch [32] focus on expressivity

allowing the specification of arbitrary complex models. Com-

pared to these languages, ProbZelus can be used to program

reactive models that typically do not terminate, and inference

can be run in parallel with deterministic components that

interact with an environment.

13

PLDI ’20, June 15–20, 2020, London, UK

SLAM
2000

SLAM
4000

MTT
2000

MTT
4000

10
0

10
1

10
2

10
3

10
4

3
0
0

1
5
,0
0
0

3
5
0

4
0
0

3
5
0

8
,0
0
0

3
0
0

4
0
0

1 1

2
0

2
0

To
ta
lE

xe
cu
ti
on

Ti
m
e
(m

s)
■ PF ■ BDS ■ SDS

Figure 11. Execution time comparison with two different

baselines: median accuracy of PF with 2000 and 4000 parti-

cles, respectively.

Reactive LanguageswithUncertainty. Lutin is a language
for describing non-deterministic reactive systems for test-

ing and simulation [36], but while Lutin supports weighted

sampling to describe constrained random scenarios, it does

not support inference. ProPL [34] is a language to describe

probabilistic models for process that evolve over a period

of time. This language also extends a probabilistic language

with a notion of processes that can be composed in parallel,

but compared to ProbZelus, ProPL focuses on a constrained

class of models that can be interpreted as Dynamic Bayesian
Networks (DBN), and relies on standard DBN inference tech-

niques. In the same vein, CTPPL [35] is a language to describe

continuous-time processes where the amount of time taken

by a sub-process can be specified by a probabilistic model.

These models cannot be expressed in ProbZelus which relies

on the synchronous model of computation. It would be inter-

esting to investigate how to extend ProbZelus to continuous-

time models based on Zelus’ support for ordinary differential

equations (ODE) [8].

Inference. Researchers have proposed streaming inference

algorithms, including variational [9], or sampling-based [17,

21] approaches. Popular languages like Stan, Edward, or

Pyro, offer support to stream data through the model during

inference to handle large datasets. However, compared to

ProbZelus, the model must be defined a priori and does not

evolve during the inference.

The Anglican and Birch probabilistic programming lan-

guages support delayed sampling [31]. These languages do

not support streaming inference or reactive programming.

Again, their interfaces only support inference on a complete

probabilistic model.

8 Conclusion
Modeling uncertainty is a primary element of control sys-

tems for tasks that operate under the assumption of a prob-

abilistic model of their environment (e.g., object tracking).

While synchronous languages have developed as a promi-

nent way to develop control applications, to date there has

been limited work in these languages on programming lan-

guage support for modeling uncertainty.

In this paper we present ProbZelus, the first synchronous

probabilistic programming language that lifts emerging ab-

stractions for probabilistic programming into the reactive

setting thus enabling inference-in-the-loop. Moreover, our

streaming delayed sampling algorithm provides efficient

semi-symbolic inference while still satisfying a key require-

ment of control applications in that they must execute with

bounded resources.

Our results demonstrate that ProbZelus enables us towrite,

in the very same source, a deterministic model for the con-

trol software and a probabilistic model for its behavior and

environment with complex interactions between the two.

References
[1] Guillaume Baudart, Louis Mandel, Eric Atkinson, Benjamin Sherman,

Marc Pouzet, and Michael Carbin. 2020. Reactive Probabilistic Pro-

gramming. In PLDI. ACM.

[2] Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas Halb-

wachs, Paul Le Guernic, and Robert de Simone. 2003. The synchronous

languages 12 years later. Proc. IEEE 91, 1 (2003), 64–83.

[3] Keni Bernardin and Rainer Stiefelhagen. 2008. Evaluating Multiple

Object Tracking Performance: The CLEAR MOT Metrics. EURASIP J.
Image and Video Processing 2008 (2008).

[4] Gérard Berry. 1989. Real Time Programming: Special Purpose or

General Purpose Languages. In IFIP Congress. North-Holland/IFIP, 11–
17.

[5] Dariusz Biernacki, Jean-Louis Colaço, Grégoire Hamon, and Marc

Pouzet. 2008. Clock-directedmodular code generation for synchronous

data-flow languages. In LCTES. ACM, 121–130.

[6] Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer,

Neeraj Pradhan, Theofanis Karaletsos, Rohit Singh, Paul A. Szerlip,

Paul Horsfall, and Noah D. Goodman. 2019. Pyro: Deep Universal

Probabilistic Programming. J. Mach. Learn. Res. 20 (2019), 28:1–28:6.
[7] Timothy Bourke and Marc Pouzet. 2013. Zélus, a Hybrid Synchronous

Language. École normale supérieure. http://zelus.di.ens.fr Distribution
at: zelus.di.ens.fr.

[8] Timothy Bourke and Marc Pouzet. 2013. Zélus: a synchronous lan-

guage with ODEs. In HSCC. ACM, 113–118.

[9] Tamara Broderick, Nicholas Boyd, Andre Wibisono, Ashia C. Wilson,

and Michael I. Jordan. 2013. Streaming Variational Bayes. In NIPS.
1727–1735.

[10] Bob Carpenter, Andrew Gelman, Matthew D Hoffman, Daniel Lee, Ben

Goodrich, Michael Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li,

and Allen Riddell. 2017. Stan: A probabilistic programming language.

J. Statistical Software 76, 1 (2017), 1–37.
[11] Paul Caspi. 1992. Clocks in Dataflow Languages. Theor. Comput. Sci.

94, 1 (1992), 125–140.

[12] Paul Caspi and Marc Pouzet. 1998. A Co-iterative Characterization of

Synchronous Stream Functions. In CMCS (Electronic Notes in Theoreti-
cal Computer Science), Vol. 11. Elsevier, 1–21.

[13] Jean-Louis Colaço, Grégoire Hamon, and Marc Pouzet. 2006. Mixing

signals and modes in synchronous data-flow systems. In EMSOFT.
ACM, 73–82.

[14] Jean-Louis Colaço, Bruno Pagano, and Marc Pouzet. 2017. SCADE 6: A

formal language for embedded critical software development (invited

paper). In TASE. IEEE Computer Society, 1–11.

14

http://zelus.di.ens.fr

Reactive Probabilistic Programming PLDI ’20, June 15–20, 2020, London, UK

[15] Jean-Louis Colaço and Marc Pouzet. 2004. Type-based initialization

analysis of a synchronous dataflow language. Int. J. Softw. Tools Technol.
Transf. 6, 3 (2004), 245–255.

[16] Pierre Del Moral, Arnaud Doucet, and Ajay Jasra. 2006. Sequential

Monte Carlo samplers. J. Royal Statistical Society: Series B (Statistical
Methodology) 68, 3 (2006), 411–436.

[17] Arnaud Doucet, Nando de Freitas, Kevin P. Murphy, and Stuart J. Rus-

sell. 2000. Rao-Blackwellised Particle Filtering for Dynamic Bayesian

Networks. In UAI. Morgan Kaufmann, 176–183.

[18] Daniel Fink. 1997. A Compendium of Conjugate Priors.

[19] Timon Gehr, Sasa Misailovic, and Martin T. Vechev. 2016. PSI: Exact

Symbolic Inference for Probabilistic Programs. In CAV (1) (Lecture
Notes in Computer Science), Vol. 9779. Springer, 62–83.

[20] Noah D. Goodman and Andreas Stuhlmüller. 2014. The Design and

Implementation of Probabilistic Programming Languages. http:
//dippl.org Accessed April 2020.

[21] N. J. Gordon, D. J. Salmond, and A. F. M. Smith. 1993. Novel approach

to nonlinear/non-Gaussian Bayesian state estimation. IEE Proceedings
F - Radar and Signal Processing 140, 2, 107–113.

[22] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. 1991. The Syn-

chronous Dataflow Programming Language Lustre. Proc. IEEE 79, 9

(September 1991), 1305–1320.

[23] Daniel Huang, Jean-Baptiste Tristan, and GregMorrisett. 2017. Compil-

ing Markov chain Monte Carlo algorithms for probabilistic modeling.

In PLDI. ACM, 111–125.

[24] Gilles Kahn. 1974. The Semantics of a Simple Language for Parallel

Programming. In IFIP Congress. North-Holland, 471–475.
[25] Rudolph Emil Kalman. 1960. A New Approach to Linear Filtering

and Prediction Problems. Journal of Basic Engineering 82, 1 (03 1960),

35–45.

[26] Daniel Lundén. 2017. Delayed sampling in the probabilistic program-
ming language Anglican. Master’s thesis. KTH Royal Institute of Tech-

nology.

[27] Daniel Lundén, David Broman, Fredrik Ronquist, and Lawrence M.

Murray. 2018. Automatic Alignment of Sequential Monte Carlo Infer-

ence in Higher-Order Probabilistic Programs. CoRR abs/1812.07439

(2018).

[28] David Lunn, David Spiegelhalter, Andrew Thomas, and Nicky Best.

2009. The BUGS project: Evolution, critique and future directions.

Statistics in medicine 28, 25 (2009), 3049–3067.
[29] Thomas P. Minka. 2001. Expectation Propagation for approximate

Bayesian inference. In UAI. Morgan Kaufmann, 362–369.

[30] Michael Montemerlo, Sebastian Thrun, Daphne Koller, and Ben Weg-

breit. 2002. FastSLAM: A Factored Solution to the Simultaneous Local-

ization and Mapping Problem. In AAAI/IAAI. AAAI Press / The MIT

Press, 593–598.

[31] Lawrence M. Murray, Daniel Lundén, Jan Kudlicka, David Broman,

and Thomas B. Schön. 2018. Delayed Sampling and Automatic Rao-

Blackwellization of Probabilistic Programs. In AISTATS (Proceedings of
Machine Learning Research), Vol. 84. PMLR, 1037–1046.

[32] Lawrence M. Murray and Thomas B. Schön. 2018. Automated learning

with a probabilistic programming language: Birch. Annual Reviews in
Control 46 (2018), 29–43.

[33] Praveen Narayanan, Jacques Carette, Wren Romano, Chung-chieh

Shan, and Robert Zinkov. 2016. Probabilistic Inference by Program

Transformation in Hakaru (System Description). In FLOPS (Lecture
Notes in Computer Science), Vol. 9613. Springer, 62–79.

[34] Avi Pfeffer. 2005. Functional Specification of Probabilistic Process

Models. In AAAI. AAAI Press / The MIT Press, 663–669.

[35] Avi Pfeffer. 2009. CTPPL: A Continuous Time Probabilistic Program-

ming Language. In IJCAI. 1943–1950.
[36] Pascal Raymond, Yvan Roux, and Erwan Jahier. 2008. Lutin: A Lan-

guage for Specifying and Executing Reactive Scenarios. EURASIP
Journal of Embedded Sytems 2008 (2008).

[37] Daniel Ritchie, Andreas Stuhlmüller, and Noah D. Goodman. 2016. C3:

Lightweight Incrementalized MCMC for Probabilistic Programs using

Continuations and Callsite Caching. In AISTATS (JMLR Workshop and
Conference Proceedings), Vol. 51. JMLR.org, 28–37.

[38] Eduardo D Sontag. 2013. Mathematical control theory: deterministic
finite dimensional systems. Vol. 6. Springer Science & Business Media.

[39] Sam Staton. 2017. Commutative Semantics for Probabilistic Program-

ming. In ESOP (Lecture Notes in Computer Science), Vol. 10201. Springer,
855–879.

[40] David Tolpin, Jan-Willem van de Meent, Hongseok Yang, and Frank D.

Wood. 2016. Design and Implementation of Probabilistic Programming

Language Anglican. In IFL. ACM, 6:1–6:12.

[41] Dustin Tran, Matthew D. Hoffman, Rif A. Saurous, Eugene Brevdo,

Kevin Murphy, and David M. Blei. 2017. Deep Probabilistic Program-

ming. In ICLR (Poster). OpenReview.net.
[42] Yi Wu, Lei Li, Stuart J. Russell, and Rastislav Bodík. 2016. Swift: Com-

piled Inference for Probabilistic Programming Languages. In IJCAI.
IJCAI/AAAI Press, 3637–3645.

15

http://dippl.org
http://dippl.org

PLDI ’20, June 15–20, 2020, London, UK

A ProbZelus
In this section, we provide the complete definitions of the

ProbZelus type system and semantics for the kernel language

introduced Section 3 extended with the probabilistic oper-

ator factor(e) which is equivalent to observe(exp(1), e).

Intuitively, factor can directly update the weight of the exe-

cution path with the value of an expression e .

A.1 Typing
The type system that discriminates deterministic from prob-

abilistic expressions is defined Figure 12. To simplify the

presentation, we ignored datatypes polymorphism.

The sub-typing rule indicates that any deterministic ex-

pression can be lifted into a probabilistic one. Expressions

like constants, variables, and last are deterministic. The

kind of classic Zelus expressions (pairs, op, local definitions,
present, and reset) is the kind of their body. Similarly, the

kind of equations is the kind of their defining expression,

and parallel composition imposes the same kind for all the

equations. Note that it is always possible to compose deter-

ministic and probabilistic computations. For rules where all

sub-expressions share the same kind k we enforce the use of

the sub-typing rule to lift deterministic expressions.

The expressions sample, factor, and observe are proba-

bilistic. The transition from probabilistic to deterministic is

realized via infer: a deterministic expression whose body is

always probabilistic. Probabilistic expressions can thus only

occur under an infer.

Other StaticAnalyses. The Zelus compiler statically checks

initialization, and causality of the program [7]. These two

analyses guarantee that there exists a schedule of parallel

equations that makes the streams productive. Extending

these analyses to the probabilistic operators is straightfor-

ward: probabilistic operators can be treated as external oper-

ators.

A.2 Co-iterative Semantics
The co-iterative semantics of ProbZelus’s deterministic pro-

cesses is inspired by [12] and defined Figure 13.

A node is a stream function of type T →D T ′
. In addition

to the state, the transition function thus takes an additional

input of type T and returns a pair (result, next state)

CoNode(T ,T ′, S) = S × (S → T → T ′ × S).

The transition function of a variable always returns the

corresponding value stored in the environmentγ . The seman-

tics of last x is a simple access to a special variable x_last.

present e -> e1 else e2 introduced in Section 2 returns the

value of e1 when e is true and the value of e2 otherwise. The
state (s, s1, s2) stores the state of the three sub-expressions.
The transition function lazily executes e1 or e2 depending on
the value of e and returns the updated state.

The state of a set of scheduled locally recursive defini-

tions e where rec E comprises three parts: the value of the

local variables at the previous step which can be accessed via

the last operator, the state of the defining expressions, and

the state of expression e . The initialization stores the initial

values introduced by init and the initial states of all sub-

expressions. The transition function incrementally builds

the local environment defined by E. First the environment

is populated with a set of fresh variables xi_last initialized

with the values stored in the state that can then be accessed

via the last operator. Then the environment is extended

with the definition of all the variables yi by executing all the

defining expressions (where {xi }1..k ∩ {yj }1..n = {xi }1..k).
Finally, the expression e is executed in the final environment.

The updated state contains the value of the initialized vari-

ables defined in E that will the be used to start the next step,

and the updated state of the sub-expressions.

Probabilistic Extensions. The semantics of the probabilis-

tic part of ProbZelus, defined Figure 14, follows the same

structure as the deterministic semantics but defines mea-

sures over all possible executions as in [39]. In particular

a succession of computation is interpreted as sequentially

integrating over the results of the preceding computations.

As for deterministic nodes, the transition function of a

probabilistic node of type T →P T ′
takes an additional argu-

ment and returns a measure over pairs (result, next state).

CoPNode(T ,T ′, S) = S × (S → T → (ΣT ′×S → [0,∞]))

A.3 Alternative semantics
We could give different semantics to ProbZelus. For example,

consider the following probabilistic node.

let proba kahn_vs_scott () = p where

rec init p = sample(beta(1, 1))

and () = observe(bernoulli(p), true)

With the semantics defined Section 3, this program pro-

duces the stream of distribution: Beta(2, 1),Beta(3, 1), . . .
Note that, even though, p is defined as a constant, its distri-

bution evolves at each steps.

Since the observe statement uses the constant true, we

know that p is necessarily 1. An alternative semantics could

thus returns the constant stream of distributions: δ1 .

B The µF language
Similarly to ProbZelus, we extend µF with the probabilistic

operator factor. We now present the complete type system

and semantics for µF .

B.1 Typing
The type system defined Figure 15 is similar to the one Fig-

ure 12 to distinguish deterministic from probabilistic ex-

pressions, but with additional restrictions since the com-

piled code is in a more constrained form. Whenever possible

16

Reactive Probabilistic Programming PLDI ’20, June 15–20, 2020, London, UK

G ⊢D e : t

G ⊢P e : t

typeOf (c) = t

G ⊢D c : t

G(x) = t

G ⊢D x : t

G ⊢k e1 : t1 G ⊢k e2 : t2

G ⊢k (e1, e2) : t1 × t2

typeOf (op) = t1 →D t2 G ⊢k e : t1

G ⊢k op(e) : t2

G(f) = t1 →k t2 G ⊢D e : t1
G ⊢k f (e) : t2

G(x) = t

G ⊢D last x : t

G ⊢k E : G ′ G +G ′ ⊢k e : t

G ⊢k e where rec E : t

G ⊢k e : bool G ⊢k e1 : t G ⊢k e2 : t

G ⊢k present e -> e1 else e2 : t

G ⊢k e1 : t G ⊢k e2 : bool

G ⊢k reset e1 every e2 : t

G ⊢D e : t dist

G ⊢P sample(e) : t

G ⊢D e1 : t dist∗ G ⊢D e2 : t

G ⊢P observe(e1, e2) : unit

G ⊢D e : float

G ⊢P factor(e) : unit

G ⊢P e : t

G ⊢D infer(e) : t dist

G ⊢D e : T dist∗

G ⊢D e : T dist

G ⊢k e : t

G ⊢k x = e : [t/x]

G ⊢k e : t

G ⊢k init x = e : [t/x]

G +G1 +G2 ⊢k E1 : G1 G +G1 +G2 ⊢k E2 : G2

G ⊢k E1 and E2 : G1 +G2

G + [t1/x] ⊢D e : t2
G ⊢D let node f x = e : G + [t1 →D t2/f]

G + [t1/x] ⊢P e : t2
G ⊢D let proba f x = e : G + [t1 →P t2/f]

G ⊢D d1 : G1 G1 ⊢D d2 : G2

G ⊢D d1 d2 : G2

Figure 12. Typing with deterministic and probabilistic kinds.

we require sub-expressions to be deterministic, that is, in

pairs, operator applications (including sample, factor, and

observe), function calls, and the condition of a if/then/else.

These restrictions simplify the presentation of the semantics

but do not reduce the expressiveness of the language since

it is always possible to introduce additional local definitions

to name intermediate probabilistic expressions. For exam-

ple if sample(bernoulli(0.5)) then ... can be rewritten

let b = sample(bernoulli(0.5)) in if b then ...

B.2 Semantics of µF
The semantics of µF follows [39]. In a deterministic con-

text kindOf (e) = D, the semantics ⟦e⟧γ of an expression

is the classic interpretation of a strict functional language.

In a probabilistic context (kindOf (e) = P), we define a the
measure-based semantics {[e]}γ .

The probabilistic semantics of µF is presented in Figure 16.

A deterministic expression is lifted to a probabilistic expres-

sion using the the Dirac delta measure applied to the value

of the expression computed by the deterministic semantics.

As in Section 3.3, a local definition let x = e1 in e2 is in-

terpreted as integrating e2 over the measure defined by e1.
The semantics of the probabilistic operators is the following:

sample(e) returns the distribution ⟦e⟧γ . factor(e) returns
a measure defined on the singleton space () whose value

is exp(⟦e⟧γ). observe(e1, e2) is similar but the score is the

density function of the distribution ⟦e1⟧γ applied to ⟦e2⟧γ .

Inference. infer handles the transition function generated

by the compilation of Section 4. The first argument of infer

is a transition function, and the second argument a distri-

bution over state σ . The inference first integrates over the
distribution σ and then normalizes the result µ to produce a

distribution ν of pairs (result, next state). The special value⊤
denotes the entire space (value, state). This distribution is

then decomposed into a pair of distributions using the push-

forward of µ.

C Compilation
Figure 18 presents the entire compilation function from

ProbZelus to µF introduced Section 4. Figure 17 presents

the allocation function.

Lemma C.1. The compilation preserves the kind (determinis-
tic D, or probabilistic P) of the expressions. For any expression e ,
if G ⊢k e : t , there exists G ′ and t ′ such that G ′ ⊢k C(e) : t ′.

Proof. By induction on the structure of e . □

Remark. The compilation presented in Figure 18 generates

a function for each sub-expression. However, in most cases

it is possible to simplify the code using static reduction. For

instance, a constant can directly be compiled into a constant.

17

PLDI ’20, June 15–20, 2020, London, UK

⟦c⟧iγ = ()
⟦c⟧sγ = λs . (c, s)
⟦x⟧iγ = ()
⟦x⟧sγ = λs . (γ (x), s)
⟦last x⟧iγ = ()
⟦last x⟧sγ = λs . (γ (x_last), s)
⟦(e1,e2)⟧iγ = (⟦e1⟧iγ , ⟦e2⟧iγ)
⟦(e1,e2)⟧sγ = λ(s1, s2). let v1, s ′

1
= ⟦e1⟧sγ (s1) in

let v2, s ′
2
= ⟦e2⟧sγ (s2) in ((v1,v2) , (s ′

1
, s ′
2
))

⟦op(e)⟧iγ = ⟦e⟧iγ
⟦op(e)⟧sγ = λs . let v, s ′ = ⟦e⟧sγ (s) in (op(v), s ′)
⟦f (e)⟧iγ = (⟦e⟧iγ ,γ (f _init))
⟦f (e)⟧sγ = λ(s1, s2). let v1, s ′

1
= ⟦e⟧sγ (s1) in

let v2, s ′
2
= γ (f _step)(v1)(s2) in (v2, (s ′

1
, s ′
2
))

⟦present e -> e1 else e2⟧iγ = (⟦e⟧iγ , ⟦e1⟧iγ , ⟦e2⟧iγ)
⟦present e -> e1 else e2⟧sγ = λ(s, s1, s2). let v, s ′ = ⟦e⟧sγ (s) in

if v then let v1, s ′
1
= ⟦e1⟧sγ (s1) in (v1, (s ′, s ′

1
, s2))

else let v2, s ′
2
= ⟦e2⟧sγ (s2) in (v2, (s ′, s1, s ′

2
))

⟦reset e1 every e2⟧iγ = (⟦e1⟧iγ , ⟦e1⟧iγ , ⟦e2⟧iγ)
⟦reset e1 every e2⟧sγ = λ(s0, s1, s2). let v2, s ′

2
= ⟦e2⟧sγ (s2) in

let v1, s ′
1
= ⟦e1⟧sγ (if v2 then s0 else s1) in

(v1, (s0, s ′
1
, s ′
2
))�������

e where

rec init x1 = c1 and ...

and init xk = ck
and y1 = e1 and ...

and yn = en

�������
i

γ

=
©«

(c1, . . . , ck),
(⟦e1⟧iγ , . . . , ⟦en⟧iγ),

⟦e⟧iγ
ª®¬

�������
e where

rec init x1 = c1 and ...

and init xk = ck
and y1 = e1 and ...

and yn = en

�������
s

γ

=

λ((m1, . . . ,mk), (s1, . . . , sn), s).
let γ1 = γ [m1/x1_last] in
. . .

let γk = γk−1[mk/xk_last] in
let v1, s ′

1
= ⟦e1⟧sγk (s1) in let γ ′

1
= γk [v1/y1] in

. . .

let vn , s ′n = ⟦en⟧sγ ′
n−1

(sn) in let γ ′n = γ
′
n−1[vn/yn] in

let v, s ′ = ⟦e⟧sγ ′
n
(s) in

v, ((γ ′n [x1], . . . ,γ ′n [xk]), (s ′1, . . . , s
′
n), s ′)

⟦let node f x = e⟧γ = γ [⟦e⟧iγ /f _init, λv . λs . ⟦e⟧sγ [v/x]/f _step]
⟦let proba f x = e⟧γ = γ [{[e]}iγ /f _init, λv . λs . {[e]}sγ [v/x]/f _step]
⟦d1 d2⟧γ = let γ1 = ⟦d1⟧γ in ⟦d2⟧γ1

Figure 13. Co-iterative semantics of deterministic ProbZelus programs. For local definitions each initialized variable is defined

in a subsequent equation, i.e., {xi }1..k ∩ {yj }1..n = {xi }1..k .

18

Reactive Probabilistic Programming PLDI ’20, June 15–20, 2020, London, UK

{[e]}iγ = ⟦e⟧iγ if kindOf (e) = D

{[e]}sγ = λs . λU . δ⟦e⟧sγ (s)(U) if kindOf (e) = D

= λs . λU .

{
1 if ⟦e⟧sγ (s) ∈ U

0 otherwise

{[(e1,e2)]}iγ = ({[e1]}iγ , {[e2]}iγ)
{[(e1,e2)]}sγ = λ(s1, s2). λU . let µ1 = {[e1]}sγ (s1) in∫

µ1(dv1,ds ′
1
) let µ2 = {[e2]}sγ (s2) in∫

µ2(dv2,ds ′
2
) δ(v1,v2),(s ′

1
,s ′

2
)(U)

{[op(e)]}iγ = {[e]}iγ
{[op(e)]}sγ = λs . λU . let µ = {[e]}sγ (s) in

∫
µ(dv,ds ′) δop(v),s ′(U)

{[f (e)]}iγ = (⟦e⟧iγ ,γ (f _init))
{[f (e)]}sγ = λ(s1, s2). λU . let v1, s ′

1
= ⟦e⟧sγ (s1) in

let µ2 = γ (f _step)(v1)(s1) in
∫
µ2(dv2,ds ′

2
) δv2,(s ′

1
,s ′

2
)(U)

{[present e -> e1 else e2]}iγ = ({[e]}iγ , {[e1]}iγ , {[e2]}iγ)
{[present e -> e1 else e2]}sγ = λ(s, s1, s2). λU .

let µ = {[e]}sγ (s) in∫
µ(dv,ds ′) if v

then let µ1 = {[e1]}sγ (s1) in
∫
µ1(dv1,ds ′

1
) δv1,(s ′,s ′

1
,s2)(U)

else let µ2 = ⟦e2⟧sγ (s2) in
∫
µ2(dv2,ds ′

2
) δv2,(s ′,s1,s ′

2
)(U)

{[reset e1 every e2]}iγ = ({[e1]}iγ , {[e1]}iγ , {[e2]}iγ)
{[reset e1 every e2]}sγ = λ(s0, s1, s2). λU . let µ2 = ⟦e2⟧sγ (s2) in∫

µ(dv2,ds ′
2
) let µ1 = ⟦e1⟧sγ (if v2 then s0 else s1) in∫

µ(dv1,ds ′
1
) δv1,(s0,s ′

1
,s ′

2
)(U)

e where

rec init x1 = c1 and ...

and init xk = ck
and y1 = e1 and ...

and yn = en

i

γ

=
©«

(c1, . . . , ck),
({[e1]}iγ , . . . , {[en]}iγ),

{[e]}iγ

ª®¬

e where

rec init x1 = c1 and ...

and init xk = ck
and y1 = e1 and ...

and yn = en

s

γ

=

λ((m1, . . . ,mk), (s1, . . . , sn), s). λU .
let γ1 = γ [m1/x1_last] in . . . let γk = γk−1[mk/xk_last] in
let µ1 = {[e1]}sγk (s1) in∫
µ1(dv1,ds ′

1
) let γ ′

1
= γk [v1/y1] in∫

. . .

let µn = ⟦en⟧sγ ′
n−1

(sn) in∫
µn (dvn ,ds ′n) let γ ′n = γ ′n−1[vn/yn] in

let µ = {[e]}sγ ′
n
(s) in∫

µ(dv,ds ′) δv,((γ ′
n [x1], ...,γ ′

n [xk]),(s ′1, ...,s ′n),s ′)(U)

{[sample(e)]}iγ = ⟦e⟧iγ
{[sample(e)]}sγ = λs . λU . let µ, s ′ = ⟦e⟧sγ (s) in

∫
T µ(dv) δv,s ′(U)

{[factor(e)]}iγ = ⟦e⟧iγ
{[factor(e)]}sγ = λs . λU . let v, s ′ = ⟦e⟧sγ (s) in exp(v) δ(),s ′(U)
{[observe(e1, e2)]}iγ = (⟦e1⟧iγ ,⟦e2⟧iγ)
{[observe(e1, e2)]}sγ = λ(s1, s2). λU . let µ, s ′

1
= ⟦e1⟧sγ (s1) in

let v, s ′
2
= ⟦e2⟧sγ (s2) in

µ
pdf

(v) ∗ δ(),(s ′
1
,s2)(U)

Figure 14. Co-iterative semantics of probabilistic ProbZelus expressions (i.e., kindOf (e) = P). For local definitions each
initialized variable is defined in a subsequent equation, i.e., {xi }1..k ∩ {yj }1..n = {xi }1..k .

19

PLDI ’20, June 15–20, 2020, London, UK

G ⊢D e : t

G ⊢P e : t

typeOf (c) = t

G ⊢D c : t

G(x) = t

G ⊢D x : t

G ⊢D e1 : t1 G ⊢D e2 : t2
G ⊢D (e1, e2) : t1 × t2

typeOf (op) = t1 →D t2 G ⊢D e : t1
G ⊢D op(e) : t2

G(f) = t1 →k t2 G ⊢D e : t1
G ⊢k f (e) : t2

G + [t1/x] ⊢k e1 : t2 G ⊢D e2 : t1
G ⊢k (fun x -> e1)(e2) : t2

G ⊢D e : bool G ⊢k e1 : t G ⊢k e2 : t

G ⊢k if e then e1 else e2 : t

G ⊢k e1 : t1 G + [t1/x] ⊢k e2 : t2

G ⊢k let x = e1 in e1 : t2

G + [t1/x] ⊢k e : t2

G ⊢D fun x -> e : t1 →k t2

G ⊢D e : t dist

G ⊢P sample(e) : t

G ⊢D e1 : t dist∗ G ⊢D e2 : t

G ⊢P observe(e1, e2) : unit

G ⊢D e : float

G ⊢P factor(e) : unit

G ⊢P e1 : t × tstate G ⊢D e2 : tstate dist

G ⊢D infer((fun x -> e1),e2) : t dist

G ⊢D e : T dist∗

G ⊢D e : T dist

G ⊢D e : t

G ⊢D let f = e : G + [t/f]

G ⊢D d1 : G1 G1 ⊢D d2 : G2

G ⊢D d1 d2 : G2

Figure 15. Typing of µF with deterministic and probabilistic kinds.

{[let f = e]}γ = γ [{[e]}γ /f]
{[d1 d2]}γ = let γ1 = {[d1]}γ in {[d2]}γ1

{[e]}γ = λU . δ⟦e⟧γ (U) if kindOf (e) = D

{[e1(e2)]}γ = λU . (⟦e1⟧γ (⟦e2⟧γ))(U)
{[let p = e1 in e2]}γ = λU .

∫
T {[e1]}γ (du){[e2]}γ+[u/p](U)

{[if e then e1 else e2]}γ =
λU . if ⟦e⟧γ then {[e1]}γ (U) else {[e2]}γ (U)

{[fun p -> e]}γ = λv . {[e]}[v/p]
{[sample(e)]}γ = λU . ⟦e⟧γ (U)
{[observe(e1, e2)]}γ =

λU . let µ = ⟦e1⟧γ in µpdf(⟦e2⟧γ) ∗ δ()(U)
{[factor(e)]}γ = λU . exp(⟦e⟧γ) ∗ δ()(U)
⟦infer(fun x -> e1, e2)⟧γ =

let σ = ⟦e2⟧γ in
let µ = λU .

∫
S σ (ds){[e]}

s
γ+[s/x](U) in

let ν = λU . µ(U)/µ(⊤) in
(π1∗(ν),π2∗(ν))

Figure 16. Probabilistic semantics of µF . The semantics is

defined only for probabilistic expressions (kindOf (e) = P).

D Inference
D.1 Importance Sampling
Importance sampling. The most simple inference indepen-

dently launchesN particles. Each particle executes the impor-

tance sampler to compute a pair (result, weight). Results are

then normalized in a categorical distribution, i.e., a discrete
distribution over the results.

A(c) = ()

A(x) = ()

A(last x) = ()

A((e1,e2)) = (A(e1),A(e2))

A(e where

rec init x1 = c1 ...

and init xk = ck
and y1 = e1 ...

and yn = en) =
((c1,..., ck),

(A(e1),..., A(en)),
A(e))

A(present e -> e1 else e2) = (A(e),A(e1),A(e2))

A(reset e1 every e2) =

(A(e1),A(e1),A(e2))

A(op(e)) = A(e)

A(f (e)) = (f _init, A(e))

A(sample(e)) = A(e)

A(factor(e)) = A(e)

A(observe(e1, e2)) =

(A(e1), A(e2))

A(infer(e)) = (A(e))

Figure 17.Memory allocation, i.e., initialization for the µF
step functions.

The infer operator takes a transition function fun s -> e

and an array of pairs (state, weight) S of size N which repre-

sents the distribution of possible states across the particles.

⟦infer(fun s -> e, S)⟧γ =
let µ = λU .

N∑
i=1

let si ,wi = ⟦S⟧γ [i] in
let (vi , s ′i),w

′
i = {[fun s -> e]}γ ,wi (si) in

w ′
i ∗ δvi (U)

in (µ, [(s ′i ,w
′
i)]1≤i≤N)

At each step, the inference executes one step of all the parti-

cles and normalizes the scores to return the distribution µ of

possible results and an updated array of pairs (state, weight)

for the next step.

20

Reactive Probabilistic Programming PLDI ’20, June 15–20, 2020, London, UK

C(let node f x = e) =

let f _init = A(e)
let f _step =

fun (s,x) -> C(e)(s)

C(d1 d2) = C(d1) C(d2)
C(c) = fun s -> (c, s)

C(x) = fun s -> (x, s)

C(last x) = fun s -> (x_last, s)

C((e1, e2)) = fun (s1,s2) ->

let v1,s1' = C(e1)(s1) in

let v2,s2' = C(e2)(s2) in

((v1,v2), (s1',s2'))

C(op(e)) = fun s ->

let v,s' = C(e)(s) in

(op(v), s')

C(f (e)) = fun (s1,s2) ->

let v1,s1' = C(e)(s1) in

let v2,s2' = f _step(s2,v) in

(v2, (s1',s2'))

C(e where

rec init x1 = c1 ... and init xk = ck
and y1 = e1 ... and yn = en) =

fun ((m1,...,mk),(s1, ...,sn),s) ->

let x1_last = m1 in ...

let xk_last = mk in

let y1, s1' = C(e1)(s1) in

let yn, sn' = C(en)(sn) in

let v,s' = C(e)(s) in

(v, (s1', ..., sn'), s')

C(present e -> e1 else e2) =
fun (s,s1,s2) ->

let v, s' = C(e)(s) in

if v then let v1,s1' = C(e1)(s1) in

(v1, (s',s1',s2))

else let v2,s2' = C(e2)(s2) in

(v2, (s',s1,s2'))

C(reset e1 every e2) =
fun (s0,s1,s2) ->

let v2,s2' = C(e2)(s2) in

let s = if v2 then s0 else s1 in

let v1,s1' = C(e1)(s) in

(v1, (s0,s1',s2'))

C(sample(e)) = fun s ->

let mu,s' = C(e)(s) in

let v = sample(mu) in (v, s')

C(observe(e1, e2)) = fun (s1,s2) ->

let v1,s1' = C(e1)(s1) in

let v2,s2' = C(e2)(s2) in

let _ = observe(v1,v2) in

((), (s1',s2'))

C(factor(e)) = fun s ->

let v,s' = C(e)(s) in

let _ = factor(v) in ((), s')

C(infer(e)) = fun sigma ->

let mu,sigma' = infer(C(e), sigma) in

(mu, sigma')

C(let proba f x = e) =

let f _init = A(e)
let f _step = fun (s,x) -> C(e)(s)

Figure 18. Compilation of ProbZelus to µF .

⟦let f = e⟧γ = γ [{[e]}γ ,1/f] if kindOf (e) = P

{[e]}γ ,w = (⟦e⟧γ ,w) if kindOf (e) = D

{[e1(e2)]}γ ,w = let v2 = ⟦e2⟧γ in ⟦e1⟧γ (v2,w)
{[if e then e1 else e2]}γ ,w =

if ⟦e⟧γ then {[e1]}γ ,w else {[e2]}γ ,w
{[let p = e1 in e2]}γ ,w =

let v1,w1 = {[e1]}γ ,w in {[e2]}γ [v1/p],w1

{[fun p -> e]}γ ,w = let f = λ(v,w ′). {[e]}[v/p],w ′ in (f ,w)
{[sample(e)]}γ ,w = (draw(⟦e⟧γ),w)
{[factor(e)]}γ ,w = (() ,w ∗ exp(⟦e⟧γ))
{[observe(e1,e2)]}γ ,w =

let µ = ⟦e1⟧γ in (() ,w ∗ µpdf(⟦e2⟧γ))

Figure 19. Importance sampler. Probabilistic expressions

return a pair (value, weight). sample draws a sample from a

distribution, factor and observe update the weight.

The weights of the particles are multiplied at each step

and never reset. In other words, the inference reports at each

step how likely is the execution path since the beginning

of the program for each particle w.r.t. the model. Obviously

the probability of each individual path quickly collapses to 0

after a few steps which makes this inference technique not

practical in a reactive context where the inference process

never terminates. The particle filter mitigates this issue by

periodically re-sampling the set of particles.

E Implementation
ProbZelus is open source (https://github.com/IBM/probzelus).
It is implemented on top of Zelus (http://zelus.di.ens.fr/). The
new constructs sample, observe, and factor are Zelus nodes

implemented directly in OCaml. The infer construct is a

node that take as argument the Zelus node that represents

the probabilistic model. The infer node thus takes as ar-

gument the allocation and step functions of the model as

argument which corresponds to the compilation described

in Section 4.

Relationship with the paper The code corresponding to

the paper is available as a release https://github.com/IBM/
probzelus/tree/pldi20. The example of Figure 1 is in examples

/tracker/tracker_ds.zls.

The compiler implements the compilation scheme pre-

sented in Section 4 with a few optimizations: (1) intermedi-

ate step functions are statically reduced (2) useless state is

removed when possible, and (3) state is updated imperatively.

21

https://github.com/IBM/probzelus
http://zelus.di.ens.fr/
https://github.com/IBM/probzelus/tree/pldi20
https://github.com/IBM/probzelus/tree/pldi20

PLDI ’20, June 15–20, 2020, London, UK

Moreover, the compilation of proba nodes introduces an ex-

tra argument to the step functions in order to pass the extra

informationw or (w,д) needed by the inference algorithms.

The code of the inferences algorithms is in the inference

directory. The particle filter presented in Section 5.1 is in

infer_pf.ml. The entry point of the Delayed Sampling algo-

rithm presented in Section 5.2 is infer_ds_naive.ml and the

core of the algorithm is ds_naive_graph.ml. The entry point

and the core of the algorithm for the Streaming Delayed

Sampling algorithm presented in Section 5.3 are respectively

in infer_ds_streaming.ml and ds_streaming_graph.ml.

The Bounded Delayed Sampling algorithm presented in

Section 5.2 can be implemented on top of both classical and

streaming delayed sampling. The code is in the functor de-

fined in ds_high_level.ml.

Finally, the code for the benchmarks presented Section 6

and Appendix F is available in examples/benchmarks.

Artifact There is an artifact associated to the paper which

is available with [1]. It is distributed as a Linux image in

the Open Virtualization Format that can be launch using a

virtualization player like VirtualBox (https://www.virtualbox.
org). The credential to log into the virtual machine are:

user: probzelus

passord: probzelus

F Performance Evaluation
This section presents the experimental results. We ran each

inference algorithm on a series of benchmarks and measured

properties of the execution: accuracy, execution time, mem-

ory consumption. All the experiments were run on a server

with 32 CPUs (2.60 GHz) and 128 GB memory.

F.1 Benchmarks
Beta-Bernoulli. The Beta-Bernoulli benchmark models an

agent that estimates the bias of a coin.

let proba coin (yobs) = xt where

rec init xt = sample (beta (1., 1.))

and () = observe (bernoulli xt, yobs)

The model samples zt from a Beta(1, 1) distribution, and
thereafter evaluates the observations with a Bernoulli dis-
tribution of parameter xt. Running SDS on this model is

equivalent to exact inference in a Beta-Bernoulli conjugate

model [18] where each particle returns the exact solution.

The benchmark’s error metric is the mean squared error over

time between the true coin probability and the expected prob-

ability conditioned on the stream of observations.

Gaussian-Gaussian. The Gaussian-Gaussian benchmark

models an agent that estimates the mean and the standard

deviation of a Gaussian.

let proba gaussian_model (o) = (mu, sigma) where

rec init mu = sample (gaussian (0., 10.))

and init sqrt_sigma = sample (gaussian (0., 1.))

and sigma = sqrt_sigma *. sqrt_sigma

and () = observe (gaussian (mu, sigma), o)

The initial values for the distribution of the mean mu fol-

lows a distributionN(0, 10) and the distribution of

√
sigma is

N(0, 1). The distributions of mu and sigma are conditioned by

the observations that follow a distribution N(mu, sigma). In
the current implementations of delayed sampling we are do-

ing exact inference only on the mean and not on the standard

deviation (even if it would be possible). The benchmark’s

error metric is the mean squared error over time between

the true mean and standard deviation and the expected prob-

ability conditioned on the stream of observations.

Kalman. The Kalman benchmark models an agent that es-

timates its position based on noisy observations.

let proba delay_kalman (yobs) = xt where

rec xt = sample (gaussian ((0., 2500.) ->

(pre xt, 1.)))

and () = observe (gaussian (xt, 1.), yobs)

The model chooses an initial position from N(0, 2500), and
chooses subsequent positions fromN(pre x, 1) where pre x

denote the previous position. The model draws the observa-

tion at each time step from N(x, 1) where x is the true posi-

tion. Running SDS on this model is equivalent to a Kalman

filter [25] where each particle returns the exact solution. The

benchmark’s error metric is the mean squared error over

time between the true position and the expected position

conditioned on all previous observations.

Outlier. The Outlier benchmark, adapted from Section 2

of [29], models the same situation as the Kalman benchmark,

but with a sensor that occasionally produces invalid readings.

let proba outlier (yobs) = (is_outlier, xt) where

rec xt = sample (gaussian ((0., 2500.) ->

(pre xt, 1.)))

and init outlier_prob = sample (beta (100., 1000.))

and is_outlier = sample (bernoulli outlier_prob)

and () = present is_outlier ->

observe (gaussian (0., 10000.), yobs)

else observe (gaussian (xt, 1.), yobs)

The model chooses the probability of an invalid reading from

a Beta(100, 1000) distribution, so that invalid readings occur

approximately 10% of the time. At each time step, with the

previously chosen probability, the model either chooses the

observation from the invalid distribution N(0, 10000), or it
chooses the observation from the Kalman model. Running

SDS on this model is equivalent to a Rao-Blackwellized parti-

cle filter [17] that combines exact inferencewith approximate

particle filtering. The benchmark’s error metric is the mean

22

https://www.virtualbox.org
https://www.virtualbox.org

Reactive Probabilistic Programming PLDI ’20, June 15–20, 2020, London, UK

Figure 20. Screenshots of the execution of the SLAM with

the PF and SDS inferences. For each screenshot, the top line

shows the map, and the blue circle the exact position of the

robot. The lower line represents the inferred map where the

gray level indicates the probability for the cell to be black

and the red dots the probability of presence of the robot on

the cell.

squared error over time between the true position and the

expected position conditioned on all previous observations.

Robot. The Robot benchmark is detailed Section 2.

SLAM. Simultaneous Location And Mapping (SLAM) [30].

Consider the simple case where a robot evolves in a discrete

one-dimensional world and each position corresponds to a

black or white cell. The robot can move from left to right and

can observe the color of the cell on which it stands with a

sensor. There are two sources of uncertainty: (1) the robot’s

wheels are slippery, so the robot can sometimes stay on the

spot thinking about moving, (2) the sensor is making read

errors, and can reverse the colors. The controller tries to

infer the map (color of the cells) and the current position of

the robot (Figure 20).

The robot maintains a map where each box is a random

variable that represents the probability of being black or

white (gray level in the Figure 20). The a priori distribution
of these random variables is a Bernoulli(0.5) distribution:
let proba bernoulli_priors i = sample (bernoulli 0.5)

The robot starts from the position x0 and receives at each

step a command Right or Left. It then moves to the left or

right following the command with a probability of 10% of

remaining in place (modeled by a Bernoulli distribution of

parameter 0.1).

let proba move (x0, cmd) = x where

rec slip = sample (bernoulli 0.1)

and xp = x0 -> pre x

and x = match cmd with

| Right ->

min max_pos (if slip then xp else xp + 1)

| Left ->

max min_pos (if slip then xp else xp - 1)

end

The sensor has a constant probability of reading error of

sensor_noise. At each instant, the robot computes its current

position x. The observation of the sensor follows a Bernoulli

distribution parameterized by 1 - sensor_noise if the posi-

tion is white and sensor_noise if the position is black.

let proba slam (obs, cmd) = (map, x) where

rec init map = Array_misc.ini (max_pos + 1)

bernoulli_priors ()

and x = move (0, cmd)

and o = Array_misc.get map x

and p = if o then (1. -. sensor_noise)

else sensor_noise

and () = observe (bernoulli p, obs)

The benchmark’s error metrics is the mean squared er-

ror over time between the exact map and position and the

expected map and position.

Multi-Target Tracker. MTT (Multi-Target Tracker) adapted
from [32] is a model where there are a variable number

of targets with linear-Gaussian motion models producing

linear-Gaussian measurements of the position at each time

step. Targets randomly appear according to a Poisson pro-

cess and each disappear with some fixed probability at each

time step. Measurements do not identify which target they

came from, and “clutter” measurements that come not from

targets but from some underlying distribution add to obser-

vations, complicating inference of which measurements are

associated to which targets.

We model this with a ProbZelus program that has a state

consisting of a list of position-velocity pairs that encode

the track of each target. In this example we consider two-

dimensional targets, giving us a 4-dimensional vector repre-

senting position and velocity together.

The first step is to define helper functions that will be

mapped over the list of tracks. The first function tells us how

frequently tracks die. They do so with probability p_dead

which we set to e−.02.

let proba death_fn _ = sample (bernoulli (p_dead))

We now define how tracks are initialized when they are

first created. They are sampled from a multivariate Gaussian

distribution with mean mu_new set to zero and covariance

sigma_new set to a diagonal with variance 1 on the positions

and variance 0.001 on the velocities.

let proba new_track_init_fn _ =

(new_track_num (),

sample (mv_gaussian (mu_new, sigma_new)))

Next, we define the motion model and update model. Each

track tr is multiplied with the motion matrix a_u which

encodes discrete time integration of position and velocity

with time constant 1. We then sample a Gaussian distribu-

tion around the new position and velocity with covariance

sigma_update which is a diagonal matrix with 0.01 variance
23

PLDI ’20, June 15–20, 2020, London, UK

for the position and 0.1 for the variance of the velocity. For
the observation model, we project out the position with the

projection matrix proj_pos and observe it with covariance

matrix sigma_obs which we set to a diagonal of 0.1.

let proba state_update_fn (tr_num, tr) =

(tr_num,

sample (mv_gaussian(a_u *@ tr, sigma_update)))

let observe_fn (_, tr) =

(mv_gaussian (proj_pos *@ tr, sigma_obs))

We next define the model for clutter data. We assume that

each clutter point is drawn from amultivariate Gaussianwith

mean mu_clutterwhich is zero an covariance sigma_clutter

which we set to 10.

let proba clutter_init_fn _ =

(mv_gaussian (mu_clutter, sigma_clutter))

The model proceeds as follows. For every track, we use the

filter list operator to remove all the tracks that died in this

time step. We then sample the number of new tracksn_new

from a Poisson distributionwith parameter lambda_newwhich

we set to 0.1. After forcing a sample of this value, we use the

list constructer ini to build a list of new tracks. We append

the survived and new tracks together, and then use the map

list operator to apply the motion and observation models

to each track. Next, we determine the amount of clutter by

subtracting the number of observations from the number of

surviving tracks. We then observe that this comes from a

Poisson distribution with parameter lambda_clutter which

we set to 1. Note that this sets the particle weight to −∞
if the particle yields a negative amount of clutter. Next, we

shuffle the track observations and the clutter together by

forcing a sample of the shuffle random primitive, and finally

observe that the resulting list yields the observed values.

let proba obsfn (var, value) = observe (var, value)

let proba model inp = t where

rec init t = []

and t_survived = filter death_fn (last t)

and n_new = sample (poisson lambda_new)

and t_new = ini new_track_init_fn n_new

and t_tot = append t_survived t_new

and t = map state_update_fn t_tot

and obs = map observe_fn t

and n_clutter = (length inp) - (length obs)

and () = observe(poisson lambda_clutter, n_clutter)

and clutter = ini clutter_init_fn n_clutter

and obs_shuffled =

sample (shuffle (append obs clutter))

and present (not (n_clutter < 0)) ->

do () = (iter2 obsfn (obs_shuffled, inp)) done

The accuracy metric is based on theMultiple Object Track-
ing Accuracy [3]. This evaluates whether a track estimate

contains the right targets across all time steps within a suf-

ficient tolerance (we set the tolerance to 5 in our example).

Conventional MOTA is in [0, 1] with 1 being the best; we

have modified it to be in [0,∞] with 0 being the best by

transforming it to MOTA∗ = 1/MOTA − 1.

Because we estimate a distribution of track estimates, we

draw a sample from the track distribution to estimate the

expected MOTA∗.

Data. For each benchmark except Robot and SLAM, we ob-

tained observation data by sampling from the benchmark’s

model. In these benchmarks, every run of each benchmark

across all experiments uses the same data as input. For SLAM,

we pre-sampled the map from the model, but sampled posi-

tion data on the fly as this data depends on the controller.

For the Robot benchmark, we sampled all observations on

the fly because they all depend on the command from the

controller. This means that for SLAM and Robot, each run

uses different position observations.

F.2 DS vs. PF
We compare both the accuracy and runtime performance

of BDS, SDS, and PF to investigate whether the delayed

samplers can achieve better accuracy than the particle filter

with the same amount of computational resources.

Accuracy Methodology. For a range of selected particle

counts, we execute each benchmarkmultiple times and record

the resulting accuracy. To measure accuracy we use the end-

to-end error metrics for each benchmark as described in

Section F.1. We record the median and the 90% and 10%

quantiles after 1000 runs.

Accuracy Results. Figures 21 and 23 show the results of the

accuracy experiment for the different benchmarks. The error

bars show 90% and 10% quantiles, and the center is the me-

dian. The vertical lines corresponds to the number reported

in Figure 10 where there is enough particles to achieve simi-

lar accuracy to delayed sampling with 1000 particles. In all

cases, SDS is able to achieve equal or better accuracy than

BDS which is itself equal or better than PF, but the results

vary widely by benchmark. Note that SDS returns the exact

posterior distribution for the Coin and Kalman benchmarks

therefore its accuracy is independent of the number of parti-

cles. On the other-hand, BDS is not exact since the symbolic

distributions are sampled at the end of each the step.

Performance Methodology. For a range of selected particle
counts, we execute each benchmark multiple times (the same

number as for the accuracy experiments described above) af-

ter a warm-up of 1 run and record the resulting performance:

the latency of one step of computation. In the following

graphs we report the median latency as well as the 90% and

10% quantiles of the collected data.

24

Reactive Probabilistic Programming PLDI ’20, June 15–20, 2020, London, UK

Performance Results. Figures 22 and 24 shows how the la-

tency for a single step varies with the number of particles for

each benchmark. The error bars show 90% and 10% quantiles,

and the center is the median. With the three algorithms, the

execution time increases linearly with the number of parti-

cles. In all cases, PF has lower latency than BDS which has

lower latency than SDS.

Conclusions. These experiments show that the delayed sam-

plers achieve better accuracy than the particle filter with the

same computational resources. For some models SDS is able

to compute the exact solution with only one particle (Kalman,

Coin). BDS achieves better accuracy when relationships be-

tween variables defined in the same step can be exploited

(Kalman). At worst the delayed samplers performs as a well

as the particle filter (BDS on the Coin, SDS and BDS on the

Outlier).

F.3 SDS vs. DS
We next evaluate the performance of SDS and BDS relative

to our own OCaml implementation of the original delayed

sampler (DS). We compare both the performance and mem-

ory consumption of the three algorithms at each time step

to investigate whether, as the size of the input stream grows

large, they can retain constant performance.

Performance Methodology. We execute each benchmark

1000 times after a warm-up of 1 run and record the latency.

We execute each benchmark with 100 particles (even if only

one particle is necessary for DS and SDS on the Coin and

Kalman benchmarks to compute the exact distribution) and

plot latency as a function of the time step. We report the

median latency as well as the 90% and 10% quantiles of the

collected data.

Performance Results. Figures 25 and 27 shows the latency

at each step of a run, aggregated over 1000 runs. PF, BDS,

and SDS show nearly constant performance in time but DS

gets linearly worse performance for the Kalman and Outlier

benchmarks. For the Coin benchmark, the graph of DS re-

mains of constant size because there is only one sample at

the first step and then only observe statements.

Memory Methodology. We next evaluate the memory con-

sumption of the algorithms. For all benchmarks except the

multi-target tracker, memory consumption is deterministic

even in the presence of random choices. Therefore, we mea-

sure the idealmemory consumption of the execution of each

benchmark after each step. The ideal memory consumption

is the total amount of live words in the program’s heap. In

our implementation, we measure these numbers by forcing a

garbage collection after each step. We use OCaml’s standard

facilities for forcing garbage collection as well as for mea-

suring the amount of live words. We ran each algorithms 10

times with 100 particles.

For the multi-target tracker, the memory is not determin-

istic because it is determined by the number of hypothetical

tracks, which is random. We report median and 10% and 90%

values for memory consumption for this benchmark.

Memory Results. Figures 26 and 28 shows the results of

the memory consumption experiment. For all benchmarks,

PF, BDS, SDS use constant memory over time, including for

the multi-target tracker where their memory consumption

is random at each time step. However, DS has increasing

memory consumption over time for the Kalman, Outlier,

and Robot benchmarks. The memory consumption of DS is

constant for the Coin benchmark because the graph remains

of constant size.

For the mutli-target tracker, the memory consumption of

DS is based both on the number of hypothesized tracks and

the length of the hypothesized tracks. We can see that the

memory consumption of DS increases as the first generation

of tracks becomes longer, but eventually curtails its memory

consuption when these tracks die. MTT’s memory consump-

tion thereafter increases again as the second generation of

tracks starts to increase in length.

Conclusions. The original DS implementation consumes

an increasing amount of memory over time for models that

introduce new variables at each step (Kalman, Outlier, and

Robot) in contrast to BDS and SDS whose memory consump-

tions are constant over time. For the multi-target tracker, the

DS memory consumption is based on the length of the track

which is in principle probabilistically bounded. However, DS

still consumes much more memory than PF, BDS, and SDS

because the tracks are long-lived.

Furthermore, DS step latency increases without bound as

the number of steps becomes large on benchmarks where

the memory increases. These observations confirm that the

original DS implementation is not practical in a reactive

settings.

25

PLDI ’20, June 15–20, 2020, London, UK

■ PF • BDS ▼ SDS

10
−4

10
−3

10
−2

10
−1

10
0

1 10 100 1000 10000

Beta-Bernoulli Accuracy

10
−2

10
−1

10
0

10
1

10
2

10
3

1 10 100 1000 10000

Lo
ss

(lo
g
sc
al
e)

Gaussian-Gaussian Accuracy

10
−1

10
0

10
1

10
2

1 10 100 1000 10000

Kalman-1D Accuracy

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

1 10 100 1000 10000

Number of Particles (log scale)

Outlier Accuracy

Figure 21. Accuracy as a function of the number of particles.

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

1 10 100 1000 10000

Beta-Bernoulli Latency

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

1 10 100 1000 10000

Ex
ec
ut
io
n
ti
m
e
of

50
0
st
ep
s
in

m
s
(lo

g
sc
al
e)

Gaussian-Gaussian Latency

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

1 10 100 1000 10000

Kalman-1D Latency

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

1 10 100 1000 10000

Number of Particles (log scale)

Outlier Latency

Figure 22. Runtime performance as a function of particles.

26

Reactive Probabilistic Programming PLDI ’20, June 15–20, 2020, London, UK

■ PF • BDS ▼ SDS

10
1

10
2

10
3

10
4

1 10 100 1000 10000

Robot Accuracy

10
−1

10
0

10
1

1 10 100 1000 10000

Lo
ss

(lo
g
sc
al
e)

SLAM Accuracy

10
0

10
1

10
2

10
3

1 10 100 1000 10000

Number of Particles (log scale)

MTT Accuracy

Figure 23. Accuracy as a function of the number of particles.

10
1

10
2

10
3

10
4

10
5

10
6

1 10 100 1000 10000

Robot Latency

10
−1
10

0

10
1

10
2

10
3

10
4

10
5

10
6

1 10 100 1000 10000

Ex
ec
ut
io
n
ti
m
e
of

50
0
st
ep
s
in

m
s
(lo

g
sc
al
e)

SLAM Latency

10
1

10
2

10
3

10
4

10
5

10
6

1 10 100 1000 10000

Number of Particles (log scale)

MTT Latency

Figure 24. Runtime performance as a function of particles.

27

PLDI ’20, June 15–20, 2020, London, UK

■ PF • BDS ▼ SDS ▲ DS

10
−2

10
−1

10
0

0 50 100 150 200 250 300 350 400 450 500

Beta-Bernoulli Latency

10
−2

10
−1

10
0

0 50 100 150 200 250 300 350 400 450 500

St
ep

la
te
nc
y
in

m
s
(lo

g
sc
al
e)

Gaussian-Gaussian Latency

10
−2

10
−1

10
0

10
1

10
2

0 50 100 150 200 250 300 350 400 450 500

Kalman-1D Latency

10
−2

10
−1

10
0

10
1

10
2

0 50 100 150 200 250 300 350 400 450 500

Step

Outlier Latency

Figure 25. Runtime performance at each step of a run.

10
1

10
2

0 50 100 150 200 250 300 350 400 450 500

Beta-Bernoulli Ideal Memory

10
1

10
2

0 50 100 150 200 250 300 350 400 450 500

Th
ou

sa
nd

s
of

w
or
ds

in
he

ap
(lo

g
sc
al
e)

Gaussian-Gaussian Ideal Memory

10
1

10
2

10
3

10
4

0 50 100 150 200 250 300 350 400 450 500

Kalman-1D Ideal Memory

10
1

10
2

10
3

10
4

0 50 100 150 200 250 300 350 400 450 500

Step

Outlier Ideal Memory

Figure 26. Memory consumption at each step of a run.

28

Reactive Probabilistic Programming PLDI ’20, June 15–20, 2020, London, UK

■ PF • BDS ▼ SDS ▲ DS

10
0

10
1

10
2

0 50 100 150 200 250 300 350 400 450 500

Robot Latency

10
−2

10
−1

10
0

10
1

0 50 100 150 200 250 300 350 400 450 500

St
ep

la
te
nc
y
in

m
s
(lo

g
sc
al
e)

SLAM Latency

10
−1

10
0

10
1

10
2

10
3

0 50 100 150 200 250 300 350 400 450 500

Step

MTT Latency

Figure 27. Runtime performance at each step of a run.

10
1

10
2

10
3

10
4

0 50 100 150 200 250 300 350 400 450 500

Robot Ideal Memory

10
1

10
2

0 50 100 150 200 250 300 350 400 450 500

Th
ou

sa
nd

s
of

w
or
ds

in
he

ap
(lo

g
sc
al
e)

SLAM Ideal Memory

10
1

10
2

10
3

10
4

0 50 100 150 200 250 300 350 400 450 500

Step

MTT Ideal Memory

Figure 28. Memory consumption at each step of a run.

29

	Abstract
	1 Introduction
	2 Example
	2.1 Inference in the Loop.
	2.2 Streaming Inference

	3 Language: Syntax, Typing, Semantics
	3.1 Syntax
	3.2 Typing: Deterministic vs. Probabilistic
	3.3 Co-Iterative Semantics

	4 Compilation
	4.1 A First-Order Functional Probabilistic Language
	4.2 Compilation to F
	4.3 Semantics equivalence

	5 Inference
	5.1 Particle Filtering
	5.2 Delayed Sampling
	5.3 Streaming Delayed Sampling

	6 Evaluation
	7 Related Work
	8 Conclusion
	References
	A ProbZelus
	A.1 Typing
	A.2 Co-iterative Semantics
	A.3 Alternative semantics

	B The F language
	B.1 Typing
	B.2 Semantics of F

	C Compilation
	D Inference
	D.1 Importance Sampling

	E Implementation
	F Performance Evaluation
	F.1 Benchmarks
	F.2 DS vs. PF
	F.3 SDS vs. DS

