
MIT Open Access Articles

Exact First-Choice Product Line Optimization

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Bertsimas, Dimitris and Velibor V. Mišić. "Exact First-Choice Product Line
Optimization." Operations Research 67, 3 (May 2019): 599-649. © 2019 INFORMS

As Published: http://dx.doi.org/10.1287/opre.2018.1825

Publisher: Institute for Operations Research and the Management Sciences (INFORMS)

Persistent URL: https://hdl.handle.net/1721.1/130077

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/130077
http://creativecommons.org/licenses/by-nc-sa/4.0/

 Electronic copy available at: https://ssrn.com/abstract=3020502

OPERATIONS RESEARCH
Vol. 00, No. 0, Xxxxx 0000, pp. 000–000

issn 0030-364X |eissn 1526-5463 |00 |0000 |0001

INFORMS
doi 10.1287/xxxx.0000.0000

c© 0000 INFORMS

Exact first-choice product line optimization

Dimitris Bertsimas
Sloan School of Management and Operations Research Center, Massachusetts Institute of Technology; 77 Massachusetts

Avenue, E40-147, Cambridge, MA, 02139, USA; dbertsim@mit.edu

Velibor V. Mǐsić
Anderson School of Management, University of California, Los Angeles; 110 Westwood Plaza, Los Angeles, CA, 90095, USA;

velibor.misic@anderson.ucla.edu

A fundamental problem faced by firms is that of product line design: given a set of candidate products
that may be offered to a collection of customers, what subset of those products should be offered so as
to maximize the profit that is realized when customers make purchases according to their preferences? In
this paper, we consider the product line design problem when customers choose according to a first-choice
rule and present a new mixed-integer optimization formulation of the problem. We theoretically analyze
the strength of our formulation and show that it is stronger than alternative formulations that have been
proposed in the literature, thus contributing to a unified understanding of the different formulations for
this problem. We also present a novel solution approach for solving our formulation at scale, based on
Benders decomposition, which exploits the surprising fact that Benders cuts for both the relaxation and
the integer problem can be generated in a computationally efficient manner. We demonstrate the value of
our formulation and Benders decomposition approach through two sets of experiments. In the first, we use
synthetic instances to show that our formulation is computationally tractable and can be solved an order of
magnitude faster for small to medium scale instances than the alternate, previously proposed formulations.
In the second, we consider a previously studied product line design instance based on a real conjoint data
set, involving over 3000 candidate products and over 300 respondents. We show that this problem, which
required a week of computation time to solve in prior work, is solved by our approach to full optimality in
approximately ten minutes.

Key words : product line design; first-choice models; mixed-integer optimization; Benders decomposition.
History : Submitted August 16, 2017; revised June 28, 2018; accepted September 29, 2018.

1. Introduction
A key problem in marketing is to decide on what products to offer in the presence of customers
who choose. The problem can be generally stated as follows: given a set of candidate products
and a collection of customer types with different preferences for those products, what is the subset
of those products that we should offer so as to maximize our profit when the customers make
purchases consistent with their preferences? This problem is known as the product line design
(PLD) problem.

The PLD problem is a notoriously difficult problem for two reasons. First, because the decision
involves selecting a subset of products, the number of possible solutions to the problem is exponen-
tially large. Second, it is not straightforward to select a good subset of products when customers
exhibit substitution: adding a low profit product to attract customers from one segment may can-
nibalize demand from a higher profit product that is favored by a different segment, leading to
lower overall profits. One cannot thus select products independently of each other.

A specific subclass of the PLD problem that has been studied significantly in the marketing
literature is when customers behave according to a first-choice model. In this model, the customer
population is described through a finite collection of customer types. Each customer type is endowed
with a ranking of the set of candidate products. When offered a specific subset of products, all
customers of the given type deterministically choose the product from the subset that is most

1

 Electronic copy available at: https://ssrn.com/abstract=3020502

Bertsimas and Mǐsić: Exact first-choice product line optimization
2 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

preferred (their first choice) according to their ranking. Such a model is extremely general, in that
it can model customers with compensatory decision processes (i.e., customers evaluate the utility of
each product and select the one with the highest utility) and non-compensatory decision processes
(for example, customers evaluate products feature by feature according to a lexicographic rule).

In this paper, we consider a new methodology for solving the first-choice PLD problem. Our
methodology is based on a mixed-integer optimization formulation of the problem, and as such is
capable of providing provably optimal solutions at a large scale. Our specific contributions are as
follows:

1. We propose a new MIO model of the PLD problem under a first-choice model of customer
behavior. We theoretically analyze the formulation and compare it to three alternative formulations:
the ranking-based formulation of Belloni et al. (2008), the utility-based formulation of McBride and
Zufryden (1988) and an alternate utility formulation that, to the best of our knowledge, has not
been proposed before, but improves on the formulation of McBride and Zufryden (1988). We show
that the linear optimization (LO) relaxation of our formulation is tighter than that of all three
alternative formulations. Moreover, we show that in the case of a single customer segment, our
formulation is always integral (all extreme points of the LO relaxation are feasible for the integer
problem), whereas the other formulations in general are not. In this way, our paper contributes to
a unified theoretical understanding of different MIO formulations for the first-choice PLD problem.

2. We propose a novel solution method for solving our MIO model that is based on Benders
decomposition. Leveraging the structure of the problem, we show that Benders cuts for integer
solutions of the problem can be obtained in closed form. Surprisingly, we also show that Ben-
ders cuts for fractional solutions can be obtained in a similar way by applying a special greedy
algorithm. In both cases, cuts can be obtained without using an LO solver, making the method
computationally attractive for solving large-scale instances of the problem.

3. We computationally demonstrate the value of our methodology through two sets of experi-
ments. In the first set, we use simulated data to show that our formulation can be solved to provable
optimality in significantly less time and is significantly tighter than the other three formulations.
In the second set of experiments, we use a real conjoint data set involving laptop bags from Toubia
et al. (2003), and re-visit a product line design problem based on this data set first studied in
Belloni et al. (2008). This problem involves 3584 products and 330 respondent utility functions,
and required one week of computation time to solve to full optimality at the time of Belloni et al.
(2008). We show that using our Benders solution approach, the same problem can be solved to full
optimality in approximately ten minutes.

The rest of this paper is organized as follows. In Section 2, we provide a review of some of
the related literature. In Section 3, we present our mixed-integer optimization model of the first-
choice PLD problem, and provide a theoretical comparison of our model to other models for this
problem. In Section 4, we propose our solution methodology based on Benders decomposition and
prove results on the structure of Benders cuts for integer and fractional solutions. In Section 5, we
provide the results of our numerical experiments with both simulated and real data. In Section 6,
we conclude.

2. Literature review
The problem of product line design (PLD) has been well-studied in marketing. We briefly review
some of the literature in this area; for a more detailed overview, we refer the reader to the literature
review of Bertsimas and Mǐsić (2017). The PLD problem has been studied extensively under the
utility-based first-choice model, where segments of customers deterministically choose the option
that provides the maximum utility from the offered product line; examples include Green and
Krieger (1985), Kohli and Krishnamurti (1987) McBride and Zufryden (1988), Dobson and Kalish
(1988) Kohli and Sukumar (1990), Green and Krieger (1993), Belloni et al. (2008). In addition, the
PLD problem has also been studied under probabilistic choice models, where each segment proba-
bilistically chooses from the available options; examples include Chen and Hausman (2000), Schön

 Electronic copy available at: https://ssrn.com/abstract=3020502

Bertsimas and Mǐsić: Exact first-choice product line optimization
Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 3

(2010a,b) and Kraus and Yano (2003). In addition, some papers have studied other dimensions
of the problem. Luo (2011) considers PLD from a perspective that considers both marketing and
engineering criteria and their interplay. Bertsimas and Mǐsić (2017) considers a robust optimiza-
tion framework for product line decisions that allows a firm to account for both parameter and
structural uncertainty in the customer choice model.

Within this literature, many papers consider heuristics; few consider directly formulating and
solving the problem as an integer optimization (IO) problem. Closest to our paper are the papers
of McBride and Zufryden (1988) and Belloni et al. (2008). The paper of McBride and Zufryden
(1988) proposes an IO formulation of the utility-based first-choice PLD problem, where the utilities
of each customer enter directly into the formulation. The paper of Belloni et al. (2008) is primarily
concerned with performing a systematic comparison of different heuristics for the PLD problem;
however, to objectively measure the quality of these heuristics, the paper formulates and solves the
first-choice PLD problem as an IO problem. Due to the scale of the problem, the paper considers
a custom solution approach that is primarily based on Lagrangean relaxation.

Our paper builds on and advances the state-of-the-art relative to these two papers in two regards.
First, we show theoretically in Section 3.4 that our formulation is a tighter formulation than those
of McBride and Zufryden (1988) and Belloni et al. (2008): that is, the feasible region of the LO
relaxation of our formulation is contained within the feasible regions of the relaxations of McBride
and Zufryden (1988) and Belloni et al. (2008). This is of great practical importance, as tighter
MIO formulations of a problem are generally faster to solve. Indeed, we show in Section 5.1 using
simulated data that for large instances, our formulation can be solved at least an order of magnitude
faster than the formulations of McBride and Zufryden (1988) and Belloni et al. (2008).

Second, we recognize an important feature of our formulation, which is that the formulation can
be divided into two sets of variables: a “global” set of variables, which dictates the set of products
to be offered, and “local” sets of variables that specify which product is chosen by each segment.
We leverage this structure to propose a solution algorithm based on Benders decomposition. To
the best of our knowledge, such a solution approach has not been proposed for first-choice PLD
models previously. Furthermore, the result that the optimal solution to each segment’s subproblem
can be obtained by a greedy algorithm when the global variables are fractional is unexpected and
surprising; we are not aware of a similar result for other PLD models. Lastly, as mentioned in the
introduction, we use this approach to solve the same product line problem for the same data set as
in Belloni et al. (2008), and show that our approach can solve the problem optimality in roughly
ten minutes, whereas the formulation and solution approach of Belloni et al. (2008) required one
week of computation time.

Outside of the PLD literature, the problem studied in this paper is also found in the assortment
optimization literature. In assortment optimization, the goal is to select a set of products to offer,
where the products are products that have already been offered, as opposed to hypothetical prod-
ucts. Within the operations research and operations management communities, this problem has
been studied under a wide variety of choice models, such as the multinomial logit (MNL) model
(Talluri and van Ryzin 2004), the robust MNL model (Rusmevichientong and Topaloglu 2012),
the nested logit model (Davis et al. 2014, Li et al. 2015), the latent class MNL model (Bront et al.
2009, Rusmevichientong et al. 2014) and the Markov chain choice model (Blanchet et al. 2016,
Feldman and Topaloglu 2017).

With regard to first-choice/ranking-based models, there has been some previous work on solu-
tion methodologies for this problem. Specifically, the papers of Aouad et al. (2017) and Aouad
et al. (2015) consider the problem of assortment optimization under ranking preferences, where the
former paper studies the computational complexity of the problem and provides general approx-
imation algorithms, while the latter paper studies the problem for specific families of first-choice
models and develops efficient dynamic programming-based solution methods. The earlier paper of
Honhon et al. (2012) also develops solution methods for specific families of first-choice models. Our
approach differs from this prior work in several important ways. First, our approach is agnostic to

 Electronic copy available at: https://ssrn.com/abstract=3020502

Bertsimas and Mǐsić: Exact first-choice product line optimization
4 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

the type of first-choice model: our MIO formulation does not require any assumptions on the col-
lection of customer types and the nature of the rankings over the products. Second, our approach
is based on mixed-integer optimization; thus, it is capable of providing solutions that are provably
optimal, as opposed to solutions that only come with an approximation guarantee. Moreover, by
formulating the problem as an integer optimization problem, we can leverage both advances in solu-
tion software that are manifested in state-of-the-art solvers such as Gurobi (Gurobi Optimization,
Inc. 2015), as well as generally-applicable solution methods developed in the operations research
community (such as Benders decomposition, which we will see in Section 5.3 allows us to solve the
problem to provable optimality at a very large scale).

3. Method

In this section, we describe our PLD model. We begin in Section 3.1 by describing the first-choice
model and the first-choice PLD problem abstractly. In Section 3.2 we present our MIO formulation
for finding the optimal product line under this choice model. In Section 3.3, we describe three
alternate formulations for the first-choice PLD problem, and in Section 3.4, we theoretically com-
pare our MIO formulation to these alternate formulations. Finally, in Section 3.5, we theoretically
analyze the formulations for the special case when there is only a single customer segment.

3.1. Background

We assume that there are n candidate products, indexed from 1 to n, that may be included in
the product line. We use the index 0 to denote the no-purchase alternative (the possibility that
the customer does not purchase any of the products that we offer). Together, we refer to the set
{0,1,2, . . . , n} – the set of products together with the no-purchase alternative – as the options that
are available. We assume that a customer will select exactly one of the available options. We also
assume that the no-purchase alternative 0 is always available to the customer.

We assume that we have K rankings σ1, . . . , σK over the options {0,1,2, . . . , n}. Each ranking σk :
{0,1,2, . . . , n}→ {0,1,2, . . . , n} is a bijection that assigns each option to a rank in {0,1,2, . . . , n}.
The value σk(i) indicates the rank of option i; σk(i)< σk(j) indicates that i is more preferred to
j under the ranking σk. We assume that given a set of products S ⊆ {1,2, . . . , n}, a customer that
follows the ranking σk will select the option i from the set S ∪ {0} with the lowest rank, i.e., the
option arg mini∈S∪{0} σ

k(i). We can think of each k as a segment or a customer type, and σk as the
choice behavior that customers of that customer type/segment will follow.

We use λk to denote the probability that a random customer makes a choice according to the
ranking σk; we use λ to denote the probability mass function (PMF) over the set of rankings
{σ1, . . . , σK}. The probability λk is the probability that a customer is of type k or equivalently, the
relative size of the segment k. For a given product line S ⊆ {1,2, . . . , n}, the probability P(i |S)
that a random customer selects option i ∈ {0,1,2, . . . , n} given that the available set of products
was S is given by

P(i |S) =
K∑
k=1

λk · I{i= arg min
i′∈S∪{0}

σk(i′)},

where I{·} is the indicator function (I{A} is 1 if A is true and 0 otherwise).
The above choice model based on rankings is very general; we describe a few ways in which such

a model may arise.
1. Utility-based models. A common choice model used in the PLD literature is to assume

that customers maximize utility: each customer evaluates the utility of each option (one of the
products in the product line or the no-purchase option), and chooses the option that yields the
highest utility. In practice, such a model is formed by collecting conjoint data and estimating an
attribute-level utility function using ordinary least squares or polyhedral methods (Toubia et al.
2003, 2004) for each of the K customer types. When the products are described by attributes, the

 Electronic copy available at: https://ssrn.com/abstract=3020502

Bertsimas and Mǐsić: Exact first-choice product line optimization
Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 5

resulting utility function of each customer type k allows us to compute a utility ukj for each option
j ∈ {0,1, . . . , n}. When offered S, each customer type will then choose the option that yields the
highest utility, which is given by arg maxj∈S∪{0} u

k
j . Such a model of choice can be represented in

the above framework by defining the ranking of each customer type k to be the ranking that is
consistent with the utilities of customer type k, that is,

σk(i)<σk(j) if and only if uki >u
k
j .

2. Lexicographic rules. A separate stream of research in marketing has considered the use of
lexicographic rules as a model for describing choice behavior. In such a model, each customer has
an ordering of the product attributes from most to least important. Given a set of products, the
customer selects the product that has the most important attribute; ties are broken according to
the second most important attribute, third most important attribute, and so on. Such models can
be estimated by a variety of approaches (see for example Yee et al. 2007, Kohli and Jedidi 2015,
Kohli et al. 2018); for an excellent overview, the reader is referred to the paper of Kohli et al.
(2018). A lexicographic rule defines a fixed ranking over the products; as such, lexicographic choice
models are subsumed within the ranking-based choice model presented above.

3. Aggregate estimation. Outside of PLD, we also note that the above choice model is
significant in the context of assortment optimization. In particular, Farias et al. (2013) pioneered
the use of the above model for making choice predictions from limited aggregate transaction data
for historical product assortments. Their approach involves considering all (n+ 1)! rankings of the
n+ 1 options, and finding the worst-case probability distribution λ such that P(i |S) is consistent
with the transaction data for those assortments S that have been previously offered. This approach
can be considered a nonparametric approach, as any choice model for the n products that is based
on random utility maximization (such as the MNL model, the nested logit model and the latent
class MNL model) can be represented as a probability distribution over rankings. Since the paper
of Farias et al. (2013), other research has considered approaches for estimating λ and a collection
of rankings σ1, . . . , σK so as to fit some aggregate data (van Ryzin and Vulcano 2015, Mǐsić 2016).
A ranking-based model estimated from such an approach can be used directly in the optimization
problem; for more details, see Mǐsić (2016).

In the approach that we will present in Section 3.2, we do not make any assumptions on the
rankings σ1, . . . , σK and their probabilities λ1, . . . , λK .

We now define our optimization problem abstractly. Let πi be the profit of option i; we assume
that the profit π0 of the no-purchase alternative is exactly zero. Then the expected per-customer
profit from offering the product line S is denoted by Π(S) and is given by

Π(S) =
∑
i∈S

πi ·P(i |S)

=
∑
i∈S

πi ·
(

K∑
k=1

λk · I{i= arg min
i′∈S∪{0}

σk(i′)}
)
.

Having defined the first-choice model we will be using, we now define the optimization problem. Let
P({1, . . . , n}) be the power set of {1, . . . , n}, i.e., the collection of all subsets of {1, . . . , n}, and let
S ⊆P({1, . . . , n}) be a collection of permissible product lines. The problem we wish to solve is to
find the set of products S∗ from S that maximizes the expected profit under the above first-choice
model:

S∗ = arg max
S∈S

Π(S). (1)

The above optimization problem is known to be theoretically intractable. Kohli and Krishnamurti
(1989) showed that it is NP-Hard in general. Later, Aouad et al. (2017) showed that it is NP-Hard
to find a solution that is within O(n1−ε) of optimal for any ε > 0.

 Electronic copy available at: https://ssrn.com/abstract=3020502

Bertsimas and Mǐsić: Exact first-choice product line optimization
6 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

3.2. Mixed-integer optimization model

To solve this problem, we will formulate it as an MIO problem. For each product i ∈ {1, . . . , n},
let xi be a binary decision variable that is 1 if product i is included in the product line, and 0
otherwise. Note that given x∈ {0,1}n, we can recover the set of products S(x) that correspond to
x as S(x) = {i ∈ {1, . . . , n} |xi = 1}. For each option i ∈ {0,1, . . . , n}, let yki be a decision variable
that is 1 if option i is chosen under the kth ranking, and 0 otherwise.

Before defining our problem, we make the following assumption about the set of permissible
product lines S.

Assumption 1. There exists a matrix C∈Rm×n and vector d∈Rm such that the set of permissible
product lines S is encoded by all binary vectors x that satisfy Cx≤ d, that is,

S = {S ⊆ {1, . . . , n} |S = S(x) for some x∈ {0,1}n such that Cx≤ d}.

This assumption assumes that the set S can be written in terms of x through the system of
inequalities Cx≤ d. This is a relatively mild assumption, as one can model a wide range of business
requirements through such a system of inequalities; we discuss some examples at the end of this
section after stating our formulation.

The problem, in its most basic form, can then be formulated as follows.

maximize
x,y

K∑
k=1

n∑
i=1

πi ·λk · yki (2a)

subject to
n∑
i=0

yki = 1, ∀ k ∈ {1, . . . ,K}, (2b)

yki ≤ xi, ∀ k ∈ {1, . . . ,K}, i∈ {1, . . . , n}, (2c)∑
j:σk(j)>σk(i)

ykj ≤ 1−xi, ∀ k ∈ {1, . . . ,K}, i∈ {1, . . . , n}, (2d)

∑
j:σk(j)>σk(0)

ykj = 0, ∀ k ∈ {1, . . . ,K}, (2e)

Cx≤ d, (2f)

xi ∈ {0,1}, ∀ i∈ {1, . . . , n}, (2g)

yki ≥ 0, ∀ k ∈ {1, . . . ,K}, i∈ {0,1, . . . , n}. (2h)

In order of appearance, the constraints have the following meaning. Constraint (2b) ensures that
under each ranking, exactly one choice is made. Constraint (2c) ensures that under ranking k,
product i can only be chosen if product i is included in the product line. Constraint (2d) ensures
that, if product i is included in the product line, then none of the options that are less preferred to
i under ranking σk may be chosen under ranking k (the ykj variables for all j that are less preferred
are forced to zero). Constraint (2e) is a similar constraint, but pertaining to the no-purchase
option: those options that are less preferred to the no-purchase option 0 may not be selected and
their ykj values are forced to zero. Constraint (2f) ensures that the product line encoded by x is
selected from the set of permissible product lines S and follows the firm’s business requirements.
The penultimate constraint ensures that the xi’s are binary. The last constraint ensures that each
yki is nonnegative. The objective function is the expected per-customer profit of the product line
encoded by the xi variables. Note that the marginal profit πi of each product i is known and fixed;
it is not a decision variable.

It is worth commenting on several important aspects of this formulation. First, note that the
formulation does not require the yki variables to be binary. This is because for fixed binary values

 Electronic copy available at: https://ssrn.com/abstract=3020502

Bertsimas and Mǐsić: Exact first-choice product line optimization
Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 7

of xi, constraints (2b)–(2e) ensure that the yki values are forced to the correct binary values. Thus,
as a result, the formulation has only n binary variables (the xi variables).

Second, constraint (2f) allows us to enforce a variety of different constraints on the product line.
We provide some examples below.

1. Lower and upper bounds on the size of the product line. Due to resource constraints,
the firm may wish the number of products offered to be between certain upper and lower bounds.
If U and L are upper and lower bounds on the number of products in the product line, then this
requirement can be algebraically modeled as

L≤
n∑
i=1

xi ≤U.

In matrix-vector form, letting 1 denote a column n-vector of ones, we can write this as[
1T

−1T

]
x≤

[
U
−L

]
.

2. Precedence constraints. The firm may require that if a product i is included, then a
product i′ must be included. This can be modeled through the inequality xi ≤ xi′ . Letting ej be
the jth unit column n-vector, we can write this constraint in matrix-vector form as[

eTi − eTi′
]
x≤ [0]

We remark that if there are no requirements constraining the product line (i.e., S =P({1, . . . , n})),
then we can model this using the constraint Cx≤ d by setting C = [0T] and d = [0], where 0 is a
column n-vector of zeros.

3.3. Alternate formulations

In this section, we describe three other MIO formulations for modeling the first-choice PLD prob-
lem. The first formulation we will consider is the product line design problem formulation that was
studied in Belloni et al. (2008):

maximize
x,y

K∑
k=1

n∑
i=1

πi ·λk · yki (3a)

subject to
n∑
i=0

yki = 1, ∀ k ∈ {1, . . . ,K}, (3b)

yki ≤ xi, ∀ k ∈ {1, . . . ,K}, i∈ {1, . . . , n}, (3c)

ykj ≤ 1−xi, ∀ k ∈ {1, . . . ,K}, i, j ∈ {1, . . . , n}, σk(j)>σk(i), (3d)

ykj = 0, ∀ k ∈ {1, . . . ,K}, j ∈ {1, . . . , n}, σk(j)>σk(0), (3e)

Cx≤ d, (3f)

xi ∈ {0,1}, ∀ i∈ {1, . . . , n}, (3g)

yki ≥ 0, ∀ k ∈ {1, . . . ,K}, i∈ {0,1, . . . , n}. (3h)

This formulation is similar to our problem (2); the key difference is that for a fixed option
(i ∈ {1, . . . ,} or the no-purchase option), the preference constraints (2d) and (2e) in our formu-
lation aggregate all lower ranked options j, whereas in (3) each lower ranked j is handled in a
disaggregated way, through a separate constraint.

The two other formulations we will study involve transforming the ranking preferences into
utilities. In particular, for each customer type k ∈ {1, . . . ,K} and each option i ∈ {0, . . . , n}, let
uki denote the utility of option i to customer type k. The uki values can take any values that are
consistent with the assumptions below.

 Electronic copy available at: https://ssrn.com/abstract=3020502

Bertsimas and Mǐsić: Exact first-choice product line optimization
8 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

Assumption 2. Each uki is nonnegative.

Assumption 3. For a given k, the uki values satisfy uki >u
k
j whenever σk(i)<σk(j); stated differ-

ently, option i has higher utility than option j if and only if i is preferred to j (the rank of i is
lower than the rank of j).

Assumption 3 implies that each customer type k chooses the option that yields them the greatest
utility, which is equivalent to customers choosing the option that has the lowest rank according to
σk. We will use Lk = min0≤j≤n u

k
j and Uk = max0≤j≤n u

k
j to denote the minimum and maximum

values, respectively, of the option utilities of each customer type k.
We now consider our first utility-based formulation, which is given below.

maximize
x,y

K∑
k=1

n∑
i=1

πi ·λk · yki (4a)

subject to
n∑
i=0

yki = 1, ∀ k ∈ {1, . . . ,K}, (4b)

yki ≤ xi, ∀ k ∈ {1, . . . ,K}, i∈ {1, . . . , n}, (4c)
n∑
j=0

ukjy
k
j ≥ (uki −Lk)xi +Lk, ∀ k ∈ {1, . . . ,K}, i∈ {1, . . . , n}, (4d)

n∑
j=0

ukjy
k
j ≥ uk0 , ∀ k ∈ {1, . . . ,K}, (4e)

Cx≤ d, (4f)

xi ∈ {0,1}, ∀ i∈ {1, . . . , n}, (4g)

yki ≥ 0, ∀ k ∈ {1, . . . ,K}, i∈ {0,1, . . . , n}. (4h)

In this formulation, preferences are represented through constraints (4d) and (4e). The left-hand
side of constraint (4d) represents the utility of the option chosen by customer type k; the right-
hand side is equal to the utility of product i, if product i is selected for the product line, and Lk

otherwise, in which case the constraint is vacuous. In words, the constraint requires that the choice
of customer type k indeed provides the greatest utility among those products in the product line.
Constraint (4e) is a similar constraint for the no-purchase option. All other constraints are the
same as in problem (2). Note that, like problems (2) and (3), the yki variables need not be defined
as binary, as they will automatically be forced to their correct binary values. To the best of our
knowledge, this formulation has not been proposed in the literature; the justification for why we
are considering this formulation will be deferred until after we present the final formulation.

We now consider our second utility-based formulation, which was first proposed in McBride and
Zufryden (1988).

maximize
x,y

K∑
k=1

n∑
i=1

πi ·λk · yki (5a)

subject to
n∑
i=0

yki = 1, ∀ k ∈ {1, . . . ,K}, (5b)

yki ≤ xi, ∀ k ∈ {1, . . . ,K}, i∈ {1, . . . , n}, (5c)

uki xi ≥ ukjxj −Uk(1− yki), ∀ k ∈ {1, . . . ,K}, i, j ∈ {1, . . . , n}, i 6= j, (5d)

uki xi ≥ uk0 −Uk(1− yki), ∀ k ∈ {1, . . . ,K}, i∈ {1, . . . , n}, (5e)

uk0 ≥ ukjxj −Uk(1− yk0), ∀ k ∈ {1, . . . ,K}, j ∈ {1, . . . , n}, (5f)

 Electronic copy available at: https://ssrn.com/abstract=3020502

Bertsimas and Mǐsić: Exact first-choice product line optimization
Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 9

Cx≤ d, (5g)

xi ∈ {0,1}, ∀ i∈ {1, . . . , n}, (5h)

yki ∈ {0,1}, ∀ k ∈ {1, . . . ,K}, i∈ {0,1, . . . , n}. (5i)

In this formulation, preferences are represented through constraints (5d) - (5f). To understand
constraint (5d), suppose that yki = 1 and thus, xi = 1. If product j is in the product line, then xj = 1,
and the constraint is satisfied only if uki ≥ ukj , i.e., the utility of i, which is chosen by customer k,
is more than that of j. On the other hand, if product j is not in the product line, then xj = 0; the
right hand side is then simply 0, and the constraint is vacuous (recall that all utilities are assumed
to be nonnegative). This constraint thus requires that whatever option is selected (i.e., for which
the corresponding yki = 1) is indeed the one that maximizes the utility over the products in the
product line. Constraints (5e) and (5f) are similar constraints for handling the no-purchase option.
Note that unlike problems (2), (3) and (4), the yki variables must be binary in this formulation.

3.4. Theoretical comparison of formulations

In the previous section, we defined several alternate formulations of the first-choice PLD problem.
This leads us to a natural question: how do these formulations compare? Is one formulation better
than the others? The answer to this question comes from considering the relaxations of these
formulations. We briefly review some central concepts in mixed-integer optimization that will
motivate our theoretical results; the interested reader is referred to Bertsimas and Weismantel
(2005) for more details.

The LO relaxation of a MIO problem is obtained by replacing every constraint of the form
xi ∈ {0,1} with a constraint of the form 0≤ xi ≤ 1; in words, we relax the binary variables so that
they are continuous and may take any real value between 0 and 1. The resulting problem is a LO
problem, as opposed to being a MIO problem. The feasible region of the relaxation of a MIO model
always contains the feasible region of the MIO model, and the optimal value of the relaxation of
an MIO model with a maximization objective is always an upper bound on the true optimal value
of the MIO model.

Typically, for a given optimization problem (such as the first-choice PLD problem), there may be
several MIO models that are valid formulations of the problem, but that differ in their relaxations.
The best possible MIO formulation is one where the relaxation exactly coincides with the convex
hull of the integer feasible solutions of the MIO formulation. Such a formulation is called ideal or
integral, because all extreme points of the relaxation correspond to integer feasible solutions, so
one can solve the MIO formulation by simply solving its relaxation. Integral formulations are often
impractical, however, because they may be of an exponential size.

In the absence of an integral formulation, one may hope to find a formulation whose relaxation
is as close as possible to the convex hull of the integer feasible solutions. A strong or tight MIO
formulation is one where the feasible region of the relaxation is close to the convex hull of the integer
solutions; a weak or loose formulation is one where the feasible region is a loose approximation to
the convex hull of the integer solutions. A strong formulation is desirable because typically, strong
formulations can be solved more quickly than loose formulations. Given two formulations A and B,
where FA and FB are the feasible regions of their relaxations, we say that A is at least as strong as
B if FA ⊆FB. By comparing two relaxations with respect to subset containment, we can determine
which formulation is stronger.

From this perspective of formulation strength, let us now provide the justification for considering
problem (4). Let FUtility and FMZ denote the feasible regions of the LO relaxations of problems (4)
and (5), respectively. The justification for considering problem (4) comes from the following propo-
sition, which states that problem (4) is at least as strong as problem (5) (see Section EC.1.1 of the
electronic companion for the proof).

Proposition 1. For any choice of uki satisfying Assumptions 2 and 3, FUtility ⊆FMZ.

 Electronic copy available at: https://ssrn.com/abstract=3020502

Bertsimas and Mǐsić: Exact first-choice product line optimization
10 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

We now arrive to the main result of this section. Let FBM and FBFSS denote the feasible
regions of the relaxations of our problem (2) and problem (3), respectively. Theorem 1 below (see
Section EC.1.2 of the ecompanion for the proof) compares the LO relaxations of problems (3), (4)
and (5).

Theorem 1. For any choice of uki satisfying assumptions 2 and 3, we have:
(a) FBM ⊆FBFSS;
(b) FBM ⊆FUtility;
(c) FBM ⊆FMZ.

Theorem 1 is significant because it asserts that out of the four formulations – problems (2), (3), (4)
and (5) – our formulation (2) is the strongest. We will see in Section 5.2 that our formulation can
be solved in significantly less time than the other three formulations, as one would predict from
this theorem.

Let Z∗BM , Z∗BFSS, Z∗Utility and Z∗MZ denote the optimal values of the LO relaxation of problems (2),
(3), (4) and (5), respectively. Since all four formulations share the same objective function in terms
of (x,y), an immediate corollary of the above is that the LO relaxation bound of our formulation
is tighter than the others.

Corollary 1. For any choice of uki satisfying assumptions 2 and 3, we have:
(a) Z∗BM ≤Z∗BFSS;
(b) Z∗BM ≤Z∗Utility; and
(c) Z∗BM ≤Z∗MZ.

We will see in Section 5.2 that the difference between our relaxation bound Z∗BM and the others
can be substantial.

We conclude this section by stating two additional results that relate the other three formulations
to each other. We have already seen one (Proposition 1). The first additional result states that
problem (3) of Belloni et al. (2008) is stronger than problem (5) of McBride and Zufryden (1988).

Proposition 2. For any choice of uki satisfying assumptions 2 and 3, FBFSS ⊆FMZ.

We provide the proof in Section EC.1.3 of the ecompanion. Proposition 2, together with Theorem 1
and Proposition 1, implies that problem (5) is the weakest formulation of the problem. The second
additional result states that in general, the feasible regions of the relaxations of problems (3) and
(4) are not contained in each other.

Proposition 3. In general, FBFSS *FUtility and FUtility *FBFSS.

The proof of both non-containments (see Section EC.1.4 of the ecompanion) follows through a
simple instance with K = 1.

Overall, the results above provide us with the following unified perspective on all four formula-
tions:

1. Problem (2) (this paper) is the strongest formulation.
2. Problem (5) of McBride and Zufryden (1988) is the weakest formulation.
3. Problem (3) of Belloni et al. (2008) and the utility-based problem (4) are each weaker than

(2) and stronger than (5), but neither is stronger than the other.

3.5. Theoretical comparison when K = 1

It is also interesting to consider under what conditions our formulation (2) is integral, that is, every
extreme point solution of the LO relaxation is an integer feasible solution the integer problem (2);
thus, by solving the LO relaxation, we we solve the integer problem. In general, for K ≥ 2, our
formulation is not integral, as we will verify in our numerical results in Section 5.1. However, for
the special case of K = 1 (i.e., only one customer type), we have the following result.

 Electronic copy available at: https://ssrn.com/abstract=3020502

Bertsimas and Mǐsić: Exact first-choice product line optimization
Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 11

Proposition 4. When K = 1 and constraint (2f) is removed, FBM is integral, i.e., every extreme
point (x,y) of FBM satisfies x∈ {0,1}n.

The proof of Proposition 4 (see Section EC.1.5 of the ecompanion) follows by showing that the
constraint matrix which defines the set FBM is totally unimodular.

In contrast, the other formulations that we have considered above do not enjoy this property, as
established by the following proposition.

Proposition 5. When K = 1, FBFSS, FUtility and FMZ are not integral in general.

We prove the above result by providing specific instances (i.e., specific choices of n and σ) for which
the feasible region is not integral. The proof is provided in Section EC.1.6 of the ecompanion.

Propositions 4 and 5 provide an important complement to Theorem 1 that underscores the value
of formulation (2) relative to existing formulations: in the simplest case of only a single customer
type, problem (2) is integral, whereas the alternate formulations are not. We shall see later in our
numerical experiments that even when K� 1, the integrality gap – the relative difference between
the optimal value of the integer problem and the LO relaxation of problem (2) – can be very low.

4. Large-scale solution via Benders decomposition
While problem (2) is a modestly-sized formulation of the problem and its relaxation is tighter than
that of alternative formulations, it can still be challenging to solve directly when the number of
products n or the number of rankings K is large. At the same time, formulation (2) is structured
in a special way that allows us to apply the method of Benders decomposition. Before presenting
our results on adapting Benders decomposition to our product line formulation, we provide a brief
overview of Benders decomposition. The interested reader is referred to Chapter 6.5 of Bertsimas
and Tsitsiklis (1997) or Chapter II.3.7 of Nemhauser and Wolsey (1988) for the basic theory of the
method, and to the paper of Rahmaniani et al. (2017) for a review of recent theoretical advances
and applications.

Benders decomposition is a technique for solving large-scale linear and mixed-integer optimiza-
tion problems where one can divide the decision variables into two sets of variables, x and y, where
the y variables are continuous. The idea of Benders decomposition is to use LO duality theory
to eliminate the y variables and to represent their effect in the formulation with a family of con-
straints in terms of the x variables. The resulting formulation in terms of the x variables is called
the master problem. The family of constraints obtained from eliminating y is usually too large
to explicitly enumerate in the formulation. Thus, to solve the master problem, one must typically
iteratively generate the constraints. These constraints are generated by solving the subproblem,
which is the problem of optimizing the y variables in the original problem where the x variables
are fixed to their current values. This approach is termed a decomposition because the x and the
y variables are effectively decoupled.

Benders decomposition is particularly attractive for at least three reasons. First, it can be faster
than direct solution on large problems. Second, some formulations are simply too large to be explic-
itly represented in computer memory, and a large scale optimization approach like Benders decom-
position is the only option in such situations. Indeed, Benders decomposition has had significant
practical success in solving large-scale optimization problems arising in areas such as multicom-
modity distribution system design (Geoffrion and Graves 1974), airline scheduling (Cordeau et al.
2001) and hub location (Contreras et al. 2011). Third, it is often the case that the subproblem has
a special structure that allows it to be solved easily, either in closed form or through a specialized
algorithm. For example, in Contreras et al. (2011), it is shown that the subproblem is a collection
of independent semi-assignment problems, and that the dual solution can be obtained in closed
form by exploiting complementary slackness. By exploiting the structure of the subproblem, it is
possible to generate constraints for the master problem in a computationally efficient manner.

Benders decomposition applies naturally to the first-choice PLD problem because the variables
in our model (2) can be divided in two: the x variables, which specify which products are included

 Electronic copy available at: https://ssrn.com/abstract=3020502

Bertsimas and Mǐsić: Exact first-choice product line optimization
12 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

in the product line, and the yk variables, which specify how customers of type k choose from the
selected product line. One can thus specify the master problem as that of selecting the product
line x, and a collection of K subproblems, one to determine the choice yk of each customer type
k. To the best of our knowledge, Benders decomposition has not been previously applied in PLD.

This section is organized as follows. In Section 4.1, we first present a Benders reformulation of
our product line problem (2) into a master problem and a collection of subproblems, and show
that the subproblems can be solved in closed form when the current master solution is binary.
In Section 4.2, we then show that the subproblems can be solved efficiently when the current
master solution is fractional, through a greedy algorithm. Finally, in Section 4.3, we summarize
the complete method.

4.1. Benders reformulation of the integer problem

We begin by re-writing problem (2) as

maximize
x,t

K∑
k=1

λktk (6a)

subject to tk ≤Gk(x), ∀ k ∈ {1, . . . ,K}, (6b)

Cx≤ d, (6c)

xi ∈ {0,1}, ∀ i∈ {1, . . . , n}, (6d)

where Gk(x) is defined as the optimal value of the following LO problem:

Gk(x) = maximize
yk

n∑
i=1

πi · yki (7a)

subject to
n∑
i=0

yki = 1, (7b)

yki ≤ xi, ∀ i∈ {1, . . . , n}, (7c)∑
j:σk(j)>σk(i)

ykj ≤ 1−xi, ∀ i∈ {1, . . . , n}, (7d)

∑
j:σk(j)>σk(0)

ykj = 0, (7e)

yki ≥ 0, ∀ i∈ {0,1, . . . , n}. (7f)

As alluded to in Section 3.2, when x is binary, the constraints in problem (7) automatically force
the ykj variables to their correct binary values, reflecting the choice of ranking k for the product
line encoded by x. This result is formalized as Proposition 6.

Proposition 6. Let k ∈ {1, . . . ,K}, x∈ {0,1}n and S = {i∈ {1, . . . , n} |xi = 1}. An optimal solu-
tion of problem (7) for ranking k and product line encoded by x is given by

yki =

{
1, if i= arg minj∈S∪{0} σ

k(j),
0, otherwise.

(8)

The proof of Proposition 6 (see Section EC.1.7 of the ecompanion) follows by showing that the y
solution prescribed by the proposition constitutes the only feasible solution for problem (7). When
x is binary, Proposition 6 allows us to assert that problem (7) is feasible and bounded. Therefore,

 Electronic copy available at: https://ssrn.com/abstract=3020502

Bertsimas and Mǐsić: Exact first-choice product line optimization
Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 13

by LO strong duality, the optimal value of problem (7) is equal to the optimal value of its dual
problem:

Gk(x) = minimize
αk,βk,γk

γk +
n∑
j=1

αkjxj +
n∑
i=1

βki · (1−xi) (9a)

subject to γk +αkj +
∑

i :σk(i)<σk(j)

βki ≥ πj, ∀ j ∈ {1, . . . , n}, (9b)

γk +
∑

i :σk(i)<σk(0)

βki ≥ 0, (9c)

αk,βk ≥ 0. (9d)

Letting Ak indicate the feasible set of (αk,βk, γk) for the dual subproblem (9) of ranking k, we
can then re-write problem (6) as

maximize
x,t

K∑
k=1

λktk (10a)

subject to tk ≤ γk +
n∑
i=1

αki ·xi +
n∑
i=1

βki · (1−xi), ∀ k ∈ {1, . . . ,K}, (αk,βk, γk)∈Ak, (10b)

Cx≤ d, (10c)

xi ∈ {0,1}, ∀ i∈ {1, . . . , n}. (10d)

The above problem is a problem that is amenable to constraint generation. For a given integer
feasible solution (x, t), we check for each ranking k whether there is a (αk,βk, γk) for which the
constraints are violated. If so, we add the constraint, and solve again; otherwise, we conclude that
the current integer feasible solution is optimal.

To determine whether there is a (αk,βk, γk) for which constraint (10b) is violated, we have to
solve problem (9) and compare its optimal value to tk. It turns out that, like the primal problem (7),
the dual subproblem (9) can also be solved in a very simple way when x is binary.

Proposition 7. Let k ∈ {1, . . . ,K}, x ∈ {0,1}n and S = {i ∈ {1, . . . , n} |xi = 1}. Let i∗ =
arg minj∈S∪{0} σ

k(j) and let π∗ be defined as

π∗ =

{
πi∗ , if i∗ 6= 0,
0, if i∗ = 0.

An optimal solution of problem (9) for ranking k and product line encoded by x is given by

αki = max

πi− γk− ∑
j :σk(j)<σk(i)

βkj , 0

 , (11a)

βki =

{
maxi′∈S πi′ −π∗, if i= i∗,
0, otherwise,

(11b)

γk = π∗. (11c)

The proof of Proposition 7, which can be found in Section EC.1.8 of the electronic companion,
follows by checking that the proposed solution is feasible and attains the same objective value as
the optimal solution of the primal problem.

The significance of Proposition 7 is that it furnishes us with a simple procedure for testing
whether an integer solution (x, t) to problem (10) violates any constraints or not. Namely, for

 Electronic copy available at: https://ssrn.com/abstract=3020502

Bertsimas and Mǐsić: Exact first-choice product line optimization
14 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

each k, we generate the (αk,βk, γk) solution prescribed by Proposition 7 and compare its objective
value in problem (9) to tk. If tk is equal or lower than this objective value, then the kth family
of constraints is not violated; otherwise, if tk is greater than this objective value, then we have
identified a violated constraint and we add it to the formulation.

In our implementation of Benders decomposition for the integer problem, we add constraints
to problem (10) in the so-called “lazy” fashion. This means that one solves problem (10) using a
branch-and-bound solver, and checks for violated constraints at each integer solution generated in
the branch-and-bound tree; if a violated constraint is found, the constraint is added to every node
in the branch-and-bound tree, the integer solution is discarded and the node is re-solved. This
differs from the “classical” Benders decomposition approach. In the classical approach, one solves
the restricted master of problem (10) to full optimality with the current set of constraints, adds
any violated constraints, and solves the problem again with the new set of constraints, repeating
until one can no longer find violated constraints. The lazy approach is advantageous because one
does not repeatedly solve the problem from scratch. Instead, one only solves the problem once,
and constraints are only added as they are needed in the branch-and-bound tree.

4.2. Benders reformulation of the relaxed problem

We can use similar reasoning to obtain a Benders reformulation of the LO relaxation of problem (2).
The resulting formulation is given below.

maximize
x,t

K∑
k=1

λktk (12a)

subject to tk ≤ γk +
n∑
i=1

αki ·xi +
n∑
i=1

βki · (1−xi), ∀ k ∈ {1, . . . ,K}, (αk,βk, γk)∈Ak, (12b)

Cx≤ d, (12c)

0≤ xi ≤ 1, ∀ i∈ {1, . . . , n}. (12d)

Problem (12), like the integer problem (10), can also be solved using constraint generation; we for-
mally describe our constraint generation procedure in Section EC.2.2 of the electronic companion.
This problem is valuable to consider, for two reasons. First, solving this problem will yield a valid
upper bound on the true integer optimal value; this gives us a way to measure the suboptimality
of a candidate integer solution. Second, when we solve problem (12), we can use the constraints
that have been generated to warm-start the solution process of the integer problem (10).

One may wonder if it is possible to obtain Benders cuts efficiently for fractional solutions x, so as
to solve problem (12) and potentially warm-start the integer problem (10) with a set of high-quality
cuts. Surprisingly, it turns out that this is the case; one can solve problems (7) and (9) using a
two-phase greedy algorithm that first constructs a primal solution, followed by a dual solution. We
use this algorithm to generate cuts in the LO relaxation phase of our overall Benders approach.

For ease of exposition, let us redefine x as x∈ [0,1]n+1, where x = (x0, x1, . . . , xn); for convenience,
we take x0 = 1, and we also let π0 = 0. Let σ be the ranking; we drop the k superscript used to
indicate the customer type to simplify the exposition. With these definitions, the primal and dual
subproblems are given below.

(Primal) maximize
y

n∑
i=0

πi · yi (13a)

subject to
n∑
i=0

yi = 1, (13b)

yi ≤ xi, ∀ i∈ {0,1, . . . , n}, (13c)

 Electronic copy available at: https://ssrn.com/abstract=3020502

Bertsimas and Mǐsić: Exact first-choice product line optimization
Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 15∑

j:σ(j)>σ(i)

yj ≤ 1−xi, ∀ i∈ {0,1, . . . , n}, (13d)

yi ≥ 0, ∀ i∈ {0,1, . . . , n}. (13e)

(Dual) minimize
α,β,γ

γ+
n∑
j=0

αjxj +
n∑
i=0

βi · (1−xi) (14a)

subject to γ+αj +
∑

i :σ(i)<σ(j)

βi ≥ πj, ∀ j ∈ {0,1, . . . , n}, (14b)

α,β≥ 0. (14c)

The overall algorithm that we use to solve these problems has a primal and a dual phase. Algo-
rithm 1 provides the pseudocode for the primal phase, while Algorithm 2 provides the pseudocode
of the dual phase.

Algorithm 1 Primal phase of greedy algorithm for solving problems (13) and (14)

Require: Ordering τ : {0,1, . . . , n}→ {0,1, . . . , n} such that πτ(0) ≥ πτ(1) ≥ · · · ≥ πτ(n).
Set yj = 0 for all j ∈ {0,1, . . . n}.
Set C = τ(n).
Set A←∅, B←∅, Bmain←∅.
for s= 0,1, . . . , n do

Set q1← xτ(s).

Set q2←mini:σ(i)<σ(τ(s))

{
1−xi−

∑
j:σ(j)>σ(i) yj

}
.

Set q3← 1−∑n

j=0 yj.
Set q∗←min{q1, q2, q3}.
Set yτ(s)← q∗.
if q∗ = q3 then
{C event}
Set C← τ(s).
break

else
if q∗ = q2 then
{B event}
Set i∗ = arg mini:σ(i)<σ(τ(s))

{
1−xi−

∑
j:σ(j)>σ(i) yj

}
.

if i∗ /∈Bmain then
Set B←B ∪ (i∗, τ(s)).
Set Bmain←Bmain ∪{i∗}.

end if
else
{A event}
Set A←A∪{τ(s)}.

end if
end if

end for

Before we present our formal result on the correctness of these two algorithms, it is worthwhile
to give a high level overview of each algorithm. Algorithm 1 is the primal phase of the overall

 Electronic copy available at: https://ssrn.com/abstract=3020502

Bertsimas and Mǐsić: Exact first-choice product line optimization
16 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

Algorithm 2 Dual phase of greedy algorithm for solving problems (13) and (14)

Require: Sets A,B,Bmain, integer C from primal phase.
Initialize αi = 0 for all i∈ {0,1, . . . , n}; βi = 0 for all i∈ {0,1, . . . , n}.
Set γ← πC .
Define f :Bmain→{0,1, . . . , n} such that (i, f(i))∈B.
Sort Bmain = {i1, . . . , i|Bmain|} so that σ(i1)<σ(i2)< · · ·<σ(i|Bmain|).
for t= 1,2, . . . , |Bmain| do

Set βit = πf(it)− γ−
∑t−1

t′=1 βit′ .
end for
for i∈A do

Set αi = πi− γ−
∑

j:σ(j)<σ(i) βj.
end for

algorithm. In this phase, we order the options according to their marginal profits, using the function
τ – i.e.,

πτ(0) ≥ πτ(1) ≥ · · · ≥ πτ(n).
By convention, we set τ(n) = 0 (the no-purchase option). We then proceed through the options,
from the highest profit option (this is τ(0)) to the lowest profit option (this is τ(n), which is the
no-purchase option). At each stage, we set yτ(s) to the highest possible value it can be so that
none of the constraints of problem (13) are violated. After setting the value of yτ(s), we effectively
record which constraint was tight using the sets A,Bmain,B and the integer C. This involves several
checks:
• We check first if the y solution sums to 1. If it does, we say that a C event has occurred; we

set the integer C = τ(s). We also terminate the primal phase, because we know there is no need to
check any of the remaining options τ(s+ 1), . . . , τ(n) (they cannot be anything other than zero).
• If y does not sum to 1, we then check if one of the preference constraints (13d) has become

binding. If so, we say that a B event has occurred; we record which constraint became binding
(this is i∗) and what option was being checked when it occurred (this is τ(s)). We add the pair
(i∗, τ(s)) to B, and we add i∗ to Bmain; we only do this if i∗ is not in Bmain already. Note that
when the arg min defining i∗ is not unique, we take the one that has the lowest value of σ.
• If in the above check, one of the constraints (13d) did not become binding, then it must be

that one of the constraints (13c) became binding. We say that an A event has occurred, and we
add the option τ(s) that we checked to the set A.

Upon termination, we have a primal solution y, sets A,B,Bmain, and integer C. We then run
the dual phase (Algorithm 2). In the dual phase, we first set γ, using C (γ is the dual variable
corresponding to the unit sum constraint); we then set β using B, Bmain and γ (the set Bmain
contains those indices for which βi can be nonnegative); and finally, we set α using A, β and γ. In
Algorithm 1, the set B keeps track of the pairs (i∗, τ(s)) that were encountered in Algorithm 1; i∗

indicates the preference inequality that became binding, while τ(s) is the coordinate of y that we
set in Algorithm 1 that made that inequality become binding. The function f encodes the pairs in
B; if i∗ is in Bmain, then i∗ is the index of a preference inequality that became binding, and f(i∗)
is the option that was being modified in Algorithm 1. We use the function f to determine what
the βj values should be.

We now establish that Algorithms 1 and 2 are indeed correct; they produce primal feasible and
dual feasible solutions, respectively, and these solutions are optimal.

Theorem 2. Let y be the solution produced by Algorithm 1, and (α,β, γ) be the solution produced
by Algorithm 2. Then:
• y is feasible for the primal problem (13);
• (α,β, γ) is feasible for the dual problem (14); and

 Electronic copy available at: https://ssrn.com/abstract=3020502

Bertsimas and Mǐsić: Exact first-choice product line optimization
Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 17

• the two solutions are optimal for their respective problems.

The proof of this result (see Section EC.1.9 of the ecompanion) is rather technical; it involves
carefully reasoning about the steps of the two algorithms to show that both solutions are feasible
and that they satisfy complementary slackness.

We illustrate how Algorithms 1 and 2 work through an example.

Example 1. Consider an instance of the primal and dual subproblem with n= 9 products; includ-
ing the no-purchase option, there are thus n+ 1 = 10 options in total. Assume that the ranking σ
is as follows:

σ(1)<σ(2)<σ(3)<σ(4)<σ(5)<σ(0)<σ(6)<σ(7)<σ(8)<σ(9).

Assume also the following for the values of xi and πi (recall that x0 = 1, π0 = 0):

i 1 2 3 4 5 6 7 8 9 0

xi 0.35 0.20 0.35 0.25 0.15 0.45 0.50 0.50 0.05 1.00

πi 11 32 71 59 90 50 81 95 85 0

We first execute Algorithm 1, which creates the primal solution. Table 1 below shows the iter-
ations of Algorithm 1, the computations that occur in each iteration and the values to which the
yj variables are set. After completing the primal phase, we execute Algorithm 2, which creates the
dual solution. Table 2 below shows the steps of Algorithm 2, the computations that occur in each
step and the values to which the dual variables α0, . . . , αn, β0, . . . , βn, γ are set.

Figure 1 visualizes the primal and dual solutions before running Algorithms 1 and 2. The left-
hand plot shows the options and their corresponding xi values, while the right-hand side shows the
options and their profit values πi (the thick black horizontal lines).

Figure 2 visualizes the primal and dual solutions after Algorithms 1 and 2. The left-hand plot
shows the values of the non-zero yj values set in Algorithm 1. The text above each option indicates
the order in which the options are traversed (τ(0), τ(1), . . . , τ(n)) and the events (A event/B event
at i∗/C event) that occur. The right hand plot shows the dual solution: at each option i, the height
of the colored bars indicates the value of αi +

∑
j:σ(j)<σ(i) βj + γ, which is the left-hand side of

the dual constraint (14b), while the thick horizontal lines indicate πi, which is on the right-hand
side of the dual constraint. For all options i, the colored bars are at or above the horizontal lines,
indicating that the solution satisfies constraint (14b).

The objective value of the primal solution is

n∑
j=0

πjyj = π1× y1 +π3× y3 +π4× y4 +π5× y5

= 11× 0.35 + 71× 0.35 + 59× 0.15 + 90× 0.15

= 51.05.

The objective value of the dual solution is

n∑
j=0

xj ·αj +
n∑
j=0

(1−xj) ·βj + γ

= x3×α3 +x5×α5 + (1−x1)×β1 + (1−x0)×β0 + γ

= 0.35× 12 + 0.15× 31 + (1− 0.35)× 48 + (1− 1)× 36 + 11

= 51.05,

which is identical to the primal solution, as expected. Figure 3 visualizes this equivalence by
representing the objective as an area.

 Electronic copy available at: https://ssrn.com/abstract=3020502

Bertsimas and Mǐsić: Exact first-choice product line optimization
18 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

Table 1 Iterations and computations of the primal phase of the greedy

algorithm (Algorithm 1) for Example 1.

Iteration Values of q1, q2, q3 Computations

(Initialization) – y0, . . . , yn← 0
A,B,Bmain←∅

τ(0) = 8 q1 = 1, q2 = 0, q3 = 0.5 B event at i∗ = 0
B←B ∪{(0,8)}
Bmain←Bmain ∪{0}
y8← 0

τ(1) = 5 q1 = 1, q2 = 0.65, q3 = 0.15 A event
A←A∪{5}
y5← 0.15

τ(2) = 9 q1 = 0.85, q2 = 0, q3 = 0.05 B event at i∗ = 0
y9← 0

τ(3) = 7 q1 = 0.85, q2 = 0, q3 = 0.5 B event at i∗ = 0
y7← 0

τ(4) = 3 q1 = 0.85, q2 = 0.5, q3 = 0.35 A event
A←A∪{3}
y3← 0.35

τ(5) = 4 q1 = 0.5, q2 = 0.15, q3 = 0.25 B event at i∗ = 1
B←B ∪{(1,4)}
Bmain←Bmain ∪{1}
y4← 0.15

τ(6) = 6 q1 = 0.35, q2 = 0, q3 = 0.45 B event at i∗ = 1
y6← 0

τ(7) = 2 q1 = 0.35, q2 = 0, q3 = 0.20 B event at i∗ = 1
y2← 0

τ(8) = 1 q1 = 0.35, q3 = 0.35 C event
C← 1
y1← 0.35
break

4.3. Overall algorithmic approach

Our overall Benders solution approach operates in two phases and is summarized below:
1. LO Relaxation Phase. We solve the relaxation of problem (10) using constraint generation.

In the process, we will have generated a set of cuts Āk for each customer type k.
2. MIO Relaxation Phase. We solve the integer version of problem (10) using lazy constraint

generation. In addition, we warm-start the integer problem using the cuts Āk generated from the
LO relaxation phase.

We conclude this section by commenting on two aspects of our Benders formulation. First, we
emphasize that Benders decomposition is an exact method. In particular, the Benders reformula-
tion (10) is an exact reformulation of the original MIO model (2): solving problem (10) is equivalent
to solving problem (2), and will lead to a globally optimal solution of the first-choice PLD prob-
lem (1). In addition, constraint generation is an exact method for solving the Benders problem (10)
and for solving the Benders LO relaxation (12). For completeness, we provide exact definitions of
classical constraint generation algorithms for solving the relaxed Benders problem and the integer
Benders problem in Sections EC.2.1 and EC.2.2 of the electronic companion, respectively. In addi-

 Electronic copy available at: https://ssrn.com/abstract=3020502

Bertsimas and Mǐsić: Exact first-choice product line optimization
Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 19

Table 2 Steps and computations of the dual

phase of the greedy algorithm (Algorithm 2) for
Example 1.

Step Computations

Initialization α0, . . . , αn← 0
β0, . . . , βn← 0

Set γ γ← π1 = 11

Define f f(0) = 8, f(1) = 4

Sort Bmain i1 = 1, i2 = 0

β loop, t= 1 β1← π4− γ
= 59− 11
= 48

β loop, t= 2 β0← π8− γ−β1
= 95− 11− 48
= 36

α loop, i= 5 α5← π5− γ−β1
= 90− 11− 48
= 31

α loop, i= 3 α3← π3− γ−β1
= 71− 11− 48
= 12

0.00

0.25

0.50

0.75

1.00

1.25

1 2 3 4 5 0 6 7 8 9
Option

V
al

ue Legend
x

0

25

50

75

100

1 2 3 4 5 0 6 7 8 9
Option

P
ro

fit Legend
pi

Figure 1 Primal (left) and dual (right) solutions before the execution of Algorithms 1 and 2 for Example 1.

tion, we also prove that these algorithms produce the optimal solution to their respective problems
at termination (also in Sections EC.2.1 and EC.2.2) and terminate in finitely many iterations (Sec-
tion EC.2.3 of the electronic companion); the latter result is shown by proving that Algorithms 1
and 2 produce extreme point solutions for their respective subproblems.

Second, we contrast our method with the solution method of Belloni et al. (2008). The method of
Belloni et al. (2008) differs from our solution approach in two major dimensions. First, this method
involves solving formulation (3), which we have shown in Theorem 1 to be weaker than our for-
mulation (2). Second, the heart of the algorithmic approach in Belloni et al. (2008) is Lagrangean

 Electronic copy available at: https://ssrn.com/abstract=3020502

Bertsimas and Mǐsić: Exact first-choice product line optimization
20 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

0

(B−0)

0

(B−0)

0

(B−0)

0

(B−0)

0

(B−0)

0

(B−0)

0

(B−0)

0

(B−0)

0

(B−0)

0

(B−0)

0

(B−0)

0

(B−0)

0

(B−0)

0

(B−0)

0

(B−0)

0

(B−0)

0

(B−0)

0

(B−0)

0

(B−0)

0

(B−0)

1

(A)

1

(A)

1

(A)

1

(A)

1

(A)

1

(A)

1

(A)

1

(A)

1

(A)

1

(A)

1

(A)

1

(A)

1

(A)

1

(A)

1

(A)

1

(A)

1

(A)

1

(A)

1

(A)

1

(A)

2

(B−0)

2

(B−0)

2

(B−0)

2

(B−0)

2

(B−0)

2

(B−0)

2

(B−0)

2

(B−0)

2

(B−0)

2

(B−0)

2

(B−0)

2

(B−0)

2

(B−0)

2

(B−0)

2

(B−0)

2

(B−0)

2

(B−0)

2

(B−0)

2

(B−0)

2

(B−0)

3

(B−0)

3

(B−0)

3

(B−0)

3

(B−0)

3

(B−0)

3

(B−0)

3

(B−0)

3

(B−0)

3

(B−0)

3

(B−0)

3

(B−0)

3

(B−0)

3

(B−0)

3

(B−0)

3

(B−0)

3

(B−0)

3

(B−0)

3

(B−0)

3

(B−0)

3

(B−0)

4

(A)

4

(A)

4

(A)

4

(A)

4

(A)

4

(A)

4

(A)

4

(A)

4

(A)

4

(A)

4

(A)

4

(A)

4

(A)

4

(A)

4

(A)

4

(A)

4

(A)

4

(A)

4

(A)

4

(A)

5

(B−1)

5

(B−1)

5

(B−1)

5

(B−1)

5

(B−1)

5

(B−1)

5

(B−1)

5

(B−1)

5

(B−1)

5

(B−1)

5

(B−1)

5

(B−1)

5

(B−1)

5

(B−1)

5

(B−1)

5

(B−1)

5

(B−1)

5

(B−1)

5

(B−1)

5

(B−1)

6

(B−1)

6

(B−1)

6

(B−1)

6

(B−1)

6

(B−1)

6

(B−1)

6

(B−1)

6

(B−1)

6

(B−1)

6

(B−1)

6

(B−1)

6

(B−1)

6

(B−1)

6

(B−1)

6

(B−1)

6

(B−1)

6

(B−1)

6

(B−1)

6

(B−1)

6

(B−1)

7

(B−1)

7

(B−1)

7

(B−1)

7

(B−1)

7

(B−1)

7

(B−1)

7

(B−1)

7

(B−1)

7

(B−1)

7

(B−1)

7

(B−1)

7

(B−1)

7

(B−1)

7

(B−1)

7

(B−1)

7

(B−1)

7

(B−1)

7

(B−1)

7

(B−1)

7

(B−1)

8

(C)

8

(C)

8

(C)

8

(C)

8

(C)

8

(C)

8

(C)

8

(C)

8

(C)

8

(C)

8

(C)

8

(C)

8

(C)

8

(C)

8

(C)

8

(C)

8

(C)

8

(C)

8

(C)

8

(C)

0.00

0.25

0.50

0.75

1.00

1.25

1 2 3 4 5 0 6 7 8 9
Option

V
al

ue

Legend
x
y1
y3
y4
y5

0

25

50

75

100

1 2 3 4 5 0 6 7 8 9
Option

P
ro

fit

Legend
alpha5
alpha3
beta0
beta1
gamma
pi

Figure 2 Primal (left) and dual (right) solutions after the execution of Algorithms 1 and 2 for Example 1.

⇡
5

=
90

⇡
3

=
71

⇡
4

=
59

⇡
1

=
11

y5 = 0.15 y1 = 0.35y3 = 0.35

y4 = 0.15

1 � = 11

1� x1 = 0.65

�1 = 48

↵3 = 12

x3 = 0.35

x5 = 0.15

↵5 = 31

=

Figure 3 Representation of optimal objective value for Example 1 in terms of the primal solution (left) and dual
solution (right). The colors of the left- and right-hand plots correspond to the left- and right-hand plots
of Figure 2, respectively.

relaxation. The idea of the Lagrangean relaxation in Belloni et al. (2008) is to relax certain con-
straints in the formulation and to instead penalize violations of these constraints in the objective
through Lagrange multipliers. Maximizing over the original x and y variables in this penalized
version of the problem leads to an upper bound on the objective value of problem (3); by then mini-
mizing over the Lagrange multipliers, one can obtain the tightest such bound. The solution method
then essentially involves using this bound within branch-and-bound so as to more efficiently search
the solution space. From a conceptual standpoint, this method is a completely different approach
to large-scale optimization compared to our Benders method. The implementation requirements
are also different. The first phase of our Benders method requires a simple constraint generation
loop, while the second phase requires a lazy constraint callback, both of which are straightfor-
ward to implement using commercial solvers such as Gurobi. In contrast, the method of Belloni
et al. (2008) requires the user to implement several rather sophisticated procedures, including a
subgradient/bundle method for optimizing over the Lagrange multipliers in the Lagrangean bound

 Electronic copy available at: https://ssrn.com/abstract=3020502

Bertsimas and Mǐsić: Exact first-choice product line optimization
Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 21

calculation, as well as a custom branch-and-bound implementation that can use the Lagrangean
bound. Although it is subjective, we believe these components require a higher level of expertise
and effort to develop, and we expect our method to be easier for practitioners to implement.

5. Computational results
In this section, we report on the results of our numerical experiments. Section 5.1 reports on the
performance of our formulation, and Section 5.2 compares it to the other formulations of Section 3.3
using synthetic data. Section 5.3 focuses on our Benders decomposition approach from Section 4
and showcases the value of this approach in solving a product line design problem derived from a
real conjoint data set.

All experiments were conducted on a late 2013 Apple MacBook Pro Retina laptop with a quad
core 2.6GHz Intel i7 processor and 16GB of memory. All experiments were implemented in the
Julia programming language, version 0.6.0 (Bezanson et al. 2017) using the JuMP package (Julia
for Mathematical Programming; see Lubin and Dunning 2015, Dunning et al. 2017). All linear
and mixed-integer optimization problems were solved using Gurobi 7.5 (Gurobi Optimization, Inc.
2015).

All of the code to perform these experiments, including the Benders decomposition algorithms,
is freely available at http://github.com/vvmisic/optimalPLD/.

5.1. Experiments on synthetic data for formulation (2)

To test the tractability of the PLD formulation (2), we consider the following experiment. For
fixed values of the number of products n and the number of rankings K, we randomly generate 20
instances, where we uniformly at random generate the set of rankings σ1, . . . , σK from the set of
all possible rankings, the profit πi of each product i from the set {1, . . . ,100}, and the probability
distribution λ from the (K− 1)-dimensional unit simplex. For each of these 20 instances, we solve
problem (2), and record the time to solve the problem to full optimality. We solve the unconstrained
problem (constraint (2f) is omitted) and the constrained problem, where we impose the constraint∑n

i=1 xi ≤ b for b∈ {5,10}. Table 3 shows the results of this experiment, for n up to 500 and K up
to 1000; the times reported are the averages over the 20 instances. From this table, we can see that
problem (2) is very tractable; even in the most challenging case (n= 500,K = 500, b= 5), it can
be solved to full optimality in about half an hour on average, while for 200 or fewer products the
problem can be solved within 15 minutes on average. In general, the constrained instances required
more time than the unconstrained instances.

In addition to the instances shown in Table 3, we also consider twenty instances generated in
the same way with n= 500 products and K = 1000 rankings. For each instance, we consider the
unconstrained problem (constraint (2f) is omitted) and the constrained problem with the constraint∑n

i=1 xi ≤ 5. Due to the difficulty of these instances, we solve these instances with a time limit of one
hour. Table 4 shows the solution time and the final optimality gap averaged over the 20 instances,
as well as how many of the instances are solved fully within the one hour time limit. We can see
that with b = 5, solving problem (2) leads to good solutions, with an average optimality gap of
3.33%; as the problem becomes less constrained, the optimality gap improves (for example, 0.11%
when unconstrained). In addition, the number of instances that can be solved to full optimality
within the time limit improves as the problem becomes less constrained.

5.2. Experiments on synthetic data comparing formulations (2), (3), (4) and (5)

We now consider another experiment to compare the quality of the LO bounds from problem (2)
(Z∗BM) to those obtained from problems (3), (4) and (5). We solve the LO relaxation of each of
these formulations restricted to n∈ {20,50,100}. For the utility-based formulations (4) and (5), we
set the utilities uki as

uki = n−σk(i). (15)

 Electronic copy available at: https://ssrn.com/abstract=3020502

Bertsimas and Mǐsić: Exact first-choice product line optimization
22 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

Table 3 Solution times for problem (2).

n K b Solution
time (s)

20 100 5 0.10
20 100 10 0.09
20 100 – 0.08

20 200 5 0.24
20 200 10 0.25
20 200 – 0.23

20 500 5 1.51
20 500 10 1.03
20 500 – 0.78

20 1000 5 2.62
20 1000 10 1.62
20 1000 – 1.41

50 100 5 1.14
50 100 10 0.73
50 100 – 0.54

50 200 5 2.72
50 200 10 1.82
50 200 – 1.44

50 500 5 9.98
50 500 10 6.58
50 500 – 5.91

50 1000 5 24.00
50 1000 10 15.72
50 1000 – 13.98

n K b Solution
time (s)

100 100 5 4.05
100 100 10 3.22
100 100 – 2.55

100 200 5 12.17
100 200 10 9.92
100 200 – 7.18

100 500 5 36.15
100 500 10 28.21
100 500 – 27.13

100 1000 5 115.62
100 1000 10 94.39
100 1000 – 64.74

200 100 5 16.84
200 100 10 12.79
200 100 – 11.36

200 200 5 40.67
200 200 10 36.53
200 200 – 26.37

200 500 5 199.52
200 500 10 151.84
200 500 – 96.09

200 1000 5 827.85
200 1000 10 738.48
200 1000 – 410.10

n K b Solution
time (s)

500 100 5 70.80
500 100 10 63.71
500 100 – 50.37

500 200 5 191.24
500 200 10 184.09
500 200 – 149.43

500 500 5 1510.80
500 500 10 1497.67
500 500 – 741.34

Table 4 Results for synthetic instances with

n= 500, K = 1000.

n K b Solution Gap Num.
time (s) (%) Solved

500 1000 5 3584.59 3.33 1
500 1000 10 3582.72 1.34 1
500 1000 – 2538.78 0.11 14

For each formulation F , we record the integrality gap. The integrality gap GF is defined as the
difference between the optimal value of the relaxation of F , Z∗F , and the integer optimal value, Z∗,
relative to Z∗:

GF = 100%× Z
∗
F −Z∗
Z∗

.

Table 5 reports the average values of GBM , GBFSS, GUtility and GMZ , where the four values
correspond to the relaxations of problems (2), (3), (4) and (5), respectively. From this table, we
can see that the average integrality gap of problem (2) (our formulation) is the lowest of the four
– as predicted by Theorem 1. The gaps from our formulation are low: on average, they are below
2%. For the other formulations, the integrality gaps are higher; problem (3) has the second lowest,
followed by problem (4) and finally problem (5). The gaps of these alternative formulations can

 Electronic copy available at: https://ssrn.com/abstract=3020502

Bertsimas and Mǐsić: Exact first-choice product line optimization
Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 23

Table 5 Comparison of LO bounds.

n K b GBM GBFSS GUtility GMZ

20 100 5 0.46 3.10 15.27 28.32
20 100 10 0.36 4.12 15.82 27.98
20 100 – 0.36 4.12 15.82 27.98

20 200 5 0.65 3.85 17.25 35.91
20 200 10 0.63 5.53 19.14 35.69
20 200 – 0.63 5.53 19.16 35.69

20 500 5 1.21 4.57 15.49 30.41
20 500 10 0.69 6.13 16.74 29.38
20 500 – 0.69 6.13 16.76 29.38

20 1000 5 0.53 3.78 14.50 30.82
20 1000 10 0.25 5.27 16.28 29.67
20 1000 – 0.25 5.27 16.35 29.67

50 100 5 1.29 3.90 10.84 18.77
50 100 10 0.55 4.52 9.49 15.62
50 100 – 0.52 4.62 9.45 15.57

50 200 5 1.19 3.75 11.59 21.30
50 200 10 0.48 4.93 10.85 17.73
50 200 – 0.44 5.44 10.95 17.64

n K b GBM GBFSS GUtility GMZ

50 500 5 1.73 4.12 12.08 22.41
50 500 10 0.52 5.35 11.22 17.87
50 500 – 0.48 6.35 11.74 17.78

50 1000 5 1.91 4.29 12.39 23.98
50 1000 10 0.86 5.84 11.84 19.48
50 1000 – 0.82 7.28 12.93 19.44

100 100 5 1.16 2.99 8.60 14.12
100 100 10 0.58 3.74 7.00 10.70
100 100 – 0.38 3.85 6.79 10.40

100 200 5 2.04 3.89 10.15 16.97
100 200 10 0.58 4.10 7.93 11.75
100 200 – 0.44 4.95 8.06 11.40

100 500 5 2.28 4.04 11.01 19.45
100 500 10 1.08 4.49 8.70 13.56
100 500 – 0.76 5.89 9.13 12.98

100 1000 5 2.67 4.16 11.06 20.03
100 1000 10 1.23 4.49 8.70 13.75
100 1000 – 0.65 6.24 9.30 12.81

also be quite substantial; for n = 100, GBFSS can be as high as 6%, whereas GUtility and GMZ

can be as high as 11% and 20%, respectively. These results show the value of the formulation
of problem (2) in terms of providing a tighter upper bound on the true integer optimal value.
Interestingly, despite the fact that the feasible regions of problems (3) and (4) are in general not
contained in each other (Proposition 3), in all of the instances that we tested problem (3) yielded
a tighter relaxation bound than problem (4).

We note that a potential limitation of the experiment presented in Table 5 is that the utilities
used in problems (4) and (5) may not be representative of real utilities obtained through conjoint
analysis. We thus conduct an additional set of experiments using the data from Toubia et al.
(2003) (which will be described shortly in Section 5.3). These results are qualitatively similar; for
completeness, we report them in Section EC.3.1 of the electronic companion.

To further see the value of problem (2), let us also compare the time required to solve the full
integer problems (2), (3), (4) and (5). Table 6 shows the time required to solve these formulations
for the same (n,K, b) combinations as in Table 5, averaged over the 20 instances for each (n,K, b)
combination. Due to the prohibitively large computation time required by the alternative formula-
tions, a time limit of one hour was imposed on formulations (3), (4) and (5). The columns labeled
T indicate the computation time required to solve each formulation (subject to the aforementioned
time limit). The columns labeled NU indicate how many instances out of the 20 for each (n,K)
pair were not solved to full optimality within the one hour time limit.

From this table, we can see that the time required to solve problem (2) is significantly smaller than
all of the other formulations. For example, for n= 100, K = 500 with no constraints, problem (2)
takes under 30 seconds to solve on average, compared to about 7 minutes for (3), 20 minutes for (5)
and 50 minutes for (4). Even with constraints, problem (2) provides an edge: for n= 100, K = 500
and b= 5, problem (2) is about ten times faster than problem (3), 100 times faster than problem (4)
and 60 times faster than problem (5). In addition, formulation (2) is solved to full optimality within
the one hour time limit for all of the instances. In contrast, the other formulations are sometimes
not solved to optimality within the one hour time limit. Formulation (3) is not solved in one
instance, while formulation (5) is not solved in 52 instances. The most striking behavior here is seen

 Electronic copy available at: https://ssrn.com/abstract=3020502

Bertsimas and Mǐsić: Exact first-choice product line optimization
24 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

Table 6 Comparison of MIO solution times and number of instances not solved within one hour.

n K b TBM TBFSS TUtility TMZ NUBM NUBFSS NUUtility NUMZ

20 100 5 0.10 0.34 1.08 0.83 0 0 0 0
20 100 10 0.09 0.35 0.94 0.80 0 0 0 0
20 100 – 0.08 0.39 0.98 0.80 0 0 0 0

20 200 5 0.24 0.88 2.90 2.92 0 0 0 0
20 200 10 0.25 0.87 2.42 2.86 0 0 0 0
20 200 – 0.23 1.04 2.37 2.97 0 0 0 0

20 500 5 1.51 4.53 13.09 17.60 0 0 0 0
20 500 10 1.03 4.38 10.38 15.41 0 0 0 0
20 500 – 0.78 4.71 10.44 15.60 0 0 0 0

20 1000 5 2.62 8.55 45.35 26.73 0 0 0 0
20 1000 10 1.62 8.05 30.84 19.29 0 0 0 0
20 1000 – 1.41 9.88 30.69 19.70 0 0 0 0

50 100 5 1.14 3.01 5.48 12.42 0 0 0 0
50 100 10 0.73 3.69 5.81 11.22 0 0 0 0
50 100 – 0.54 4.88 6.04 11.49 0 0 0 0

50 200 5 2.72 6.35 18.78 46.29 0 0 0 0
50 200 10 1.82 8.71 20.15 35.47 0 0 0 0
50 200 – 1.44 10.22 18.26 34.62 0 0 0 0

50 500 5 9.98 21.83 124.08 225.51 0 0 0 0
50 500 10 6.58 36.33 137.19 79.67 0 0 0 0
50 500 – 5.91 42.87 128.87 78.28 0 0 0 0

50 1000 5 24.00 68.24 662.11 1101.21 0 0 0 0
50 1000 10 15.72 112.63 780.73 502.26 0 0 0 0
50 1000 – 13.98 138.79 783.44 521.74 0 0 0 1

100 100 5 4.05 11.57 18.87 86.10 0 0 0 0
100 100 10 3.22 17.26 35.36 77.93 0 0 0 0
100 100 – 2.55 22.13 34.21 70.14 0 0 0 0

100 200 5 12.17 29.25 105.61 310.23 0 0 0 0
100 200 10 9.92 43.61 239.36 146.51 0 0 0 0
100 200 – 7.18 73.69 411.92 105.12 0 0 0 0

100 500 5 36.15 144.53 1294.43 2390.92 0 0 1 9
100 500 10 28.21 336.14 2639.80 1828.61 0 0 9 4
100 500 – 26.88 447.29 2888.77 1359.21 0 0 12 4

100 1000 5 115.62 714.65 3584.89 3601.76 0 0 19 20
100 1000 10 94.39 1457.48 3600.27 3546.21 0 0 20 17
100 1000 – 64.74 1426.24 3600.28 2669.32 0 1 20 7

for formulation (4), which is not solved in almost all of the n= 100,K = 1000 instances. Another

interesting observation here is that, although problem (4) provides a bound that is theoretically at

least as tight as problem (5) (Proposition 1) and numerically is tighter (Table 5 above), the integer

version of problem (4) is significantly less tractable than (5): the time required to solve problem (4)

is considerably higher and many more instances are not solved to full optimality within one hour

of computation.

 Electronic copy available at: https://ssrn.com/abstract=3020502

Bertsimas and Mǐsić: Exact first-choice product line optimization
Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 25

Table 7 Results of large-scale Benders experiment.

D&C phase LO Benders phase MIO Benders phase Gap (%)
Constraints Obj. Time (s) Bound Time (s) Obj. Bound Time (s) Initial Final∑
xi = 2 59.22 7.12 59.22 153.22 59.22 59.22 20.23 0.0 0.0∑
xi = 3 66.29 13.67 66.57 275.34 66.29 66.29 40.75 0.42 0.0∑
xi = 4 70.24 24.81 71.21 311.33 70.24 70.24 236.74 1.36 0.0∑
xi = 5 72.82 26.45 73.85 324.20 72.82 72.82 255.58 1.39 0.0∑
xi = 10 77.33 87.69 79.36 584.40 77.41 77.42 13679.69 2.56 0.01∑
xi = 20 80.14 219.18 82.65 1019.75 80.14 81.56 21600.03 3.04 1.74∑
xi = 50 81.85 1266.09 85.01 2418.44 81.85 84.46 21600.05 3.71 3.09

5.3. Experiments with real data

In Section 5.1, we considered instances of the first-choice PLD problem that were of a small to
medium scale. In this section, we showcase the scalability of our formulation to large-scale instances,
using the Benders-based solution method outlined in Section 4.3.

To test the Benders solution scheme, we will deviate from our approach in Section 5.1 by consid-
ering instances derived from real data. The real data set that we will use is from the paper of Toubia
et al. (2003). In this paper, the authors proposed a new method for estimating attribute-level
utility functions from pairwise comparison data. To evaluate the method, the authors conducted
a field experiment to measure consumer preferences for a new laptop bag product to be launched
by a real firm, Timbuk2 (Timbuk2 Designs Inc., San Francisco, CA, USA). The authors collected
pairwise comparison data from 330 respondents, and used these to estimate respondent-level utility
functions. A later paper, Belloni et al. (2008), used these utility functions, along with incremental
revenue and cost data, for the purpose of selecting a product line. They formulated an optimization
problem (problem (3)) for selecting a product line from a collection of 3584 candidate products so
as to maximize the profit when each customer chooses the available option with the highest utility
(either one of the products in the product line, or the no-purchase option).

We consider formulation (2) with the n = 3584 candidate products and K = 330 rankings of
Belloni et al. (2008) with different constraints on the product line. We consider instances with
different product line widths, i.e., each instance has a constraint of the form

∑
xi = t, where the

product line width t ranges in {2,3,4,5,10,20,50}. We solve each instance (problem (2) with a
specific set of constraints) using the Benders-based solution method. We run the LO phase of the
method without any time limit. We terminate the MIO phase of the method after six hours of
computation time or an optimality gap of 0.01% or lower. For each instance, we run the divide and
conquer (D&C) heuristic (see Green and Krieger 1993) from ten random starting solutions, and
retain the best solution; we provide the best solution to the MIO solver to warm-start the MIO
phase of the Benders method.

Table 7 shows the results of this experiment, with each row corresponding to a different instance.
The first column indicates the constraints that were imposed on the instance. The next two columns
indicate the objective of the D&C solution and the time required to attain this solution. The next
two columns indicate the LO relaxation bound and the time required to compute this bound (i.e.,
the time for the LO phase of the Benders method). The next three columns indicate, for the integer
phase of the Benders method, the objective value of the best integer solution, the best bound for
this solution, and the time required for the integer phase. Finally, the last two columns indicate
the initial gap when starting the MIO phase (this is the gap of the D&C solution relative to the
bound from the LO phase of the Benders method) and the final gap (this is the gap of the best
MIO solution relative to the best MIO bound). All times are reported in seconds.

From this table, we see that for most of the instances, the LO Benders phase completes quickly.
For example, when the width of the product line is 20, the LO Benders phase requires just over 15
minutes to complete. In the largest case (

∑
xi = 50), the LO Benders phase takes approximately 40

 Electronic copy available at: https://ssrn.com/abstract=3020502

Bertsimas and Mǐsić: Exact first-choice product line optimization
26 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

minutes to run. Note also that, even before the MIO phase, the initial solution provided by D&C
is a very good solution; the initial optimality gap is under 4% for all of the instances. We have
empirically observed that warm-starting the MIO phase using D&C is beneficial; for those instances
with a smaller number of feasible solutions (

∑
xi = t for t≤ 5), starting from the D&C solution did

reduce the time to prove optimality, while for the larger instances, starting from the D&C solution
led to a better gap after six hours of execution. For completeness, we report the results of our
Benders method without warm-starting in Section EC.3.2 of the electronic companion.

With regard to the MIO phase, for the more constrained instances (size of product line is ten
or lower), the MIO phase is able to prove optimality (final gap of 0.01% or lower) within the six
hour time limit. For the less constrained instances (size of product line is greater than ten), the
six hour time limit is reached, and the MIO phase is able to attain some reduction in the gap; this
reduction becomes more modest as the bound on the size of the product line increases.

Aside from these general insights, we highlight two other important aspects of this experiment.
The first is that we were not able to solve any of these instances by directly solving problem (2)
with Gurobi, due to the extremely large memory requirement of problem (2) at this scale. Thus,
the Benders approach really is necessary for solving problem (2). This highlights the value of the
Benders approach, in that it allows us to solve instances that are simply too large for direct solution
by solvers like Gurobi.

The second is to do with the fourth instance, which corresponds to
∑

i xi = 5. This instance is
exactly the problem that was solved in Belloni et al. (2008). Their paper solved the problem using
an entirely different approach from us; first, they used formulation (3), and second, they solved the
problem using a combination of ideas such as Lagrangean relaxation, subgradient descent and valid
inequalities, but without the use of Benders decomposition. Even with all of these techniques, this
earlier approach required one week of computation time to solve the problem to full optimality.
In stark contrast, our combined LO and MIO Benders methods required a total of 606.22 seconds
– just over ten minutes – to solve the problem to full optimality. This is a striking reduction.
Admittedly, some of this reduction is likely due to hardware improvements and general improve-
ments in LO/MIO solution software since the time that paper was written (2008) to now; however,
we believe that these computational results are indicative of the potential of our Benders-based
method to efficiently obtain tight upper bounds and solve practically-sized PLD problems.

6. Conclusions
In this paper, we presented a modern mixed-integer optimization approach for the problem of
selecting a product line from a large set of candidate products under a first-choice model of customer
behavior. We proposed a novel MIO formulation that we showed is theoretically stronger than
three alternate formulations, thus providing a unified perspective on different formulations for
this problem. We also developed a novel solution algorithm, based on Benders decomposition, by
theoretically exploiting the structure of our MIO formulation. Through numerical experiments with
synthetic data, we verified that our formulation yields tighter relaxation bounds and can be solved
significantly faster than the alternate formulations on small to medium-sized instances. Through
numerical experiments with a real conjoint data set, we show that our Benders decomposition
approach advances the state-of-the-art in solving large-scale PLD instances, by showing that a PLD
instance that required one week of computation time in 2008 can be solved to provable optimality
by our approach in approximately ten minutes on a consumer laptop. We hope that these results
will encourage the further exploration of linear and mixed-integer optimization modeling in the
context of product design, and marketing science in general.

Acknowledgments
The authors thank the area editor Alexandre Belloni, the former area editor Harikesh Nair, the associate
editor and the two referees for their helpful comments that greatly improved the paper. The authors thank
the authors of Toubia et al. (2003) for graciously making their data set available, which was used in the
numerical experiment in Section 5.3. The work of the second author was supported by a PGS-D award from
the Natural Sciences and Engineering Research Council (NSERC) of Canada.

 Electronic copy available at: https://ssrn.com/abstract=3020502

Bertsimas and Mǐsić: Exact first-choice product line optimization
Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 27

References
A. Aouad, V. F. Farias, and R. Levi. Assortment optimization under consider-then-choose choice models.

Available at SSRN 2618823, 2015.

A. Aouad, V. F. Farias, R. Levi, and D. Segev. The approximability of assortment optimization under
ranking preferences. Operations Research, 2017. Forthcoming.

A. Belloni, R. Freund, M. Selove, and D. Simester. Optimizing product line designs: Efficient methods and
comparisons. Management Science, 54(9):1544–1552, 2008.

D. Bertsimas and V. V. Mǐsić. Robust product line design. Operations Research, 65(1):19–37, 2017.

D. Bertsimas and J. N. Tsitsiklis. Introduction to linear optimization, volume 6. Athena Scientific, Belmont,
MA, 1997.

D. Bertsimas and R. Weismantel. Optimization over integers, volume 13. Dynamic Ideas Belmont, 2005.

J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A fresh approach to numerical computing.
SIAM Review, 59(1):65–98, 2017.

J. Blanchet, G. Gallego, and V. Goyal. A Markov chain approximation to choice modeling. Operations
Research, 64(4):886–905, 2016.

J. J. M. Bront, I. Méndez-Dı́az, and G. Vulcano. A column generation algorithm for choice-based network
revenue management. Operations Research, 57(3):769–784, 2009.

K. D. Chen and W. H. Hausman. Technical note: Mathematical properties of the optimal product line
selection problem using choice-based conjoint analysis. Management Science, 46(2):327–332, 2000.

I. Contreras, J.-F. Cordeau, and G. Laporte. Benders decomposition for large-scale uncapacitated hub
location. Operations research, 59(6):1477–1490, 2011.

J.-F. Cordeau, G. Stojković, F. Soumis, and J. Desrosiers. Benders decomposition for simultaneous aircraft
routing and crew scheduling. Transportation Science, 35(4):375–388, 2001.

J. M. Davis, G. Gallego, and H. Topaloglu. Assortment optimization under variants of the nested logit
model. Operations Research, 62(2):250–273, 2014.

G. Dobson and S. Kalish. Positioning and pricing a product line. Marketing Science, 7(2):107–125, 1988.

I. Dunning, J. Huchette, and M. Lubin. JuMP: A modeling language for mathematical optimization. SIAM
Review, 59(2):295–320, 2017.

V. F. Farias, S. Jagabathula, and D. Shah. A nonparametric approach to modeling choice with limited data.
Management Science, 59(2):305–322, 2013.

J. B. Feldman and H. Topaloglu. Revenue Management Under the Markov Chain Choice Model. Operations
Research, 65(5):1322–1342, 2017.

A. M. Geoffrion and G. W. Graves. Multicommodity distribution system design by benders decomposition.
Management Science, 20(5):822–844, 1974.

P. E. Green and A. M. Krieger. Models and heuristics for product line selection. Marketing Science, 4(1):
1–19, 1985.

P. E. Green and A. M. Krieger. Conjoint analysis with product-positioning applications. In J. Eliashberg
and G. L. Lilien, editors, Handbooks in Operations Research and Management Science, volume 5, pages
467–515. Elsevier, 1993.

Gurobi Optimization, Inc. Gurobi Optimizer Reference Manual, 2015. URL http://www.gurobi.com.

D. Honhon, S. Jonnalagedda, and X. A. Pan. Optimal algorithms for assortment selection under ranking-
based consumer choice models. Manufacturing & Service Operations Management, 14(2):279–289, 2012.

R. Kohli and K. Jedidi. Error theory for elimination by aspects. Operations Research, 63(3):512–526, 2015.

R. Kohli and R. Krishnamurti. A heuristic approach to product design. Management Science, pages 1523–
1533, 1987.

R. Kohli and R. Krishnamurti. Optimal product design using conjoint analysis: Computational complexity
and algorithms. European Journal of Operational Research, 40(2):186–195, 1989.

 Electronic copy available at: https://ssrn.com/abstract=3020502

Bertsimas and Mǐsić: Exact first-choice product line optimization
28 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

R. Kohli and R. Sukumar. Heuristics for product-line design using conjoint analysis. Management Science,
36(12):1464–1478, 1990.

R. Kohli, K. Boughanmi, and V. Kohli. Randomized algorithms for lexicographic inference. Operations
Research, forthcoming, 2018.

U. G. Kraus and C. A. Yano. Product line selection and pricing under a share-of-surplus choice model.
European Journal of Operational Research, 150(3):653–671, 2003.

G. Li, P. Rusmevichientong, and H. Topaloglu. The d-level nested logit model: Assortment and price opti-
mization problems. Operations Research, 63(2):325–342, 2015.

M. Lubin and I. Dunning. Computing in Operations Research Using Julia. INFORMS Journal on Computing,
27(2):238–248, 2015.

L. Luo. Product line design for consumer durables: an integrated marketing and engineering approach.
Journal of Marketing Research, 48(1):128–139, 2011.

R. D. McBride and F. S. Zufryden. An integer programming approach to the optimal product line selection
problem. Marketing Science, 7(2):126–140, 1988.

V. V. Mǐsić. Data, models and decisions for large-scale stochastic optimization problems. PhD thesis,
Massachusetts Institute of Technology, 2016.

G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. Wiley Interscience, 1988.

R. Rahmaniani, T. G. Crainic, M. Gendreau, and W. Rei. The Benders decomposition algorithm: A literature
review. European Journal of Operational Research, 259(3):801–817, 2017.

P. Rusmevichientong and H. Topaloglu. Robust assortment optimization in revenue management under the
multinomial logit choice model. Operations Research, 60(4):865–882, 2012.

P. Rusmevichientong, D. Shmoys, C. Tong, and H. Topaloglu. Assortment optimization under the multi-
nomial logit model with random choice parameters. Production and Operations Management, 23(11):
2023–2039, 2014.

C. Schön. On the optimal product line selection problem with price discrimination. Management Science,
56(5):896–902, 2010a.

C. Schön. On the product line selection problem under attraction choice models of consumer behavior.
European Journal of Operational Research, 206(1):260–264, 2010b.

K. Talluri and G. van Ryzin. Revenue management under a general discrete choice model of consumer
behavior. Management Science, 50(1):15–33, 2004.

O. Toubia, D. I. Simester, J. R. Hauser, and E. Dahan. Fast polyhedral adaptive conjoint estimation.
Marketing Science, 22(3):273–303, 2003.

O. Toubia, J. R. Hauser, and D. I. Simester. Polyhedral methods for adaptive choice-based conjoint analysis.
Journal of Marketing Research, 41(1):116–131, 2004.

G. van Ryzin and G. Vulcano. A market discovery algorithm to estimate a general class of nonparametric
choice models. Management Science, 61(2):281–300, 2015.

M. Yee, E. Dahan, J. R. Hauser, and J. Orlin. Greedoid-based noncompensatory inference. Marketing
Science, 26(4):532–549, 2007.

 Electronic copy available at: https://ssrn.com/abstract=3020502

e-companion to Bertsimas and Mǐsić: Exact first-choice product line optimization ec1

Electronic companion for “Exact first-choice product line
optimization” by D. Bertsimas and V. V. Mǐsić

EC.1. Proofs

EC.1.1. Proof of Proposition 1

To prove that FUtility ⊆ FMZ , let (x,y) be an optimal solution to the relaxation of problem (4).
Observe that constraints (5b), (5c) and (5g) are automatically satisfied by (x,y) as these constraints
are also found in problem (4). Therefore, we only need to verify constraints (5d), (5e) and (5f).

To verify constraint (5d), let us start from constraint (4d) where the right-hand side product is
j:

n∑
j′=0

ukj′y
k
j′ ≥ (ukj −Lk)xj +Lk.

Since the utilities are non-negative and xj ≤ 1, we have that

(ukj −Lk)xj +Lk = ukjxj +Lk(1−xj)≥ ukjxj,

which allows us to assert that
n∑

j′=0

ukj′y
k
j′ ≥ ukjxj. (EC.1)

The left-hand side can be upper-bounded as

uki xi +
n∑

j′=0
j′ 6=i

Ukykj′ ≥
n∑

j′=0

ukj′y
k
j′ ,

since ykj ≤ xj for all j, Uk ≥ ukj for all j, and all ykj are nonnegative. Combining this with (EC.1),
we get that

uki xi +
n∑

j′=0
j′ 6=i

Ukykj′ ≥ ukjxj.

We can re-arrange this to obtain

uki xi ≥ ukjxj −
n∑

j′=0
j′ 6=i

Ukykj′

= ukjxj −Uk · (1− yki),

where the second step follows by the fact that
∑n

j′=0 y
k
j′ = 1. This establishes that (x,y) satisfies

the constraint

uki xi ≥ ukjxj −Uk · (1− yki),

as required. Similar reasoning can be used to establish that constraints (5e) and (5f) also hold. �

 Electronic copy available at: https://ssrn.com/abstract=3020502

ec2 e-companion to Bertsimas and Mǐsić: Exact first-choice product line optimization

EC.1.2. Proof of Theorem 1

EC.1.2.1. Proof of Part (a) Let (x,y) be an optimal solution to the relaxation of prob-
lem (2). We need to establish that (x,y) is feasible for problem (3). We begin by observing that
constraints (3b), (3c) and (3f) are automatically satisfied, since these constraints also exist in
problem (2). Therefore, we only need to focus on constraints (3d) and (3e).

To establish constraint (3d), observe that (x,y) satisfies constraint (2d), so for each i∈ {1, . . . , n},
we have ∑

j:σk(j)>σk(i)

ykj ≤ 1−xi.

Observe that for any j with σk(j)>σk(i), we have that

ykj ≤
∑

j′:σk(j′)>σk(i)

ykj′

which, combined with constraint (2d), lets us assert that

ykj ≤ 1−xi,

for every i ∈ {1, . . . , n} and every j with σk(j) > σk(i). This establishes that (x,y) satisfies con-
straint (3d); similar reasoning allows us to establish that constraint (3e) is also satisfied. �

EC.1.2.2. Proof of Part (b) Let (x,y) be an optimal solution to the relaxation of prob-
lem (2). We need to establish that (x,y) is feasible for problem (4). We begin by observing that
constraints (4b), (4c) and (4f) are automatically satisfied, since these constraints also exist in
problem (2). Therefore, we only need to focus on constraints (4d) and (4e).

Before we begin, let us establish a useful identity for (x,y). Constraint (2d) is∑
j:σk(j)>σk(i)

ykj ≤ 1−xi,

which can be re-arranged to obtain

xi ≤ 1−
∑

j:σk(j)>σk(i)

ykj .

Combining this last inequality with constraint (2b), we obtain

xi ≤
∑

j:σk(j)≤σk(i)

ykj . (EC.2)

Now, to show that constraint (4d) holds, we have

(uki −Lk)xi +Lk ≤ (uki −Lk)
∑

j:σk(j)≤σk(i)

ykj +Lk

= (uki −Lk)
∑

j:σk(j)≤σk(i)

ykj +Lk
n∑
j=0

ykj

= (uki −Lk)
∑

j:σk(j)≤σk(i)

ykj +Lk
∑

j:σk(j)≤σk(i)

ykj +Lk
∑

j:σk(j)>σk(i)

ykj

=
∑

j:σk(j)≤σk(i)

uki y
k
j +

∑
j:σk(j)>σk(i)

Lkykj

 Electronic copy available at: https://ssrn.com/abstract=3020502

e-companion to Bertsimas and Mǐsić: Exact first-choice product line optimization ec3

≤
∑

j:σk(j)≤σk(i)

ukjy
k
j +

∑
j:σk(j)>σk(i)

ukjy
k
j

=
n∑
j=0

ukjy
k
j

where the first step follows by identity (EC.2) and the fact that (uki −Lk) is nonnegative (recall
the definition of Lk as Lk = min0≤i≤n u

k
i); the second step follows by constraint (2b); the third

step follows by splitting the second sum from the second step; the fourth step follows by putting
together the first two sums in the third step, and then moving the coefficient in front of each sum
to inside its respective sum; the fifth step follows by the fact that each ykj is nonnegative, each ukj
is nonnegative, that

ukj ≥ uki
whenever σk(j)≤ σk(i), and that Lk ≤ ukj for all j; and the final step by simple algebra. Similar
reasoning can be used to establish that constraint (4e) holds. �

EC.1.2.3. Proof of Part (c) Let (x,y) be an optimal solution to the relaxation of prob-
lem (2). We need to establish that (x,y) is feasible for problem (5). As in parts (a) and (b),
constraints (5b), (5c) and (5g) are automatically satisfied as these constraints are also found in
problem (2). We thus only need to establish that constraints (5d), (5e) and (5f) hold.

We begin by considering constraint (5d). We proceed in two cases.

Case 1: ukj <u
k
i . In this case, we have

ukjxj −Uk(1− yki)≤ ukj −Uk(1− yki)

≤ ukj −uki (1−xi)
= ukj −uki +uki xi

≤ uki xi,
where the first step follows by the fact that ukj is nonnegative and xj is upper bounded by 1;
the second step follows by the fact that Uk ≥ uki for all i and the fact that xi ≤ yki , which can be
re-arranged to assert that (1− yki) ≥ (1− xi); the third step by algebra; and the fourth by the
assumption of this case.

Case 2: ukj >u
k
i . Recall that by constraint (2d), we have

ykj ≤
∑

j′:σk(j′)>σk(i)

yki ≤ 1−xi

for any σk(j)>σk(i); re-arranging, we get that whenever σk(j)>σk(i), we have

xi ≤ 1− ykj . (EC.3)

Now, observe that, since ukj >u
k
i , it must be that σk(j)<σk(i). We therefore have

ukjxj −Uk(1− yki)≤ ukjxj −Ukxj

≤ 0

≤ uki xi,
where the first step follows by inequality (EC.3); the second step follows by the fact that Uk ≥ ukj
for all j; and the final step by the fact that both uki and xi are nonnegative.

This establishes constraint (5d). Similar reasoning can be used to establish constraints (5e) and
(5f). �

 Electronic copy available at: https://ssrn.com/abstract=3020502

ec4 e-companion to Bertsimas and Mǐsić: Exact first-choice product line optimization

EC.1.3. Proof of Proposition 2

The proof of Proposition 2 follows almost immediately from the proof of Part (c) of Theorem 1.
As in part (c) of Theorem 1, the only constraints that need to be established are (5d), (5e) and
(5f); just as in part (c) of Theorem 1, we will only focus on (5d).

Constraint (5d) can be established in the same way: case 1 follows through without any modifi-
cations, and for case 2, the key inequality that is needed is

ykj ≤ 1−xi
for any j such that σk(j)>σk(i). For a feasible solution of our problem (2), this was established as
an implication of constraint (2d). For a feasible solution of problem (3), it is even more straight-
forward because this inequality is actually a constraint of problem (3) (specifically constraint (3d))
and so is automatically available to us.

Thus, the same steps used in the proof of part (c) of Theorem 1 are applicable here, which
establishes the result. �

EC.1.4. Proof of Proposition 3

We first prove that FBFSS * FUtility. We will prove this through a counterexample. Consider an
instance with n = 5 and K = 1, and the ranking σ defined by σ(i) = i− 1 for i ∈ {1, . . . ,5} and
σ(0) = 5 (we drop the k superscript for convenience). Set C = [0T],d = [0] (i.e., the constraint
Cx≤ d is vacuous). Let the utility function be given by ui = 6− i for i∈ {1, . . . ,5} and u0 = 0, so
that L= 0.

We can see that the following is a feasible solution of FBFSS:

x1 = 0.5, y1 = 0,

x2 = 0.5, y2 = 0,

x3 = 0.5, y3 = 0,

x4 = 0.5, y4 = 0.5,

x5 = 0.5, y5 = 0.5,

y0 = 0.

However, this solution does not belong to FUtility. To see this, observe that
∑n

j=0 uj · yj = 1.5.
However, for i= 1, we have

(ui−L)xi +L= (5− 0)× 0.5 + 0

= 2.5

�
n∑
j=0

ujyj = 1.5,

i.e., constraint (4d) of problem (4) is violated. Thus, the candidate solution (x,y) is not in FUtility.
This shows that in general, FBFSS is not contained in FUtility.

We now prove that FUtility *FBFSS. Consider the same instance as above. The following solution
is a feasible solution of FUtility:

x1 = 0.8, y1 = 0.5,

x2 = 0.5, y2 = 0.5,

x3 = 0, y3 = 0,

x4 = 0, y4 = 0,

x5 = 0, y5 = 0,

y0 = 0.

 Electronic copy available at: https://ssrn.com/abstract=3020502

e-companion to Bertsimas and Mǐsić: Exact first-choice product line optimization ec5

The solution is not, however, a feasible solution of FBFSS. To see this, observe that we should have
y2 ≤ 1−x1, by virtue of constraint (3d), but in the above solution, y2 = 0.5� 1−x1 = 1−0.8 = 0.2.
Therefore, in general, FUtility *FBFSS. �

EC.1.5. Proof of Proposition 4

When K = 1 and the constraint Cx≤ d is removed from the formulation, the feasible region F of
the LO relaxation of problem (2) is the set of (x,y) that satisfy the following set of constraints:

xi +
∑

j:σ(j)>σ(i)

yj ≤ 1, ∀i∈ {1, . . . , n}, (EC.4)∑
j:σ(j)>σ(0)

yj ≤ 0, (EC.5)

−xi + yi ≤ 0, ∀i∈ {1, . . . , n}, (EC.6)

xi ≤ 1, ∀i∈ {1, . . . , n}, (EC.7)
n∑
j=0

yj ≤ 1, (EC.8)

−
n∑
j=0

yj ≤−1, (EC.9)

x≥ 0, (EC.10)

y≥ 0. (EC.11)

Note that in the above system, we have re-arranged the inequalities so that all variables are on one
side. Note also that constraint (2e) is re-expressed as an inequality and the unit sum constraint (2b)
is expressed as two inequalities. In matrix form, the above system can be re-written as

A

[
x
y

]
≤ b, (EC.12)

x,y≥ 0. (EC.13)

To show that F is integral, we will first show that the matrix A is totally unimodular.
To prove that A is totally unimodular, we will use the following characterization of total uni-

modularity (see Bertsimas and Weismantel 2005):

Proposition EC.1 (Corollary 3.2 from Bertsimas and Weismantel 2005). A matrix A is
totally unimodular if and only if each collection Q of rows of A can be partitioned into two parts
so that the sum of the rows in one part minus the sum of the rows in the other is a vector with
entries only in {0,+1,−1}.

For notational convenience, instead of working with rows, we will work in terms of algebraic
expressions involving x and y. There are four types of expressions which we denoted by A, B, C
and D:

A(i), i∈ {1, . . . , n} : xi +
∑

j:σ(j)>σ(i)

yj (EC.14)

A(0) :
∑

j:σ(j)>σ(0)

yj (EC.15)

B(i), i∈ {1, . . . , n} : −xi + yi (EC.16)

C(i), i∈ {1, . . . , n} : xi (EC.17)

 Electronic copy available at: https://ssrn.com/abstract=3020502

ec6 e-companion to Bertsimas and Mǐsić: Exact first-choice product line optimization

D(1) :
n∑
j=0

yj (EC.18)

D(2) : −
n∑
j=0

yj (EC.19)

Instead of working with a collection of rows Q, we will assume that of each type of expression (A,
B, C and D) we are given a collection of expressions:

SA ⊆ {0,1, . . . , n},
SB ⊆ {1, . . . , n},
SC ⊆ {1, . . . , n},
SD ⊆ {1,2}.

To establish the equivalent condition in Proposition EC.1, we will show that given SA, SB, SC, SD,
we can partition the expressions into two groups R+,R− such that the difference of the sums of
the expressions in each group will yield an expression∑

e∈R+

e−
∑
e∈R−

e=
n∑
i=1

qixi +
n∑
j=0

wjyj,

where each qi and each wj is in {0,+1,−1}. This will establish that A is totally unimodular.
We provide a constructive procedure for generating a valid partition. This procedure proceeds

in four steps.

Step 1. Sort the indices i∈ SA according to σ. Specifically, obtain the ordering i1, i2, . . . , i|SA|, such
that

σ(i1)<σ(i2)< · · ·<σ(i|SA|).

Now, for each ij ∈ SA:
• If j is odd, put expression A(ij) in R+. If additionally ij ∈ SB, put B(ij) in R+.
• If j is even, put expression A(ij) in R−. If additionally ij ∈ SB, put B(ij) in R−.

If we evaluate
∑

e∈R+
e−∑e∈R− e, we will obtain an expression of the following form:∑

i∈I+

(+1)xi +
∑
i∈I−

(−1)xi +
∑
j∈J

(+1)yj,

where J ⊆ {0,1, . . . , n}, and where I+, I− ⊆ {1, . . . , n}. Note that by the above procedure, the
resulting coefficient of each xi is either 0 (if the corresponding i was in both SA and SB, or not
in SA), +1 (if the corresponding i = ij was in SA and not in SB, and j was odd) or -1 (if the
corresponding i= ij was in SA and not in SB, and j was even). Note that I+ and I− do not intersect
– each i∈ I+ corresponds to an ij for an odd j, and each i∈ I− corresponds to an ij for an even j.

Lastly, note that the coefficients on the yj’s so far are either 0 or +1. This is assured because we
have sorted the i’s from most to least preferred in terms of σ, and so the yj’s that participate in
A(i1),A(i2), . . . ,A(i|SA|) form a nested sequence. In particular, for odd |SA|, we have

A(i1)−A(i2) + A(i3)−A(i4) + · · ·+ A(|SA|)
= xi1 −xi2 +xi3 −xi4 + · · ·+xiA+

+
∑

j:σ(j)>σ(i1)

yj −
∑

j:σ(j)>σ(i2)

yj +
∑

j:σ(j)>σ(i3)

yj −
∑

j:σ(j)>σ(i4)

+ · · ·+
∑

j:σ(j)>σ(i|SA|
)

yj

= xi1 −xi2 +xi3 −xi4 + · · ·+xiA

+
∑

j:σ(i2)≥σ(j)>σ(i1)

yj +
∑

j:σ(i4)≥σ(j)>σ(i3)

yj + · · ·+
∑

j:σ(j)>σ(i|SA|
)

yj.

 Electronic copy available at: https://ssrn.com/abstract=3020502

e-companion to Bertsimas and Mǐsić: Exact first-choice product line optimization ec7

and for even |SA| we end up with (intermediate steps omitted)

A(i1)−A(i2) + A(i3)−A(i4) + · · ·+ A(|SA| − 1)−A(|SA|)
= xi1 −xi2 +xi3 −xi4 + · · ·+xi|SA|−1

−xi|SA|

+
∑

j:σ(i2)≥σ(j)>σ(i1)

yj +
∑

j:σ(i4)≥σ(j)>σ(i3)

yj + · · ·+
∑

j:σ(i|SA|
)≥σ(j)>σ(i|SA|−1)

yj.

By the definition of i1, i2, . . . , i|SA|, all of the intervals of the form {i′ : σ(ij+1)≥ σ(i′)> σ(ij)} are
disjoint and do not intersect, so all yj’s have coefficients of 0 or +1. Note that once we add the B(i)
expressions for those i∈ SA∩SB as described above (we add B(ij) to R+ if j is odd, and to R− if j
is even), this will only change whether the inequalities in each interval {i′ : σ(ij+1)≥ σ(i′)>σ(ij)}
are strict or non-strict. In the end, after we perform Step 1, all yj’s have a coefficient of 0 or +1.

Step 2. For i∈ SB \SA:
• If i∈ J (coefficient of yj after Step 1 is +1), then add B(i) to R−; otherwise,
• If i /∈ J (coefficient of yj after Step 1 is 0), then add B(i) to R+.

Observe that by definition of this step, each yj still has a coefficient of either 0 or +1. Observe also
that by taking this step, the coefficients of the xi’s remain in {0,+1,−1}. This is because the xi’s
whose coefficients change in this step are disjoint from the xi’s whose coefficients changed in Step
1 – more specifically, I+, I− ⊆ SA, while the i’s which are being set here are for those i’s in SB \SA.

If we evaluate
∑

e∈R+
e−∑e∈R− e after this step, we will thus obtain an expression of the following

form: ∑
i∈I+

(+1)xi +
∑
i∈I−

(−1)xi +
∑

j∈J\(SB\SA)

(+1)yj +
∑

j∈(SB\SA)\J

(+1)yj

+
∑

i∈(SB\SA)∩J

(+1)xi +
∑

i∈(SB\SA)∩JC

(−1)xi.

Step 3. For i∈ SC:
• If i∈ I+, add C(i) to R−.
• If i∈ I−, add C(i) to R+.
• If i∈ (SB \SA)∩J , add C(i) to R−.
• If i∈ (SB \SA)∩JC , add C(i) to R+.
• If i is not in any of the above sets, add C(i) to R+.

In this step, we are adding the C(i) expressions in accordance with the current sign of xi in the
expression after Step 2, so as to ensure that every xi’s coefficient remains in {0,+1,−1}. After this
step, if we evaluate

∑
e∈R+

e−∑e∈R− e, we obtain

∑
i∈I+\SC

(+1)xi +
∑

i∈I−\SC

(−1)xi +
∑

j∈J\(SB\SA)

(+1)yj +
∑

j∈(SB\SA)\J

(+1)yj

+
∑

i∈[(SB\SA)∩J]\SC

(+1)xi +
∑

i∈[(SB\SA)∩JC]\SC

(−1)xi +
∑

i∈SC\[I+∪I−∪(SB\SA)]

(+1)xi. (EC.20)

Step 4. Finally, we are left with assigning the expressions in SD. This step has four possible cases:
• If SD is empty, then we are left with expression (EC.20).
• If SD = {1,2}, then assign both D(1) and D(2) to R+. Because D(1) and D(2) involve the same

variables and have opposite sign, they cancel out, and again we are left with expression (EC.20).

 Electronic copy available at: https://ssrn.com/abstract=3020502

ec8 e-companion to Bertsimas and Mǐsić: Exact first-choice product line optimization

• If SD = {1}, then assign D(1) to R−. Intuitively, this assignment is safe because all yj’s up to
this point have a coefficient of +1 or 0 and we are only subtracting 1 from the coefficient of every
yj. As a result, our expression becomes∑

i∈I+\SC

(+1)xi +
∑

i∈I−\SC

(−1)xi +
∑

j∈(SB\SA)∩J

(−1)yj +
∑

j∈[(SB\SA)∪J]C

(−1)yj

+
∑

i∈[(SB\SA)∩J]\SC

(+1)xi +
∑

i∈[(SB\SA)∩JC]\SC

(−1)xi +
∑

i∈SC\[I+∪I−∪(SB\SA)]

(+1)xi. (EC.21)

• If SD = {2}, then assign D(2) to R+. Again, this assignment is safe, because all yj’s have a
coefficient of +1 or 0, and we are only adding -1 to every yj’s coefficient. We again end up with
expression (EC.21).

After completing Step 4, we are left with expression (EC.20) or (EC.21). In both of these expres-
sions, all variables have coefficients in {0,+1,−1}; moreover, our procedure assigns all expressions
to either R+ and R− and leaves no expression unassigned.

As a result, invoking Proposition EC.1, we have that the matrix A is totally unimodular. We
now use the following classical result in integer optimization:

Proposition EC.2 (Theorem 3.1(b) of Bertsimas and Weismantel 2005). Let A ∈ Zm×n
be an integer matrix. The matrix A is totally unimodular if and only the polyhedron P (b) = {x ∈
Rn+ |Ax≤ b} is integral for all b∈Zm for which P (b) 6= ∅.
In our context, the vector b defining the system of inequalities (EC.12) is indeed integer. Also, the
feasible region F is nonempty; this will be assured by a later result, Proposition 6, which asserts
that for any x ∈ {0,1}n and any given ranking σk, there exists yk ∈ Rn+1 with yk ≥ 0 such that
(x,yk) satisfy constraints (2b), (2c), (2d) and (2e). Thus, we can apply Proposition EC.2 to assert
that F is integral. This concludes the proof. �

EC.1.6. Proof of Proposition 5

We consider each model separately. In each case, we assume that the constraint Cx≤ d is removed
(or equivalently, we set C = [0T],d = [0], so as to make the constraint Cx≤ d vacuous).

Problem (3) (Belloni et al. 2008): For this formulation, consider n= 5 and σ defined as

σ(2) = 0,

σ(1) = 1,

σ(0) = 2,

σ(3) = 3,

σ(5) = 4,

σ(4) = 5.

It can be shown that x = (1/2,1/2,0,0,0), y = (1/2,1/2,0,0,0,0) (where y is indexed from 0 to
n) is an extreme point of FBFSS. Since this solution is fractional, FBFSS cannot be integral in
general.

Problem (4): For this formulation, consider n= 5 and σ defined as

σ(3) = 0,

σ(5) = 1,

σ(0) = 2,

σ(2) = 3,

σ(1) = 4,

σ(4) = 5.

 Electronic copy available at: https://ssrn.com/abstract=3020502

e-companion to Bertsimas and Mǐsić: Exact first-choice product line optimization ec9

For this ranking, consider the following utilities for the products:

u0 = 3,

u1 = 1,

u2 = 2,

u3 = 5,

u4 = 0,

u5 = 4.

It can be shown that x = (1,1,1/3,0,3/4), y = (0,0,2/3,1/3,0,0) is a fractional extreme point of
FUtility1.

Problem (5) (McBride and Zufryden 1988): For this formulation, since Proposition 1 shows that
FMZ ⊇ FUtility1, the same choice of σ and utilities u0, . . . , un as for problem (4) can be used to
establish that FMZ is not integral in general.

EC.1.7. Proof of Proposition 6

We will prove the result by showing that, in fact, the proposed yk is the only solution of problem (7).
First, letting i∗ = arg minj∈S∪{0} σ

k(j), observe that by constraints (7d) and (7e), we have that for
j ∈ {0,1, . . . , n} with σk(j) > σk(i∗), it must be that ykj = 0. Observe also that for j ∈ {1, . . . , n}
with σk(j)< σk(i∗), it must be that ykj = 0, because it must be that xj = 0 (if xj were 1, then i∗

could not be the index that minimizes σk(j′) for j′ ∈ S ∪{0}).
These two observations imply that yki = 0 for i∈ {0,1, . . . , n}\ {i∗}, and thus by constraint (7b),

it must be that yki∗ = 1. Since this completely specifies yk, it must be the only solution to the
problem and hence the optimal solution of the problem. �

EC.1.8. Proof of Proposition 7

We will proceed in two steps: first, we will show that the proposed solution is feasible, and second,
we will show that the objective value of the proposed solution is exactly π∗, which is the optimal
objective of the primal problem.

Feasibility : Observe that both αk and βk are nonnegative by their definition. Constraint (9c) is
automatically satisfied because by their definition, γk and βk are both nonnegative. Thus, we need
only verify constraint (9b).

For j ∈ S \ {i∗}, we have

γk +
∑

i :σk(i)<σk(j)

βki = γk +βki∗

= π∗+ max
i′∈S

πi′ −π∗

= max
i′∈S

πi′

≥ πj

where the first equality follows by definition of βk, the second by definition of βki∗ and γk, the
third by simple algebra and the final inequality by the definition of the maximum. Since αk is
nonnegative, it follows that

γk +αkj +
∑

i :σk(i)<σk(j)

βki ≥ πj.

 Electronic copy available at: https://ssrn.com/abstract=3020502

ec10 e-companion to Bertsimas and Mǐsić: Exact first-choice product line optimization

For j ∈ {1, . . . , n} \S, we have

γk +αkj +
∑

i :σk(i)<σk(j)

βki ≥ γk +

πj − γ− ∑
i :σk(i)<σk(j)

βki

+
∑

i :σk(i)<σk(j)

βki

= πj

where the inequality follows by the definition of αkj via the maximum function. Thus, constraint (9b)
holds for j ∈ {1, . . . , n} \S.

The above two cases fully verify constraint (9b) when i∗ = 0. In the case that i∗ 6= 0, we must
check constraint (9b) for i∗. If i∗ 6= 0, we have for i∗ that

γk +
∑

i :σk(i)<σk(i∗)

βki = γk

= π∗

= πi∗ ,

where the first equality follows by definition of β, the second by definition of γk and the third by
definition of π∗. Since α≥ 0 by definition, constraint (9b) must hold for j = i∗. This concludes our
proof of the feasibility of (αk,βk, γ).

Objective value: For j ∈ S \ {i∗}, we have that

αkj = max

πj − γk− ∑
i :σk(i)<σk(j)

βki ,0


= max{πj −max

i′∈S
πi′ ,0}

= 0

and if i∗ 6= 0, then for i∗ we have that

αki∗ = max

πi∗ − γk− ∑
i :σk(i)<σk(j)

βki ,0


= max{πi∗ −πi∗ − 0,0}
= 0.

Thus, we have αkj = 0 for any j ∈ S, or equivalently, any j with xj = 1. Similarly, for j ∈ {1, . . . , n}\S
or equivalently, for any j ∈ {1, . . . , n} with xj = 0, we have that βkj = 0. Thus, when we consider
the objective value of the solution, we get

γk +
n∑
j=1

αkjxj +
n∑
i=1

βki (1−xi) = π∗+ 0 + 0

= π∗

which is exactly the optimal value of the primal problem. Thus, it follows that (αk,βk, γk) is a
dual optimal solution. �

 Electronic copy available at: https://ssrn.com/abstract=3020502

e-companion to Bertsimas and Mǐsić: Exact first-choice product line optimization ec11

EC.1.9. Proof of Theorem 2

We proceed in three stages. First, we show that y is primal feasible. Second, we show that (α,β, γ)
is dual feasible. Finally, we show that the two solutions satisfy complementary slackness, which
establishes that they are optimal.

Primal feasibility. It is clear from the structure of the algorithm that constraints (13d) and (13c)
are never violated in the algorithm; in addition, at each stage of the algorithm, the solution y
satisfies the inequality

∑n

j=0 yj ≤ 1. Note also that since these constraints are never violated, the
slacks associated with these inequality constraints are never negative. Therefore, whenever yτ(s) is
set to q∗, it is never set to a negative value; yj must therefore always be nonnegative, for all j.

We only need to verify that
∑n

j=0 yj = 1, i.e., the sum of the yj variables is exactly one upon
termination. To see this, we proceed in two cases:

1. Case 1: Bmain 6= ∅. If Bmain is not empty, then let i∗∗ = arg mini∈Bmain
σ(i), i.e., it is the option

in Bmain that has the lowest rank. After the algorithm terminates, we know that the preference
constraint (13d) for i∗∗ is satisfied at equality, that is:∑

j:σ(j)>σ(i∗∗)

yj = 1−xi∗∗ .

Given this, we now ask: what happens when the algorithm checks i∗∗? By our assumption on i∗∗,
it cannot be that there is a B event when we check i∗∗. Therefore, either a C event happens, in
which case we are done because we will set yi∗∗ so as to reach the unit sum; or it is neither a C nor
a B event, in which case it must be an A event. This latter case cannot happen (if i∗∗ is checked
before f(i∗∗), then when f(i∗∗) is checked there should be a C event; if i∗∗ is checked after f(i∗∗),
then there should also be a C event). Therefore, it must be the case

∑n

j=0 yj = 1 upon termination.
2. Case 2: Bmain = ∅. If Bmain is empty, then at each stage of the algorithm there is either an

A event or a C event. If there is a C event, we are done. Note that if a C event does not occur by
stage s= n, then it must occur at stage s= n, because τ(n) = 0 is the no-purchase option, xτ(n) is
1, and 1−∑n

j=0 yj at stage s= n is at most 1.

Dual feasibility. Before we show that (α,β, γ) is dual feasible, let us present two useful results
regarding the dual phase of the algorithm:

Observation 1. In Algorithm 2, observe that when we sort Bmain = {i1, i2, . . . , i|Bmain|} in increas-
ing order of σ (i.e., σ(i1)< σ(i2)< · · ·< σ(i|Bmain|)), then we also have that πf(i1) ≤ πf(i2) ≤ · · · ≤
πf(i|Bmain|)

. The reason for this is that, by definition of the arg min in the clause for B events in
Algorithm 1, we always take the one with the lowest value of σ. Therefore, as we progress through
the algorithm, the options i∗ that we add to Bmain are such that their values of σ are decreasing.
(They cannot be increasing, because of the way we have defined the arg min.) Since Algorithm 1
checks the options in decreasing order of πi, it must be that πf(i1) ≤ πf(i2) ≤ · · · ≤ πf(i|Bmain|)

.

Observation 2. By the definition of Algorithm 2, we have that

γ+
t∑

t′=1

βit′ = πf(it).

Having defined the two observations, let us now check dual feasibility. The dual constraints are:

γ+αi +
∑

j:σ(j)<σ(i)

βj ≥ πi, ∀i∈ {0,1, . . . , n} (EC.22)

αi ≥ 0, ∀i∈ {0,1, . . . , n}, (EC.23)

βj ≥ 0, ∀j ∈ {0,1, . . . , n}. (EC.24)

Let us begin by checking (EC.24). The set of i’s breaks into two cases:

 Electronic copy available at: https://ssrn.com/abstract=3020502

ec12 e-companion to Bertsimas and Mǐsić: Exact first-choice product line optimization

1. Case 1: i∈Bmain. If i∈Bmain, then i= it for some t∈ {1, . . . , |Bmain|}. For t= 1, we have

βi1 = πf(i1)− γ,
which is nonnegative because γ = πC , and option f(i1) must have been checked before option C.
For t > 1, we have:

βit = πf(it)− γ−
t−2∑
t′=1

βit′ −βit−1

= πf(it)− γ−
t−2∑
t′=1

βit′ −
[
πf(it−1)− γ−

t−2∑
t′=1

βit′

]
= πf(it)−πf(it−1),

which is nonnegative because option f(it) is checked before option f(it−1), and so its profit must
be at least that of f(it−1) (see Observation 1). We therefore have βi ≥ 0 for i∈Bmain.

2. Case 2: i /∈Bmain. By the way that β is initialized, βi = 0 for these i’s.

Having checked (EC.24), let us check (EC.23). For i /∈A, αi is initialized to zero, so the condition
is satisfied. For i∈A, we have that

αi = πi− γ−
∑

j:σ(j)<σ(i)

βj,

and by the structure of the βj’s, we know that the last sum can be written as

αi = πi− γ−
t∑

t′=1

βit′ ,

for some t∈ {1, . . . , |Bmain|}. Note that by Observation 2, we have that

γ+
t∑

t′=1

βit′ = πf(it).

Therefore, αi simplifies to
αi = πi−πf(it).

So now the question is whether f(it) was checked after i or not (i.e., is πi ≥ πf(it)). If f(it) was
checked before i, then we know that the constraint

∑
j:σ(j)>σ(it)

yj ≤ 1−xit became tight. But recall
that it is also the case that σ(it)<σ(i). Therefore, if f(it) were checked before i, the aforementioned
constraint becoming tight would mean that when checking i, q2 would have been equal to q∗ (a B
event would have occurred) and Algorithm 1 would not have added i to A. Therefore, it must be
that πi−πf(it) ≥ 0, so that αi ≥ 0.

Having checked (EC.23), let us now check the last dual constraint (EC.22). We can break the
set of i’s into four mutually exclusive and collectively exhaustive cases.

1. Case 1: i’s for which πi ≤ πC . In this case, we have

γ+αi +
∑

j:σ(j)<σ(i)

βj ≥ γ+ 0 + 0

= πC

≥ πi,
where the first inequality holds by the non-negativity of α and β verified above. Thus, the constraint
holds for this case.

 Electronic copy available at: https://ssrn.com/abstract=3020502

e-companion to Bertsimas and Mǐsić: Exact first-choice product line optimization ec13

2. Case 2: The set of i’s for which a B event occurs (q∗ = q2) and i= f(it) for some it ∈Bmain.
In this case, we can use Observation 2 to assert that

γ+αi +
∑

j:σ(j)<σ(i)

βj = γ+ 0 +
t∑

t′=1

βit′

= πf(it),

which clearly satisfies the constraint.
3. Case 3: The set of i’s for which a B event occurs (q∗ = q2), but i 6= f(it) for all it ∈Bmain. Let

it ∈Bmain be the minimizer in the B event clause in Algorithm 1 when i is checked. Specifically,
we have:

it = arg min
p:σ(p)<σ(i)

1−xp−
∑

j:σ(j)>σ(p)

yj

 .

Since i 6= f(it) for any it ∈ Bmain, this means that it was already added to Bmain in an earlier
iteration of the Algorithm 1. Therefore, πf(it) ≥ πi. Also, observe that σ(i1)< · · ·<σ(it)<σ(i), by
the definition of it above. Therefore, we have

γ+αi +
∑

j:σ(j)<σ(i)

βj ≥ γ+
t∑

t′=1

βit′

= πf(it)

≥ πi,

where the first inequality follows because σ(it)< σ(i); i1, . . . , it are a subset of the sum condition
on the left-hand expression. This establishes the constraint.

4. Case 4: i∈A. By the definition of αi, we have

γ+αi +
∑

j:σ(j)<σ(i)

βj = γ+ (πi− γ−
∑

j:σ(j)<σ(i)

βj) +
∑

j:σ(j)<σ(i)

βj

= πi,

which verifies the constraint.

Complementary slackness. The complementary slackness conditions are:

γ · (1−
n∑
j=0

yj) = 0 (EC.25)

βi · (1−xi−
∑

j:σ(j)>σ(i)

yj) = 0 (EC.26)

αi · (xi− yi) = 0 (EC.27)

yi · (γ+αi +
∑

j:σ(j)<σ(i)

βj −πi) = 0. (EC.28)

Equation (EC.25) is automatically satisfied, because the y solution produced by our algorithm
is feasible and satisfies the unit sum condition.

To see that equation (EC.26) holds, observe that for i /∈Bmain produced by the algorithm, βi = 0
and the condition holds. Therefore, we only need to check i∈Bmain. For i∈Bmain, observe that i
is only added to Bmain by the algorithm whenever the inequality

∑
j:σ(j)>σ(i) yj ≤ 1− xi becomes

 Electronic copy available at: https://ssrn.com/abstract=3020502

ec14 e-companion to Bertsimas and Mǐsić: Exact first-choice product line optimization

tight the very first time. Therefore, for i ∈ Bmain, the y produced by our algorithm will satisfy
(1−xi−

∑
j:σ(j)>σ(i) yj) = 0, and the condition holds.

To see that equation (EC.27) holds, observe that for i /∈A, αi by default is set to zero and the
condition holds. Therefore, we only need to check i∈A. For i∈A, observe that i is only added to
A when the inequality yi ≤ xi becomes tight. Therefore, for i∈A, the y produced by our algorithm
will satisfy xi− yi = 0, and thus the condition will hold.

Finally, to see that equation (EC.28) holds, we proceed carefully in several steps. First, observe
that in Algorithm 1, if a C event occurs, then C = τ(s), and the loop is terminated. For i with
πi ≤ πC , observe that yi = 0 (since the loop was terminated at option C, and all yj’s for j’s with
lower profit than C were initialized to zero).

This leaves i’s for which πi >πC . This remaining set of i’s can be partitioned into three mutually
exclusive and collectively exhaustive cases, which we now treat.

1. Case 1: A B event occurred for i (q∗ = q2) and i= f(it) for some it ∈Bmain. This is the case
when we first encounter the option it as the arg min of expression q2. In this case, by the way that
we have specified the dual solution, we have that

γ+αi +
∑

j:σ(j)<σ(i)

βj −πi = γ+
t∑

t′=1

βit′ −πi

= πi−πi
= 0,

and thus equation (EC.28) must hold.
2. Case 2: A B event occurred for i (q∗ = q2) and i 6= f(it) for all it ∈Bmain. This is the case

when q∗ = q2, but the it which is the arg min that leads to q2 has already been encountered. Since
it has already been encountered, it is the case that πf(it) ≥ πi. This is the case because Algorithm 1
scans through the options in decreasing order of profit.

Since it was already added to Bmain by Algorithm 1 when option f(i∗) was tested, the constraint∑
j:σ(j)>σ(it)

yj ≤ 1−xit must have become binding after option f(i∗). Therefore yi must have been
set to zero. Since yi is zero, equation (EC.28) must hold.

3. Case 3: i∈A. By the definition of αi, we have that:

γ+αi +
∑

j:σ(j)<σ(i)

βj −πi = γ+

πi− γ− ∑
j:σ(j)<σ(i)

βj

+
∑

j:σ(j)<σ(i)

βj −πi

= 0,

so that again, equation (EC.28) holds.
Since we have established that the two solutions are feasible for their respective problems and

satisfy complementary slackness, this concludes the proof. �

EC.2. Additional theoretical results for Benders decomposition
EC.2.1. Solving the integer Benders problem using classical constraint generation

In this section, we present a constraint generation procedure for solving the Benders problem (10).
For the purpose of defining our constraint generation procedure, let us suppose that for each
customer type k, we have a set of dual solutions Āk ⊆ Ak that have been generated so far. We
define the restricted master problem as

maximize
x,t

K∑
k=1

λktk (EC.29a)

 Electronic copy available at: https://ssrn.com/abstract=3020502

e-companion to Bertsimas and Mǐsić: Exact first-choice product line optimization ec15

subject to tk ≤ γk +
n∑
i=1

αki ·xi +
n∑
i=1

βki · (1−xi), ∀ k ∈ {1, . . . ,K}, (αk,βk, γk)∈ Āk,

(EC.29b)

Cx≤ d, (EC.29c)

xi ∈ {0,1}, ∀ i∈ {1, . . . , n}. (EC.29d)

We define our classical constraint generation procedure as Algorithm 3.

Algorithm 3 Classical constraint generation algorithm for solving integer Benders formulation

Set Āk = ∅ for all customer types k ∈ {1, . . . ,K}.
Solve the restricted master problem (EC.29) to obtain a solution (x, t).
For each k ∈ {1, . . . ,K}:

Determine primal subproblem solution yk using equation (8) and dual subproblem solution
(αk,βk, γk) using equations (11a) – (11c).
while maxk=1,...,K(tk−πTyk)> 0 do

For each k ∈ {1, . . . ,K} with πTyk < tk:
Set Āk← Āk ∪{(αk,βk, γk)}.

Solve restricted master problem (EC.29) with Ā1, . . . , ĀK to obtain (x, t).
For each k ∈ {1, . . . ,K}:

Determine primal subproblem solution yk using equation (8) and dual subproblem solution
(αk,βk, γk) using equations (11a) – (11c).

end while
return Optimal solution (x, t) of problem (10).

A standard result for constraint generation algorithms is that the solution returned by the
algorithm is optimal. For completeness, we prove below that the solution produced by Algorithm 3
is in fact optimal.

Proposition EC.3. Let (x, t) be the solution obtained upon termination of Algorithm 3. Then
(x, t) is an optimal solution of problem (10).

Proof of Proposition EC.3: To prove this, let (x∗, t∗) be an optimal solution of problem (10)
and let Z1 =

∑K

k=1 λ
kt∗k be the optimal objective value of the master solution. Let Z2 =

∑K

k=1 λ
ktk

be the objective value of the solution generated by Algorithm 3.
Upon termination of Algorithm 3, (x, t) is the optimal solution of the restricted master problem

with constraints (EC.29b) enforced at the sets Ā1, . . . , ĀK of dual subproblem solutions that were
generated over the execution of Algorithm 3. Since Āk ⊆ Ak (the set of generated dual solutions
for a given customer type k is a subset of all dual feasible solutions for a customer type k), then
(x∗, t∗) must be a feasible solution for problem (EC.29). Since problems (10) and (EC.29) share
the same objective function in terms of x and t, and since (x, t) is an optimal solution of (EC.29)
it follows that Z1 ≤Z2.

Now, upon termination of the algorithm, we have that

max
k=1,...,K

(tk−πTyk)≤ 0,

which is equivalent to
tk ≤πTyk, ∀ k ∈ {1, . . . ,K},

where yk is the solution obtained from equation (8). By Proposition 6, each yk is guaranteed to
be an optimal solution of the primal subproblem for customer type k at the current solution x.

 Electronic copy available at: https://ssrn.com/abstract=3020502

ec16 e-companion to Bertsimas and Mǐsić: Exact first-choice product line optimization

Similarly, by Proposition 7, each (αk,βk, γk) is guaranteed to be an optimal solution of the dual
subproblem for customer type k at x. Therefore, by strong duality, the primal subproblem objective
value πTyk is equal to the dual subproblem objective value γk +

∑n

i=1α
k
i xi +

∑n

j=0 β
k
j (1−xj). We

thus have:

tk ≤ γk +
n∑
i=1

αki xi +
n∑
j=1

βkj (1−xj), ∀ k ∈ {1, . . . ,K},

Since (αk,βk, γk) is the optimal dual subproblem solution at x, the above is equivalent to

tk ≤min

{
γ̄k +

n∑
i=1

ᾱki xi +
n∑
j=1

β̄j(1−xj) (ᾱk, β̄
k
, γ̄k)∈Ak

}
, ∀ k ∈ {1, . . . ,K}.

This last inequality is exactly equivalent to

tk ≤ γ̄k +
n∑
i=1

ᾱki xi +
n∑
j=1

β̄kj (1−xj), ∀ (ᾱk, β̄
k
, γ̄k)∈Ak, k ∈ {1, . . . ,K},

which is exactly constraint (10b). Thus, (x, t) must be a feasible solution of the master problem (10).
Since problems (10) and (EC.29) share the same objective function, we must have that Z2 =∑K

k=1 λ
ktk ≤Z1.

Since we have established that Z1 ≤ Z2 and Z1 ≥ Z2, it must be that Z1 = Z2, and that (x, t)
attains the optimal objective value in problem (10). Since (x, t) is a feasible solution of problem (10),
it thus follows that it is optimal. �

EC.2.2. Solving the LO relaxation of the Benders problem using classical constraint
generation

Analogously to the integer problem, we can solve the LO relaxation of the Benders formulation
using a classical constraint generation approach. We define the restricted master problem as:

maximize
x,t

K∑
k=1

λktk (EC.30a)

subject to tk ≤ γk +
n∑
i=1

αki ·xi +
n∑
i=1

βki · (1−xi), ∀ k ∈ {1, . . . ,K}, (αk,βk, γk)∈ Āk,

(EC.30b)

Cx≤ d, (EC.30c)

0≤ xi ≤ 1, ∀ i∈ {1, . . . , n}. (EC.30d)

Algorithm 4 provides the classical constraint generation procedure for solving the LO relax-
ation of the Benders problem. This algorithm is almost exactly the same as Algorithm 3; the only
difference is that instead of problem (EC.29), we solve problem (EC.30), and instead of using equa-
tions (11a) – (11c) to find the primal and dual subproblem solutions, we instead apply Algorithms 1
and 2.

Like Algorithm 3, Algorithm 4 is guaranteed to obtain the optimal solution of problem (12). We
formalize this as the proposition below; we omit the proof, since it is almost identical to that of
Proposition EC.3.

Proposition EC.4. Let (x, t) be the solution obtained upon termination of Algorithm 4. Then
(x, t) is an optimal solution of problem (12).

 Electronic copy available at: https://ssrn.com/abstract=3020502

e-companion to Bertsimas and Mǐsić: Exact first-choice product line optimization ec17

Algorithm 4 Classical constraint generation algorithm for solving relaxation of Benders formula-
tion

Set Āk = ∅ for all customer types k ∈ {1, . . . ,K}.
Solve the restricted master problem (EC.30) to obtain a solution (x, t).
For each k ∈ {1, . . . ,K}:

Run Algorithms 1 and 2 with x to obtain a primal solution yk and a dual solution (αk,βk, γk).
while maxk=1,...,K(tk−πTyk)> 0 do

For each k ∈ {1, . . . ,K} with πTyk < tk:
Set Āk← Āk ∪{(αk,βk, γk)}.

Solve restricted master problem (EC.30) with Ā1, . . . , ĀK to obtain (x, t).
For each k ∈ {1, . . . ,K}:

Run Algorithms 1 and 2 with x to obtain a primal solution yk and a dual solution
(αk,βk, γk).

end while
return Optimal solution (x, t) of problem (10).

EC.2.3. Finite convergence of constraint generation

Algorithms 3 and 4 are guaranteed to provide optimal solutions upon termination to the integer
problem and the LO relaxation problem, respectively. In this section, we establish that both algo-
rithms are guaranteed to terminate in finitely many iterations. The first result that we establish is
that the primal and dual subproblem solutions produced by Algorithms 1 and 2 are guaranteed to
be extreme points of their respective subproblems. As with our definitions of Algorithms 1 and 2,
we develop the result in terms of a ranking σ and drop the index k to lighten notation.

Theorem EC.1. Let σ : {0,1, . . . , n}→ {0,1, . . . , n} and x∈ [0,1]n. Let y be the solution produced
by Algorithm 1, and (α,β, γ) be the solution produced by Algorithm 2. Then y is an extreme point
of the primal problem (13) and (α,β, γ) is an extreme point of the dual problem (14).

Proof of Theorem EC.1: We prove the result separately for the primal and dual solutions.

Primal solution is an extreme point: To prove this, we will proceed directly from the definition
of an extreme point. A point z in a polyhedron P is said to be an extreme point if there do not
exist two points, z1,z2 6= z and a real number θ ∈ (0,1) such that z = θz1 + (1− θ)z2.

We will prove this by contradiction. Let us suppose that y is not an extreme point. Then there
exist y1,y2 6= y and a scalar θ ∈ (0,1) such that y = θy1 + (1− θ)y2. Let τ be the same ordering
used in Algorithm 1. Define the index s∗ as

s∗ = min{s∈ {0,1, . . . , n} | y1τ(s∗) 6= yτ(s∗) or y2τ(s∗) 6= yτ(s∗)},

i.e., it is the first stage of Algorithm 1 at which a coordinate of y differs from y1 or y2. Note that
the set defining the minimum cannot be empty, because otherwise both y1 and y2 would be equal
to y. At s∗, we must have that both y1τ(s∗) 6= yτ(s∗) and y2τ(s∗) 6= yτ(s∗) (both must be different from
yτ(s∗), because if only one is distinct, then their convex combination could not be equal to yτ(s∗)).
Note also that s∗ cannot happen after the C event in Algorithm 1 (if s∗ is after the C event, then
yτ(s∗) = 0, and since y1 and y2 must be nonnegative, this would again imply that both y1 and y2

would have to be equal to y).
Without loss of generality, let us assume that y1τ(s∗) < yτ(s∗) < y2τ(s∗). We now argue that y2

cannot be feasible. Observe that, as we proceed from s= 0 to s= s∗− 1, the coordinates of y and
y2 are set the same way. Algorithm 1 always sets each coordinate to the largest possible value it
can be set that maintains the feasibility of all constraints. Thus, at s= s∗, yτ(s∗) is set to the largest
feasible value based on the current values of all the variables; if y2τ(s∗) > yτ(s∗), then that implies
that y2 cannot be feasible:

 Electronic copy available at: https://ssrn.com/abstract=3020502

ec18 e-companion to Bertsimas and Mǐsić: Exact first-choice product line optimization

• If an A event occurred, then this would mean that y2τ(s∗) >xτ(s∗);

• If a C event occurred, then this would mean that
∑s∗

s=0 y
2
τ(s∗) >

∑s∗

s=0 yτ(s∗) = 1, which implies
that

∑n

j=0 y
2
j > 1; and

• If a B event occurred, with i∗ as the corresponding preference inequality that became tight,
then this would mean that

1−xi∗ =
s∗∑
s=0:

σ(τ(s))<σ(i∗)

yτ(s) <
s∗∑
s=0:

σ(τ(s))<σ(i∗)

y2τ(s),

which implies that
∑

j:σ(j)<σ(i∗) y
2
j > 1−xi∗ .

We thus have a contradiction, and it must be that y is an extreme point of the primal problem.

Dual solution is an extreme point: To prove this, we will use the equivalence between extreme
points and basic feasible solutions (see Theorem 2.3 of Bertsimas and Tsitsiklis 1997), and show that
(α,β, γ) is a basic feasible solution. A feasible solution z of a polyhedron P = {z ∈Rm | Az≤ b}
is a basic feasible solution if there are m linearly independent active constraints at z.

Consider the following system of equations:

γ+αC +
∑

j:σ(j)<σ(C)

βj = πC , (EC.31)

γ+αf(it) +
∑

j:σ(j)<σ(f(it))

βj = πf(it), ∀ t∈ {1, . . . , |Bmain|}, (EC.32)

γ+αi +
∑

j:σ(j)<σ(i)

βj = πi, ∀ i∈A, (EC.33)

αi = 0, ∀i ∈ {0,1, . . . , n} \A, (EC.34)

βj = 0, ∀j ∈ {0,1, . . . , n} \ {i1, . . . , i|Bmain|}. (EC.35)

We note that there are 1 + |Bmain|+ |A|+ (n+ 1− |A|) + (n+ 1− |Bmain|) = 2n+ 3 equations,
which is exactly the number of variables in the dual problem. These equations are constraints from
problem (14) that are made to hold at equality. We now show that this system of equations implies
a unique solution, establishing that the system of equations is linearly independent, and we show
that the solution produced by our algorithm coincides with this solution.

First, observe that equations (EC.34) imply that αi = 0 for all i /∈ A. This is also true at the
end of Algorithm 2, because all αi’s are initially set to zero, and the only ones that are potentially
changed from zero are those with i∈A. Similarly, equations (EC.34) – (EC.35) imply that βj = 0
for any j /∈Bmain, which is also true at the end of Algorithm 2.

Second, let us establish that γ must be equal to πC . To do so, we observe the following:
• In Algorithm 1, suppose a C event occurs at stage s. Then the corresponding q∗ must satisfy

q∗ > 0. If this is not the case, then q∗ = 0, which would mean that the equality
∑n

j=0 yj = 1 became
true before the current stage s. However, a C event would then have to have been triggered before
stage s, which cannot be true.
• Using the above observation, we now show that for any it ∈Bmain, we must have σ(it)≥ σ(C).

To see this, suppose that there is an it ∈Bmain such that σ(it)<σ(C). This would imply that the
preference inequality for option it became tight before the C event was triggered. However, since
the preference inequality became tight and C is less preferred than it, this would mean that q∗

would have to be zero in the iteration in which the C event is triggered, which is not possible.
These observations, together with the fact that βj = 0 for any j /∈ {i1, . . . , i|Bmain|} (this is a

consequence of equations (EC.35)) and the fact that αC = 0 (this follows from (EC.34) and the

 Electronic copy available at: https://ssrn.com/abstract=3020502

e-companion to Bertsimas and Mǐsić: Exact first-choice product line optimization ec19

fact that C /∈A, since at most one type of event can occur at each stage), equation (EC.31) implies
that:

γ+αC +
∑

j:σ(j)<σ(C)

βj = γ+ 0 + 0

= γ

= πC .

At the end of Algorithm 2, γ is also set to πC .
Third, we handle βi1 , . . . , βi|Bmain|

. Observe that by using equations (EC.34) and (EC.35),

together with the fact that f(i1), f(i2), . . . , f(i|Bmain|) /∈A (this is true because at most one type of
event can occur at each stage), we can simplify equations (EC.32) to

γ+βi1 = πf(i1)

γ+βi1 +βi2 = πf(i2)

γ+βi1 +βi2 +βi3 = πf(i3)
...

γ+βi1 +βi2 + · · ·+βi|Bmain|
= πf(i|Bmain|)

Notice that the unique solution to this system of equations is exactly given by the first loop of
Algorithm 2. Since our algorithm also sets γ to πC , it follows that any solution to (EC.31) – (EC.35)
must match the solution created by our algorithm for βi1 , . . . , βi|Bmain|

.

Finally, we handle αi for i∈A. The corresponding equations are given by (EC.33), which uniquely
determine αi for each i∈A to be

αi = πi− γ−
∑

j:σ(j)<σ(i)

βj.

These are exactly the same values set by the second loop of Algorithm 2.
We have thus established that the unique solution to (EC.31) – (EC.35) must exactly coin-

cide with the solution produced by our algorithm. This establishes that the solution (α,β, γ) of
Algorithm 2 is a basic feasible solution or equivalently, an extreme point of the dual problem. �

A corollary of this theorem is that the primal and dual subproblem solutions for the integer
problem, which are defined in equations (8) and equations (11a) – (11c) respectively, are also
extreme points.

Corollary EC.1. Let x ∈ {0,1}n and k ∈ {1, . . . ,K}. Let y be the primal subproblem solution
specified by equation (8) and (αk,βk, γk) be the dual subproblem solution specified by equations (11a)
– (11c).Then y is an extreme point of the primal problem (13) and (α,β, γ) is an extreme point of
the dual problem (14).

Proof of Corollary EC.1: It can be shown that the primal solution specified equations (8) and
the dual solution specified by equations (11a) – (11c) coincide with the primal and dual solutions
produced by Algorithms 1 and 2, respectively, when x is binary. The result then follows from
Theorem EC.1. �

With these results, we are now ready to prove that both constraint generation procedures ter-
minate in finitely many iterations.

Proposition EC.5. Algorithms 3 and 4 terminate in finitely many iterations.

 Electronic copy available at: https://ssrn.com/abstract=3020502

ec20 e-companion to Bertsimas and Mǐsić: Exact first-choice product line optimization

Proof of Proposition EC.5: Let us consider Algorithm 4 for the LO relaxation; the proof for
Algorithm 3 follows in the same way. By Algorithm 4, we generate at most one dual subproblem
solution (αk,βk, γk) corresponding to a violated constraint for each customer type k. For a given
k, once the subproblem solution (αk,βk, γk) is added to Āk, any solution of the restricted master
problem in subsequent iterations must satisfy constraint (10b) at (αk,βk, γk); thus, the solution
(αk,βk, γk) will not be generated again in subsequent iterations. This means that for a given k,
each iteration of Algorithm 4 generates a distinct solution (αk,βk, γk). By Theorem EC.1, this
implies that for a given k, each iteration generates a distinct extreme point of the polyhedron Ak.
By standard results in linear optimization theory (see Corollary 2.1 of Bertsimas and Tsitsiklis
1997), the polyhedron Ak of feasible dual subproblem solutions for customer type k has finitely
many extreme points. Since there are finitely many customer types k, Algorithm 4 must terminate
in finitely many iterations.

The proof for Algorithm 3 proceeds in the same way, with the difference that Corollary EC.1
guarantees that each dual subproblem solution is an extreme point. �

 Electronic copy available at: https://ssrn.com/abstract=3020502

e-companion to Bertsimas and Mǐsić: Exact first-choice product line optimization ec21

EC.3. Additional results

EC.3.1. Formulation comparisons with Toubia et al. (2003) data

In this section, we report on additional experiments to compare the solvability and strength of
the different formulations, using instances derived from the Toubia et al. (2003) data. For these
experiments, we tested n∈ {20,50,100} and K = 100. For each (n,K), we created 20 instances as
follows. We sampled n products randomly without replacement from the full set of 3584 products
(as described in Section 5.3), and sampled K customers without replacement from the full set of
330 customers. The utilities for this random subset of products and the no-purchase option for
this random subset of customers were calculated in exactly the same way as in Section 5.3. The
marginal profit of each product was also computed the same way. For each instance, we tested the
constrained formulation with the constraint

∑
i xi ≤ b for b∈ {5,10}, as well as the unconstrained

formulation.
Table EC.1 compares the average integrality gap of the relaxations of the four MIO formulations

of the first-choice PLD problem, while Table EC.2 compares the average solution time (for full
optimality) for the four MIO formulations. From these tables, we observe the same behavior as
with the synthetic instances, namely that our formulation (problem (2)) produces the tightest LO
relaxation bounds and requires the least amount of time to solve to full optimality.

Table EC.1 Comparison of LO bounds for

instances derived from Toubia et al. (2003) data.

n K b GBM GBFSS GUtility GMZ

20 100 5 2.71 7.15 15.83 23.23
20 100 10 2.10 7.36 14.68 21.81
20 100 – 2.10 7.36 14.68 21.81

50 100 5 3.44 7.51 21.63 40.94
50 100 10 3.01 8.96 18.75 33.72
50 100 – 2.43 9.29 17.90 32.32

100 100 5 3.69 6.94 20.22 35.47
100 100 10 3.28 7.99 16.24 27.36
100 100 – 2.69 8.51 14.76 24.95

Table EC.2 Comparison of MIO solution times for

instances derived from Toubia et al. (2003) data.

n K b TBM TBFSS TUtility TMZ

20 100 5 0.40 0.70 1.72 1.40
20 100 10 0.37 0.70 1.22 1.22
20 100 – 0.37 0.76 1.14 1.21

50 100 5 1.44 2.33 11.38 7.95
50 100 10 1.37 3.66 13.91 7.56
50 100 – 1.04 3.36 8.88 6.13

100 100 5 5.12 9.39 88.01 119.27
100 100 10 5.51 18.58 147.75 146.73
100 100 – 3.79 39.65 215.83 126.19

 Electronic copy available at: https://ssrn.com/abstract=3020502

ec22 e-companion to Bertsimas and Mǐsić: Exact first-choice product line optimization

EC.3.2. Additional Benders results without warm-starting

In this set of additional experiments, we test out our Benders method from Section 4 (the LO
relaxation phase and the integer phase) on the same real PLD instance from Section 5.3. The
method was tested in exactly the same way as in Section 5.3, except that we do not run the divide
and conquer algorithm before the Benders method, and so we do not warm-start the Benders
method with an initial integer solution. Table EC.3 shows the results without this warm-starting.
From this table, we can see that for the smaller instances, the time required to prove optimality
is in general larger – for example, for

∑
xi = 5, the warm-started approach from Section 5.3 could

solve the problem in around 10 minutes, whereas without warm-starting, it takes about 17 minutes.
Similarly, for the larger instances, the final optimality gap is larger without warm-starting than
it is with warm-starting. For example, for

∑
xi = 50, we obtain a final optimality gap of 3.09%

with warm-starting, whereas without it, we obtain a gap of 5.73%. The main takeaway from this
experiment is that providing a high-quality integer solution to the Benders method can be very
beneficial, allowing for the problem to be solved more quickly (in smaller instances) or allowing a
better final optimality gap (in larger instances).

Table EC.3 Results of large-scale Benders experiment without warm-starting

with D&C solution.

LO Benders phase MIO Benders phase Final
Constraints Bound Time (s) Obj. Bound Time (s) Gap (%)∑
xi = 2 59.22 175.59 59.22 59.22 54.26 0.00∑
xi = 3 66.57 268.96 66.29 66.29 109.02 0.00∑
xi = 4 71.21 325.45 70.24 70.24 580.42 0.00∑
xi = 5 73.85 392.79 72.82 72.82 650.01 0.00∑
xi = 10 79.36 553.34 77.41 77.41 14934.88 0.01∑
xi = 20 82.65 914.75 77.18 81.81 21617.32 5.67∑
xi = 50 85.01 2572.22 79.64 84.48 21600.09 5.73

