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A P P L I E D  S C I E N C E S  A N D  E N G I N E E R I N G

Strong adhesion of wet conducting polymers on 
diverse substrates
Akihisa Inoue1,2*, Hyunwoo Yuk1*, Baoyang Lu1,3,4, Xuanhe Zhao1,5†

Conducting polymers such as poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), polypyrrole 
(PPy), and polyaniline (PAni) have attracted great attention as promising electrodes that interface with biological 
organisms. However, weak and unstable adhesion of conducting polymers to substrates and devices in wet 
physiological environment has greatly limited their utility and reliability. Here, we report a general yet simple 
method to achieve strong adhesion of various conducting polymers on diverse insulating and conductive sub-
strates in wet physiological environment. The method is based on introducing a hydrophilic polymer adhesive 
layer with a thickness of a few nanometers, which forms strong adhesion with the substrate and an interpenetrating 
polymer network with the conducting polymer. The method is compatible with various fabrication approaches 
for conducting polymers without compromising their electrical or mechanical properties. We further demonstrate 
adhesion of wet conducting polymers on representative bioelectronic devices with high adhesion strength, 
conductivity, and mechanical and electrochemical stability.

INTRODUCTION
Conducting polymers such as poly(3,4-ethylenedioxythiophene):poly 
(styrene sulfonate) (PEDOT:PSS), polypyrrole (PPy), and polyani-
line (PAni) have been widely explored as electrodes and coatings for 
electrodes that interface with biological organisms in bioelectronic 
devices (1–8), owing to their favorable electrochemical stability (9), 
electrical and mechanical properties (10–16), and biocompatibility 
(13, 17, 18). However, weak and unstable adhesion of conducting 
polymers on substrates and devices can result in interfacial failures 
(e.g., debonding of conducting polymers) and subsequent loss of 
functionality, substantially hampering the reliability and efficacy of 
bioelectronic devices (5, 6, 19–23). In light of this challenge, a few 
methods have been reported to provide enhanced adhesion of con-
ducting polymers in wet environment. For example, topological 
modification of substrates (e.g., nano- and microscale roughness on 
gold substrates) (24, 25) and electrodeposition of chemically modi-
fied EDOT monomers (e.g., vinyl-, carboxylic-, and amine-modified 
EDOT) (23, 26, 27) have been adopted to improve adhesion of wet 
PEDOT:PSS. However, the previous approaches require specific types 
of substrates and/or complicated modification of EDOT monomer, 
and they are limited to electrodeposited PEDOT:PSS on conductive sub-
strates, substantially limiting the applicability of conducting polymers 
in bioelectronics devices.

Here, we report a general yet simple method to achieve strong 
adhesion of various wet conducting polymers including PEDOT:PSS, 
PPy, and PAni on diverse commonly used insulating and conduc-
tive substrates including glass, polyimide, polydimethylsiloxane 
(PDMS), indium tin oxide (ITO), and gold. The method is based on 
introducing a hydrophilic polymer adhesive layer with a thickness 
of a few nanometers between the substrate and the conducting 

polymer. The adhesive layer forms strong adhesion with the sub-
strate and an interpenetrating polymer network with the conducting 
polymer. To implement the method, we choose hydrophilic poly-
urethane (PU) to form the nanometer-thick adhesive layer. The ad-
hesive layer can be facilely introduced on a broad range of substrate 
materials via diverse fabrication approaches including spin coating, 
spray coating, and dip coating. The resultant interfacial adhesion 
between wet conducting polymers and various substrates is strong 
(e.g., lap-shear strength over 120 kPa) and mechanically and elec-
trochemically stable (e.g., no observable interfacial failure after 
60 min of ultrasonication and 10,000 charging and discharging 
cycles). Our method also allows the use of commercially available 
conducting polymers and hydrophilic PU without the need for 
complex chemical synthesis or substrate modification, promising 
ready and broad applicability to bioelectronic devices. Furthermore, 
the method is compatible with various fabrication approaches for 
conducting polymers including solvent casting and electrodeposition, 
without compromising the electrical or mechanical properties of 
conducting polymers.

RESULTS
Method for strong adhesion of wet conducting polymers 
on substrates
Instead of modifying a specific conducting polymer or substrate, we 
propose a general method to achieve strong adhesion of various wet 
conducting polymers on diverse substrates by using a hydrophilic 
polymer adhesive layer with a thickness of a few nanometers, as 
illustrated in Fig. 1A. To avoid effects from substrates’ surface 
roughness, we use substrates with smooth surfaces (i.e., mean rough-
ness below 5 nm) in this study (fig. S1). A substrate is first function-
alized with primary amine groups (fig. S2), which can provide an 
enhanced interfacial adhesion between the substrate and the adhe-
sive layer via covalent bonds and/or electrostatic interactions (28). 
Thereafter, the adhesive layer can be applied to a wide range of sub-
strates by various coating approaches including spin coating, spray 
coating, and dip coating. Conducting polymers can then be prepared 
on the substrate with the adhesive layer from conducting polymer 
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precursors via various approaches such as solvent casting of aqueous 
conducting polymer solutions (e.g., PEDOT:PSS, PPy, and PAni) and 
electrodeposition of aqueous monomer solutions (e.g., EDOT:PSS). 
The hydrophilicity and subsequent swelling of the adhesive layer 

allow diffusion of the conducting polymer precursors throughout 
the adhesive layer (29), subsequently forming an interpenetrating 
polymer network between the infiltrated conducting polymer and 
the adhesive layer (30). The strong adhesion between the adhesive 
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layer and the substrate, and the interpenetration between the adhesive 
layer and the conducting polymer synergistically provide mechani-
cally robust adhesion against interfacial failure in wet physiological 
environment (Fig. 1B). Furthermore, the conducting polymer in-
terpenetrates throughout the adhesive layer and directly contacts the 
underlying substrate, providing electrical conductivity through the 
adhesive layer.

The proposed method can achieve strong adhesion of various 
wet conducting polymers on diverse substrates that are inaccessible 
to previous bonding methods. For example, a solvent-casted wet 
PEDOT:PSS on an insulating and flexible polyimide substrate with 
the PU adhesive layer exhibits robust adhesion without failure 
under twisting, bending, and even folding (with the radius of curva-
ture ~ 250 m) (Fig. 1C). In contrast, a wet PEDOT:PSS on sub-
strates (e.g., glass and polyimide) without the PU adhesive layer 
exhibits interfacial failure upon swelling in phosphate-buffered 
saline (PBS; Fig. 1, D and E, and fig. S3B) due to weak and unstable 
adhesion formed by physical interactions of wet conducting polymers 
with the substrate surfaces (Fig. 1D) (23). To validate the formation 
of an interpenetrating layer between a conducting polymer and a 
hydrophilic PU adhesive layer, we investigate an elemental disper-
sion of carbon and sulfur atoms in a cross section of the PU adhesive 
layer of a cryo-fractured sample (solvent-casted PEDOT:PSS on Si 
wafer with the PU adhesive layer) by scanning electron microscopy– 
energy-dispersive x-ray spectroscopy (SEM-EDS). Because both 
PEDOT and PSS contain sulfur, while the hydrophilic PU is absent 
of sulfur (fig. S4), the sulfur signal can serve as an indicator for 
the interpenetration of the PEDOT:PSS into the PU adhesive layer. It 
is evident that the sulfur signal can be detected in the PU adhesive 
layer, indicating the interpenetration of the PEDOT:PSS through-
out the PU adhesive layer (Fig. 1F). We further investigate the inter-
penetration between the PEDOT:PSS and the PU adhesive layer by 
comparing x-ray photoelectron spectroscopy (XPS) spectra of the 
surface of a wet PEDOT:PSS and the surfaces of 60-nm and 1500-nm 
PU adhesive layers with PEDOT:PSS interpenetrated from the other 
side (fig. S5; see the Supplementary Materials for preparation and 
testing of the samples). We find that the thin PU adhesive layer (60 nm) 
exhibits almost the same sulfur S(2p) spectral intensity as the PEDOT:PSS 
layer (fig. S5, D and E), whereas the thick PU adhesive layer (1500 nm) 
shows substantially lower sulfur S(2p) spectral intensity compared 
to the PEDOT:PSS layer (fig. S5F). These results indicate that the 
conducting polymer can interpenetrate throughout the thin adhe-
sive layer (60 nm) but only partially through the thick adhesive layer 
(1500 nm).

Adhesion strength of wet conducting polymers on  
diverse substrates
To measure adhesion strength of wet conducting polymers on 
diverse substrates, we perform lap-shear tests to measure interfacial 
shear strength (ASTM D3163) between the adhered wet conducting 
polymer and the substrate (Fig. 2). Figure 2A shows a typical lap-
shear test sample and a setup in which a wet conducting polymer is 
sandwiched between a hydrophilic microporous nylon filter (pore 
size, 1 m) and a substrate with the PU adhesive layer. Note that we 
choose hydrophilic microporous nylon filters as the backing for the 
laboratory-shear tests due to two reasons: (i) The nylon filters’ high 
mechanical stiffness (Young’s modulus, >1 GPa) can prevent unde-
sirable deformation of wet conducting polymers during lap-shear 
tests. (ii) Hydrophilicity and microporosity of the nylon filters allow 

infiltration of conducting polymers and subsequent reliable me-
chanical integration during lap-shear tests. Wet PEDOT:PSS on 
glass substrates with the PU adhesive layers exhibits a high shear 
strength (54 kPa), while wet PEDOT:PSS on pristine glass substrates 
without the PU adhesive layer shows a very low shear strength (0.08 kPa) 
and easily detaches from the substrate (Fig. 2, B and C).

We further investigate the effect of surface functionalization of 
substrates with primary amine groups on the adhesion performance. 
We compare shear strength and modes of failure in lap-shear tests 
for wet PEDOT:PSS on PU-coated glass substrates with and with-
out primary amine functionalization. The wet PEDOT:PSS on the 
amine-functionalized glass substrate with the PU adhesive layer 
exhibits cohesive failure (i.e., failure occurs within wet PEDOT:PSS) 
(Fig. 2C), while the wet PEDOT:PSS on the pristine glass substrate 
with the PU adhesive layer demonstrates adhesive failure (i.e., failure 
occurs between the PU adhesive layer and the substrate) (Fig. 2B). 
Moreover, the amine-functionalized glass substrate with the PU 
adhesive layer provides a much higher shear strength than the pris-
tine glass substrate with the PU adhesive layer (160 kPa versus 
54 kPa) (Fig. 2D and fig. S6A). Hence, the amine functionalization 
is a critical step to achieve strong adhesion between the PU adhesive 
layer and the substrate due to enhanced adhesion of hydrophilic PU 
on amine-functionalized substrates (30). We also find that the PU 
adhesive layer can provide strong adhesion of wet PEDOT:PSS 
(shear strength over 120 kPa) consistently over a wide range of the 
PU layer’s thickness (6 to 1500 nm) (fig. S7).

The proposed method is also applicable to various wet conduct-
ing polymers as well as a wide range of insulating and conductive 
substrates (Fig. 2, E and F). Solvent-casted wet PEDOT:PSS, PPy, 
and PAni on amine-functionalized glass substrates with the PU 
adhesive layers provide substantially higher shear strengths than the 
counterparts on pristine glass substrates without the PU adhesive layer 
(160 kPa versus 0.1 kPa for PEDOT:PSS; 39 kPa versus 0.4 kPa for 
PPy; 37 kPa versus 1.9 kPa for PAni) (Fig. 2E). Note that all con-
ducting polymers undergo cohesive failure in the laboratory- shear 
tests, indicating that the adhesive interface with the PU adhesive 
layer is stronger than the bulk wet conducting polymer and that the 
measured adhesion strength is determined by the shear strength of 
the bulk wet conducting polymer. The proposed method also enables 
strong adhesion of wet PEDOT:PSS on diverse amine- functionalized 
insulating and conductive substrates including glass (shear strength, 
160 kPa), polyimide (shear strength, 116 kPa), PDMS (shear strength, 
111 kPa), ITO-glass (shear strength, 149 kPa), and gold (shear 
strength, 146 kPa) (Fig. 2F and figs. S6 and S8). We find that wet 
PEDOT:PSS on polyimide substrates with the PU adhesive layers 
exhibits negligible enhancement in the shear strength by amine 
functionalization (fig. S6C), which might result from good inherent 
adhesion of the hydrophilic PU on polyimide (fig. S9).

Electrical and mechanical properties of adhered wet 
conducting polymers
While the hydrophilic PU adhesive layers can provide strong adhe-
sion between wet conducting polymers and substrates, they should 
not affect the electrical or mechanical properties of the conducting 
polymers in applications. To investigate this requirement, we 
systematically characterize the electrical and mechanical properties 
of PEDOT:PSS adhered by the PU adhesive layer as a representative 
conducting polymer (Fig. 3 and fig. S10). We measure the electrical 
conductivity of wet PEDOT:PSS without and with the PU adhesive 
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layer of varying thickness by a standard four-point probe method in 
wet physiological environment (hydrated in PBS) (Fig. 3A). The 
electrical conductivity of the wet PEDOT:PSS exhibits no statistically 
significant differences (P > 0.5) over a wide range of the PU adhe-
sive layer thickness (6 to 1500 nm), indicating insignificant effect of 
the PU adhesive layer on the electrical properties of wet PEDOT:PSS 
(Fig. 3B). To probe the effect of the PU adhesive layer on electrical 
conductivity between wet PEDOT:PSS and underlying electrodes, 
we measure the sheet resistance of the wet PEDOT:PSS on the 
amine-functionalized ITO-glass electrodes without (Ri) and with (Rii) 
the PU adhesive layer (Fig. 3C). Notably, the nanometer-thick PU 
adhesive layer (6 or 60 nm) gives negligible change in the measured 
sheet resistance (i.e., sheet resistance ratio, Ri/Rii ~ 1), while 
the micrometer-thick PU adhesive layer (1500 nm) results in subs-
tantially increased interfacial resistance (i.e., Ri/Rii << 1) (Fig. 3D). 
As identified in the XPS characterizations, PEDOT:PSS can inter-
penetrate throughout the thin PU adhesive layer (60 nm) but only 
partially through the thick PU adhesive layer (1500 nm) (fig. S5, 

D to F). Hence, the thick PU adhesive layer can substantially in-
crease the interfacial resistance between the wet conducting poly-
mer and the underlying electrode, whereas the sufficiently thin 
(i.e., nanometers thick) PU adhesive layer can provide low inter-
facial resistance.

To further investigate the effect of the PU adhesive layer’s thick-
ness on electrical property of the adhesive interface, we perform 
electrochemical impedance spectroscopy (EIS) analysis of wet 
PEDOT:PSS on amine-functionalized ITO-glass electrodes without 
and with the PU adhesive layer (60 or 1500 nm thickness) (Fig. 3E 
and fig. S11) (31). It can be seen that the PEDOT:PSS adhered on 
the ITO-glass electrode via the thin PU adhesive layer (60 nm) can 
provide favorable electrical property (i.e., lower impedance than the 
bare ITO-glass electrode in the low frequency region) due to enhanced 
capacitance of the electrode from the adhered wet PEDOT:PSS (fig. 
S11, A and B). In addition, the thick PU adhesive layer (1500 nm) 
exhibits much lower capacitance and higher impedance than the 
thin PU adhesive layer (60 nm) (fig. S11C). These results indicate 
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that the nanometer-thick PU adhesive layer is essential to provide 
highly conductive interface between the adhered wet conducting 
polymers and the underlying electrodes.

To quantitatively evaluate the effect of the PU adhesive layer on 
the mechanical properties of wet PEDOT:PSS, we perform tensile 
tests of solvent-casted wet PEDOT:PSS in PBS without and with the 
PU adhesive layer of varying thickness (fig. S10A). The Young’s 
moduli and the ultimate tensile strain of the wet PEDOT:PSS ( 100 m 
thickness) with the PU adhesive layer of varying thickness (6 to 
1500 nm) exhibit no statistically significant difference compared to 
the wet PEDOT:PSS without the PU adhesive layer (P > 0.5) (fig. S10, 
B and C). Hence, the PU adhesive layer can provide strong adhesion 
of wet PEDOT:PSS (fig. S12) without compromising the mechanical 
properties of wet PEDOT:PSS.

Mechanical and electrochemical stability of adhered wet 
conducting polymers
To ensure long-term functionality and reliability of bioelectronic 
devices in wet physiological environment, mechanical and electro-
chemical stability of conducting polymers on substrates is one of 
the most critical requirements. We evaluate the mechanical stability 
of adhered wet conducting polymers by characterizing interfacial 
failures and electrical properties of solvent-casted wet PEDOT:PSS 
on ITO-glass electrodes with the PU adhesive layers under prolonged 
ultrasonication in PBS (Fig. 4) (23). The solvent-casted PEDOT:PSS 
on the ITO-glass electrode without the PU adhesive layer under-
goes complete interfacial delamination after ultrasonication for 1 min 
in PBS (Fig. 4A). In contrast, the solvent-casted PEDOT:PSS on the 
amine-functionalized ITO-glass electrode with the PU adhesive layer 
remains intact (Fig. 4B) and shows negligible deterioration in elec-
trical property (Fig. 4C) after ultrasonication for 10 min in PBS, 
demonstrating superior mechanical stability of the adhesion. Further-
more, a solvent-casted wet PEDOT:PSS on an amine-functionalized 
PDMS substrate with the PU adhesive layer can withstand and 
remain intact without interfacial failure after 10,000 cycles of bend-
ing (radius of curvature ~ 2 mm) in PBS (movie S1).

We further investigate the electrochemical stability of adhered 
wet conducting polymers by evaluating the electrochemical proper-
ties of solvent-casted PEDOT:PSS on amine-functionalized Pt elec-
trodes with the PU adhesive layers based on cyclic voltammetry 
(CV) tests in PBS (Fig. 4D) (23, 32). The CV curves show a small 
change over 10,000 charging and discharging cycles with less than 
6% decrease in charge storage capability (CSC) after 10,000 CV 
cycles, demonstrating superior electrochemical stability of the 
adhesion (Fig. 4, D and E). Moreover, the wet PEDOT:PSS on the 
Pt electrode with PU adhesive layer remains intact without any ob-
servable interfacial failure after 10,000 charging and discharging 
cycles (Fig. 4E).

The proposed method is also applicable to conducting polymers 
prepared by electrodeposition, which has been widely adopted to 
introduce conducting polymers on existing bioelectronic devices 
(22). To evaluate mechanical and electrochemical stability of elec-
trodeposited conducting polymers adhered by the PU adhesive layer, 
we perform the same set of tests (i.e., ultrasonication, EIS, and CV) 
for electrodeposited PEDOT:PSS (fig. S13). Similar to solvent-casted 
PEDOT:PSS, the electrodeposited PEDOT:PSS on the ITO-glass 
electrodes with the PU adhesive layers exhibits superior mechanical 
stability against prolonged ultrasonication and electrochemical sta-
bility in wet physiological environment (fig. S13).
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Strong adhesion of wet conducting polymers 
on bioelectronic devices
While electrodeposited PEDOT:PSS has been intensively studied to 
improve electrical properties of various bioelectrodes (e.g., low 
impedance, high charge injection capacity, and low rigidity), poor 
long-term stability of the electrodeposited PEDOT:PSS on bioelec-
trodes in wet physiological environment has been one major hurdle 
that significantly limits their utility in practice (17, 23, 24, 27). The 
new capability of forming strong, conductive, and mechanically and 
electrochemically stable adhesion between conducting polymers 
and diverse substrates allows us to readily electrodeposit conduct-
ing polymers on various existing bioelectronic devices, achieving 
high robustness in wet physiological conditions (Fig. 5).

Existing bioelectronic devices can be approximately classified 
into two categories based on configurations of their electrodes 
(33, 34). In the first category, bioelectronic devices such as elec-
trocorticography (ECoG) arrays (35), Michigan probes (36), and 
multi electrode arrays (MEA) consist of planar microelectrodes on 
the device substrates to provide bioelectronic sensing or stimula-
tion (Fig. 5A). In the second category, bioelectronic devices such as 
Utah arrays (37), microwire electrode arrays (38), and fiber probes 
(39) consist of tip microelectrodes at end tips of the devices 
(Fig. 5B). To demonstrate flexibility and ready applicability of the 
proposed method to robustly integrate conducting polymers with 

various bioelectronic devices in wet physiological environment, 
we choose commercially available MEA with Au microelectrodes 
(Fig. 5C) and polytetrafluoroethylene (PTFE)–coated Pt microwire 
electrodes (Fig. 5F) as representative examples for bioelectronic 
devices with planar microelectrodes and tip microelectrodes, 
respectively.

Because of weak and unstable adhesion between electrodeposited 
PEDOT:PSS and Au electrodes, the electrodeposited PEDOT:PSS 
on the MEA (electrode diameter, 100 m) without the PU adhesive 
layer undergoes deterioration in electrical property (Fig. 5C) and 
nearly disappears from the electrode surface after ultrasonication 
for 5 min in PBS (Fig. 5D). In contrast, the electrodeposited PEDOT: 
PSS on the MEA with the PU adhesive layer exhibits no observable 
change in electrical property (Fig. 5C) and remains intact after 
ultrasonication for 60 min in PBS (Fig. 5E), demonstrating strong 
adhesion and superior stability of the adhesion. Similarly, the electro-
deposited PEDOT:PSS on the Pt microwire electrode (wire diameter, 
100 m) without the PU adhesive layer experiences deterioration 
in electrical property (Fig. 5F) and shows mechanical damage 
with the bare Pt electrode exposed after ultrasonication for 5 min 
in PBS (Fig. 5G and fig. S14). In contrast, the electrodeposited 
PEDOT:PSS on the Pt microwire electrode with the PU adhesive 
layer (only formed on Pt surface, not PTFE coating) exhibits negli-
gible deterioration in electrical property (Fig. 5F) and mechanical 
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integrity after ultrasonication for 30 min in PBS (Fig. 5H and 
fig. S15).

CONCLUSION AND DISCUSSION
In this study, we present a general yet simple method to achieve 
strong adhesion of various wet conducting polymers on diverse 
substrates through intermediate hydrophilic polymer adhesive 
layers. While we choose the hydrophilic PU as the adhesive layer in 
this study, other hydrophilic polymers such as poly(vinyl alcohol) 
(PVA) may also be adopted as the adhesive layer (fig. S16). The pro-
posed method can provide robust interfacial integration of various 
wet conducting polymers such as PEDOT:PSS, PPy, and PAni on a 

wide range of insulating and conductive substrates including glass, 
PDMS, polyimide, ITO, and gold as well as bioelectronic devices 
with representative form factors. The resultant conducting poly-
mers adhered on substrates achieve superior adhesion performance 
(shear strength over 120 kPa) and remarkable mechanical and 
electrochemical stability without compromising electrical or me-
chanical properties of the conducting polymers. Our method is 
compatible with various fabrication approaches for conducting poly-
mers including solvent casting and electrodeposition and allows the 
use of commercially accessible off-the-shelf materials (e.g., hydro-
philic PU and conducting polymers), offering ready and broad 
applications in bioelectronic devices. The method also gives strong 
adhesion for very thin spin-coated conducting polymers (100 nm 
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thickness) in wet physiological environment (fig. S17). This study 
provides not only a simple yet effective method to solve the long- 
standing challenge of robust integration of conducting polymers in 
bioelectronic devices but also a general strategy to achieve strong 
adhesion between various hydrogels and substrates.

MATERIALS AND METHODS
Amine functionalization of diverse substrates
To functionalize glass, PDMS, and ITO-glass substrates with pri-
mary amine groups, substrates were first cleaned by washing with 
acetone and ethanol and deionized in sequence followed by drying 
under nitrogen flow. The cleaned substrates were then activated by 
an oxygen plasma cleaner (30 W at 20 mtorr pressure; Harrick Plasma) 
for 3 min (1 min for PDMS). After oxygen plasma treatment, the 
substrates were immersed in 50 ml of silane solution [10 l of acetic 
acid, 1% (w/v) 3-aminopropyl trimethoxysilane in 100 ml of deion-
ized water] for 1 hour at room temperature. After incubation in the 
silane solution, the substrates were thoroughly washed with deion-
ized water and dried under nitrogen flow.

To functionalize Pt electrodes with primary amine groups, sub-
strates were first cleaned by Piranha solution (3:1 mixture of con-
centrated sulfuric acid and 30% hydrogen peroxide solution). The 
cleaned substrates were then washed with deionized water and 
dried under nitrogen flow. The substrates were then immersed into 
50 ml of silane solution [10 l of acetic acid and 1% (w/v) 3-amino-
propyl trimethoxysilane in 100 ml of deionized water] for 1 hour at 
room temperature. After incubation in the silane solution, the 
substrates were thoroughly washed with deionized water and dried 
under nitrogen flow.

To functionalize gold substrates or a MEA (with Au electrodes) 
with primary amine groups, substrates were first cleaned by wash-
ing with acetone and ethanol and deionized in sequence followed by 
drying under nitrogen flow. The cleaned substrates were then 
further cleaned by an oxygen plasma cleaner (30 W at 20 mtorr 
pressure; Harrick Plasma) for 3 min. After oxygen plasma treatment, 
the substrates were immersed into 50 ml of 1 mM aqueous cysteam-
ine solution for 1 hour at room temperature. After incubation in the 
cysteamine solution, the substrates were thoroughly washed with 
deionized water and dried under nitrogen flow.

To functionalize polyimide substrates with primary amine 
groups, substrates were first cleaned by washing with acetone and 
ethanol and deionized in order followed by drying under nitrogen 
flow. The cleaned substrates were then immersed into 50 ml of 
10% (w/v) aqueous hexamethylenediamine (HMDA) solution for 
6 hours at room temperature. After incubation in the HMDA solution, 
the substrates were thoroughly washed with deionized water and dried 
under nitrogen flow.

Formation of strong adhesion of conducting polymers
A hydrophilic PU (HydroMed D3, AdvanSource Biomaterial) and a 
PVA (molecular weight = 124,000; Sigma-Aldrich) were used as PU 
adhesive layer and PVA adhesive layer, respectively. To prepare a 
hydrophilic PU solution, varying concentrations [1 to 5 weight % 
(wt %)] of PU were dissolved in mixture of ethanol and deionized 
water (95:5 = ethanol:water, v/v). To prepare a PVA solution, 1 wt % 
of PVA was dissolved in deionized water heated at 90°C. For 
planar substrates and devices in this study, the adhesive layer was 
introduced in a controlled manner by spin coating of the hydrophilic 

PU solution or the PVA solution at 2000 rpm for 30 s. For nonpla-
nar substrates and devices in this study, the adhesive layer was 
introduced in controlled manner by dip-coating of the hydrophilic 
PU solution or the PVA solution with pulling rate of 1 cm min−1. 
After spin coating or dip coating, the PU- or PVA-coated substrates 
were annealed at 80°C for 1 hour. In experiments, PU adhesive layer 
with 60 nm thickness was used unless otherwise mentioned. For 
strong adhesion of wet conducting polymers, conducting polymers 
were prepared by either solvent casting or electrodeposition on the 
PU- or PVA-coated substrates following the previously reported 
protocols (10, 23, 40, 41).

For solvent-casted or spin-coated PEDOT:PSS, 15% (v/v) di-
methyl sulfoxide was added into a commercially available aqueous 
PEDOT:PSS dispersion (Clevious PH1000, Heraeus Electric Mate-
rials) and vigorously stirred for 6 hours at room temperature. The 
mixed PEDOT:PSS dispersion was then filtered by PTFE filter (pore 
size, 5 m) and solvent-casted or spin-coated on the PU- or PVA-coated 
substrates followed by air drying for 12 hours at room temperature 
and subsequent annealing for 30 min at 120°C. To obtain wet 
PEDOT:PSS adhered on the substrate, the samples were soaked in 
PBS for 1 hour before use.

For solvent-casted PPy, an aqueous pyrrole solution (0.3 M 
pyrrole and 0.1 M SDS in deionized water) and an aqueous oxidant 
solution (0.3 M ammonium persulfate in deionized water) were 
mixed in 1:1 by volume and vigorously stirred for 3 min at room 
temperature. The mixed solution was solvent-casted on the PU-coated 
substrates and incubated in ambient condition for 30 min. To ob-
tain wet PPy adhered on the substrate, the samples were soaked in 
PBS for 1 hour before use.

For solvent-casted PAni, an aqueous aniline solution (1.42 M 
aniline and 1.42 M hydrochloric acid in deionized water) and an 
aqueous oxidant solution (1.42 M ammonium persulfate in deion-
ized water) were mixed in 1:1 by volume and vigorously stirred for 
1 min at 4°C. The mixed solution was solvent-casted on the PU-coated 
substrates and incubated in ambient condition for 30 min. To ob-
tain wet PAni that adhered on the substrate, the samples were 
soaked in PBS for 1 hour before use.

For electrodeposited PEDOT:PSS, an EDOT:PSS precursor solu-
tion (0.02 M EDOT, 0.04 M PSS, and 0.1 M LiClO4 in deionized 
water) was electropolymerized by an electrochemical potentiostat/
galvanostat (PGSTAT30, Metrohm Autolab). A PU-coated elec-
trode, a Pt sheet, and a Ag/AgCl wire were used as a working elec-
trode, a counter electrode, and a reference electrode, respectively. 
The electropolymerization of EDOT was performed at 1.0 V versus 
Ag/AgCl (38 mC cm−2) for ITO-glass substrates and at 1.0 V versus 
Ag/AgCl (43 mC cm−2) for MEA with Au electrodes.

Measurement of adhesive layer thickness
The thickness of adhesive layers was measured by using an ellip-
someter (Gaertner Scientific) with a wavelength at 633 nm. Changes 
in polarization were measured by the ellipsometer as a function of 
the sample thickness, which were then used to determine the thickness 
of the adhesive layers.

Elemental analysis and SEM imaging
Elemental distribution in adhesive interfaces was characterized by 
SEM-EDS measurement of a cross section of a dry PEDOT:PSS on 
a silicon substrate with the PU adhesive layer. The PEDOT:PSS on 
the amine-functionalized silicon substrate with the PU adhesive 
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layer was immersed in liquid nitrogen for 3 min and then cryo- 
fractured to obtain clean cross section. The cleaved sample was 
observed by using an SEM-EDS facility (6010LA, JEOL) and char-
acterized to monitor the distribution of carbon and sulfur atoms. SEM 
images of bioelectronic devices with electrodeposited PEDOT:PSS 
were taken with the same SEM facility after Au sputtering (6 nm Au 
thickness).

Atomic force microscopy imaging
Atomic force microscopy (AFM) images and surface roughness 
data of diverse substrates were acquired by using an AFM facility 
(MFP-3D, Asylum Research). The substrates were directly attached 
onto the sample stage by double-sided carbon tape.

XPS characterizations
To prepare XPS samples, PEDOT:PSS was prepared by solvent-casting 
on a glass substrate, a glass substrate with the 60-nm PU adhesive 
layer, and a glass substrate with the 1500-nm PU adhesive layer. 
Before the sample preparation, the glass substrates were functional-
ized with perfluorosilane (1H, 1H, 2H, 2H-perfluorooctyltriethox-
ysilane) to aid the peel-off process of the samples from the glass 
substrates without residues of the PU adhesive layer or PEDOT:PSS. 
Subsequently, the PEDOT:PSS without and with the PU adhesive 
layer was peeled off from the glass substrate after swelling in PBS to 
expose the adhesion interface for XPS characterization. Surface 
chemical composition of the samples was characterized by using an 
XPS facility (VersaProbe II, Physical Electronics Inc.) under ultra-
high vacuum of 5 × 10−10 mbar.

Mechanical characterizations
Before mechanical characterizations, all samples were immersed in 
PBS for 1 hour to hydrate the conducting polymers. Interfacial shear 
strength was measured by lap-shear tests (ASTM D3163) with an 
overlap area (length, 20 mm; width, 25 mm). The lap-shear test 
samples were prepared by solvent-casting of conducting polymers. 
A hydrophilic nylon filter (pore size, 1 m; Tisch Scientific) was 
covered on top of a conducting polymer precursor solution on the 
substrate to provide a robustly integrated backing. The lap-shear 
tests were performed by using a mechanical testing machine (2-kN 
load cell, Zwick/Roell Z2.5) at the crosshead speed of 50 mm min−1. 
The interfacial shear strength was determined by dividing the peak 
measured force by the overlap area. Tensile tests were performed in 
PBS bath with dog-bone shape samples by using a mechanical tester 
(UStretch, CellScale) to avoid dehydration of the wet conducting 
polymers during tests. Ultrasonication of samples was conducted 
by using a sonicator (VWR) with PBS bath at 25°C.

Electrical characterizations
Electrical conductivity was measured by using a standard four-
point probe (SCS-4200, Keithley). Sheet resistance was measured by 
using a digital multimeter (Fluke) with an applied potential bias of 
100 mV. All conducting polymer samples used for electrical con-
ductivity and sheet resistance measurements were fully hydrated by 
immersing in PBS for 1 hour before the tests. EIS measurements 
were performed by using a potentiostat/galvanostat (1287A, Solartron 
Analytical) and a frequency response analyzer (1260A, Solartron 
Analytical) in an electrochemical cell installed with a wet PEDOT:PSS 
on an ITO-glass electrode (without or with the PU adhesive layer) 
as a working electrode, a Pt sheet as a counter electrode, a Ag/AgCl 

wire as a reference electrode, and PBS as an electrolyte. The fre-
quency range between 0.1 and 100 kHz was scanned with an applied 
potential bias of 10 mV versus Ag/AgCl.

CV measurements were performed by using an electrochemical 
potentiostat/galvanostat (PGSTAT30, Metrohm Autolab) with a 
potential scan rate of 150 mV s−1 in an electrochemical cell installed 
with a wet PEDOT:PSS on a Pt electrode with the PU adhesive layer 
as a working electrode, a Pt sheet as a counter electrode, a Ag/AgCl 
wire as a reference electrode, and PBS as an electrolyte. The CSC of 
the sample was calculated from the measured CV data as

  CSC =  ∫ E  2    
 E  1  

      i(E) ─ 2vA   dE  

where v is the scan rate, E2 and E1 are the potential window, i is the 
current at each potential, and A is the area of the wet PEDOT:PSS 
on Pt electrode, respectively.

Statistical analysis
MATLAB software was used to assess the statistical significance of 
all comparison studies in this work. Sample size of 5 was selected 
otherwise mentioned in all experiments. Data distribution was 
assumed to be normal for all parametric tests but not formally tested. 
In the statistical analysis for comparison between multiple samples, 
one-way ANOVA followed by Tukey’s multiple comparison test were 
conducted with threshold of *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, 
and ****P ≤ 0.0001. In the statistical analysis between two data groups, 
two-sample Student’s t test was used, and significance threshold was 
placed at *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, and ****P ≤ 0.0001. 
All error bars in the graphs represent the 95% confidence interval 
(CI) values.
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