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Abstract: We propose a digital incoherent optical neural network architecture using the pas-
sive data routing and copying capabilities of optics for artificial neural network acceleration. We
demonstrate a proof-of-concept experiment and analyze optimal use cases. © 2020 The Author(s)

Artificial deep neural networks (DNNs) have revolutionized many fields, including classification, translation and
prediction [1]. DNNs’ recent surge in popularity is chiefly due to improvements in accuracy achieved thanks to the
availability of larger datasets and more compute power. A central challenge now is to reduce energy consumption
and increase throughput by developing custom hardware [2]. In datacenters today, a significant amount of DNN tasks
revolve around matrix multiplication [3], where the bottlenecks are in data movement and memory access [2].

Optical neural networks (ONNs) have been proposed for efficient matrix multiplication by harnessing the high-
speed, low-energy data routing capabilities of optics [4, 5]. However, scaling up the number of neurons in a recon-
figurable architecture remains a challenge for ONNs. We have proposed a large-scale, reconfigurable ONN based on
homodyne detection (HD-ONN) [6]. By using a combination of massive optical fan-out and interference-based pho-
toelectric multiplication, we estimated that the HD-ONN could achieve potential orders-of-magnitude energy savings
and increased throughput compared with state-of-the-art, all-electronic processors. However, error buildup may limit
the depth of this system, as well as the other analog ONNs mentioned above [4, 5].
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Fig. 1. (a) Fully-connected deep neural network (FC-NN). (b) Batch processing of FC-NN. (c) Ex-
ample implementation of the digital optical neural network, where bits are streamed in serially, and
data delivery to multipliers is achieved with passive optical fan-out. (d) Custom CMOS receiver.

We present a digital ONN (DONN) that solves this error propagation problem with digital encoding into incoherent
light for high-efficiency matrix multiplication. As illustrated in Fig. 1, optical elements deliver data from memory to
multipliers, where each activation (weight) is passively copied N (B) times, thus greatly reducing data transfer and
copying by electrical wire. Contrary to the analog ONNs described above, multiply-accumulate operations (MACs)
are performed electronically. To demonstrate the feasibility of optical fan-out, we performed a proof-of-concept exper-
iment shown in Fig. 2. As stand-ins for µLED arrays, a red (blue) LED illuminated one row (column) of a DMD with
10.8 µm-length mirrors to transmit the activations (weights). A cylindrical lens then fanned out each source pixel to a
full column (row) of a camera with 10 µm-length square pixels. We ran a custom 3-layer fully-connected network on



the DONN, and found that there was no loss of classification accuracy on the MNIST dataset with respect to a GPU.
In the DONN, potential energy savings arise from the interconnect costs. Interconnect energy per bit is the sum of

the energy required to flip a transistor gate and to charge the parasitic capacitances [7]:

E = 1
4 (Ctransistor +Cphotodetector +

Cwire
µm ·Lwire) ·V 2

DD (1)

The experimental electronic values and theoretical approximations for the optical components are reported in Table 1
(shot and thermal noise are negligible here [7], and we assume the frequency of the photons matches the bandgap of
silicon and that there is 100% conversion efficiency). The crossover point where the optical interconnect energy drops
below the electrical energy occurs when Lwire ≥ 1 µm (=Cphotodetector/

Cwire
µm ).

Table 1. Electronic and Optical Interconnect Energies [7]

Ctransistor Cwire/µm Cphotodetector VDD Lwire E
Electrical
Optical 0.05 fF 0.1 fF/µm

-
0.1 fF 0.7 V

x µm
small

0.123(0.05 + 0.1 x) fJ
0.0184 fJ

The electronic multipliers in a large specialized array are separated by roughly 35 µm [3], where charging a long
wire that transports data to a long row of multipliers provides an effective electrical fan-out. In this case, the DONN
theoretically provides up to an order of magnitude improvement in interconnect energy. That being said, we recognize
that this is an optimistic estimate for the optical energy, and furthermore, that interconnects are not always the largest
consumers of energy for small matrix multiplication with regular memory-access patterns. However, as DNN sizes
are growing at an exponential rate [8], large-scale processing is beginning to require many clusters of multipliers
(or chiplets), where chiplet-to-chiplet communication consumes 0.82-1.75pJ/bit [9]. Here, as well as in DNNs with
irregular memory access patterns, the DONN becomes even more advantageous, as the energy consumption takes
place in the light generation and detection as opposed to the distance travelled.

In conclusion, we have presented a digital incoherent optical neural network and analyzed its energy consumption
compared to all-electronic DNN hardware, demonstrating its potential energy efficiency gains at a large scale. Further-
more, as shown in a proof-of-concept experiment, this architecture does not suffer from analog error propagation.
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Fig. 2. (a) Experimental implementation of the digital optical neural network with cylindrical lenses
for passive fan-out. (b) Image on detector. (c) One line of image showing pixels classified as 1 (red),
pixels classified as 0 (black) and threshold (green).
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