
MIT Open Access Articles

Visual Prediction of Priors for Articulated Object Interaction

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Moses, Caris et al. "Visual Prediction of Priors for Articulated Object Interaction." 2020 
IEEE International Conference on Robotics and Automation, May-August 2020, virtual, Institute 
of Electrical and Electronics Engineers, September 2020. © 2020 IEEE

As Published: http://dx.doi.org/10.1109/icra40945.2020.9196541

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: https://hdl.handle.net/1721.1/130052

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/130052
http://creativecommons.org/licenses/by-nc-sa/4.0/


Visual Prediction of Priors for Articulated Object Interaction

Caris Moses*, Michael Noseworthy*, Leslie Pack Kaelbling, Tomás Lozano-Pérez, and Nicholas Roy

Abstract— Exploration in novel settings can be challenging
without prior experience in similar domains. However, humans
are able to build on prior experience quickly and efficiently.
Children exhibit this behavior when playing with toys. For
example, given a toy with a yellow and blue door, a child will
explore with no clear objective, but once they have discovered
how to open the yellow door, they will most likely be able to open
the blue door much faster. Adults also exhibit this behaviour
when entering new spaces such as kitchens. We develop a
method, Contextual Prior Prediction, which provides a means of
transferring knowledge between interactions in similar domains
through vision. We develop agents that exhibit exploratory
behavior with increasing efficiency, by learning visual features
that are shared across environments, and how they correlate
to actions. Our problem is formulated as a Contextual Multi-
Armed Bandit where the contexts are images, and the robot has
access to a parameterized action space. Given a novel object, the
objective is to maximize reward with few interactions. A domain
which strongly exhibits correlations between visual features and
motion is kinemetically constrained mechanisms. We evaluate
our method on simulated prismatic and revolute joints.1

I. INTRODUCTION

Humans frequently encounter new objects and are able to
successfully articulate them with little to no experience on
those particular object instances. Consider a human entering
a new kitchen. They can quickly open the cupboards, turn on
the lights, and operate the stove, even though they have never
used these specific objects before. This behaviour is enabled
by rich visual cues such as the presence of a handle, or the
location of hinges on a door (see Figure 1). These features
are useful for inferring the function of a new mechanism and
for estimating the motion that it can undergo.

Our goal is to enable a robot to efficiently interact with
novel articulated objects without human guidance by learning
from previous visuo-motor experience with related objects.
Previous work has shown how robots can infer the kinematic
models of new mechanisms given a single demonstration of
the mechanism being actuated [1]. However, demonstrations
are often expensive as they require a human teacher every
time the robot needs to interact with a new object. Other
methods provide exploration strategies which enable a robot
to estimate the kinematic properties of mechanisms [2], [3].
While these methods perform well, they do not transfer
any experience from similar mechanisms when interacting

*Equal contribution.
Computer Science and Artificial Intelligence Laboratory, Massachusetts

Institute of Technology, Cambridge, MA, USA
{carism, mnosew, lpk, tlp, nickroy}@mit.edu
We gratefully acknowledge the funding support of the Honda Research

Institute and the Education Office at the Charles Stark Draper Laboratory.
1Videos and code are available at https://sites.google.com/

view/contextual-prior-prediction.

Fig. 1: Contextual Prior Prediction is motivated by the fact that
most objects have rich visual features which indicate their motion.
In our simulated door domain (top left), the position of the handle
and width of the door indicate the direction which it opens and with
what radius. Other objects, such as latches (top right), toys (bottom
left), or ovens (bottom right) also have visible indicators such as
tracks, hinges, and knobs.

with novel mechanisms. We desire a solution where the
robot uses past experience to experiment efficiently with new
mechanism instances to learn how to actuate them from a
very small number of self-selected actuations.

Due to constraints present in articulated objects, very few
of the possible motion commands the robot can generate
are likely to cause the mechanism to move. Without models
of the object, the robot must propose its own goals or
sequences of actions that can quickly generate motion that
exhibits the correct kinematic structure of the mechanism. In
order to enable efficient exploration, we propose our method,
Contextual Prior Prediction (CPP), which uses the visual
appearance of a mechanism to provide a prior that indicates
which actions are likely to be successful in actuating the
mechanism. The mapping from visual appearance to an
actuation prior is learned from previous interactions with
mechanisms from the same class. This enables the robot to
only try actions that it believes are likely to succeed based
on the new object’s appearance.

Thus we have two learning problems. The outer problem is
to learn a general mapping from the appearance of a mech-
anism and a proposed action to a reward which measures

ar
X

iv
:2

00
6.

03
97

9v
1 

 [
cs

.R
O

] 
 6

 J
un

 2
02

0

https://sites.google.com/view/contextual-prior-prediction
https://sites.google.com/view/contextual-prior-prediction


Fig. 2: In the learning setup, the robot is sequentially presented with L mechanisms. The robot can interact with each mechanism for
M steps (timeline ticks) before a new one appears. After each training mechanism, we evaluate the robot’s performance on a separate
evaluation set of N novel mechanisms (right). For each evaluation mechanism, the robot takes actions until it has generated an optimal
interaction (generated the most possible motion).

how far the mechanism moves, i.e. a reward function. The
inner problem is, given a particular object, and starting with a
prediction based on its visual appearance, to efficiently and
actively select a sequence of robot motion commands that
will cause the mechanism to move. The system operates in
a loop: given a new mechanism, the robot interacts with it
and discovers how it moves; then, the visual appearance of
that object together with each of the attempted actions and
their effects are added to a training set for the outer learning
problem. As the robot gets more experience with different
mechanisms, it is able to “understand” a new mechanism
with fewer and fewer trials.

We formulate the overall problem as a Contextual Multi-
Armed Bandit (C-MAB) in which the robot continuously
interacts with a sequence of mechanisms (contexts) with
shared structure. For the outer problem, we represent the
overall reward function using a neural network, which maps
visual appearances and possible actions to value, and train
it using conventional supervised-learning methods. Then, for
the inner problem, given a novel mechanism to interact with,
we use the neural network to predict the expected value of
each possible action in a continuous action space. We treat
this function as the prior mean of a Gaussian Process (GP),
and use the Gaussian Process Upper Confidence Bound
(GP-UCB) strategy [4] to handle the exploration-exploitation
tradeoff when finding the optimal action.

In our method, GP-UCB is also used in the data collection
phase. In this paper we explore the effectiveness of GP-
UCB and random sampling as exploration strategies dur-
ing training. At evaluation time, we compare the overall
effectiveness of the system to one that applies GP-UCB
to each new mechanism starting from a generic prior, as
well as to a baseline random search. The techniques are
generic and could apply to a variety of mechanisms. Our
experimental comparisons are done in a simulated domain
containing prismatic and revolute joints with different visual
appearances and kinematic parameters.

The contribution of this paper is to demonstrate how a
period of exploration with mechanisms with different visual
appearances can lead to the ability to actuate never-before-
seen mechanism instances with very few (sometimes just
one) trials. In addition, the approach of learning to map ap-
pearance to the prior of a GP, rather than mapping appearance
directly to motor commands, means that the overall system

is significantly more robust, and can recover from inaccurate
predictions that arise when there is little training data.

II. METHOD

In this section we introduce Contextual Prior Prediction
and discuss how CPP can be used to find optimal actions
in novel contexts. Section II-A describes how CPP fits into
the C-MAB framework. Section II-B reviews GP-UCB, a
method which can be used to learn a context-specific reward
function, and how we extend this method to C-MABs by
learning a prior on the context-specific reward function. In
section II-C we discuss the structure of our prior, and how
it enables visual feature learning.

A. Problem Formulation

Our problem can be formulated as a Contextual Multi-
Armed Bandit in which a robot is given a context, I ,
to interact with, then selects an action with the objective
of maximizing its reward. We assume the actions are a
continuously parameterized set of motion primitives, e.g., a
pushing or twisting motion, where the parameters encode
variations such as the direction of force, contact point, axis
of rotation, etc. As a result, the action space is typically a
continuous-valued domain such as Rd or SE(d). Our setup
differs from the typical C-MAB in that the robot will get
several interactions with each context. CPP provides a way
to leverage previous experience, in the form of a prior on the
context-specific reward function, when interacting with novel
contexts. We evaluate our method in a learning framework
in which there are separate training and evaluation phases,
as shown in Figure 2.

During the training phase, the robot is sequentially given L
different mechanisms and is allowed to select M interactions
with each, and observe the rewards, that is, the degree to
which the robot was able to actuate the mechanism. This
data is used to train a model. We then carry out evaluation
trials on N novel contexts: in each one, the robot is able
to interact until it fully actuates the mechanism. In each
evaluation context, In, the robot uses the learned model as
a prior on the context-specific reward function to quickly
maximize it. To measure the robot’s success we assume that
an oracle is able to provide the optimal reward, r∗n, and we
calculate the normalized simple regret, e, which is the loss
of not selecting the optimal action. Here, r is the reward for
the robot’s chosen action.



e =
r∗n − r
r∗n

(1)

Therefore, during each evaluation, we count the number
of interactions needed until the robot can achieve regret less
than a specified threshold (e < 0.05 in our experiments).

More formally, let I be the space of possible contexts and
A be the space of actions that the robot can execute. We are
interested in learning reward function R : I×A → R, which
specifies the value of taking an action given an image. We
will learn an approximation of R, represented as a Neural
Network (NN), denoted fNN.

B. Gaussian Process Optimization with a Learned Prior

At evaluation time, if we had high confidence in the NN’s
prediction of reward, we would, given a new image context
I , simply execute the action

a∗ = argmax
a∈A

fNN(I, a) . (2)

However, when we have a small amount of experience
that prediction may not be very accurate, particularly in
novel contexts. We would like to extend the model such that
when the robot takes actions and fails, the reward from failed
attempts inform future interactions as the robot searches for
the optimal action.

The Gaussian Process provides one method for inferring
the value of some unknown function f ∼ GP (µ, k), where
µ is the mean function defined on domain A, f is a function
on that same domain, and k is a kernel function which
models the covariance between pairs of function values
depending on the domain points at which the function is
evaluated [5]. Given t − 1 samples of action and reward
pairs (a0:t−1, r0:t−1), the GP provides a Gaussian posterior
N (µt−1(a), σt−1(a)) over the reward of the next action at
for any action at ∈ A.

A simple procedure would be to take the action with the
largest mean reward given the actions so far, but GP-UCB
combines the mean and the variance to allow the robot to
choose actions that have the potential for high reward due
to a high degree of uncertainty in the model. The GP-UCB
criterion [4] generates an action sample at, given both the
prior and the values of the previous samples, according to
the objective

at = argmax
a∈A

µt−1(a) + β
1/2
t σt−1(a) (3)

where µt−1(a) and σt−1(a) are the mean and variance of
the function value at a at time t − 1, and β is a parameter
which trades off between sampling parameters with a high
mean and those with high variance.

Typically the mean function is initialized to zero, µ0(a) =
0, but we have the pre-trained NN to provide guidance
before any new data is collected. To incorporate the NN,
we use the GP to model the residual function fRI between
the true reward function and our prediction for context I , so
fRI(a) = R(I, a)− fNN(I, a). On iteration t of the GP-UCB
optimization process, we select

at = argmax
a∈A

fNN(I, a) + µt−1(a) + β
1/2
t σt−1(a). (4)

The GP will have a prior mean function that is constant
0, and a fixed kernel function, but the above function is
equivalent to putting a GP on R(I, ·) with prior mean
function fNN(I, ·). Under this criteria, samples initially come
from parts of the space where the learned reward function
predicts high reward. Then as the true context-specific reward
function is learned, we select actions with much more
accurate knowledge of the true underlying reward function.

In this framework, to select actions according to the GP-
UCB criteria given a context I , we must optimize Equation
4. To do this we start by evaluating the function on a coarse
sampling of the action space. We then perform non-linear
optimization on a few of the best samples, and select the
best optimization run as the criteria-maximizing action. To
find the agent’s current best estimate of the optimal action, in
order to calculate Equation 1, we follow the same procedure
but with β = 0.

In our experimental results we use a squared exponential
kernel and tune the kernel parameters by executing GP-
UCB on a separate set of random mechanisms and observing
the resulting exploration strategies. We aim to find a good
balance between exploring areas of the input space with high
uncertainty and areas with known high reward.

C. Learned Reward Function

We approximate fNN with a NN which consists of inde-
pendent encoders for the input channels (images and action
parameters) and a regressor which uses these encodings
to predict reward. The image encoder fim has the form
zim = fim(I) = fss(fcnn(I)), where fcnn is a Convolutional
Neural Network (CNN). We found that mapping from the
CNN directly into a fully connected layer did not result in
useful encodings, so we added fss, which is a spatial softmax
layer [6]. It generates, as output, a set of 2D feature points
that are salient for making value predictions. Each 2D feature
point is the expected pixel location of activations in one of
the final CNN channels.

For the action inputs, a Multi-Layer Perceptron (MLP),
fa, transforms the action parameters into a latent space.
This part of the network was designed so that additional
action types could be added to the system, in which case,
action parameters for all policies would be transformed into
a shared space. This yields action encoding za = fa(a).
Finally, zim and za are concatenated and passed through
an MLP, fdist, which learns to predict how the action and
image features map to a reward. The NN is composed of
these encoders and the distance regressor as follows,

fNN(I, a) = fdist([fim(I); fa(a)]) . (5)

If the NN is trained to effectively approximate the true
reward function R then an approximately optimal policy has
the form

π(I) = argmax
a∈A

fNN(I, a) . (6)



This formulation suffices for mechanisms that can be effec-
tively actuated by a single relatively simple parameterized
action. If we were to move to truly sequential mechanisms,
such as gate latches, it would be necessary to treat the
problem as a Contextual Markov Decision Process rather
than a contextual bandit.

III. EXPERIMENTS

In this section we describe the effectiveness of CPP in
the Slider and Door domains. We find that CPP is able
to learn from relatively few training mechanisms to quickly
operate a new mechanism. We further analyze different data
generation methods and their performance. Our experiments
use the PyBullet simulator [7].

A. Domains

1) Sliders: Sliders are prismatic joints that vary in length,
position, and the angle of the slider’s track. Their action
space, Aprism, consists of parameterized actions that actuate
prismatic joints. Prismatic joints are parameterized by the
pose of the origin, a ∈ SE(3), a unit vector direction in the
frame of the origin, e ∈ R3, and the desired configuration,
or distance to move the slider handle, q ∈ R. We search the
space of q and the pitch component of e.

2) Doors: Doors are revolute joints that vary in size and
the direction in which they open. Their action space, Arev ,
consists of parameterized actions that actuate revolute joints
which are parameterized by the pose of center of rotation,
c ∈ SE(3), the distance from the center of rotation along
the x-axis to the mechanism’s handle, and r ∈ R, and the
desired configuration, or opening angle of the door, q ∈ R.
We search the space of r, q, and the pitch component of c.

With PyBullet[7] we can generate multiple mechanisms
where instances of the same joint type share visual structure.
In our experiments, the robot will see a sequence of randomly
generated mechanisms belonging to the same class. See
Figure 2 for example sliders and Figure 1 for a door.

An action outputs a trajectory the end-effector should
follow to actuate a joint with the corresponding parame-
ters. Given the pose of the mechanism handle, and action
parameters, a trajectory is generated in the mechanism’s
configuration space. Then inverse-kinematics and Cartesian
interpolation are used to generate a trajectory in Cartesian
space. This trajectory is executed using a PD controller
by applying forces to the handle. Due to the mechanism’s
constraints, the applied forces do not always result in motion.

Training and evaluation are interleaved. As the robot inter-
acts with training mechanisms, it is intermittently evaluated
on a new set of evaluation mechanisms. It gets to interact
with each new evaluation mechanism until it is able to
maximize its reward. In all our experiments, the reward is
the distance the mechanism moves.

B. Interacting with a New Mechanism

In this section we compare methods for interacting with a
new mechanism. The CPP method can work with any kind
of exploration strategy during training time. In Figure 3 we

show our method using two different exploration strategies
during training time. We will discuss the comparison of these
two methods more in Section III-C.
CPP-Random: We randomly sample from the action space

to collect training interactions for each mechanism.
CPP-GP-UCB: We use the GP-UCB algorithm (see Section

II-B) to collect training interaction data. With this
method the agent is actively trying to maximize its
reward with each mechanism.

We compare our method against two simple but sensible
baseline methods for evaluation that do not try to use
previous experience and visual information about the new
mechanism to predict how to actuate it. Thus, for the baseline
methods, each mechanism is a new problem. While we
expect performance to improve within one trial of interaction
with a mechanism, we do not expect performance to improve
across interactions with different mechanisms.
Random: We randomly sample from the action space until

the agent is able to maximize its reward.
GP-UCB: The robot uses the GP-UCB algorithm (see

Section II-B) for action selection until it is able to
maximize its reward.

In both the baselines and in our evaluation of CPP, we
limit the agent to 100 attempts at maximizing its reward. The
results of our experiments are shown in Figure 3. Each plot
shows the number of steps each method took to maximize
the reward on the evaluation mechanisms as a function of L,
the number of mechanisms the robot interacted with during
training time. The baseline methods (blue and green) have the
same median for all L values because they are not leveraging
previous experience, and thus cannot show improvement.

The learning-based methods (red and cyan) show signif-
icant decreases in the number of interactions required to
generate a successful interaction. Not only does the median
number of interactions to success decrease with L, but so do
the quantiles, meaning these methods more reliably interact
with novel mechanisms. The larger L values are important
to us: a well-trained robot is able to actuate a mechianism
without any experimentation!

One drawback of CPP is that it can be misled by a poorly
trained NN. In this case, the robot will first explore areas
where the NN predicts high reward even if it is wrong.
The GP-UCB algorithm will eventually correct the model’s
beliefs and explore other regions but this may take longer
than an uninformed prior. We note that in all cases, as
the NN starts performing better (after seeing more unique
mechanisms), the number of required interactions decreases.

To visualize the usefulness of CPP versus just trusting our
NN predictions, we compare an agent that simply selects the
best action according to the NN, to one that that uses our
CPP method. Figure 4 shows a CPP agent which performs
10 GP-UCB interactions on top of the learned visual prior.
As shown, CPP can still achieve low regret even with a poor
NN prior.

To visualize how the NN prior improves over time, we
show its predictions after being trained on an increasing



Fig. 3: Number of interactions until success (less than 0.05 regret) on N novel sliders (left) and doors (right). The median number of
interactions is reported for N = 50 evaluation mechanisms for 5 separately trained NN models. The plots show performance for models
that have been previously trained on L mechanisms (x-axes) each with M = 100. We compare our method, noted as CPP-GP-UCB and
CPP-Random, to GP-UCB which does not learn from previous interactions, and a random baseline, Random. 25% and 75% quantiles are
plotted.

Fig. 4: This plot compares using the NN to directly predict optimal
actions, to using 10 GP-UCB interactions on top of the NN to find
optimal actions (CPP). As shown, the pure NN initially results in
poor performance as compared to CPP.

Fig. 5: Motion histograms of the data collected for M = 100 steps
on L = 100 doors using random data collection (left) and GP-
UCB active data collection (right). The GP-UCB sampling is biased
toward collecting samples with more motion.

number of sliders in Figure 6. The predictions get better
at different rates for each slider which likely correlates to
how similar the evaluation sliders are to the training sliders.

C. Generation of Training Interactions

The primary utility of GP-UCB is to generate useful
interactions at evaluation when the learned NN does not
have accurate predictions. We also experimented with using
GP-UCB for collecting useful actions while interacting with
training mechanisms.

Figure 3 shows that both the CPP-Random and CPP-GP-
UCB methods perform similarly in learning a good prior for
slider mechanisms. However, for door mechanisms, we see

that the CPP-GP-UCB method outperforms CPP-Random.
This is due to the size of the action space, the size of the
rewarding region of the action space relative to the size of
the entire space, and the complexity of the reward function
(how dependent the policy parameters are on each other).
Figure 5 gives a histogram visualization of the training data
used for door mechanisms. The random exploration strategy
generates mostly zero motion, while the GP-UCB method is
able to effectively actively explore the action space to find
rewarding samples useful for training the NN.

D. Baxter Proof of Concept

We tested our learned model for slider mechanisms on a
Baxter robot. The policy parameterizations are the same, and
the trajectories output by the policies are fed into a position
controller for the Baxter end effector, as seen in Figure 7.
Our objective was to determine if the evaluation part of our
pipeline could be executed on a real robotic platform. We
observed that the Baxter was able to explore the real, novel
slider mechanism when it started from both a poor (little
previous experience) and good NN model. The input image
is a simulated version of the real mechanism as depicted in
the inset of Figure 7. We surprisingly found that the Baxter
was able to generate more motion for imperfect actions than
the simulated agent. This was due to the compliance in the
Baxter arm, which actually aided in shaping the reward,
enabling the Baxter to learn the correct slider parameters
with very few interactions. The robot interactions can be
seen in the accompanying video.

IV. RELATED WORK

Our work lies at the intersection of estimating kinematic
models and policy learning. While the former can be used in
the latter, there has been little work tying the two together
with the goal of generalizing to novel objects through vision.

A recent area of interest, which our work falls into, is
learning low-level policies from pixel inputs. In this setting,
ideally a robot could be trained to do any task with basic
sensing and the right learning framework, eliminating the
need to manually engineer a control system. Finn et al. [6],



Fig. 6: Visualization of the NN prior after experience with L previous sliders for 2 novel sliders. Each plot visualizes the predicted reward
for an action, given in polar coordinates (direction and distance to move the handle). Yellow indicates a higher predicted distance. In all
rows the predictions improve as L increases. However they all improve at different rates. This is most likely a factor of how closely these
evaluation sliders correspond to sliders seen during training.

Fig. 7: The real and simulated (inset) slider actuated by the Baxter.

[8] train a network to perform various manipulation tasks
from pixel-space input. Their work focuses on learning to
perform a single task well, whereas we focus on manip-
ulating multiple objects that share structure. Like Agrawal
et al. [9], we use a model-based policy. Whereas they
learn the forward and inverse models for poking objects,
we assume we have a structured policy space based on
kinematic models. Other model-based work attempts to learn
a dynamics model to be used in a controller [10], [11], [12].

Recent work has started to explore the idea of learning
an embedded space of policies to handle the more general
case of policy learning for a variety of tasks in a single
environment. In [13] they learn from teleoperated “play”
data in which a human teleoperates a simulated robot to
generate data to train an embdedded policy space. In [14]
they have a similar objective, but the data is generated via
off-policy reinforcement learning. In both works the agent is
constrained to perform well in only a single environment.

Another approach to learning generalizable policies is to
explicitly incorporate properties that represent shared struc-
ture (e.g., dynamic, kinematic, static [15]) into the model. Of
particular relevance to our work are methods that estimate the
kinematic parameters of articulated objects from interaction
data [1], [2], [3], [16], [17], [18]. However, these works
focus on learning the kinematic parameters for a single
object. In [19], the authors learn to predict the kinematic

parameters of a class of objects from an image. These works
use visual representations such as optical flow [15], [16], or
point features [18], which have been shown to be useful in
predicting either kinematic models [16], [18] or rigid body
separation [15]. Like [19], we use a CNN to learn visual
features that are informative of motion in a class of objects.

A closely related problem is that of learning object affor-
dances which is primarily concerned with the effects of ac-
tions as opposed to their rewards. In [20], the authors predict
a probability distribution over possible object affordances
from pixels. In [21], the authors learn the probability of
successfully executing a grasp. Our method extends similar
lines of work, in that the agent uses the learned model to
seed on-line interactions.

GPs are useful for active exploration due to the fact that
they give an estimate of the uncertainty over predictions
[4]. However, using GPs requires careful specification of the
kernel function which can be difficult to specify for images
[22], [23]. In CPP we are able to reap the benefits of using
a GP for exploration by using the image to initialize a GP
over the low dimensional action space.

V. CONCLUSION

In this work, we focus on the problem of efficiently
exploring novel mechanism instances by transferring knowl-
edge from interactions with previous mechanisms through
vision. We develop a method, Contextual Prior Prediction,
that uses a NN as a prior mean for a GP which is used
for exploration. We evaluate our method in a continual C-
MAB learning framework on a simulated domain consisting
of prismatic and revolute joints, and prove that the evaluation
strategies can be executed on a real robotic platform. As
the robot interacts with more mechanism instances, it can
successfully actuate a new mechanism with an increasingly
smaller number of interactions. Future work needs to be done
evaluating what would be necessary to learn relevant features
for predicting motion from realistic images. We also would
like to extend our method to more complex domains which
require sequential manipulation.



REFERENCES

[1] J. Sturm, C. Stachniss, and W. Burgard, “A probabilistic framework for
learning kinematic models of articulated objects,” Journal of Artificial
Intelligence Research, vol. 41, pp. 477–526, 2011.

[2] P. R. Barragän, L. P. Kaelbling, and T. Lozano-Pérez, “Interactive
bayesian identification of kinematic mechanisms,” in International
Conference on Robotics and Automation (ICRA), 2014.

[3] S. Otte, J. Kulick, M. Toussaint, and O. Brock, “Entropy-based strate-
gies for physical exploration of the environment’s degrees of freedom,”
in International Conference on Intelligent Robots and Systems (IROS),
2014.

[4] N. Srinivas, A. Krause, S. M. Kakade, and M. W. Seeger, “Gaussian
process optimization in the bandit setting: No regret and experimental
design,” in International Conference of Machine Learning (ICML),
2010.

[5] C. E. Rasmussen, “Gaussian processes in machine learning,” in
Summer School on Machine Learning. Springer, 2003, pp. 63–71.

[6] C. Finn, X. Y. Tan, Y. Duan, T. Darrell, S. Levine, and P. Abbeel,
“Learning visual feature spaces for robotic manipulation with deep
spatial autoencoders,” in International Conference on Robotics and
Automation (ICRA), 2016.

[7] E. Coumans and Y. Bai, “Pybullet, a python module for physics sim-
ulation for games, robotics and machine learning,” http://pybullet.org,
2016–2019.

[8] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies,” The Journal of Machine Learning
Research, vol. 17, no. 1, pp. 1334–1373, 2016.

[9] P. Agrawal, A. V. Nair, P. Abbeel, J. Malik, and S. Levine, “Learning
to poke by poking: Experiential learning of intuitive physics,” in
Advances in Neural Information Processing Systems (NeurIPS), 2016.

[10] I. Lenz, R. A. Knepper, and A. Saxena, “DeepMPC: Learning deep
latent features for model predictive control.” in Robotics: Science and
Systems (RSS), 2015.

[11] K. Fragkiadaki, P. Agrawal, S. Levine, and J. Malik, “Learning
visual predictive models of physics for playing billiards,” International
Conference on Learning Representations (ICLR), 2016.

[12] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine, “Neural
network dynamics for model-based deep reinforcement learning with
model-free fine-tuning,” in International Conference on Robotics and
Automation (ICRA), 2018.

[13] C. Lynch, M. Khansari, T. Xiao, V. Kumar, J. Tompson, S. Levine,
and P. Sermanet, “Learning latent plans from play,” in Conference on
Robot Learning (CoRL), 2019.

[14] K. Hausman, J. T. Springenberg, Z. Wang, N. Heess, and M. Ried-
miller, “Learning an embedding space for transferable robot skills,” in
International Conference on Learning Representations (ICLR), 2018.

[15] N. Bergström, C. H. Ek, M. Björkman, and D. Kragic, “Scene under-
standing through autonomous interactive perception,” in International
Conference on Computer Vision Systems (ICVS), 2011.

[16] D. Katz and O. Brock, “Manipulating articulated objects with in-
teractive perception,” in International Conference on Robotics and
Automation (ICRA), 2008.

[17] K. Hausman, S. Niekum, S. Osentoski, and G. S. Sukhatme, “Ac-
tive articulation model estimation through interactive perception,” in
International Conference on Robotics and Automation (ICRA), 2015.

[18] C. Eppner, R. Martın-Martın, and O. Brock, “Physics-based selection
of actions that maximize motion for interactive perception,” in RSS
WS: Revisiting Contact - Turning a Problem into a Solution, 2017.

[19] B. Abbatematteo, S. Tellex, and G. Konidaris, “Learning to generalize
kinematic models to novel objects,” in Conference on Robot Learning
(CoRL), 2019.

[20] A. Nguyen, D. Kanoulas, D. G. Caldwell, and N. G. Tsagarakis,
“Detecting object affordances with convolutional neural networks,” in
2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2016, pp. 2765–2770.

[21] L. Montesano and M. Lopes, “Learning grasping affordances from
local visual descriptors,” in 2009 IEEE 8th International Conference
on Development and Learning. IEEE, 2009, pp. 1–6.

[22] A. Kapoor, K. Grauman, R. Urtasun, and T. Darrell, “Gaussian pro-
cesses for object categorization,” International Journal of Computer
Vision, vol. 88, no. 2, pp. 169–188, 2010.

[23] M. Van der Wilk, C. E. Rasmussen, and J. Hensman, “Convolutional
gaussian processes,” in Advances in Neural Information Processing
Systems (NeurIPS), 2017.

http://pybullet.org

	I Introduction
	II Method
	II-A Problem Formulation
	II-B Gaussian Process Optimization with a Learned Prior
	II-C Learned Reward Function

	III Experiments
	III-A Domains
	III-A.1 Sliders
	III-A.2 Doors

	III-B Interacting with a New Mechanism
	III-C Generation of Training Interactions
	III-D Baxter Proof of Concept

	IV Related Work
	V Conclusion
	References

