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Abstract

It was recently shown that the following algorithms [BGI+08],
[BI09] can approximately recover n-dimensional signal x from its sketch
Ax, where the sketch length is O(k log(n/k)) and the column sparsity
of A is O(log(n/k)). Our main goal in this report is to show that
this column sparsity bound is tight when A is an m × n matrix with
m = Θ(k log(n/k)).

1 Introduction

How can we maintain a succinct representation of a signal and still be able
to efficiently reconstruct the signal to a specified precision? In the past few
years, this question has developed a whole new area of research called Com-
pressive Sensing [RCS] which has been attracting many different communi-
ties, including theoretical computer science, applied mathematics, image pro-
cessing and digital signal processing. For any signal x of length n, the sketch
is defined to be Ax where the length of Ax is much shorter than the original
signal x. For a carefully chosen matrix A, the low dimensional vector Ax
contains plenty of useful information about x. Obviously, one cannot hope
to find an exact solution to an under-determined system of equations. But
instead, we wish to find a signal x̂ such that approximation error ||x− x̂||p
is small.

Linear sketches may be motivated by the following two examples. The
first one comes from the digital signal processing [WLD+06], [LKM+06] area.
One wants to sense a signal x and traditional approaches first capture the
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entire signal and then process it. But the new approach senses the signal
in a way that it approximately computes a dot product with a pre-specified
measurement vector at unit cost. As one can see, our linear sketch model
can very well capture this scenario. The next example comes from the data
streaming [Ind07], [Mut03] area. One often wants to support linear updates
of the high dimensional signal x and still maintain a low dimensional sketch:
this can be easily done, since A(cx+y) = cAx+Ay. For incremental updates,
it is often crucial that the matrix A is sparse, i.e. contains a few nonzero
elements per each column. The time needed to update the sketch Ax under
x′ = x+ ei is proportional to the number of nonzero elements on ith column,
since Ax′ = Ax+ Aei.

Formally, the (p, q, k)-stable sparse recovery problem is defined as
follows: Given the sketch Ax, we wish to find a vector x̂ such that the
approximation error ||x− x̂||p satisfies:

||x− x̂||p ≤ C · Errqk(x) (1)

Errqk(x) is defined to be the smallest `q approximation error ||x− x́||q where
x́ ranges over all k-sparse vectors (i.e, that have at most k non-zero entries).
It is easy to see that ||x− x́||q is minimized when x́ consists of the k largest
(in magnitude) coefficients of x.

It was recently shown [BIPW10] that any algorithm that solves the stable
sparse recovery problem must require the sketch length to be Ω(k log(n/k))
when the length of the original signal x is n. In fact, this bound is tight; it is
known [BGI+08], [BI09] that there exist matrices A and associated recovery
algorithm that solves the problem with sketch length O(k log(n/k)) and col-
umn sparsity (i.e. number of nonzero elements per each column)O(log(n/k)).
For a survey of sparse recovery using sparse matrices, see [GI10].

Our goal in this paper is to study the column sparsity of a matrix when it
has the optimal dimension, that is when the sketch length is Θ(k log(n/k)).
Roughly speaking, our main result is the following: any deterministic
algorithm that solves the stable spares recovery problem must require the
matrix A to have at least Ω(log(n/k)) nonzero entries per each column pro-
vided that A is an m × n matrix, where m = Θ(k log(n/k)). As mentioned
earlier, column sparsity plays an important role in data stream model; the
time needed for an incremental update is proportional to column sparsity. In
the next subsection, we will formally give definitions and precisely state the
results.
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1.1 Formal definitions and results

Definition 1. We say a matrix A has column sparsity s if the number of
non-zero entries is at most s per each column.

Definition 2. We define a C-approximate deterministic `1/`1 recovery al-
gorithm D to be a pair (A,A) where A is an m × n matrix and A is a
deterministic algorithm that, for any x, maps Ax to some x̂ that satisfies
Equation (1) for p = q = 1.

Definition 3. We define a C-approximate randomized `1/`1 recovery algo-
rithm R to be a pair (A,A) where A is an m× n matrix chosen from some
probability distribution and A is a deterministic algorithm that, for any x,
maps (Ax,A) to some x̂ that satisfies Equation (1) with probability at least
3/4 for p = q = 1.

Theorem 1. Let (A,A) be a C-approximate deterministic `1/`1 recovery
algorithm, where the matrix A is a real m× n with m = Θ(k log(n/k)), and
A has column sparsity s. Then s = Ω(log(n/k).

Definition 4. We define a deterministic k-sparse exact recovery algorithm
D to be a pair (A,A) where A is an m× n matrix and A is a deterministic
algorithm that exactly recovers x from Ax, for all x with at most k nonzero
entries. The randomized algorithm is also defined analogously.

At this point, a reader might wonder why we introduced the definition
4. As mentioned earlier, for any q, ||x− x́||q is minimized when x́ consists
of the k largest (in magnitude) coefficients of x, and therefore, Errqk(x) is
0 when x has at most k nonzero entries. Hence, any C-approximate `1/`1
recovery algorithm is also an exact k-sparse recovery algorithm. We prove
the following stronger results for zero-one matrices:

Theorem 2. Let (A,A) be a deterministic exact recovery algorithm, where
the matrix A is in {0, 1}m×n with m = Θ(k log(n/k)), and A has column
sparsity s. Then s = Ω(log(n/k).

We also have the same bound for the randomized case.

Theorem 3. Let (A,A) be a randomized exact recovery algorithm, where the
matrix A is in {0, 1}m×n with m = Θ(k log(n/k)), and A has column sparsity
s. Then s = Ω(log(n/k).
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1.2 Our techniques

To prove Theorem 1, we use a volume argument similar to [BIPW10]. Con-
sider a large set of k-sparse vectors Y with minimum `1 distance Ω(1). If
the column sparsity of A is bounded then the image of any k-sparse vector
under A is also sparse. Therefore, by averaging argument, there is a rela-
tively ’large’ subset Z ⊂ Y and relatively ’small’ subset I ⊂ [m] such that
the support of Ax is contained in I for all x ∈ Z. Moreover, it can be seen
that for any two elements x, y ∈ Z, the balls of radius Θ(1) around x and
y, as well as their images, must be disjoint. Since those images lie in low
dimensional subspace, where the dimension depends on s, we were able to
give an inequality with dependence on s based on their volumes.

To prove Theorem 2, the main idea is to use counting argument. Any
two distinct k-sparse vectors must map to different elements, otherwise a
deterministic recovery algorithm can’t distinguish them, and therefore can’t
recover their preimages. There are

(
n
k

)
distinct k-sparse zero-one vectors, and

we show that if most entries of A are zero then there will two vectors that
maps to a same element. For the randomized case, we use the same counting
argument along with the Yao’s principle.

1.3 Related work

To best of knowledge, the only prior research related to column sparsity were
done in [Cha08]. This paper studies matrices with restricted isometry property
or RIP .

A matrix A satisfies RIP (p) if `p norm of x is approximately preserved
under the linear transformation Ax, for any k-sparse vector x. It was shown
that a linear program can approximately recover the signal if the matrix A
had the property [CRT06](when p = 2), [BGI+08](when p = 1). The paper
[Cha08] proved that if A is a m × n matrix which satisfies RIP (2) where
m = Θ(k log(n/k)), then column sparsity of A is at least Ω( n

k log(n/k)
).

For a survey of sparse recovery using sparse matrices, see [GI10].

2 Properties of compressed sensing matrices

Consider m×n matrix A, where m < n, for which there exists deterministic
k-sparse exact recovery algorithm. First of all, note that, as A is a linear
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map from Rm to Rn, where m < n, there are two vectors x and y such that
Ax = Ay. But on the other hand, for any k-sparse vector x, the deterministic
algorithm must be able to exactly recover x from Ax. Therefore,

Lemma 1. Let (A,D) be a deterministic k-sparse exact recovery algorithm.
If x and y are k-sparse vectors then Ax 6= Ay.

Proof. Otherwise, the deterministic will not be able to distinguish its preim-
age.

We will also prove a similar impossibility result for C-approximate deter-
ministic recovery algorithms.

Lemma 2. Let (A,D) be a C-approximate deterministic `1/`1 recovery al-
gorithm. Let x and y be k-sparse vectors. If z1 and z2 are real vectors with
`1 norm less than ||x− y||1/(2C + 2) then A(x+ z1) 6= A(y + z2).

Proof (adapted from the proof of Theorem 3.1 in [BIPW10]) . Suppose, for the
sake of contradiction, A(x+ z1) = A(y + z2).

Let w be the result of running D on A(x+ z1). Then by the property of
the algorithm, we have

||x+ z1 − w||1 ≤ C · Err1k(x+ z1) ≤ C ||z1||1

On the other hand, we have ||x− w||1−||z1||1 ≤ ||x+ z1 − w||1, and therefore
we get,

||x− w||1 ≤ (1 + C) ||z1||1 (2)

Similarly ||y − w||2 ≤ (1 + C) ||z2||1, so

||x− y||1 ≤ ||x− w||1 + ||y − w||1 ≤ (1 + C) ||z1||1 + (1 + C) ||z2||1 (3)

which is a contradiction when ||z1||1 < ||x− y||1 /(2C + 2) and ||z2||1 <
||x− y||1 /(2C + 2).

3 Deterministic lower bound for general ma-

trices

In this section, we will prove Theorem 1.
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Lemma 3. [Gilbert Varshamov] For any q, k ∈ Z+, ε ∈ R+ with ε < 1−1/q,
there exists a set Y ⊂ {0, 1}qk of binary vectors with exactly k ones such that
Y has minimum Hamming distance 2εk and

log |Y | > (1−Hq(ε))k log q

where Hq is the q-ary entropy function Hq(x) = −x logq
x

q−1−(1−x) logq(1−
x).

See the appendix of [BIPW10] for proof.

Corollary 1. There exists a set X ⊂ {0, 1
k
}n of k-sparse vectors with mini-

mum `1 distance 1 such that log |X| = Ω(k log(n/k))

Proof. Let Y be the maximal set of k-sparse n-dimensional binary vectors
with Hamming distance k. Take X = { 1

k
y : y ∈ Y }. By Lemma 3, log |X| =

log |Y | = Ω(k log(n/k)).

Proof of Theorem 1. Take a set X as defined in Corollary 1 and consider any
vector x ∈ X. Since each column of A has at most s nonzero entries and x
has exactly k nonzero entries, Ax has at most sk nonzero entries. To put in
other way, for any x ∈ X, there exists a sequence 1 ≤ a1 < a2 . . . < ask ≤ m
such that Ax lies in the span of < ea1 , . . . , eask > where ei is defined to
be i-th standard basis element. By averaging argument, there exists a set

Z ⊂ X of size
|X|(
m
sk

) such that the images of elements of Z all lie in a same sk-

dimensional subspace W . Let U be the maximal subspace such that image
of U under A is contained in W . We denote BU

1 (r) be the `1 ball in U of
radius r.

Consider the following |Z| balls: {x+BU
1 (r)|x ∈ Z} where r = 1/(2C+3).

Note that, these balls all lie within BU
1 (1+r) because ||x||1 = 1 for all x ∈ Z.

Moreover, since r = 1/(2C + 3) < 1/(2C + 2) ≤ ||x− y||1 /(2C + 2) for any
x, y ∈ Z, by Lemma 2 the images of all those |Z| balls are disjoint. The
volume argument goes as follows.

Let S = ABU
1 (1) be the image `1 ball in U of radius 1. This is a polytope

of dimension sk with some volume V . The image of BU
1 (r) is a linearly

scaled S with volume rskV , and similarly the image of BU
1 (1 + r) has volume

(1 + r)skV . Hence, we get the following inequality |Z|rsk ≤ (1 + r)sk. Since
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|Z| = |X|(
m
sk

) we get,

|X|(
m
sk

)V rsk ≤ (1 + r)skV

|X| ≤
(
m

sk

)(
1 + r

r

)sk

|X| ≤
(
c′m

sk

)sk

where c′ = e(1 + r)/r

Without loss of generality, let’s suppose m = k log(n/k). By Corollary 1,
we have that c′′k log(n/k) ≤ log |X| for some constant c′′. Therefore,the
following inequality holds:

c′′k log(n/k) ≤ sk log

(
c′

log(n/k)

s

)
which is equivalent to

c′′u ≤ log (c′u)

where u = u(s) = log(n/k)
s

. Note that, c′′u grows faster than log(c′u), and
therefore, u is bounded by some constant T . Hence, we get s ≥ 1

T
log(n/k).

4 Deterministic lower bound for 0-1 matrices

Our main goal in this section is to prove Theorem 2.

Lemma 4. The number of distinct vectors v ∈ Nm such that ||v||1 ≤ t is(
m+t
t

)
.

Proof. First of all, let’s consider the case when v ∈ Nm and ||v||1 = t. It is the
same as counting the number of multisets of cardinality t, with the elements
taken from {1, 2, . . . ,m}. To see this, consider the following bijective map:
if an element i is in the multiset with repetition k, then take vi = k, and
the inverse map is defined in the obvious way. From the basic combinatorial
theory, the number of such multisets is

(
m+t−1

t

)
.
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Next, we define the following bijective map between vectors v ∈ Nm with
||v||1 ≤ t, and vectors v ∈ Nm+1 with ||v||1 = t. Suppose we have a vector
v ∈ Nm with ||v||1 ≤ t, then we can add (m+1)-the entry with value t−||v||1.
Now, suppose we have a vector v ∈ Nm+1 with ||v||1 = t, then we can just
delete the (m+1)-th entry. Therefore, the number of distinct vectors v ∈ Nm

such that ||v||1 ≤ t is
(
m+t
t

)
.

Proof of Theorem 2. Without loss of generality, let’s supposem = k log(n/k).
For the sake of contradiction, suppose s ≤ B log(n/k) (B will be determined
later).

Consider X = {x ∈ {0, 1}n : x is k-sparse}. Note that, since each column
of A has `1 norm at most s and Ax is a sum of k columns, ||Ax||1 ≤ sk for
x ∈ X. Moreover, since A ∈ {0, 1}m×n, the entries of Ax are nonnegative
integers.

The size of X is
(
n
k

)
, and by Lemma 1 the images of points in X must be

disjoint. Therefore, by Lemma 4 the following inequality holds:(
n

k

)
≤

(
m+ sk

sk

)
(4)

Recall the following inequality on binomial coefficients.(n
k

)k

≤
(
n

k

)
≤

(en
k

)k

(5)

Applying inequality (5) to (4) we get,

(n
k

)k

≤
(
e(k log(n/k) +Bk log(n/k))

Bk log(n/k)

)Bk log(n/k)

(n
k

)
≤

(
e(1 +B)

B

)B log(n/k)

log
(n
k

)
≤ B log

(n
k

)
log

(
e(1 +B)

B

)
1 ≤ B log

(
e(1 +B)

B

)
which is impossible when B is, say, 1/10.
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5 Randomized lower bound for 0-1 matrices

Our main goal in this section is to prove Theorem 3. A natural approach is
to use Yao’s principle; we find a distribution of hard inputs, and show that
any deterministic algorithm is likely to fail on that distribution. Motivated
by our deterministic bound, we take the input distribution to be uniform
distribution over k-sparse vectors. The reader is suggested to read the proof
of the deterministic case first.

Proof of Theorem 3. We define X to be X = X1 ∪X2 where

X1 = {x|x ∈ {0, 1}nand x is k-sparse}

and
X2 = {x|x ∈ {0, 2}nand x is k-sparse}

Let I be a uniform distribution over X. Note that |X| = 2
(
n
k

)
.

On one hand, by our assumption, there exists a distributionR of recovery
algorithms, and by definition, the following must hold:

For any k-sparse vector x, PR∈R[R recovers x] ≥ 3/4 (6)

On the other hand, by applying Yao’s principle we get that,

There exists deterministic algorithm D, Px∈I [D recovers x] ≥ 3/4 (7)

For any deterministic algorithm D,

Px∈I [D recovers x] =
number of recoverable x’s in X

|X|
(8)

As D is a deterministic algorithm, the number of recoverable x’s in X can-
not exceed the number of distinct images of points in X. Note that, since
||Ax||1 ≤ 2sk for x ∈ X, by Lemma 4 we have that, number of distinct
images of points in X is at most

(
m+2sk
2sk

)
. Therefore, from (7) and (8) we get,

3

4
≤ Px∈I [D recovers x] ≤

(
m+2sk
2sk

)
2
(
n
k

)
which implies

6

(
n

k

)
≤ 4

(
m+ 2sk

2sk

)
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which implies (
n

k

)
≤

(
m+ 2sk

2sk

)
The same calculations as in the proof of Theorem 2 will yield that s >
B log(n/k) where B = 1/20.

6 Further discussions

We pose the following conjecture.

Conjecture 1. Let (A,A) be a C-approximate randomized `1/`1 recovery
algorithm, where the matrix A is a real m× n with m = Θ(k log(n/k)), and
A has column sparsity s. Then s = Ω(log(n/k).

The packing argument as in the proof of Theorem 1 doesn’t seem to
extend trivially for the randomized case. One approach might involve with
communication complexity as in [BIPW10].

At this point, we have a good understanding about the sketch length and
the column sparsity (at least for the deterministic case) of recovery matrices.
For further interesting research, one might study about their tradeoffs.

We would like remark on matrices with restricted isometry property. As
we have mentioned earlier, one could recover the signal if the matrix A
had RIP (1) [CRT06] or RIP (2) [BGI+08], and therefore, our result implies
that any matrix with RIP (1) or RIP (2) must have column sparsity at least
Ω(log(n/k)) provided that it has Θ(k log(n/k)) rows.
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