
MIT Open Access Articles

Twisted circle compactifications of 6d SCFTs

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Bhardwaj, Lakshya et al. "Twisted circle compactifications of 6d SCFTs." Journal of 
High Energy Physics 2020, 12 (December 2020):151 © 2020 The Author(s)

As Published: https://doi.org/10.1007/JHEP12(2020)151

Publisher: Springer Science and Business Media LLC

Persistent URL: https://hdl.handle.net/1721.1/130079

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of use: Creative Commons Attribution

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/130079
https://creativecommons.org/licenses/by/4.0/


J
H
E
P
1
2
(
2
0
2
0
)
1
5
1

Published for SISSA by Springer

Received: June 25, 2020
Accepted: November 6, 2020

Published: December 23, 2020

Twisted circle compactifications of 6d SCFTs

Lakshya Bhardwaj,a Patrick Jefferson,b Hee-Cheol Kim,c Houri-Christina Tarazia and
Cumrun Vafaa
aDepartment of Physics, Harvard University,
17 Oxford St., Cambridge, MA 02138, U.S.A.
bCenter for Theoretical Physics, Department of Physics, Massachusetts Institute of Technology,
77 Massachusetts Avenue, Cambridge, MA 02139, U.S.A.
cDepartment of Physics, POSTECH,
77 Cheongam-Ro, Nam-Gu, Pohang 790-784, Korea
E-mail: bhardwaj@maths.ox.ac.uk, pjeffers@mit.edu,
heecheol@postech.ac.kr, h_tarazi@g.harvard.edu,
vafa@physics.harvard.edu
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Kaluza-Klein (KK) theories, can be viewed as starting points for RG flows to 5d SCFTs.
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the Coulomb branch prepotential for all 5d KK theories obtainable in this manner and
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folds provide hitherto unknown M-theory duals of F-theory configurations compactified on
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Keywords: Conformal Field Models in String Theory, Field Theories in Higher Dimen-
sions, Conformal Field Theory, M-Theory

ArXiv ePrint: 1909.11666

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP12(2020)151

mailto:bhardwaj@maths.ox.ac.uk
mailto:pjeffers@mit.edu
mailto:heecheol@postech.ac.kr
mailto:h_tarazi@g.harvard.edu
mailto:vafa@physics.harvard.edu
https://arxiv.org/abs/1909.11666
https://doi.org/10.1007/JHEP12(2020)151


J
H
E
P
1
2
(
2
0
2
0
)
1
5
1

Contents

1 Introduction 1

2 Structure of 6d SCFTs 6

3 Structure of 5d KK theories 12
3.1 Twists 12
3.2 Discrete symmetries from outer automorphisms 12
3.3 Discrete symmetries from permutation of tensor multiplets 14
3.4 General discrete symmetries 17

4 Prepotential for 5d KK theories 27
4.1 Prepotential 27
4.2 Shifting the prepotential 31

5 Geometries associated to 5d KK theories 34
5.1 General features 34

5.1.1 Triple intersection numbers and the prepotential 34
5.1.2 Consistency of gluings: volume matching, the Calabi-Yau condition,

and irreducibility 36
5.1.3 Weights, phase transitions and flops 38
5.1.4 Affine Cartan matrices and intersections of fibers 40
5.1.5 The genus one fibration 41

5.2 Geometry for each node 45
5.2.1 Graphical notation 45
5.2.2 Untwisted 47
5.2.3 Twisted 64

5.3 Gluing rules between two gauge theoretic nodes 72
5.3.1 Undirected edges between untwisted algebras 73
5.3.2 Undirected edges between a twisted algebra and an untwisted algebra 79
5.3.3 Directed edges 80

5.4 Gluing rules involving non-gauge-theoretic nodes 88
5.4.1 sp(0)(1) gluings: untwisted, without non-simply-laced 90
5.4.2 sp(0)(1) gluings: untwisted, with non-simply-laced 105
5.4.3 sp(0)(1) gluings: twisted algebras, undirected edges 115
5.4.4 sp(0)(1) gluings: directed edges 131

6 Conclusions and future directions 133

– i –



J
H
E
P
1
2
(
2
0
2
0
)
1
5
1

A Geometric background 135
A.1 Hirzebruch surfaces 135
A.2 Del Pezzo surfaces 138
A.3 Arithmetic genus for curves in a self-glued surface 139

B Exceptional cases 140
B.1 Geometries for non-gauge theoretic nodes 140
B.2 Gluing rules between non-gauge theoretic nodes 143
B.3 Theta angle for sp(n) 149

C A concrete non-trivial check of our proposal 150

D Comparisons with known cases in the literature 156
D.1 Untwisted 156
D.2 Twisted 157

E Instructions for using the attached Mathematica notebook 158

1 Introduction

Recently, there has been a resurgence of interest in the problem of classifying 5d super-
conformal field theories (SCFTs), with a particular emphasis on exploring the relationship
between 5d UV fixed points and 6d UV fixed points [1–11]. The motivation for studying
this relationship is the observation that all known 5d SCFTs can be organized into families
of theories (connected to one another by RG flows) whose “progenitors” are 6d SCFTs
compactified on a circle [1, 2], and hence every 6d SCFT compactified on a circle provides
a natural starting point for the systematic identification of a large family of 5d SCFTs.

While it has been appreciated in the literature for some time that circle compactifica-
tions of 6d SCFTs can flow to 5d SCFTs, only recently has the existence of a 6d UV fixed
point been understood in an intrinsically 5d setting. To understand this point, let us recall
that the most widely used method for identifying 5d SCFTs is to construct a candidate
effective field theory assumed to be a relevant deformation of a 5d UV fixed point, and to
verify the effective theory passes a number of consistency checks which are believed to be
sufficient to guarantee the existence of a such a non-trivial UV fixed point. This method,
which has been used to construct numerous examples of UV complete minimally supersym-
metric 5d QFTs — both by means of standard gauge theoretic methods [1, 12, 13], as well
as string theory constructions such as (p, q) 5-brane configurations in type IIB string the-
ory [14–20] and M-theory compactifications on local Calabi-Yau threefolds [2, 21–23]—has
also led to the identification of numerous examples of theories that despite not satisfying
the criteria necessary for the existence of a non-trivial 5d UV completion, nonetheless ex-
hibit certain features that suggest they can be UV completed in 6d. All known examples
of such theories are characterized by the emergence of an intrinsic length scale that is
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interpreted as the size of a compactification circle, and it has been argued that each of
these theories is a circle compactification of a 6d SCFT possibly twisted by the action of a
discrete global symmetry;1 see for example [2–4, 18, 24–28]. These observations have led
to the identification of a set of criteria believed sufficient to imply the existence of a 6d UV
completion for certain 5d theories, and this introduces the possibility of also classifying
circle compactifications of 6d SCFTs using 5d physics.

It was recently conjectured [2] that all 5d SCFTs can be obtained via RG flows starting
from 5d Kaluza-Klein (KK) theories. The latter are defined as 6d SCFTs compactified on
a circle (of finite radius) possibly with discrete twists around the circle. Given a 5d KK
theory, the RG flows of interest correspond to integrating out BPS particles from the 5d
KK theory — thus, if the full BPS spectrum is known then according to the conjecture
of [2] it is possible to classify all 5d SCFTs by systematically studying all possible RG flows
from the 5d KK theory.

In this paper, we focus on the geometric approach in which one realizes a 5d KK theory
via a compactification of M-theory on a genus one fibered Calabi-Yau threefold. The set of
holomorphic curves in the threefold completely encode the information about the spectrum
of BPS particles required to track all RG flows down to 5d SCFTs. Therefore, a precursor
to classifying RG flows from 5d KK theories to 5d SCFTs is to geometrically classify all 5d
KK theories themselves in terms of Calabi-Yau threefolds. See [10] (also [2]) for explicit
application of this geometric procedure to the classification of 5d SCFTs up to rank three.

It is believed that all 6d SCFTs can be constructed by compactifying F-theory on
singular elliptically fibered Calabi-Yau threefolds admitting certain singular limits char-
acterized by the contraction of holomorphic curves in the base of the fibration. Here we
should distinguish between two different kinds of compactifications of F-theory depending
on whether or not they contain O7+ plane from the point of view of type IIB string theory.
If there is no O7+, then the compactification is said to lie in the unfrozen phase of F-theory;
otherwise it is said to lie in the frozen phase [29–31] of F-theory. These two phases are
qualitatively different in the following sense: the rules for converting geometry in the un-
frozen phase to the corresponding 6d physics are far more straightforward than the rules for
converting geometry in the frozen phase to the corresponding 6d physics [32]. See [33, 34]
(see also [35]) for the classification of 6d SCFTs arising from the unfrozen phase of F-theory,
and [36] for the classification of 6d SCFTs arising from the frozen phase of F-theory.

A 5d KK theory corresponding to the untwisted compactification of a 6d SCFT aris-
ing in the unfrozen phase can be constructed by compactifying M-theory on a Calabi-Yau
threefold which is a resolution of the Calabi-Yau threefold arising in the F-theory construc-
tion. This fact is a special case of the duality between M-theory and (unfrozen phase of)
F-theory compactified on a circle (without any twist). Explicit resolution of all Calabi-
Yau threefolds associated to 6d SCFTs was performed by [3, 4], and hence the Calabi-Yau
threefolds associated to corresponding 5d KK theories was determined. These threefolds
are elliptically fibered since the threefolds associated to 6d SCFTs are elliptically fibered
to begin with.

1Twisting the theory around the circle means that we introduce a holonomy for the background gauge
fields associated to discrete global symmetries of the theory.
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In this paper, we extend the work of [3, 4] and determine a resolved local Calabi-Yau
threefold describing every 5d KK theory, with the exception of certain examples which do
not appear to admit a conventional geometric description.2 Not only do we include twisted
compactifications of 6d SCFTs arising in the unfrozen phase, but also the untwisted and
twisted compactifications of 6d SCFTs arising in the frozen phase. We find that these
Calabi-Yau threefolds are in general only genus one fibered and may not be elliptically
fibered, which means that the fibration may not admit a zero section.

Our analysis can be divided into two parts. In the first part of the analysis, which
is purely field theoretic, we determine the prepotential for each 5d KK theory by using
the following observations: each 6d SCFT admits a 6d gauge theory description which can
be reduced on a circle with an appropriate twist to obtain a canonical 5d gauge theory
description of the associated 5d KK theory. The Green-Schwarz term in 6d reduces to a
Chern-Simons term in the 5d gauge theory, which induces a tree-level contribution to the
prepotential. Combining this contribution with the one-loop contribution coming from the
5d gauge theory produces the full prepotential for the 5d KK theory. In the second part
of the analysis, we interpret the prepotential as describing the triple intersection numbers
of 4-cycles inside a yet to be determined Calabi-Yau threefold. Using the data of these
triple intersection numbers, along with some other consistency conditions, we are able
to determine a description of the Calabi-Yau threefold as a neighborhood of intersecting
Kähler surfaces along the lines of the discussion in [2–4], and we verify that each threefold
admits the structure of genus one fibration.3 By construction, compactifying M-theory on
this Calabi-Yau threefold leads to the 5d KK theory whose prepotential we computed in
the first part of the analysis.

One can view these Calabi-Yau threefolds as providing hitherto unknown M-theory
duals of general unfrozen and frozen F-theory configurations compactified on a circle possi-
bly with a discrete twist. Even though we have provided explicit results only for F-theory
configurations realizing 6d SCFTs, our methods should in principle apply to any general
F-theory configuration.

Notice that at no step in our analysis do we distinguish between 6d SCFTs arising
from the unfrozen phase and 6d SCFTs arising from the frozen phase. Thus, according
to our analysis, the rules for converting geometry into the corresponding 5d physics are
uniform irrespective of whether the 5d KK theory arises from the compactification of a 6d
SCFT lying in the frozen or the unfrozen phase. In other words, the frozen and unfrozen
six-dimensional compactifications of F-theory are given a unified geometric description4 in
M-theory.

2For these examples, we propose an algebraic description which mimics certain properties of the Calabi-
Yau threefolds associated to other KK theories. This algebraic description can be used to compute RG
flows starting from these KK theories to 5d SCFTs. In the paper we sometimes abuse terminology and use
the word ‘geometry’ to refer to both theories that admit a conventional geometric description along with
those (i.e. “non-geometric” theories) for which only an algebraic description is available.

3See for example [37] for a discussion of F-theory compactifications on genus one fibered, in contrast to
elliptically fibered, Calabi-Yau varieties.

4Some of the frozen theories belong to the class of exceptional KK theories which do not admit a
conventional geometric description, and thus to which we only associate an algebraic description.
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We close the introduction with a brief overview of the structure of Calabi-Yau threefolds
that we associate to 5d KK theories. By construction, the structure of these threefolds
descends from the structure of 6d SCFTs. Recall that an important object characterizing
a 6d SCFT is the matrix of Dirac pairings of “fundamental” BPS strings visible on the
tensor branch of the 6d SCFT. The matrix of Dirac pairings is a symmetric, positive
definite, integer matrix with positive entries on the diagonal and non-positive off-diagonal
entries. Thus, the Dirac pairing matrix is analogous to the Cartan matrix of a simply laced
Lie algebra, and we can associate to this matrix a graph analogous to a Dynkin graph for
a simply laced Lie algebra.

As discussed in more detail later in the paper, the matrix of Dirac pairings descends
to a matrix of Chern-Simons terms in the canonical gauge theory associated to the 5d KK
theory, where the precise map between the two matrices depends on the choice of twist. We
find that 5d KK theories end up organizing themselves according to this matrix of Chern-
Simons terms. Like the matrix of Dirac pairings, the matrix of Chern-Simons terms is in
general a positive definite, integer matrix with positive entries on the diagonal and non-
positive off-diagonal entries, where off-diagonal entries can only be zero if their transposes
are also zero. But, unlike the matrix of Dirac pairings, the matrix of Chern-Simons terms
is not necessarily a symmetric matrix. Thus, the matrix of Chern-Simons couplings is
analogous to the Cartan matrix of a general (simply or non-simply laced) Lie algebra, and
we associate to it a graph analogous to a Dynkin graph for a general Lie algebra.

In this way, 5d KK theories are characterized by graphs that generalize Dynkin graphs.
The associated Calabi-Yau geometry is assembled according to the structure of this graph:

• To each node in the graph, we associate a collection of Hirzebruch surfaces intersecting
with each other. In fact, we associate a family of such collections parametrized by
an integer ν, where the collections labeled by different values of ν are related to one
another by flop transitions. A key point is that a certain linear combination of the P1

fibers of these Hirzebruch surfaces has genus one, and an appropriate multiple of the
genus one fiber is identified physically with the KK mode of momentum one around
the circle.

• To a pair of nodes connected to each other by some edges, we associate certain gluing5

rules. These gluing rules describe how to glue the collection of surfaces associated to
a node to the collection of surfaces associated to another node. These gluing rules
capture the data of intersections between the two collections of surfaces. In general,
the gluing rules provided in this paper work only for a subset of the values of ν
parametrizing the two collections of surfaces being glued together. Our claim is that
given a 5d KK theory, we can always find at least one value of ν for each node in the
associated graph such that the gluing rules for each edge work.

5When two Kähler surfaces intersect transversely along a common holomorphic curve inside of a Calabi-
Yau threefold, the intersection implies that a holomorphic curve inside one of the two surfaces is identified
with a holomorphic curve inside of the other surface. We refer to this identification as a gluing together of
the two surfaces.
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By applying these gluing rules, it can be checked that a multiple of the genus one
fiber in one collection of surfaces is glued to a multiple of the genus fiber in the
other collection of surfaces. These multiples are such that the KK mode associated
to one collection is identified with the KK mode associated to the other collection.
This must be so since there is only a single KK mode associated to the full KK
theory and the genus one fibers inside each collection are merely different geometric
manifestations of the same mode.

• Once we are done gluing all the collections of surfaces according to the gluing rules
associated to each edge, we obtain a larger collection of surfaces intersecting with
each other. The Calabi-Yau threefold associated to the KK theory is by definition a
local neighborhood of this larger collection of surfaces. As we have described above,
this Calabi-Yau threefold is canonically genus one fibered.

The rest of the paper is organized as follows. In section 2, we review how all 6d SCFTs
can be neatly encapsulated in terms of graphs that capture the data of the tensor branch
of the corresponding 6d SCFTs. We list all the possible vertices and edges appearing
in such graphs. Our presentation treats unfrozen and frozen cases on an equal footing.
Another distinguishing feature of our presentation is that we carefully distinguish different
theories having the same gauge algebra content and same Dirac pairing. This includes the
theta angle for sp(n), different distributions of hypers between the spinor and cospinor
representations of so(12), as well as some frozen cases.

In section 3, we study all the possible twists of 6d SCFTs once they are compactified on
a circle. Each twist leads to a different 5d KK theory. The different twists of a 6d SCFT T

are characterized by equivalence classes in the group of discrete global symmetries of T. We
show that these equivalence classes can be described by foldings of the graphs ΣT associated
to T along with choice of an outer automorphism for each gauge algebra appearing in the low
energy theory on the tensor branch of T. Thus, different 5d KK theories are also classified
by graphs that generalize the graphs classifying 6d SCFTs. We provide a list of all the
possible vertices and edges that can appear in the graphs associated to 5d KK theories.

In section 4, we provide a prescription to obtain the prepotential of any 5d KK theory.
This is done by compactifying the low energy gauge theory appearing on the tensor branch
of the corresponding 6d SCFT on a circle with the corresponding twist. This leads to a
5d gauge theory whose prepotential, along with a shift, is identified as the prepotential for
the 5d KK theory.

In section 5, we associate a genus-one fibered Calabi-Yau threefold to each 5d KK
theory, except for a few exceptional cases, for which we provide an algebraic description
mimicking the essential properties of genus one fibered Calabi-Yau threefolds. The chief
ingredient in the determination of the threefold is the prepotential determined in section 4.
The prepotential captures the data of the triple intersection numbers of surfaces inside the
threefold. Once a description of the threefold as a local neighborhood of a collection of
surfaces glued to each other is presented, these triple intersections can be computed in a
multitude of different ways. Demanding all of these different computations to give the same
result leads to strong consistency constraints on such a description and often uniquely fixes
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the description (up to isomorphisms). Other consistency conditions playing a crucial role
are also discussed in section 5.1.

The description of the geometry is provided in two different steps according to the
structure of the graph associated to the 5d KK theory under study. First, a part of
the geometry is assigned to each vertex in the graph according to results presented in
section 5.2. Then, depending on the configuration of edges in the graph, different parts of
the geometry corresponding to different vertices in the graph are glued to each other via
the gluing rules presented in sections 5.3 and 5.4.

In section 6, we present our conclusions. In appendix A, we review some geometric
background relevant for this paper. In appendix B, we address certain exceptional examples
of geometries and gluing rules that do not admit a straightforward analysis following the
main methods described in this paper. In appendix C, we provide a concrete and non-trivial
check of our proposal for computing the prepotential and geometries associated to 5d KK
theories. We demonstrate that a 5d KK theory arising from a non-trivial twist (involving a
permutation of tensor multiplets) of a 6d SCFT has a 5d gauge theory description found in
earlier studies by using brane constructions. In appendix D, we provide some more checks
of our proposal. Finally, in appendix E we provide instructions for using the Mathematica
notebook submitted as supplementary material along with this paper. The Mathematica
notebook allows one to compute the prepotential for 5d KK theories involving one or two
nodes. Combining these results, one can obtain the prepotential for any 5d KK theory. The
notebook also converts the prepotential into triple intersection numbers for the associated
geometry and displays these intersection numbers in a graphical form.

2 Structure of 6d SCFTs

In this section, we review the fact that 6d SCFTs are characterized by graphs that are
analogous to Dynkin graphs associated to simply laced Lie algebras. In the next section,
we will show that 5d KK theories are also characterized by similar graphs that are instead
analogous to Dynkin graphs associated to general (i.e. both simply laced and non-simply
laced) Lie algebras.

The low-energy theory on the tensor branch of a 6d SCFT T can be organized in
terms of tensor multiplets Bi. There is a gauge algebra gi associated to each i where gi
can either be a simple or a trivial algebra. Each tensor multiplet Bi is also associated
to a “fundamental” BPS string excitation Si such that the charge of Si under Bj is the
Kronecker delta δij . The Dirac pairing Ωij between Si and Sj appears in the Green-Schwarz
term in the Lagrangian

ΩijBi ∧ tr(F 2
j ) (2.1)

where Fj is the field strength for gj if gj is simple and Fj = 0 if gj is trivial.
[Ωij ] is a symmetric, positive definite matrix with all of its entries valued in integers.

Thus, it is analogous to the Cartan matrix for a simply laced Lie algebra. The only possible
values for off-diagonal entries are Ωij = 0,−1,−2. We note that Ωij = −2 is only possible
for 6d SCFTs arising from the frozen phase of F-theory [32, 36].
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Ωii

gi Comments Hypermultiplet content

1
sp(n)θ θ = 0, π (2n+ 8)F

1
su(n)

n ≥ 3 (n+ 8)F + Λ2

1
su(n̂)

n ≥ 8; frozen; non-geometric (n− 8)F + S2

1
su(6̃) 15F + 1

2Λ3

2
su(n) 2nF

3
su(3)

4
so(n)

n ≥ 8 (n− 8)F

k

so(8) 1 ≤ k ≤ 3 (4− k)F + (4− k)S + (4− k)C

k

so(n) 1 ≤ k ≤ 3; 7 ≤ n ≤ 12, n 6= 8 (n− 4− k)F + 2d
9−n

2 e(4− k)S

k
so(1̂2) k = 1, 2 (8− k)F + 1

2(3− k)S + 1
2C

2
so(13) 7F + 1

2S

k

g2 1 ≤ k ≤ 3 (10− 3k)F

k

f4 1 ≤ k ≤ 5 (5− k)F

k

e6 1 ≤ k ≤ 6 (6− k)F

k

e7 1 ≤ k ≤ 8 1
2(8− k)F

12
e8

Table 1. List of all the possible nodes with non-trivial gi appearing in graphs associated to 6d
SCFTs. A hat or a tilde distinguishes different nodes having same values of Ωii and gi.
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Ωii

gi Comments Flavor symmetry algebra, f

1
sp(0)θ θ = 0, π e8

2
su(1)

su(2)

Table 2. List of all the possible nodes with trivial gi that can appear in graphs associated to 6d
SCFTs. If Ωii = 2, we refer to the trivial gauge algebra as su(1) and if Ωii = 1, we refer to the trivial
gauge algebra as sp(0). In the latter case, sometimes a Z2 valued theta angle is physically relevant.
We also list the flavor symmetry algebra f for each case. The sum of gauge algebras neighboring
each such node must be contained inside the corresponding f.

We can thus display the data of a 6d SCFT in terms of an associated graph ΣT that
is constructed as follows:

• Nodes: for each tensor multiplet Bi, we place a node i with value Ωii

gi

. All such
possibilities are listed in table 1 when gi is non-trivial, and in table 2 when gi is trivial.
In the former case, each node contributes hypers charged under a representation Ri
of gi where Ri is shown in table 1. In the latter case, for the node with gi = sp(0),
an important role is played by the adjoint representation of e8, which is formed by
the BPS string excitations associated to this node.

We note that the node 1
su(n̂)

only arises in the frozen phase of F-theory.

In the case of Ωii = 1 and gi = sp(n), there is a possibility of a Z2 valued 6d theta
angle which is physically relevant (in the context of 6d SCFTs) only when the 2n+ 8
hypers in fundamental are gauged by a neighboring su(2n + 8) gauge algebra. For
gi = sp(0), the theta angle is physically relevant (in the context of 6d SCFTs) only
if there is a neighboring su(8) gauge algebra [38]. This can be understood in terms
of two different embeddings of su(8) into e8 (both having embedding index one), so
that the adjoint of e8 decomposes differently in the two cases, leading to different
spectrum of string excitations.

In the case of Ωii = 1 and gi = su(6), there are two possible choices of matter
content. We distinguish the non-standard choice of matter content by denoting the
corresponding gi as su(6̃).

In the case of gi = so(12), the two spinor representations S and C are not conjugate to
each other but have same contributions to the anomaly polynomial. The total number
of hypers in the two spinor representations is fixed by the value of Ωii. But since
the two spinor representations are not conjugate, the relative distribution of hypers
between the two makes a difference. For Ωii = 1, 2, we can obtain two inequivalent
theories in this way (note that the existence of two inequivalent theories with so(12)
gauge symmetry was pointed out in [11].) The version containing both S and C is
distinguished from the one contataining only S by denoting its gi as so(1̂2).
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Ωii

gi
Ωjj

gj Comments Mixed hyper content

1
sp(ni)

2
su(nj) ni ≤ nj ; nj ≤ 2ni + 7 F⊗ F

1
sp(ni)θ

2
su(nj) nj = 2ni + 8; θ = 0, π F⊗ F

1
sp(ni)

k

so(nj) ni ≤ nj − 4− k; nj ≤ 4ni + 16; 2 ≤ k ≤ 4 1
2(F⊗ F)

1
sp(ni)

2
so(1̂2) ni ≤ 6 1

2(F⊗ F)

1
sp(ni)

k

so(8)
ni ≤ 4− k; k ≤ 3 1

2(F⊗ S)

1
sp(ni)

k

so(7)
ni ≤ 8− 2k; k = 2, 3 1

2(F⊗ S)

1
sp(ni)

k

g2 ni ≤ 10− 3k; k = 2, 3 1
2(F⊗ F)

1
su(ni)

2
su(nj) ni ≤ 2nj ; nj ≤ ni + 8 F⊗ F

1
su(n̂i)

2
su(nj) ni ≤ 2nj ; nj ≤ ni − 8 F⊗ F

1
su(6̃)

2
su(nj) 3 ≤ nj ≤ 15 F⊗ F

2
su(ni)

2
su(nj) ni ≤ 2nj ; nj ≤ 2ni F⊗ F

2
su(ni)

4
so(nj)

2
ni ≤ nj − 8; nj ≤ 2ni; frozen F⊗ F

2
su(2)

k

so(7) 1 ≤ k ≤ 3 1
2(F⊗ S)

2
su(2)

k

g2 1 ≤ k ≤ 3 1
2(F⊗ F)

Table 3. List of all the possible edges between two gauge-theoretic nodes that can appear in graphs
characterizing 6d SCFTs. An edge with 2 in the middle of it denotes the fact that there are two edges
between the two asocciated nodes. Solid edges denote matter in bifundamental and dashed edges
denote matter in F⊗ S. The theta angle of sp(n) is only displayed when it is physically relevant.

• Edges: consider two nodes i and j whose values are Ωii

gi

and Ωjj

gj

respectively.
We place −Ωij number of edges between i and j. For instance, if Ωij = −1, then we
display this as

Ωii

gi

Ωjj

gj

(2.2)
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Ωii

gi
Ωjj

gj
Comments Mixed hyper content

1
sp(0)

2
su(n)

n ≤ 9, n 6= 8

1
sp(0)θ

2
su(n)

n = 8; θ = 0, π

1
sp(0)

3
su(3)

1
sp(0)

k

so(n)
n ≤ 16; 2 ≤ k ≤ 4

1
sp(0)

2
so(1̂2)

1
sp(0)

k

g2
k = 2, 3

1
sp(0)

k

f4
2 ≤ k ≤ 5

1
sp(0)

k

e6
2 ≤ k ≤ 6

1
sp(0)

k

e7
2 ≤ k ≤ 8

1
sp(0)

12
e8

2
su(1)

1
sp(1)

1
2F in gj = sp(1)

2
su(1)

2
su(2)

1
2F in gj = su(2)

Table 4. List of all the possible edges between a gauge-theoretic and a non-gauge-theoretic node
that can appear in graphs characterizing 6d SCFTs. The theta angle of sp(0) is only displayed when
it is physically relevant.

Ωii

gi
Ωjj

gj

1
sp(0)

2
su(1)

2
su(1)

2
su(1)

Table 5. List of all the possible edges between two non-gauge-theoretic nodes that can appear in
graphs characterizing 6d SCFTs. The theta angle of sp(0) is not displayed since it is not physically
relevant.
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Ωii

gi
1

sp(0)
Ωkk

gk
Comments

2
su(2)

1
sp(0)

k
g

k ≥ 3; g = e7, e6, f4, g2, so(n ≤ 12)

k
su(3)

1
sp(0)

l
g

k, l ≥ 2; k + l ≥ 5; g = e6, f4, g2, so(n ≤ 10), su(n ≤ 6)

2
su(4)

1
sp(0)

k
g

k = 3, 4; g = g2, so(n ≤ 10)

k
so(7)

1
sp(0)

l
g

k, l ≥ 2; k + l ≥ 5; g = g2, so(n ≤ 9)

k
so(8)

1
sp(0)

l
g

k, l ≥ 2; k + l ≥ 5; g = g2, so(8)

k
so(9)

1
sp(0)

l
g

k, l ≥ 2; k + l ≥ 5; g = g2

k
g2

1
sp(0)

l
g

k, l ≥ 2; k + l ≥ 5; g = f4, g2

Table 6. List of all the possibilities for multiple neighbors of sp(0).

and, if Ωij = −2, then we display this as

Ωii

gi

Ωjj

gj
2 (2.3)

There are no edges between nodes i and j if Ωij = 0. All the possible edges are listed
in table 3 when both gi and gj are non-trivial, in table 4 when only one of gi and gj
is non-trivial, and in table 5 when both gi and gj are trivial.

Each edge corresponds to a hyper transforming in a mixed representation Rij =
Rij,i⊗Rij,j of gi⊕gj where Rij,i is a representation of gi and Rij,j is a representation
of gj . The possible Rij are shown in the third column of table 3. Note that we must
have ⊕jR

⊕dim(Rij,j)
ij,i ⊆ Ri as representations of gi for each node i.

In the case of Ωii = 1, gi = sp(ni), Ωjj = k, gj = so(7, 8) and Ωij = −1, there are two
possible mixed representations 1

2(F⊗F) or 1
2(F⊗S). We distinguish the case 1

2(F⊗S)
by denoting the corresponding edge as a dashed line. Notice that when gj = so(8),
the dashed edge is only physically relevant when it is a part of a configuration of form

1
sp(ni)

k

so(8)
1

sp(nk)
(2.4)

Otherwise, the dashed edge can be converted to the non-dashed edge by applying an
outer-automorphism of so(8).

• Multiple neighbors of sp(0): consider a node i with value 1
sp(0)

. Related to
the fact that the flavor symmetry algebra associated to this node is e8, it can be
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shown that its neighbors must satisfy ⊕jgj ⊆ e8 where only those j are included in
the sum for which Ωij = −1. In fact all such subalgebras are realized except6 for
so(13)⊕ su(2).

In the context of 6d SCFTs, it is not possible for sp(0) to have more than two
neighbors. We collect all the possibilities for multiple neighbors of sp(0) in table 6.

Notice that the relationship between ΣT and [Ωij ] is analogous to the relationship between
Dynkin graph and Cartan matrix of a simply laced Lie algebra.

3 Structure of 5d KK theories

3.1 Twists

Consider a QFT T that admits a discrete global symmetry group Γ. When we compactify
T on a circle, we have the option of “twisting” T around the circle. This means that we
introduce a holonomy γ ∈ Γ for the background gauge field corresponding to Γ. Note that
the number of distinct twists is not given by the number of elements in Γ, but rather by
the number of conjugacy classes in Γ. This is because two holonomies that are conjugate
in Γ are physically equivalent and thus lead to the same twist.

In this section, we will explore all the possible twists for 6d SCFTs. Each twist leads
to a different 5d KK theory.

3.2 Discrete symmetries from outer automorphisms

A general discrete symmetry of a 6d SCFT T is generated by combining two kinds of basic
discrete symmetries. We start by discussing the first kind of basic discrete symmetries.
These arise from outer automorphisms of gauge algebras gi.

su(n) for n ≥ 3, so(2m) for m ≥ 4 and e6 admit an order two outer automorphism
that we call O(2). It exchanges the roots in the following fashion

· · · · · ·su(2n), O(2):

· · · · · ·su(2n+ 1), O(2):

6It can be shown that the embedding index of each neighboring gj inside e8 must be one. The only
possible embedding of so(13) ⊕ su(2) into e8 follows from first embedding so(13) ⊕ su(2) into so(16) as
a special maximal subalgebra and then embedding so(16) into e8 as a regular maximal subalgebra. The
embedding index of the su(2) factor under this embedding is two rather than one, thus so(13)⊕su(2) cannot
be realized as a neighbor of sp(0). The absence of so(13)⊕ su(2) neighbor was first noticed in [39].
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g O(q) O(q) · Rg

su(m) O(2) F←→ F̄, Λn ←→ Λ̄n, S2 ←→ S̄2

so(2m) O(2) F −→ F, S←→ C
e6 O(2) F←→ F̄

so(8) O(3) F −→ S, S −→ C, C −→ F

Table 7. List of non-trivial outer automorphisms O(q) of g and their actions O(q) · Rg on
various irreducible representations Rg of g. F denotes fundamental representation, Λn denotes the
irreducible n-index antisymmetric representation, S2 denotes the irreducible 2-index symmetric
representation, and S and C denote irreducible spinor and cospinor representations. Bar on top of
a representation denotes the complex conjugate of that representation. F of so(2m) is left invariant
by the action of O(2).

· · ·so(2n), O(2):

e6, O(2):

so(8) also admits an order three outer automorphism which we call O(3). It cyclically
permutes the roots as shown below

so(8), O(3):

The full group of outer automorphisms of so(8) is the symmetric group S3 which can be
generated by combining O(2) and O(3). Note that O(2) and O(3) are not conjugate to each
other (since they have different orders) and hence we need to consider both of them.

The above action of an outer automorphism O(q) (for q = 2, 3) on the roots of g

translates to an action on the Dynkin coefficients of the weights for representations of g.
In other words, the action of O(q) can be viewed as an action on representations of g —
see table 7.
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An outer automorphism O(qi) of a gauge algebra gi ∈ T is a symmetry of T if

O(qi) · Ri = Ri (3.1)

O(qi) · Rij,i = Rij,i ∀j (3.2)

where O(qi) · R denotes the action of O(qi) on R. We should keep in mind that a hyper
in a representation R is the same as a hyper in representation R̄. So, Ri and Rij,i are
only defined up to complex conjugation on constituent irreps. Thus, whenever R ↔ R̄ in
table 7, it means that two distinct hypers in R are interchanged with each other under the
action of the outer automorphism.

As an example consider the 6d theory given by

2
su(n)

(3.3)

The theory includes 2n hypers in F. The outer automorphism O(2) of su(n) descends to
a discrete symmetry of the theory whose action on the hypermultiplets can be manifested
as follows. We divide the 2n hypers into two ordered sets such that each set contains n
hypers. Then we exchange these two sets with each other.

3.3 Discrete symmetries from permutation of tensor multiplets

Now we turn to a discussion of the second kind of basic discrete symmetries. These arise
from permutation of tensor multiplets i→ S(i) such that

gS(i) = gi (3.4)

ΩS(i)S(j) = Ωij (3.5)

for all i, j. This is a symmetry of T if

RS(i) ' Ri (3.6)
RS(i)S(j) ' Rij (3.7)

for all i, j.
As an example, consider the 6d theory given by

1
sp(n)

4
so(m)

1
sp(n)

4
so(p)

4
so(p)

(3.8)

The permutation

1
sp(n)

4
so(m)

1
sp(n)

4
so(p)

4
so(p)

(3.9)

is a symmetry of the theory.
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As another example, consider the 6d theory given by

2
su(n)

2
su(n)

2
su(m)

2
su(m)

(3.10)

The permutation

2
su(n)

2
su(n)

2
su(m)

2
su(m)

(3.11)

is a symmetry of the theory.
Now, consider a permutation S that is a symmetry of T. We can use the data of S to

convert [Ωij ] into another matrix [Ωαβ
S ]. Here α, β etc. parametrize orbits of nodes i under

the iterative action of S. To define a particular entry Ωαβ
S , we pick a node i lying in the

orbit α and let

Ωαβ
S =

∑
j∈β

Ωij (3.12)

where the sum is over all nodes j lying in the orbit β. Notice that the resulting matrix
[Ωαβ
S ] need not be symmetric but must be positive definite. It turns out for S associated

to 6d SCFTs that whenever Ωαβ
S 6= Ωβα

S , then the smaller of the two entries is −1. Thus,
[Ωαβ
S ] is analogous to the Cartan matrix for a general (i.e. either simply laced or non-simply

laced) Lie algebra.
Let us compute the matrix [Ωαβ

S ] for the above example (3.8). To start with, [Ωij ] is



4 −1 0 0 0
−1 1 −1 0 0
0 −1 4 −1 0
0 0 −1 1 −1
0 0 0 −1 4


There are three orbits. The third node lies in the first orbit, the second and fourth nodes
lie in the second orbit, and the first and fifth nodes lie in the third orbit. Applying our
prescription (3.12), we find that [Ωαβ

S ] is


4 −2 0
−1 1 −1
0 −1 4
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Similarly, we can compute the matrix [Ωαβ
S ] for the above example (3.10). [Ωij ] is

2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2


and [Ωαβ

S ] is  1 −1
−1 2

 .
Now, we define a graph ΣS

T associated to [Ωαβ
S ]:

• Nodes: the nodes of ΣS
T are in one-to-one correspondence with the set of orbits α.

The value of node α is Ωii

gi

where i is a node of ΣT lying in the orbit α.

• Edges: let α 6= β and let Ωαβ
S ≥ Ωβα

S . Then we place −Ωαβ
S number of edges between

nodes α and β. If Ωαβ
S = Ωβα

S , then the edges are undirected. If Ωαβ
S > Ωβα

S , then all
the edges are directed from α to β.

• Self-edges: let lα = Ωii−Ωαα
S where i is a node of ΣT lying in the orbit α. Then, we

introduce lα edges such that the source and target of each edge is the same node α.

ΣS
T can be understood as a folding7 of ΣT by the action of S. Observe that the relationship

between ΣS
T and [Ωαβ

S ] is analogous to the relationship between the Dynkin graph and
Cartan matrix for a general (i.e. either simply laced or non-simply laced) Lie algebra.

For our example (3.8), the folded graph ΣS
T is

4
so(m)

1
sp(n)

4
so(p)

2 (3.13)

and for (3.10), the folded graph ΣS
T is

2
su(n)

2
su(m)

(3.14)

We note that, starting from the data of ΣS
T, we can only reconstruct S up to conju-

gation. But this is enough to keep track of the twist associated to S. Thus, throughout
this paper, we will specify twists via folded graphs ΣS

T and will not refer to an explicit S
inducing the folding.

7Notice that, unlike the foldings of Dynkin diagrams, the foldings of graphs ΣT can lead to self-edges.
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3.4 General discrete symmetries

We now discuss twists associated to general discrete symmetries that combine the basic dis-
crete symmetries discussed in sections 3.2 and 3.3. That is, we consider actions of the form(∏

i

O(qi)
)
S (3.15)

where S is a permutation of the tensor multiplets and O(qi) is an outer automorphism
of order qi of gauge algebra gi, where each qi ∈ {1, 2, 3} and qi = 1 denotes the identity
automorphism. Eq. (3.15) is a symmetry of the 6d theory T only if

gS(i) ' gi (3.16)

ΩS(i)S(j) = Ωij (3.17)

and

O(qS(i)) · Ri = RS(i) (3.18)

O(qS(i)) · RS(i)S(j),S(i) = Rij,i (3.19)

As in section 3.3, we associate the matrix [Ωαβ
S ] to the twist generated by the action

of (3.15).
As an example, consider the 6d SCFT

2
su(n)

2
su(m)

2
su(m)

(3.20)

Suppose we want to perform the outer-automorphism O(2) for the middle su(n) node.
Recall from the discussion around (3.3) that the outer automorphism of su(n) exchanges the
fundamental hypers in pairs. However, the graph in (3.20) indicates that the fundamental
hypers of the middle su(n) algebra are part of bifundamental representations formed by
taking the tensor product with the fundamental representations of the neighboring su(m)
algebras. Therefore, if we want O(2) to be a symmetry of the theory, we must permute the
two neighboring su(m) as well. Thus, O(2) by itself is not a symmetry of the theory, but
its combination with the permutation

2
su(n)

2
su(m)

2
su(m)

(3.21)

is a symmetry of the theory. Thus, we see that in general it is not possible to decompose
a general symmetry of the form (3.15) into more basic symmetries discussed earlier.

As another illustrative example, consider

1
sp(n)

4
so(2m)

4
so(2m)

(3.22)
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Consider sending the left so(2m) to the right so(2m) with an outer automorphism O(2),
and sending the right so(2m) to the left so(2m) without any outer automorphism. We can
represent this action as

1
sp(n)

4
so(2m)

4
so(2m)

O(1)

O(2)
(3.23)

This action is a symmetry of the theory and is represented as

O(1)
1 O

(2)
3 S (3.24)

in the notation of (3.15). Here we have labeled the nodes as 1, 2, 3 from left to right and
the subscript of O denotes the node it is acting at. We can also consider the action

1
sp(n)

4
so(2m)

4
so(2m)

O(2)

O(2)
(3.25)

which is also a symmetry of the theory and is represented as

O(2)
1 O

(2)
3 S (3.26)

in the notation of (3.15).
Now, let gα = gi and Ωαα = Ωii where i is a node of ΣT lying in the orbit α of S. Then

O(qi) can be viewed as an outer automorphism of gα. Let us define an outer automorphism
O(qα) of gα by

O(qα) =
∏
i∈α
O(qi) (3.27)

where each O(qi) on the right hand side is viewed as an outer automorphism of gα and the
O(qi) for all i lying in the orbit α are then multiplied with each other to produce the outer
automorphism O(qα) of gα. Notice that we have chosen some ordering of various i while
evaluating the product

∏
i∈αO(qi). Different orderings produce different but conjugate

O(qα). Thus, we leave the ordering unspecified since we are only interested in the conjugacy
class of O(qα).
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Ωαα
gα Comments

1
su(n)(2)

n = 3, 4

2
su(n)(2)

n ≥ 3

3
su(3)(2)

4
so(2n)(2)

n ≥ 5

k

so(8)(q)
1 ≤ k ≤ 4; q = 2, 3

2
so(10)(2)

2
so(1̂2)(2)

k
e
(2)
6 k = 2, 4, 6

2
su(n)(1)

n ≥ 1; non-geometric

Table 8. List of all the new nodes that can appear in graphs associated to 5d KK theories. We
also list all the possibilities where an edge starts and ends on the same node. The comment “non-
geometric” for the last entry refers to the fact that there is no completely geometric description of
this node. See also a node appearing in table 1. If a KK theory involves either of these two kinds
of nodes, then it does not admit a conventional geometric description.

We can now associate a graph ΣS,{qα}
T to the action of (3.15). We start from the graph

ΣS
T defined in section 3.3 and modify the values of the node α to Ωαα

S

g
(qα)
α

where i is a node
of ΣT lying in the orbit α. The graph obtained after this simple modification is what we
refer to as ΣS,{qα}

T .

Note that the data of ΣS,{qα}
T is enough to reconstruct the action (3.15) up to conjuga-

tion. Thus, we will capture the twist associated to the action (3.15) by the graph ΣS,{qα}
T

and call the resulting 5d KK theory as TKKS,{qα}.

For the example discussed around (3.20), ΣS,{qα}
T is

2
su(n)(2)

2
su(m)(1)

2 (3.28)
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Ωαα
g

(qα)
α

Ωββ

g
(qβ)
β Comments

1
sp(nα)(1)

k

so(nβ)(2)
nα ≤ nβ − 4− k; nβ ≤ 4nα + 14; 2 ≤ k ≤ 4

1
sp(nα)(1)

2
so(1̂2)(2)

nα ≤ 6

2
su(nα)(1)

4
so(nβ)(2)

2
nα ≤ nβ − 8; nβ ≤ 2nα

2
su(nα)(1)

2
su(nβ)(1)

nα ≤ 2nβ ; nβ ≤ nα

1
sp(0)(1)

2
su(n)(2)

3 ≤ n ≤ 9, n 6= 8

1
sp(0)(1)

θ

2
su(8)(2)

θ = 0, π

1
sp(0)(1)

3
su(3)(2)

1
sp(0)(1)

k

so(8)(q)
2 ≤ k ≤ 4; q = 2, 3

1
sp(0)(1)

k

so(10)(2)
k = 2, 4

1
sp(0)(1)

4
so(2n)(2)

n = 6, 7

1
sp(0)(1)

2
so(1̂2)(2)

1
sp(0)(1)

k
e
(2)
6 k = 2, 4, 6

2
su(n)(1)

2
su(1)(1)

n = 1, 2

Table 9. List of all the new undirected edges that can appear in graphs characterizing 5d KK
theories.
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Ωαα
g

(qα)
α

Ωββ

g
(qβ)
β

e
Comments

1
sp(nα)(1)

k

so(nβ)(qβ)

2
nα ≤ nβ − 4− k; nβ ≤ 2nα + 10− 2qβ ; k = 3, 4; qβ = 1, 2

1
sp(nα)(1)

3
so(7)(1)

2
nα = 1, 2

1
sp(1)(1)

3
g

(1)
2

2

1
sp(nα)(1)

4
so(nβ)(qβ)

3
nα ≤ nβ − 8; 3nβ ≤ 4nα + 17− qβ ; qβ = 1, 2

2
su(nα)(1)

2
su(nβ)(1)

e
nα ≤ 2nβ ; enβ ≤ 2nα; e = 2, 3

2
su(nα)(2)

2
su(nβ)(1)

2
nα ≤ 2nβ ; nβ ≤ nα

2
g

(1)
2

2
su(2)(1)

e
e = 2, 3

2
so(7)(1)

2
su(2)(1)

e
e = 2, 3

3
so(7)(1)

2
su(2)(1)

2

3
so(7)(1)

1
sp(1)(1)

2

3
so(8)(2)

1
sp(1)(1)

2

k

so(nα)(qα)

1
sp(nβ)(1)

2
nα ≤ 4nβ + 16; 2nβ ≤ nα − 4− k; k = 3, 4; qα = 1, 2

4
so(nα)(qα)

1
sp(nβ)(1)

3
nα ≤ 4nβ + 16; 3nβ ≤ nα − 8; qα = 1, 2

Table 10. List of all the possible directed edges between two gauge-theoretic nodes that can
appear in graphs characterizing 5d KK theories. An arrow with e in the middle of it denotes e
edges directed in the direction of arrow. Solid edges arise from foldings of solid edges and dashed
edges arise from foldings of dashed edges. A partially dashed and partially solid edge with 2 in the
middle of it arises from a folding together of a dashed edge and a solid edge.
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Ωαα
g

(qα)
α

Ωββ

g
(qβ)
β

e
Comments

1
sp(0)(1)

3
su(3)(q)

2
q = 1, 2

1
sp(0)(1)

3
so(7)(1)

2

1
sp(0)(1)

k

so(8)(1)

2
k = 3, 4

1
sp(0)(1)

3
g

(1)
2

2

3
su(3)(q)

1
sp(0)(1)

2
q = 1, 2

k

so(n)(q)

1
sp(0)(1)

e
n ≤ 16; 2 ≤ e ≤ k − 1; k = 3, 4; q = 1, 2

3
g

(1)
2

1
sp(0)(1)

2

k
f
(1)
4

1
sp(0)(1)

e
2 ≤ e ≤ k − 1; 3 ≤ k ≤ 5

k
e
(q)
6

1
sp(0)(1)

e
2 ≤ e ≤ k − 1; 3 ≤ k ≤ 6; q = 1, 2

k
e
(1)
7

1
sp(0)(1)

e
2 ≤ e ≤ k − 1; 3 ≤ k ≤ 8

12
e
(1)
8

1
sp(0)(1)

e
2 ≤ e ≤ 11

2
su(n)(1)

2
su(1)(1)

e
n = 1, 2; e = 2, 3

Table 11. List of all the possible directed edges involving at least one non-gauge-theoretic node
that can appear in graphs characterizing 5d KK theories.

Similarly, for (3.23), ΣS,{qα}
T is

1
sp(n)(1)

4
so(2m)(2)

2 (3.29)

However, for (3.25), ΣS,{qα}
T is

1
sp(n)(1)

4
so(2m)(1)

2 (3.30)
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Ωii

g
(qi)
i

1
sp(0)(1)

Ωkk

g
(qk)
k

Comments

2
su(2)(1)

1
sp(0)(1)

k

g(q)

k ≥ 3; g(q) = e
(2)
6 , so(8, 10)(2), so(8)(3)

k

su(3)(1)

1
sp(0)(1)

l

g(q)

k, l ≥ 3; k + l ≥ 5; g(q) = so(8)(2), so(8)(3), su(n ≤ 4)(2)

k

su(3)(2)

1
sp(0)(1)

l

g(1)

k, l ≥ 2; k + l ≥ 5; g = f4, g2, so(n ≤ 9), su(4)

k

su(3)(2)

1
sp(0)(1)

l

g(2)

k, l ≥ 2; k + l ≥ 5; g = e6, so(8, 10), su(n ≤ 6)

2
su(4)(2)

1
sp(0)(1)

k

g(q)

k = 3, 4; g(q) = g
(1)
2 , so(n ≤ 9)(1), so(8, 10)(2)

k

so(8)(2)

1
sp(0)(1)

l

g(q)

k, l ≥ 2; k + l ≥ 5; g(q) = g
(1)
2 , su(4)(1), so(7)(1), so(8)(2)

k

so(8)(3)

1
sp(0)(1)

l

g(q)

k, l ≥ 2; k + l ≥ 5; g(q) = su(3)(2), so(8)(3)

Table 12. List of all the new possibilities for multiple neighbors of sp(0)(1) connected to it by
undirected edges.

which is the same as ΣS,{qα}
T for the symmetry

1
sp(n)

4
so(2m)

4
so(2m)

(3.31)

which does not involve any outer automorphisms. Thus, according to our claim, (3.25)
and 3.31) must be in the same conjugacy class. Let us demonstrate it explicitly. Conju-
gating (3.26) by O(2)

1 , we get

O(2)
1 (O(2)

1 O
(2)
3 S)O(2)

1 (3.32)

= O(2)
3 SO(2)

1 (3.33)

= O(2)
3 O

(2)
3 S (3.34)

= S (3.35)

Thus, the KK theories corresponding to (3.25) and (3.31) must be the same, and we denote
it by the folded graph (3.30).

In a similar fashion, by studying various 6d SCFTs and their symmetries, we can isolate
all the possible ingredients that can appear in graphs of the form ΣS,{qα}

T associated to 5d
KK theories:
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• First of all, the nodes listed in tables 1 and 2 are all allowed. We simply write each
gauge algebra g appearing in table 1 as g(1).

• Similarly, the edges appearing in tables 3, 4 and 5 are all allowed with each gauge
algebra being written as g(1).

• The new nodes that can appear in graphs associated to 5d KK theories but do not
appear in graphs associated to 6d SCFTs are listed in table 8.

• The new undirected edges appearing for graphs associated to 5d KK theories are
listed in table 9.

The configuration

1
sp(nα)(1)

k

so(nβ)(2)

(3.36)

for nβ = 4nα+16 and nα ≥ 0 is not allowed since the choice of theta angle for sp(nα)
in the associated 6d theory is correlated to the choice of a spinor representation of
the neighboring so(4nα + 16). Thus, the outer automorphism O(2) of so(4nα + 16) is
not a symmetry of the theory.8

• The directed edges between two nodes both carrying a non-trivial gauge algebra are
listed in table 10.

The configuration

1
sp(nα)(1)

k

so(nβ)(2)

2 (3.37)

with nβ = 2nα+8 is not allowed. This configuration descends from (3.23) with n = nα
and m = nα + 4. Recall that the choice of theta angle of the gauge algebra sp(nα)
is equivalent to the choice of a spinor representation of its flavor symmetry algebra
so(4nα + 16). But so(2nα + 8) ⊕ so(2nα + 8) subalgebra of so(4nα + 16) is gauged.
The S of so(4nα + 16) decomposes as (S⊗ C)⊕ (C⊗ S) of so(2nα + 8)⊕ so(2nα + 8)
which is sent to (C⊗C)⊕ (S⊗ S) of so(2nα + 8)⊕ so(2nα + 8) by the action depicted
in (3.23). Thus, (3.23) is not a symmetry when n = nα and m = nα + 4.

For similar reasons, the configuration

1
sp(nα)(1)

k

so(nβ)(2)

3 (3.38)

with 3nβ = 4nα + 16 is not allowed.

The KK theory

3
so(8)(2)

1
sp(1)(1)

2 (3.39)
8The authors thank Gabi Zafrir for a discussion on this point.
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arises from the 6d SCFT

3
so(8)

1
sp(1)

1
sp(1)

(3.40)

by performing the outer automorphism O(2) of so(8) which permutes F and S, and
hence induces the exchange of the two sp(1).

• Other kinds of directed edges are listed in table 11.

Due to similar reasons as explained above, the configuration

1
sp(0)(1)

k

so(8)(2)

2 (3.41)

is not allowed.

• There are various kinds of possibilities for multiple neighbors of sp(0)(1). All of the
possibilities listed in table 6 are allowed with the substitution of g(1) in place of every
trivial or non-trivial algebra g appearing in that table. New possibilities involving
undirected edges are listed in table 12. These are obtained by performing outer
automorphisms on the possibilities listed in table 6. However, some of the outer
automorphisms do not yield a symmetry of the theory.

For example, consider the decomposition of the adjoint 248 of e8 under su(3)⊕ e6

248→ (8,1)⊕ (1,78)⊕ (3,27)⊕ (3′,27′) (3.42)

It can be seen from the above decomposition that neither the outer automorphism of
su(3) nor the outer automorphism of e6 is a symmetry of the decomposition, implying
that neither the configuration

k

su(3)(2)

1
sp(0)(1)

l
e
(1)
6

(3.43)

nor the configuration

k

su(3)(1)

1
sp(0)(1)

l
e
(2)
6

(3.44)

is an allowed KK theory. However, the configuration

k

su(3)(2)

1
sp(0)(1)

l
e
(2)
6

(3.45)

is an allowed KK theory since the combined outer automorphism of su(3) and e6
is indeed a symmetry of the decomposition (3.42). Correspondingly, neither (3.43)
nor (3.44) appears in the table 12, while (3.45) does appear in table 12.
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Similarly, the reader can check that the following configurations do not give rise to
allowed KK theories:

k

so(8)(2)

1
sp(0)(1)

l

so(8)(q)

(3.46)

for q = 1, 3. However, q = 2 is allowed.

k

su(4)(p)

1
sp(0)(1)

l

so(10)(q)

(3.47)

for (p, q) equal to (1, 2) and (2, 1). However, (1, 1) and (2, 2) are allowed.

k

su(3)(p)

1
sp(0)(1)

l

so(10)(q)

(3.48)

for (p, q) equal to (1, 2) and (2, 1).

k

su(3)(p)

1
sp(0)(1)

l

su(5, 6)(q)

(3.49)

for (p, q) equal to (1, 2) and (2, 1).

k

su(2)(1)

1
sp(0)(1)

l

so(12)(2)

(3.50)

k

su(4)(p)

1
sp(0)(1)

l

so(8)(3)

(3.51)

for p = 1, 2.

k

so(7)(1)

1
sp(0)(1)

l

so(8)(3)

(3.52)

• It is not possible for sp(0)(1) to have multiple neighbors when one of the neighbors
is connected to it by a directed edge going outwards from sp(0)(1). This is simply a
consequence of the fact that sp(0) cannot have three neighbors in the context of 6d
SCFTs.

However, it is possible for sp(0)(1) to have multiple neighbors with some neighbors
having directed edges pointing inwards towards sp(0)(1). These possibilities can be
simply obtained by replacing one or more undirected edges appearing in tables 6
and 12 by suitable directed edges (pointing inwards) taken from table 11. One has to
ensure that the matrix associated to the resulting configuration is positive definite,
which disallows some substitutions. We do not pursue a full classification of such
cases since they won’t be useful in this paper. Later on, in section 5.4.4, we will
provide a general prescription to obtain the gluing rules associated to such directed
edges from the gluing rules associated to their “parent” undirected edges.
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g O(q) h Rg → Rh

su(2m) O(2) sp(m) F→ F, F̄→ F, Λ2 → Λ2 ⊕ 1
su(2m+ 1) O(2) sp(m) F→ F⊕ 1, F̄→ F⊕ 1
so(2m) O(2) so(2m− 1) F→ F⊕ 1, S→ S, C→ S

e6 O(2) f4 F→ F⊕ 1, F̄→ F⊕ 1
so(8) O(3) g2 F→ F⊕ 1, S→ F⊕ 1, C→ F⊕ 1

Table 13. The table displays the invariant algebra h when g is quotiented by O(q). An irrep Rg of
g decomposes to an irrep Rh of h and this decomposition is displayed (for representations relevant
in this paper) in the column labeled Rg → Rh. 1 denotes the singlet representation.

4 Prepotential for 5d KK theories

The goal of this section is to propose a formula for the prepotential of a 5d KK theory
TKKS,{qα} starting from the tensor branch description of the corresponding 6d SCFT T.

4.1 Prepotential

Compactify a 6d SCFT T on a circle with a twist S, {qα} around the circle. Let us analyze
the low energy theory. Every node α in ΣS,{qα}

T gives rise to a low energy 5d gauge algebra
hα = gα/O(qα) which is the subalgebra of gα left invariant by the action of outer automor-
phism O(qα). In this paper, our choice of outer automorphisms is such that the invariant
subalgebras are those listed in table 13. For each node α, we obtain an additional u(1)α
gauge algebra in the low energy 5d theory coming from the reduction of a tensor multiplet
Bi on the circle where i lies in the orbit α.

Now we determine the spectrum of hypermultiplets charged under ⊕αhα under the low
energy 5d theory. First of all, for every node i in 6d theory, we define Ti = ⊕jR

⊕dim(Rij,j)
ij,i .

Recall that Ti ⊆ Ri and hence the 6d theory contains hypermultiplets charged under
representation Si of gi where Si is defined such that Si ⊕ Ti = Ri. Si is the representation
formed by those hypers that are only charged gi and not under any other gauge algebra gj
with j 6= i.

As detailed in table 13, irreducible representations Rgα of gα can be viewed as irre-
ducible representations of Rhα . We can thus view hypers transforming in representation
Si of gi as transforming in a representation of hα. Let us denote this representation of
hα by S̃α. The outer automorphism O(qα) then permutes constituent irreps inside S̃α and
thus acts on S̃α as an automorphism. The low energy 5d theory then contains hypers
transforming in the representation

Sα := S̃α/O(qα) (4.1)

These hypers are only charged under hα and not under any other gauge algebra hβ with
β 6= α.

Now consider other hypermultiplets that are charged under multiple gauge algebras in
the 6d theory. These descend to hypermultiplets charged under multiple gauge algebras
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in the low energy 5d theory plus some hypers only charged under the individual algebras.
Consider the mixed representation Rij = Rij,i ⊗ Rij,j of gi ⊕ gj in the 6d theory. Let
i and j lie in orbits α and β respectively. Let Rij,i decompose as Rαβ,α ⊕ nαβ,α1 when
viewed as a representation of hα, where Rαβ,α is the full subrepresentation that is charged
non-trivially under hα. Similarly, let Rij,j decompose as Rαβ,β ⊕ nαβ,β1 when viewed as a
representation of hβ , where Rαβ,β is the full subrepresentation that is charged non-trivially
under hβ . Then, under the twist, Rij descends to a mixed representation Rαβ of hα ⊕ hβ
plus representations Sαβ,α and Sαβ,β of hα and hβ respectively. Here Rαβ = Rαβ,α⊗Rαβ,β ,
Sαβ,α = nαβ,βRαβ,α, and Sαβ,β = nαβ,αRαβ,β .

In addition to the above, we also obtain hypers in the symmetric product Sym2(Rij,i)
for all j 6= i such that both j and i are in the same orbit α. Thus, the full representation
Rα formed by hypers under hα is

Rα = ⊕j∈αSym2(Rij,i)|hα ⊕ Sα ⊕β
(
R⊕dim(Rαβ,β)
αβ,α ⊕ Sαβ,α

)
(4.2)

where Sym2(Rij,i)|hα means that we view Sym2(Rij,i) as a representation of hα. Note that
in the above expression, i is a fixed node in the orbit α, j cannot equal i, and β cannot
equal α. There are no hypers charged under u(1)α. Just as the representations Ri and Rij
for all i and j determine the full matter content for 6d SCFTs, the representations Rα and
Rαβ for all α and β determine the full matter content for 5d KK theories.

As an example, let us determine the low energy 5d theory for (3.23). The 5d gauge
algebra is h = sp(n) ⊕ so(2m − 1). A half-bifundamental of sp(n) ⊕ so(2m) decomposes
as a half-bifundamental of sp(n)⊕ so(2m− 1) plus a half-fundamental of sp(n). Thus, the
two half-bifundamentals between the sp(n) and the two so(2m) in (3.23) descend to a half-
bifundamental of h plus a half-fundamental of sp(n) in the 5d theory. There are 2m−8−n
extra fundamentals of the left so(2m) in (3.23) not charged under any other gauge algebra.
Similarly, there are 2m−8−n extra fundamentals of the right so(2m) in (3.23) not charged
under any other gauge algebra. These two sets of fundamentals descend to 2m − 8 − n
fundamentals of so(2m − 1) in the 5d theory. We also obtain 2m − 8 − n singlets that
decouple and so we ignore them. Finally, there are 2n + 8 − 2m extra fundamentals of
sp(n) in (3.23) not charged under any other gauge algebra. These hypers descend to
2n+ 8− 2m extra fundamentals of sp(n) in the low energy 5d theory that are not charged
under so(2m−1). To recap, the low energy 5d theory is an sp(n)⊕so(2m−1) gauge theory
with a half-bifundamental plus 4n + 17 − 4m half-fundamentals of sp(n) plus 2m − 8 − n
fundamentals of so(2m− 1).

As another example, let us determine the low energy 5d theory for (3.14). The two
su(m) get identified to a single su(m) algebra. Similarly, the two su(n) get identified to a
single su(n) algebra. Thus the 5d gauge algebra is h = su(n)⊕ su(m). The bifundamentals
of su(m)⊕su(n) descend to a single bifundamental of h. The bifundamental of su(n)⊕su(n)
descends to S2 of su(n). Furthermore, we obtain n −m extra fundamentals of su(n) and
2m− n extra fundamentals of su(m). Thus, the low energy 5d theory is an su(n)⊕ su(m)
gauge theory with a bifundamental plus (2m− n)F of su(m) plus (n−m)F⊕ S2 of su(n).
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The low energy 5d gauge theory also contains tree-level Chern-Simons terms that arise
from the reduction of (2.1) on the circle. These can be written as

Ωαβ
S A0,α ∧ tr(F 2

β ) (4.3)

where A0,α is the gauge field corresponding to the u(1)α obtained by reducing Bα on the
circle and Fβ is the gauge field strength for hβ . In writing (4.3), we have used the fact that
the index of hβ in gβ is one which is true for our choice of h listed in table 7. Eq. (4.3)
contributes the following tree-level term to the prepotential

6F tree
S,{qα} = 6

∑
α,β

1
2Ωαβ

S φ0,α
(
Kab
β φa,βφb,β

)
(4.4)

where φ0,α is the scalar living in the vector multiplet corresponding to u(1)α and φa,β
are scalars living in the vector multiplets corresponding to u(1)a,β which parametrize the
Cartan of hβ . Here Kab

β is the Killing form on hβ normalized such that its diagonal entries
are minimum positive integers while keeping all the other entries integer valued.

Let h = ⊕αhα be the total gauge algebra visible at low energies. The low energy
hypermultiplets form some representation R of h which decomposes into irreducible repre-
sentations of h as R = ⊕fRf . Note that it is possible to have f 6= f ′ such that Rf = Rf ′ .
In other words, the index f distinguishes multiple copies of representation Rf . Now we
can add the one-loop contribution to the prepotential (4.4) to obtain

6FS,{qα} =
∑
α,β

3Ωαβ
S φ0,α

(
Kab
β φa,βφb,β

)
+ 1

2

∑
r

|r · φ|3 −
∑
f

∑
w(Rf )

|w(Rf ) · φ+mf |3

(4.5)

where r are the roots of h = ⊕αhα, w(Rf ) parametrize weights of Rf and mf ∈ R is a mass
term for each full9 hypermultiplet f . The notation w · φ denotes the scalar product of the
Dynkin coefficients of the weight w with Coulomb branch parameters. Note that similar
approaches for computing prepotentials of 5d theories have appeared in the literature —
see for example [40–42].

In (4.5) we must impose that mass terms for hypers belonging to Sαβ,α and Sαβ,β
equal the mass term for hypers belonging to Rαβ . This is because Rαβ , Sαβ,α and Sαβ,β
all descend from the same 6d representation Rij which has only a single u(1) symmetry
rotating it. The Wilson lines for this u(1) around the compactification circle gives rise to
the mass terms for Rαβ , Sαβ,α and Sαβ,β , and hence all these mass terms must be equal.

We propose that (4.5) is the full exact prepotential for TKKS,{qα} where we have ignored
the terms involving the mass parameter 1

R where R is the radius of compactification. We
are justified in doing so since these terms do not play any role in this paper. Moreover,
only the part of 6FS,{qα} that is cubic in Coulomb branch parameters φa,α is relevant to
the discussion in this paper; so, for convenience, we denote the part of the prepotential
cubic in Coulomb branch parameters by 6FφS,{qα}.

9Half-hypermultiplets do not admit mass parameters unless completed into a full hypermultiplet.
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Notice that fixing the relative values of φa,α and mf fixes the signs of the terms inside
absolute values in (4.5). As the relative values of φa,α and mf are changed, the sign of
some of the terms in (4.5) changes. This leads to jumps in the coefficients of various terms
in the resulting 6FφS,{qα}. This means that different relative values of φa,α and mf lead to
different phases inside the Coulomb branch of the 5d KK theory.

Let us illustrate through a simple example of the KK theory specified by the graph

2
su(3)(1)

(4.6)

This theory has six hypers in fundamental of su(3). The Dynkin coefficients of the positive
roots of su(3) are (2,−1), (1, 1) and (−1, 2). The Dynkin coefficients for the weights of
fundamental are (1, 0), (−1, 1) and (0,−1). The Killing form is 2 −1

−1 2


and Ωαβ

S is a 1× 1 matrix which equals 2. Without loss of generality, we can take r · φ for
positive roots to be positive. This implies that r · φ for negative roots is negative.

Let us first fix all the mass terms to be zero. Then the first weight (1, 0) contributes
with a positive sign since the positivity of r ·φ for positive roots implies that φ1 is positive.
Similarly, the third weight (0,−1) contributes with a negative sign to the prepotential.
However, the sign of second weight (−1, 1) cannot be determined uniquely, and hence the
theory has two phases when all mass parameters vanish. These two phases are distinguished
by the sign s of the contribution due to the weight (−1, 1). The prepotential can be written
as

6Fφ = 6F = 12φ0
(
φ2

1 + φ2
2 − φ1φ2

)
+
(
(2φ1 − φ2)3 + (φ1 + φ2)3 + (2φ2 − φ1)3

)
− 3

(
s (φ2 − φ1)3 + φ3

1 + φ3
2

)
(4.7)

Here 12φ0
(
φ2

1 + φ2
2 − φ1φ2

)
is the contribution coming from the Green-Schwarz term in

6d, (2φ1 − φ2)3 + (φ1 + φ2)3 + (2φ2 − φ1)3 is the contribution coming from the positive
and negative roots, and −3

(
s (φ2 − φ1)3 + φ3

1 + φ3
2

)
is the contribution coming from the

weights of six hypers in fundamental.
When we turn on mass parameters, the sign of the weights corresponding to different

hypers can be changed. For example, consider turning on a mass parameter for one of the
fundamentals m1 while keeping the mass parameters for the other five fundamentals zero.
Now we obtain contributions from terms of the form |m1 +φ1|, |m1−φ1 +φ2| and |m1−φ2|.
Depending on the value of m1, we go through various new phases of the theory which are
parametrized by choices of signs of these three terms. For example, suppose that m1 is
positive and very large, so that all the three terms are positive. Moreover, assume that
φ2 − φ1 is positive, so that s = +1. Then the resulting phase is governed by the following

– 30 –



J
H
E
P
1
2
(
2
0
2
0
)
1
5
1

prepotential

6F = 12φ0
(
φ2

1 + φ2
2 − φ1φ2

)
+
(
(2φ1 − φ2)3 + (φ1 + φ2)3 + (2φ2 − φ1)3

)
(4.8)

− 5
2
(
(φ2 − φ1)3 + φ3

1 + φ3
2

)
− 1

2
(
(φ2 − φ1 +m1)3 + (φ1 +m1)3 + (−φ2 +m1)3

)
which implies that the truncated prepotential is

6Fφ = 12φ0
(
φ2

1 + φ2
2 − φ1φ2

)
+
(
(2φ1 − φ2)3 + (φ1 + φ2)3 + (2φ2 − φ1)3

)
− 3

(
(φ2 − φ1)3 + φ3

1

)
− 2φ3

2 (4.9)

We caution the reader that there can be phases of the KK theory which cannot be
traversed by changing the signs of various contributions to the prepotential. In other
words, they are not visible to the canonical low energy gauge theory that we associated to
the KK theory in the beginning of this subsection. We will refer to such phases as non-
gauge theoretic. This terminology does not mean that the low energy theory governing such
phases cannot be understood as Coulomb branch of a gauge theory. Rather it simply means
that low energy theory governing such phases cannot be understood as part of Coulomb
branch of the canonical gauge theory associated to the corresponding KK theory.

4.2 Shifting the prepotential

Consider a 6d theory T with gauge algebras gi on its tensor branch. Consider further
compactifying T on a circle of finite size without a twist. On a generic point of the resulting
5d Coulomb branch, the massive BPS spectrum includes W-bosons for the corresponding
untwisted affine gauge algebras g

(1)
i . In other words, the abelian gauge algebra visible at

low energies on the Coulomb branch is ⊕au(1)a,i parametrizing the Cartan of gi plus a
u(1)0,i responsible for affinization. The u(1)i arising from the reduction of tensor multiplet
Bi is central to ⊕au(1)a,i ⊕ u(1)0,i. The untwisted Lie algebras are listed in figure 1 along
with their Coxeter and dual Coxeter labels.

We now generalize the above statements to the twisted case. Consider compactifying
T on a circle of finite size with a twist S, {qα}. On a generic point of the resulting 5d
Coulomb branch, the massive BPS spectrum includes W-bosons for the corresponding
twisted/untwisted affine gauge algebras g

(qα)
α . In other words, the abelian gauge algebra

visible at low energies on the Coulomb branch is ⊕au(1)a,α parametrizing the Cartan of hα
plus a u(1)0,α responsible for affinization. The u(1)α arising from the reduction of tensor
multiplet Bi (with i in orbit of α) is central to ⊕au(1)a,α⊕u(1)0,α. The twisted Lie algebras
are listed in table 2 along with their Coxeter and dual Coxeter labels.

The charge under u(1)b,α (corresponding to a simple co-root e∨b ) of a W-boson Wa

(corresponding to simple root ea of g(qα)
α ) is given by the element Aab of the Cartan matrix.

Now consider the u(1) embedding into ⊕rαb=0u(1)b,α by the map eiθ → ⊕rαb=0

(
eid
∨
b θ
)
b
where(

eid
∨
b θ
)
b
is the element eid∨b θ of u(1)b,α and d∨b are dual Coxeter labels of g(qα)

α listed in
figures 1 and 2. Since all the W-bosons Wa are uncharged under this u(1), it follows that
this u(1) can be identified with the central u(1)α. The charge of a particle nα under u(1)α
can be written as

∑rα
b=0 d

∨
b nb,α where nb,α is the charge of the particle under u(1)b,α.
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su(n)(1): e
(1)
6 :

· · ·
1

1

1 1 1 1 1
1 1 1 1 1 1

1

2

1 2 3 2 1

1

1 2 3 2 1

2

1

so(2n+ 1)(1): e
(1)
7 :

· · ·
1 2 2 2 2 1

1

1 2 2 2 2 2

1 2

1 2 3 4 3 2 1
1 2 3 4 3 2 1

2

sp(n)(1): e
(1)
8 :

· · ·
1 1 1 1 1 1
1 2 2 2 2 1

3

2 12 4 6 5 4 3

3
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Figure 1. Untwisted affine Lie algebras. The affine node is shown as a hollow circle. The numbers
in black d∨

a denote the column null vector for the Cartan matrix, popularly known as dual Coxeter
labels. The numbers in red da denote the row null vector for the Cartan matrix, popularly known
as Coxeter labels.
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su(2n+ 1)(2): e
(2)
6 :

· · ·
1 2 2 2 2 2
2 2 2 2 2 1

1 2 3 4 2
1 2 3 2 1

so(2n)(2): so(8)(3):

· · ·
1 2 2 2 2 1
1 1 1 1 1 1

3 2 1
1 2 1

su(2n)(2): su(4)(2):

· · ·
1 2 2 2 2 2

1

1 2 2 2 2 1

1

1 2 1
1 1 1

1 2
2 1

su(3)(2):

Figure 2. Twisted affine Lie algebras. The affine node is shown as a hollow circle. The numbers
in black d∨

a denote the column null vector for the Cartan matrix, popularly known as dual Coxeter
labels. The numbers in red da denote the row null vector for the Cartan matrix, popularly known
as Coxeter labels. The total number of nodes for su(2n+ 1)(2) is n+ 1, for so(2n)(2) is n, and for
su(2n)(2) is n+ 1.

The truncated prepotential 6FφS,{qα} is written in terms of Coulomb branch parameters
φb,α (with 1 ≤ b ≤ rα) corresponding to u(1)b,α and φ0,α corresponding to u(1)α. To
facilitate comparison with geometry, we wish to write the prepotential in terms of Coulomb
branch parameters corresponding to u(1)b,α for 0 ≤ b ≤ rα. This is achieved by performing
the following replacement in 6FφS,{qα}

φb,α → φb,α − d∨b φ0,α (4.10)

for all 1 ≤ b ≤ rα and for all α.10 We will call the prepotential obtained after this shift
as F̃S,{qα}. The Coulomb branch parameter φ0,α in F̃S,{qα} corresponds to u(1)0,α rather
than u(1)α.

For illustrative purposes, we note that the shift for our example (4.6) is

φ1 → φ1 − φ0

φ2 → φ2 − φ0

10Note that the shift (4.10) has been studied before the in the literature in relation to resolutions of
elliptically fibered Calabi-Yau threefolds; in these examples, the effect of the shift is to expand the Kähler
form J in basis of primitive divisors — see for example [43].
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which means that the shifted prepotential corresponding (4.7) is

6F̃ = 8φ3
0 + 8φ3

1 + 2φ3
2 − 6φ1φ

2
0 + 6φ1φ

2
2 − 6φ2φ

2
0 − 12φ2φ

2
1 (4.11)

where we have chosen the phase s = +1.
The shifted prepotential for (4.9) is

6F̃ = 7φ3
0 + 8φ3

1 + 3φ3
2 − 6φ1φ

2
0 + 6φ1φ

2
2 − 3φ2φ

2
0 − 3φ0φ

2
2 − 12φ2φ

2
1 (4.12)

A Mathematica notebook accompanying the submission of this paper can be used to
compute the contribution to 6F̃ (in any gauge-theoretic phase) from a single node or two
nodes connected by an edge. Using these two results, one can write the contribution to
6F̃ from two nodes connected by an edge as contributions from the two nodes alone and
a contribution from the edge. Thus, we can figure out what is the contribution to 6F̃ by
each possible edge. Combining the contributions from the nodes and the edges, one can
obtain 6F̃S,{qα} for any arbitrary graph ΣS,{qα}

T . More details and the instructions for using
the notebook can be found in appendix E.

5 Geometries associated to 5d KK theories

In this section, we will show that we can associate (at least one) genus-one fibered Calabi-
Yau threefold XS,{qα} to every 5d KK theory11 TKKS,{qα}. Compactifying M-theory on XS,{qα}

produces the Coulomb branch of TKKS,{qα}. Some of the results appearing below also appeared
in [3–5, 44–51]

5.1 General features

In this subsection, we start with a description of general features of the geometric structure
of XS,{qα} and the relationship between this geometry and the low energy effective theory
governing the Coulomb branch of the KK theory TKKS,{qα}.

We will show that XS,{qα} can be realized as a local neighborhood of a collection of
irreducible compact holomorphic surfaces intersecting with each other pairwise transversely.
As we will see, the surfaces fall into families indexed by α. We denote the irreducible
surfaces in each family α as Sa,α where 0 ≤ a ≤ rα (where rα is the rank of hα). The
Kahler parameters associated to Sa,α are identified as the Coulomb branch parameters
φa,α of the corresponding 5d KK theory discussed in the previous section. Whenever hα is
trivial, the rank of hα is zero and hence there is only a single surface S0,α associated to the
node α in that case.

5.1.1 Triple intersection numbers and the prepotential

A key role in the relationship between XS,{qα} and TKKS,{qα} is played by the shifted pre-
potential 6F̃S,{qα}. The coefficients caα,bβ,cγ of φa,αφb,βφc,γ in 6F̃S,{qα} capture the triple

11We remind the reader that this statement is not completely true for KK theories involving the last node
in table 8. For such KK theories, we only propose an algebraic description whose structure closely mimics
the structure of genus-one fibered Calabi-Yau threefolds to be discussed in the next subsection 5.1.
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intersection numbers of surfaces in XS,{qα} as follows:

caα,aα,aα = Sa,α · Sa,α · Sa,α (5.1)
caα,aα,bβ = 3Sa,α · Sa,α · Sb,β (5.2)
caα,bβ,cγ = 6Sa,α · Sb,β · Sc,γ (5.3)

where (a, α), (b, β), (c, γ) denote distinct non-equal indices.
A triple intersection product of three surfaces can be computed via intersection num-

bers inside any one of the three surfaces. To explain it, let us first define the notion of
“gluing curves”. Consider the intersection locus Laα,bβ between two distinct surfaces Sa,α
and Sb,β in XS,{qα}. Laα,bβ splits into geometrically irreducible components as

∑
i Liaα,bβ .

Each Liaα,bβ appears as an irreducible curve Cia,α;b,β in Sa,α and an irreducible curve Cib,β;a,α
in Sb,β . In other words, we can manufacture the intersection of Sa,α and Sb,β by identifying
the curves

Cia,α;b,β ∼ Cib,β;a,α (5.4)

with each other for all i. Identifying pairs of curves in the above fashion can be thought
of as “gluing together” two surfaces along those curves.12 The reducible curve Ca,α;b,β :=∑
iC

i
a,α;b,β is called the “total gluing curve” in Sa,α for the intersection of Sa,α and Sb,β .

Similarly, Cb,β;a,α :=
∑
iC

i
b,β;a,α is called the total gluing curve in Sb,β for the intersection

of Sa,α and Sb,β .
As two distinct surfaces Sa,α and Sb,β can intersect each other, so can a single surface

Sa,α intersect itself. Much as above for the intersection of two distinct surfaces, the self-
intersection of Sa,α can be captured in terms of gluings

Cia,α ∼ Di
a,α (5.5)

where Cia,α and Di
a,α are irreducible curves in Sa,α.

Then the triple intersection numbers can be expressed as:

Sa,α · Sa,α · Sa,α = K ′a,α ·K ′a,α (5.6)
Sa,α · Sa,α · Sb,β = K ′a,α · Ca,α;b,β = C2

b,β;a,α (5.7)
Sa,α · Sb,β · Sc,γ = Ca,α;b,β · Ca,α;c,γ = Cb,β;c,γ · Cb,β;a,α = Cc,γ;a,α · Cc,γ;b,β (5.8)

where
K ′a,α := Ka,α +

∑
i

(
Cia,α +Di

a,α

)
(5.9)

and Ka,α denotes the canonical class of Sa,α.
As an illustrative example consider the KK theory (4.6) for which the shifted prepoten-

tial in a particular phase is displayed in (4.11). We propose that the associated geometry
is as follows. Since there is a single node, we drop the index α and only display the index
a. The surfaces are S0 = F0, S1 = F2, S2 = F6

4. The gluing curves between S0 and S1 are
12On multiple occasions throughout this paper, we abuse the language and denote the identification of

two curves as “gluing” of the two curves.
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C0;1 = e, C1;0 = e. The gluing curves between S1 and S2 are C1;2 = h,C2;1 = e. The gluing
curves between S2 and S0 are C2;0 = h−

∑
xi, C0;2 = e.

Now we can check that the intersections of these curves indeed give rise to the various
coefficients in (4.11):

• First of all, recall from (A.18) that K2 = 8− b for Fbn. Indeed, the coefficients of φ3
a

in (4.11) equal K2
a .

• One third the coefficient of φ0φ
2
1 is zero which matches C2

0;1 = (e2)S0 where (e2)S0

denotes that the intersection number e2 is computed inside S0 and that in particular
the curve e is inside S0. The coefficient also matches K1 · C1;0 = (K · e)S1 = 0. One
third of the coefficient of φ2φ

2
0 is −2 which indeed matches C2

2;0 =
(
(h−

∑
xi)2)

S2
=(

h2 −
∑
x2
i

)
S2

= 4− 6 = −2 and K0 ·C0;2 = (K · e)S0 = −2. Similarly, we can check
the matching of such intersection numbers with one third the coefficients of other
terms of the form φaφ

2
b .

• One sixth the coefficient of φ0φ1φ2 is zero which matches C0;1 · C0;2 = (e2)S0 = 0,
C1;2 · C1;0 = (h · e)S1 = 0, and C2,0 · C2;1 = ((h−

∑
xi) · e)S2

= 0.

On the other hand, the geometry associated to (4.12) has S0 = F1
0, S1 = F2 and

S2 = F5
4. The gluing curves between S0 and S1 are C0;1 = e, C1;0 = e. The gluing curves

between S1 and S2 are C1;2 = h,C2;1 = e. The gluing curves between S2 and S0 are
C2;0 = h −

∑
xi, C0;2 = e − x. Here x denotes the exceptional curve of the blowup of

S0 and xi denote the exceptional curves of the blowups of S2. One can check that the
intersections of these curves indeed give rise to the various coefficients in (4.12).

5.1.2 Consistency of gluings: volume matching, the Calabi-Yau condition, and
irreducibility

Not every pair of curves can be identified with one another to form a consistent gluing. First
of all, the topology of the two curves must be identical. This implies that a geometrically
irreducible curve in one surface can only be identified with a geometrically irreducible curve
in another surface, and furthermore that the genera (as defined in appendix A.3) of the
two curves must be identical and non-negative. If C ⊂ S is an irreducible curve, then
a necessary condition that must be satisfied by C is that for any other irreducible curve
C ′ ⊂ S such that C 6= C, the intersection product must be non-negative:

C · C ′ ≥ 0. (5.10)

In this paper, some of the algebraic examples are non-geometric (i.e. do not admit a conven-
tional geometric description satisfying these consistency conditions) because they involve
gluings which identify a geometrically reducible curve in one surface with a geometrically
irreducible curve in another surface. Despite this apparent pathology, these examples nev-
ertheless satisfy the remaining conditions described below.

In addition to the above topological constraints, the volumes of a pair of gluing curves
must be the same. The volume of a curve C is computed by intersecting the curve with
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the Kahler class J via
vol(C) = −J · C (5.11)

where
J =

∑
a,α

φa,αSa,α +
∑
f

mfNf (5.12)

where mf are mass parameters and Nf are non-compact surfaces corresponding to those
mass parameters. The contribution of mass parameters to the volume will not play a
prominent role in this paper, so we define a truncated Kahler class Jφ which only keep
track of the contribution of Coulomb branch parameters to the volume

Jφ =
∑
a,α

φa,αSa,α (5.13)

The volume of C equals the mass of the BPS state obtained by wrapping an M2 brane on
C because the intersection number

− Sa,α · C (5.14)

captures the charge under u(1)a,α of the BPS state arising from M2 brane wrapping C. If
C lies in Sa,α, then the intersection (5.14) is computed via

Sa,α · C = K ′a,α · C (5.15)

If C lies in some other surface Sb,β , then (5.14) is computed via

Sa,α · C = Cb,β;a,α · C (5.16)

Now, for (5.4) to be consistent we must have

Jφ · Cia,α;b,β = Jφ · Cib,β;a,α (5.17)

which is an important consistency condition for constructing XS,{qα}. We have checked
that (5.17) is satisfied for all the geometries presented in this paper.

Finally, the gluing curves also have to satisfy the Calabi-Yau condition which states
that (

Cia,α;b,β

)2
+
(
Cib,β;a,α

)2
= 2g − 2 (5.18)

where g is the genus of Cia,α;b,β . See [2, 4] for more details.
Notice that in special situations the Calabi-Yau condition (5.18) is automatically sat-

isfied as long as we satisfy (5.17). This is the situation when there is a single gluing
curve Ca,α;b,β ∼ Cb,β;a,α between two surfaces Sa,α and Sb,β such that neither of them is a
self-glued surface. Then, (5.17) implies

K · Ca,α;b,β = C2
b,β;a,α (5.19)

Adding C2
a,α;b,β to both sides of the above equation we get

C2
a,α;b,β + C2

b,β;a,α = 2g − 2 (5.20)
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As an example, in what preceded above we discussed the geometry associated to (4.11).
We can check that (5.17) is satisfied for all the gluing curves in the geometry. For instance,

Jφ · C0;1 = φ0 (K0 · C0;1) + φ1C
2
0;1 + φ2 (C0;2 · C0;1) (5.21)

= φ0 (K · e)S0
+ φ1

(
e2
)
S0

+ φ2
(
e2
)
S0

(5.22)

= −2φ0 (5.23)

and comparing it with

Jφ · C1;0 = φ0C
2
1;0 + φ1 (K1 · C1;0) + φ2 (C1;2 · C1;0) (5.24)

= φ0
(
e2
)
S1

+ φ1 (K · e)S1
+ φ2 (e · h)S1

(5.25)

= −2φ0 (5.26)

we find that indeed the gluing C0;1 ∼ C1;0 is consistent. Similarly, it can be checked that
all the other gluings are consistent as well. In a similar fashion, one can also check that all
of the gluings in the geometry associated to (4.12) discussed above satisfy (5.17).

5.1.3 Weights, phase transitions and flops

A hypermultiplet transforming in a representation Rf of the 5d gauge algebra h = ⊕αhα
appears as a collection of curves inside XS,{qα}. These curves are characterized as follows.
Let mf be the mass parameter corresponding to Rf . For each weight w(Rf ) of Rf , define
a quantity vol (w(Rf )), which we call the virtual volume, by shifting the quantity

w(Rf ) · φ+mf (5.27)

by the shift (4.10) for all α. Then, one can find a holomorphic curve Cw(Rf ) in XS,{qα}
such that

vol
(
Cw(Rf )

)
= |vol (w(Rf )) | (5.28)

In general, the curve Cw(Rf ) can be a positive linear combination of curves living
inside various irreducible surfaces. However, some of the curves Cw(Rf ) turn out to be
living purely inside a single irreducible surface Sa,α. If such a curve Cw has genus zero
and self-intersection −1 inside Sa,α, then one can perform a flop transition13 on XS,{qα} by
flopping C, which corresponds to a phase transition in the Coulomb branch of the 5d gauge
theory described in previous section. We refer to such a flop transition as a “gauge-theoretic
flop transition” to distinguish it from the flop transitions associated to more general −1
curves not associated to any hypermultiplet.

Let the geometry obtained after the flop transition associated to Cw be X ′S,{qα}. As
for XS,{qα}, there exist curves C ′w(Rf ) in X ′S,{qα} associated to weights w(Rf ) such that

vol
(
C ′w(Rf )

)
= |vol′ (w(Rf )) | (5.29)

13This transition corresponds to blowing down C inside Sa,α and performing a blow-up in the neighboring
surfaces intersecting C transversally. We will explain such transitions via various illustrations throughout
this paper. More detailed background can be found in section 2 of [4].
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where vol′ (w(Rf )) is the shift of the quantity (5.27) computed in the new phase. The
relationship between the two virtual volumes vol′ (w(Rf )) and vol (w(Rf )) is

vol′ (w(Rf )) = vol (w(Rf )) (5.30)

for all w(Rf ) 6= w, and
vol′ (w) = −vol (w) (5.31)

with a minus sign.
We know from the analysis presented in the last section that the canonical 5d gauge

theory associated to (4.6) is an su(3) gauge theory with six fundamental hypers. The
Dynkin coefficients of the weights of fundamental are (1, 0), (−1, 1) and (0,−1). We call
these weights w1, w2 and w3 respectively. We can compute

vol(w1) = −φ0 + φ1 (5.32)
vol(w2) = −φ1 + φ2 (5.33)
vol(w3) = φ0 − φ2 (5.34)

Recall that the phase (4.11) corresponds to vol(w1) and vol(w2) being positive and vol(w3)
being negative for all the six fundamentals. Now compute the volume of one of the blowups
xi living in the surface S2 in the geometry corresponding to (4.11):

vol(xi) = −φ0 + φ2 (5.35)

Thus we see that Cw3 for each fundamental is xi. The reader can check that Cw2 = f2 +xi
and Cw1 = f1 + f2 + xi where fa denotes the fiber of the Hirzebruch surface Sa.

In fact, the geometries corresponding to (4.11) and (4.12) are related by a flop transi-
tion. We first blow down one of the blowups, say x6, inside S2. Under this blowdown the
identity of S2 changes from F6

4 to F5
4. Since x6 intersects the gluing curve h−

∑6
i=1 xi at one

point, the gluing curve after the blowdown becomes h−
∑6
i=1 xi + x6 = h−

∑5
i=1 xi. The

other gluing curve inside S2 is unaffected since x6 does not intersect with it. Correspond-
ingly, since the gluing curve for S1 in S2 does not intersect x6, the surface S1 is unaffected
by the flop transition. However, since the gluing curve for S0 in S2 intersects x6, we have
to blowup S0 at a point lying on the gluing curve for S2 inside S0. Under the blowup the
identity of S0 changes from F0 to F1

0. The gluing curve for S2 inside S1 is changed to e−x.
Recall that the phase (4.12) corresponds to turning on a large mass m for one of the

fundamentals such that
vol(w3) = φ0 − φ2 +m (5.36)

for this fundamental is positive. Correspondingly, we can compute that

vol(x) = φ0 − φ2 (5.37)

which indeed matches (5.36) up to the contribution from mass parameter, thus verify-
ing (5.31). We are not keeping track of non-compact surfaces in this paper, so we are only
able to verify (5.31) up to the contribution from m.
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5.1.4 Affine Cartan matrices and intersections of fibers

For each surface Sa,α in XS,{qα}, we define a canonical fiber fa,α inside it:

• If gα is non-trivial, then Sa,α will always be a Hirzebruch surface14 whose fiber class is
the canonical fiber fa,α. An M2 brane wrapping this curve gives rise to the W-boson
Wa,α discussed in last section.

• If the node α is

2
su(1)(1)

(5.38)

then it turns out that there is a single corresponding surface S0,α = F 2
0 which is

self-glued since e− x and e− y are identified with each other where x and y are the
exceptional curves corresponding to the two blowups. Due to the self-gluing, the fiber
class of S0,α intersects itself inside the threefold XS,{qα} and appears as an elliptic
curve with a nodal singularity. It is this fiber class that we refer to as the canonical
fiber f0,α in this case.

• If the node α is

1
sp(0)(1)

θ

(5.39)

then it turns out that there is a single corresponding surface S0,α = dP9. The del
Pezzo surface15 dP9 admits a unique elliptic fiber class 3l −

∑
xi which we refer to

as the canonical fiber f0,α in this case.

• If the node α is

2
su(1)(1)

(5.40)

then it turns out that there is no completely geometric description. We provide an
algebraic description in terms of algebraic properties of the curves inside the surface
S0,α = F 2

1 which is self-glued since x and y are identified with each other. The
canonical fiber in this case is f0,α = 2h + f − 2x − 2y which is a genus one curve of
self-intersection zero.

For each α we find that
fa,α · Sb,α = −Aab (5.41)

14In this paper, by a “Hirzebruch surface”, we refer to a Hirzebruch surface possibly with blowups at
generic or non-generic locations. Some background on Hirzebruch surfaces can be found in appendix A.

15In this paper, by a “del Pezzo surface dPn”, we refer to a surface which is an n point blowup of P2

but the blowups can be at non-generic locations. Some background on del Pezzo surfaces can be found in
appendix A.
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where Aab is the Cartan matrix of g(qα)
α and Aab ≡ A00 = 0 whenever gα is trivial. This

means that the fibers of Hirzebruch surfaces Sa,α for a fixed α intersect in the fashion of
Dynkin diagram associated to affine Lie algebra g

(qα)
α .

Intersection (5.41) is of the form C ·Sa,α where C is some curve in the threefold XS,{qα}
and Sa,α is a surface inside the threefold. Like the triple intersection numbers of surfaces
inside a threefold, such intersections can also be computed in terms of intersection numbers
inside a surface. If C is a curve inside Sa,α, then

C · Sa,α = C ·K ′a,α (5.42)

and if C is a curve inside a surface Sb,β that is distinct from Sa,α, then

C · Sa,α = C · Cb,β;a,α (5.43)

Consider the example of (4.11) whose associated geometry was described towards the
end of section 5.1.1. We can compute that

f0 · S0 = (K · f)S0 = −2 (5.44)
f1 · S1 = (K · f)S1 = −2 (5.45)
f2 · S2 = (K · f)S2 = −2 (5.46)
f0 · S1 = C0;1 · f0 = (e · f)S0 = 1 (5.47)
f1 · S2 = C1;2 · f1 = (h · f)S0 = 1 (5.48)

f2 · S0 = C2;0 · f2 =
((
h−

∑
xi
)
· f
)
S0

= 1 (5.49)

f1 · S0 = C1;0 · f1 = (e · f)S1 = 1 (5.50)
f2 · S1 = C2;1 · f2 = (e · f)S2 = 1 (5.51)
f0 · S2 = C0;2 · f0 = (e · f)S0 = 1 (5.52)

Thus we see that fa · Sb indeed reproduces the negative of Cartan matrix of affine Lie
algebra su(3)(1). We can similarly check that the geometry associated to (4.12) also leads
to the Cartan matrix of su(3)(1).

5.1.5 The genus one fibration

For each α, combining the fibers fa,α, let us define a fiber fα via

fα = dafa,α (5.53)

where da are Coxeter labels for g(qα)
α listed (in red color) in figures 1 and 2. If gα is trivial,

then d0 := 1.
We claim that fα is a genus one fiber. This means that fα can be obtained by a

degeneration of a torus. It is well-known that torus fibers can degenerate into Kodaira
fibers, which are collections of rational curves16 intersecting in the pattern of untwisted
affine Dynkin diagrams of type su(n)(1), so(2n)(1) and e

(1)
n . The multiplicity of each rational

16This means they have genus zero.
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component curve is given by the Coxeter label for the corresponding node in the affine
Dynkin diagram. The fiber fα, on the other hand, is composed of rational curves fa,α
with their multiplicity given by the Coxeter labels for affine Dynkin diagram g

(qα)
α . Now,

one can notice that every affine Dynkin diagram can be obtained by folding affine Dynkin
diagrams of type su(n)(1), so(2n)(1) and e

(1)
n as follows:

so(2n)(1) → so(2n− 1)(1) → so(2n− 2)(2) (5.54)

e
(1)
6 → f

(1)
4 → so(8)(3) (5.55)

so(8)(1) → so(7)(1) → g
(1)
2 (5.56)

so(4n)(1) → su(2n)(2) → su(2n− 1)(2) (5.57)

so(8)(1) → so(7)(1) → su(4)(2) → su(3)(2) (5.58)

e
(1)
7 → e

(2)
6 (5.59)

Moreover, observe that the Coxeter numbers of two nodes are added if they are identified
under gluing. This means that fα can be obtained by identifying the rational components
of the Kodaira fibers according to the above folding rules. This explicitly shows that fα is
a genus one fiber.

Moreover, we find that due to the virtue of gluing rules, fα is glued to fβ as

qα(−Ωβα)fα ∼ qβ(−Ωαβ)fβ (5.60)

This generalizes the condition in the untwisted unfrozen case [4] where fi ∼ fj whenever
there is an edge between i and j in ΣT. This shows that certain multiples of genus one fibers
are identified with each other as one passes over from one collection of surfaces to another,
allowing us to extend the fibration structure consistently throughout the threefold.

More formally, according to a theorem due to Oguiso and Wilson [52, 53], a threefold
X admits an genus one fibration structure if and only if there exists an effective divisor
ST 2 satisfying

ST 2 · ST 2 · ST 2 = 0, ST 2 · ST 2 6= 0 (5.61)

where ST 2 lives in the extended Kähler cone, possibly on the boundary. The extended
Kähler cone is parameterized by all the Coulomb branch and mass parameters satisfying

J · C ≥ 0 (5.62)

for all holomorphic curves C in X. Physically, the extended Kähler cone corresponds to
the Coulomb branch of the (possibly mass deformed) 5d theory corresponding to X.

In all of geometries associated to 5d KK theories, we can find an ST 2 which lies in the
extended Kähler cone satisfies (5.61). Pick any node α and define

ST 2 :=
rα∑
a=0

d∨aSa,α (5.63)

where d∨a are dual Coxeter labels for the associated affine algebra g
(qα)
α (see figures 1 and 2)

and rα is the rank of invariant subalgebra hα. If the node α carries a trivial gauge algebra,
then we define d∨0 = 1 and take (5.63) to be the definition of ST 2 .
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In the gauge theoretic case, the direction parametrized by (5.63) is special since all the
fibers fa,α have zero volume along this direction17

− ST 2 · fa,α =
∑
b

Aabd
∨
b = 0 (5.64)

Similarly, in the non-gauge theoretic case

− ST 2 · f0,α = −K ′0,α · f0,α = 0 (5.65)

where the last equality can be checked to be true for every non-gauge theoretic case.
Moreover, the reader can check using the explicit description of geometries presented in
this paper that

ST 2 · C ≥ 0 (5.66)

for all other holomorphic C in the threefold XS,{qα}. So, ST 2 as defiend in (5.63) lies in
the extended Kähler cone of XS,{qα}.

Now it can be easily checked for all the geometries presented in this paper that

ST 2 · ST 2 = −qαΩαα
rα∑
a=0

(dafa,α) 6= 0 (5.67)

where da are the Coxeter labels for g
(qα)
α with d0 := 1 if α is a non-gauge theoretic node.

We can now compute

ST 2 · ST 2 · ST 2 ∝
rα∑
a=0

(dafa,α) ·
(
rα∑
b=0

d∨b Sb,α

)
= −

rα∑
a,b=0

daAabd
∨
b = 0 (5.68)

thus verifying both the conditions in (5.61) and establishing the presence of a genus one
fibration in XS,{qα}.

Let us now discuss the relationship between fibers fα and the radius of compactification
circle R. In general, we can find at least one node µ such that

nµfµ ∼ nµ,αfα (5.69)

with nµ,α ≥ nµ ≥ 1 for all α . Then the curve

f := lµnµfµ (5.70)

with lµ defined in section 3.3 can be identified with the KK mode of unit momentum in
TKKS,{qα} and has mass 1

R where R is the radius of the circle on which the 6d theory T has
been compactified. Thus, all the fα can be identified as fractional KK modes with mass

1
nαR

where nα = lµnµ,α. This generalizes the condition in the untwisted unfrozen case
where the KK mode is identified with

f := fi (5.71)

for any i, which is consistent since fi ∼ fj for all i, j.
17In fact, non-negativity of the volumes of fibers implies that the only directions in the Coulomb branch

when mass parameters are turned off are given by
∑

a
d∨aSa,α for various α.
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Let us now discuss some examples. For the KK theory

1
sp(n)(1)

4
so(2m)(2)

(5.72)

we find that
fsp(n)(1) ∼ 2fso(2m)(2) (5.73)

and the KK mode is
f = fsp(n)(1) (5.74)

For the KK theory (3.30), we find that

fsp(n)(1) ∼ 2fso(2m)(1) (5.75)

and the KK mode is
f = fsp(n)(1) (5.76)

For the KK theory (3.28), our gluing rules say that

2fsu(n)(2) ∼ 2fsu(m)(1) (5.77)

and the KK mode is
f = 2fsu(n)(2) (5.78)

For the KK theory (3.14), our gluing rules say that

fsu(n)(1) ∼ fsu(m)(1) (5.79)

and the KK mode is
f = 2fsu(n)(1) (5.80)

An interesting example to consider is the KK theory defined by the untwisted com-
pactification of the 6d SCFT

2
su(p)

4
so(m)

1
sp(n)

2 (5.81)

which arises only in the frozen phase. We find that

2fsu(p)(1) ∼ 2fso(m)(1) (5.82)

fso(m)(1) ∼ fsp(n)(1) (5.83)

and the KK mode is
f = 2fsu(p)(1) ∼ 2fso(m)(1) ∼ 2fsp(n)(1) (5.84)

If (5.81) arose in the unfrozen phase of F-theory, then we would have obtained

f = fsu(p)(1) ∼ fso(m)(1) ∼ fsp(n)(1) (5.85)

Thus equation (5.84) is a way to see that (5.81) cannot arise in the unfrozen phase of
F-theory.
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5.2 Geometry for each node

In this section we will describe the surfaces Sa,α along with their intersections associated
to a single node α.

5.2.1 Graphical notation

We will capture the data of the surfaces and their intersections by using a graphical notation
that would be a simpler version of the graphical notation used in [3, 4]. This subsection is
devoted to the explanation of this notation. We find it best to explain the notation with
the following example:

02+2
8 12+2

6 20
e-
∑

yi h+
∑

(f -yi) e-
∑

xi-
∑

yi 3e+ 2f
f -xi,f -xi,

3
xi yi xi yi

2 2 (5.86)

which is a particular phase of the KK theory

2
so(8)(3)

(5.87)

Since the rank of invariant subalgebra h = g2 is two, we should have three surfaces in this
case labeled by Sa where 0 ≤ a ≤ 2. The middle number in the label for each node denotes
the index a. Thus the node labeled 02+2

8 denotes the surface S0, the node labeled 12+2
6

denotes the surface S1, and the node labeled 20 denotes the surface S2.
Every surface Sa is a Hirzebruch surface. The subscript in the label for each node

denotes the degree of the corresponding Hirzebruch surface. Thus, S0 has degree 8, S1
has degree 6, and S2 has degree 0. The superscript in the label for each node denotes the
number of blowups on the corresponding Hirzebruch surface. Thus, S0 carries 2 + 2 = 4
blowups and hence S0 = F4

8, S1 carries 2 + 2 = 4 blowups and hence S1 = F4
6, and S2

carries no blowups and hence S2 = F0.
The fact that the four blowups on S0 are displayed as 2 + 2 denotes that the four

blowups are divided into two sets, with each set containing two blowups. We denote the
blowups in the first set as xi and the blowups in the second set as yi. The same is true for
S1. In a general graph, the blowups on a surface can be divided into more than two sets,
and the number of blowups inside each set can be different. Whatever may be the case,
we adopt the notation of denoting the blowups inside the first set as xi, the blowups inside
the second set as yi, the blowups inside the third set as zi etc.

The label in the middle of an edge between two nodes denotes the number of irreducible
components of the intersection locus between the two surfaces corresponding to the two
nodes. As already discussed above, each component of the intersection locus can be viewed
as an irreducible gluing curve inside each of the surfaces participating in the intersection.
Thus, there is a single gluing curve between S1 and S2 in the graph (5.86), but there are
three gluing curves between S0 and S1. The graph also tells us that the surface S0 is a
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self-glued Hirzebruch surface since there are edges which start and end at S0. Similarly, S1
is also a self-glued surface. We can see that the number of self-gluings in S0 are two, and
the number of self-gluings in S1 are also two.

The curves displayed at the ends of edges tell us the identities of various gluing curves.
The left end of the edge between 12+2

6 and 20 reads e−
∑
xi−

∑
yi, which means that the

corresponding gluing curve inside S1 is e−
∑
xi−

∑
yi. The right end of the edge between

12+2
6 and 20 reads 3e+ 2f , which means that the corresponding gluing curve inside S2 is

3e+ 2f . We note that whenever we write
∑
xi or

∑
yi, we mean a sum of all the blowups

in the set of blowups denoted by xi or yi respectively.
In the above graph, the two self-gluings of S0 are displayed by writing xi at one end

and yi at the other end. This tells us that xi in S0 is glued to yi in S0. Since there is
no sum over i, this gluing is supposed to be true for each valued of i. Hence, the two
self-gluings are x1 ∼ y1 and x2 ∼ y2. The same is true for self-gluings of S1.

The gluing curves for the three gluings between S0 and S1 are displayed as f − xi, e−∑
yi inside S0 and as f −xi, h+

∑
(f − yi) inside S1. These are supposed to be read in the

order they are written. Thus, unpacking the notation we learn that the three gluings are

(f − x1)S0 ∼ (f − x1)S1 (5.88)
(f − x2)S0 ∼ (f − x2)S1 (5.89)

(e− y1 − y2)S0 ∼ (h+ 2f − y1 − y2)S1 (5.90)

We also sometimes suppress multiplicity of a gluing curve. For example, in the geom-
etry

32+2
6

23 16+6
5

f
e-
∑

xi-
∑

yi

2h

eh

f -xi-yi

01 h e

6

2
xi yi

(5.91)

the gluing curve for S2 in S3 is displayed simply as f . But the edge between S2 and S3
shows that there are six gluing curves involved. This means that the true gluing curve for
S2 in S3 is actually six copies of the fiber f of S3.

Now, let us extract the prepotential 6F̃ from the graph (5.86). The coefficient of φ3
0 is

(K ′2)S0 =
((
K+

∑
xi+

∑
yi
)2
)
S0

=
(
K2 +

∑
x2
i +
∑

y2
i +2

∑
K ·xi+2

∑
K ·yi

)
S0

(5.92)
We have K2 = 8− 4 = 4 and K · xi = K · yi = −1, using which (5.92) reduces to

(K ′2)S0 = 4− 2− 2− 4− 4 = −8 (5.93)
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Similarly the coefficient of φ3
1 is −8. The coefficient of φ3

2 is 8. The coefficient of φ2φ
2
1 can

be computed as (
(3e+ 2f)2

)
S2

= 12 (5.94)

which coincides with(
K ′ ·

(
e−

∑
xi −

∑
yi
))

S1
=
((
K +

∑
xi +

∑
yi
)
·
(
e−

∑
xi −

∑
yi
))

S1
= 12
(5.95)

as it should for consistency. We can compute the coefficient of φ0φ
2
1 to be(((

e−
∑

yi
)

+ (f − x1) + (f − x2)
)2
)
S0

= −8 (5.96)

which indeed coincides with(
K ′ · ((h+ 2f − y1 − y2) + (f − x1) + (f − x2))

)
S1

= −8 (5.97)

Similarly, we can compute coefficients for other terms of the form φaφ
2
b . Finally, the

coefficient of φ0φ1φ2 must be 0 since there is no edge between S0 and S2. But this coefficient
can also be computed as an intersection number of gluing curves inside S1. Thus, the
corresponding intersection number better be zero for consistency. Indeed we find that((

e−
∑

xi −
∑

yi
)
· ((h+ 2f − y1 − y2) + (f − x1) + (f − x2))

)
S1

= 0 (5.98)

5.2.2 Untwisted

In this subsection, we collect our results for nodes of the form

k
g(1)

(5.99)

That is, we restrict ourselves to the case where the associated affine Lie algebra is untwisted.
All such nodes are displayed in table 1 and table 2. Most such cases were first studied
in [3, 4]. We will be able to recover their results. We will associate a collection of geometries
parametrized by ν to each node of the form (5.99). Geometries for different values of ν
are flop equivalent as long as there are no neighboring nodes, but might cease to be flop
equivalent in the presence of neighboring nodes. The geometries associated to (5.99) in [4]
are obtained as ν = 0, 1 versions of the geometries associated in this paper.

The geometries associated to nodes of the form (5.99) are presented below. We will
display the corresponding node inside a circle placed at top of the geometry:

02n+8−ν
1 12n+2−ν · · · (n− 2)8−ν nν0(n− 1)6−ν

eh 2e+f -
∑

xiehh2h-
∑

xi e

1
sp(n)(1)

(n+1)π

(5.100)
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where 0 ≤ ν ≤ 2n + 8, n ≥ 1 and the theta angle should be viewed modulo 2π. We can
see that fa · Sb reproduces the negative of Cartan matrix for untwisted affine Lie algebra
sp(n)(1), where fa is the canonical fiber of Hirzebruch surface Sa. The same hold true for
all the examples discussed below in this subsection. One can check in each example below
that fa · Sb reproduces the negative of Cartan matrix for the associated untwisted affine
Lie algebra g(1).

02n+8−ν
1 12n+2−ν · · · (n− 2)8−ν nν1(n− 1)6−ν

eh 2h-
∑

xiehh2h-
∑

xi e

1
sp(n)(1)

nπ

(5.101)
where 0 ≤ ν ≤ 2n + 8, n ≥ 1 and the theta angle should be viewed modulo 2π. See
appendix (B.3) for more discussion on the relationship between theta angle and geometry.

Notice that the two geometries (5.100) and (5.101) are isomorphic by virtue of the
isomorphism between F1

0 and F1
1 discussed in appendix A.1. Suppose first that ν > 0. Then,

the isomorphism applied to Sn sends 2h− x1 in Fν1 to 2e+ f − x1 in Fν0 , thus mapping the
gluing curve for Sn−1 in Sn in (5.101) to the gluing curve for Sn−1 in Sn in (5.100). Thus the
whole geometry (5.101) is mapped to the geometry (5.100) by this isomorphism. For ν = 0,
the two geometries (5.101) and (5.100) are flop equivalent due to this isomorphism. This
is because they are flop equivalent to ν > 0 versions of the geometries (5.101) and (5.100),
and we have already established an isomorphism between the latter geometries.

However, it is possible for this isomorphism to not extend to the full Calabi-Yau
threefold when sp(n) has other neighbors. The gluing curves inside S0 and Sn for the
surfaces corresponding to these neighbors might not map to each other under the above
isomorphism plus flops. Whenever the isomorphism extends to the full threefold, the sp(n)
theta angle is physically irrelevant. Whenever the isomorphism does not extend to the
full threefold, the sp(n) theta angle is physically relevant. We will see examples of both
situations later when we discuss gluing rules for sp(n).

For n = 0, we claim that the associated geometry is

08
1

1
sp(0)(1)

θ

(5.102)

One way to see this is to notice that both the geometries (5.100) and (5.101) reduce
to (5.102) in the limit n = 0. For a more precise way to see that (5.102) is the correct
geometry, see the discussion around (B.9).
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When sp(0)(1)
θ has no other neighbors, then all the blowups are generic and we can

write S0 = dP9. When sp(0)(1)
θ has neighbors, it turns out that S0 = dP9 with 9 non-generic

blowups is the correct answer, instead of S0 = F8
1 with eight non-generic blowups. This is

because when the 9 blowups are non-generic, it is not always possible to represent dP9 as
F8

1 with 8 non-generic blowups. So, S0 = F8
1 is not quite the correct answer. See [4] for

more discussion on this point. Thus, in this paper, from this point on, we will represent
the geometry associated to sp(0)(1)

θ by dP9.

02n+8
1

(2n− 1)2n+5 (2n− 2)1
2n+4

11+1
3 21

4

· · ·

· · ·

(n + 1)1
n+7

(n− 1)1
n+1

nn+3

h-
∑

xi

h

h

e h-x e h-x

e

h+f

e

h

eh-xh-x
e

e

x

x

f -x

f -x
x

xf

f -x-y

f -x

f -x

1
su(2n)(1)

(5.103)
For this geometry, we do not define multiple versions distinguished by the parameter ν.
Nevertheless, for uniformity of notation, we denote this geometry with ν = 0. Similarly,
we will denote all the following geometries having a single unique version with ν = 0.

For n = 2, we have

012
1

39

11+1
3

25

h-
∑

xi

h

h

h+f

e

e

f

f -x-y

1
su(4)(1)

e

h

(5.104)
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02n+9
1

(2n)2n+6 (2n− 1)1
2n+5

11+1
3 21

4

· · ·

· · ·

(n + 2)1
n+8

(n− 1)1
n+1

(n + 1)1
n+5

h-
∑

xi

h

h

e h-x e h-x e

h+f

e-x

h-xeh-xh-x
e

e

x

x
f -x

f -x x

xf

f -x-y

f -x

f -x

1
su(2n+ 1)(1)

nn+2

h+f -x

x

x

e

(5.105)

For n = 1, we have

012
1

27

13

h-
∑

xi

h

h+f

e

e

h+f

1
su(3)(1)

(5.106)

0(2n−8)+2
3

(2n− 1)1
2n−7 (2n− 2)1

2n−8

11
1 21

0

· · ·

· · ·

(n + 1)1
n−5

(n− 1)1
n−3

n1+1
n−5

h-x-2y-
∑

xi,

e

h-x,x

e h-x e h-x
e

e+(n-6)f

e+f -x-2y,

h-x,x

eh-xe-x
h

e

x

x f -x

f -x

x

x
f -x

f -x

f -x

f -x
2

f -x

x

y

1
su(2̂n)(1)

x

y

f -x
2

(5.107)
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0(2n−7)+2
3

(2n)1
2n−6 (2n− 1)1

2n−7

11
1 21

0

· · ·

· · ·

(n + 2)1
n−4

(n− 1)1
n−3

h-x-2y-
∑

xi,

e

h-x,x

e h-x e h-x

eh-xe-x
h

e

x

x f -x

f -x
x

x
f -x

f -x

f -x

f -x

(n + 1)1+1+1
n−4

n1
n−2e

f -z
e+f -x-2y-z,

h,f

1
su(2̂n+ 1)(1)

2

x

h-x

e+(n-5)fe

z-x

x y

x

y

2
f -x

(5.108)

The above two examples are not completely geometric. See the discussion after equa-
tion (5.160).

015
1

512 41
10

11+1
3 24

38

h-
∑

xi

h

h

e h
e

e

e

h

h-x
e h+f

y

f -x

f

f

f -x-y
x-y

1
su(6̃)(1)

(5.109)

0(4n−ν)+ν
0

12−ν 24−ν

(2n− 1)4n−2−ν (2n− 2)4n−4−ν

· · ·

· · ·

(n− 1)2n−2−ν

(n + 1)2n+2−ν

n2n−ν

e-
∑

yi

e-
∑

xi

e

h e h e

h

e

h

e

hee

h

h

2
su(2n)(1)

(5.110)

where 0 ≤ ν ≤ 4n and n ≥ 2.

– 51 –



J
H
E
P
1
2
(
2
0
2
0
)
1
5
1

For n = 1, we have

04−ν
0 1ν2

e, e-
∑

xi e, h-
∑

xi2

2
su(2)(1)

(5.111)

where 0 ≤ ν ≤ 4.

0(4n+2−ν)+ν
0

12−ν 24−ν

(2n)4n−ν (2n− 1)4n−2−ν

· · ·

· · ·

n2n−ν

(n + 1)2n+2−ν

e-
∑

yi

e-
∑

xi

e

h e h e

h

e

hee

h

h

2
su(2n+ 1)(1)

(5.112)

where 0 ≤ ν ≤ 4n+ 2 and n ≥ 1.

For n = 0, we claim that the geometry is

01+1
0

e-x

e-y

2
su(1)(1)

(5.113)

which can be recognized as a limit of ν = 1 phase of (5.112). See appendix B.1 for a
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derivation that this is the correct answer.

01

21

11

e

e

e

e

e

e

3
su(3)(1)

(5.114)

0ν+ν
ν+2

1ν+2 n(2n−8−ν)+(2n−8−ν)
2n−6−ν

2ν 32−ν · · ·

(n− 1)2n−6−ν

(n− 2)2n−8−ν

h

h

e

h

e

fe

f -xi-yi

h
ehe

e

e
2n-8-νν

4
so(2n)(1)

f -xi-yi

f

(5.115)

where 0 ≤ ν ≤ 2n− 8.

0ν+ν
ν+2

1ν+2

2ν 32−ν · · · (n)(2n−7−ν)+(2n−7−ν)
6(n− 1)2n−6−ν

h

e

h

e-
∑

xi-
∑

yi2hehe

e

e

2n-7-ν

xi yi

ν

f -xi-yi

f

4
so(2n+ 1)(1)

(5.116)

– 53 –



J
H
E
P
1
2
(
2
0
2
0
)
1
5
1

where 0 ≤ ν ≤ 2n− 7.

36

21−ν 1(2−ν)+(2−ν)
3−ν

f

e

2h+ νf

eh

f -xi-yi

0ν+ν
1+ν e e

2− ν
ν

f -xi-yi

f

3
so(7)(1)

(5.117)

where 0 ≤ ν ≤ 1.

31+1
6

22−ν 1(4−ν)+(4−ν)
4−ν

f

e-x-y

2h+ νf

eh

f -xi-yi

0ν+ν
ν e e

4− νν

f -xi-yi

f

2
so(7)(1)

x y

(5.118)
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where 0 ≤ ν ≤ 2.

32+2
6

23 16+6
5

f
e-
∑

xi-
∑

yi

2h

eh

f -xi-yi

01 h e

6

1
so(7)(1)

2
xi yi

(5.119)

24−k

44(4−k)
6−k

34−k
2

f

h

h

e-
∑

xi

h

f -xi-yi

14−k
2

xi

e

4− k

4− k

e-
∑

xi xi

f

f -zi-wi

02−k 4− kh e

k

so(8)(1)

(5.120)

where 1 ≤ k ≤ 3 and we have divided the 16− 4k blowups into four sets of 4− k blowups
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each. We label blowups in the four sets by xi, yi, zi and wi respectively.

21−ν 31+1
3−ν 4(2−ν)+(2−ν)

4e

h+ νf

e

13+ν

h e0ν+ν
1+ν 2h-x-y

f -x-y

e

e-
∑

xi-
∑

yi

f

2− ν

xi yi

ν

f -xi-yi

f

3
so(9)(1)

(5.121)

where 0 ≤ ν ≤ 1.

24−k 3(4−k)+(4−k)
6−k 4(5−k)+(5−k)

2−2kh

h

e

16−k

h e
02−k

2h-
∑

xi-
∑

yi

f -xi-yi

e

h-
∑

xi-
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yi

f

5− k

xi yi

k

so(9)(1)

4− k

(5.122)
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where 1 ≤ k ≤ 2.

21−ν 31
3−ν 44−νe

h+ νf

e

11
3+ν

h e
0ν+ν

1+ν h-x

f -x

e
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5(3−ν)+(3−ν)+1

4−ν

3− ν

f

f -xi-yi

x z

e-z

h

ν

f -xi-yi

f

3
so(10)(1)

(5.123)
where 0 ≤ ν ≤ 1.

24−k 34−k
6−k 44h

h

e

14−k
6−k

h e
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h-
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xi

f -xi

e

e

f -xi
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4

6− k

f

f -xi-yi

xi zi
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h

k

so(10)(1)

4− k

4− k

(5.124)
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for 1 ≤ k ≤ 2.

21−ν 33−ν 41
5−ν

e

h+ νf

h 5(4−ν)+(4−ν)
5e h

12
3+ν

e

x2-x1

2h-x

0ν+ν
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f
f

f -x

e

e
e-
∑

xi-
∑

yi

4− ν
xi yi

ν

f -xi-yi

f

3
so(11)(1)

(5.125)
where 0 ≤ ν ≤ 2.

22 34 42
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e

h

h
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4e h

14
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e

x2-x1,

2h-
∑

xi

00
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x1, x3

f

f

f -xi

e

e
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∑

xi-
∑

yi

5
xi yi

2
so(11)(1)

f -x2-x4
2
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(5.126)
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23 35 43
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e

h

h
56+6

3e h

16
5

e

x2-x1,

2h-
∑

xi

01

f -x1-x3,

x1,x3,x5

f

f

f -xi

h

e
e-
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xi-
∑

yi

6
xi yi

1
so(11)(1)

f -x2-x4, f -x5-x6 3
3

x4-x3,

3
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(5.127)
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e

h+ νf

h

57−ν

e h

12
3+ν

e

e

x2-x1

h

0ν+ν
1+ν
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f

f

f -x

f -xi-yie

e
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6−ν

5− ν

f

h-x

e

ν

f -xi-yi

f
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so(12)(1)

(5.128)

– 59 –



J
H
E
P
1
2
(
2
0
2
0
)
1
5
1

where 0 ≤ ν ≤ 2.

22 34 42
6

e

h

h

58

e h

14
4

e

x2-x1,
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∑

xi

00

f -x1-x3,

x1, x3 f

f

f -xi

e

e

e

2
so(12)(1)

f -x2-x4
2

2

x4-x3

2

66+6
6

6

f -xi-yi
h

e

f

(5.129)

23 35 43
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e

h

h
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e h

16
5

e

x2-x1,

h-
∑

xi

01

f -x1-x3,

x1,x3,x5 f

f

f -xi

e

e

e

1
so(12)(1)

f -x2-x4,f -x5-x6 3
3

x4-x3, 3

67+7
6

6

f -xi-yi
h

e

f
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(5.130)
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22 34 41+1
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e
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57
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4

e

e
x2-x

1

h-y

00
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x1,y1

f

f

f -x,f -y

f -xi-yi

f

e

e

66+6
7

6

y 2-
y 1

f
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e
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2
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(5.131)
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e
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e h
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e
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h-y

01

f -x1-x3,f -x2-x4,f -y1-y2

x1,x3,y1
f

f
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f -xi-yi

f

e

e

67+7
7

7
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y 1

f
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e
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(5.132)
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22 31
2 44 51

8 61
19,7

11
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x

e

e
x

x

h-x

e-x

x

f -xx

h-x e-x h e h+f e 2h-x e

f -x
x

f -x
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so(13)(1)

(5.133)

0ν+ν
ν 22−ν 1(4−ν)+(4−ν)

4+ν
e e 3h+νf e-

∑
xi-
∑

yi

4− ν
xi yi

ν

f -xi-yi f

2
g

(1)
2

(5.134)

where 0 ≤ ν ≤ 2.

0k−2 24−k 1(10−3k)+(10−3k)
3k−2

e e 3h e-
∑

xi-
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yi 10− 3k

xi

yi
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(5.135)
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where k = 1, 3.

44−k 36−k 2(5−k)+(5−k)
6

e e h 1(5−k)+(5−k)
8

e 2h0k−2
e -
∑

xi-
∑

yi

e-
∑

yi,

5− k

xi yi

h+
∑

(f -yi),
f -xi f -xi6− k

5− k

xi yi

k

f
(1)
4

(5.136)
for 1 ≤ k ≤ 5.

0k−2 6k−4 36−k

54

e eh e

xi-yi

h

6− k

h

46−k
8−k

26−k
8−k 1(6−k)+(6−k)

10−k

6− k
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e

h

e

xi

f -xi

f

e
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∑

xi

e

f -xi

f -xi
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e
(1)
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(5.137)

for 1 ≤ k ≤ 6.

62m−4 52m−6 44−m
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18−3me h e 34−m
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8−mh e he02m−2 e-
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xi
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eh

74−m
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h+(4-m)f e

e

f -xi

4−m 4−m 4−m
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xi
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e
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(5.138)
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for 1 ≤ m ≤ 4.

62m−5 52m−7 44−m
5−m 14−m

20−3me h e 3(4−m)+2
6−m 24−m

8−mh e-y1 he02m−3 e-
∑

xi

h

eh

74−m
7−m

h+(5-m)f e

e

f -xi

5−m 4−m 4−m

f -xi

f -xi

xi

f ,f -xi

y1-y2,f -xi

f -xi xi
f ,f -xi

f -y1-y2,f -xi

2m− 1
e
(1)
7

5−m

4−m

(5.139)
for 1 ≤ m ≤ 4.

18 26 34 62
e h e 42 50

h e

e

e

e010
h eh

82

e e h ee

12
e
(1)
8

74

5.2.3 Twisted

In this subsection, we will generalize our results to nodes of the form

k
g(q)

(5.140)

for q > 1 and

2
su(n)(1)

(5.141)
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All such nodes are listed in table 8.

m1 (m− 1)6 · · · 22m

02m+2m
2m+2

f

f -xi-yi

2h e h

h

e

e

2m

12m+2

h

e

2
su(2m)(2)

(5.142)

wherem ≥ 3. Notice that the Cartan matrix associated to this geometry is precisely that of
su(2m)(2). Similar comments hold for all the geometries discussed below in this subsection.
For each example below, one can check that fa · Sb reproduces negative of Cartan matrix
of the associated twisted affine algebra g(q).

m1 (m− 1)6 · · · 12m+2 0(2m+1)+(2m+1)
6

yi

xi

2h e h 2h e-
∑

xi-
∑

yie
2m+1

2
su(2m+ 1)(2)

(5.143)
where m ≥ 2.

0(9−3k)+(9−3k)
4k−2 10

e-
∑

xi-
∑

yi 4e+(4-k)f

xi

yi

k

su(3)(2)

9− 3k

(5.144)
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where 1 ≤ k ≤ 3.

04+4
6 21 16

e 2h 2h e

4

2
su(4)(2)

f -xi-yi
f

(5.145)

06+6+1+1
6 21 16

e-z-w 2h+f 2h e

6

1
su(4)(2)

f -xi-yi

f

z

w

(5.146)

0ν+ν
6+2ν 11+ν 21−ν · · · (n− 2)2n−7−ν (n− 1)(2n−8−ν)+(2n−8−ν)

6
e 2h e e h 2he-

∑
xi-
∑

yie

f -xi-yif

4
so(2n)(2)

2n− 8− ν

xi yiν

(5.147)

where 0 ≤ ν ≤ 2n− 8.

010 18 20
e h e 3e+f

4
so(8)(3)

(5.148)
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(5.149)
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6 20
e-
∑

yi h+
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(f -yi) e-
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xi-
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yi 3e+ 2f
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so(8)(3)
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3
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(f -yi) e-
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xi-
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yi 3h+ f

1
so(8)(3)
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4
xi yi xi yi

3 3 (5.151)
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where 1 ≤ k ≤ 4.

02 14
1 21 35 44+4

14
e 2h-

∑
xi
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e e h+f e 2h e-
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yi
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xi yi

(5.153)

02 14
1 21 35 41 56+6

18
e 2h-
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x
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, x
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42−m34−m
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k+4

he
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xi-
∑

yi
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xie-
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yi e-
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2m
e
(2)
6

3−m 3−m 3−m

f -xi,

4−m

f -xi, f -yi, f -yi,

4−m

xi yi xi yi xi yi

(5.155)

for 1 ≤ m ≤ 3.

02n
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(2n− 1)1
2n−3 (2n− 2)1
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3 21
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· · ·
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n+1

n1+1
n−1

h-
∑

xi

h

h

e h-x e h-x
e
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e
e
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f -x

x

x
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f -x

f -x

f -x 2
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x

y

2
su(2n)(1)

(5.156)
for n ≥ 2.

For n = 1, we have
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0
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∑
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x

y

2
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Now we discuss some examples which are not completely geometric:

02n+1
1

(2n)1
2n−2 (2n− 1)1

2n−3

11
3 21

4

· · ·

· · ·

(n + 2)1
n

(n− 1)1
n+1

h-
∑

xi

h

h

e h-x e h-x

eh-xh-x
e

e

x

x f -x

f -x

x

x
f -x

f -x

f -x

f -x

(n + 1)1+1+1
n

n1
n+2e

f -z
e+f -x-2y-z,

h,f

2
su(2n+ 1)(1)

2

x

h-x

e+(n-1)fe

z-x

x y

(5.158)
for n ≥ 2.

For n = 1 we have

21+1+1
2

03
1

13

e+f
e+f -x-2y,

h

e

h-
∑

xi

h,f

2

f -x-z

x y

2
su(3)(1)

(5.159)

For n = 0 we have
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1

x

y

2
su(1)(1)

(5.160)
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Let us now discuss the reasons why the above five examples are not completely geometric.
Let us start with (5.160). The geometry for this example contains the −1 curve h− x− y
and hence an M2 brane wrapping this curve should give rise to a BPS particle. However,
this BPS particle cannot appear in the associated 5d KK theory for the following reason.
The existence of a particle associated to h − x − y implies that the KK mode, which is
associated to the elliptic curve 2h+ f − 2x− 2y, decomposes as a bound state of h− x− y
and h+ f −x− y but this is a contradiction since these two curves do not meet each other
and hence there cannot be such a bound state.

Another reasoning is as follows. The volume of f is 2φ where φ is the Coulomb branch
parameter associated to the above surface. On the other hand, the volume of h − x − y
is −φ. Requiring non-negative volumes for both curves implies that φ must be zero. In
other words, there is no direction in the Coulomb branch where all BPS particles have
non-negative mass. Thus, this geometry is not marginal, in the sense defined by [2], which
is a condition that must be satisfied by geometries associated to KK theories.

The precise sense in which the above self-glued F1 surface is associated to the KK
theory

2
su(1)(1)

(5.161)

is as follows. The Mori cone of the surface is generated by h− x− y, f − x, x, e. However,
since the curve h − x − y does not correspond to a BPS particle, the generators of the
Mori cone thus do not correspond to the fundamental BPS particles18 in the associated
KK theory (5.161). We propose that the fundamental BPS particles instead correspond to
the curves 2h−x−2y, f−x, x, e. This set of curves satisfies all the properties that must be
satisfied by the generators of the Mori cone of a surface. Thus, it is a complete set which
can be consistently associated to fundamental BPS particles. The KK mode can be found
as a bound state of 2h − x − 2y and f − x. One can check that this set of proposed BPS
particles is marginal in the sense that it allows a direction in Coulomb branch with all BPS
particles having non-negative volumes. See also appendix B.1 where we verify that this
description of the KK theory allows the existence of an RG flow to an N = 2 5d SCFT,
which is a fact well-known in the literature.

There are two viewpoints one can take on the relationship between self-glued F1 and the
KK theory (5.161). The first is that indeed compactifying M-theory on this surface leads to
the KK theory (5.161), but the compactification has some extra ingredients which account
for the mismatch between the set of Mori cone generators and the set of fundamental BPS
particles.19 The other viewpoint is that the relationship with self-glued F1 has no deep
meaning and is probably a red herring. At the time of writing of this paper, we do not

18We define a fundamental BPS particle to be a BPS particle that cannot arise as a bound state of other
BPS particles.

19A similar situation occurs in the frozen phase of F-theory [32], where the set of generators of the Mori
cone of the base of a threefold used for compactifying F-theory does not match the set of fundamental BPS
strings arising in the associated 6d theory.
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know which of these two viewpoints, or if either of these two viewpoints, is the correct one.
We leave this issue for future exploration, and only use the relationship between the two
as an algebraic tool to build a formalism for KK theories from which one can explicitly
perform RG flows to 5d SCFTs.

Now let us discuss the non-geometric nature of the KK theories

2
su(m)(1)

(5.162)

with m > 1. Consider as an example the case of m = 3. The surface S2 contains a
gluing curve e + f − x − 2y and hence there must be a BPS particle associated to it.
However, notice that it decomposes as e+ f − x− 2y = (e− x− y) + (f − y) such that the
components e−x−y and f−y do not intersect each other. This leads to the same problem
as discussed above, and we are forced to hypothesize that the fundamental BPS particles
are distinct from the generators of Mori cone due to some non-geometric feature in the
M-theory compactification. It is also evident that some of the components of the gluing
curves in certain surfaces (which are identified with irreducible curves in adjacent surfaces
as part of the gluing construction) fail to satisfy the necessary properties of irreducible
curves that are described at the beginning of section 5.1.2.20 Similar comments apply to
each of the m > 1 models presented above should be regarded as an algebraic proposal
which retains many of the features of the local threefolds that seem to be necessary to
compute RG flows to 5d SCFTs.

Similar comments apply to (5.107) and (5.108), and they are also not conventionally
geometric.

5.3 Gluing rules between two gauge theoretic nodes

In this section we will describe how to glue the surfaces Sa,α corresponding to a node α
to the surfaces Sb,β corresponding to another node β if there is an edge between α and β.
The gluing rules are different for different kinds of edges between the two nodes. It turns
out that the gluing rules between α and β are insensitive to the values of Ωαα and Ωββ .
This was also true for all of the cases studied in [4]. For this reason, we will often suppress
the data of Ωαα and Ωββ in this subsection.

As a preface to the following subsections, we re-emphasize that the gluing rules must
be compatible with the general consistency conditions described in section 5.1.2, and those
that do not must again be regarded, most conservatively, as an algebraic proposal that
retains certain salient features of conventional smooth threefold geometries. The basic,
underlying hypothesis of the gluing rules is that, given a pair of geometries corresponding
to circle compactifications of 6d SCFTs, if there exists a consistent gluing of these two

20For example, in the case m = 3, one can see that the surface 21+1+1
0 contains a curve class e+f−x−2y,

which is identified with the curve class h in the surface 13. Since h is irreducible, this implies that e+f−x−2y
must also be irreducible, but this leads to a contradiction (with smoothness) if the usual class f−y remains
among the generators of the Mori cone of 21+1+1

0 .
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nodes along their respective genus one fibers, then there must also exist a mutual gauging
of the respective global symmetries of the parent 6d SCFTs that allows the two theories to
be coupled together in the sense described in section 2.

5.3.1 Undirected edges between untwisted algebras

Such edges are displayed in table 3. The gluing rules for all of these cases except for
su(nα)(1) so(nβ)(1)2 were first studied in [4]. We are able to reproduce their results
using our methods.

Gluing rules for sp(nα)(1)
θ

su(nβ)(1) : we can take any geometry with 0 ≤ ν ≤
2nα + 8− nβ for sp(nα)(1)

θ , and any geometry with 0 ≤ ν ≤ 2nβ − 2nα for su(nβ)(1). The
gluing rules below work irrespective of the value of θ. The gluing rules are:

• f − x1, xnβ in S0,α are glued to f − x1, x2nα in S0,β .

• xi − xi+1 in S0,α is glued to f in Si,β for i = 1, · · · , nβ − 1.

• xi − xi+1, x2nα−i − x2nα−i+1 in S0,β are glued to f, f in Si,α for i = 1, · · · , nα − 1.

• xnα − xnα+1 in S0,β is glued to f in Snα,α.

By convention, the first item in the above list of gluing rules displays the gluings in an
order. That is, f − x1 in S0,α is glued to f − x1 in S0,β and xnβ in S0,α is glued to x2nα in
S0,β . We will adopt this convention in what follows. All the gluings should be read in the
order in which they are written.

Let us label the fiber of the Hirzebruch surface Sa,α as fa,α and the fiber of the Hirze-
bruch surface Sb,β as fb,β . According the above gluing rules, f0,α is glued to f0,β − x1 +
x2nα +

∑nβ−1
i=1 fi,β where x1 and x2nα are blowups in S0,β , and 2

∑nα−1
i=1 fi,α + fnα,α is glued

to x1 − x2nα in S0,β . Combining these two we see that

f0,α + 2
nα−1∑
i=1

fi,α + fnα,α ∼
nβ−1∑
i=0

fi,β (5.163)

thus confirming the gluing rule (5.60) for the torus fibers. In a similar fashion, the reader
can verify that (5.60) is satisfied for all the gluing rules that follow.

The theta angle of sp(nα) is physically irrelevant if nβ < 2nα+8 and physically relevant
if nβ = 2nα+8. Thus the above gluing rules should allow the isomorphism between (5.100)
and (5.101) to extend to the combined geometry for

sp(nα)(1)
θ

su(nβ)(1)
(5.164)

in the case nβ < 2nα + 8, but not in the case of nβ = 2nα + 8.
To see this for nβ < 2nα + 8, we can go to the flop frame ν = 1 for sp(nα)(1)

θ with-
out changing the above gluing rules. Then we can implement the map that formed the
isomorphism between (5.100) and (5.101). Since the above gluing rules do not interact
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with blowups living on Snα,α, the map trivially extends to an isomorphism of the com-
bined geometry associated to (5.164). For nβ = 2nα + 8, we cannot reach ν > 0 frame
without changing the above gluing rules. Thus the map implementing isomorphism be-
tween (5.100) and (5.101) does not extend to an isomorphism of the combined geometry
associated to (5.164).

Gluing rules for sp(nα)(1)
θ

so(2nβ)(1) : here we allow 2nβ = 1̂2. We can take
any geometry with 0 ≤ ν ≤ 2nα + 8 − nβ for sp(nα)(1)

θ , and any geometry with 0 ≤ ν ≤
2nβ − 4 − Ωββ − nα for so(2nβ)(1). The gluing rules below work for both values of θ. In
the future, if the value of θ is unspecified, then the gluing rules work for both the values.
In our present case, the gluing rules are:

• f − x1 − x2 in S0,α is glued to f in S0,β .

• xi − xi+1 in S0,α is glued to f in Si,β for i = 1, · · · , nβ − 1.

• xnβ−1 , xnβ in S0,α are glued to f − x1, y1 in Snβ ,β .

• xi − xi+1, yi+1 − yi in Snβ ,β are glued to f, f in Si,α for i = 1, · · · , nα − 1.

• xnα − ynα in Snβ ,β is glued to f in Snα,α.

To show that the theta angle is irrelevant for nβ < 2nα + 8, we first notice that we can
go to the flop frame ν = 1 for sp(nα)(1)

θ without changing the above gluing rules. Then
the isomorphism between (5.100) and (5.101) extends to an isomorphism of the combined
geometry for

sp(nα)(1)
θ

so(2nβ)(1)
(5.165)

For nβ = 2nα + 8, the above argument does not work since going to ν = 1 frame changes
the gluing rules. However, it turns out that the combined geometries for different θ are
flop equivalent up to an outer automorphism of so(2nβ). To see this, notice that the
combined geometry for (5.165) is flop equivalent to the following geometry. We pick the
frame ν = 2nα + 8 for sp(nα)(1)

θ and ν = 2nβ − 8 for so(2nβ)(1) with the gluing rules being:

• f − x1 − x2 in Snα,α is glued to f in Snβ ,β .

• xi − xi+1 in Snα,α is glued to f in Snβ−i,β for i = 1, · · · , nβ − 1.

• xnβ−1 , xnβ in Snα,α are glued to f − x1, y1 in S0,β .

• xi − xi+1, yi+1 − yi in S0,β are glued to f, f in Snα−i,α for i = 1, · · · , nα − 1.

• xnα − ynα in S0,β is glued to f in S0,α.

Now it is clear that exchanging f − x1 and x1 interchanges Snβ ,β and Snβ−1,β . Thus the
choice of theta angle for sp(nα)(1) is correlated to the choice of an outer automorphism
frame of so(2nβ)(1) for nβ = 2nα + 8.
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The gluing rules for a configuration having multiple edges are simply obtained by
combining the gluing rules mentioned above. We have to just make sure that we never use
the same blowup twice. For example, consider the configuration

sp(nα)(1)
θ

so(2nβ)(1)su(nγ)(1)
(5.166)

Then we can use any geometry with 0 ≤ ν ≤ 2nα+ 8−nβ−nγ for sp(nα)(1)
θ , any geometry

with 0 ≤ ν ≤ 2nβ − 4−Ωββ −nα for so(2nβ)(1), and any geometry with 0 ≤ ν ≤ 2nγ − 2nα
for su(nγ)(1). The gluing rules for the sub-configuration

sp(nα)(1)
θ

so(2nβ)(1)
(5.167)

are the same as the ones listed above, while the gluing rules for the sub-configuration

sp(nα)(1)
θ

su(nγ)(1)
(5.168)

are as follows:

• f − xnβ+1, xnβ+nγ in S0,α are glued to f − x1, x2nα in S0,γ .

• xnβ+i − xnβ+i+1 in S0,α is glued to f in Si,γ for i = 1, · · · , nγ − 1.

• xi − xi+1, x2nα−i − x2nα−i+1 in S0,γ are glued to f, f in Si,α for i = 1, · · · , nα − 1.

• xnα − xnα+1 in S0,γ is glued to f in Snα,α.

In a similar way, by choosing mutually exclusive sets of blowups, we can combine the
gluing rules to obtain geometries for graphs with multiple algebras and edges between
them. Sometimes some of the blowups are allowed to appear in more than one gluing
rules. In such cases, we will explicitly mention such blowups and the configurations in
which they can appear in multiple gluing rules.

Gluing rules for sp(nα)(1)
θ

so(2nβ + 1)(1) : we can take any geometry with
1 ≤ ν ≤ 2nα + 8 − nβ for sp(nα)(1)

θ , and any geometry with 0 ≤ ν ≤ 2nβ − 3 − Ωββ − nα
for so(2nβ + 1)(1). The gluing rules are:

• f − x1 − x2 in S0,α is glued to f in S0,β .

• xi − xi+1 in S0,α is glued to f in Si,β for i = 1, · · · , nβ − 1.

• xnβ , xnβ in S0,α are glued to x1, y1 in Snβ ,β .

• xi+1 − xi, yi+1 − yi in Snβ ,β are glued to f, f in Si,α for i = 1, · · · , nα − 1.

• f − xnα , f − ynα in Snβ ,β are glued to f − x1, x1 in Snα,α.
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To show that the theta angle is irrelevant, use the map that exchanges x1 and f − x1 in
Snα,α. If this is accompanied by xi ↔ yi in Snβ ,β , then the gluing rules remain unchanged.

Consider a configuration of the form

sp(nα)(1)
θ

so(2nβ + 1)(1)so(2nγ + 1)(1)
(5.169)

We wish to emphasize that we use the same blowup x1 on Snα,α in the gluing rules asso-
ciated to both

sp(nα)(1)
θ

so(2nβ + 1)(1)
(5.170)

and
sp(nα)(1)

θ
so(2nγ + 1)(1)

(5.171)

More explicitly, to obtain gluing rules for (5.169), we can take any geometry with 1 ≤
ν ≤ 2nα + 8 − nβ − nγ for sp(nα)(1)

θ , any geometry with 0 ≤ ν ≤ 2nβ − 3 − Ωββ − nα for
so(2nβ + 1)(1), and any geometry with 0 ≤ ν ≤ 2nγ − 3−Ωγγ − nα for so(2nγ + 1)(1). The
gluing rules for (5.170) are those listed above, and the gluing rules for (5.171) are:

• f − xnβ+1 − xnβ+2 in S0,α is glued to f in S0,γ .

• xnβ+i − xnβ+i+1 in S0,α is glued to f in Si,γ for i = 1, · · · , nγ − 1.

• xnβ+γ , xnβ+γ in S0,α are glued to x1, y1 in Snγ ,γ .

• xi+1 − xi, yi+1 − yi in Snγ ,γ are glued to f, f in Si,α for i = 1, · · · , nα − 1.

• f − xnα , f − ynα in Snγ ,γ are glued to f − x1, x1 in Snα,α.

with the x1 in Snα,α being the same blowup as used in the gluing rules above for (5.170).
However, if we have a third neighbor so(2nδ + 1)(1) of sp(nα)(1)

θ , then we must use a
second blowup x2 on Snα,α. As a consequence, we must choose a geometry with 2 ≤ ν ≤
2nα+ 8−nβ +nγ +nδ for sp(nα)(1)

θ to obtain the combined geometry for the configuration

sp(nα)(1)
θ

so(2nβ + 1)(1)so(2nγ + 1)(1)

so(2nδ + 1)(1)

(5.172)

Gluing rules for sp(nα)(1)
θ so(8)(1) : we can take any geometry with 0 ≤ ν ≤

2nα+4 for sp(nα)(1)
θ , and any geometry with 0 ≤ ν ≤ 4−Ωββ−nα for so(8)(1). The gluing

rules are:

• f − x1 − x2 in S0,α is glued to f in S0,β .

• x1 − x2 in S0,α is glued to f in S3,β .
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• x2 − x3 in S0,α is glued to f in S2,β .

• x3 − x4 in S0,α is glued to f in S1,β .

• x3, x4 in S0,α are glued to f − z1, w1 in S4,β .

• zi − zi+1, wi+1 − wi in S4,β are glued to f, f in Si,α for i = 1, · · · , nα − 1.

• znα − wnα in S4,β is glued to f in Snα,α.

The theta angle is irrelevant as can be seen in the ν = 1 frame of sp(nα)(1)
θ .

Gluing rules for sp(nα)(1)
θ so(7)(1) : we can take any geometry with 0 ≤ ν ≤

2nα + 4 for sp(nα)(1)
θ , and any geometry with 0 ≤ ν ≤ 8 − 2Ωββ − nα for so(7)(1). The

gluing rules are:

• f − x1 − x2 in S0,α is glued to f in S0,β .

• x2 − x3 in S0,α is glued to f in S2,β .

• x1 − x2, x3 − x4 in S0,α is glued to f in S3,β .

• x3, x4 in S0,α are glued to f − x1, y1 in S1,β .

• xi − xi+1, yi+1 − yi in S1,β are glued to f, f in Si,α for i = 1, · · · , nα − 1.

• xnα − ynα in S1,β is glued to f in Snα,α.

The theta angle is irrelevant as in the last case.

Gluing rules for sp(nα)(1)
θ g

(1)
2 : we can take any geometry with 1 ≤ ν ≤

2nα + 5 for sp(nα)(1)
θ , and any geometry with 0 ≤ ν ≤ 10− 3Ωββ − nα for g(1)

2 . The gluing
rules are:

• f − x1 − x2 in S0,α is glued to f in S0,β .

• x2 − x3 in S0,α is glued to f in S2,β .

• x1 − x2, x3, x3 in S0,α are glued to f, x1, y1 in S1,β .

• xi+1 − xi, yi+1 − yi in S1,β are glued to f, f in Si,α for i = 1, · · · , nα − 1.

• f − xnα , f − ynα in S1,β are glued to f − x1, x1 in Snα,α.

The theta angle is irrelevant.
The blowup x1 in Snα,α can be repeated once more if there is another g(1)

2 neighbor or
an so(2nγ+1)(1) neighbor of sp(nα)(1)

θ . That is, when we consider configurations of the form

sp(nα)(1)
θ g

(1)
2g

(1)
2 (5.173)
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or of the form
sp(nα)(1)

θ g
(1)
2so(2nγ + 1)(1)

(5.174)

As before, if there is a third g2 or so(2nδ + 1)(1) neighbor of sp(nα)(1)
θ , then we must use

another blowup x2 on Snα,α for the gluing rules corresponding to this neighbor.

Gluing rules for su(nα)(1) su(nβ)(1) : here we allow nα = n̂α and nα = 6̃.
We can take any geometry with 0 ≤ ν ≤ 2nα − nβ for su(nα)(1), and any geometry with
0 ≤ ν ≤ 2nβ − nα for su(nβ)(1). The gluing rules are:

• f − x1, xnβ in S0,α are glued to f − x1, xnα in S0,β .

• xi − xi+1 in S0,α is glued to f in Si,β for i = 1, · · · , nβ − 1.

• xi − xi+1 in S0,β is glued to f in Si,α for i = 1, · · · , nα − 1.

Gluing rules for su(nα)(1) so(2nβ)(1)2 : we can take any geometry with nβ ≤
ν ≤ 2nα − nβ for su(nα)(1), and any geometry with 0 ≤ ν ≤ 2nβ − 8 − nα for so(2nβ)(1).
The gluing rules are:

• f − x1 − x2, f − y1 − y2 in S0,α are glued to f, f in S0,β .

• xi − xi+1, yi − yi+1 in S0,α are glued to f, f in Si,β for i = 1, · · · , nβ − 1.

• xnβ−1, xnβ , ynβ−1, ynβ in S0,α are glued to f − x1, y1, f − ynα , xnα in Snβ ,β .

• xi − xi+1, yi+1 − yi in Snβ ,β are glued to f, f in Si,α for i = 1, · · · , nα − 1.

Gluing rules for su(nα)(1) so(2nβ + 1)(1)2 : we can take any geometry with
nβ ≤ ν ≤ 2nα − nβ − 1 for su(nα)(1), and any geometry with 0 ≤ ν ≤ 2nβ − 7 − nα for
so(2nβ)(1). The (non-geometric) gluing rules are:

• f − x1 − x2, f − y1 − y2 in S0,α are glued to f, f in S0,β .

• xi − xi+1, yi − yi+1 in S0,α are glued to f, f in Si,β for i = 1, · · · , nβ − 1.

• xnβ − xnβ+1, xnβ − xnβ+1, ynβ , ynβ , xnβ+1, xnβ+1 in S0,α are glued to f, f, x1, y1, f −
xnα , f − ynα in Snβ ,β .

• xi+1 − xi, yi+1 − yi in Snβ ,β are glued to f, f in Si,α for i = 1, · · · , nα − 1.

Gluing rules for su(2)(1) so(7)(1) : we must take the geometry with ν = 0
for su(2)(1), and we can take any geometry with 0 ≤ ν ≤ 7− 2Ωββ for so(7)(1). The gluing
rules are:

• f − x1 − x2 in S0,α is glued to f in S0,β .

• x2 − x3 in S0,α is glued to f in S2,β .
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• x1 − x2, x3 − x4 in S0,α is glued to f in S3,β .

• x3, x4 in S0,α are glued to f − x1, y1 in S1,β .

• x1 − y1 in S1,β is glued to f in S1,α.

Gluing rules for su(2)(1) g
(1)
2 : we must take the geometry with ν = 1 for

su(2)(1), and any geometry with 0 ≤ ν ≤ 9− 3Ωββ for g(1)
2 . The gluing rules are:

• f − x1 − x2 in S0,α is glued to f in S0,β .

• x2 − x3 in S0,α is glued to f in S2,β .

• x1 − x2, x3, x3 in S0,α are glued to f, x1, y1 in S1,β .

• f − x1, f − y1 in S1,β are glued to f − x1, x1 in S1,α.

There is another possibility appearing in the twisted case that involves an undirected
edge between two untwisted algebras. This possibility is

2
su(nα)(1)

2
su(nβ)(1)

(5.175)

and it is displayed in table 9. The gluing rules for this case are the same as the gluing rules
for

su(nα)(1) su(nβ)(1)
(5.176)

presented above.

5.3.2 Undirected edges between a twisted algebra and an untwisted algebra

Now let us provide gluing rules for those cases in table 9 in which both the nodes have
non-trivial gauge algebras associated to them, such that at least one of the gauge algebras
is twisted.
Gluing rules for sp(nα)(1)

θ
so(2nβ)(2) : here we allow 2nβ = 1̂2. We can take

any geometry with 1 ≤ ν ≤ 2nα + 8 − nβ for sp(nα)(1)
θ , and any geometry with 0 ≤ ν ≤

2nβ − 4− Ωββ − nα for so(2nβ)(2). The gluing rules are:

• f − x1 − x2, x1 − x2 in S0,α are glued to f, f in S0,β .

• xi − xi+1 in S0,α is glued to f in Si−1,β for i = 2, · · · , nβ − 1.

• xnβ , xnβ in S0,α are glued to x1, y1 in Snβ−1,β .

• xi+1 − xi, yi+1 − yi in Snβ−1,β are glued to f, f in Si,α for i = 1, · · · , nα − 1.

• f − xnα , f − ynα in Snβ−1,β are glued to f − x1, x1 in Snα,α.

The theta angle can be seen to be irrelevant by using the blowup x1 on Snα,α.
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The blowup x1 in Snα,α can be used in gluing rules corresponding to one more neighbor
of the form so(2nγ + 1)(1), g(1)

2 or so(2nγ)(2) of sp(nα)(1)
θ .

The fact that nβ = 2nα + 8 is not allowed manifests in the above gluing rules. The
total number of blowups carried by S0,α is at max 2nα + 7 but the gluing rules require the
presence of 2nα + 8 blowups on S0,α. See the discussion around (3.36) for an explanation
of this restriction.
Gluing rules for su(nα)(1) so(2nβ)(2)2 : we can take any geometry with nβ−1 ≤
ν ≤ 2nα−nβ−1 for su(nα)(1), and any geometry with 0 ≤ ν ≤ 2nβ−8−nα for so(2nβ)(1).
The (non-geometric) gluing rules are:

• f − x1 − x2, x1 − x2, f − x1 − y1, x1 − y1 in S0,α are glued to f, f, f, f in S0,β .

• xi+1 − xi+2, yi − yi+1 in S0,α are glued to f, f in Si,β for i = 1, · · · , nβ − 2.

• xnβ − xnβ+1, xnβ − xnβ+1, ynβ , ynβ , xnβ+1, xnβ+1 in S0,α are glued to f, f, x1, y1, f −
xnα , f − ynα in Snβ ,β .

• xi − xi+1, yi+1 − yi in Snβ ,β are glued to f, f in Si,α for i = 1, · · · , nα − 1.

5.3.3 Directed edges

Now we move onto gluing rules for edges listed in table 10.

Gluing rules for sp(nα)(1) so(2nβ)(1)2 : we can take any geometry with 0 ≤
ν ≤ 2nα + 8 − 2nβ for sp(nα)(1), and any geometry with 0 ≤ ν ≤ 2nβ − 4 − Ωββ − nα for
so(2nβ)(1). The gluing rules are:

• xnβ−1 − xnβ+1, xnβ − xnβ+2 in S0,α are glued to f, f in S0,β .

• xnβ−i−xnβ−i+1, xnβ+i−xnβ+i+1 in S0,α are glued to f, f in Si,β for i = 1, · · · , nβ−1.

• f − x1 − x2 in S0,α is glued to f in Snβ ,β . x2nβ−1 in S0,α is glued to f − x1 in Snβ ,β .
x2nβ in S0,α is glued to y1 in Snβ ,β .

• xi − xi+1, yi+1 − yi in Snβ ,β are glued to f, f in Si,α for i = 1, · · · , nα − 1.

• xnα − ynα in Snβ ,β is glued to f in Snα,α.

From this case onward, we are dropping the subscript θ on sp(n)(1) whenever theta angle is
not physically relevant. In such cases, the gluing rules will work uniformly for both values
of θ and using arguments used earlier in the paper, the reader can easily check that the
combined geometries descending from different values of theta angle are indeed isomorphic.

Gluing rules for sp(nα)(1) so(2nβ + 1)(1)2 : we can take any geometry with
1 ≤ ν ≤ 2nα + 7− 2nβ for sp(nα)(1), and any geometry with 0 ≤ ν ≤ 2nβ − 3− Ωββ − nα
for so(2nβ + 1)(1). The (non-geometric) gluing rules are:

• xnβ − xnβ+2, xnβ+1 − xnβ+3 in S0,α are glued to f, f in S0,β .
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• xnβ−i+1−xnβ−i+2, xnβ+i+1−xnβ+i+2 in S0,α are glued to f, f in Si,β for i = 1, · · · , nβ−
1.

• f − x1 − x2, x1 − x2 in S0,α are glued to f, f in Snβ ,β . x2nβ+1 in S0,α is glued to x1
in Snβ ,β . x2nβ+1 in S0,α is glued to y1 in Snβ ,β .

• xi+1 − xi, yi+1 − yi in Snβ ,β are glued to f, f in Si,α for i = 1, · · · , nα − 1.

• f − xnα in Snβ ,β is glued to x1 in Snα,α. f − ynα in Snβ ,β is glued to f − x1 in Snα,α.

Notice that the blowup x1 in Snα,α can be used for gluing sp(nα)(1) to one more neighbor,
that is in configurations of the following form

sp(nα)(1) so(2nβ + 1)(1)so(2nγ + 1)(1) 2
(5.177)

sp(nα)(1) so(2nβ + 1)(1)g
(1)
2 2

(5.178)

sp(nα)(1) so(2nβ + 1)(1)so(2nγ)(2) 2
(5.179)

but cannot be used for gluing sp(nα)(1) to two more neighbors.

Gluing rules for sp(nα)(1) so(2nβ)(2)2 : we can take any geometry with 1 ≤
ν ≤ 2nα+7−2nβ for sp(nα)(1), and any geometry with 0 ≤ ν ≤ 2nβ−8−nα for so(2nβ)(2).
The (non-geometric) gluing rules are:

• xnβ − xnβ+2, xnβ+1− xnβ+3, xnβ − xnβ+1, xnβ+2− xnβ+3 in S0,α are glued to f, f, f, f
in S0,β .

• xnβ−i−xnβ−i+1, xnβ+i+2−xnβ+i+3 in S0,α are glued to f, f in Si,β for i = 1, · · · , nβ−2.

• f − x1− x2, x1− x2 in S0,α are glued to f, f in Snβ−1,β . x2nβ+1 in S0,α is glued to x1
in Snβ−1,β . x2nβ+1 in S0,α is glued to y1 in Snβ−1,β .

• xi+1 − xi, yi+1 − yi in Snβ−1,β are glued to f, f in Si,α for i = 1, · · · , nα − 1.

• f−xnα in Snβ−1,β is glued to x1 in Snα,α. f−ynα in Snβ ,β is glued to f−x1 in Snα,α.

The blowup x1 in Snα,α can be used to glue sp(nα)(1) to exactly one more neighboring node
connected to it by an undirected edge. The neighboring node can carry so(2nγ + 1)(1), g(1)

2
or so(2nγ)(2).

The fact that nβ = nα + 4 is not allowed manifests in the above gluing rules. The
total number of blowups carried by S0,α is at max 2nα + 7 but the gluing rules require the
presence of 2nα + 9 blowups on S0,α. See the discussion around (3.37) for an explanation
of this restriction.
Gluing rules for sp(nα)(1) so(7)(1)2 : we can take any geometry with 0 ≤ ν ≤
2nα for sp(nα)(1), and any geometry with 0 ≤ ν ≤ 2−nα for so(7)(1). The gluing rules are:

• x3 − x5, x4 − x6 in S0,α are glued to f, f in S0,β .
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• f − x1 − x2, x7, x8 in S0,α are glued to f, f − x1, y1 in S1,β .

• x2 − x3, x6 − x7 in S0,α are glued to f, f in S2,β .

• x1 − x2, x3 − x4, x5 − x6, x7 − x8 in S0,α are glued to f, f, f, f in S3,β .

• xi − xi+1, yi+1 − yi in S1,β are glued to f, f in Si,α for i = 1, · · · , nα − 1.

• xnα − ynα in S1,β is glued to f in Snα,α.

Gluing rules for sp(1)(1) g
(1)
22 : we can take any geometry with 1 ≤ ν ≤ 3 for

sp(1)(1). The (non-geometric) gluing rules are:

• x3 − x5, x4 − x6 in S0,α are glued to f, f in S0,β .

• x2 − x3, x6 − x7 in S0,α are glued to f, f in S2,β .

• f −x1−x2, x1−x2, x3−x4, x5−x6, x7, x7 in S0,α are glued to f, f, f, f, x1, y1 in S1,β .

• f − x1, x1 in S1,α are glued to f − x1, f − y1 in S1,β .

Notice that the blowup x1 in S1,α can be used in gluing rules corresponding to exactly one
more neighbor of sp(1)(1) carrying algebra so(2nγ + 1)(1) or so(2nγ)(2).

Gluing rules for sp(nα)(1) so(2nβ)(1)3 : we can take any geometry with 0 ≤
ν ≤ 2nα+8−3nβ for sp(nα)(1), and any geometry with 0 ≤ ν ≤ 2nβ−8−nα for so(2nβ)(1).
The gluing rules are:

• f − x1 − x2, x2nβ−1 − x2nβ+1, x2nβ − x2nβ+2 in S0,α are glued to f, f, f in S0,β .

• xi − xi+1, x2nβ−i − x2nβ−i+1, x2nβ+i − x2nβ+i+1 in S0,α are glued to f, f, f in Si,β for
i = 1, · · · , nβ − 1.

• xnβ−1− xnβ+1, xnβ − xnβ+2, x3nβ−1, x3nβ in S0,α are glued to f, f, f − x1, y1 in Snβ ,β .

• xi − xi+1, yi+1 − yi in Snβ ,β are glued to f, f in Si,α for i = 1, · · · , nα − 1.

• xnα − ynα in Snβ ,β is glued to f in Snα,α.

Gluing rules for sp(nα)(1) so(2nβ + 1)(1)3 : we can take any geometry with
1 ≤ ν ≤ 2nα + 7 − 3nβ for sp(nα)(1), and any geometry with 0 ≤ ν ≤ 2nβ − 7 − nα for
so(2nβ + 1)(1). The (non-geometric) gluing rules are:

• f − x1 − x2, x2nβ − x2nβ+2, x2nβ+1 − x2nβ+3 in S0,α are glued to f, f, f in S0,β .

• xi−xi+1, x2nβ−i+1−x2nβ−i+2, x2nβ+i+1−x2nβ+i+2 in S0,α are glued to f, f, f in Si,β
for i = 1, · · · , nβ − 1.

• xnβ − xnβ+1, xnβ − xnβ+1, xnβ+1 − xnβ+2, xnβ+1 − xnβ+2, x3nβ+1, x3nβ+1 in S0,α are
glued to f, f, f, f, x1, y1 in Snβ ,β .
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• xi+1 − xi, yi+1 − yi in Snβ ,β are glued to f, f in Si,α for i = 1, · · · , nα − 1.

• f − xnα , f − ynα in Snβ ,β are glued to f − x1, x1 in Snα,α.

Gluing rules for sp(nα)(1) so(2nβ)(2)3 : we can take any geometry with 1 ≤
ν ≤ 2nα+7−3nβ for sp(nα)(1), and any geometry with 0 ≤ ν ≤ 2nβ−8−nα for so(2nβ)(2).
The (non-geometric) gluing rules are:

• f − x1 − x2, x1 − x2, x2nβ − x2nβ+2, x2nβ − x2nβ+1, x2nβ+1 − x2nβ+3, x2nβ+2 − x2nβ+3
in S0,α are glued to f, f, f, f, f, f in S0,β .

• xi+1−xi+2, x2nβ−i−x2nβ−i+1, x2nβ+i+2−x2nβ+i+3 in S0,α are glued to f, f, f in Si,β
for i = 1, · · · , nβ − 2.

• xnβ − xnβ+1, xnβ − xnβ+1, xnβ+1 − xnβ+2, xnβ+1 − xnβ+2, x3nβ+1, x3nβ+1 in S0,α are
glued to f, f, f, f, x1, y1 in Snβ−1,β .

• xi+1 − xi, yi+1 − yi in Snβ−1,β are glued to f, f in Si,α for i = 1, · · · , nα − 1.

• f − xnα , f − ynα in Snβ−1,β are glued to f − x1, x1 in Snα,α.

Again, the fact that 3nβ = 2nα + 8 is not allowed manifests in the above gluing rules. The
total number of blowups carried by S0,α is at max 2nα + 7 but the gluing rules require the
presence of 2nα + 9 blowups on S0,α. See the discussion around (3.38) for an explanation
of this restriction.
Gluing rules for su(nα)(1) su(nβ)(1)2 : we can take any geometry with 0 ≤ ν ≤
2nα−2nβ for su(nα)(1), and any geometry with 0 ≤ ν ≤ 2nβ−nα for su(nβ)(1). The gluing
rules are:

• f − x1, xnβ − xnβ+1, x2nβ in S0,α are glued to f − x1, f, xnα in S0,β .

• xi − xi+1, xnβ+i − xnβ+i+1 in S0,α are glued to f, f in Si,β for i = 1, · · · , nβ − 1.

• xi − xi+1 in S0,β is glued to f in Si,α for i = 1, · · · , nα − 1.

Gluing rules for su(nα)(1) su(nβ)(1)3 : we can take any geometry with 0 ≤ ν ≤
2nα−3nβ for su(nα)(1), and any geometry with 0 ≤ ν ≤ 2nβ−nα for su(nβ)(1). The gluing
rules are:

• f − x1, xnβ − xnβ+1, x2nβ − x2nβ+1, x3nβ in S0,α are glued to f − x1, f, f, xnα in S0,β .

• xi − xi+1, xnβ+i − xnβ+i+1, x2nβ+i − x2nβ+i+1 in S0,α are glued to f, f, f in Si,β for
i = 1, · · · , nβ − 1.

• xi − xi+1 in S0,β is glued to f in Si,α for i = 1, · · · , nα − 1.

Gluing rules for su(2nα)(2) su(nβ)(1)2 : we can take any geometry with 0 ≤
ν ≤ 2nβ − 2nα for su(nβ)(1). The gluing rules are:
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• f − ynβ , xnβ , f − x1, y1 in S0,α are glued to x2nα−1, x2nα , f − x2, f − x1 in S0,β .

• xi − xi+1, yi+1 − yi in S0,α are glued to f, f in Si,β for i = 1, · · · , nβ − 1.

• xi − xi+1, x2nα−i − x2nα−i+1 in S0,β are glued to f, f in Si,α for i = 1, · · · , nα − 1.

• xnα − xnα+1 in S0,β is glued to f in Snα,α.

Gluing rules for su(2nα − 1)(2) su(nβ)(1)2 : we can take any geometry with
1 ≤ ν ≤ 2nβ − 2nα + 1 for su(nβ)(1). The (non-geometric) gluing rules are:

• ynβ , xnβ , f −x1, f −y1, f, f in S0,α are glued to x2nα−1, x2nα−1, y1, f −x1, x1−x2, f −
x2 − y1 in S0,β .

• xi − xi+1, yi − yi+1 in S0,α are glued to f, f in Si,β for i = 1, · · · , nβ − 1.

• xi+1 − xi+2, x2nα−i−1 − x2nα−i in S0,β are glued to f, f in Si,α for i = 1, · · · , nα − 2.

• xnα − xnα+1 in S0,β is glued to f in Snα−1,α.

Gluing rules for g
(1)
2 su(2)(1)2 : we can take any geometry with 1 ≤ ν ≤ 3

for g(1)
2 , and we must use the geometry with ν = 1 for su(2)(1). The (non-geometric) gluing

rules are:

• f − x1, y1 in S0,α are glued to f − x2, f − x1 in S0,β .

• x1 − y1 in S0,α is glued to f in S1,β .

• x2 − x3 in S0,β is glued to f in S2,α.

• x1 − x2, x3, x3 in S0,β are glued to f, x1, y1 in S1,α.

• f − x1, f − y1 in S1,α are glued to f − x1, x1 in S1,β .

Gluing rules for g
(1)
2 su(2)(1)3 : we can take any geometry with 2 ≤ ν ≤ 3

for g(1)
2 , and we must use the geometry with ν = 1 for su(2)(1). The (non-geometric) gluing

rules are:

• f − x1, y1, x2 − y2 in S0,α are glued to f − x2, f − x1, f in S0,β .

• x1 − x2, y2 − y1 in S0,α are glued to f, f in S1,β .

• x2 − x3 in S0,β is glued to f in S2,α.

• x1 − x2, x3, x3 in S0,β are glued to f, x1, y1 in S1,α.

• f − x1, f − y1 in S1,α are glued to f − x1, x1 in S1,β .
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Gluing rules for so(7)(1) sp(1)(1)2 and so(7)(1) su(2)(1)2 : we can
take any geometry with 1 ≤ ν ≤ 7 − 2Ωαα for so(7)(1), any geometry with 0 ≤ ν ≤ 6 for
sp(1)(1), and we must use the geometry with ν = 0 for su(2)(1). The gluing rules are:

• f − x1, y1 in S0,α are glued to f − x2, f − x1 in S0,β .

• x1 − y1 in S0,α is glued to f in S1,β .

• x3, x4 in S0,β are glued to f − x1, y1 in S1,α.

• x2 − x3 in S0,β is glued to f in S2,α.

• x1 − x2, x3 − x4 in S0,β are glued to f, f in S3,α.

• x1 − y1 in S1,α is glued to f in S1,β .

Gluing rules for so(7)(1) su(2)(1)3 : we can take any geometry with 2 ≤ ν ≤ 3
for so(7)(1), and we must use the geometry with ν = 0 for su(2)(1). The gluing rules are:

• f − x1, y1, x2 − y2 in S0,α are glued to f − x2, f − x1, f in S0,β .

• x1 − x2, y2 − y1 in S0,α are glued to f, f in S1,β .

• x3, x4 in S0,β are glued to f − x1, y1 in S1,α.

• x2 − x3 in S0,β is glued to f in S2,α.

• x1 − x2, x3 − x4 in S0,β are glued to f, f in S3,α.

• x1 − y1 in S1,α is glued to f in S1,β .

Gluing rules for so(8)(2) sp(1)(1)2 : we can take any geometry with 0 ≤ ν ≤ 6
for sp(1)(1). The gluing rules are:

• f − x1, y1 in S1,α are glued to x3, x4 in S0,β .

• x1 − y1 in S1,α is glued to f in S1,β .

• f − x1 − x4, f − x2 − x3 in S0,β are glued to f, f in S0,α.

• x2 − x3 in S0,β is glued to f in S2,α.

• x1 − x2, x3 − x4 in S0,β are glued to f, f in S3,α.

Gluing rules for so(2nα)(1) sp(nβ)(1)2 : we can take any geometry with nβ ≤
ν ≤ 2nα − 4− Ωαα − nβ for so(2nα)(1), and any geometry with 0 ≤ ν ≤ 2nβ + 8 − nα for
sp(nβ)(1). The gluing rules are:

• f − x1, y1 in S0,α are glued to f − x2, f − x1 in S0,β .
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• xi − xi+1, yi+1 − yi in S0,α are glued to f, f in Si,β for i = 1, · · · , nβ − 1.

• xnβ − ynβ in S0,α is glued to f in Snβ ,β .

• xi − xi+1 in S0,β is glued to f in Si,α for i = 1, · · · , nα − 1.

• xnα−1, xnα in S0,β are glued to f − x1, y1 in Snα,α.

• xi − xi+1, yi+1 − yi in Snα,α are glued to f, f in Si,β for i = 1, · · · , nβ − 1.

• xnβ − ynβ in Snα,α is glued to f in Snβ ,β .

Gluing rules for so(2nα + 1)(1) sp(nβ)(1)2 : we can take any geometry with
nβ ≤ ν ≤ 2nα−3−Ωαα−nβ for so(2nα+1)(1), and any geometry with 1 ≤ ν ≤ 2nβ+8−nα
for sp(nβ)(1). The gluing rules are:

• f − x1, y1 in S0,α are glued to f − x2, f − x1 in S0,β .

• xi − xi+1, yi+1 − yi in S0,α are glued to f, f in Si,β for i = 1, · · · , nβ − 1.

• xnβ − ynβ in S0,α is glued to f in Snβ ,β .

• xi − xi+1 in S0,β is glued to f in Si,α for i = 1, · · · , nα − 1.

• xnα , xnα in S0,β are glued to x1, y1 in Snα,α.

• xi+1 − xi, yi+1 − yi in Snα,α are glued to f, f in Si,β for i = 1, · · · , nβ − 1.

• f − xnβ , f − ynβ in Snα,α are glued to f − x1, x1 in Snβ ,β .

The blowup x1 in Snβ ,β can be used to glue sp(nβ)(1) to exactly one more neighboring node
connected to it by an undirected edge. The neighboring node can carry so(2nγ + 1)(1), g(1)

2
or so(2nγ)(2).

Gluing rules for so(2nα)(2) sp(nβ)(1)2 : we can take any geometry with nβ ≤
ν ≤ 2nα−8−nβ for so(2nα)(2), and any geometry with 1 ≤ ν ≤ 2nβ +8−nα for sp(nβ)(1).
The gluing rules are:

• f − x1, y1, f in S0,α are glued to f − x2, f − x1, x1 − x2 in S0,β .

• xi − xi+1, yi+1 − yi in S0,α are glued to f, f in Si,β for i = 1, · · · , nβ − 1.

• xnβ − ynβ in S0,α is glued to f in Snβ ,β .

• xi+1 − xi+2 in S0,β is glued to f in Si,α for i = 1, · · · , nα − 2.

• xnα , xnα in S0,β are glued to x1, y1 in Snα−1,α.

• xi+1 − xi, yi+1 − yi in Snα−1,α are glued to f, f in Si,β for i = 1, · · · , nβ − 1.

• f − xnβ , f − ynβ in Snα−1,α are glued to f − x1, x1 in Snβ ,β .
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Again, the blowup x1 in Snβ ,β can be used to glue sp(nβ)(1) to exactly one more neighboring
node carrying so(2nγ + 1)(1), g(1)

2 or so(2nγ)(2).

Gluing rules for so(2nα)(1) sp(nβ)(1)3 : we can take any geometry with 2nβ ≤
ν ≤ 2nα−8−nβ for so(2nα)(1), and any geometry with 0 ≤ ν ≤ 2nβ +8−nα for sp(nβ)(1).
The gluing rules are:

• f − x1, x2nβ − y2nβ , y1 in S0,α are glued to f − x2, f, f − x1 in S0,β .

• xi− xi+1, yi+1− yi, x2nβ−i− x2nβ−i+1, y2nβ−i+1− y2nβ−i in S0,α are glued to f, f, f, f
in Si,β for i = 1, · · · , nβ − 1.

• xnβ − xnβ+1, ynβ+1 − ynβ in S0,α are glued to f, f in Snβ ,β .

• xi − xi+1 in S0,β is glued to f in Si,α for i = 1, · · · , nα − 1.

• xnα−1, xnα in S0,β are glued to f − x1, y1 in Snα,α.

• xi − xi+1, yi+1 − yi in Snα,α are glued to f, f in Si,β for i = 1, · · · , nβ − 1.

• xnβ − ynβ in Snα,α is glued to f in Snβ ,β .

Gluing rules for so(2nα + 1)(1) sp(nβ)(1)3 : we can take any geometry with
2nβ ≤ ν ≤ 2nα − 7− nβ for so(2nα + 1)(1), and any geometry with 1 ≤ ν ≤ 2nβ + 8− nα
for sp(nβ)(1). The (non-geometric) gluing rules are:

• f − x1, x2nβ − y2nβ , y1 in S0,α are glued to f − x2, f, f − x1 in S0,β .

• xi− xi+1, yi+1− yi, x2nβ−i− x2nβ−i+1, y2nβ−i+1− y2nβ−i in S0,α are glued to f, f, f, f
in Si,β for i = 1, · · · , nβ − 1.

• xnβ − xnβ+1, ynβ+1 − ynβ in S0,α are glued to f, f in Snβ ,β .

• xi − xi+1 in S0,β is glued to f in Si,α for i = 1, · · · , nα − 1.

• xnα , xnα in S0,β are glued to x1, y1 in Snα,α.

• xi+1 − xi, yi+1 − yi in Snα,α are glued to f, f in Si,β for i = 1, · · · , nβ − 1.

• f − xnβ , f − ynβ in Snα,α are glued to f − x1, x1 in Snβ ,β .

Gluing rules for so(2nα)(2) sp(nβ)(1)3 : we can take any geometry with 2nβ ≤
ν ≤ 2nα−8−nβ for so(2nα)(2), and any geometry with 1 ≤ ν ≤ 2nβ +8−nα for sp(nβ)(1).
The (non-geometric) gluing rules are:

• f − x1, x2nβ − y2nβ , y1, f in S0,α are glued to f − x2, f, f − x1, x1 − x2 in S0,β .

• xi− xi+1, yi+1− yi, x2nβ−i− x2nβ−i+1, y2nβ−i+1− y2nβ−i in S0,α are glued to f, f, f, f
in Si,β for i = 1, · · · , nβ − 1.
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• xnβ − xnβ+1, ynβ+1 − ynβ in S0,α are glued to f, f in Snβ ,β .

• xi+1 − xi+2 in S0,β is glued to f in Si,α for i = 1, · · · , nα − 2.

• xnα , xnα in S0,β are glued to x1, y1 in Snα−1,α.

• xi+1 − xi, yi+1 − yi in Snα−1,α are glued to f, f in Si,β for i = 1, · · · , nβ − 1.

• f − xnβ , f − ynβ in Snα−1,α are glued to f − x1, x1 in Snβ ,β .

5.4 Gluing rules involving non-gauge-theoretic nodes

There are only three such nodes which are listed below

1
sp(0)(1)

θ

(5.180)

2
su(1)(1)

(5.181)

2
su(1)(1)

(5.182)

The theta angle for sp(0)(1) is physically irrelevant as long as there is no neighboring su(8).
First consider the edges shown as last two entries of table 4. The gluing rules for these

cases are as follows.

Gluing rules for 2
su(1)(1)

1
sp(1)(1)

and 2
su(1)(1)

2
su(2)(1)

: we can choose any
geometry with 1 ≤ ν ≤ 10 for sp(1)(1) and any geometry with 1 ≤ ν ≤ 4 for su(2)(1). The
(non-geometric) gluing rules are:

• f − x− y in S0,α is glued to f in S0,β .

• x, y in S0,α are glued to f − x1, x1 in S1,β .

As in cases discussed in last subsection, the blowup x1 in S1,β can be used for gluing sp(1)(1)

or su(2)(1) with another neighbor such that the gluing rules for sp(1)(1) or su(2)(1) with
that neighbor allow a blowup on S1,β to be used for more than once.

The gluing rules for the edges shown in table 5 are as follows.

Gluing rules for 1
sp(0)(1)

2
su(1)(1)

:

• 3l −
∑
xi in S0,α is glued to f in S0,β .

See appendix (B.2) for a derivation of the above gluing rules.
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Gluing rules for 2
su(1)(1)

2
su(1)(1)

:

• f − x, x in S0,α are glued to f − x, x in S0,β .

The blowups x in S0,α and x in S0,β can be used for gluing to other su(1)(1) neighbors. See
appendix (B.2) for a derivation of the above gluing rules.

Now consider the edges shown in the last entry of table 9:

Gluing rules for 2
su(2)(1)

2
su(1)(1)

:

• f − x1, x1 in S0,α are glued to x, y in S0,β .

• f in S1,α is glued to f − x− y in S0,β .

Gluing rules for 2
su(1)(1)

2
su(1)(1)

:

• 2h− x− 2y, f − x in S0,α are glued to f − x, x in S0,β .

The blowup x in S0,β can be used for gluing to other su(1)(1) neighbors. See appendix (B.2)
for a derivation of the above gluing rules. We remind the reader that this gluing rule involves
the non-geometric node (5.161) and hence the above gluing rules should be viewed only
as an algebraic description and not as a geometric description. See the discussion after
equation (5.160) for more details.

Now consider the last entry of table 11:

Gluing rules for 2
su(2)(1)

2
su(1)(1)

2 : we can use any geometry with 1 ≤ ν ≤ 3 for
su(2)(1). The gluing rules are:

• f − x1, x1 in S0,α are glued to x, y in S0,β .

• f − x1, x1 in S1,α are glued to f − x, f − y in S0,β .

The blowups x1 in S0,α and x1 in S1,α can also be used for gluing to other neighboring
nodes of su(2)(1) that carry some su(n)(1).

Gluing rules for 2
su(2)(1)

2
su(1)(1)

3 : we can use any geometry with 1 ≤ ν ≤ 3 for
su(2)(1). The gluing rules are:

• f − x1, x1 in S0,α are glued to x, y in S0,β .

• f − x1, x1 in S1,α are glued to 2f − x, f − y in S0,β .
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The blowups x1 in S0,α and x1 in S1,α can also be used for gluing to other neighboring
nodes of su(2)(1) that carry some su(n)(1).

Gluing rules for 2
su(1)(1)

2
su(1)(1)

2 :

• f − x, x in S0,α are glued to 2f − x, x in S0,β .

(Note that the gluing rules proposed above are non-geometric.) The blowups x in S0,α and
x in S0,β can be used to further glue to other neighboring su(1)(1). See appendix (B.2) for
a derivation of the above gluing rules.

Gluing rules for 2
su(1)(1)

2
su(1)(1)

3 :

• f − x, x in S0,α are glued to 3f − x, x in S0,β .

(Note that the gluing rules proposed above are non-geometric.) The blowups x in S0,α and
x in S0,β can be used to further glue to other neighboring su(1)(1).

5.4.1 sp(0)(1) gluings: untwisted, without non-simply-laced

At this point, we are only left with gluings of sp(0)(1) to other nodes carrying non-trivial
gauge algebras. In this case, we also have to provide gluing rules for two neighbors at a
time. This is because the torus fiber for dP9 is 3l−

∑
xi which involves all of the blowups.

So all of the blowups must appear in the gluing rules associated to each edge. This is in
stark contrast to the gluing rules for non-trivial algebras g(q) where (typically) the blowups
used for gluing rules associated to different edges are different. Thus in the case of g(q),
the gluing rules for different edges naturally decouple. However, in the case of sp(0)(1),
we have to provide gluing rules for multiple neighbors at a time and show explicitly that
the curves inside dP9 involved in gluing rules for different edges do not intersect. It turns
out that in the context of 6d SCFTs, sp(0)(1) can only have a maximum of two neighbors
carrying non-trivial algebras.

In the case when all the neighbors are untwisted, sp(0)(1) gluings were first studied
in [4]. For the completeness of our presentation, we reproduce their results in this subsection
(providing enhanced explanations while we do so) before moving onto sp(0)(1) gluings
arising in the twisted case. Following [4], we will represent these sp(0)(1) gluing rules in a
graphical notation that we review as we review the results of [4].

To start with, let us consider the gluing rules for

sp(0)(1) e
(1)
8 (5.183)
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which are displayed below

x8 − x9 x7 − x8 x6 − x7 x5 − x6 x4 − x5 x1 − x4 x2 − x1 x3 − x2

l − x1 − x2 − x3

sp(0)(1) e
(1)
8

(5.184)
where each node denotes a curve in dP9 whose genus is zero and self-intersection is −2. If
there are n edges between two nodes, it denotes that the two corresponding curves intersect
in n number of points. Each curve Ca shown above is glued to the fiber f of a Hirzebruch
surface Sa in the geometry associated to e

(1)
8 . Which curve glues to the fiber of which Sa

can be figured out from the position of the curve in the graph above, because the graph
takes the form of the corresponding Dynkin diagram, which in this case is e(1)

8 . Notice that

∑
a

daCa = (x8 − x9) + 2(x7 − x8) + 3(x6 − x7) + 4(x5 − x6) + 5(x4 − x5) + 6(x1 − x4)

+ 4(x2 − x1) + 2(x3 − x2) + 3(l − x1 − x2 − x3)

= 3l −
∑

xi (5.185)

and thus the torus fibers on both nodes are glued to each other, satisfying (5.60) for the
untwisted case.

Now, we can use the above gluing rules to obtain gluing rules for regular maximal
subalgebras of e8 as follows. For example, to obtain the gluing rules for

su(2)(1) sp(0)(1) e
(1)
7 (5.186)

we first delete the second curve from the left x7 − x8 in (5.184). After this deletion, the
graph takes the form of Dynkin diagram for finite algebra su(2)⊕ e7. To obtain the gluing
rules for (5.186), we simply need to add two extra −2 curves to the graph such that the
finite Dynkin diagram of su(2) is converted to the affine Dynkin diagram of su(2)(1) and
similarly the finite Dynkin diagram of e7 is converted to the affine Dynkin diagram of e(1)

7 .
This is easy to do since we know that a weighted sum of the −2 curves participating in
gluing to each affine Dynkin diagram must be 3l −

∑
xi. This requirement uniquely fixes
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the extra −2 curves that need to be added. We thus obtain

x8 − x9 3l − x1 − x2 − x3 − x4 − x5 − x6 − x7 − 2x8

l − x3 − x8 − x9x6 − x7 x5 − x6 x4 − x5 x1 − x4 x2 − x1 x3 − x2

l − x1 − x2 − x3

su(2)(1)sp(0)(1)e
(1)
7

(5.187)
as the gluing rules for (5.186). l − x3 − x8 − x9 glues to the fiber of affine surface for e

(1)
7

and x8 − x9 glues to the fiber of affine surface for su(2)(1). Notice that the curves in each
sub-Dynkin diagram sum up to 3l −

∑
xi if the sum is weighted by the Coxeter labels of

the corresponding affine Dynkin diagram. Also notice that the curves forming the Dynkin
diagram for e(1)

7 do not intersect the curves forming the Dynkin diagram for su(2)(1), which
explicitly shows that the gluing rules for the two neighbors of sp(0)(1) decouple from each
other as required.

Incidentally, (5.187) allows us to determined gluing rules for

sp(0)(1) e
(1)
7 (5.188)

and
sp(0)(1) su(2)(1)

(5.189)
without any other second neighbor for sp(0)(1). This is done by only keeping the curves
spanning the Dynkin diagram of e(1)

7 or the Dynkin diagram of su(2)(1), while omitting the
rest of the curves from (5.187). Thus, we obtain

l − x3 − x8 − x9x6 − x7 x5 − x6 x4 − x5 x1 − x4 x2 − x1 x3 − x2

l − x1 − x2 − x3

sp(0)(1) e
(1)
7

(5.190)
with the fiber in affine surface glued to l − x3 − x8 − x9 and

x8 − x9 3l − x1 − x2 − x3 − x4 − x5 − x6 − x7 − 2x8

sp(0)(1) su(2)(1)

(5.191)

with the fiber in affine surface glued to x8 − x9.
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Deleting other nodes from (5.184), we can obtain the following gluing rules

x8 − x9 x7 − x8 x6 − x7 x5 − x6 x4 − x5 x1 − x4 x2 − x1

2l − x1 − x2 − x4 − x5 − x6 − x7 l − x1 − x2 − x3

sp(0)(1) so(16)(1)

(5.192)

where x8 − x9 glues to the fiber of affine surface for so(16)(1).

x8 − x9 x7 − x8 x6 − x7 x5 − x6 x4 − x5 x1 − x4 x2 − x1 x3 − x2

3l − x1 − x2 − 2x3 − x4 − x5 − x6 − x7 − x8

sp(0)(1) su(9)(1)

(5.193)
where x8 − x9 glues to the fiber of affine surface for su(9)(1).

x8 − x9 x7 − x8

3l − x1 − x2 − x3 − x4 − x5 − x6 − 2x7 − x8

l − x7 − x8 − x9

x5 − x6 x4 − x5 x1 − x4 x2 − x1 x3 − x2

l − x1 − x2 − x3

su(3)(1)sp(0)(1)e
(1)
6

(5.194)

where l − x7 − x8 − x9 glues to the fiber of affine surface for e(1)
6 and x8 − x9 glues to the

fiber of affine surface for su(3)(1). Incidentally, this also allows us to obtain the following
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individual gluing rules

l − x7 − x8 − x9

x5 − x6 x4 − x5 x1 − x4 x2 − x1 x3 − x2

l − x1 − x2 − x3

sp(0)(1) e
(1)
6

(5.195)

with the fiber in affine surface glued to l − x7 − x8 − x9, and

x8 − x9 x7 − x8

3l − x1 − x2 − x3 − x4 − x5 − x6 − 2x7 − x8

sp(0)(1) su(3)(1)

(5.196)

with the fiber in affine surface glued to x8 − x9.

Now we can delete some nodes from the above set of gluing rules to obtain gluing rules
for other algebras that arise as regular maximal subalgebras of the above algebras. For
example, by deleting nodes from (5.192), we can obtain the gluing rules for

so(8)(1) sp(0)(1) so(8)(1)
(5.197)
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since so(8)⊕ so(8) is a regular maximal subalgebra of so(16). The gluing rules are

x8 − x9 x7 − x8

2l − x1 − x2 − x4 − x5 − x6 − x7

2l − x1 − x2 − x6 − x7 − x8 − x9

x6 − x7

x4 − x5 x1 − x4 x2 − x1

l − x3 − x6 − x7

l − x1 − x2 − x3

so(8)(1)sp(0)(1)so(8)(1)

(5.198)

where the fibers in affine surfaces glue to x8 − x9 and 2l − x1 − x2 − x6 − x7 − x8 − x9.
Tha bove gluing rules imply that the gluing rules for a single so(8)(1) are obtained by
amputating one of the so(8)(1) sub-graph from (5.198).

x8 − x9 x7 − x8

2l − x1 − x2 − x4 − x5 − x6 − x7

x6 − x7

l − x3 − x6 − x7

sp(0)(1) so(8)(1)

(5.199)

with the fiber in affine surface glued to x8 − x9. The reader might wonder what happens
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if amputate the other so(8)(1) sub-graph from (5.198) to obtain the gluing rules as

2l − x1 − x2 − x6 − x7 − x8 − x9

x4 − x5 x1 − x4 x2 − x1

l − x1 − x2 − x3

(5.200)

It turns out that (5.199) and (5.200) are related by an automorphism of dP9. To see this,
let’s first relabel the blowups as

x1 ↔ x7 (5.201)
x2 ↔ x6 (5.202)
x3 ↔ x5 (5.203)
x4 ↔ x8 (5.204)

so that (5.199) is converted to

x4 − x9 x1 − x4

2l − x1 − x2 − x3 − x6 − x7 − x8

x2 − x1

l − x1 − x2 − x5 (5.205)

Now we perform two basic automorphisms of dP9. The basic automorphisms are described
in appendix A.2 and involve a choice of three blowups. For the first basic automorphism
we choose the blowups x1, x2 and x4, and after performing this operation the gluing
rules (5.205) are transformed to

l − x1 − x2 − x9 x1 − x4

2l − x1 − x2 − x3 − x6 − x7 − x8

x2 − x1

x4 − x5 (5.206)
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For the second basic automorphism we choose x6, x7 and x8 thus transforming (5.206) to

2l − x1 − x2 − x6 − x7 − x8 − x9 x1 − x4

l − x1 − x2 − x3

x2 − x1

x4 − x5 (5.207)

which precisely matches (5.200), thus demonstrating that (5.199) and (5.200) are isomor-
phic gluing rules.

This will hold true in general in what follows. Whenever we will find two seemingly
different gluing rules, they will always turn out to be related by an automorphism, except
for two cases. These two cases are the gluing rules for su(8)(1) and su(8)(2), where we find
two possible gluing rules in each case. The two possibilities correspond to different choices
of theta angle for sp(0) in the 6d theory.

Let us collect all of the remaining gluing rules below

x8 − x9

x7 − x8

3l − x1 − x2 − x3 − x4 − x5 − 2x6 − x7 − x8

2l − x2 − x3 − x6 − x7 − x8 − x9

x6 − x7

x4 − x5 x1 − x4 x2 − x1 x3 − x2

l − x1 − x2 − x3

su(4)(1)sp(0)(1)so(10)(1)

(5.208)

where the fibers in affine surfaces glue to x8 − x9 and 2l − x2 − x3 − x6 − x7 − x8 − x9.

x8 − x9 x7 − x8 x6 − x7 x5 − x6 x4 − x5 x1 − x4

2l − x1 − x2 − x4 − x5 − x6 − x7 l − x1 − x3 − x4

sp(0)(1) so(14)(1)

(5.209)
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where the fiber in affine surface glues to x8 − x9.

x8 − x9 3l − x1 − x2 − x3 − x4 − x5 − x6 − x7 − 2x8

l − x7 − x8 − x9

x5 − x6 x4 − x5 x1 − x4 x2 − x1 x3 − x2

l − x1 − x2 − x3

su(2)(1)sp(0)(1)e
(1)
6

(5.210)

where the fibers in affine surfaces glue to x8 − x9 and l − x7 − x8 − x9.

x8 − x9 3l − x1 − x2 − x3 − x4 − x5 − x6 − x7 − 2x8

x6 − x7 x5 − x6 x4 − x5 x1 − x4 x2 − x1

2l − x1 − x2 − x4 − x5 − x8 − x9 l − x1 − x2 − x3

su(2)(1)sp(0)(1)so(12)(1)

(5.211)

where the fibers in affine surfaces glue to x8 − x9 and 2l − x1 − x2 − x4 − x5 − x8 − x9.

x8 − x9 x7 − x8

3l − x1 − x2 − x3 − x4 − x5 − x6 − 2x7 − x8

2l − x2 − x3 − x6 − x7 − x8 − x9

x4 − x5 x1 − x4 x2 − x1 x3 − x2

l − x1 − x2 − x3

su(3)(1)sp(0)(1)so(10)(1)

(5.212)
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where the fibers in affine surfaces glue to x8 − x9 and 2l − x2 − x3 − x6 − x7 − x8 − x9.

x8 − x9

x7 − x8

3l − x1 − x2 − x3 − x4 − x5 − 2x6 − x7 − x8

2l − x2 − x3 − x6 − x7 − x8 − x9

x6 − x7

x1 − x4 x2 − x1 x3 − x2

l − x2 − x3 − x5

su(4)(1)sp(0)(1)so(8)(1)

(5.213)

where the fibers in affine surfaces glue to x8 − x9 and 2l − x2 − x3 − x6 − x7 − x8 − x9.

x6 − x7 x5 − x6 x4 − x5 x1 − x4 x2 − x1

2l − x1 − x2 − x4 − x5 − x8 − x9 l − x1 − x2 − x3

sp(0)(1) so(12)(1)

(5.214)

where the fiber in affine surface glues to 2l − x1 − x2 − x4 − x5 − x8 − x9.

x8 − x9 x7 − x8 x6 − x7 x5 − x6 x4 − x5 x1 − x4

3l − 2x1 − x2 − x3 − x4 − x5 − x6 − x7 − x8

sp(0)(1) su(7)(1)

(5.215)
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where the fiber in affine surface glues to x8 − x9.

x8 − x9 3l − x1 − x2 − x3 − x4 − x5 − x6 − x7 − 2x8

2l − x2 − x3 − x6 − x7 − x8 − x9

x4 − x5 x1 − x4 x2 − x1 x3 − x2

l − x1 − x2 − x3

su(2)(1)sp(0)(1)so(10)(1)

(5.216)

where the fibers in affine surfaces glue to x8 − x9 and 2l − x2 − x3 − x6 − x7 − x8 − x9.

x8 − x9 x7 − x8

3l − x1 − x2 − x3 − x4 − x5 − x6 − 2x7 − x8

2l − x2 − x3 − x6 − x7 − x8 − x9

x1 − x4 x2 − x1 x3 − x2

l − x2 − x3 − x5

su(3)(1)sp(0)(1)so(8)(1)

(5.217)

where the fibers in affine surfaces glue to x8 − x9 and 2l − x2 − x3 − x6 − x7 − x8 − x9.

2l − x2 − x3 − x6 − x7 − x8 − x9

x4 − x5 x1 − x4 x2 − x1 x3 − x2

l − x1 − x2 − x3

sp(0)(1) so(10)(1)

(5.218)
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where the fiber in affine surface glues to 2l − x2 − x3 − x6 − x7 − x8 − x9.

x8 − x9 x7 − x8 x6 − x7 x5 − x6 x4 − x5

3l − x1 − x2 − x3 − 2x4 − x5 − x6 − x7 − x8

sp(0)(1) su(6)(1)

(5.219)

where the fiber in affine surface glues to x8 − x9.

x8 − x9 3l − x1 − x2 − x3 − x4 − x5 − x6 − x7 − 2x8

2l − x2 − x3 − x6 − x7 − x8 − x9

x1 − x4 x2 − x1 x3 − x2

l − x2 − x3 − x5

su(2)(1)sp(0)(1)so(8)(1)

(5.220)

where the fibers in affine surfaces glue to x8 − x9 and 2l − x2 − x3 − x6 − x7 − x8 − x9.

x5 − x6 x4 − x5 x1 − x4 x2 − x1 x3 − x2

3l − x1 − x2 − 2x3 − x4 − x5 − x7 − x8 − x9

x8 − x9 x7 − x8

3l − x1 − x2 − x3 − x4 − x5 − x6 − 2x7 − x8

su(3)(1)sp(0)(1)su(6)(1)

(5.221)
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where the fibers in affine surfaces glue to x8−x9 and 3l−x1−x2−2x3−x4−x5−x7−x8−x9.

x4 − x6 x1 − x4 x2 − x1 x3 − x2

3l − x1 − x2 − 2x3 − x4 − x5 − x7 − x8 − x9

x8 − x9 x7 − x8

3l − x1 − x2 − x3 − x4 − x5 − x6 − 2x7 − x8

su(3)(1)sp(0)(1)su(5)(1)

(5.222)

where the fibers in affine surfaces glue to x8−x9 and 3l−x1−x2−2x3−x4−x5−x7−x8−x9.

x1 − x6 x2 − x1 x3 − x2

3l − x1 − x2 − 2x3 − x4 − x5 − x7 − x8 − x9

x8 − x9 x7 − x8

3l − x1 − x2 − x3 − x4 − x5 − x6 − 2x7 − x8

su(3)(1)sp(0)(1)su(4)(1)

(5.223)
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where the fibers in affine surfaces glue to x8−x9 and 3l−x1−x2−2x3−x4−x5−x7−x8−x9.

x2 − x6 x3 − x2

3l − x1 − x2 − 2x3 − x4 − x5 − x7 − x8 − x9

x8 − x9 x7 − x8

3l − x1 − x2 − x3 − x4 − x5 − x6 − 2x7 − x8

su(3)(1)sp(0)(1)su(3)(1)

(5.224)

where the fibers in affine surfaces glue to x8−x9 and 3l−x1−x2−2x3−x4−x5−x7−x8−x9.

x3 − x6 3l − x1 − x2 − 2x3 − x4 − x5 − x7 − x8 − x9

x8 − x9 x7 − x8

3l − x1 − x2 − x3 − x4 − x5 − x6 − 2x7 − x8

su(3)(1)sp(0)(1)su(2)(1)

(5.225)

where the fibers in affine surfaces glue to x8−x9 and 3l−x1−x2−2x3−x4−x5−x7−x8−x9.

x8 − x9 x7 − x8 x6 − x7 x5 − x6

3l − x1 − x2 − x3 − x4 − 2x5 − x6 − x7 − x8

sp(0)(1) su(5)(1)

(5.226)
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where the fiber in affine surface glues to x8 − x9.

x8 − x9

x7 − x8

3l − x1 − x2 − x3 − x4 − x5 − 2x6 − x7 − x8

x6 − x7

sp(0)(1) su(4)(1)

(5.227)

where the fiber in affine surface glues to x8 − x9.

Finally, we come to the gluing rules for su(8)(1) for which we have two versions depend-
ing on the choice of theta angle for sp(0). The adjoint of e8 decomposes into the adjoint
plus an irreducible spinor of so(16). In our study, this spinor corresponds to the node of
so(16) Dynkin diagram whose corresponding fiber is glued to x2 − x1 in (5.192). This is
visible from the gluing rules (5.184) for e(1)

8 since the extra particles in adjoint of e8 come
from the curve x3−x2 which indeed transform in the spinor of so(16) associated to x2−x1
since x3 − x2 intersects x2 − x1.

Now, to obtain the gluing rules for su(8)(1), we delete 2l− x1 − x2 − x4 − x5 − x6 − x7
from (5.192), and we have the choice to either delete l − x1 − x2 − x3 or x2 − x1. This
latter choice leads to another choice of spinor of so(16). If we delete x2 − x1, then this
matches the previous choice of spinor we had, and leads to the gluing rules for θ = 0. If we
delete l− x1− x2− x3, then this does not match the previous choice of spinor we had, and
leads to the gluing rules for θ = π. In the latter case, su(8) gauges the spinor of so(16) in
the adjoint of e8, and in the former case it does not. Thus the latter case has less global
symmetry compared to former. We refer the reader to [38] for more details. The two gluing
rules are thus as follows:

x8 − x9 x7 − x8 x6 − x7 x5 − x6 x4 − x5 x1 − x4 x2 − x1

3l − x1 − 2x2 − x3 − x4 − x5 − x6 − x7 − x8

sp(0)(1)
π su(8)(1)

(5.228)
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x8 − x9 x7 − x8 x6 − x7 x5 − x6 x4 − x5 x1 − x4 l − x1 − x2 − x3

2l − x1 − x4 − x5 − x6 − x7 − x8

sp(0)(1)
0 su(8)(1)

(5.229)
In both the cases, the fiber in affine surface glues to x8 − x9.

5.4.2 sp(0)(1) gluings: untwisted, with non-simply-laced

Until now, we have only considered simply laced subalgebras of e8. To generalize our gluing
rules to non-simply laced subalgebras of e8, we use the folding of Dynkin diagrams. The
Dynkin diagrams for untwisted affine non-simply laced algebras can be produced by folding
the Dynkin diagrams for untwisted affine simply laced algebras. The foldings relevant in
our analysis are:

so(2n)(1) → so(2n− 1)(1) (5.230)

e
(1)
6 → f

(1)
4 (5.231)

so(8)(1) → so(7)(1) → g
(1)
2 (5.232)

For example, to obtain the gluing rules for

sp(0)(1) so(15)(1)
(5.233)

we simply fold the graph (5.192) to obtain

x8 − x9 x7 − x8 x6 − x7 x5 − x6 x4 − x5 x1 − x4 x2 − x1, l − x1 − x2 − x3

2l − x1 − x2 − x4 − x5 − x6 − x7

sp(0)(1) so(15)(1)

(5.234)
where the fiber in affine surface glues to x8 − x9 and the rightmost node denotes two −2
curves x2 − x1 and l− x1 − x2 − x3. Both of these curves glue to a copy of the fiber of the
corresponding surface in the geometry for so(15)(1). We can check that the weighted sum
of fibers equals 3l −

∑
xi.

Since we can now have multiple gluing curves associated to the gluing of dP9 to some
other surface, we have to make sure that all of the gluing curves are on an equal footing.
More precisely, we have to make sure that the condition (5.17) is satisfied, which translates
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to the following condition. Let Sa be the different surfaces dP9 is glued to, and let Cia be
the different gluing curves in dP9 for the gluing to Sa. The total gluing curve for the gluing
to Sa is

Ca :=
∑
i

Cia (5.235)

Then (5.17) translates to the condition that

Cia · Cb = Cja · Cb (5.236)

for all i, j, a, b. It can be easily verified that (5.234) satisfies this condition. This condi-
tion (5.236) will be an important consistency condition in what follows and the reader can
verify that all of the geometries that follow satisfy (5.236).

By folding other gluing rules presented above, we can obtain the following gluing rules

x8 − x9

x7 − x8

3l − x1 − x2 − x3 − x4 − x5 − 2x6 − x7 − x8

2l − x2 − x3 − x6 − x7 − x8 − x9

x6 − x7

l − x1 − x2 − x3, x4 − x5 x1 − x4 x2 − x1 x3 − x2

su(4)(1)sp(0)(1)so(9)(1)

(5.237)

where the fibers in affine surfaces glue to x8 − x9 and 2l − x2 − x3 − x6 − x7 − x8 − x9.

x8 − x9 x7 − x8 x6 − x7 x5 − x6 x4 − x5 x1 − x4, l − x1 − x3 − x4

2l − x1 − x2 − x4 − x5 − x6 − x7

sp(0)(1) so(13)(1)

(5.238)
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where the fiber in affine surface glues to x8 − x9.

x8 − x9 x7 − x8

3l − x1 − x2 − x3 − x4 − x5 − x6 − 2x7 − x8

l − x7 − x8 − x9 x1 − x4 x2 − x1, x4 − x5 x3 − x2, x5 − x6l − x1 − x2 − x3

su(3)(1)sp(0)(1)f
(1)
4

(5.239)

where the fibers in affine surfaces glue to x8 − x9 and l − x7 − x8 − x9.

x8 − x9 x7 − x8

2l − x1 − x2 − x4 − x5 − x6 − x7

x6 − x7, l − x3 − x6 − x7

2l − x1 − x2 − x6 − x7 − x8 − x9

x4 − x5 x1 − x4 x2 − x1

l − x1 − x2 − x3

so(7)(1)sp(0)(1)so(8)(1)

(5.240)
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where the fibers in affine surfaces glue to x8 − x9 and 2l − x1 − x2 − x6 − x7 − x8 − x9.

x8 − x9 x7 − x8

2l − x1 − x2 − x4 − x5 − x6 − x7

2l − x1 − x2 − x6 − x7 − x8 − x9

x6 − x7, l − x3 − x6 − x7

x4 − x5 x1 − x4 x2 − x1, l − x1 − x2 − x3

so(7)(1)sp(0)(1)so(7)(1)

(5.241)

where the fibers in affine surfaces glue to x8 − x9 and 2l − x1 − x2 − x6 − x7 − x8 − x9.

2l − x1 − x2 − x6 − x7 − x8 − x9

x4 − x5 x1 − x4 x2 − x1

l − x1 − x2 − x3

x8 − x9 x7 − x8 x6 − x7, l − x3 − x6 − x7, 2l − x1 − x2 − x4 − x5 − x6 − x7

so(8)(1)sp(0)(1)g
(1)
2

(5.242)
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where the fibers in affine surfaces glue to x8 − x9 and 2l − x1 − x2 − x6 − x7 − x8 − x9.

x8 − x9 3l − x1 − x2 − x3 − x4 − x5 − x6 − x7 − 2x8

x6 − x7 x5 − x6 x4 − x5 x1 − x4 x2 − x1, l − x1 − x2 − x3

2l − x1 − x2 − x4 − x5 − x8 − x9

so(11)(1)sp(0)(1)su(2)(1)

(5.243)

where the fibers in affine surfaces glue to x8 − x9 and 2l − x1 − x2 − x4 − x5 − x8 − x9.

x8 − x9 x7 − x8

3l − x1 − x2 − x3 − x4 − x5 − x6 − 2x7 − x8

2l − x2 − x3 − x6 − x7 − x8 − x9

l − x1 − x2 − x3, x4 − x5 x1 − x4 x2 − x1 x3 − x2

so(9)(1)sp(0)(1)su(3)(1)

(5.244)

where the fibers in affine surfaces glue to x8 − x9 and 2l − x2 − x3 − x6 − x7 − x8 − x9.

x8 − x9

x7 − x8

3l − x1 − x2 − x3 − x4 − x5 − 2x6 − x7 − x8

2l − x2 − x3 − x6 − x7 − x8 − x9

x6 − x7

x1 − x4 x2 − x1 x3 − x2, l − x2 − x3 − x5

so(7)(1)sp(0)(1)su(4)(1)

(5.245)
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where the fibers in affine surfaces glue to x8 − x9 and 2l − x2 − x3 − x6 − x7 − x8 − x9.

x6 − x7 x5 − x6 x4 − x5 x1 − x4 x2 − x1, l − x1 − x2 − x3

2l − x1 − x2 − x4 − x5 − x8 − x9

sp(0)(1) so(11)(1)

(5.246)

where the fiber in affine surface glues to 2l − x1 − x2 − x4 − x5 − x8 − x9.

x8 − x9 3l − x1 − x2 − x3 − x4 − x5 − x6 − x7 − 2x8

l − x7 − x8 − x9 x1 − x4 x2 − x1, x4 − x5 x3 − x2, x5 − x6l − x1 − x2 − x3

su(2)(1)sp(0)(1)f
(1)
4

(5.247)

where the fibers in affine surfaces glue to x8 − x9 and l − x7 − x8 − x9.

x4 − x5 x1 − x4 x2 − x1, l − x1 − x2 − x3

2l − x1 − x2 − x6 − x7 − x8 − x9

x8 − x9 x7 − x8 x6 − x7, l − x3 − x6 − x7, 2l − x1 − x2 − x4 − x5 − x6 − x7

so(7)(1)sp(0)(1)g
(1)
2

(5.248)

– 110 –



J
H
E
P
1
2
(
2
0
2
0
)
1
5
1

where the fibers in affine surfaces glue to x8 − x9 and 2l − x1 − x2 − x6 − x7 − x8 − x9.

x4 − x5

x1 − x4

x2 − x1

3l − x1 − 2x2 − x3 − x4 − x6 − x7 − x8 − x9

x8 − x9 x7 − x8 x6 − x7, l − x3 − x6 − x7, 2l − x1 − x2 − x4 − x5 − x6 − x7

su(4)(1)sp(0)(1)g
(1)
2

(5.249)

where the fibers in affine surfaces glue to x8−x9 and 3l−x1−2x2−x3−x4−x6−x7−x8−x9.

x8 − x9 3l − x1 − x2 − x3 − x4 − x5 − x6 − x7 − 2x8

2l − x2 − x3 − x6 − x7 − x8 − x9

l − x1 − x2 − x3, x4 − x5 x1 − x4 x2 − x1 x3 − x2

so(9)(1)sp(0)(1)su(2)(1)

(5.250)

where the fibers in affine surfaces glue to x8 − x9 and 2l − x2 − x3 − x6 − x7 − x8 − x9.

x8 − x9 x7 − x8

3l − x1 − x2 − x3 − x4 − x5 − x6 − 2x7 − x8

2l − x2 − x3 − x6 − x7 − x8 − x9

x1 − x4 x2 − x1 x3 − x2, l − x2 − x3 − x5

so(7)(1)sp(0)(1)su(3)(1)

(5.251)
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where the fibers in affine surfaces glue to x8 − x9 and 2l − x2 − x3 − x6 − x7 − x8 − x9.

2l − x2 − x3 − x6 − x7 − x8 − x9

l − x1 − x2 − x3, x4 − x5 x1 − x4 x2 − x1 x3 − x2

sp(0)(1) so(9)(1)

(5.252)

where the fiber in affine surface glues to 2l − x2 − x3 − x6 − x7 − x8 − x9.

l − x7 − x8 − x9 x1 − x4 x2 − x1, x4 − x5 x3 − x2, x5 − x6l − x1 − x2 − x3

sp(0)(1) f
(1)
4

(5.253)

where the fiber in affine surface glues to l − x7 − x8 − x9.

x1 − x4 x2 − x1, x4 − x5, l − x1 − x2 − x32l − x1 − x2 − x6 − x7 − x8 − x9

x8 − x9 x7 − x8 x6 − x7, l − x3 − x6 − x7, 2l − x1 − x2 − x4 − x5 − x6 − x7

g
(1)
2sp(0)(1)g

(1)
2

(5.254)

where the fibers in affine surfaces glue to x8 − x9 and 2l − x1 − x2 − x6 − x7 − x8 − x9.

x4 − x5 x1 − x4

3l − 2x1 − x2 − x3 − x4 − x6 − x7 − x8 − x9

x8 − x9 x7 − x8 x6 − x7, l − x3 − x6 − x7, 2l − x1 − x2 − x4 − x5 − x6 − x7

g
(1)
2sp(0)(1)su(3)(1)

(5.255)
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where the fibers in affine surfaces glue to x8−x9 and 3l−2x1−x2−x3−x4−x6−x7−x8−x9.

x8 − x9 3l − x1 − x2 − x3 − x4 − x5 − x6 − x7 − 2x8

2l − x2 − x3 − x6 − x7 − x8 − x9

x1 − x4 x2 − x1 x3 − x2, l − x2 − x3 − x5

su(2)(1)sp(0)(1)so(7)(1)

(5.256)

where the fibers in affine surfaces glue to x8 − x9 and 2l − x2 − x3 − x6 − x7 − x8 − x9.

2l − x2 − x3 − x6 − x7 − x8 − x9

x1 − x4 x2 − x1 x3 − x2, l − x2 − x3 − x5

sp(0)(1) so(7)(1)

(5.257)

where the fiber in affine surface glues to 2l − x2 − x3− x6 − x7 − x8 − x9.

x4 − x5 3l − x1 − x2 − x3 − 2x4 − x6 − x7 − x8 − x9

x8 − x9 x7 − x8 x6 − x7, l − x3 − x6 − x7, 2l − x1 − x2 − x4 − x5 − x6 − x7

g
(1)
2sp(0)(1)su(2)(1)

(5.258)

where the fibers in affine surfaces glue to x8−x9 and 3l−x1−x2−x3−2x4−x6−x7−x8−x9.

x8 − x9 x7 − x8 x6 − x7, l − x3 − x6 − x7, 2l − x1 − x2 − x4 − x5 − x6 − x7

sp(0)(1) g
(1)
2

(5.259)

where the fiber in affine surface glues to x8 − x9.
The above cases do not completely exhaust all the possible non-simply laced subal-

gebras of e8. Some of these subalgebras cannot be thought of as foldings of simply laced
subalgebras of e8. One such example is f4 ⊕ g2. Notice that unfolding f

(1)
4 ⊕ g

(1)
2 leads
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to e
(1)
6 ⊕ so(8)(1), but e6 ⊕ so(8) is not a subalgebra of e8. To obtain the gluing rules for

this example, we find a collection of curves giving rise to g
(1)
2 not intersecting (5.253) and

satisfying (5.236):

l − x7 − x8 − x9 x1 − x4 x2 − x1, x4 − x5 x3 − x2, x5 − x6l − x1 − x2 − x3

x8 − x9 x7 − x8 l − x1 − x4 − x7, l − x2 − x5 − x7, l − x3 − x6 − x7

g
(1)
2sp(0)(1)f

(1)
4

(5.260)

where the fibers in affine surfaces glue to x8 − x9 and l − x7 − x8 − x9. Notice that even
though, by the virtue of (5.236), the total gluing curves see different component gluing
curves equally, the different components do not. For example, even though the gluing curve
x3−x2 has different intersections with the gluing curves l−x2−x5−x7 and l−x1−x4−x7,
the total gluing curve (x3 − x2) + (x5 − x6) equal intersections with the two gluing curves
l − x2 − x5 − x7 and l − x1 − x4 − x7, as required by (5.236). Similar remarks apply to
many of the gluing rules that follow.

To obtain the gluing rules for so(9)⊕so(7), we start from (5.241) and extend the chains
for one of the so(7):

x8 − x9 x7 − x8

2l − x1 − x2 − x4 − x5 − x6 − x7

2l − x1 − x2 − x6 − x7 − x8 − x9

x6 − x7

x4 − x5 x1 − x4 x2 − x1, l − x1 − x2 − x3

x2 − x6, l − x2 − x3 − x6

so(7)(1)sp(0)(1)so(9)(1)

(5.261)

where the fibers in affine surfaces glue to x8 − x9 and 2l − x1 − x2 − x6 − x7 − x8 − x9.
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By folding so(7)(1) we can obtain g
(1)
2 , so folding the above gluing rules we obtain the

following gluing rules

x8 − x9 x7 − x8

2l − x1 − x2 − x4 − x5 − x6 − x7

x6 − x7

2l − x1 − x2 − x6 − x7 − x8 − x9 x1 − x4 x2 − x1, l − x1 − x2 − x3, x4 − x5

x2 − x6, l − x2 − x3 − x6

g
(1)
2sp(0)(1)so(9)(1)

(5.262)

where the fibers in affine surfaces glue to x8 − x9 and 2l − x1 − x2 − x6 − x7 − x8 − x9.

5.4.3 sp(0)(1) gluings: twisted algebras, undirected edges

Now we provide gluing rules for the cases involving twisted gauge algebras and undirected
edges, that is gluing rules of the form

g
(qα)
α sp(0)(1) g

(qγ)
γ (5.263)

Most of these gluing rules can be understood as foldings of gluing rules of the form

g
(1)
α sp(0)(1) g

(1)
γ (5.264)

provided above. The relevant foldings are

so(4n)(1) → su(2n)(2) → su(2n− 1)(2) (5.265)

so(7)(1) → su(4)(2) → su(3)(2) (5.266)

so(2n+ 1)(1) → so(2n)(2) (5.267)

g
(1)
2 → su(3)(2) (5.268)

e
(1)
7 → e

(2)
6 (5.269)

f
(1)
4 → so(8)(3) (5.270)

For example, for so(14)(2), we fold (5.234) to obtain

x8 − x9, x7 − x8 x6 − x7 x5 − x6 x4 − x5 x1 − x4 x2 − x1,
2l − x1 − x2 − x4 l − x1 − x2 − x3
−x5 − x6 − x7

sp(0)(1) so(14)(2)

(5.271)
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where two copies of fibers in affine surface glue to x8−x9, 2l−x1−x2−x4−x5−x6−x7. Let
da be the dual Coxeter labels for so(14)(2) and fa be the fibers in the Hirzebruch surfaces
corresponding to so(14)(2). Then,

2dafa = (x8−x9)+(2l−x1−x2−x4−x5−x6−x7)+2(x7−x8)+2(x6−x7)+2(x5−x6)
+2(x4−x5)+2(x1−x4)+(x2−x1)+(l−x1−x2−x3)

= 3l−
∑

xi (5.272)

Thus, (5.60) holds true in this case. Same holds true for all the following examples in this
subsection, as the reader can verify.

To obtain other so(2n)(2) of lower rank, we add the curves lying in the middle of the
chain in (5.271). Adding x4 − x5 to x1‘− x4, we obtain the gluing rules for so(12)(2):

x8 − x9, x7 − x8 x6 − x7 x5 − x6 x1 − x5 x2 − x1,
2l − x1 − x2 − x4 l − x1 − x2 − x3
−x5 − x6 − x7

sp(0)(1) so(12)(2)

(5.273)

where x8 − x9, 2l − x1 − x2 − x4 − x5 − x6 − x7 glue to fibers in affine surface.
Continuing in this fashion, we obtain

x8 − x9, x7 − x8 x6 − x7 x1 − x6 x2 − x1,
2l − x1 − x2 − x4 − x5 − x6 − x7 l − x1 − x2 − x3

sp(0)(1) so(10)(2)

(5.274)

where x8 − x9, 2l − x1 − x2 − x4 − x5 − x6 − x7 glue to fibers in affine surface.

x8 − x9, x7 − x8 x1 − x7 x2 − x1,
2l − x1 − x2 − x4 − x5 − x6 − x7 l − x1 − x2 − x3

sp(0)(1) so(8)(2)

(5.275)

where x8 − x9, 2l − x1 − x2 − x4 − x5 − x6 − x7 glue to fibers in affine surface.

x8 − x9, x1 − x8 x2 − x1,
2l − x1 − x2 − x4 − x5 − x6 − x7 l − x1 − x2 − x3

sp(0)(1) su(4)(2)

(5.276)

where x8 − x9, 2l − x1 − x2 − x4 − x5 − x6 − x7 glue to fibers in affine surface.
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By folding (5.192), we obtain the following two gluing rules

x8 − x9, x7 − x8, x6 − x7, x5 − x6

2l − x1 − x2 − x4 − x5 − x6 − x7, l − x1 − x2 − x3

x4 − x5x1 − x4x2 − x1

sp(0)(1)
0 su(8)(2)

(5.277)

where x8 − x9, x2 − x1 glue to fibers in the affine surface.

x8 − x9, x7 − x8, x6 − x7, x5 − x6

2l − x1 − x2 − x4 − x5 − x6 − x7, x2 − x1

x4 − x5x1 − x4l − x1 − x2 − x3

sp(0)(1)
π su(8)(2)

(5.278)

where x8 − x9, l − x1 − x2 − x3 glue to fibers in the affine surface.
Combining x6 − x7, x5 − x6 and x4 − x5 in (5.277), we obtain the gluing rules for

su(6)(2):

x8 − x9, x7 − x8, x4 − x7

2l − x1 − x2 − x4 − x5 − x6 − x7, l − x1 − x2 − x3

x1 − x4x2 − x1

sp(0)(1) su(6)(2)

(5.279)

where x8 − x9, x2 − x1 glue to fibers in the affine surface.
Folding (5.277), we obtain

x8 − x9, x7 − x8, x6 − x7, x5 − x6
x4 − x5x1 − x4x2 − x1,

l − x1 − x2 − x3,
2l − x1 − x2 − x4 − x5 − x6 − x7

sp(0)(1) su(7)(2)

(5.280)

where x8 − x9, x2 − x1, l − x1 − x2 − x3 and2l − x1 − x2 − x4 − x5 − x6 − x7 glue to four
copies of fiber in the affine surface.
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By adding the curves in the previous configuration, we obtain the following two:

x8 − x9, x7 − x8, x4 − x7
x1 − x4x2 − x1,

l − x1 − x2 − x3,
2l − x1 − x2 − x4 − x5 − x6 − x7

sp(0)(1) su(5)(2)

(5.281)

where x8 − x9, x2 − x1, l − x1 − x2 − x3 and 2l − x1 − x2 − x4 − x5 − x6 − x7 glue to four
copies of fiber in the affine surface.

x8 − x9, x1 − x8
x2 − x1,

l − x1 − x2 − x3,
2l − x1 − x2 − x4 − x5 − x6 − x7

sp(0)(1) su(3)(2)

(5.282)

where x8 − x9, x2 − x1, l − x1 − x2 − x3 and 2l − x1 − x2 − x4 − x5 − x6 − x7 glue to four
copies of fiber in the affine surface.

Folding (5.253), we obtain

x1 − x4 x2 − x1, x3 − x2,

sp(0)(1) so(8)(3)

x4 − x5,

l − x1 − x2 − x3

x5 − x6,

l − x7 − x8 − x9 (5.283)

where x3−x2, x5−x6 and l−x7−x8−x9 glue to three copies of fiber in the affine surface.
By folding (5.190) and (5.187) we obtain:

x6 − x7, x5 − x6, x4 − x5, x1 − x4 l − x1 − x2 − x3
x2 − x1x3 − x2l − x3 − x8 − x9

sp(0)(1) e
(2)
6

(5.284)
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where l − x3 − x8 − x9 and x6 − x7 glue to two copies of fiber in the affine surface.

x6 − x7, x5 − x6, x4 − x5, x1 − x4 l − x1 − x2 − x3
x2 − x1x3 − x2l − x3 − x8 − x9

x8 − x9 3l − x1 − x2 − x3 − x4 − x5 − x6 − x7 − 2x8

su(2)(1)sp(0)(1)e
(2)
6

(5.285)

where x8−x9, l−x3−x8−x9 and x6−x7 glue to fibers inside corresponding affine surfaces.
In a similar fashion, by folding other configurations and sometimes adding some of the

curves in them, we can obtain the following configurations:

x3 − x2, x2 − x1 x1 − x4 x4 − x5,
2l − x2 − x3 − x6 − x7 − x8 − x9 l − x1 − x2 − x3

x8 − x9

x7 − x8

3l − x1 − x2 − x3 − x4 − x5 − 2x6 − x7 − x8

x6 − x7

su(4)(1)sp(0)(1)so(8)(2)

(5.286)

where x8−x9, 2l−x2−x3−x6−x7−x8−x9 and x3−x2 glue to fibers inside corresponding
affine surfaces.

x3 − x2, x2 − x1 x1 − x4 x4 − x5,
2l − x2 − x3 − x6 − x7 − x8 − x9 l − x1 − x2 − x3

x8 − x9

3l − x1 − x2 − x3 − x4 − x5 − 2x6 − x7 − x8

x6 − x8

su(3)(1)sp(0)(1)so(8)(2)

(5.287)

where x8−x9, 2l−x2−x3−x6−x7−x8−x9 and x3−x2 glue to fibers inside corresponding
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affine surfaces.

x8 − x9 x7 − x8

2l − x1 − x2 − x4 − x5 − x6 − x7

2l − x1 − x2 − x6 − x7 − x8 − x9, l − x1 − x2 − x3

x6 − x7

x1 − x4 x2 − x1, x4 − x5

l − x3 − x6 − x7

su(4)(2)sp(0)(1)so(8)(1)

(5.288)

where x8 − x9, 2l − x1 − x2 − x6 − x7 − x8 − x9 and l − x1 − x2 − x3 glue to fibers inside
corresponding affine surfaces.

x8 − x9 x7 − x8

2l − x1 − x2 − x4 − x5 − x6 − x7

x6 − x7

l − x3 − x6 − x7

x4 − x5, x1 − x4
x2 − x1,

l − x1 − x2 − x3,
2l − x1 − x2 − x6 − x7 − x8 − x9

su(3)(2)sp(0)(1)so(8)(1)

(5.289)

where x8 − x9, 2l− x1 − x2 − x6 − x7 − x8 − x9, x2 − x1, x4 − x5 and l− x1 − x2 − x3 glue
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to fibers inside corresponding affine surfaces.

x8 − x9 x7 − x8

2l − x1 − x2 − x4 − x5 − x6 − x7

2l − x1 − x2 − x6 − x7 − x8 − x9, l − x1 − x2 − x3

x6 − x7, l − x3 − x6 − x7

x1 − x4 x2 − x1, x4 − x5

su(4)(2)sp(0)(1)so(7)(1)

(5.290)

where x8 − x9, 2l − x1 − x2 − x6 − x7 − x8 − x9 and l − x1 − x2 − x3 glue to fibers inside
corresponding affine surfaces.

x8 − x9 x7 − x8

2l − x1 − x2 − x4 − x5 − x6 − x7

x6 − x7, l − x3 − x6 − x7

x4 − x5, x1 − x4
x2 − x1,

l − x1 − x2 − x3,
2l − x1 − x2 − x6 − x7 − x8 − x9

su(3)(2)sp(0)(1)so(7)(1)

(5.291)

where x8 − x9, 2l− x1 − x2 − x6 − x7 − x8 − x9, x2 − x1, x4 − x5 and l− x1 − x2 − x3 glue
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to fibers inside corresponding affine surfaces.

x8 − x9 x7 − x8 x6 − x7, l − x3 − x6 − x7, 2l − x1 − x2 − x4 − x5 − x6 − x7

x1 − x4 x2 − x1, x4 − x5

2l − x1 − x2 − x6 − x7 − x8 − x9, l − x1 − x2 − x3

su(4)(2)sp(0)(1)g
(1)
2

(5.292)

where x8 − x9, 2l − x1 − x2 − x6 − x7 − x8 − x9 and l − x1 − x2 − x3 glue to fibers inside
corresponding affine surfaces.

x8 − x9 x7 − x8 x6 − x7, l − x3 − x6 − x7, 2l − x1 − x2 − x4 − x5 − x6 − x7

x4 − x5, x1 − x4
x2 − x1,

l − x1 − x2 − x3,
2l − x1 − x2 − x6 − x7 − x8 − x9

su(3)(2)sp(0)(1)g
(1)
2

(5.293)

where x8 − x9, 2l− x1 − x2 − x6 − x7 − x8 − x9, x2 − x1, x4 − x5 and l− x1 − x2 − x3 glue
to fibers inside corresponding affine surfaces.

x6 − x7, x5 − x6 x4 − x5 x1 − x4 x2 − x1,
2l − x1 − x2 − x4 − x5 − x8 − x9 l − x1 − x2 − x3

3l − x1 − x2 − x3 − x4 − x5 − x6 − x7 − 2x8 x8 − x9

su(2)(1)sp(0)(1)so(10)(2)

(5.294)

where x8−x9 and 2l−x1−x2−x4−x5−x8−x9, x6−x7 glue to fibers inside corresponding
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affine surfaces.

x6 − x7, x5 − x6 x1 − x5 x2 − x1,
2l − x1 − x2 − x4 − x5 − x8 − x9 l − x1 − x2 − x3

3l − x1 − x2 − x3 − x4 − x5 − x6 − x7 − 2x8 x8 − x9

su(2)(1)sp(0)(1)so(8)(2)

(5.295)

where x8−x9, 2l−x1−x2−x4−x5−x6−x7 and x5−x9 glue to fibers inside corresponding
affine surfaces.

x8 − x9, x7 − x8 x6 − x7 x2 − x6,
2l − x1 − x2 − x4 − x5 − x6 − x7 l − x2 − x3 − x6

x4 − x5 x1 − x4

2l − x1 − x2 − x6 − x7 − x8 − x9

x2 − x1, l − x1 − x2 − x3

so(7)(1)sp(0)(1)so(8)(2)

(5.296)

where x8 − x9, 2l − x1 − x2 − x4 − x5 − x6 − x7 and 2l − x1 − x2 − x6 − x7 − x8 − x9 glue
to fibers inside corresponding affine surfaces.

x8 − x9, x7 − x8 x6 − x7 x2 − x6,
2l − x1 − x2 − x4 − x5 − x6 − x7 l − x2 − x3 − x6

2l − x1 − x2 − x6 − x7 − x8 − x9 x1 − x4 x4 − x5, l − x1 − x2 − x3, x2 − x1

g
(1)
2sp(0)(1)so(8)(2)

(5.297)

where x8 − x9, 2l − x1 − x2 − x4 − x5 − x6 − x7 and 2l − x1 − x2 − x6 − x7 − x8 − x9 glue
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to fibers inside corresponding affine surfaces.

x8 − x9, x7 − x8 x6 − x7 x2 − x6,
2l − x1 − x2 − x4 − x5 − x6 − x7 l − x2 − x3 − x6

x4 − x5, x1 − x4 x2 − x1, l − x1 − x2 − x3

su(4)(2)sp(0)(1)so(8)(2)

2l − x1 − x2 − x6 − x7 − x8 − x9 (5.298)

where x8−x9, 2l−x1−x2−x4−x5−x6−x7, x4−x5 and 2l−x1−x2−x6−x7−x8−x9
glue to fibers inside corresponding affine surfaces.

x8 − x9, x7 − x8 x6 − x7 x2 − x6,
2l − x1 − x2 − x4 − x5 − x6 − x7 l − x2 − x3 − x6

x4 − x5, x1 − x4
x2 − x1,

l − x1 − x2 − x3,
2l − x1 − x2 − x6 − x7 − x8 − x9

su(3)(2)sp(0)(1)so(8)(2)

(5.299)

where 2l − x1 − x2 − x4 − x5 − x6 − x7, x8 − x9, x4 − x5, x2 − x1, l − x1 − x2 − x3 and
2l − x1 − x2 − x6 − x7 − x8 − x9 glue to fibers inside corresponding affine surfaces.

x8 − x9, x6 − x8 x2 − x6,
2l − x1 − x2 − x4 − x5 − x6 − x7 l − x2 − x3 − x6

x4 − x5, x1 − x4
x2 − x1,

l − x1 − x2 − x3,
2l − x1 − x2 − x6 − x7 − x8 − x9

su(3)(2)sp(0)(1)su(4)(2)

(5.300)

where 2l − x1 − x2 − x4 − x5 − x6 − x7, x8 − x9, x4 − x5, x2 − x1, l − x1 − x2 − x3 and
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2l − x1 − x2 − x6 − x7 − x8 − x9 glue to fibers inside corresponding affine surfaces.

x4 − x5, x1 − x4
x2 − x1,

l − x1 − x2 − x3,
2l − x1 − x2 − x6 − x7 − x8 − x9

x8 − x9, x6 − x8
x2 − x6,

l − x2 − x3 − x6,
2l − x1 − x2 − x4 − x5 − x6 − x7

su(3)(2)sp(0)(1)su(3)(2)

(5.301)

where 2l− x1− x2− x4− x5− x6− x7, x8− x9, x2− x6, l− x2− x3− x6, x4− x5, x2− x1,
l − x1 − x2 − x3 and 2l − x1 − x2 − x6 − x7 − x8 − x9 glue to fibers inside corresponding
affine surfaces.

l − x7 − x8 − x9 x1 − x4 x2 − x1, x4 − x5 x3 − x2, x5 − x6l − x1 − x2 − x3

x8 − x9, x7 − x8
l − x1 − x4 − x7,
l − x2 − x5 − x7,
l − x3 − x6 − x7

su(3)(2)sp(0)(1)f
(1)
4

(5.302)

where x8− x9, l− x1− x4− x7, l− x2− x5− x7, l− x3− x6− x7 and l− x7− x8− x9 glue
to fibers inside corresponding affine surfaces.

x1 − x4 x2 − x1, x3 − x2,

x4 − x5,

l − x1 − x2 − x3

x5 − x6,

l − x7 − x8 − x9

x8 − x9, x7 − x8
l − x1 − x4 − x7,
l − x2 − x5 − x7,
l − x3 − x6 − x7

su(3)(2)sp(0)(1)so(8)(3)

(5.303)
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where x8 − x9, l − x1 − x4 − x7, l − x2 − x5 − x7, l − x3 − x6 − x7, x3 − x2, x5 − x6, and
l − x7 − x8 − x9 glue to fibers inside corresponding affine surfaces.

x1 − x4 x2 − x1, x3 − x2,

x4 − x5,

l − x1 − x2 − x3

x5 − x6,

l − x7 − x8 − x9

x8 − x9 x7 − x8

3l − x1 − x2 − x3 − x4 − x5 − x6 − 2x7 − x8

su(3)(1)sp(0)(1)so(8)(3)

(5.304)

where x8 − x9, x3 − x2, x5 − x6, and l − x7 − x8 − x9 glue to fibers inside corresponding
affine surfaces.

x1 − x4 x2 − x1, x3 − x2,

x4 − x5,

l − x1 − x2 − x3

x5 − x6,

l − x7 − x8 − x9

x8 − x9 3l − x1 − x2 − x3 − x4 − x5 − x6 − x7 − 2x8

su(2)(1)sp(0)(1)so(8)(3)

(5.305)

where x8 − x9, x3 − x2, x5 − x6, and l − x7 − x8 − x9 glue to fibers inside corresponding
affine surfaces.

x8 − x9 x7 − x8

3l − x1 − x2 − x3 − x4 − x5 − x6 − 2x7 − x8

x1 − x4, x2 − x1 x3 − x2,

su(4)(2)sp(0)(1)su(3)(1)

l − x2 − x3 − x5 2l − x2 − x3 − x6 − x7 − x8 − x9

(5.306)
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where x8−x9, x3−x2 and 2l−x2−x3−x6−x7−x8−x9 glue to fibers inside corresponding
affine surfaces.

x8 − x9 x6 − x7

3l − x1 − x2 − x3 − x4 − x5 − 2x6 − x7 − x8

x7 − x8

x1 − x4, x2 − x1
x3 − x2,

l − x2 − x3 − x5,
2l − x2 − x3 − x6 − x7 − x8 − x9

su(3)(2)sp(0)(1)su(4)(1)

(5.307)
where x8 − x9, x3 − x2, x1 − x4, l− x2 − x3 − x5 and 2l− x2 − x3 − x6 − x7 − x8 − x9 glue
to fibers inside corresponding affine surfaces.

x8 − x9 x7 − x8

3l − x1 − x2 − x3 − x4 − x5 − x6 − 2x7 − x8

x1 − x4, x2 − x1
x3 − x2,

l − x2 − x3 − x5,
2l − x2 − x3 − x6 − x7 − x8 − x9

su(3)(2)sp(0)(1)su(3)(1)

(5.308)

where x8 − x9, x3 − x2, x1 − x4, l− x2 − x3 − x5 and 2l− x2 − x3 − x6 − x7 − x8 − x9 glue
to fibers inside corresponding affine surfaces.

x8 − x9 x7 − x8

2l − x1 − x2 − x4 − x5 − x6 − x7

x6 − x7 x2 − x6, l − x2 − x3 − x6

x4 − x5, x1 − x4 x2 − x1, l − x1 − x2 − x3

2l − x1 − x2 − x6 − x7 − x8 − x9

su(4)(2)sp(0)(1)so(9)(1)

(5.309)
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where x8−x9, x4−x5 and 2l−x1−x2−x6−x7−x8−x9 glue to fibers inside corresponding
affine surfaces.

x8 − x9 x7 − x8

2l − x1 − x2 − x4 − x5 − x6 − x7

x6 − x7 x2 − x6, l − x2 − x3 − x6

x2 − x1, x1 − x4
x4 − x5,

l − x1 − x2 − x3,
2l − x1 − x2 − x6 − x7 − x8 − x9

su(3)(2)sp(0)(1)so(9)(1)

(5.310)

where x8 − x9, x2 − x1, x4 − x5, l− x1 − x2 − x3 and 2l− x1 − x2 − x6 − x7 − x8 − x9 glue
to fibers inside corresponding affine surfaces.

Now, we are left with some possibilities that do not arise as foldings. For example, the
unfolding of e(2)

6 ⊕ su(3)(1) is e(1)
7 ⊕ su(3)(1) which cannot be embedded into e

(1)
8 . To obtain

the gluing rules for this case, we notice that folding of (5.190) has zero mutual intersection
with (5.196).

x6 − x7, x5 − x6, x4 − x5, x1 − x4

l − x1 − x2 − x3

x2 − x1x3 − x2l − x3 − x8 − x9

x8 − x9, x7 − x8
x6 − x7,

l − x3 − x6 − x7,
2l − x1 − x2 − x4 − x5 − x6 − x7

su(3)(2)sp(0)(1)e
(2)
6

(5.311)

where x8 − x9, x6 − x7, l − x3 − x6 − x7, 2l − x1 − x2 − x4 − x5 − x6 − x7, x6 − x7 and
l − x7 − x8 − x9 glue to fibers inside corresponding affine surfaces.
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In a similar fashion, by folding, adding curves or by guessing a correct configuration
of curves, we can obtain all the other following gluing rules:

x8 − x9, x7 − x8, x6 − x7, x5 − x6, x4 − x5
x2 − x3x1 − x2l − x1 − x4 − x5,

l − x1 − x3 − x6,
l − x1 − x2 − x7

sp(0)(1) su(9)(2)

x3 − x4

(5.312)

where x8 − x9, l− x1 − x4 − x5, l− x1 − x3 − x6 and l− x1 − x2 − x7 glue to four copies of
fiber in the affine surface.

x5 − x2, x2 − x1 x1 − x4 x4 − x5,
l − x2 − x3 − x5 2l − x1 − x2 − x6 − x7 − x8 − x9

x5 − x6, x6 − x7 x7 − x8 x8 − x9,
l − x3 − x5 − x6 2l − x1 − x2 − x4 − x5 − x6 − x7

so(8)(2)sp(0)(1)so(8)(2)

(5.313)

where x8−x9, 2l−x1−x2−x4−x5−x6−x7, x4−x5 and 2l−x1−x2−x6−x7−x8−x9
glue to fibers inside corresponding affine surfaces.

x4 − x5, x1 − x4 x2 − x1 x7 − x2 x5 − x7,
2l − x1 − x2 − x6 − x7 − x8 − x9 l − x3 − x5 − x7

x8 − x9, x6 − x8 x5 − x6,
2l − x1 − x2 − x4 − x5 − x6 − x7 l − x3 − x5 − x6

su(4)(2)sp(0)(1)so(10)(2)

(5.314)

where x8−x9, 2l−x1−x2−x4−x5−x6−x7, x4−x5 and 2l−x1−x2−x6−x7−x8−x9
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glue to fibers inside corresponding affine surfaces.

x4 − x5, x1 − x4 x2 − x1 x7 − x2 x5 − x7,
2l − x1 − x2 − x6 − x7 − x8 − x9 l − x3 − x5 − x7

x8 − x9, x6 − x8
x5 − x6,

l − x3 − x5 − x6,
2l − x1 − x2 − x4 − x5 − x6 − x7

su(3)(2)sp(0)(1)so(10)(2)

(5.315)

where x8 − x9, x5 − x6, l − x3 − x5 − x6, 2l − x1 − x2 − x4 − x5 − x6 − x7, x4 − x5 and
2l − x1 − x2 − x6 − x7 − x8 − x9 glue to fibers inside corresponding affine surfaces.

l − x1 − x2 − x4, x4 − x5, x5 − x9,
l − x2 − x3 − x6 l − x2 − x7 − x8

x1 − x4

x8 − x9, x7 − x8
l − x1 − x4 − x7,
l − x2 − x5 − x7,
l − x3 − x6 − x7

su(3)(2)sp(0)(1)su(6)(2)

x2 − x1

(5.316)

where x8−x9, l−x1−x4−x7, l−x2−x5−x7, l−x3−x6−x7, x5−x9 and l−x2−x7−x8
glue to fibers inside corresponding affine surfaces.

l − x1 − x2 − x4, x4 − x5,

x5 − x9

l − x2 − x3 − x6,

l − x2 − x7 − x8,

x1 − x4

x8 − x9, x7 − x8
l − x1 − x4 − x7,
l − x2 − x5 − x7,
l − x3 − x6 − x7

su(3)(2)sp(0)(1)su(5)(2)

x2 − x1

(5.317)
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where x8− x9, l− x1− x4− x7, l− x2− x5− x7, l− x3− x6− x7, x5− x9, l− x2− x3− x6,
l − x1 − x2 − x4 and l − x2 − x7 − x8 glue to fibers inside corresponding affine surfaces.

l − x1 − x2 − x3 x1 − x4, x4 − x7,

x2 − x5,

x3 − x6

x5 − x8,

x6 − x9

l − x1 − x4 − x7 x1 − x2, x2 − x3,

x4 − x5,

x7 − x8

x5 − x6,

x8 − x9

so(8)(3)sp(0)(1)so(8)(3)

(5.318)

where x8−x9, x5−x6, x2−x3, x6−x9, x5−x8 and x4−x7 glue to fibers inside corresponding
affine surfaces.

5.4.4 sp(0)(1) gluings: directed edges

Finally we consider cases in which one or both the neighbors of sp(0)(1) are connected to
it via directed edges. Our main constraint comes from (5.60) which states that the torus
fibers must be glued appropriately. Let us define C0,α be a −2 curve in dP9 which glues
to the affine surface for g

(qα)
α in the gluing rule associated to an undirected edge, that is

gluing rule for
sp(0)(1) g

(qα)
α (5.319)

If qα = 1, then there is a unique C0,α. If qα > 1, then there can be multiple such −2 curves.
In this case, we pick the curve containing the blowup x9 as C0,α. This uniquely fixes the
−2 curve C0,α. The reason for the prominence of the blowup x9 in this definition is that
the KK mass 1

R enters into the volume of x9, and the volume of any other curve in dP9
that does not involve x9 is independent of 1

R . We refer the reader to [4] for more details.
To obtain the gluing rules for

g
(qα)
α sp(0)(1) g

(qγ)
γ

eγ
(5.320)

we start from the gluing rules for

g
(qα)
α sp(0)(1) g

(qγ)
γ (5.321)

and simply replace the curve C0,γ in dP9 by the curve C0,γ + eγ (3l −
∑
xi). Similarly, to

obtain the gluing rules for

g
(qα)
α sp(0)(1) g

(qγ)
γ

eγeα
(5.322)
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we start from the gluing rules for

g
(qα)
α sp(0)(1) g

(qγ)
γ (5.323)

and simply replace the curves C0,γ and C0,α in dP9 by the curves C0,γ + eγ (3l −
∑
xi) and

C0,α + eα (3l −
∑
xi) respectively. It is trivial to see that this replacement satisfies (5.60).

Now we only need to consider gluing rules of the form

sp(0)(1) g
(qγ)
γ

eγ
(5.324)

since in the context of 6d SCFTs, it is not possible for any other node to attach to sp(0)(1)

in (5.324).
We first work out the following gluing rules by hand:

x8 − x9, x7 − x8,

2l − x1 − x2 − x4 − x5 − x6 − x7

x4 − x5,

x4 − x6,

sp(0)(1) so(8)(1)2

x2 − x1 x1 − x4

x5 − x7

x6 − x7

l − x1 − x2 − x3,

(5.325)

where x8−x9, x2−x1 glue to two copies of fiber in the affine surface. Indeed we can check
that twice the torus fiber for so(8)(1) is glued to 3l −

∑
xi.

By folding the above gluing rules, we obtain:

x4 − x6, x7 − x8,

2l − x1 − x2 − x4 − x5 − x6 − x7

x4 − x5,

x2 − x1,

sp(0)(1) so(7)(1)2

x5 − x7 x1 − x4

x8 − x9

x6 − x7,

l − x1 − x2 − x3,

(5.326)

where x8 − x9, x2 − x1, x6 − x7, x4 − x5 glue to four copies of fiber in the affine surface.

– 132 –



J
H
E
P
1
2
(
2
0
2
0
)
1
5
1

Treating su(3)(1) as a subalgebra of so(7)(1), we can obtain the following gluing rules

x7 − x8,

2l − x1 − x2 − x4 − x5 − x6 − x7

x2 − x7,

sp(0)(1) su(3)(1)2

x1 − x4 x4 − x9

l − x1 − x2 − x3,

(5.327)

where x4 − x9, x2 − x7 glue to two copies of fiber in the affine surface.
Finally, folding (5.326), we obtain

x4 − x6,

x7 − x8,

2l − x1 − x2 − x4 − x5 − x6 − x7

x4 − x5,

x2 − x1,

sp(0)(1) su(3)(2)2

x5 − x7

x1 − x4

x8 − x9,

x6 − x7,

l − x1 − x2 − x3,

(5.328)

where x8 − x9, x2 − x1, x6 − x7, x4 − x5, x4 − x6, x5 − x7, l− x1 − x2 − x3, 2l− x1 − x2 −
x4 − x5 − x6 − x7 glue to eight copies of fiber in the affine surface.

6 Conclusions and future directions

In this paper, we have associated a genus-one fibered Calabi-Yau threefold to every 5d
KK theory, except a few cases for which we provide an algebraic description mimicking
the properties of genus-one fibered Calabi-Yau threefolds. Compactifying M-theory on the
threefold constructs the KK theory on its Coulomb branch. The threefold is presented as
a local neighborhood of a collection of surfaces intersecting with each other. We explicitly
identify all the surfaces and their intersections for every KK theory. Such a description of
the threefold allows an easy determination of the set of all compact holomorphic curves
(known as the Mori cone) inside the threefold along with their intersection numbers with
other cycles in the threefold. The Mori cone encodes crucial non-perturbative data needed
to perform RG flows on the KK theory which lead to 5d SCFTs. For the cases without a
completely geometric description we propose an analog of Mori cone using which one can
perform RG flows on these outlying KK theories as well.

According to a conjecture (see [2–4]) for which substantial evidence was provided
in [2], all the 5d SCFTs sit at the end points of such RG flows emanating from 5d KK
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theories. Thus, this work can be viewed as providing a preliminary step towards an explicit
classification of 5d SCFTs. In principle, the Coulomb branch data of all 5d SCFTs is
encoded in the properties of Calabi-Yau threefolds presented in this paper (see section 5).
Explicitly, such RG flows are performed by performing sequences of flops and blowdowns on
the Calabi-Yau threefolds associated to 5d KK theories. See [2–4] for a general discussion
and [10] for the explicit classification of 5d SCFTs up to rank three using the results of this
paper. Extending the classification to higher ranks, perhaps using a computer program,
would be of significant interest.

The Calabi-Yau threefold associated to a 5d KK theory is determined by combining the
data of the prepotential of the KK theory with certain geometric consistency conditions.
We provide a concrete proposal for the computation of this prepotential based on the
definition of the 5d KK theory in terms of a 6d SCFT on a circle and twisted by a discrete
global symmetry around the circle. See section 4 for more details.

Along the way, we provide a graphical classification scheme for 5d KK theories which
mimics the graphical classification scheme used to classify 6d SCFTs. In fact the graphs
associated to 5d KK theories generalize the graphs associated to 6d SCFTs just as Dynkin
graphs associated to general Lie algebras generalize the Dynkin graphs associated to simply
laced Lie algebras. We provide a full list of all the possible vertices and edges that can
appear in graphs associated to 5d KK theories. See section 3 for more details. We leave
an explicit classification of 5d KK theories to a future work. Such a classification can be
performed in a straightforward fashion starting from the explicit classification of 6d SCFTs
presented in [33, 36] and applying the folding operations discussed in section 3.

A noteworthy point deserving a special mention is that our work applies uniformly to
all 6d SCFTs irrespective of whether they are constructed in the frozen phase of F-theory
or in the unfrozen phase of F-theory. In other words, the dictionary relating M-theory and
5d KK theories applies uniformly to all 5d KK theories irrespective of the F-theory origin
of the associated 6d SCFT. This is in stark contrast with the case of 6d SCFTs for which
the dictionary relating F-theory and the resulting 6d theory is modified depending on the
presence (called the frozen phase) or absence (called the unfrozen phase) of O7+ planes in
the base of the elliptic Calabi-Yau threefold used for compactification of F-theory. See [32]
for more details.

In the future, it will be interesting to use the geometries presented in this paper
to derive 5d gauge theory descriptions associated to 6d SCFTs compactified on a circle
(possibly with a twist). This can be done by performing local S-dualities on the geometries
associated to 5d KK theories. See the recent work [54] for more details on the methodology.
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A Geometric background

In this section, we recall some background useful for this paper. We refer the reader to
section 2 of [4] for a more detailed background on various points discussed below in this
appendix.

A.1 Hirzebruch surfaces

A Hirzebruch surface is a P1 fibration over P1. We denote a Hirzebruch surface with a
degree −n fibration as Fn. We refer to the fiber P1 as f and the base P1 as e. Their
intersection numbers are

e2 = −n (A.1)
f2 = 0 (A.2)

e · f = 1 (A.3)

Another very important curve in Fn is

h := e+ nf (A.4)

whose genus is zero and intersection numbers are

h2 = n (A.5)
h · e = 0 (A.6)
h · f = 1 (A.7)

Note that e = h for F0. The set of holomorphic curves, often referred to as Mori cone, for
Fn with n ≥ 0 is generated by e and f . For Fn with n ≤ 0, the Mori cone is generated by
h and f .

The canonical class K of Fn is an antiholomorphic curve which can be determined by
the virtue of adjunction formula which states that for a surface S and a curve C inside S,
the canonical class KS of S satisfies

(KS + C) · C = 2g(C)− 2 (A.8)

where g(C) is the genus of C. Demanding that K satisfies (A.8) for e, f determines it to be

K = −(e+ h+ 2f) (A.9)
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from which we can compute that
K2 = 8 (A.10)

Notice that Fn and F−n are isomorphic to each other via the map

e↔ h (A.11)
f ↔ f (A.12)
h↔ e (A.13)

Thus, we will restrict our attention to Hirzebruch surfaces with n ≥ 0 in what follows.
However, at various points in the main body of the paper we find it useful to include
Hirzebruch surfaces with negative degrees since they allow us to express answers in a more
uniform way.

We also deal with surfaces which arise by performing b number of blowups on Fn.
The blowups will often be non-generic. We can obtain different surfaces by performing b
blowups in different fashions on Fn. In this paper, we refer to all the different surfaces
arising via b blowups of Fn as Fbn. The curves inside Fbn can be described by adding the
curves xi with i = 1, · · · , b which are the exceptional divisors created by the blowups. We
will use the convention that the total transforms21 of the curves e, f and h are denoted by
the same names e, f and h in Fbn. Thus, the intersection numbers between e, f and h are
those mentioned above, and their intersections with xi are

xi · xj = −δij (A.14)
e · xi = 0 (A.15)
f · xi = 0 (A.16)
h · xi = 0 (A.17)

The blowup procedure creates curves that can be written as

αe+ βf −
∑

γixi (A.18)

with α, β, γi ≥ 0. The important point is that the blowups xi can appear with negative
sign.

Again, using the adjunction formula (A.8) we can find the canonical classK for Fbn to be

K = −(e+ h+ 2f) +
∑

xi (A.19)

from which we compute
K2 = 8− b (A.20)

An important isomorphism exists between F1
0 and F1

1 with the blowup on both surfaces
being performed at a generic point. In fact, a single blowup of F0 is always generic. The

21If B : S̃ → S is a blowup of a surface S, then the total transform of a curve C in S is the curve B−1(C)
in S̃.
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map from F1
1 to F1

0 is

e→ e− x (A.21)
f − x→ x (A.22)

x→ f − x (A.23)

It is easy to see that the above isomorphism only works when the blowups are generic. For,
the non-generic one point blowup of F1 contains the curve e − x, which would be sent to
e − f inside F1

0. But e − f is not a holomorphic curve in F1
0. The above isomorphism is

responsible for the equivalence of geometries corresponding to

1
sp(n)(1)

(n+1)π
(A.24)

and

1
sp(n)(1)

nπ

(A.25)
whenever the theta angle is physically irrelevant. In the situations where theta angle
is physically relevant, the above isomorphism is broken by the presence of neighboring
surfaces.

To differentiate between the different surfaces Fbn for fixed n and b, we have to track the
data of their Mori cone. One important point is that the gluing curves inside the surfaces
must be the generators of Mori cone. In the paper, we find many instances in which a surface
Fbn appearing in different contexts carries different kinds of gluing curves, thus demonstrat-
ing that the two Fbn are different surfaces. For example, the geometry with ν = 0 for

2
su(n+ 4)(1)

(A.26)

and the geometry with ν = 0 for

1
sp(n)(1)

(n+1)π
(A.27)

both contain a surface F2n+8
0 with different gluing curves e −

∑
xi and 2e + f −

∑
xi

respectively. Thus the F2n+8
0 appearing in the two theories are different blowups of F0.

The final point we want to address is that F2 and F0 are same up to decoupled states.
This can be seen by noticing that the Mori cone of latter embeds into the Mori cone of
former. This embedding F0 → F2 is

e→ e+ f (A.28)
f → f (A.29)

This means that F2 equals F0 plus some decoupled states. Decoupling these states corre-
sponds to performing a complex structure deformation F2 → F0. When F0 and F2 carry
blowups, this conclusion might be changed or unchanged depending on how the blowups
are done. See the discussion after (B.17) for an example where this conclusion still holds
true even in the presence of blowups.
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A.2 Del Pezzo surfaces

The discussion of del Pezzo surfaces starts with the discussion of complex projective plane
P2 which contains a single curve l whose genus is zero and intersection number is

l2 = 1 (A.30)

(A.8) determines the canonical class to be

K = −3l (A.31)

from which we compute
K2 = 9 (A.32)

Performing n blowups on P2 at generic locations leads to the del Pezzo surface dPn.
It can be described in terms of curve l and xi with intersection numbers

xi · xj = −δij (A.33)
l · xi = 0 (A.34)

Again, the blowups create new holomorphic curves which can be written as

αl −
∑

γixi (A.35)

with α, γi ≥ 0. In the paper, we abuse the notation and call a non-generic n point blowup
of P2 as dPn too. The canonical class for dPn is

K = −3l +
∑

xi (A.36)

with
K2 = 9− n (A.37)

del Pezzo surfaces and Hirzebruch surfaces are related to each other by virtue of an iso-
morphism dP1 → F1 which acts as

x→ e (A.38)
l − x→ f (A.39)

l→ h (A.40)

A one point blowup of P2 is always generic and thus there is a unique dP1 which appears
in the above isomorphism.

A special example of del Pezzo surfaces for us in this paper will be dP9 which is the
geometry associated to

1
sp(0)(1)

(A.41)

The curve
F = 3l −

∑
xi (A.42)
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has the properties that
F 2 = 0 (A.43)

and
K · F = 0 (A.44)

Thus, F is a fiber of genus one, or in other words a torus fiber inside dP9.
dPn for n ≥ 3 admits the following basic automorphism. We first choose three distinct

blowups xi, xj and xk, and then implement

xi → l − xj − xk (A.45)
xj → l − xi − xk (A.46)
xk → l − xi − xj (A.47)
l→ 2l − xi − xj − xk (A.48)

Combining this automorphism with permutations of blowups, we can obtain more general
automorphisms of dPn (with n ≥ 3) which can be decomposed as a sequence comprising of
above mentioned basic automorphisms and permutations of blowups. Notice that for dP9,
any such automorphism leaves the torus fiber (A.42) invariant.

A.3 Arithmetic genus for curves in a self-glued surface

When a surface has no self-gluings, then the arithmetic genus22 of curves living inside the
surface can be computed using the adjunction formula (A.8).

However, when the surface has self-gluings, the genus of the curve is modified. For
example, consider gluing the exceptional curves x and y in a generic two point blowup of
F1. The curve h− x− y (which is a rational curve before gluing) looks like an elliptic fiber
with nodal singularity after the gluing, so its arithmetic genus should be one instead of zero,
which is what would be suggested by (A.8). This example suggests that the intersection
numbers of a curve C with the curves C1 and C2 participating in a self-gluing should be
used to modify (A.8) in order to obtain the correct arithmetic genus. However, not all such
intersection numbers participate in such a modification. To see this, consider the curve
f − x in the above example. This curve remains rational even after gluing. Thus, even
though it intersects x, its genus is correctly captured by (A.8).

The examples of h−x− y and f −x above suggest that the genus of a curve C should
only be modified whenever an intersection with C1 has a partner intersection with C2.
Thus our proposal for the computation of genus of an arbitrary curve C is as follows: let
n1 and n2 be the intersections of C with C1 and C2 respectively, and let n = min(n1, n2).
Then, our proposal for computation of genus is

2g(C)− 2 = (KS + C) · C + 2n (A.49)

(A.49) allows certain curves to have a non-negative genus even though they did not have
a non-negative genus before self-gluing. For example, consider

22Throughout this paper, we never use the geometric genus. Whenever the word “genus” appears in this
paper, it always refers to arithmetic genus.
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• A surface F2
m with x glued to y. The curve e− x− 2y has g = 0 according to (A.49)

while it has g = −1 according to (A.8) which is the formula we would use in the
absence of self-gluing. e−x−2y appears as a gluing curve in some of our geometries,
for example (5.107), (5.108), (5.156) and (5.158).

• A surface F2
0 with e−x glued to e−y. The curve 2f−x has g = 0 according to (A.49)

while it has g = −1 according to (A.8). 2f−x appears as a gluing curve in the gluing
rules for

2
su(1)(1)

2
su(1)(1)

2 (A.50)

B Exceptional cases

In this appendix we study some of the exceptional cases where the methods used in the
paper are not applicable in a straightforward manner.

B.1 Geometries for non-gauge theoretic nodes

The following non-gauge theoretic nodes arise in our analysis

1
sp(0)(1)

(B.1)

2
su(1)(1)

(B.2)

2
su(1)(1)

(B.3)

According to our proposal the prepotential 6F̃ for each case must be zero. So the geometry
cannot be directly guessed from the prepotential. One can try to take corresponding limits
of the geometries for the following gauge theoretic nodes

1
sp(n)(1)

(B.4)

2
su(n)(1)

(B.5)

2
su(n)(1)

(B.6)
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But this procedure is unreliable. For example, taking the limit of the geometry (5.112)
would suggest that there should exist a phase of (B.2) governed by the geometry

01+1
0

e-x-y

e
(B.7)

However, even though the self-gluing here satisfies the Calabi-Yau condition (5.18), it does
not satisfy the condition (5.17). So, this is not a consistent geometry, and there should be
no such phase for (B.2).

Fortunately, a gauge theory description of the KK theories (B.1), (B.2) and (B.3) is
known, which allows us to reliably compute the corresponding geometries. In terms of the
language used throughout this paper, this gauge theory description is a “non-canonical”
gauge theory description of these KK theories, since it does not correspond to the 6d gauge
theory description on the tensor branch of the corresponding 6d SCFT.

To start with, it is known that (B.1) can be described by the gauge theory su(2) with
eight fundamental hypers. We can compute the prepotential via

6F = 1
2

∑
r

|r · φ|3 −
∑
f

∑
w(Rf )

|w(Rf ) · φ+mf |3
 (B.8)

and convert it into a geometry as described in section 5.1. When all mass parameters are
turned off, we obtain the geometry

08
1 (B.9)

which equals dP9. See the discussion that follows (5.102).
Next, it is known that (B.2) can be described by the gauge theory sp(1) with an adjoint

hyper and θ = 0. Moreover, it is known that upon integrating out the adjoint matter of
sp(n), the theta angle remains unchanged. We know that the geometry corresponding to
pure sp(1) with θ = 0 is

00 (B.10)

where we adopt the convention that f is the W-boson of sp(1) and e is an instanton. So, we
just have to integrate the adjoint matter into (B.10) to figure out the geometry for (B.2).
We can write the weights of the adjoint as w1 = (2), w2 = (0) and w3 = (−2) in terms of
their Dynkin coefficient. When mass parameter for adjoint is very large, then according
to the discussion in section 5.1, we should be able to find a −1 curve C living inside a
non-compact surface N such that C intersects S0 = F0 transversely at two points. We can
consistently choose the gluing curve for N inside S0 to be f since N · f must be zero as the
mass of the W-boson must be independent of the mass parameter associated to N which is
the mass parameter associated to adjoint hyper. As we bring the mass of adjoint to zero,
C undergoes a flop transition. If a −1 curve living outside a surface S intersects S at two
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points transversely, then flopping the −1 curve leads to the emergence of self-gluing on the
surface S. Thus, the geometry for (B.2) is

01+1
0

x

y

(B.11)

with the gluing curve to N being the genus one curve f−x−y. We can write the geometry
in an isomorphic way by first exchanging e with f , which keeps the description (B.11) while
changing the gluing curve to N as e − x − y. Now we perform the isomorphism F2

0 → F2
2

such that

e− x− y → e (B.12)
f − x→ x (B.13)
f − y → y (B.14)

x→ f − x (B.15)
y → f − y (B.16)

which changes (B.11) to

01+1
2

f -x

f -y
(B.17)

with the gluing curve to N being e. As discussed at the end of appendix A.1, this geometry
gives rise to some decoupled states which can be decoupled by doing a complex structure
deformation to

01+1
0

f -x

f -y
(B.18)

Performing an exchange of e and f again leads to the geometry

01+1
0

e-x

e-y
(B.19)

which is what is displayed in (5.113) because the fiber f becomes an elliptic fiber in this
frame (with a nodal singularity). This is as we would expect from the fact that (B.2)
arises from an untwisted unfrozen 6d SCFT and hence it must be possible to feed the
geometry (B.19) into F-theory, which requires the presence of an elliptic fibration. The
gluing curves for the non-compact surface responsible for mass parameter of adjoint are x
and y in this frame.
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Finally, it is known that (B.3) can be described by the gauge theory sp(1) with an
adjoint hyper and θ = π. The geometry corresponding to pure sp(1) with θ = π is

01 (B.20)

In a similar fashion as above, integrating in the adjoint leads to

01+1
1

x

y

(B.21)

which is indeed the “geometry” presented in (5.160). We write the word geometry in quo-
tation marks because it is only to be understood as an algebraic description mimicking the
properties of the geometric description available for other KK theories. See the discussion
after equation (5.160) for more details.

B.2 Gluing rules between non-gauge theoretic nodes

As we combine non-gauge theoretic nodes via edges, the prepotential 6F̃ still remains zero.
Thus, another method to compute the gluing rules presented in the main body of this
paper is desirable. The goal of this section is to provide this alternative derivation.

Gluing rules for 2
su(1)(1)

1
sp(0)(1)

: it is known that this KK theory is equivalent to
a 5d sp(2) gauge theory with eight fundamentals and an antisymmetric. The theta angle
for sp(2) is irrelevant due to the presence of fundamentals. So we can start with geometry
corresponding to any theta angle for pure sp(2) and then integrate in the matter. The
geometry with theta angle zero is

16 21
e 2h

(B.22)

where we have labeled the surfaces according to the labeling of the corresponding simple
co-roots of sp(2). Notice that this is different than a similar labeling of the surfaces in
terms of simple co-roots of affine algebras used in the main body of the text. The weights
for fundamental are

(1, 0)+

(−1, 1)+

(1,−1)+

(−1, 0)+

where we have arranged the weights in a spindle shape according to their level and the
superscripts on top of the weights denotes the sign of virtual volume of the weights in
the totally integrated out phase (B.22). The last weight (−1, 0) can be recognized as a
−1 curve living in a non-compact surface and intersecting S1 once. Since there are eight
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fundamentals, there are eight copies of the above weight system. Making the virtual volume
of (−1, 0) negative for all eight copies leads to the phase

18
6 21
e 2h

(B.23)

The weight system in this phase can be written as eight copies of

(1, 0)+

(−1, 1)+

(1,−1)+

(−1, 0)−

The blowups xi correspond to eight copies of the weight (−1, 0). Indeed, the volume of xi
is φ1 which is negative of the virtual volume of the weight (−1, 0) in this phase. The other
weights are obtained by adding the fibers fi of the two surfaces Si. For example, f1 − xi
are eight copies of the weight (1,−1) and indeed vol(f1− xi) = φ1− φ2 which matches the
virtual volume of (1,−1). Now making the virtual volume of all the eight copies of the
weight (1,−1) negative corresponds to flopping the curves f1−xi in (B.23) where f1 is the
fiber of S1. The resulting geometry is

12 28
1

h 2h-
∑

xi

(B.24)

with the weight system being eight copies of

(1, 0)+

(−1, 1)+

(1,−1)−

(−1, 0)−

The curves xi in the phase (B.24) correspond to eight copies of the weight (1,−1). Notice
that we can take mass parameter for all eight fundamentals to be zero in this phase since
weights which are negatives of each other have virtual volumes of opposite signs. Thus, we
have completely integrated in the eight fundamentals. Now we move onto the integration
of antisymmetric.

The weight system for antisymmetric of sp(2) in phase (B.24) is

(0, 1)+

(2,−1)+

(0, 0)+

(−2, 1)+

(0,−1)+
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Flipping the sign for (0,−1), we obtain

12 28+1
1

e 2h-
∑

xi

(B.25)

with the ninth blowup y on S2 not participating in the gluing curve for S1 inside S2. Now,
flipping the sign for (−2, 1) corresponds to flopping f2 − y. Since it intersects the gluing
curve 2h−

∑
xi twice, this results in a self-gluing on S1

11+1
2 28

1
h-x-y 2h+f -

∑
xi

x

y (B.26)

The reader can check that both (5.17) and (5.18) are satisfied here. The weight system of
antisymmetric corresponding to this phase is

(0, 1)+

(2,−1)+

(0, 0)+

(−2, 1)−

(0,−1)−

with x ∼ y being identified with the weight (−2, 1). After performing an isomorphism on
S1 can be rewritten as

11+1
0 28

1
f 2h+f -

∑
xi

e-x

e-y (B.27)

leading to the same gluing rules as those presented in the main text.

Gluing rules for 2
su(1)(1)

2
su(1)(1)

: it is known that this KK theory is equivalent
to a 5d su(3) gauge theory with an adjoint and Chern-Simons level zero. The geometry for
su(3) with CS level zero is

11 21
e e

(B.28)

The weight system for adjoint in this phase is

(1, 1)+

(−1, 2)+ (2,−1)+

(0, 0)+ (0, 0)+

(1,−2)+ (−2, 1)+

(−1,−1)+
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The weight (−1,−1) can be identified with a −1 curve living in a non-compact surface and
intersecting both S1 and S2 at one point each. Flipping the sign of this weight leads to the
appearance of a blowup on both S1 and S2

11
1 21

1
e,x e,x

2 (B.29)

Notice that both the blowups are glued to each other. This can be understood as a
consequence of the fact that they both correspond to the same weight i.e. (−1,−1)−, but
since there is a single such weight, these two curves must be identified with each other. In
this flop frame, the weight system is

(1, 1)+

(−1, 2)+ (2,−1)+

(0, 0)+ (0, 0)+

(1,−2)+ (−2, 1)+

(−1,−1)−

and the curves corresponding (−1, 2)+ and (−2, 1)+ can be identified as (f − x)S1 and
(f − x)S2 respectively. Flopping both of these, flips the sign of both the weights (−1, 2)
and (−2, 1) and leads to the geometry

11+1
0 21+1

0
e-y, f -x e-y, f -x

x

y

x

y

2

(B.30)

which after performing an isomorphism of both the surfaces can be written as

11+1
0 21+1

0
f -x,x f -x,x

e-x

e-y

e-x

e-y

2

(B.31)

leading to the same gluing rules as those presented in the main text.

Gluing rules for 2
su(1)(1)

2
su(1)(1)

2 : it is known that this KK theory is equivalent
to a 5d sp(2) gauge theory with an adjoint and theta angle zero. The geometry for pure
sp(2) with zero theta angle is known to be

16 21
e 2h

(B.32)
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The weight system for adjoint in this phase is

(2, 0)+

(0, 1)+

(−2, 2)+ (2,−1)+

(0, 0)+ (0, 0)+

(2,−2)+ (−2, 1)+

(0,−1)+

(−2, 0)+

Flipping the sign for (−2, 0) leads to the geometry

11+1
6 21

e 2h
x

y (B.33)

In this phase, the weight (0,−1)+ can be identified with curves f1 − x and f1 − y, along
with a −1 curve z living in a non-compact surface and intersecting S2 at one point. z is
glued to f1 − x but not to f1 − y. Since if it glues also to f1 − y, then it would mean that
f1−x is glued to f1−y resulting in another self-gluing of S1, namely f1−x ∼ f1−y. After
this self-gluing, the volumes of f1− x and f1− y will be φ1− φ2 leading to a contradiction
with our starting step that their volume is −φ2.

Now, to flip the sign of the weight (0,−1), we have to flop f1 − x ∼ z which automat-
ically flops f1 − y since its volume is same. The flop of f1 − x creates a new blowup on S1
that we call x′. Similarly, the flop of f1 − y creates a new blowup on S1 that we call y′.
Moreover the flop of z creates a blowup on S2 that we call z′.

After the flop S1 = F2
4 with f1 − x′ glued to f1 − y′ and S2 = F1

2. The total gluing
curve for S2 in S1 is e1 + x′ + y′, and the total gluing curve for S1 in S2 is 2h. The gluing
f1 − x ∼ z transforms into the gluing x′ ∼ z′ in the new frame. Thus, the total gluing
curve splits into two gluing curves:

e1 + y′ ∼ 2h− z′ (B.34)
x′ ∼ z′ (B.35)

The reader can check that the curves involved on both sides in both of these gluings have
same genus, and moreover (5.17) and (5.18) are satisfied for both gluings. Notice that if
we would have tried to split the total gluing curve into three gluing curves e1, x

′, y′ glued
respectively to 2h − 2z′, z′, z′, we would have run into two problems. First is the same
problem that we noted before the flop was performed, that this would imply a second self
gluing x′ ∼ y′ of S1 and the weight system won’t match with the system of curves in the
geometry anymore. Second, the genus of 2h2 − 2z′ is −1 and the genus of e1 is +1, so the
first gluing curve wouldn’t make sense.
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Thus at this step of the integration process, the geometry is

11+1
4 21

1
e+y, x 2h-z, z

f -x

f -y

2

(B.36)

where we have dropped the primes on the blowups. The corresponding weight system is

(2, 0)+

(0, 1)+

(−2, 2)+ (2,−1)+

(0, 0)+ (0, 0)+

(2,−2)+ (−2, 1)+

(0,−1)−

(−2, 0)−

By performing an isomorphism, we can write the geometry as

11+1
2 21

1
e+f -x-2y, f -x 2h-z, z

x

y

2

(B.37)

The weight (2,−2)+ corresponds to the curve x ∼ y, and the weight (−2, 1)+ corresponds
to the curve f2 − z. Upon flopping them, we obtain the geometry with adjoint matter
completely integrated in

11+1
2 21+1

0
e+f -y, f -x 2e+f -x-2y, f -x

x

y

x

y

2

(B.38)

After an isomorphism, we obtain

11+1
0 21+1

0
f -x, x 2f -x, x

e-x

e-y

e-x

e-y

2

(B.39)

which shows that gluing rules are precisely those quoted in the main text.

Gluing rules for 2
su(1)(1)

2
su(1)(1)

: it is known that this KK theory is equivalent

to a 5d sp(2) gauge theory with an adjoint and theta angle π. Thus, the analysis for this
case is similar to that of the last case which was

2
su(1)(1)

2
su(1)(1)

2 (B.40)
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since only the theta angle is different for these two cases. Following similar steps as above,
the final “geometry”23 analogous to (B.38) is found to be

11+1
2 21+1

1
e+f -y, f -x 2h-x-2y, f -x

x

y

x

y

2

(B.41)

which after an isomorphism becomes

11+1
0 21+1

1
f -x, x 2h-x-2y, f -x

e-x

e-y

x

y

2

(B.42)

which matches the gluing rules claimed in the text.

B.3 Theta angle for sp(n)

Notice that there are two inequivalent geometries which give rise to a 5d pure sp(n) gauge
theory:

12n+2 · · · (n− 2)8 n0(n− 1)6
e 2e+fehh e

(B.43)

and
12n+2 · · · (n− 2)8 n1(n− 1)6

e 2hehh e

(B.44)

These two geometries correspond to two different possible values of theta angle. The only
difference between (B.43) and (B.44) is whether Sn = F0 or Sn = F1. It is well-known that
(see for instance [2]) for sp(1), θ = 0 has S1 = F0 and θ = π has S1 = F1, while for sp(2),
θ = 0 has S2 = F1 and θ = π has S2 = F0.

We claim that for higher n, the same pattern continues to hold and the theta angle
corresponding to F0 (or F1) changes by π (mod 2π) every time one increases the rank n by
one unit. To see this, one can start from the statement [55] that the KK theory

2
su(1)(1)

2
su(1)(1)

2
su(1)(1)

· · ·2
su(1)(1)

(B.45)

with a total of n nodes is equivalent to a 5d sp(n) gauge theory with an adjoint hyper and
θ = π. We can build the geometry corresponding to (B.45) by using the data presented
in this paper and derived in appendix (B.2). Now the key point is that integrating out
the adjoint matter does not change the theta angle. So, we can simply integrate out the
adjoint matter from the geometry corresponding to (B.45) to land on to pure sp(n) theory
with θ = π. This process is inverse of the process of integrating in of matter discussed

23We remind the reader that it should only be viewed as an algebraic description since the KK theory
involves the non-geometric node.
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in appendices (B.1) and (B.2) and corresponds to making the virtual volumes of all the
weights of adjoint of sp(n) to have the same sign. Once this is done, it is found that the
geometry for θ = π is (B.43) whenever n is even, and the geometry (B.44) whenever n
is odd. From this we conclude that the geometry (B.43) corresponds to θ = θ0 and the
geometry (B.44) corresponds to θ = θ1 where

θ1 = nπ (mod 2π) (B.46)
θ0 = θ1 + π (mod 2π) (B.47)

C A concrete non-trivial check of our proposal

We devote this section to a concrete and non-trivial check of our proposal. It is known
that [24] the KK theory

2
su(2)(1)

2
su(2)(1)

2 (C.1)

is equivalent to the 5d gauge theory with gauge algebra su(2)⊕ su(4) with a hyper trans-
forming in F⊗ Λ2. More precisely, the gauge-theoretic phase diagram for the su(2)⊕ su(4)
embeds into the phase diagram for the KK theory (C.1). In this section we will show this
explicitly.

Let us start with the geometry assigned to (C.1) in the paper with ν chosen to be zero
for both su(2)(1):

04
0 0′40

12 1′2

e, e-
∑

xi

e, h

f -x1, x2-x3, x4

f ,f

x1-x2,

f

x1-x2

f -x1, f , x2

x3-x4

2 2

3

2

e, e-
∑

xi

e, h

(C.2)

where the surfaces S0 and S1 correspond to the left su(2)(1) in (C.1), and the surfaces S′0
and S′1 correspond to the right su(2)(1) in (C.1). As visible in the above diagram, x4 in S0
is glued to x2 in S′0. Flopping this curve, we obtain

03
0 0′30

11
2 1′12

e, e-
∑

xi

e, h-x

f -x1, x2-x3

f ,f -x

x1-x2,

f -x

x1

f -x1, f

x3

2 2

2

2

e, e-
∑

xi

e, h-x

x x (C.3)
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Now flopping f − x in S1 which is glued to x1 in S′0, we obtain

03+1
0 0′20

11 1′22

e-y, e-
∑

xi

e, h

f -x1-y, x2-x3

f ,f -x1,

x1-x2,

f , f

x3, y

2 2

2

3

e, e-
∑

xi

e, h-
∑

xi

f x1-x2

x2

(C.4)

which after performing an isomorphism on S0 can be written as

04
1 0′20

11 1′22

e, h-
∑

xi

e, h

x4-x1, x2-x3

f ,f -x1,

x1-x2,

f , f

x3, f -x4

2 2

2

3

e, e-
∑

xi

e, h-
∑

xi

f x1-x2

x2

(C.5)

Now, flopping the e curves inside S0 and S1 (which are glued to each other), we obtain

04 0′20

1 1′2+1
2

l-
∑

xi

l

x4-x1, x2-x3

f ,f -x1,

x1-x2,

f , f

x3, l-x4

2

2

3

e, e-
∑

xi

e, h-
∑

xi

l x1-x2-y

x2-y

(C.6)

where a surface without a subscript denotes that the surface is a del Pezzo surface rather
than a Hirzebruch surface. That is, S0 = dP4 and S1 = P2 = dP0. Let us use the blowup
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x4 on S0 to write S0 in terms of the Hirzebruch surface F1

03
1 0′20

1 1′2+1
2

f -
∑

xi

l

e-x1, x2-x3

f ,f -x1,

x1-x2,

f , f

x3, f

2

2

3

e, e-
∑

xi

e, h-
∑

xi

l x1-x2-y

x2-y

(C.7)

Flopping x3 in S0 glued to f − x1 in S′1 gives rise to

02
1 0′2+1

0

11 1′1+1
1

f -
∑

xi

l-x

e-x1, x2

x1-x2,

f ,f -y

f

2

2

2

e-y, e-
∑

xi

e, h-x

l-x f -x-y

f ,x-y
x

y

(C.8)

We use x in S1 to write S1 in terms of Hirzebruch surface F1

02
1 0′2+1

0

11 1′1+1
1

f -
∑

xi

f

e-x1, x2

x1-x2,

f ,f -y

f

2

2

2

e-y, e-
∑

xi

e, h-x

f f -x-y

f ,x-y
e

y

(C.9)

Flop x2 in S0 glued to f − y in S′0 to obtain

01
1 0′21

11
1 1′2+1

1

f -x

f -x

e-x

x, f

f

2
2

e, h-
∑

xi

e, h-
∑

xi

f , x f -x1-y, x2

f -x2,

e-x

f

2

x1-y

(C.10)
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Now flopping f − x in S0 glued to f − x in S1, we obtain

02 0′21

12 1′2+2
1

e

f , f

f

2
2

e, h-
∑

xi

e, h-
∑

xi

f , f f -x1-y1, x2-y2

f -x2-y2,

e

f

2

x1-y1

(C.11)

Flopping f − x2 in S′0 we obtain

02 0′10

12 1′2+2+1
1

e

f , f

f

2
2

e, e-x

e-z, h-
∑

xi

f , f f -x1-y1, x2-y2

f -x2-y2,

e

f

2

x1-y1

(C.12)

Now flopping x in S′0 we get

02 0′0

12 1′3+2+1
1

e

f , f

f

2
2

e, e

e-z, h-
∑

xi

f , f f -x1-y1, x2-y2

f -x2-y2,

e

f

2

x1-y1

(C.13)

Performing the automorphism on S′0 that exchanges e and f , we obtain

02 0′0

12 1′3+2+1
1

e

f , f

e

2
2

f , f

e-z, h-
∑

xi

f , f f -x1-y1, x2-y2

f -x2-y2,

e

e

2

x1-y1

(C.14)
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Now let us write S′1 as a del Pezzo surface. This rewrites the e curve as a blowup which
we denote by w

02 0′0

12 1′3+2+1+1

e

f , f

e

2
2

f , f

w-z, l-
∑

xi

f , f l-w-x1-y1, x2-y2

l-w-x2-y2,

e

e

2

x1-y1

(C.15)

We can now perform a basic automorphism (of del Pezzo surfaces) on S′1 involving the
three blowups x1, x2 and y1 to obtain

02 0′0

12 1′3+2+1+1

e

f , f

e

2
2

f , f

w-z, y1-x3

f , f x2-w, l-x1-y1-y2

l-w-x2-y2,

e

e

2

x1-y1

(C.16)

Converting S′1 back into F1 using the blowup y2, we obtain

02 0′0

12 1′3+1+1+1
1

e

f , f

e

2
2

f , f

w-z, y-x3

f , f x2-w, f -x1-y

f -w-x2,

e

e

2

x1-y

(C.17)

This is the final form of the geometry that we wanted to obtain.
It is clear that S0, S′0 and S1 describe an su(4) and S′1 describes an su(2) in (C.17).

This can be checked by intersecting the fibers of the corresponding Hirzebruch surfaces
with these surfaces. The intersection matrix yields the Cartan matrix for su(4) ⊕ su(2).
Now, let us show that the configuration of blowups indeed describes Λ2⊗F of su(4)⊕su(2).
For this we relabel the surfaces as

S0 → S1 (C.18)
S′0 → S2 (C.19)
S1 → S3 (C.20)
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thus rewriting the geometry as

12 20

32 1′3+1+1+1
1

e

f , f

e

2
2

f , f

w-z, y-x3

f , f x2-w, f -x1-y

f -w-x2,

e

e

2

x1-y

(C.21)

The weight system for Λ2 ⊗ F can be written as

(0, 1, 0|1)
(1,−1, 1|1) (0, 1, 0| − 1)

(−1, 0, 1|1) (1, 0,−1|1) (1,−1, 1| − 1)
(−1, 1,−1|1) (−1, 0, 1| − 1) (1, 0,−1| − 1)

(0,−1, 0|1) (−1, 1,−1| − 1)
(0,−1, 0| − 1)

where the three entries on the left hand side of slash denote the weights with respect to
su(4) comprised by S1, S2 and S3, and the entry on the right hand side of slash denotes
the weight with respect to su(2) comprised by S′1.

From the geometry (C.21) we see that the holomorphic curves

vol(x1) = (1, 0,−1|1) (C.22)
vol(x2) = (−1, 0, 1|1) (C.23)
vol(x3) = (0,−1, 0|1) (C.24)
vol(y) = (−1, 1,−1|1) (C.25)

vol(f − z) = (0, 1, 0|1) (C.26)
vol(f − w) = (1,−1, 1|1) (C.27)

match weights of the form (x, y, z|1), and the antiholomorphic curves x1 − f, x2 − f, x3 −
f, y − f,−z,−w match weights of the form (x, y, z| − 1), where f denotes the fiber of
Hirzebruch surface S′1 = F6

1. Thus we have reproduced the full weight system for Λ2 ⊗ F,
justifying our claim. More precisely, the geometry (C.21) describes the su(4)⊕ su(2) gauge
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theory in the gauge-theoretic phase given by the following virtual volumes

(0, 1, 0|1)+

(1,−1, 1|1)+ (0, 1, 0| − 1)−

(−1, 0, 1|1)+ (1, 0,−1|1)+ (1,−1, 1| − 1)−

(−1, 1,−1|1)+ (−1, 0, 1| − 1)− (1, 0,−1| − 1)−

(0,−1, 0|1)+ (−1, 1,−1| − 1)−

(0,−1, 0| − 1)−

D Comparisons with known cases in the literature

In this section we provide a comparison with some 5d KK theories known in the literature
via other methods. In particular, we show that the geometries we obtain for these 5d KK
theories allow us to see the 5d gauge theory descriptions of these 5d KK theories that have
been proposed in the literature.

D.1 Untwisted

Let us start with an example of untwisted compactification. It has been proposed [28] that

1
sp(n)(1)

(D.1)

can be described by the 5d gauge theory having gauge algebra su(n+2) with 2n+8 hypers
in fundamental. To see this consider the ν = 1 phase of (5.101)

02n+7
1 12n+1 · · · (n− 2)7 n1

1(n− 1)5
eh 2h-xehh2h-

∑
xi e

(D.2)
which after an isomorphism can be written as

02n+7
2n+3 12n+1 · · · (n− 2)7 n1

1(n− 1)5
eh e+2f -xehhe e

(D.3)
Now flopping the blowup sitting on Sn back to S0, we obtain

02n+8
2n+4 12n+2 · · · (n− 2)8 n0(n− 1)6

eh e+2fehhe e

(D.4)
where we can see that the associated Cartan matrix is that of su(n + 2) and the 2n + 8
blowups sitting on S0 can be identified with the fundamentals. This identification is done
by noticing that the volume for a blowup matches the absolute value of virtual volume of
a weight for the fundamental of su(n+ 2).
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D.2 Twisted

Now, let us consider an example when we twist by an outer automorphism. It has been
proposed in [24] that

2
su(n)(2)

(D.5)

can be described by 5d gauge theory with gauge algebra so(n + 2) and n fundamental
hypers. First let us consider the case when n = 2m. In this case the geometry is displayed
in (5.142). Flopping all the yi, we obtain

m1 (m− 1)6 · · · 22m

02m
2m+2

f -xi

f -xi

2h e h

h

e

e

2m

12m
2m+2

h

e

(D.6)

Now flopping all the f − xi, we obtain

m1 (m− 1)6 · · · 22m
2m

02

2h e h

h-
∑

xi

e

e

12

h-
∑

xi

e

(D.7)

Now we can carry the 2m blowups onto Sm to obtain the geometry

m2m
1 (m− 1)2m−6 · · · 20

02

2h-
∑

xi h e

e

e

h

12

e

e

(D.8)
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which after an isomorphism on Sm can be rewritten as

m2m
2m−4 (m− 1)2m−6 · · · 20

02

e h e

e

e

h

12

e

e

(D.9)

The Cartan matrix associated to this geometry is indeed that for so(2m + 2) and the 2m
blowups can be identified as 2m hypers in fundamental of so(2m+ 2).

Similarly, the geometry for n = 2m+ 1 is given in (5.143). Flopping xi ∼ yi living on
S0, we obtain

m1 (m− 1)6 · · · 12m+1
2m+2 06

2h e h 2h-2
∑

xi ee

(D.10)

After performing an isomorphism we can write the above geometry as

m1 (m− 1)6 · · · 12m+1
1 06

2h e h 2h ee-
∑

xi

(D.11)

Now moving the blowups onto Sm we obtain

m2m+1
1 (m− 1)2m−5 · · · 11 06

2h-
∑

xi e h 2h ee

(D.12)

which can be rewritten as

m2m+1
2m−3 (m− 1)2m−5 · · · 11 06

e h e 2h ee

(D.13)

which precisely describes so(2m+ 3) with 2m+ 1 hypers in fundamental of so(2m+ 3).

E Instructions for using the attached Mathematica notebook

AMathematica notebook is included as supplementary material along with this paper. The
use of this notebook requires installation of the Mathematica package LieArt.nb which can
be found online at. In particular, the notebook provides the evaluation of two functions
Geometry5dKK and SignsKK. The former can be used to compute the shifted prepotential
6F̃ (defined in section 4.2) for 5d KK theories whose associated graph contains either one
or two nodes; see tables 1–5 and tables 8–11. The latter function can be used for the
evaluation of all possible signs associated to different phases of the above prepotential.

The Mathematica notebook is built around the use of the function

Geometry5dKK [...]
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The above function outputs a graphical representation of the shifted prepotential 6F̃ asso-
ciated to the input 5d KK theory. The graphical output is naturally organized in the form
of triple intersection numbers for the associated geometry. See section 5.1.1 for the map
between triple intersection numbers and the shifted prepotential.

Input. Let us now describe possible inputs for the function Geometry5dKK:

• For a single node

k
g(q)

(E.1)

the first input is the number k as shown below

Geometry5dKK [{k ,...}]

• For two nodes α and β, the first input is the matrix Ω =

Ωαα
S Ωαβ

S

Ωβα
S Ωββ

S

:
Geometry5dKK [{Ω ,...}]

See section 3.3 for the definition of Ωαβ
S etc.

• When there is a single node, the second and final input captures the data of g(q).
When there are two nodes, the second input captures the data of g(qα)

α , and the third
and final input captures the data of g(qβ)

β . The data of an affine algebra is captured
by dividing it into the “algebra part” and the “twist part”. For example, the algebra
part of g(q) is g which is a finite Lie algebra, and the twist part of g(q) is q. The
algebra part can be inserted in LieArt format. For example, A-type can be inserted
as

A1, A2, ..., An

B-type can be inserted as

B2, B3, ..., Bn

C-type can be inserted as

C2, C3, ..., Cn

D-type can be inserted as

D3, D4, ..., Dn

E-type can be inserted as

E6, E7, E8
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And other types can be inserted as

G2, F4

The twist part can be inserted as

U, T2, T3

where U means ‘untwisted’ (corresponding to q = 1), T2 means ‘Z2 twisted (corre-
sponding to q = 2) and T3 means ‘Z3 twisted’ (corresponding to q = 3).

The full input thus is as follows:

• For a single node, the following format is used:

Geometry5dKK [{k,{ Algebra ,Twist }}]

For example,

Geometry5dKK [{2 ,{A4 ,T2 }}]

• For two nodes, the format is:

Geometry5dKK [{Ω,{Algebra1 , Twist1 },{ Algebra2 , Twist2 }}]

For example,

Geometry5dKK [{Ω,{C3 ,U},{D6 ,T2 }}]

In order to consider trivial gauge algebras of type su(1), sp(0), one needs to insert a
zero in the place of the algebra and twist input: that is we perform the replacement
{Algebra, Twist} → 0. For example, if gα is trivial, but gβ is not, then the input
takes the form

Geometry5dKK [{Ω,0,{ Algebra2 , Twist2 }}]

Some of the nodes contain extra decorations. Such nodes can be inserted by using extra
identifiers as follows:

• 1
su(n)(1)

vs. 1
su(n̂)(1)

To incorporate the second case, we replace Twist with {Twist, Frozen}. For exam-
ple,

Geometry5dKK [{1 ,{A8 ,U}}]

becomes

Geometry5dKK [{1 ,{A8 ,{U, Frozen }}}]
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• 1
su(6)(1)

vs. 1
su(6̃)(1)

To incorporate the second case, we replace Twist with {Twist, Three}, so that

Geometry5dKK [{1 ,{A5 ,U}}]

becomes

Geometry5dKK [{1 ,{A5 ,{U,Three }}}]

• 2
su(n)(1)

vs 2
su(n)(1)

To incorporate the second case, we replace Twist with {Twist, Loop}, so that

Geometry5dKK [{2 ,{A5 ,U}}]

becomes

Geometry5dKK [{2 ,{A5 ,{U,Loop }}}]

• k
so(12)(q)

vs 1
so(1̂2)(q)

To incorporate the second case, we replace Twist with {Twist, Cospinor}, so that

Geometry5dKK [{1 ,{D6 ,U}}]

becomes

Geometry5dKK [{1 ,{D6 ,{U, Cospinor }}}]

• 3
so(8)(2)

1
sp(1)(1)

2

To incorporate this case we use the usual input without any extra identifiers.

Geometry5dKK [{Ω,{D4 ,T2},{A1 ,U}}]

• 1
sp(ni)(1)

k
so(7)(1)

vs. 1
sp(ni)(1)

k
so(7)(1)

and

1
sp(ni)(1)

k
so(8)(q)

vs. 1
sp(ni)(1)

k
so(8)(q)

– 161 –



J
H
E
P
1
2
(
2
0
2
0
)
1
5
1

Figure 3. An illustration of the various features of the initial (sign input) pop-up window of the
function Geometry5dKK. The various aspects, numbered 1 through 5, are explained in the body of
this appendix.

To incorporate these cases, we replace Twist with {Twist, S}. For example, one
would use the following formats:

Geometry5dKK [{Ω,{C2 ,U},{B3 ,{U,S}}}]

and

Geometry5dKK [{Ω,{C2 ,U},{D4 ,{U,S}}}]

Choice of phase. For each input, the output (i.e. the prepotential) depends on a par-
ticular choice of gauge-theoretic phase for the theory. The different gauge-theoretic phases
correspond to different choices of signs for the virtual volumes of the weights of the rep-
resentations associated to the matter content for the input KK theory. See sections 4
and 5.1.3 along with appendix B for more details.

After the input is inserted, the notebook will request as additional input the signs of
virtual volumes for all the weights corresponding to matter hypermultiplets. A pop-up
window appears containing the information needed to make a consistent choice of signs.

For example, consider 1
su(5)(1)

. After inputting the correct data associated to this theory,
a window appears as depicted in figure 3. The information indicated in the window can be
understood as follows:

1 This labels the difference choices of irreducible representaitons of the invariant subal-
gebra (under the twist) in which the hypers of the canonical 5d gauge theory associated
to the KK theory transform. In this particular case we have two distinct representations,
namely the fundamental and the antisymmetric representations of su(5), as can be seen
from table 1. The slider on top can be used to slide between the two irreps. For example
in figure 3, we see data associated to fundamental representation and in 4 we see the data
associated to antisymmetric representation.
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Figure 4. The slider moves between different representations; in the example depicted above, the
slider moves from the first to the second representation.

2 This indicates the highest weight of the representation.

3 Here, Nf represents the number full hypermultiplets transforming in the given rep-
resentation. In figure 3 there are 13 hypermultiplets transforming in the fundamental
representation, while in figure 4 there is one hypermultiplet transforming in the antisym-
metric representation.

4 shows the Hasse diagram of the weight system of the representation. The Hasse diagram
is a graphical representation of the partial order of the weight system. Recall, that given
a highest weight w1 one can construct the entire weight system by subtracting positive
simple roots, wi = wi−1−niαi (αi denote the simple roots). For example, the fundamental
representation of su(5), which is comprised of weights wi=1,...,5, is characterized by the
partial order w1 ≥ w2 ≥ · · · ≥ w5, where wi ≥ wj means that wi − wj = niαi where
ni ≥ 0. This information is important when determining the possible choices of signs for
the virtual volumes of weights lying in this weight system. For example, if we choose w3
to be have a positive virtual volume, then w2 needs to also have a positive virtual volume
since w2 ≥ w3 according to the Hasse diagram.

– 163 –



J
H
E
P
1
2
(
2
0
2
0
)
1
5
1

The red superscript indicates whether a weight is positive or negative. A positive
(resp. negative) weight is defined as the positive (resp. negative) linear combination of
simple roots. When no mass parameters are turned on, then the signs of virtual volumes
for positive and negative weights are fixed to be positive and negative, respectively (assum-
ing the dual of the irreducible Weyl chamber is defined as the region in which the virtual
volumes of all positive simple roots are positive.) The signs of the rest of the weights are
undetermined by the signs of simple roots and hence can be chosen freely as long as the
ordering described by the Hasse diagram is satisfied. When mass parameters are turned
on, then it is possible for positive weights to have negative virtual volume and negative
weights to have positive virtual volume, for some values of the mass parameters. For a
generic choice of mass parameters, the only constraint for any of the signs of the weights
is that the ordering provided by the Hasse diagram is respected.

5 This is the area in which a choice of signs should be specified.A default input is given
where all the signs are positive, that is “+1”. The notation s[i]j is explained as follows:
i labels each different representation (in this case, i runs over two representations) and j
labels the different of weights (in this case, for the fundamental representation, j runs from
1 to 5, while for the antisymmetric representation, j runs from 1 to 10). For example,
based on the Hasse diagram presented in figure 3 and assuming we do not turn on any
mass parameters, we can make a list of all the allowed choices of signs for the fundamental
representation of su(5):

s(1)1 → 1, s(1)2 → 1, s(1)3 → 1, s(1)4 → 1, s(1)5 → −1
s(1)1 → 1, s(1)2 → 1, s(1)3 → 1, s(1)4 → −1, s(1)5 → −1
s(1)1 → 1, s(1)2 → 1, s(1)3 → −1, s(1)4 → −1, s(1)5 → −1
s(1)1 → 1, s(1)2 → −1, s(1)3 → −1, s(1)4 → −1, s(1)5 → −1.

(E.2)

If we choose to turn mass parameters on then we can also have the following sign choices:

s(1)1 → 1, s(1)2 → 1, s(1)3 → 1, s(1)4 → 1, s(1)5 → 1
s(1)1 → −1, s(1)2 → −1, s(1)3 → −1, s(1)4 → −1, s(1)5 → −1.

(E.3)

In the case of two nodes, the code first asks for the signs of the weights associated
to the first algebra. The pop-up window is exactly as discussed above, with the sole
difference being that the notation for the signs is modified to s[i]j,1, where in addition to
the subscripts i, j that respectively label the different representations and weights, there
is another subscript 1 that indicates the representation is charged under the first algebra.
After the signs associated to the representations of the first algebra have been specified, a
second window appears requesting the signs associated to the second algebra. The format
is identical, with the distinction that the signs are denoted by s[i]j,2, with the subscript 2
labeling the second algebra. Finally, a third window appears requesting signs for the weights
of tensor product representations charged under both the first and second algebras.
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Figure 5. Signs for the tensor product representation.

For example consider 2
su(2)

2
su(2)

, for which the input is:

Geometry5dKK [{{{2 , -1} ,{ -1 ,2}} ,{A1 ,U},{A1 ,U}}]

An example of the third window is displayed in figure 5. In this case, on the upper
left side of the window instead of a slider one can find the number of hypermultiplets
transforming in a mixed representation. In figure 5 there is one such hypermultiplet, but
in other cases there can be a half-integer number of hypermultiplets. This information
is necessary to determine a consistent choice of signs, since for example mass parameters
cannot be switched on for half-hypermultiplets. The Hasse diagram in this case is that of
the tensor product representation R1⊗R2, where R1 = R2 = 2 of su(2). Let vi denote the
weights associated to the first su(2) and let ωi denote the weights associated to the second
su(2). The weight system of the tensor product of these two representations is

w{i,j} = vi ⊕ ωj . (E.4)

The Hasse diagram of this weight system can now be determined based on the ordering of
the weights vi and ωj . For example,

w{1,1} = v1 + ω1 ≥ v2 + ω1 = w{2,1} (E.5)
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The Hasse diagram and the number of hypermultiplets is enough to determine a consistent
choice of signs. The signs follow a similar notation as above, namely

b[1]i,j (E.6)

where the bracketed ‘1’ indicates that there is only one mixed representation and the
subscripts i, j are the same as the subscripts for w{i,j}, referring to weights of the first and
second algebras respectively.

Allowed signs for the representations. As mentioned above the choice of signs de-
pends on the Hasse diagrams, the values of mass parameters, and on which combinations
of representations are chosen. The function

SignsKK []

determines all the possible allowed signs for each hypermultiplet of a specific theory. A
word of caution: the computational cost of this function increases very quickly with the
dimensions of the representations.

The input of for this function is of the same format described in the previous section:

SignsKK [{k,{ Algebra ,Twist }}]

OR

SignsKK [{Ω,{Algebra1 , Twist1 },{ Algebra2 , Twist2 }}]

The output of this function is the appropriate number of hypermultiplets and the type
of representation, together with the Hasse diagrams of the weight systems. As described
above, the Hasse diagram includes superscripts indicating whether a weight is positive,
negative, or indeterminate sign. In the absence of mass parameters the only signs that
need to be determined are those of the indeterminate weights. Note that zero weights have
superscript ‘0’. The output, namely all consistent gauge-theoretic phases of the theory, is
presented both as a collection of Hasse diagrams and as a list of sign choices. The Hasse
diagrams for the allowed signs includes superscripts indicating when the signs are taken
to be positive (blue) or negative (red). This function is useful for determining all allowed
phases and corresponding sign choices when computing the geometry.

It is important to note that in some cases the signs associated to different hypermul-
tiplets are not independent. For example, consider

Nf

2nα + 8−
nβ−1

2 1
sp(nα)(1)

k

so(nβ)(2)

1
2 (nα ⊗ (nβ − 1))

nβ − 8− nα
2

Nf

(E.7)

where the extra labels indicate the number of hypermultiplets included in the theory. In
particular, note that there are 2nα + 8− nβ

2 full hypermultiplets of sp(nα)(1) and one half-
hyper in a mixed representation. This half-hypermultiplet comes from the branching of
the bifundamental nα ⊗ nβ → nα ⊗ ((nβ − 1)⊕ 1) after performing the twist of so(nβ)(2),
which leaves invariant the algebra so(nβ − 1). This implies that the signs associated to
the half-hypermultiplet are not independent but rather depend on the signs chosen for the
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Figure 6. Hasse diagram for the case nα = 1, k = 3, nβ = 4 of the theory displayed in (E.7). Note
that w{i,j} are the weights of the bifundamental and v1, v2 are the weights of the half-hypermultiplet.

bifundamental representation. In this case the function SignsKK returns all possible sign
choices consistent with these branching rules.

For example, consider nα = 1 , k = 3 and nβ = 4. The Hasse diagram for the
bifundamental combined with the half-hypermultiplet of sp(1) is displayed in figure 6. The
possible sign choices are displayed in figure 7.
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Once the signs have been specified in Geometry5dKK, the following output is returned
(see an example shown in figure 8), and is comprised of the following elements:

1. The triple intersection numbers for the corresponding geometry are presented in a
graphical form similar to the graphs presented in section 5 of this paper. The vertices
of the graph are surfaces and edges between the vertices indicate the intersections
between the corresponding surfaces. The superscript on a vertex i denotes 8 − S3

i .
If the superscript is zero, then it is not displayed. Every edge carries two yellow
boxes at either ends. Consider an edge going between vertices i and j. The number
in the yellow box near the vertex i denotes the triple intersection number SiS2

j ,
and the number in the yellow box near the vertex j denotes the triple intersection
number S2

i Sj . If the number carried by some yellow box is zero, then that box is not
displayed. There is a purple box placed in the middle of every face formed by three
edges joining three vertices, say i, j and k. The number in the purple box denotes
the triple intersection number SiSjSk. If the number carried by purple box is zero,
then it is not displayed.

2. The choice of signs made by the user.

3. The the shifted prepotential 6F̃ . In the case of a KK theory with a single node,
φ0 is the Coulomb branch parameter associated to the affine node of the Dynkin
diagram and φi with i = 1, . . . Rank[Algebra] are the Coulomb branch parameters
associated to the finite part of the diagram. In the case of a KK theory with two
nodes, φ0,1, φi,1 are the Coulomb branch parameters associated to the first (affine)
algebra and φ0,2, φi,2 are the Coulomb branch parameters associated to the second
(affine) algebra.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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