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How to Evaluate Deep Neural Network Processors
TOPS/W (Alone) Considered Harmful
Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, Joel S. Emer

Abstract—A significant amount of specialized hardware has
been developed for processing deep neural networks (DNNs) in
both academia and industry. This article aims to highlight the key
concepts required to evaluate and compare these DNN processors.
We will discuss existing challenges such as the flexibility and
scalability needed to support a wide range of neural networks,
as well as design considerations for both the DNN processors and
the DNN models themselves. We will also describe specific metrics
that can be used to evaluate and compare existing solutions.

This article is based on the tutorial entitled “How to Under-
stand and Evaluate Deep Learning Processors” that was given at
the 2020 International Solid-State Circuits Conference (ISSCC),
and excerpts from the book on “Efficient Processing of Deep
Neural Networks”.

I. INTRODUCTION

Over the past few years, there has been a significant amount
of research on enabling the efficient processing of deep neural
networks (DNNs). The challenge of efficient DNN processing
depends on balancing multiple objectives:

• high performance (including accuracy) and efficiency
(including cost),

• enough flexibility to cater to a wide and rapidly changing
range of workloads, and

• good integration with existing software frameworks.
DNN computations are composed of several processing

layers (Figure 1), where for many layers the main computation
is a weighted sum; in other words, the main computation
for DNN processing is often a multiply-accumulate (MAC)
operation. The arrangement of the MAC operations within a
layer is defined by the layer shape; for instance, Table I and
Figure 2 highlight the shape parameters for layers used in
convolutional neural networks (CNNs), which are a popular
type of DNN. Because the shape parameters can vary across
layers, DNNs come in a wide variety of shapes and sizes
depending on the application.1 This variety is one of the
motivations for flexibility, and causes the objectives listed
above to be highly interrelated.

Figure 3 illustrates the hardware architecture of a typical
DNN processor, which is comprised of an array of processing
elements (PEs), where each PE contains MAC units to perform
the computation and optionally some local storage, and an
inter-PE communication network. The entire PE array is also
connected via an on-chip network to a large buffer (GLB),
which in turn is connected off-chip to DRAM memory. DNN

1The DNN research community often refers to the shape and size of a DNN
as its ‘network architecture’. However, to avoid confusion with the use of the
word ‘architecture’ by the hardware community, we will talk about ‘DNN
models’ and their shape and size in this article.
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Fig. 1. Example of image classification using a deep neural network. (Figure
adapted from [1].) The deep neural network is composed of multiple layers,
and the number of layer is referred to as the depth of the network. Note that
the extracted features go from low level to high level as we go deeper into
the network.
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Fig. 2. The shape parameters of layers used in DNNs.

Shape Parameter Description

N batch size of 3-D feature map
M # of 3-D filters / # of channels of output

feature map (output channels)
C # of channels of filter / input feature map

(input channels)
H/W spatial height/width of input feature map
R/S spatial height/width of filter
P/Q spatial height/width of output feature map

TABLE I
THE SHAPE PARAMETERS FOR LAYERS USED IN DNNS.
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Fig. 3. Typical hardware architecture of a DNN processor.

processor designs tend to vary in terms of the number of PEs,
the number of levels in the memory hierarchy, the amount
of storage at each level, and how the PEs and memory are
connected through the on-chip network.

Given the combination of such hardware and the associated
DNN models, it is important to discuss the key metrics
that one should consider when comparing and evaluating
the strengths and weaknesses of different designs. They can
also be used to evaluate proposed techniques, and should
be incorporated into design considerations. While efficiency
is often only associated with the number of operations per
second per Watt (e.g., floating-point operations per second
per Watt as FLOPS/W or tera-operations per second per Watt
as TOPS/W), it is actually composed of many more metrics
including accuracy, throughput, latency, energy consumption,
power consumption, cost, flexibility, and scalability.2 Reporting
a comprehensive set of these metrics is important in order to
provide a complete picture of the trade-offs made by a proposed
design or technique.

In this article, we will

• discuss the importance of each of these metrics;
• breakdown the factors that affect each metric. When

feasible, we will present equations that describe the
relationship between the factors and the metrics;

• describe how these metrics can be incorporated into design
considerations for both the DNN hardware and the DNN
model; and

• specify what should be reported for a given metric to
enable proper evaluation.

Finally, we will highlight tools that can be used to evaluate
some of these metrics early in the design process (to enable
rapid design exploration), and provide a case study on how one
might bring all these metrics together for a holistic evaluation
of a given approach. But first, we will discuss each of the
metrics.

2Note that TOPS/W efficiency is typically reported at (and often along
with) the peak performance in tera-operations per second (TOPS), which
gives the maximum efficiency since it assumes maximum utilization and thus
maximum amortization of overhead; however, this does not tell the complete
story because processors typically do not operate at their peak TOPS, and
their efficiency degrades at lower utilization. It is a well-known challenge to
achieve energy-proportional computing, where the efficiency stays constant
across performance [2].

MNIST ImageNet 

Fig. 4. MNIST (10 classes, 60k training, 10k testing) [4] versus ImageNet
(1000 classes, 1.3M training, 100k testing) [3] dataset.

II. ACCURACY

Accuracy is used to indicate the quality of the result for a
given task. The fact that DNNs can achieve state-of-the-art
accuracy on a wide range of tasks is one of the key reasons
driving the popularity and wide use of DNNs today. The units
used to measure accuracy depend on the task. For instance, for
image classification, accuracy is reported as the percentage of
correctly classified images, while for object detection, accuracy
is reported as the mean average precision (mAP), which is
related to the trade off between true positives, false positives,
and false negatives.

Factors that affect accuracy include the difficulty of the
task and dataset.3 For instance, classification on the ImageNet
dataset [3]) is much more difficult than on the MNIST
dataset [4] (Figure 4), and object detection is usually more
difficult than classification. As a result, a DNN model that
performs well on MNIST may not necessarily perform well
on ImageNet.

Achieving high accuracy on difficult tasks or datasets typi-
cally requires more complex DNN models (e.g., a larger number
of MAC operations and more distinct weights, increased
diversity in layer shapes, etc.), which can impact how efficiently
the hardware can process the DNN model.

Accuracy should therefore be interpreted in the context of the
difficulty of the task and dataset.4 Evaluating hardware using
well-studied, widely-used DNN models, tasks, and datasets
can allow one to better interpret the significance of the
accuracy metric. Recently, motivated by the impact of the
SPEC benchmarks for general purpose computing [5], several
industry and academic organizations have put together a broad
suite of DNN models, called MLPerf, to serve as a common
set of well-studied DNN models to evaluate the performance
and enable fair comparison of various software frameworks,
hardware architectures, and cloud platforms for both training
and inference of DNNs [6].5 The suite includes various types of
DNNs (e.g., convolutional neural networks (CNNs), recurrent
neural networks (RNNs), etc.) for a variety of tasks including
image classification, object identification, translation, speech-

3Ideally, robustness and fairness should be considered in conjunction with
accuracy, as there is also an interplay between these factors; however, these
are areas of on-going research and beyond the scope of this article.

4As an analogy, getting 9 out of 10 answers correct on a high school exam
is different than 9 out of 10 answers correct on a college-level exam. One
must look beyond the score and consider the difficulty of the exam.

5Earlier DNN benchmarking efforts including DeepBench [7] and Fathom [8]
have now been subsumed by MLPerf.
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to-text, recommendation, sentiment analysis, and reinforcement
learning.

III. THROUGHPUT AND LATENCY

Throughput is used to indicate the amount of data that can
be processed or the number of executions of a task that can
be completed in a given time period. High throughput is often
critical to an application. For instance, processing video at
30 frames per second is often necessary for delivering real-
time performance. For data analytics, high throughput means
that more data can be analyzed in a given amount of time.
As the amount of visual data is growing exponentially, high-
throughput big data analytics becomes increasingly important,
particularly if an action needs to be taken based on the analysis
(e.g., security or terrorist prevention; medical diagnosis or drug
discovery). Throughput is often generically reported as the
number of operations per second. In the case of inference,
throughput is reported as inferences per second.

Latency measures the time between when the input data
arrives to a system and when the result is generated. Low
latency is necessary for real-time interactive applications, such
as augmented reality, autonomous navigation, and robotics.
Latency is typically reported in seconds per inference.

Throughput and latency are often assumed to be directly
derivable from one another. However, they are actually quite
distinct. A prime example of this is the well-known approach
of batching input data (e.g., batching multiple images or
frames together for processing) to increase throughput since
it amortizes overhead, such as loading the weights; however,
batching also increases latency (e.g., at 30 frames per second
and a batch of 100 frames, some frames will experience at
least 3.3 second delay), which is not acceptable for real-time
applications, such as high-speed navigation where it would
reduce the time available for course correction. Thus achieving
low latency and high throughput simultaneously can sometimes
be at odds depending on the approach and both metrics should
be reported.6

There are several factors that affect throughput and latency.
In terms of throughput, the number of inferences per second
is affected by

inferences
second

=
operations

second
× 1

operations
inference

, (1)

where the number of operations per second is dictated by
both the DNN hardware and DNN model, while the number
of operations per inference is dictated by the DNN model.

6The phenomenon described here can also be understood using Little’s
Law [9] from queuing theory, where the relationship between average
throughput and average latency are related by the average number of tasks in
flight, as defined by

throughput =
tasks-in-flight

latency

A DNN-centric version of Little’s Law would have throughput measured
in inferences per second, latency measured in seconds, and inferences-in-
flight, as the tasks-in-flight equivalent, measured in the number of images in a
batch being processed simultaneously. This helps to explain why increasing the
number of inferences in flight to increase throughput may be counterproductive
because some techniques that increase the number of inferences in flight (e.g.,
batching) also increase latency.

When considering a system comprised of multiple processing
elements (PEs), where a PE corresponds to a simple or primitive
core that performs a single MAC operation, the number of
operations per second can be further decomposed as follows:

operations
second

=

(
1

cycles
operation

× cycles
second

)
︸ ︷︷ ︸

for a single PE

×number of PEs×utilization of PEs

(2)
The first term reflects the peak throughput of a single PE, the

second term reflects the amount of parallelism, while the last
term reflects degradation due to the inability of the architecture
to effectively utilize the PEs.

Since the main operation for processing DNNs is a MAC, we
will use number of operations and number of MAC operations
interchangeably.

One can increase the peak throughput of a single PE by
increasing the number of cycles per second, which corresponds
to a higher clock frequency achieved by reducing the critical
path at the circuit or micro-architectural level, or the number
of cycles per operations, which can be affected by the design
of the MAC (e.g., a bit-serial multi-cycle MAC would have
more cycles per operation).

While the above approaches increase the throughput of a
single PE, the overall throughput can be increased by increasing
the number of PEs, and thus the maximum number of MAC
operations that can be performed in parallel. The number of
PEs is dictated by the area of the PE and the area cost of the
system. If the area cost of the system is fixed, then increasing
the number of PEs requires either reducing the area per PE
or trading off on-chip storage area for more PEs. Reducing
on-chip storage, however, can affect the utilization of the PEs,
which we will discuss next.

Reducing the area per PE can also be achieved by reducing
the logic associated with delivering operands to a MAC.
This can be achieved by controlling multiple MACs with a
single piece of logic. This is analogous to the situation in
instruction-based systems, such as CPUs and GPUs, that reduce
instruction bookkeeping overhead by using large aggregate
instructions (e.g., single-instruction, multiple-data (SIMD),
vector instructions, single-instruction, multiple-threads (SIMT),
or tensor instructions), where a single instruction can be used
to initiate multiple operations.

The number of PEs and the peak throughput of a single PE
only indicate the theoretical maximum throughput (i.e., peak
performance) when all PEs are performing computation (100%
utilization). In reality, the achievable throughput depends on
the actual utilization of those PEs, which is affected by several
factors as follows:

utilization of PEs =
number of active PEs

number of PEs
×utilization of active PEs

(3)
The first term reflects the ability to distribute the workload

to PEs, while the second term reflects how efficiently those
active PEs are processing the workload.
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The number of active PEs is the number of PEs that receive
work7; therefore, it is desirable to distribute the workload to as
many PEs as possible. The ability to distribute the workload is
determined by the flexibility of the architecture, for instance
the on-chip network, to support the different layer shapes in a
DNN model as explored in [10, 11].

Within the constraints of the on-chip network, the number
of active PEs is also determined by the specific allocation of
work to PEs by the mapping process. The mapping process
involves the placement and scheduling in space and time of
every MAC operation (including the delivery of the appropriate
operands) onto the PEs. The mapper can be thought of as a
compiler for the DNN processor [12]. The mapping process on
layer-by-layer basis is explored in detail in [13–15]. Additional
challenges regarding the flexibility of mapping are discussed
in Section VI.

The utilization of the active PEs is largely dictated by the
timely delivery of work to the PEs such that the active PEs do
not become idle while waiting for the data to arrive. This can be
affected by the bandwidth and latency of the (on-chip and off-
chip) memory and network. The bandwidth requirements can
be affected by the amount of data reuse available in the DNN
model and the amount of data reuse that can be exploited by the
memory hierarchy and dataflow. The dataflow determines the
order of operations and where data is stored and reused. The
amount of data reuse can also be increased using a larger batch
size, which is one of the reasons why increasing batch size
can increase throughput. The challenge of data delivery and
memory bandwidth are discussed in [15, 16]. The utilization of
the active PEs can also be affected by the imbalance of work
allocated across PEs, which can occur when exploiting sparsity
(i.e., avoiding unnecessary work associated with multiplications
by zero); PEs with less work become idle and thus have lower
utilization.

There is also an interplay between the number of PEs and
the utilization of PEs. For instance, one way to reduce the
likelihood that a PE needs to wait for data is to store some data
locally near or within the PE. However, this requires increasing
the chip area allocated to on-chip storage, which, given a fixed
chip area, would reduce the number of PEs. Therefore, a key
design consideration is the area allocation between compute
(which increases the number of PEs) versus on-chip storage
(which increases the utilization of PEs).

The impact of these factors can be captured using Eyexam,
which is a systematic way of understanding the performance
limits for DNN processors as a function of specific characteris-
tics of the DNN model and processor design. Eyexam includes
and extends the well-known roofline model [17]. The roofline
model, as illustrated in Figure 5, relates average bandwidth
demand and peak computational ability to performance.

The goal of Eyexam is to provide a fine-grain performance
profile for a DNN processor. It is a sequential analysis
process that involves seven major steps as shown in Figure 6.
The process starts with the assumption that the architecture
has infinite processing parallelism, storage capacity and data

7The ratio of active PEs to the total number of PEs can be referred to as
the active PE percentage.

Performance
(ops/sec)

Operational Intensity
(ops/byte)

Inflection point
slope = BW

peak
perf.

BW-
Limited

Computation-
Limited

optimal
op. int.

Fig. 5. The roofline model. The peak operations per second is indicated
by the bold line; when the operation intensity, which dictates by amount of
compute per byte of data, is low, the operations per second is limited by the
data delivery. The design goal is to operate as close as possible to the peak
operations per second for the operation intensity of a given workload.

(MAC/cycle)

(MAC/data)

Step 1: maximum workload parallelism
Step 2: maximum dataflow parallelism

Step 3: # of act. PEs under a finite PE array size
Number of PEs

Step 4: # of act. PEs under fixed PE array dims.

peak
perf.

Step 5: # of act. PEs under fixed storage cap.

workload operational intensity

Step 6: lower act. PE utilization due to insuff. avg. BW
Step 7: lower act. PE utilization due to insuff. inst. BW

Slope = BW to only act. PE

Fig. 6. Impact of Eyexam steps on the roofline model.

bandwidth. Therefore, it has infinite performance (as measured
in MACs/cycle).

For each of the following steps, certain constraints are added
to reflect changes in the assumptions on the DNN processor
or workload. The associated performance loss can therefore
be attributed to that change, and the final performance at one
step becomes the upper-bound for the next step.

Step 1 (Layer Shape and Size): In this first step, we look
at the impact of the workload constraint, so that there is
all spatial (i.e., parallel) processing, and no temporal (i.e.,
serial) processing. Therefore, the performance upper bound is
determined by the finite size of the workload (i.e., the number
of MAC operations in the layer).

Step 2 (Dataflow): In this step, we specify the dataflow,
which determines the order of operations and where data is
stored and reused, and examine the impact of this architectural
constraint. Imposing a dataflow forces a serialization of
processing and reduces the performance upper bound, which
is the maximum parallelism of the dataflow.

Step 3 (Number of PEs): In this step, we restrict the system
to a finite number of PEs, and look at the impact of this
architectural constraint. A finite number of PEs can degrade
performance whenever there is more parallel work to do than
that number of PEs. In addition, some of the PEs will be idle
(i.e., reduce number of active PEs) if the amount of work is
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not an integer multiple of the number of PEs (i.e., the work
cannot be equally divided amongst the PEs).

Step 4 (Physical dimensions of the PE array): In this step,
we consider the physical dimensions of the PE array and data
delivery network (e.g., arranging 12 PEs as 3×4, 2×6 or 4×3,
etc.). The spatial partitioning and associated on-chip network
is often constrained per data type (e.g., input activation or filter
weight), which can cause additional performance loss because
the required data cannot be delivered to the PEs.

Step 5 (Storage Capacity): In this step, we consider the
impact of making the buffer storage finite capacity. Lack of
storage can limit parallelism when there is insufficient storage
to hold intermediate results, and thus degrade performance.

Step 6 (Data Bandwidth): In this step, we consider the
impact of a finite bandwidth for delivering data across the
different levels of the memory hierarchy. The amount of data
that needs to be transferred between each level of the memory
hierarchy for each step of computation and the available data
bandwidth determines if the PEs can be kept busy.

Step 7 (Varying Data Access Patterns): In this step, we
consider the impact of bandwidth varying across time due to
the dynamically changing data access patterns (Step 6 only
addresses average bandwidth). This includes ramp up time
to initially load values, and ramp down to drain values after
completion. There exist many common solutions to address this
issue, including using double buffering, but these can increase
area or reduce amount of reuse.

Table II summarizes the constraints applied at each step of
the Eyexam process.

Up until this point, we have discussion how hardware design
decisions impact performance (i.e., throughput and latency).
We will now discuss how the choice of DNN model can also
have an impact. Specifically, while the number of operations
per inference in Equation 1 depends on the DNN model, the
operations per second depends on both the DNN model and
the hardware. Thus, designing DNN models with efficient layer
shapes (also referred to efficient network architectures) (e.g.,
MobileNet [18]) can reduce the number of MAC operations in
the DNN model and consequently the number of operations
per inference. However, such DNN models can result in a wide
range of layer shapes, some of which may have poor utilization
of PEs and therefore reduce the overall operations per second,
as shown in Equation 2.

A deeper consideration of the operations per second, is
that all operations are not created equal and therefore cycles
per operation may not be a constant. For example, if we
consider the fact that anything multiplied by zero is zero, some
MAC operations are ineffectual (i.e., they do not change the
accumulated value). The number of ineffectual operations is
a function of both the DNN model and the input data. These
ineffectual MAC operations can require fewer cycles or no
cycles at all. Conversely, we only need to process effectual (or
non-zero) MAC operations, where both inputs are non-zero;
this is referred to as exploiting sparsity. A variety of hardware
architectures have been proposed to exploit sparsity [19–21].

Processing only effectual MAC operations can increase
the (total) operations per second by increasing the (total)

operations per cycle.8. Ideally, the hardware would skip all
ineffectual operations; however, in practice, designing hardware
to skip all ineffectual operations can be challenging and result
in increased hardware complexity and overhead. For instance,
it might be easier to design hardware that only recognizes
zeros in one of the operands (e.g., weights) rather than both.
Therefore, the ineffectual operations can be further divided
into those that are exploited by the hardware (i.e., skipped) and
those that are unexploited by the hardware (i.e., not skipped).
The number of operations actually performed by the hardware
is therefore effectual operations plus unexploited ineffectual
operations.

Equation 4 shows how operations per cycle can be decom-
posed into

1) the number of effectual operations plus unexploited
ineffectual operations per cycle, which remains somewhat
constant for a given hardware architecture design;

2) the ratio of effectual operations over effectual operations
plus unexploited ineffectual operations, which refers to the
ability of the hardware to exploit ineffectual operations
(ideally unexploited ineffectual operations should be zero,
and this ratio should be one); and

3) the number of effectual operations out of (total) operations,
which is related to the amount of sparsity and depends
on the DNN model.

As the amount of sparsity increases (i.e., the number of effectual
operations out of (total) operations decreases), the operations
per cycle increases, as shown in Equation 4; this subsequently
increases operations per second, as shown in Equation 2:

operations
cycle

=
effectual operations + unexploited ineffectual operations

cycle

× effectual operations
effectual operations + unexploited ineffectual operations

× 1
effectual operations

operations
(4)

However, exploiting sparsity requires additional hardware to
identify when inputs are zero to avoid performing unnecessary
MAC operations. The additional hardware can increase the
critical path, which decreases cycles per second, and also
increase the area of the PE, which reduces the number of PEs
for a given area. Both of these factors can reduce the operations
per second, as shown in Equation 2. Therefore, the complexity
of the additional hardware can result in a trade off between
reducing the number of unexploited ineffectual operations and
increasing critical path or reducing the number of PEs.

Finally, designing hardware and DNN models that support
reduced precision (i.e., fewer bits per operand and per opera-
tions) can also increase the number of operations per second.
Fewer bits per operand means that the memory bandwidth
required to support a given operation is reduced, which can
increase the utilization of active PEs since they are less likely
to be starved for data. In addition, the area of each PE can be
reduced, which can increase the number of PEs for a given
area. Both of these factors can increase the operations per

8By total operations we mean both effectual and ineffectual operations.
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Step Constraint Type New Performance Bound Reason for Performance Loss

1 Layer Size and Shape Workload Max workload parallelism Finite workload size
2 Dataflow loop nest Architectural Max dataflow parallelism Restricted dataflows defined by loop nest
3 Number of PEs Architectural Max PE parallelism Additional restriction to mappings due to shape

fragmentation
4 Physical dimensions of PEs array Architectural Number of active PEs Additional restriction to mappings due to shape

fragmentation for each dimension
5 Fixed Storage Capacity Architectural Number of active PEs Additional restriction to mappings due to storage

of intermediate data (depends on dataflow)
6 Fixed Data Bandwidth Microarchitectural Max data bandwidth to active PEs Insufficient average bandwidth to active PEs
7 Varying Data Access Patterns Microarchitectural Actual measured performance Insufficient instant bandwidth to active PEs

TABLE II
SUMMARY OF STEPS IN EYEXAM.

Fig. 7. The number of MAC operations in various DNN models versus
latency measured on Pixel phone. Clearly, the number of MAC operations is
not a good predictor of latency. (Figure from [27])

second, as shown in Equation 2. Note, however, that if multiple
levels of precision need to be supported, additional hardware
is required [22], which can, once again, increase the critical
path and also increase the area of the PE, both of which can
reduce the operations per second, as shown in Equation 2.

In this section, we discussed multiple factors that affect the
number of inferences per second. Table III classifies whether
the factors are dictated by the hardware, by the DNN model
or both.

In summary, the number of MAC operations in the DNN
model alone is not sufficient for evaluating the throughput and
latency. While the DNN model can affect the number of MAC
operations per inference based on the network architecture (i.e.,
layer shapes) and the sparsity of the weights and activations,
the overall impact that the DNN model has on throughput and
latency depends on the ability of the hardware to add support
to recognize these approaches without significantly reducing
utilization of PEs, number of PEs, or cycles per second. This
is why the number of MAC operations is not necessarily a
good proxy for throughput and latency (see Figure 7), and it
is often more effective to design efficient DNN models with
hardware in the loop. Various works have proposed techniques
for designing DNN models with hardware in the loop [23–26].

Similarly, the number of PEs in the hardware and their peak
throughput are not sufficient for evaluating the throughput and
latency. It is critical to report actual runtime of the DNN models
on hardware to account for other effects such as utilization

of PEs, as highlighted in Equation 2. Ideally, this evaluation
should be performed on clearly specified DNN models, for
instance those that are part of the MLPerf benchmarking suite.
In addition, batch size should be reported in conjunction with
the throughput in order to evaluate latency.

IV. ENERGY EFFICIENCY AND POWER CONSUMPTION

Energy efficiency is used to indicate the amount of data that
can be processed or the number of executions of a task that can
be completed for a given unit of energy. High energy efficiency
is important when processing DNNs at the edge in embedded
devices with limited battery capacity (e.g., smartphones, smart
sensors, robots, and wearables). Edge processing may be
preferred over the cloud for certain applications due to latency,
privacy, or communication bandwidth limitations. Energy
efficiency is often generically reported as the number of
operations per joule. In the case of inference, energy efficiency
is reported as inferences per joule and energy consumption is
reported as joules per inference.

Power consumption is used to indicate the amount of energy
consumed per unit time. Increased power consumption results
in increased heat dissipation; accordingly, the maximum power
consumption is dictated by a design criterion typically called
the thermal design power (TDP), which is the power that the
cooling system is designed to dissipate. Power consumption is
important when processing DNNs in the cloud as data centers
have stringent power ceilings due to cooling costs; similarly,
handheld and wearable devices also have tight power constraints
since the user is often quite sensitive to heat and the form factor
of the device limits the cooling mechanisms (e.g., no fans).
Power consumption is typically reported in watts or joules per
second.

Power consumption in conjunction with energy efficiency
limits the throughput as follows:

inferences
second

≤ Max
(

joules
second

)
× inferences

joule
(5)

Therefore, if we can improve energy efficiency by increasing
the number of inferences per joule, we can increase the number
of inferences per second and thus throughput of the system.
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Factor Hardware DNN Model Input Data

operations per inference X

operations per cycle X

cycles per second X

number of PEs X

number of active PEs X X

utilization of active PEs X X

effectual operations out of (total) operations X X

effectual operations plus unexploited ineffectual operations per cycle X

TABLE III
CLASSIFICATION OF FACTORS THAT AFFECT INFERENCES PER SECOND.

There are several factors that affect the energy efficiency.
The number of inferences per joule can be decomposed into

inferences
joule

=
operations

joule
× 1

operations
inference

, (6)

where the number of operations per joule is dictated by both
the hardware and DNN model, while the number of operations
per inference is dictated by the DNN model.

There are various design considerations for the hardware that
will affect the energy per operation (i.e., joules per operation).
The energy per operation can be broken down into the energy
required to move the input and output data, and the energy
required to perform the MAC computation

Energytotal = Energydata + EnergyMAC (7)

For each component the joules per operation9 is computed
as

joules
operation

= α× C × VDD
2, (8)

where C is the total switching capacitance, VDD is the
supply voltage, and α is the switching activity, which indicates
how often the capacitance is charged.

The energy consumption is dominated by the data movement
as the capacitance of data movement tends to be much higher
that the capacitance for arithmetic operations such as a MAC
(Figure 8). Furthermore, the switching capacitance increases
with the distance the data needs to travel to reach the PE, which
consists of the distance to get out of the memory where the
data is stored and the distance to cross the network between the
memory and the PE. Accordingly, larger memories and longer
interconnects (e.g., off-chip) tend to consume more energy than
smaller and closer memories due to the capacitance of the long
wires employed. In order to reduce the energy consumption of
data movement, we can exploit data reuse where the data is
moved once from a distant large memory (e.g., off-chip DRAM)
and reused for multiple operations from a local smaller memory
(e.g., on-chip buffer or scratchpad within the PE). Optimizing
data movement is a major consideration in the design of DNN
processors as explored in [16, 28]. In addition, advanced device
and memory technologies can be used to reduce the switching
capacitance between compute and memory, for instance by
enabling in-memory computing [29, 30].

9Here, an operation can be a MAC operation or a data movement.

Operation: Energy 
(pJ)

8b Add 0.03
16b Add 0.05
32b Add 0.1
16b FP Add 0.4
32b FP Add 0.9
8b Multiply 0.2
32b Multiply 3.1
16b FP Multiply 1.1
32b FP Multiply 3.7
32b SRAM Read (8KB) 5
32b DRAM Read 640

Relative Energy Cost

1 10 102 103 104[Horowitz, ISSCC 2014]

Fig. 8. The energy consumption for various arithmetic operations and memory
accesses in a 45nm process. The relative energy cost (computed relative to the
8b add) is shown on a log scale. The energy consumption of data movement
(red) is significantly higher than arithmetic operations (blue). (Figure adapted
from [31])

This raises the issue of the appropriate scope over which
energy efficiency and power consumption should be reported.
Including the entire system (out to the fans and power supplies)
is beyond the scope of this article. Conversely, ignoring off-chip
memory accesses, which can vary greatly between chip designs,
can easily result in a misleading perception of the efficiency
of the system. Therefore, it is critical to not only report the
energy efficiency and power consumption of the chip, but also
the energy efficiency and power consumption of the off-chip
memory (e.g., DRAM) or the amount of off-chip accesses
(e.g., DRAM accesses) if no specific memory technology is
specified; for the latter, it can be reported in terms of the total
amount of data that is read and written off-chip per inference.

Reducing the joules per MAC operation itself can be achieved
by reducing the switching activity and/or capacitance at a circuit
level or micro-architecture level. This can also be achieved by
reducing precision (e.g., reducing the bit width of the MAC
operation), as shown in Figure 8. Note that the impact of
reducing precision on accuracy must also be considered.

For instruction-based systems such as CPUs and GPUs, this
can also be achieved by reducing instruction bookkeeping
overhead. For example, using large aggregate instructions (e.g.,
single-instruction, multiple-data (SIMD), vector instructions,
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single-instruction, multiple-threads (SIMT), or tensor instruc-
tions), a single instruction can be used to initiate multiple
operations.

Similar to the throughput metric discussed in Section III, the
number of operations per inference depends on the DNN model,
however the operations per joules may be a function of the
ability of the hardware to exploit sparsity to avoid performing
ineffectual MAC operations. Equation 9 shows how operations
per joule can be decomposed into:

1) the number of effectual operations plus unexploited
ineffectual operations per joule, which remains somewhat
constant for a given hardware architecture design;

2) the ratio of effectual operations over effectual operations
plus unexploited ineffectual operations, which refers to the
ability of the hardware to exploit ineffectual operations
(ideally unexploited ineffectual operations should be zero,
and this ratio should be one); and

3) the number of effectual operations out of (total) operations,
which is related to the amount of sparsity and depends
on the DNN model.

operations
joule

=
effectual operations + unexploited ineffectual operations

joule

× effectual operations
effectual operations + unexploited ineffectual operations

× 1
effectual operations

operations
(9)

For hardware that can exploit sparsity, increasing the amount
of sparsity (i.e., decreasing the number of effectual operations
out of (total) operations) can increase the number of operations
per joule, which subsequently increases inferences per joule, as
shown in Equation 6. While exploiting sparsity has the potential
of increasing the number of (total) operations per joule, the
additional hardware will decrease the effectual operations
plus unexploited ineffectual operations per joule. In order to
achieve a net benefit, the decrease in effectual operations plus
unexploited ineffectual operations per joule must be more than
offset by the decrease of effectual operations out of (total)
operations.

In summary, we want to emphasize that the number of
MAC operations and weights in the DNN model are not
sufficient for evaluating energy efficiency. From an energy
perspective, all MAC operations or weights are not created
equal. This is because the number of MAC operations and
weights do not reflect where the data is accessed and how much
the data is reused, both of which have a significant impact
on the operations per joule. Therefore, the number of MAC
operations and weights is not necessarily a good proxy for
energy consumption and it is often more effective to design
efficient DNN models with hardware in the loop.

In order to evaluate the energy efficiency and power
consumption of the entire system, it is critical to not only
report the energy efficiency and power consumption of the
chip, but also the energy efficiency and power consumption
of the off-chip memory (e.g., DRAM) or the amount of off-
chip accesses (e.g., DRAM accesses) if no specific memory

technology is specified; for the latter, it can be reported in terms
of the total amount of data that is read and written off-chip
per inference. As with throughput and latency, the evaluation
should be performed on clearly specified, ideally widely-used,
DNN models. Various tools can be used to help with energy
estimation, as shown in Figure 9.

V. HARDWARE COST

In order to evaluate the desirability of a given architecture
or technique, it is also important to consider the hardware
cost of the design. Hardware cost is used to indicate the
monetary cost to build a system10. This is important from both
an industry and a research perspective as it dictates whether
a system is financially viable. From an industry perspective,
the cost constraints are related to volume and market; for
instance, embedded processors have a much more stringent cost
limitations than processors in the cloud. One of the key factors
that affect cost is the chip area (e.g., square millimeters, mm2)
in conjunction with the process technology (e.g., 45nm CMOS),
which constrains the amount of on-chip storage and amount
of compute (e.g., the number of PEs for DNN processors, the
number of cores for CPUs and GPUs, the number of digital
signal processing (DSP) engines for FPGAs, etc.). To report
information related to area without specifying a specific process
technology, one can report the amount of on-chip memory (e.g,
storage capacity of the global buffer) and compute (e.g., number
of PEs) as a proxy for area.

Another important factor is the amount of off-chip bandwidth,
which dictates the cost and complexity of the packaging and
printed circuit board (PCB) design (e.g., High Bandwidth Mem-
ory (HBM) [32] to connect to off-chip DRAM, NVLink [33]
to connect to other GPUs, etc.), as well as whether additional
chip area is required for a transceiver to handle signal integrity
at high speeds. The off-chip bandwidth, which is typically
reported in gigabits per second (Gbps) and the number of I/O
ports, can be used as a proxy for packaging and PCB cost.

There is also an interplay between the costs attributable to
the chip area and off-chip bandwidth. For instance, increasing
on-chip storage, which increases chip area, can reduce off-chip
bandwidth. Accordingly, both metrics should be reported in
order to provide perspective on the total cost of the system.

Of course reducing cost alone is not the only objective. The
design objective is invariably to maximize the throughput or
energy efficiency for a given cost, specifically, to maximize
inferences per second per cost (e.g., $) and/or inferences per
joule per cost. This is closely related to the previously discussed
property of utilization; to be cost efficient, the design should
aim to utilize every PE to increase inferences per second,
since each PE increases the area and thus the cost of the
chip; similarly, the design should aim to effectively utilize all

10There is also cost associated with operating a system, such as the electricity
bill and the cooling cost, which are primarily dictated by the energy efficiency
and power consumption, respectively. In addition, there is cost associated with
designing the system. The operating cost is covered by the section on energy
efficiency and power consumption and we limited our coverage of design cost
to the fact that DNN processors have a higher design cost (after amortization)
than off-the-shelf CPU and GPU. We consider anything beyond this, e.g. the
economics of the semiconductor business, including how to price platforms,
is outside the scope of this article.
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the on-chip storage to reduce off-chip bandwidth, or increase
operations per off-chip memory access as expressed by the
roofline model (see Figure 5), as each byte of on-chip memory
also increases cost.

VI. FLEXIBILITY

The merit of a DNN processor is also a function of its
flexibility. Flexibility refers to the range of DNN models that
can be supported on the DNN processor and the ability of the
software environment, (e.g., the mapper) to maximally exploit
the capabilities of the hardware for any desired DNN model.
Given the fast moving pace of DNN research and deployment,
it is increasingly important that DNN processors support a
wide range of DNN models and tasks.

We can define support in two tiers: The first tier requires
that the hardware only needs to be able to functionally support
different DNN models (i.e., the DNN model can run on the
hardware). The second tier requires that the hardware should
also maintain efficiency (i.e., high throughput and energy
efficiency) across different DNN models.

To maintain efficiency, the hardware should not rely on
certain properties of the DNN models to achieve efficiency,
as the properties of DNN models are diverse and evolving
rapidly. For instance, a DNN processor that can efficiently
support the case where the entire DNN model (i.e., all the
weights) fits on-chip may perform extremely poorly when the
DNN model grows larger, which is likely given that the size of
DNN models continue to increase over time; a more flexible
processor would be able to efficiently handle a wide range of
DNN models, even those that exceed on-chip memory.

The degree of flexibility provided by a DNN processor
presents a complex trade-off with processor cost. Specifically,
additional hardware usually needs to be added in order to flex-
ibly support a wider range of workloads and/or improve their
throughput and energy efficiency. Thus, the design objective is
to reduce the overhead (e.g., area cost and energy consumption)
of supporting flexibility while maintaining efficiency across
the wide range of DNN models. Thus, evaluating flexibility
would entail ensuring that the extra hardware is a net benefit
across multiple workloads.

Flexibility has become increasingly important when we
factor in the many techniques that are being applied to the
DNN models with the promise to make them more efficient,
since they increase the diversity of workloads that need to
be supported. These techniques include DNNs with different
network architectures (i.e., different layer shapes, which impacts
the amount of required storage and compute and the available
data reuse that can be exploited), different levels of precision
(i.e., different number of bits across layers and data types), and
different degrees of sparsity (i.e., number of zeros in the data).
There are also different types of DNN layers and computations
beyond MAC operations (e.g., activation functions) that need
to be supported.

Actually getting a performance or efficiency benefit from
these techniques invariably requires additional hardware. Again,
it is important that the overhead of the additional hardware does
not exceed the benefits of these techniques. This encourages a
hardware and DNN model co-design approach.

To date, exploiting the flexibility of DNN hardware has relied
on mapping processes that act like static per-layer compilers.
As the field moves to DNN models that change dynamically,
mapping processes will need to dynamically adapt at runtime to
changes in the DNN model or input data, while still maximally
exploiting the flexibility of the hardware to improve efficiency.

In summary, to assess the flexibility of DNN processors, its
efficiency (e.g., inferences per second, inferences per joule)
should be evaluated on a wide range of DNN models. The
MLPerf benchmarking workloads are a good start; however,
additional workloads may be needed to represent efficient
techniques such as efficient network architectures, reduced
precision and sparsity. The workloads should match the
desired application. Ideally, since there can be many possible
combinations, it would also be beneficial to define the range
and limits of DNN models that can be efficiently supported
on a given platform (e.g., maximum number of weights per
filter or DNN model, minimum amount of sparsity, required
structure of the sparsity, levels of precision such as 8-bit, 4-bit,
2-bit, or 1-bit, types of layers and activation functions, etc.).

VII. SCALABILITY

Scalability has become increasingly important due to the
wide use cases for DNNs. This is demonstrated by emerging
technologies used for scaling up not just the size of the chip,
but also building systems with multiple chips (often referred
to as chiplets) [34] or even wafer-scale chips [35]. Scalability
refers to how well a design can be scaled up to achieve
higher performance (i.e., latency and throughput) and energy
efficiency when increasing the amount of resources (e.g., the
number of PEs and on-chip storage). This evaluation is done
under the assumption that the system does not have to be
significantly redesigned (e.g., the design only needs to be
replicated) since major design changes can be expensive in
terms of time and cost. Ideally, a scalable design can be used
for low-cost embedded devices and high-performance devices
in the cloud simply by scaling up the resources.

Ideally, the performance would scale linearly and propor-
tionally with the number of PEs. When the problem size (e.g.,
the batch size) is held constant, this is referred to as strong
scaling, and is the more challenging type of scaling. On the
other hand, scaling performance while allowing the problem
size to increase (e.g., by increasing batch size) is called weak
scaling and is also an important objective in some situations.

Similarly, the energy efficiency would also improve with
more on-chip storage, however, this would be likely be non-
linear (e.g., increasing the on-chip storage such that the entire
DNN model fits on chip would result in an abrupt improvement
in energy efficiency). In practice, this is often challenging due to
factors such as the reduced utilization of PEs and the increased
cost of data movement due to long distance interconnects.

Scalability can be connected with cost efficiency by consid-
ering how inferences per second per cost and inferences per
joule per cost changes with scale. For instance, if throughput
increases linearly with number of PEs (with proportional scaling
of all storage), then the inferences per second per cost could
be constant. It is also possible for the inferences per second
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per cost to improve super-linearly with increasing number of
PEs, due to increased sharing of data across PEs. On the other
hand, inferences per joule per cost might remain constant or
even improve as a consequence of more sharing of data by
multiple PEs.

In summary, to understand the scalability of a DNN processor
design, it is important to report its performance and efficiency
metrics as the number of PEs and storage capacity increases.
This may include how well the design might handle technolo-
gies used for scaling up, such as inter-chip interconnect.

VIII. INTERPLAY BETWEEN DIFFERENT METRICS

It is important that all metrics are accounted for in order
to fairly evaluate the design trade-offs. For instance, without
the accuracy given for a specific dataset and task, one could
run a simple DNN model and easily claim low power, high
throughput, and low cost – however, the processor might
not be usable for a meaningful task; alternatively, without
reporting the off-chip bandwidth, one could build a processor
with only MACs and easily claim low cost, high throughput,
high accuracy, and low chip power – however, when evaluating
system power, the off-chip memory access would be substantial.
Finally, the test setup should also be reported, including whether
the results are measured or obtained from simulation11 and
how many images were tested.

Clearly there are many important metrics to consider when
designing DNN processors. At the same time, the design space
for DNN processors is very large. As a result, it would helpful
to have the ability to rapidly explore the design space early
in the design process, and be able to accurately estimate the
various metrics for proposed designs. An accurate estimation
requires proper consideration of how properties of the hardware
such as mapping, and properties of the workload such as
DNN model shape, precision and sparsity, impact metrics such
as throughput and energy efficiency. One example tool set
that allows one to perform rapid exploration and evaluation
is the combination of Timeloop [14] and Accelergy [36] as
depicted in Figure 9. Both tools accept a template-based
specification of a proposed architecture and, given a DNN
model description, Timeloop searches for an optimal mapping
using an analytical performance model and generates activity
counts that allow Accelergy to generate architecture-level
energy estimates (all before a detailed RTL description of
the design is available). Accelergy also accepts component
energy costs, which is especially useful for understanding the
impact of new technologies [37].

IX. SUMMARY

In this article, we have presented the various key metrics
for evaluating DNN processors, discussed the importance for
each metric, their interrelationships and, where appropriate,
included equations that can be used to tease apart the factors
that contribute to those metrics. We have also shown how
those metrics are related to both the hardware design and the

11If obtained from simulation, it should be clarified whether it is was after
synthesis or post place-and-route and what library corner (e.g., process corner,
supply voltage, temperature) was used.

Accelergy
(Energy Estimator Tool)

Architecture &
Implementation

description
Action 
counts

…

Energy 
estimation

Energy
estimation 
plug-in 0

Energy 
estimation 
plug-in 1

Timeloop
(DNN Mapping Tool: 

map space creation, search, 
performance model)

Problem Spec / 
Shape

(DNN Model)

Fig. 9. Timeloop [14] with integration of Accelergy [36] as energy estimation
model. Timeloop sends projected action counts for a mapping to Accelergy
and receives an energy estimation to guide its search. Accelergy plug-ins allow
for customization of component energy estimation. These tools are available
at http://accelergy.mit.edu/tutorial.html.

DNN models, and highlight why hardware/model co-design is
important. Finally, given those metrics the evaluation process
for whether a DNN system is a viable solution for a given
application might go as follows:

1) the accuracy determines if it can perform the given task;
2) the latency and throughput determine if it can run fast

enough and in real time;
3) the energy and power consumption will primarily dictate

the form factor of the device where the processing can
operate;

4) the cost, which is primarily dictated by the chip area and
external memory bandwidth requirements, determines how
much one would pay for this solution;

5) the flexibility determines the range of tasks it can support;
and

6) the scalability determines whether the same design effort
can be amortized for deployment in multiple domains,
(e.g., in the cloud and at the edge), and if the system can
efficiently be scaled with DNN model size.

Portions of this article are based on our book entitled
“Efficient Processing of Deep Neural Network” [38]. This
excerpt has described various metrics that are important for
evaluating DNN processor. The remainder of the book expands
on how to design DNN processors and DNN models that
optimize for these metrics.
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