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ABSTRACT

The adversarial training procedure proposed by Madry et al. (2018) is one of the
most effective methods to defend against adversarial examples in deep neural net-
works (DNNs). In our paper, we shed some lights on the practicality and the
hardness of adversarial training by showing that the effectiveness (robustness on
test set) of adversarial training has a strong correlation with the distance between
a test point and the manifold of training data embedded by the network. Test
examples that are relatively far away from this manifold are more likely to be
vulnerable to adversarial attacks. Consequentially, an adversarial training based
defense is susceptible to a new class of attacks, the “blind-spot attack”, where the
input images reside in “blind-spots” (low density regions) of the empirical distri-
bution of training data but is still on the ground-truth data manifold. For MNIST,
we found that these blind-spots can be easily found by simply scaling and shifting
image pixel values. Most importantly, for large datasets with high dimensional
and complex data manifold (CIFAR, ImageNet, etc), the existence of blind-spots
in adversarial training makes defending on any valid test examples difficult due to
the curse of dimensionality and the scarcity of training data. Additionally, we find
that blind-spots also exist on provable defenses including (Wong & Kolter, 2018)
and (Sinha et al., 2018) because these trainable robustness certificates can only be
practically optimized on a limited set of training data.

1 INTRODUCTION

Since the discovery of adversarial examples in deep neural networks (DNNs) (Szegedy et al., 2013),
adversarial training under the robustness optimization framework (Madry et al., 2018; Sinha et al.,
2018) has become one of the most effective methods to defend against adversarial examples. A
recent study by Athalye et al. (2018) showed that adversarial training does not rely on obfuscated
gradients and delivers promising results for defending adversarial examples on small datasets. Ad-
versarial training approximately solves the following min-max optimization problem:

min
θ

E
(x,y)∈X

[
max
δ∈S

L(x+ δ; y; θ)

]
, (1)

where X is the set of training data, L is the loss function, θ is the parameter of the network, and S is
usually a norm constrained `p ball centered at 0. Madry et al. (2018) propose to use projected gradi-
ent descent (PGD) to approximately solve the maximization problem within S = {δ | ‖δ‖∞ ≤ ε},
where ε = 0.3 for MNIST dataset on a 0-1 pixel scale, and ε = 8 for CIFAR-10 dataset on a 0-255
pixel scale. This approach achieves impressive defending results on the MNIST test set: so far the
best available white-box attacks by Zheng et al. (2018) can only decrease the test accuracy from
approximately 98% to 88%1. However, on CIFAR-10 dataset, a simple 20-step PGD can decrease
the test accuracy from 87% to less than 50%2.
1 https://github.com/MadryLab/mnist_challenge 2 https://github.com/MadryLab/cifar10_challenge
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The effectiveness of adversarial training is measured by the robustness on the test set. However, the
adversarial training process itself is done on the training set. Suppose we can optimize (1) perfectly,
then certified robustness may be obtained on those training data points. However, if the empirical
distribution of training dataset differs from the true data distribution, a test point drawn from the
true data distribution might lie in a low probability region in the empirical distribution of training
dataset and is not “covered” by the adversarial training procedure. For datasets that are relatively
simple and have low intrinsic dimensions (MNIST, Fashion MNIST, etc), we can obtain enough
training examples to make sure adversarial training covers most part of the data distribution. For high
dimensional datasets (CIFAR, ImageNet), adversarial training have been shown difficult (Kurakin
et al., 2016; Tramèr et al., 2018) and only limited success was obtained.

A recent attack proposed by Song et al. (2018) shows that adversarial training can be defeated when
the input image is produced by a generative model (for example, a generative adversarial network)
rather than selected directly from the test examples. The generated images are well recognized by
humans and thus valid images in the ground-truth data distribution. In our interpretation, this attack
effective finds the “blind-spots” in the input space that the training data do not well cover.

For higher dimensional datasets, we hypothesize that many test images already fall into these blind-
spots of training data and thus adversarial training only obtains a moderate level of robustness. It is
interesting to see that for those test images that adversarial training fails to defend, if their distances
(in some metrics) to the training dataset are indeed larger. In our paper, we try to explain the success
of robust optimization based adversarial training and show the limitations of this approach when the
test points are slightly off the empirical distribution of training data. Our main contributions are:

• We show that on the original set of test images, the effectiveness of adversarial training is highly
correlated with the distance (in some distance metrics) from the test image to the manifold of
training images. For MNIST and Fashion MNIST datasets, most test images are close to the
training data and very good robustness is observed on these points. For CIFAR, there is a clear
trend that the adversarially trained network gradually loses its robustness property when the test
images are further away from training data.

• We identify a new class of attacks, “blind-spot attacks”, where the input image resides in a
“blind-spot” of the empirical distribution of training data (far enough from any training examples
in some embedding space) but is still in the ground-truth data distribution (well recognized
by humans and correctly classified by the model). Adversarial training cannot provide good
robustness on these blind-spots and their adversarial examples have small distortions.

• We show that blind-spots can be easily found on a few strong defense models including Madry
et al. (2018), Wong & Kolter (2018) and Sinha et al. (2018). We propose a few simple transfor-
mations (slightly changing contrast and background), that do not noticeably affect the accuracy
of adversarially trained MNIST and Fashion MNIST models, but these models become vulner-
able to adversarial attacks on these sets of transformed input images. These transformations
effectively move the test images slightly out of the manifold of training images, which does not
affect generalization but poses a challenge for robust learning.

Our results imply that current adversarial training procedures cannot scale to datasets with a large
(intrinsic) dimension, where any practical amount of training data cannot cover all the blind-spots.
This explains the limited success for applying adversarial training on ImageNet dataset, where many
test images can be sufficiently far away from the empirical distribution of training dataset.

2 RELATED WORKS

2.1 DEFENDING AGAINST ADVERSARIAL EXAMPLES

Adversarial examples in DNNs have brought great threats to the deep learning-based AI applica-
tions such as autonomous driving and face recognition. Therefore, defending against adversarial
examples is an urgent task before we can safely deploy deep learning models to a wider range of
applications. Following the emergence of adversarial examples, various defense methods have been
proposed, such as defensive distillation by Papernot et al. (2016) and feature squeezing by Xu et al.
(2017). Some of these defense methods have been proven vulnerable or ineffective under strong
attack methods such as C&W in Carlini & Wagner (2017). Another category of recent defense
methods is based on gradient masking or obfuscated gradient (Buckman et al. (2018); Ma et al.
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(2018); Guo et al. (2017); Song et al. (2017); Samangouei et al. (2018)), but these methods are
also successfully evaded by the stronger BPDA attack (Athalye et al. (2018)). Randomization in
DNNs (Dhillon et al., 2018; Xie et al., 2017; Liu et al., 2018) is also used to reduce the success rate
of adversarial attacks, however, it usually incurs additional computational costs and still cannot fully
defend against an adaptive attacker (Athalye et al., 2018; Athalye & Sutskever, 2017).

An effective defense method is adversarial training, which trains the model with adversarial ex-
amples freshly generated during the entire training process. First introduced by Goodfellow et al.,
adversarial training demonstrates the state-of-the-art defending performance. Madry et al. (2018)
formulated the adversarial training procedure into a min-max robust optimization problem and has
achieved state-of-the-art defending performance on MNIST and CIFAR datasets. Several attacks
have been proposed to attack the model release by Madry et al. (2018). On the MNIST testset, so far
the best attack by Zheng et al. (2018) can only reduce the test accuracy from 98% to 88%. Analysis
by Athalye et al. (2018) shows that this adversarial training framework does not rely on obfuscated
gradient and truly increases model robustness; gradient based attacks with random starts can only
achieve less than 10% success rate with given distortion constraints and are unable to penetrate
this defense. On the other hand, attacking adversarial training using generative models have also
been investigated; both Xiao et al. (2018) and Song et al. (2018) propose to use GANs to produce
adversarial examples in black-box and white-box settings, respectively.

Finally, a few certified defense methods (Raghunathan et al., 2018; Sinha et al., 2018; Wong &
Kolter, 2018) were proposed, which are able to provably increase model robustness. Besides adver-
sarial training, in our paper we also consider several certified defenses which can achieve relatively
good performance (i.e., test accuracy on natural images does not drop significantly and training
is computationally feasible), and can be applied to medium-sized networks with multiple layers.
Notably, Sinha et al. (2018) analyzes adversarial training using distributional robust optimization
techniques. Wong & Kolter (2018) and Wong et al. (2018) proposed a robustness certificate based
on the dual of a convex relaxation for ReLU networks, and used it for training to provably increase
robustness. During training, certified defense methods can provably guarantee that the model is
robust on training examples; however, on unseen test examples a non-vacuous robustness general-
ization guarantee is hard to obtain.

2.2 ANALYZING ADVERSARIAL EXAMPLES

Along with the attack-defense arms race, some insightful findings have been discovered to under-
stand the natural of adversarial examples, both theoretically and experimentally. Schmidt et al.
(2018a) show that even for a simple data distribution of two class-conditional Gaussians, robust
generalization requires significantly larger number of samples than standard generalization. Cullina
et al. (2018) extend the well-known PAC learning theory to the case with adversaries, and derive the
adversarial VC-dimension which can be either larger or smaller than the standard VC-dimension.
Bubeck et al. (2018b) conjecture that a robust classifier can be computationally intractable to find,
and give a proof for the computation hardness under statistical query (SQ) model. Recently, Bubeck
et al. (2018a) prove a computational hardness result under a standard cryptographic assumption.
Additionally, finding the safe area approximately is computationally hard according to Katz et al.
(2017) and Weng et al. (2018). Mahloujifar et al. (2018) explain the prevalence of adversarial ex-
amples by making a connection to the “concentration of measure” phenomenon in metric measure
spaces. Su et al. (2018) conduct large scale experiments on ImageNet and find a negative corre-
lation between robustness and accuracy. Tsipras et al. (2019) discover that data examples consist
of robust and non-robust features and adversarial training tends to find robust features that have
strongly-correlations with the labels.

Both adversarial training and certified defenses significantly improve robustness on training data,
but it is still unknown if the trained model has good robust generalization property. Typically, we
evaluate the robustness of a model by computing an upper bound of error on the test set; specifically,
given a norm bounded distortion ε, we verify if each image in test set has a robustness certifi-
cate (Zhang et al., 2018; Dvijotham et al., 2018; Singh et al., 2018). There might exist test images
that are still within the capability of standard generalization (i.e., correctly classified by DNNs with
high confidence, and well recognized by humans), but behaves badly in robust generalization (i.e.,
adversarial examples can be easily found with small distortions). Our paper complements those ex-
isting findings by showing the strong correlation between the effectiveness of adversarial defenses
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(both adversarial training and some certified defenses) and the distance between training data and
test points. Additionally, we show that a tiny shift in input distribution (which may or may not be
detectable in embedding space) can easily destroy the robustness property of an robust model.

3 METHODOLOGY

3.1 MEASURING THE DISTANCE BETWEEN TRAINING DATASET AND A TEST DATA POINT

To verify the correlation between the effectiveness of adversarial training and how close a test point
is to the manifold of training dataset, we need to propose a reasonable distance metric between
a test example and a set of training examples. However, defining a meaningful distance metric
for high dimensional image data is a challenging problem. Naively using an Euclidean distance
metric in the input space of images works poorly as it does not reflect the true distance between
the images on their ground-truth manifold. One strategy is to use (kernel-)PCA, t-SNE (Maaten &
Hinton, 2008), or UMAP (McInnes & Healy, 2018) to reduce the dimension of training data to a low
dimensional space, and then define distance in that space. These methods are sufficient for small and
simple datasets like MNIST, but for more general and complicated dataset like CIFAR, extracting a
meaningful low-dimensional manifold directly on the input space can be really challenging.

On the other hand, using a DNN to extract features of input images and measuring the distance in the
deep feature embedding space has demonstrated better performance in many applications (Hu et al.,
2014; 2015), since DNN models can capture the manifold of image data much better than simple
methods such as PCA or t-SNE. Although we can form an empirical distribution using kernel density
estimation (KDE) on the deep feature embedding space and then obtain probability densities for test
points, our experience showed that KDE work poorly in this case because the features extracted by
DNNs are still high dimensional (hundreds or thousands dimensions).

Taking the above considerations into account, we propose a simple and intuitive distance metric
using deep feature embeddings and k-nearest neighbour. Given a feature extraction neural network
h(x), a set of n training data points Xtrain = {x1train, x

2
train, · · · , xntrain}, and a set of m test data

points Xtest = {x1test, x
2
test, · · · , xmtest} from the true data distribution, for each j ∈ [m], we define the

following distance between xjtest and Xtrain:

D(xjtest,Xtrain) :=
1

k

k∑
i=1

‖h(xjtest)− h(x
πj(i)
train )‖p (2)

where πj : [n] → [n] is a permutation that {πj(1), πj(2), · · · , πj(n)} is an ascending ordering of
training data based on the `p distance between xjtest and xitrain in the deep embedding space, i.e.,

∀i < i′, ‖h(xjtest)− h(x
πj(i)
train )‖p ≤ ‖h(xjtest)− h(x

πj(i
′)

train )‖p
In other words, we average the embedding space distance of k nearest neighbors of xj in the training
dataset. This simple metric is non-parametric and we found that the results are not sensitive to the
selection of k; also, for naturally trained and adversarially trained feature extractors, the distance
metrics obtained by different feature extractors reveal very similar correlations with the effectiveness
of adversarial training.

3.2 MEASURING THE DISTANCE BETWEEN TRAINING AND TEST DATASETS

We are also interested to investigate the “distance” between the training dataset and the test dataset
to gain some insights on how adversarial training performs on the entire test set. Unlike the setting
in Section 3.1, this requires to compute a divergence between two empirical data distributions.

Given n training data points Xtrain = {x1train, x
2
train, · · · , xntrain} and m test data points Xtest =

{x1test, x
2
test, · · · , xmtest}, we first apply a neural feature extractor h to them, which is the same as in Sec-

tion 3.1. Then, we apply a non-linear projection (in our case, we use t-SNE) to project both h(xitrain)

and h(xjtest) to a low dimensional space, and obtain x̄itrain = proj(h(xitrain)) and x̄jtest = proj(h(xjtest)).
The dataset after feature extraction and projection is denoted as X̄train and X̄test. Because x̄itrain and
x̄jtest are low dimensional, we can use kernel density estimation (KDE) to form empirical distri-
butions p̄train and p̄test for them. We use ptrain and ptest to denote the true distributions. Then, we
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approximate the K-L divergence between ptrain and ptest via a numerical integration of Eq.(3):

DKL(ptrain||ptest) ≈
∫
V

p̄train(x) log
p̄train(x)

p̄test(x)
dx, (3)

where p̄train(x) = 1
n

∑n
i=1K(x − x̄itrain;H) and p̄test(x) = 1

m

∑m
j=1K(x − x̄jtest;H) are the KDE

density functions. K is the kernel function (specifically, we use the Gaussian kernel) and H is the
bandwidth parameter automatically selected by Scott’s rule (Scott, 2015). V is chosen as a box
bounding all training and test data points. For a multi-class dataset, we compute the aforementioned
KDE and K-L divergence for each class separately. We should emphasize that this method only gives
us a rough characterization which might help us understand the limitations of adversarial training.
The true divergence between general training and test distributions in high dimensional space is not
accessible in our setting.

3.3 THE BLIND-SPOT ATTACK: A NEW CLASS OF ADVERSARIAL ATTACKS

Inspired by our findings of the negative correlation between the effectiveness of adversarial training
and the distance between a test image and training dataset, we identify a new class of adversarial
attacks called “blind-spot attacks”, where we find input images that are “far enough” from any
existing training examples such that:

• They are still drawn from the ground-truth data distribution (i.e. well recognized by humans)
and classified correctly by the model (within the generalization capability of the model);

• Adversarial training cannot provide good robustness properties on these images, and we can
easily find their adversarial examples with small distortions using a simple gradient based attack.

Importantly, blind-spot images are not adversarial images themselves. However, after performing
adversarial attacks, we can find their adversarial examples with small distortions, despite adversarial
training. In other words, we exploit the weakness in a model’s robust generalization capability.

We find that these blind-spots are prevalent and can be easily found without resorting to complex
generative models like in Song et al. (2018). For the MNIST dataset which Madry et al. (2018),
Wong & Kolter (2018) and Sinha et al. (2018) demonstrate the strongest defense results so far,
we propose a simple transformation to find the blind-spots in these models. We simply scale and
shift each pixel value. Suppose the input image x ∈ [−0.5, 0.5]d, we scale and shift each test data
example x element-wise to form a new example x′:

x′ = αx+ β, s.t. x′ ∈ [−0.5, 0.5]d

where α is a constant close to 1 and β is a constant close to 0. We make sure that the selection
of α and β will result in a x′ that is still in the valid input range [−0.5, 0.5]d. This transformation
effectively adjusts the contrast of the image, and/or adds a gray background to the image. We
then perform Carlini & Wagner’s attacks on these transformed images x′ to find their adversarial
examples x′adv. It is important that the blind-spot images x′ are still undoubtedly valid images; for
example, a digit that is slightly darker than the one in test set is still considered as a valid digit and can
be well recognized by humans. Also, we found that with appropriate α and β the accuracy of MNIST
and Fashion-MNIST models barely decreases; the model has enough generalization capability for
this set of slightly transformed images, yet their adversarial examples can be easily found.

Although the blind-spot attack is beyond the threat model considered in adversarial training (e.g. `∞
norm constrained perturbations), our argument is that adversarial training (and some other defense
methods with certifications only on training examples such as Wong & Kolter (2018)) are unlikely
to scale well to datasets that lie in a high dimensional manifold, as the limited training data only
guarantees robustness near these training examples. The blind-spots are almost inevitable in high
dimensional case. For example, in CIFAR-10, about 50% of test images are already in blind-spots
and their adversarial examples with small distortions can be trivially found despite adversarial train-
ing. Using data augmentation may eliminate some blind-spots, however for high dimensional data
it is impossible to enumerate all possible inputs due to the curse of dimensionality.
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4 EXPERIMENTS

In this section we present our experimental results on adversarially trained models by Madry et al.
(2018). Results on certified defense models by Wong & Kolter (2018); Wong et al. (2018) and Sinha
et al. (2018) are very similar and are demonstrated in Section 6.4 in the Appendix.

4.1 SETUP

We conduct experiments on adversarially trained models by Madry et al. (2018) on four datasets:
MNIST, Fashion MNIST, and CIFAR-10. For MNIST, we use the “secret” model release for the
MNIST attack challenge3. For CIFAR-10, we use the public “adversarially trained” model4. For
Fashion MNIST, we train our own model with the same model structure and parameters as the
robust MNIST model, except that the iterative adversary is allowed to perturb each pixel by at most
ε = 0.1 as a larger ε will significantly reduce model accuracy.

We use our presented simple blind-spot attack in Section 3.3 to find blind-spot images, and use
Carlini & Wagner’s (C&W’s) `∞ attack (Carlini & Wagner (2017)) to find their adversarial exam-
ples. We found that C&W’s attacks generally find adversarial examples with smaller perturbations
than projected gradient descent (PGD). To avoid gradient masking, we initial our attacks using two
schemes: (1) from the original image plus a random Gaussian noise with a standard deviation of
0.2; (2) from a blank gray image where all pixels are initialized as 0. A successful attack is defined
as finding an perturbed example that changes the model’s classification and the `∞ distortion is less
than a given ε used for robust training. For MNIST, ε = 0.3; for Fashion-MNIST, ε = 0.1; and for
CIFAR, ε = 8/255. All input images are normalized to [−0.5, 0.5].

4.2 EFFECTIVENESS OF ADVERSARIAL TRAINING AND THE DISTANCE TO TRAINING SET

In this set of experiments, we build a connection between attack success rate on adversarially trained
models and the distance between a test example and the whole training set. We use the metric
defined in Section 3.1 to measure this distance. For MNIST and Fashion-MNIST, the outputs of
the first fully connected layer (after all convolutional layers) are used as the neural feature extractor
h(x); for CIFAR, we use the outputs of the last average pooling layer. We consider both naturally
and adversarially trained networks as the neural feature extractor, with p = 2 and k = 5. The results
are shown in Figure 1, 2 and 3. For each test set, after obtaining the distance of each test point, we
bin the test data points based on their distances to the training set and show them in the histogram at
the bottom half of each figure (red). The top half of each figure (blue) represents the attack success
rates for the test images in the corresponding bins. Some bars on the right are missing because
there are too few points in the corresponding bins. We only attack correctly classified images and
only calculate success rate on those images. Note that we should not compare the distances shown
between the left and right columns of Figures 1, 2 and 3 because they are obtained using different
embeddings, however the overall trends are very similar.
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Figure 1: Attack success rate and distance distribution of MNIST model in Madry et al. (2018). Up-
per: C&W `∞ attack success rates, ε = 0.3. Lower: The distribution of the average `2 (embedding
space) distance between the images in test set and the top-5 nearest images in training set.

3 https://github.com/MadryLab/mnist_challenge 4 https://github.com/MadryLab/cifar10_challenge
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Figure 2: Attack success rate and distance distribution of Fashion MNIST model trained us-
ing Madry et al. (2018). Upper: C&W `∞ attack success rate, ε = 0.1. Lower: The distribution
of the average `2 (embedding space) distance between the images in test set and the top-5 nearest
images in training set.
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(b) Using naturally trained model as h(x)

Figure 3: Attack success rate and distance distribution of CIFAR model in Madry et al. (2018). Up-
per: C&W `∞ attack success rate, ε = 8/255. Lower: The distribution of the average `2 (embedding
space) distance between the images in test set and the top-5 nearest images in training set.

As we can observe in all three figures, most successful attacks in test sets for adversarially trained
networks concentrate on the right hand side of the distance distribution, and the success rates tend
to grow when the distance is increasing. The trend is independent of the feature extractor being
used (naturally or adversarially trained). The strong correlation between attack success rates and
the distance from a test point to the training dataset supports our hypothesis that adversarial training
tends to fail on test points that are far enough from the training data distribution.

4.3 K-L DIVERGENCE BETWEEN TRAINING AND TEST SETS VS ATTACK SUCCESS RATE

To quantify the overall distance between the training and the test set, we approximately calculate the
K-L divergence between the KDE distributions of training set and test set for each class according
to Eq. (3). Then, for each dataset we take the average K-L divergence across all classes, as shown
in Table 1. We use both adversarially trained and naturally trained networks as feature extractors
h(x). Additionally, we also calculate the average normalized distance by calculating the `2 distance
between each test point and the training set as in Section 4.2, and taking the average over all test
points. To compare between different datasets, we normalize each element of the feature represen-
tation h(x) to mean 0 and variance 1. We average this distance among all test points and divide it
by
√
dt to normalize the dimension, where dt is the dimension of the feature representation h(·).

Clearly, Fashion-MNIST is the dataset with the strongest defense as measured by the attack success
rates on test set, and its K-L divergence is also the smallest. For CIFAR, the divergence between
training and test sets is significantly larger, and adversarial training only has limited success. The
hardness of training a robust model for MNIST is in between Fashion-MNIST and CIFAR. Another
important observation is that the effectiveness of adversarial training does not depend on the accu-
racy; for Fashion-MNIST, classification is harder as the data is more complicated than MNIST, but
training a robust Fashion-MNIST model is easier as the data distribution is more concentrated and
adversarial training has less “blind-spots”.
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Table 1: Average K-L divergence and normalized `2 distance between training and test sets across
all classes. We use both adversarially trained networks (adv.) and naturally trained networks (nat.)
as our feature extractors when computing K-L divergence. Note that we only attack images that are
correctly classified and report success rate on those images.

Dataset Avg K-L div.
(adv. trained)

Avg K-L div.
(nat. trained)

Avg. normalized
`2 Distance

Attack Success
Rates (Test Set)

Test Accuracy

Fashion-MNIST 0.046 0.058 0.4233 6.4% 86.1%
MNIST 0.119 0.095 0.3993 9.7% 98.2%
CIFAR 0.571 0.143 0.6715 37.9% 87.0%

4.4 BLIND-SPOT ATTACK ON MNIST AND FASHION MNIST

In this section we focus on applying the proposed blind-spot attack to MNIST and Fashion MNIST.
As mentioned in Section 3.3, for an image x from the test set, the blind-spot image x′ = αx + β
obtained by scaling and shifting is considered as a new natural image, and we use the C&W `∞
attack to craft an adversarial image x′adv for x′. The attack distortion is calculated as the `∞ distance
between x′ and x′adv. For MNIST, ε = 0.3 so we set the scaling factor to α = {1.0, 0.9, 0.8, 0.7}.
For Fashion-MNIST, ε = 0.1 so we set the scaling factor to α = {1.0, 0.95, 0.9}. We set β to either
0 or a small constant. The case α = 1.0, β = 0.0 represents the original test set images. We report
the model’s accuracy and attack success rates for each choice of α and β in Table 2 and Table 3.
Because we scale the image by a factor of α, we also set a stricter criterion of success – the `∞
perturbation must be less than αε to be counted as a successful attack. For MNIST, ε = 0.3 and for
Fashion-MNIST, ε = 0.1. We report both success criterion, ε and αε in Tables 2 and 3.

(a)
α = 1.0
β = 0.0
dist= 0.218

(b)
α = 0.9
β = 0.0
dist= 0.099

(c)
α = 0.9
β = 0.05
dist= 0.070

(d)
α = 1.0
β = 0.0
dist= 0.338

(e)
α = 0.8
β = 0.0
dist= 0.229

(f)
α = 0.8
β = 0.1
dist= 0.129

Figure 4: Blind-spot attacks on Fashion-MNIST and MNIST data with scaling and shifting on ad-
versarially trained models (Madry et al., 2018). First row contains input images after scaling and
shifting and the second row contains the found adversarial examples. “dist” represents the `∞ dis-
tortion of adversarial perturbations. The first rows of figures (a) and (d) represent the original test
set images (α = 1.0, β = 0.0); first rows of figures (b), (c), (e), and (f) illustrate the images after
transformation. Adversarial examples for these transformed images have small distortions.

We first observe that for all pairs of α and β the transformation does not affect the models’ test
accuracy at all. The adversarially trained model classifies these slightly scaled and shifted images
very well, with test accuracy equivalent to the original test set. Visual comparisons in Figure 4 show

α, β α = 1.0 α = 0.9 α = 0.8 α = 0.7
β = 0 β = 0 β = 0.05 β = 0 β = 0.1 β = 0 β = 0.15

acc 98.2% 98.3% 98.5% 98.4% 98.5% 98.4% 98.1%
th. 0.3 0.3 0.27 0.3 0.27 0.3 0.24 0.3 0.24 0.3 0.21 0.3 0.21
suc.
rate 9.70% 75.20% 15.20% 93.65% 82.50% 94.85% 52.30% 99.55% 95.45% 98.60% 82.45% 99.95% 99.95%

Table 2: Attack success rate (suc. rate) and test accuracy (acc) of scaled and shifted MNIST. An
attack is considered successful if its `∞ distortion is less than thresholds (th.) 0.3 or 0.3α.
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α, β α = 1.0 α = 0.95 α = 0.9
β = 0 β = 0 β = 0.025 β = 0 β = 0.05

acc 86.1% 86.1% 86.4% 86.1% 86.2%
th. 0.1 0.1 0.095 0.1 0.095 0.1 0.09 0.1 0.09

suc. rate 6.40% 11.25% 9.05% 22.55% 18.55% 25.70% 19.15% 62.60% 55.95%

Table 3: Attack success rate (suc. rate) and test accuracy (acc) of scaled and shifted Fashion-MNIST.
An attack is considered as successful if its `∞ distortion is less than threshold (th.) 0.1 or 0.1α.
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(a) MNIST
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(b) Fashion-MNIST

Figure 5: The distribution of the `2 distance between the original and scaled images in test set and
the top-5 nearest images (k = 5) in training set using the distance metric defined in Eq. (2).

that when α is close to 1 and β is close to 0, it is hard to distinguish the transformed images from the
original images. On the other hand, according to Tables 2 and 3, the attack success rates for those
transformed test images are significantly higher than the original test images, for both the original
criterion ε and the stricter criterion αε. In Figure 4, we can see that the `∞ adversarial perturbation
required is much smaller than the original image after the transformation. Thus, the proposed scale
and shift transformations indeed move test images into blind-spots. More figures are in Appendix.

One might think that we can generally detect blind-spot attacks by observing their distances to the
training dataset, using a metric similar to Eq. (2). Thus, we plot histograms for the distances between
tests points and training dataset, for both original test images and those slightly transformed ones in
Figure 5. We set α = 0.7, β = 0 for MNIST and α = 0.9, β = 0 for Fashion-MNIST. Unfortunately,
the differences in distance histograms for these blind-spot images are so tiny that we cannot reliably
detect the change, yet the robustness property drastically changes on these transformed images.

5 CONCLUSION

In this paper, we observe that the effectiveness of adversarial training is highly correlated with the
characteristics of the dataset, and data points that are far enough from the distribution of training data
are prone to adversarial attacks despite adversarial training. Following this observation, we defined
a new class of attacks called “blind-spot attack” and proposed a simple scale-and-shift scheme for
conducting blind-spot attacks on adversarially trained MNIST and Fashion MNIST datasets with
high success rates. Our findings suggest that adversarial training can be challenging due to the
prevalence of blind-spots in high dimensional datasets.
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sander Mądry, Jelani Nelson, Eric Price, Ilya Razenshteyn, Aviad Rubinstein, Ludwig Schmidt and
Pengchuan Zhang for fruitful discussions. We also thank Eric Wong for kindly providing us with
pre-trained models to perform our experiments.

9



Published as a conference paper at ICLR 2019

REFERENCES

Anish Athalye and Ilya Sutskever. Synthesizing robust adversarial examples. arXiv preprint
arXiv:1707.07397, 2017.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples. International Conference on Machine
Learning (ICML), 2018.

Sébastien Bubeck, Yin Tat Lee, Eric Price, and Ilya Razenshteyn. Adversarial examples from cryp-
tographic pseudo-random generators. arXiv preprint arXiv:1811.06418, 2018a.

Sébastien Bubeck, Eric Price, and Ilya Razenshteyn. Adversarial examples from computational
constraints. arXiv preprint arXiv:1805.10204, 2018b.

Jacob Buckman, Aurko Roy, Colin Raffel, and Ian Goodfellow. Thermometer encoding: One hot
way to resist adversarial examples. ICLR, 2018.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017
IEEE Symposium on Security and Privacy (SP), pp. 39–57. IEEE, 2017.

Daniel Cullina, Arjun Nitin Bhagoji, and Prateek Mittal. Pac-learning in the presence of evasion
adversaries. arXiv preprint arXiv:1806.01471, 2018.

Guneet S Dhillon, Kamyar Azizzadenesheli, Zachary C Lipton, Jeremy Bernstein, Jean Kossaifi,
Aran Khanna, and Anima Anandkumar. Stochastic activation pruning for robust adversarial de-
fense. arXiv preprint arXiv:1803.01442, 2018.

Ilias Diakonikolas, Gautam Kamath, Daniel M Kane, Jerry Li, Ankur Moitra, and Alistair Stewart.
Robustly learning a gaussian: Getting optimal error, efficiently. In Proceedings of the Twenty-
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 2683–2702. Society
for Industrial and Applied Mathematics, 2018.

Krishnamurthy Dvijotham, Robert Stanforth, Sven Gowal, Timothy Mann, and Pushmeet Kohli. A
dual approach to scalable verification of deep networks. UAI, 2018.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples (2014). arXiv preprint arXiv:1412.6572.

Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens van der Maaten. Countering adversarial
images using input transformations. arXiv preprint arXiv:1711.00117, 2017.

Moritz Hardt and Eric Price. Tight bounds for learning a mixture of two gaussians. In Proceedings
of the forty-seventh annual ACM symposium on Theory of computing, pp. 753–760. ACM, 2015.

Matthias Hein and Maksym Andriushchenko. Formal guarantees on the robustness of a classifier
against adversarial manipulation. In Advances in Neural Information Processing Systems (NIPS),
pp. 2266–2276, 2017.

Samuel B Hopkins and Jerry Li. Mixture models, robustness, and sum of squares proofs. In Pro-
ceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pp. 1021–1034.
ACM, 2018.

Sebastian Houben, Johannes Stallkamp, Jan Salmen, Marc Schlipsing, and Christian Igel. Detec-
tion of traffic signs in real-world images: The German Traffic Sign Detection Benchmark. In
International Joint Conference on Neural Networks, number 1288, 2013.

Junlin Hu, Jiwen Lu, and Yap-Peng Tan. Discriminative deep metric learning for face verification in
the wild. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1875–1882, 2014.

Junlin Hu, Jiwen Lu, and Yap-Peng Tan. Deep transfer metric learning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 325–333, 2015.

10



Published as a conference paper at ICLR 2019

Adam Tauman Kalai, Ankur Moitra, and Gregory Valiant. Efficiently learning mixtures of two
gaussians. In Proceedings of the forty-second ACM symposium on Theory of computing, pp.
553–562. ACM, 2010.

Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Reluplex: An
efficient smt solver for verifying deep neural networks. In International Conference on Computer
Aided Verification, pp. 97–117. Springer, 2017.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale. arXiv
preprint arXiv:1611.01236, 2016.

Xuanqing Liu, Minhao Cheng, Huan Zhang, and Cho-Jui Hsieh. Towards robust neural networks
via random self-ensemble. ECCV, 2018.

Xingjun Ma, Bo Li, Yisen Wang, Sarah M Erfani, Sudanthi Wijewickrema, Michael E Houle, Grant
Schoenebeck, Dawn Song, and James Bailey. Characterizing adversarial subspaces using local
intrinsic dimensionality. arXiv preprint arXiv:1801.02613, 2018.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605, 2008.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. ICLR, arXiv preprint
arXiv:1706.06083, 2018.

Saeed Mahloujifar, Dimitrios I Diochnos, and Mohammad Mahmoody. The curse of concentration
in robust learning: Evasion and poisoning attacks from concentration of measure. arXiv preprint
arXiv:1809.03063, 2018.

Leland McInnes and John Healy. Umap: Uniform manifold approximation and projection for di-
mension reduction. arXiv preprint arXiv:1802.03426, 2018.

Ankur Moitra and Gregory Valiant. Settling the polynomial learnability of mixtures of gaussians. In
Foundations of Computer Science (FOCS), 2010 51st Annual IEEE Symposium on, pp. 93–102.
IEEE, 2010.

Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami. Distillation as a
defense to adversarial perturbations against deep neural networks. In 2016 IEEE Symposium on
Security and Privacy (SP), pp. 582–597. IEEE, 2016.

Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Certified defenses against adversarial exam-
ples. arXiv preprint arXiv:1801.09344, 2018.

Pouya Samangouei, Maya Kabkab, and Rama Chellappa. Defense-GAN: Protecting classifiers
against adversarial attacks using generative models. arXiv preprint arXiv:1805.06605, 2018.

Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, and Aleksander Madry. Ad-
versarially robust generalization requires more data. NIPS, pp. 5019–5031, 2018a.

Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, and Aleksander Mądry. Ad-
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6 APPENDIX

6.1 DISTANCE DISTRIBUTIONS UNDER DIFFERENT NEAREST NEIGHBOUR PARAMETERS k

As discussed in Section 3.1, we use k-nearest neighbour in embedding space to measure the distance
between a test example and the training set. In Section 4.2 we use k = 5. In this section we show
that the choice of k does not have much influence on our results. We use the adversarially trained
model on the CIFAR dataset as an example. In Figures 6, 7 and 8 we choose k = 10, 100, 1000,
respectively. The results are similar to those we have shown in Figure 3: a strong correlation between
attack success rates and the distance from a test point to the training dataset.
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Figure 6: Attack success rates and distance distribution of the adversarially trained CIFAR model
by Madry et al. (2018). Upper: C&W `∞ attack success rate, ε = 8/255. Lower: distribution of
the average `2 (embedding space) distance between the images in test set and the top-10 (k = 10)
nearest images in training set.
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(a) Using adversarially trained model as h(x)
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Figure 7: Attack success rates and distance distribution of the adversarially trained CIFAR model
by Madry et al. (2018). Upper: C&W `∞ attack success rate, ε = 8/255. Lower: distribution of the
average `2 (embedding space) distance between the images in test set and the top-100 (k = 100)
nearest images in training set.

6.2 GERMAN TRAFFIC SIGN (GTS) DATASET

We also studied the German Traffic Sign (GTS) (Houben et al., 2013) dataset. For GTS, we train
our own model with the same model structure and parameters as the adversarially trained CIFAR
model (Madry et al., 2018). We set ε = 8/255 for adversarial training with PGD, and also use the
same ε as the threshold of success. The results are shown in Figure 9. The GTS model behaves
similarly to the CIFAR model: attack success rates are much higher when the distances between the
test example and the training dataset are larger.

6.3 MORE VISUALIZATION RESULTS

We demonstrate more MNIST and Fashion-MNIST visualizations in Figure 10.
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(a) Using adversarially trained model as h(x)
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Figure 8: Attack success rates and distance distribution of the adversarially trained CIFAR model
by Madry et al. (2018). Upper: C&W `∞ attack success rate, ε = 8/255. Lower: distribution of the
average `2 (embedding space) distance between the images in test set and the top-1000 (k = 1000)
nearest images in training set.
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Figure 9: Attack success rate and distance distribution of GTS in Madry et al. (2018). Upper: C&W
`∞ attack success rate, ε = 8/255. Lower: distribution of the average `2 (embedding space) distance
between the images in test set and the top-5 nearest images in training set.

6.4 RESULTS ON OTHER ROBUST TRAINING METHODS

In this section we demonstrate our experimental results on two other state-of-the-art certified de-
fense methods, including convex adversarial polytope by Wong et al. (2018) and Wong & Kolter
(2018), and distributional robust optimization based adversarial training by Sinha et al. (2018). Dif-
ferent from the adversarial training by Madry et al. (2018), these two methods can provide a formal
certification on the robustness of the model and provably improve robustness on the training dataset.
However, they cannot practically guarantee non-trivial robustness on test data. We did not include
other certified defenses like Raghunathan et al. (2018) and Hein & Andriushchenko (2017) because
they are not applicable to multi-layer networks. For all defenses, we use their official implementa-
tions and pretrained models (if available). Figure 11 shows the results on CIFAR using the small
CIFAR model in Wong et al. (2018). Tables 4 and 5 show the blind-spot attack results on MNIST
and Fashion-MNIST for robust models in Wong & Kolter (2018) and Sinha et al. (2018), respec-
tively. Figure 12 shows the blind-spot attack examples on Madry et al. (2018), Wong & Kolter
(2018) and Sinha et al. (2018).
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(a)
α = 1.0
β = 0.0
dist= 0.363

(b)
α = 0.9
β = 0.0
dist= 0.097

(c)
α = 0.9
β = 0.05
dist= 0.053

(d)
α = 1.0
β = 0.0
dist= 0.342

(e)
α = 0.8
β = 0.0
dist= 0.227

(f)
α = 0.8
β = 0.1
dist= 0.123

(g)
α = 1.0
β = 0.0
dist= 0.409

(h)
α = 0.9
β = 0.0
dist= 0.093

(i)
α = 0.9
β = 0.041
dist= 0.053

(j)
α = 1.0
β = 0.0
dist= 0.327

(k)
α = 0.8
β = 0.0
dist= 0.220

(l)
α = 0.8
β = 0.1
dist= 0.140

Figure 10: Blind-spot attacks on Fashion-MNIST and MNIST data with scaling and shifting in
Madry et al. (2018). First row contains input images after scaling and shifting and the second
row contains the found adversarial examples. “dist” represents the `∞ distortion of adversarial
perturbations. The first rows of figures (a), (d), (g) and (j) represent the original test set images
(α = 1.0, β = 0.0); first rows of figures (b), (c), (e), (f), (h), (i), (k) and (l) illustrate the images
after transformation. Adversarial examples for these transformed images can be found with small
distortions.
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Figure 11: Attack success rates and distance distribution of the small CIFAR-10 model in Wong
et al. (2018). Lower: the histogram of the average `2 (in embedding space) distance between the
images in test set and the top-5 nearest images in training set. Upper: the C&W `∞ attack success
rate with success criterion ε = 8/255.

MNIST

α, β α = 1.0 α = 0.95 α = 0.9
β = 0 β = 0 β = 0.025 β = 0 β = 0.05

Accuracy 97.5% 97.5% 97.5% 97.5% 97.4%
Success criterion (`∞ norm) 0.1 0.1 0.095 0.1 0.095 0.1 0.09 0.1 0.09

Success rates 2.15% 5.55% 4.35% 28.5% 17.55% 30.1% 15.4% 86.35% 80.7%

Fashion-MNIST

α, β α = 1.0 α = 0.95 α = 0.9
β = 0 β = 0 β = 0.025 β = 0 β = 0.05

Accuracy 79.1% 79.1% 79.4% 79.2% 79.2%
Success criterion (`∞ norm) 0.1 0.1 0.095 0.1 0.095 0.1 0.09 0.1 0.09

Success rates 6.85% 15.45% 9.3% 39.75% 29.35% 34.25% 24.65% 69.95% 65.2%

Table 4: Blind-spot attack on MNIST and Fashion-MNIST for robust models by Wong & Kolter
(2018)
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MNIST

α, β α = 1.0 α = 0.95 α = 0.9
β = 0 β = 0 β = 0.025 β = 0 β = 0.05

Accuracy 98.7% 98.5% 98.6% 98.7% 98.4%
Success criterion (`2 norm) 2 2 1.9 2 1.9 2 1.8 2 1.8

Success rates 12.2% 27.05% 22.95% 36.15% 30.9% 45.25% 31.55% 58.9% 45.6%

Fashion-MNIST

α, β α = 1.0 α = 0.95 α = 0.9
β = 0 β = 0 β = 0.025 β = 0 β = 0.05

Accuracy 88.5% 88.3% 88.2% 88.1% 87.8%
Success criterion (`2 norm) 2 2 1.9 2 1.9 2 1.8 2 1.8

Success rates 31.4% 46.3% 41.1% 58 % 53.3% 61.2% 51.8% 69.1% 62.85%

Table 5: Blind-spot attack on MNIST and Fashion-MNIST for robust models by Sinha et al. (2018).
Note that we use `2 distortion for this model as it is the threat model under study in their work.

Madry et al. (2018) Sinha et al. (2018) Wong & Kolter (2018)

α = 1.0
β = 0.0
d = 0.218

α = 0.9
β = 0.0
d = 0.099

α = 0.9
β = 0.05
d = 0.070

α = 1.0
β = 0.0
d = 2.10

α = 0.9
β = 0.0
d = 1.59

α = 0.9
β = 0.05
d = 1.32

α = 1.0
β = 0.0
d = 0.214

α = 0.9
β = 0.0
d = 0.146

α = 0.9
β = 0.05
d = 0.096

α = 1.0
β = 0.0
d = 0.338

α = 0.8
β = 0.0
d = 0.229

α = 0.8
β = 0.1
d = 0.129

α = 1.0
β = 0.0
d = 2.62

α = 0.9
β = 0.0
d = 1.88

α = 0.9
β = 0.05
d = 1.58

α = 1.0
β = 0.0
d = 0.153

α = 0.9
β = 0.0
d = 0.144

α = 0.9
β = 0.05
d = 0.057

Figure 12: Blind-spot attacks on Fashion-MNIST and MNIST datasets with scaling and shifting.
For each group, the first row contains input images transformed with different scaling and shifting
parameter α, β (α = 1.0, β = 0.0 is the original image) and the second row contains the found ad-
versarial examples. d represents the distortion of adversarial perturbations. For models from Madry
et al. (2018) and Wong & Kolter (2018) we use `∞ norm and for models from Sinha et al. (2018) we
use `2 norm. Adversarial examples for these transformed images can be found with small distortions
d.
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