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ABSTRACT

In this thesis, I discuss the importance of sleep and therefore the study of sleep. 1
highlight limitations with existing methodologies to conduct sleep studies and collect
sleep data, and present a solution to overcome current limitations by providing better
mechanisms for sensing during sleep in the wild.

This document details the thought process of every aspect of design and development
of the progress made on the project so far. First, I present the motivation for the
project and provide general background. Second, I discuss the physiological signals
that sleep studies monitor and their relationship to sleep. If the reader is familiar
with these physiological signals and how they are relevant to sleep studies, they
should feel free to skip that section. Next, I provide an overview of some existing
alternatives in the market and discuss why they do not satisfy the purpose of in-the-
wild sleep studies. Next, I detail the design of the device, physically and on the
system level. Then, I go into a detailed description of the components of the device in
hardware, firmware, and software. I include a brief description of some of the efforts
made in the code to make it easier to debug while developing. Lastly, I discuss what
work was completed, and what work remains to be done. I close with a full list of the
tasks remaining and some implementation concerns.

There is a glossary near the end of the document of terms and acronyms I use
throughout the thesis. Feel free to consult it should any confusion arise regarding the
meaning of words used.

The document ends with a list of appendices starting with a complete usage guide for
the system in its current state. The other appendices include copies of all the
firmware and software code, and circuit and PCB designs.

Thesis Supervisor: Pattie Maes
Title: Professor of Media Arts and Sciences,
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INTRODUCTION

We know that it is essential for humankind to get sufficient and regular sleep, not just
for a good rest, but also for a collection of critical cognitive developments in the
brain. Although we still understand very little about sleep, we know that some of the
most important mental and physical processes in the human body happen during
sleep, such as memory consolidation and immune system fortification. Sleep studies
are imperative because they help doctors to diagnose patients with sleep disorders
that would otherwise be very difficult to find conclusive symptoms for. Sleep studies
require patients to come in and sleep in “sleep centers” which are equipped for
people to sleep while the brain and body of the subjects are monitored. The data
typically collected involves EEG sensing, eye movement, oxygen levels in the blood,
heart rate and breathing rate, snoring, and body movements [1].

Sleep studies have largely been viewed as a nuisance for the subjects being studied.
This is due to the major discomfort caused when the subject must come into the
research center or hospital and sleep there while their vitals and different
physiological signals are constantly monitored by bulky equipment. In order to detect
these signals, a variety of electrodes and sensors are distributed across the head and
the rest of the body, and secured using tape or glue, and therefore cause significant
discomfort. Centers assure patients that they’ll “still have plenty of room to move and
get comfortable” and that they are being monitored by sleep study technologists who
“can help if they need to use the bathroom™ [1]. Still, according to the National Sleep
Foundation, many pecople wonder how they will be able to sleep under such
conditions. Researchers believe this setup and procedure result in inaccurate or at
least inconsistent data as the subjects are not sleeping as they normally would- in the
comfort of their home, free of unfamiliar wires and electrodes probing their bodies.

That is where this project comes in. With the previous insights in mind, the project
aims to tackle those challenges by creating a comfortable and minimal “sleep mask”
which houses all the required sensors and clectrodes to record the vitals and signals
needed for sleep studies, in a compact and user-friendly format. The device takes the
form of a sleep mask, which consists of a flexible printed circuit board with integrated
electrodes and sensors that are close to the skin, and two conventional PCBs to house
the components that perform the signal processing, data analysis, signal forwarding
and storage, farther away from the skin. The resulting mask can be taken home,
enabling sleep studies to be conducted “in the wild.”
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BACKGROUND

SIGNALS OF INTEREST

In order to conduct polysomnography (sleep studies), technologists typically place
sensors on the patient’s scalp, temples, chest, and legs, as well as a clip on the finger,
all of which are connected by wires to a computer. This is in preparation to monitor
the following signals: brain waves, eye movements, heart rate, breathing pattern,
blood oxygen level, body position, chest and abdominal movement, limb movement,
and snoring [4].

The device we are building for the purpose of improving sleep studies aims to
integrate cach of the following sensors, which detect the signals specified below:

EEG (Electroencephalogram)

FIGURE 1: EEG SIGNAL (ALPHA)

EEG is an clectrophysiological detection mechanism to monitor electrical activity of
the brain and record brain wave patterns. Usually this sensor takes the form of
noninvasive electrodes (small metal surface connected with thin wire) contacting the
scalp, although versions of it which pierce the skin also exist. EEG wave patterns are
well-studied and there are known patterns that healthy brains emit, so doctors can
observe abnormal patterns and study whether they are a cause for concern and what
they might entail [5]. For our purposes, EEG can be used to monitor sleep stages and
cycles; whether the patient is in REM or NREM.

EOG (Electrooculography)

EOG is a physiological signal that detects and measures eye movements (through the
eyelid) by measuring the corneo-retinal distance between the front and back of the
eye. This is done by placing two electrodes on both sides of the eye, either the right
and left, or front and back, and measuring the potential difference between them,
which would vary as the eye moves [7]. For our purposes, this is used to detect what
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stage of sleep the patient is in. REM is an acronym for rapid eye movement, so we can
know that the patient is in REM by detecting random and rapid eye movement.

EMG (Electromyography)

v “l\‘l“ ‘\‘H’\Un‘i‘f‘iﬁl\u{ \ “\f‘rﬁw

FIGURE 2: EMG SIGNAL

EMG is performed to evaluate the healthiness of muscles and the associated motor
neurons (nerves that control those muscles). The motor neurons transmit signals to
the muscles that cause muscles to either contract or relax. The electrical
mecasurement of such a signal is called EMG. Monitoring and studying the EMG signal
can allow doctors to detect muscle and nerve disorders [6]. For our application, EMG
variance can be used to assess sleep behaviors in terms of muscle movements around
the body. Specifically, cheek, forchead, and chin EMG signals are the ones we focus

on in our device.
EDA (Electrodermal Activity)

EDA is also known as GSR (galvanic skin response), and it represents skin
conductance which continuously varies in the human body. EDA is measured by using
two electrodes that make contact with the skin and measuring the resistance between
them. This relies on the discovery that the resistance of skin changes based on the
(even minute) activity of the sweat glands in the skin, which are controlled by the
sympathetic nervous system. EDA is a measure of psychological and physiological
arousal. For our application, this signal means we are able to detect the emotional
response and state of the patient.

PPG (Photoplethysmogram)

FIGURE 3: PPG SIGNAL SHOWING HEART BEATS
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PPG uses a type of sensor which is an optically detected plethysmogram, used to
measure the volume of blood going through the veins under the skin. This is often
done by shining a light on the skin and measuring variations in light absorption.
Because the volume of blood changes as the heart pumps it to the periphery, this
enables us to measure heart rate.

Temperature

By measuring the temperature of the body, we are able to deduce the stage and depth
of sleep that the patient is in. Sleep stages are associated with temperature ranges; we
can observe drops and changes depending on the stage in the cycle.

Motion sensing

Measuring the movements of the patients via Gyroscopes, magnetometers, or
accelerometers enables us to detect muscle spasms and whether the patient is tossing
and turning, which can be valuable data for doctors to be able to diagnose certain
sleep disorders.

EXISTING SOLUTIONS

The main challenges with conventional sleep studies are twofold: the patient’s
comfort, and the accuracy of the collected data, given the context in which the
patients sleep. There are three existing products in the market that try to tackle those
issues, that we are aware of.

First, a product called Neuroon Open, which is marketed as a sleep enhancing
wearable device. This is an loT product whose selling point is helping customers
improve the quality of their sleep through EEG monitoring and lucid dreaming
induction, as well as smart meditation sessions. This is achieved by allowing the IoT
device to control the lighting, music, and the temperature in the bedroom of the
customers, which the device adjusts in accordance with what the customer needs are
based on the sleep stage they are in [2]. This device is mainly aimed at helping an
individual sleep better by monitoring brain waves, and less at helping researchers
study sleep in order to diagnose patients with potential sleep disorders, and better
understand sleep in general. Therefore, the use-case for this product is limited to
helping the customer sleep more soundly, and is thus much narrower than the goal of
this project.

Second, a product called Muse Headband. Muse monitors mental activity and uses it
to produce “guiding” nature sounds to help the user reach a mental state of what they

10
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call a “focused calm.” Muse selects different sounds to represent different states of
mind: if the subject is calm, it plays peaceful weather sounds, and as the customer
starts to get more distracted or busy-minded, it starts to play more stormy and loud
weather sounds to cue the user to focus their attention back to their meditation
routine. Muse is also mostly limited to the use of EEG sensing to help guide users
through immersive meditation sessions. Some iterations of the product include PPG
sensors, as well as a gyroscope and accelerometers, although all of these added
sensors are used to optimize the same functionality: helping the user to calm their
mind [3].

Third, a product called ZMax by Hypnodyne Corp. This product takes the form of an
elastic headband with a box that sits on the forehead housing all the sensors and
electronics. It has two EEG channels, measures heartrate, skin temperature, light and
noise levels, and head position and movement. It comes with a range of software
suites and options, as well as add-on sensors to optionally monitor other signals.
ZMax seems to target a wide range of audiences including researchers as well as
consumers, attracting them with lucid-dreaming specific setups and tutorials [32].

All of these products roughly satisfy the form factor for this project (though ZMax is
on the bulkier side), but they lack sensing a some of the signals that this project aims
to encompass with a design that supports medical and scientific sleep research.

GETTING STARTED

The PhD Research Assistant that I am working with for this project with, Guillermo
Bernal, had previously developed an AR/VR headset with most of the same sensors
and some powerful signal processing as the application required measuring more
signals and using them to manipulate other signals related to graphics. Starting from
that project, it was decided that the form factor would definitely need to be reduced,
which was not an issue since this project did not require any of the optics-related
components from the previous project.

11
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THE DEVICE: DESIGN

To overcome the shortcomings of existing products for the purpose of sleep research,
we made sure to design our product so as to maximize both the quantity and quality of
sensor signals, as well as user comfort (which helps produce more accurate data).

PHYSICAL DESIGN

FIGURE 4: FORM FACTOR OF THE SLEEP MASK DESIGNED FOR THIS PROJECT

The physical design of the device was decided with the most minimal footprint to be
the least intrusive it possibly can, so as to enable the user to be as comfortable as
possible, and the data to be as accurate and noise and error-free as possible. This
resulted in the selection of the sleep mask as the form of the device- a garment used
only while people sleep for the purpose of aiding in sleep. For the sensors requiring
clectrodes, a flexible PCB design was used to maximize user comfort. Other
considerations included placement of components other than electrodes: those were
initially going to be in one or two larger conventional PCBs on the forehead, but they
were recently changed to be two equally sized conventional PCBs in the eye area
where foam padding and fabric will cover them.

Work was done to ensure the non-flexible PCBs in the device were appropriate. The
initial design involved placing a somewhat large PCB on the forehead, connected to a
smaller PCB above it. In order to maximize comfort, the form factor of each PCB was

12
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Dry 5 ¢ i
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FIGURE 5: EXPLODED VIEW DISSECTING THE COMPONENTS OF THE DEVICE

reduced such that we can fit each PCB in one eye-patch of the sleep mask. This was
done by revising the PCB design and, while checking for errors and correcting them,
also removing unnecessary connections or unused wires.

As shown in figures 5 & 6, the emptiness inside the rim of the mask, which is the
flexible PCB, houses the two conventional PCBs, with additional padding on both
sides.

FIGURE 6: EARLY PROTOTYPE OF FASCIA, SHOWING THE MAIN PARTS

13
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SYSTEM DESIGN

The device was designed with free and open-source software ethics in mind, therefore
all the designs and information are publicly available for anyone to benefit from. This
also guided many design decisions regarding hardware and software selection: the
hardware design was developed in Eagle and the firmware was developed in the
Arduino language and IDE, and the visualization software is written in Python.

Additionally, due to the importance of privacy of information, the goal is to eventually
have the device encrypt the data before sending it over the network to keep it safe
from any sniffers.

Speed and power efficiency are essential to the project as the device is going to be
wirelessly worn throughout an entire night. This means we have a relatively small
battery that we must conserve to last as the system’s power source all night. This led
to some decisions regarding data rates and burst data packaging, as well as using
interrupts versus polling the integrated circuit chips (ICs) that comprise the device.
The data rate is as fast as possible to allow the processing code to perform its tasks
without interruption, while not being so fast that we receive too much data that is
redundant or unnecessary. To ensure these delicate timing constraints, we only use
one device’s interrupt feature and service it with a routine which reads, converts, and
stores the data, so that the other devices do not interrupt while this is being serviced
or while the code is processing something else, to prevent messier handling and less
predictable behaviors and timings.

14
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HARDWARE

The hardware architecture consists of a main processing unit and wireless
communication, a couple of physiological sensing units, and a flexible PCB that works
as an clectrode array. This section discusses the blocks, design decisions and
progress that were made for each of them.

EDA Block

To detect and monitor EDA, we began by implementing, incorporating, and testing a
new circuit for EDA measurements which promises simpler signal processing for
feature extraction from the data while also offering simple circuitry. This new method
was detailed in the paper “Electrodermal Activity Sensor for Classification of
Calm/Distress Condition” published by Universidad de Castilla-La Mancha in Spain
[8]. The circuit for this EDA sensor, as cited in the paper, looks as in Figure 7.

Virtual Current Low-pass
Ground Source Filter
Cat
1L
i
Electrodes ﬁf
I
V\N Rg1 Rg2
M ‘VV\IQ
VDD
Rref WYiory
o Rp Veda
Rat1 Ra2
NN— N J_ + co
VDD/2 CaZI I
v (a) (b) ©

FIGURE 7: EDA SENSOR CIRCUIT, FROM [8]

The circuit consists of three distinct stages. The first stage is an operational amplifier
(op-amp) used to isolate a voltage divider, creating what the paper calls a “virtual
ground.” This signal, labeled as VDD /2 in figure 1, is the reference voltage for the
next part of the circuit, which is the sensor. The sensor stage, called “current
source,” is measuring the EDA signal using a current source by connecting two
clectrodes to the skin, which are connected to the negative input and the output of
the op-amp, enabling the op-amp to generate a current which is injected into the skin
and fed-back into the negative input terminal. Rreris used to limit the current going
through the skin of the wearer. The output signal of this stage is referenced as Vour.
The next and last stage of the circuit is an elaborate low-pass filter to clean up the
signal of the many potential sources of noise.

15



HARDWARE : EEG/EMG/EOG SENSING

This circuit was first built and tested on a breadboard, and then integrated into an
existing initial prototype PCB, and tested in that context as well. This testing was
important because it required ensuring that the circuit worked under our use
conditions which included isolated power and ground rails to minimize noise and
interference from other parts of the PCB dealing with other signals. To perform the
isolation, an opto-isolation chip (HCNR200-300E) was integrated, which uses LEDs
and light sensors to replicate the voltage on the LED side of the circuit without
allowing any of the varying ground and power levels (which are isolated for the EDA
circuit, and therefore not necessarily equal to the common power and ground) to
interfere with it by measuring the optical brightness of that LED and using that
sensed value.

Another aspect of testing that took place was optimizing the value for the virtual
ground and inspecting the behavior of values lower and higher than VDD/2. This is to
optimize accuracy because the final signal is going to be read by an ADC (analog to
digital converter) on the microcontroller, which has set resolution and input range.
By examining and tweaking the final output range, focusing on the extreme values, in
volts (given what we expect the range of inputs of human skin resistances to be), we
can make sure that out output range utilizes the ADC range maximally, enabling us
maximum precision by mapping each ADC bit to a smaller voltage unit, without
saturating the ADC. I tried out different values for the voltage divider and calculated
their resolution to optimize the signal read by the microcontroller (to perform the
signal processing on). The software to process this signal and classify the results is
yet to be done.

EEG/EMG/EOG Sensing

All three signals of EEG, EMG, and EOG were collected in the same hardware unit
using a device from Texas Instruments which is specifically made for collecting and
measuring biological signals, the ADS1299. This is a very powerful device (and the
most costly component in our setup) that enables the measurement of eight different
biopotential signal channels simultaneously, and apply independent gains (between 1
and 24 as follows: 1, 2, 4, 6, 8, 12, 24) and different modes of operation on cach of
them. For example, it allows each channel to have both a positive (P) and a negative
(N) lead, and it also allows you to use only one channel lead, and use a “bias” probe as
a reference for the signal, which can be used for as many channels as the user desires.
Additionally, it implements a Right-Leg-Drive (RLD or DRL, for Driven-Right-Leg)
circuit which senses what is called “common-mode interference,” which is noise in

the body that could interfere with the signals of interest, and uses an op-amp to
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subtract those noisy signals from the bio-signals of interest. To enable this feature
for a specific channel, you must connect SRB2 for that channel. Even more usefully,
the chip has a very customizable internal circuit to detect whether the probes and
leads on the human’s body are loose or completely off, given false or inaccurate bio-
signals. This feature is referred to as “lead-off detection.” This device also offers two
modes of communication: both 12C and SPI; we use SPI in this project. The device
also offers a “continuous conversion” mode which pulls an interrupt pin low when the
data is ready, and a “single shot” mode in which you poll the device for data; we are
using the single shot mode due to some wiring issues in the first version, but plan on
switching to continuous conversion mode in the future versions.

We are using the eight channels of the ADS1299 as follows: one EOG channel, three
EMG channels, and four EEG channels. Each EOG and EMG channel uses two leads,
both the positive and negative probes of a channel, which are connected to two sides
of a muscle to measure the potential across it. Using this setup, which is referred to
as a sequential montage, the ADS1299 measures the potential difference across the
pair of electrodes which should be placed across a muscle; one on each end. We use a
gain of 2 or 4 for cach of these channels as they are fairly visible already due to their
fairly large magnitudes. For EEG, we only use one channel probe (either the positive
or the negative), and connect the other one to the bias probe, measuring the EEG
signal with respect to a single reference electrode. This setup is called a referential
montage, and it helps eliminate noise and clean up the EEG signals which are much
smaller in magnitude compared to other biopotential signals. Additionally, we use
higher gains of 12 or 24 for these electrodes due to the miniscule size of the EEG
signals. We also connect these channels to SRB2 to enable the RLD circuit to remove
as much noise as possible from these sensitive and minute signals. To add even more
accuracy, we use two types of electrodes for EEG detection: passive (such as the ones
used for EMG and EOG), and active, which has built-in circuitry to actively magnify
the signal as it is sensed. For the active electrode channels, we can use a smaller gain
of as low as 1.

To begin testing this set up, we first took advantage of a built-in functionality in the
ADS1299: generating test signals. This is another feature of the device where it
internally generates square waves at selectable frequency and amplitude and feeds
that signal into the channels that are enabled to be tested. This is a great feature to
test the initialization routine of the chip such as wiring, power levels, register
settings, and data out package reception.

The next step in the testing process for this device was to inject external signals into
each of the channels and be able to receive the correct data. For this, we used a

17
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function generator to produce arbitrary waveforms, and used a simple attenuation
circuit to make the signal even smaller (since we want to test the ability of the device
to detect miniscule signals), and tested each of the channels’ ability to transfer those
arbitrary waveforms (sine, sawtooth, etc.) at diminishing amplitudes (1-o.o1 volts) and
varying frequencies (10-1000 Hz).

PPG/Temperature Sensor

For our PPG sensor, we use the MAX30105 which is a particle and proximity sensor
with PPG and temperature sensing. This device is placed in its own mini PCB board
and connected to the rest of the system using a 4-pin JST connector to connect the
[2C and power lines to the board. This separation from the main and even secondary
PCBs allows the temperature sensor to be more accurate in representing the
temperature of the patient, since it is not skewed by any nearby hardware. It Also
enables the PPG sensor to have reduced noise data as it uses a red LED and infrared
sensor to measure the pulses in the veins, and by having it live in a separate unit (its
own mini PCB) it better ensures a more secure connection to the patient’s skin,
acting as a probe on their forehead. To test this unit, it was only necessary to collect
the data and graph it, to see if the heart beats are visible in the graph. The PPG sensor
also has a data ready interrupt pin that is not in use currently.

IMU Unit

The IMU being used for this project is the MPU60o50, which is a three-axis
accelerometer and gyroscope (and no magnetometer) which communicates through
I2C. Because of its lack of magnetometer, and because it was wired improperly (sadly
due to a funky Eagle library) in the first version of the PCB design, there were some
considerations of replacing the MPU6o50 for a complete triaxial one with an
accelerometer, gyroscope and magnetometer. Upon doing some research and reading
of the literature in the topic, we determined that the accelerometer and gyroscope
should be enough for the kinds of analyses we aim to do with our device for sleep
studies. This sensor also has a data ready interrupt pin that we are not currently
using. To test this device’s wiring (and how we revealed the wiring error in the first
PCB design), we attempt to establish a connection with the device via [2C and take a
look at the data we receive. In the case of the incorrect wiring, the device was never
found, because it was improperly wired and thus disconnected from power and
ground, and the data and clock lines were all jumbled up.
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Communication and Networking

To ensure the project meets state-of-the-art performance, the device need not only
collect data and process it, but it also has to export it and send it to a server or device
which collects and stores all the sensor data. We incorporated a Bluetooth/WiFi chip
to keep our options open in terms of which method of communication we prefer to use
based on which could work better and be faster or more reliable. We use the ublox
NINA-Wio2 which is a chip that is rated safe to be in close proximity to the human
body, which our device will be.

Security

Due to the nature of the project which involves personal data, security is a serious
and important consideration. To this end, we integrated a specialized security chip
into the design of the device. We selected the ATECC508A which enables us to
encrypt any data using [2C before sending or sharing it with the world outside of the
device’s PCB. Although this part is important, it is not a priority in terms of
development and testing of the device at its current state, therefore there has been no
testing done or software written for this cryptographic device yet.

Microcontroller (MCU)

The device has a single microcontroller, in which all the sensor and signal data is
collected and processed before being sent over the network. The MCU in the device is
the ARM Mo, a 32-bit ATSAMD21G which communicates with the WiFi/Bluetooth
module, NINA-Wro2 using SPI. The selection of the microcontroller was due to the
design decision to make the whole project, hardware and software, open-source and
accessible, without increasing the price too much: Arduino is an open-source and
affordable resource, and offers a familiar IDE and programming interface for many
people.
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FIRMWARE

Each of the types of data that are collected in hardware had to be processed and
cleaned up differently in order to be viewable and interpretable. In this section, I will
detail these procedures that are in place to receive and process the data from the
sensors to make it more visualizable.

But before I do so, we must discuss a few important aspects of data collection that are
at play in this system: data size, data rate, and data conversion.

DATA ASPECTS
Data Size

It is important to take into consideration the size of our data in bits or bytes for two
main reasons. The first one is that each device could give data in different sizes and
formats, which could affect their precision and how we can interpret them and
correctly read them. The second is that our data size affects the total size of the data
packets that we send over the WiFi network. The Arduino WiFiNINA library seems to
have a limit to the size of the packet it can send as one packet without splitting it, and
the size of each of our data points plays an important role in the creation and packing
of this data packet.

Data Rate

Data rate is an essential variable in our system. Clearly, it matters because we aim to
make our device fast and efficient. More importantly, however, is its effect on the data
which we collect, which is twofold. Firstly, for each type of signal we collect, there is
a range of frequencies which that biological signal tends to remain within. For us to
be able to capture that signal accurately, our data collection rate must be at least
twice the highest frequency (or the bandwidth) of the signal we are interested in
collecting, in theory. For example, if signal S has a nominal bandwidth of £, but its
frequency can go up to fnax, then the theoretical minimum rate with which we can
sample signal S would be 2x£f,.x . This is called the Nyquist Rate, and it specifies
this minimum value as a prerequisite for being able to reproduce the signal exactly
identically to the original signal, constituting alias-free sampling. Secondly, we apply
digital filters to clean up and remove unwanted noise in our collected signals. The
way these digital filters work depends on the data rate at which the data was collected,
in order to allow some frequencies to pass the filter (within the bandpass, BP), and
some frequencies blocked out of the filter (within the band stop, BS), as desired.
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These frequencies and the accuracy of the points at which the filter allows and stops
allowing data to pass through depends heavily on the accuracy and steadiness of our
data rate.

Data Conversion

Most of the data collected from the sensors and hardware blocks is received through
SPI or [2C, for which it is more efficient if it is packed in ADC counts or non-
standard sizes of data. Therefore, upon receiving the data, some work has to be done
in order to make sure that the data makes sense and is usable and readable for our
final use cases. This could include conversions from ADC counts to real, metric units,
or simply sign-extending the data to a standard size, or even both.

PHYSIOLOGICAL & SENSOR SIGNAL DATA

In this section, I will discuss how each aspect of data was handled for each type of
signal received from hardware blocks.

ADS1299 Data (EMG/EOG/EEG Signals)

The ADS1299 is the single device which gives us the most data in our device, eight
data points to be precise. Moreover, the kind of data that we collect from it is the
most sensitive in terms of timing and frequency of collection. This is because we use
it to sense EEG, EMG, and EOG signals, which require sensitive circuitry in order to
detect and measure. Having a sensitive circuit naturally exposes our target signals to
electromagnetic noise from the environment and even from other parts of the circuit.
For this reason, all of our signals from the ADS1299 need to be filtered. The most
prominent electromagnetic environmental noise is the power line AC frequency, of 60
Hz in the U.S.A, and 50 Hz in most other countries. Therefore, the first filter we run
the ADS1299 data through is a digital notch (band stop) filter at 6o Hz. The second
filter we run each of the signals through is a band pass filter to allow in only the range
of frequencies in which that signal lives into the filter, discarding all other
frequencies from our final signal. Because of the sensitivity of the signals and their
frequency ranges, and because we run them through two different digital filters which
rely on a constant and accurate data collection rate, we allow the ADS1299 to lead and
determine the frequency of data collection for all the other devices and signals in the
system of the device.
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Data Rate

The data rate of the ADS1299 is programmable, anywhere between 250 samples per
second (SPS), and 16,000 SPS. There are two main criteria for selecting the data rate
of the ADS1299: the frequency range for each of the signals it collects, and the
frequency ranges for the other signals to be collected in other hardware blocks in the
system. Firstly, the frequency of the signals collected in the ADS1299. As mentioned
in the Data Rate section above, the theoretical minimum sampling rate for a signal is
double the maximum frequency for that signal. In practice, however, we found that
going a bit below that minimum still works quite well. This is likely because the
theoretical value is tied to the ability to recreate an identical signal to the input
signal. Since we are not concerned with re-forming the same signals, we have found
that the features and shapes of the signals can be faithfully collected by using a data
rate lower than the Nyquist Rate. Secondly, the data rate of the ADS1299 depends on
the frequencies of the other signals to be collected in the system using other 1C
devices. This is because I made the decision to use the ADS1299 as the data rate
leader, for aforementioned reasons. Therefore, the other signals and their frequency
ranges have to be taken into account when making decisions regarding the ADS1299
data rate. Because of these restrictions, the acceptable data ranges for the ADS1299
go from a minimum of 500 SPS and up.

The data rate that is programmed into the ADS1299 determines the rate at which it
samples, converts, and signals that the data is ready to be read, or sends the data over,
depending on the settings for receiving the data. As previously mentioned in the
Hardware section, the ADS1299 can be set either to continuous conversion mode or
single shot mode. In continuous conversion mode, the data ready pin would be pulled
low at the specified rate as the data gets sampled and converted. In the single shot
mode, the device would continue to sample and convert at the given rate, but would
not incur interrupts or pull the data ready pin low until polled for the data, in which
case it would pull the data ready pin low and proceed to send the requested data.

Data Conversion

Each data packet we receive from the device includes two main components. First is
information on which leads might be off of the patient’s body (a.k.a. lead-off status)
This section of the packet would only carry meaningful information if the device
configured to keep track of the leads and report the status of their contact with the
patient’s body. Following the lead-off status is the converted data from all eight input
channels of the device. The size of the status portion, in addition to all the channel
data combined is 216 Bits (54 Bytes), or 24 Bits (three Bytes) for each of the g data
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points. The ADS1299 sends each of these data points MSB (most significant bit) first,
and LSB (least significant bit) last, as shown in the figure below. The data for each of
the channels is sent in the form of ADC counts, which need to be converted to volts.

To convert from ADS counts to volts, we first need to determine the value of one ADC
count Bit in Volts. That turns out to be a simple ratio: the full-scale range of volts,
divided by the full-scale range of bits. Since the data is given in 24 bits, that makes
the range of bits equal to 224. As to the range in Volts, the maximum voltage we can
measure is fed to the IC, Vger. There is one more variable, however. The gain of cach
channel is adjustable, which limits the original scale of voltage to Vrer/Gain, on a per
channel basis. Finally, because the voltage can range from +Vggr to -Vger, the full-
scale range in Volts is actually 2x(Vger/Gain). The result is then the ratio =
(2x(Vrer/Gain) Volts) /(224 Bits); that is the value of one LSB (or one Bit). This
means that to convert the received ADC counts value to volts, we simply multiply the
received value by the ratio we just derived, and get the voltage sensed at that channel,
given that we know our Vger and the gain we used for that specific channel.

(( (( (¢ {( (( {C (( {( {(

DOUT —=’STAT X' CH1 X' CH2 X/ CH3 . CH4 2 CH5 X! CH6 X CH7 X CH8 >—
)) )) )) )) )) ) ) ) ))
24-Bit 24-Bit 24-Bit 24-Bit 24-Bit 24-Bit 24-Bit 24-Bit 24-Bit

FIGURE 8: THE DATA OUTPUT PACKET FROM THE ADS1299, DISSECTED, [9]

Now, the data conversion story is not quite over yet. The voltage is encoded in 24 bits
of what’s known as binary two’s complement, which is an algorithm for representing
positive and negative numbers in binary format. This is actually the format most
computers and programming languages use and understand, except for one important
detail: the data type. Most computers and programming languages only use data types
whose size is a power of two: two, four, eight, sixteen, thirty-two, and sixty-four Bits
of size. However, the data we receive from this device is 24 Bits, three Bytes. This
means we have to sign-extend the data to a standard size, of which the closest one is
four Bytes, or 32 Bits. In order to explain that, I'll first briefly explain how binary

two’s complement encoding works.

In Two’s Complement, the MSB encodes whether the number is negative. If the MSB
is set, meaning it’s a one, then the number that is represented is negative. If it is not
set, or cleared, meaning it’s a zero, then the number represented is positive. Each set
bit, or one, at a specific index in the binary representation corresponds to the
addition of the value 2vit_index including the MSB, which always corresponds to the
addition of the negative of that value. For example: 0b01 is the largest positive
number that can be represented with two-bit two’s complement: just one, and 0b10 is
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the largest negative number that can be represented in the same system, negative two.
Only two more numbers can be represented in between: 0b00 for zero, and 0b11 for
negative one. As you can see, Two’s Complement is always asymmetric- enabling the
representation of one additional number in the negative domain than in the positive

domain.

To sign-extend a number is to represent the same number in binary two’s complement
in more bits than the original representation. In our case, we want to sign extend a
value from 24 to 32 Bits, adding 8 Bits, or a whole Byte. The simplest way to do that is
by copying the MSB from the original representation and filling the additional bits in
the new representation, on the MSB side of the number, with the same value. More
concretely, if the MSB is zero, we know the number is positive, so we can duplicate
the MSB of zero over eight more times at the MSB side of the number, producing an
unchanged positive number, just padded with more zeros. On the flip side, if we have
a negative number, with an MSB of one. This turns out to be slightly more difficult to
explain, but when you duplicate that one over the most significant Byte of a 32 Bit
value, you wind up taking the value of the original number as though it was a direct
representation and not a two’s complement value, and adding the values
corresponding to the first seven Bits added, and subtracting the value corresponding
to the MSB (eighth Bit) added, which is the largest one. This preserves its negative
sign and value (you can prove it to yourself by doing some examples!).

There is no current Arduino library for the ADS1299, so I had to build a lot of the
code from scratch using the elaborate (and very often confusing) datasheet. In order
to test the ADS1299 register settings, ADC counts to Volts conversion, and sign-
extension algorithm, I set up the internal test signal generation feature and graphed
the results. The resulting square-wave graph is shown in the figure below, which
passes through zero, showing both positive and negative numbers, at the expected
amplitude and frequency (yippee!).

FIGURE 9: ADS1299 INTERNALLY GENERATED TEST SIGNAL UPON REQUIRED CONVERSIONS

Because there is currently no Arduino Library for the ADS1299, I have had to
develop, debug, and test firmware from scratch to do everything from the simplest
reading and setting registers, to understanding the register settings that would work
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for each use case and application. A more detailed description of these development
efforts is in a section to follow, “Development & Debugging.”

Now that we have discussed the device in general, and all the common processes
pertaining to all the data collected from it, we can move on to specifics, depending on
the signal type. In the next two sub-sections, I will discuss the specific biological
signals collected in the ADS1299, and the difference between them in terms of the
programming of the firmware of the device.

EMG & EOG Signals

The range of frequencies in which EMG activity lives is wide and uncertain; it starts at
5 or 1o Hz, and ends anywhere between 250 and 500 Hz, but even up to 3000 in some
cases [10]. The bandwidth of the EOG signal ranges between DC-100 Hz [11]

To program the ADS1299 to detect disconnected probes (activate lead-off detection),
we first select the power type to use: AC or DC. We use DC for simplicity, since AC
has a frequency which could, based on the frequency, interfere with our signals of
interest. Then, we decide on the comparator thresholds. Lead off detection works by
injecting a current or voltage, and monitoring how much of it reaches the other side;
if there is no connection to the other side, then the two ends hit the rails, power and
ground [12]. The comparator thresholds set the limit of how close the channel leads
have to get to the rails in order to be considered “off”. This setup is for all channels.

Then, we set the bits corresponding to the channels for EMG and EOG in
LOFF_ SENSEP and LOFF_SENSN, indicating that the lead-off for these channels
should be detected for both ends of the probes: positive and negative.

EEG Signal

This signal has multiple types: Alpha, Beta, Delta, Theta, Gamma, and Mu, each of
which lives in its own range of frequencies. There is a tremendous amount of
variability and uncertainty in the range of frequencies in each band, the figure below
depicts the typical ranges based on the number of publications pertaining to the
signal type, and the extremes of those ranges [13].

For EEG channels, lead-off is a bit more complex since we only use the negative
terminal of each channel for the signal. The return path for the electrical signals is
through the bias probs, which the ADS1299 does check for, if you set it to. Currently,
I have not managed to get lead-off detection to work for EEG signals, but the current
set up also involves flipping the lead-off input signal through the channel terminals,
entering at the N terminal instead of the P (which we are not using).
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% of Typical range Minimum start Maximum end
Publications (Hz) value (Hz) value (Hz)
Delta 70 1.3-3.5 0 6
Theta 84 4-7.5 2.5 8
Alpha 85 8-13 6 14
Beta 80 12.5-30 12 50
Gamma 18 30-40 20 100

FIGURE 10: TABLE DETAILING THE RANGES OF EACH EEG BAND, [13]
EDA Data

The EDA data is collected through a built-in Arduino ADC, on demand, meaning, the
value at the Analog pin which corresponds to the EDA data can be sampled and read at
any point in time, and the Arduino bootloader would read the Analog signal at that
pin, then feed it to an ADC, produce a digital value corresponding to the original
analog voltage, and return it to the firmware code which called the analog-pin-read

function.
Data Rate

Because the EDA signals tend to have lower frequencies (ranging 1-10 Hz) [14], and
because the data is fairly erratic and noisy, the best processing for this data is to
smooth it via averaging every set number of samples. Given the frequency with which
we collect the entire set of signals in the packet, we can afford to average every ten
EDA data samples to produce one mean value which we actually use and send in our
data packet. Performing this averaging technique also increases the effective
resolution of our ADC: when you take multiple integers (e.g. 2 and 3) and average
them, you could get a non-integer average (2+3 = 5, 5/2 = 2.5), adding a decimal
point of precision to the value that is going to be used in the rest of the system and
analysis. This technique is referred to as oversampling and averaging [15].
Oversampling because we take more samples than we use, and we average a certain
chunk of those samples to produce data at a lower sample.

The default setting for the Arduino ADC (set in its bootloader), is 10-bits of
resolution, and the “prescaler” value, which determines the speed of the conversion
(speed equals clock speed divided by the pre-scaler value) is set to a default of 512.
When I ran into issues with speed of data processing in the firmware, I realized that
the default was that slow value, and changed the prescaler value to 16, multiplying the
speed of the conversion by 32. I also changed the resolution of the ADS from ten bits
to twelve, increasing the precision of our ADC conversions and thereby our
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measurements of the EDA signal. Both of these changes are done by modifying the
ADC->CTRLB.reg variable in the Arduino SAMD bootloader in the line:

ADC->CTRLB.reg = ADC CTRLB PRESCALER DIV16 | ADC CTRLB RESSEL 12BIT.

Even still, the EDA measurement was still slow compared to the ADS1299 firmware
code. That fact, in addition to that the EDA signal is already at slower frequencies
than the other signals, lead me to decide to only sample the EDA every once in a
while. I experimented with different frequencies, and landed on sampling the EDA
signal at every ten samples of the ADS1299. Both of the above techniques combined
(assuming a negligible conversion delay after changing the prescaler to 16), in
addition to this last note, would have our EDA signal being sampled at

fEDA = fADS1299/T0/T0 = fADS1299/TOO. The first division by ten is for the sampling

every ten ADS1299 samples, and the second one is from oversampling and averaging.

Data Conversion

The 12-bit ADC count value we get then needs to be converted to a useful unit. The

most popular way to measure EDA is by measuring the skin conductance (G) in micro-

Siemens (1S). The relationship between resistance (Rskin) in Ohms (Q), which is the
most direct value we can get by using the voltage level measured and encoded by the

ADC, and skin conductance (Gskin) is simply reciprocal. So, the conversion is as
follows: Gskin = 1/Rskin [16]. Now that we know how to get conductance from
resistance, we can talk about how to get resistance from ADC counts.

Rskin 18 the resistance of the human as

measured between the two EDA probes (plus,

and minus) placed on the human body, as
shown in the figure to the left. We can
measure this value by first converting the

ADC counts to voltage. This is the voltage

We also know that, by the ideal op-amp

Vvirtual ground

assumption, the voltage at the two terminals

FIGURE 11: ABRIDGED EDA CIRCUIT- EDA must be equal. This means that the voltage
PROBES. ADAPTED FROM BUT NOT across Rreris known and is equal to
IDENTICAL TO PART OF THE CIRCUIT IN [8] Viirtualground. We can use this information to

find the current, i, across R:er, which is the

same current going through Rskin. Now we know the voltage across Rskin, Vskin = ADC

counts (bits) x 3.3 (volts) /212 (bits), and the current across it, i = Vyirtual

measured at the output of the op-amp, or Vour.
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ground / Rrer. We can use those two pieces of information to calculate Rskin = Viskin/1,
and from there take the reciprocal to find the skin conductance.

The EDA signal is comprised of two main
s components: skin conductance response
(SCR), and skin conductance level
(SCL). The SCR can be considered the
micro changes in the EDA signal, the
smaller and faster disturbances and

EDA amplitude (uS)

0.5

waveforms that appear superimposed on
top of a more constant “level,” which is
the SCL. So the SCL is the component
00:00 00:30 01:00 01:30 . .
Time s which can be considered as the macro

Phasic Skin Conductance Response (SCR)

view of the EDA signal without paying

@ Tonic Skin Conductance Level (SCL)

oA pesks much mind to the smaller changes in
FIGURE 12: SCR vs SCL COMPONENTS OF EDA, [14] ~ What. from a zoomed-out view, seems
like a smooth line. SCL is the slower
component and one which can resemble the DC (value of offset) component of the
signal. SCR levels can reveal information on the subject’s emotional arousal, whereas
SCL is more generally an indication of the sympathetic nervous system’s arousal [17].
A depiction of the distinction between SCL and SCR in the EDA signal can be seen in
the figure to the left. This analysis and separation of SCL and SCR is yet to be
performed in our system and our device.

PPG / Temperature Data

The MAX3ot105 sensor lives on its own hard PCB connected to the flexible PCB in
order to optimize the quality of the data we receive from it. This sensor is equipped
with an interrupt pin which we do not currently utilize (due to the decision that the
ADS1299 would lead the data rate and determine the frequency of collection of the
other signals), and two I12C lines which we use to communicate with the device.

There is a SparkFun Arduino library for the MAX30105, so instead of writing my own
API to interface with it from scratch, we decided to go with the existing library. The
library is called SparkFun MAX3o10x Pulse and Proximity Sensor Library and can be
used by importing MAX30105.h [18]. First, we must create and initialize the class,
using the line: MAX30105 particleSensor name. The library allows us to set the
sampling rate, the data averaging rate, an even the power consumption level. We can

use the library’s API to set up the device first using the function call:
particleSensor name.setup (powerLevel, sampleAverage, ledMode,
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sampleRate, pulseWidth, adcRange). Then, we can retrieve both PPG and
temperature data from the device, using the following two function calls:
particleSensor name.getIR(), and particleSensor name.

readTemperature (), respectively.
Data Rate

Because I noticed a clear and drastic slow-down in the data collection rate of the
device (even when I setup the MAX 30105 to have a high data rate), I had to investigate
the source of this slow-down. I revised the code repeatedly and narrowed down the
source of the issue to be the library implementation. When I took a deeper look at the
library code, I realize that both the temperature and IR retrieval functions include
some sort of (long) wait or delay. The readTemperature () function includes a
register-write to request data before a roo millisecond wait as the device awaits the
response for its request. The getIR () function includes an up to 250 millisecond
wait for new data to appear at the IR sense output FIFO, where it just repeatedly
checks for the availability of new data.

So, I modified the library by first removing each of the delays in both of the functions
and taking a look at the data they were returning. Both of the functions were
returning that there was no data available more than fifty percent of the time. Because
of this, I adjusted the wait time to a middle-ground compromise value and observed
that many of the data points were actually available. At this point, I decided to make
the functions more performant based on the use-case of the consumer code, so |
changed the function signatures. For the readTemperature () function, I added a
requestTemperature () function that performs the requesting of the temperature
reading with no wait, and modified readTemperature () to simply check the
availability of a temperature reading without waiting. For the getIR () function, |
modified it to take as input the number of milliseconds the consumer wants to wait for
data to be available, getIR (wait ms). Then, in the firmware code, I first call
requestTemperature (), then getIR (1) (which happens to be a very good value
and we can still sce the heart beats and waveforms with great accuracy), and finally I
call readTemperature (), indirectly inserting a wait in the temperature collection
routine.

Data Conversion

The Sparkfun library collects the PPG data and returns it as a 32 Bit integer (even
though according to the range of values that ADC range can be set to, it cannot be
larger than a 16 Bit integer). The PPG data units do not matter as what we care about.
From that signal is the shape of it, in order to be able to detect heart beats and
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calculate heart rates, and therefore reveal any irregularities in the cardiovascular
system of the patient. One important aspect of the measurement of PPG is that having
very good contact with the device is essential in order to get accurate data. Luckily,
the MAX3o105 is a particle and proximity sensor as well, and once the finger (or
hand, or, in our case, forechead) loses good contact with the sensor, it automatically
switches to proximity sensing instead, which produces numbers, returned by the
getIR () function which are multiple orders of magnitude smaller than the PPG data.
This way, we can detect if the patient has good contact with the sensor, and therefore
know if our data is accurate.

The Temperature received using the library function getTemperature () already
has appropriate units, degrees Celsius, received as a Float type (four Bytes). So, no
processing needs to be done to this data, as the library takes care of the conversions.

Temperature change is a very slow process, and heart beat signals (ranging between
6o-100 BPM for average resting heart rate in humans [19]) is a relatively slow signal
compared to the other vitals and biological signals being sensed in our system, we do
not need to sample these signals as frequently as we do the others. For this reason, we
only sample this data one out of every 1o times we sample the ADS1299 data, resulting
in an effective data rate which is a tenth of the frequency of the ADSt1299, for both the
PPG and the temperature sensor. The effective data rate for these signals, in practice,
is much less regular and more erratic, and often slower. This is because of the
recduced wait times in the API functions, and the frequency of availability of data (or
lack thereof). This does not affect the quality of our data, as we are able to monitor
the availability and discard the data returned when it wasn’t available, but it does
affect our practical sampling rate for these signals.

IMU Data

There are numerous Arduino libraries for the MPU60o50, which is the IMU unit we
decided to go with for our device. The library we chose was the MPU6o50 by the
Electronic Cats and can be used by importing MPU6050 .h [20]. Before using the
library, we must first create the class using the line: MPU6050 accelgyro, and
initialize it using: accelgyro.initialize (). We can optionally adjust other
parameters including data rate and data value ranges using the appropriate API
functions, but the default settings work well for us, so we do not utilize those
functions. The library has different API functions to retrieve cach of the acceleration
and gyroscope values in each of the three axes. But it also has the handy function to
get all of them at the same time with one function call:

accelgyro.getMotion6 (ax, ay, az, gx, gy, gz).
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Data Conversion

Each of the data points returned by the library is a 16-bit two’s complement value raw
ADC count value. In order to get any useful units out of this value once fetched, a
conversion must take place. For the acceleration, the default settings have a full-scale
range of £2g (4g), and since the ADC has a resolution of 16 bits. The conversion to
acceleration units is then a,.1x4g/2%%= a,.,1xg/16384 (m/s?), where a is the
acceleration and g is the earth’s gravity. For the gyroscope data, the default settings
have a full-scale range of £250°/s (500°/s). The conversion to gyroscope units is
then g,.,x500°/s/2%¢=g,.1/131 (°/s) [21].

These conversions convert a 16 Bit integer value to a 32 Bit float value, which
presents a qualm. It’s a tradeoff between having standard units and a bigger WiFi
packet, versus having a (potentially marginally) faster WiFi packet. For now, I have
elaborate comments explaining this conversion in detail in the code, and commented-
out code in place to perform the conversions, because I do not believe we currently
need the IMU data in general to be in any specific units. No matter the units, we are
able to detect the motion, the type of movement, and the axis, without needing the
metric units. Still, I left the code in there in case that situation changes and a

conversion to metric units becomes necessary.
Data Rate

Movement and motion, especially during sleep, are fairly slow processes, especially
compared to the EEG, EMG, and EOG waves collected on the ADS1299. For this
reason, this is yet another signal that can be sampled and collected at a fraction of the
frequency as the ADS1299. Specifically, like the others, it is sampled at an effective
rate of a tenth of the frequency of the ADS1299 sampling rate.

WIFI PACKET SPECIFICATIONS

There is an Arduino library for using the WiFi/Bluetooth module in our device, the
ublox NINA-Wro2, which is used by including WiFiNINA.h [22]. Because of this
existence of this library, the project was developed to send data over WiFi, for
simplicity and speed of development. However, the prospect of using Bluetooth for
communications and data transfer is still viable and possibly desirable. For now, let’s
discuss the details of the data sent from the device as a WiFi packet over to the
software for storage and further processing.

31



FIRMWARE : WIFI PACKET SPECIFICATIONS

WiFi Packet Anatomy

All the aforementioned data and signals needs to be combined into the WiFi packet to

be sent over to the software. A full data packet has four EEG data points, three EMG

data points, one EOG data point, three acceleration data points, three gyroscope data

points, one EDA data point, one heart data point, one temperature data point, one
serial number, one valid array, and one time stamp, for a total of 20 data points, in
the order shown in the table below. The number and sizes of all the elements total to

68 Bytes for the whole packet.

Sequential order Signal Size (Bytes) Byte at which it starts
1 Serial packet number 4
2 Valid array 4
3 EMG 4
4 EMG 4
5 EOG 4
6 EMG 4
7 EEG 4
8 EEG 4
9 EEG 4
10 EEG 4
11 Acceleration x 2
12 Acceleration vy 2
13 Acceleration z 2
14 Gyroscope X 2
15 Gyroscope y 2
16 Gyroscope z 2
17 EDA 4
18 Temperature 4
19 PPG 4
20 4

Time stamp

FIGURE 13: TABLE DETAILING THE COMPONENTS OF A DATA PACKET

It is worth noting here that the IMU data, all six data points, are currently only two
Bytes each because I do not perform the conversion as I deemed it currently

12
16
20
24
28
32
36
40
42
44
46
48
50
52
56
60
64

unnccessary. However, if the conversion is to be performed and the converted data to

be packed into the data packet instead, each of the IMU data points would be four
Bytes instead of two, which would increase the total size of the packet by 12 Bytes,

making it 8o Bytes instead of 68.
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Valid Array

Because not all the data is collected at the same (highest) rate, there are some packets
where the only valid data we send is the ADS1299 data, as well as the obvious serial
packet number, and time stamps. Some data is sent less frequently and is therefore
invalid much of the time as it was not collected. Some data is truly invalid because of a
system issue, such as an ADS1299 having a lead-off detected, or the MAX 30105
revealing a lack of a secure connection to the patient. For these reasons, I've
introduced a component in the packet called the valid array, which can be viewed as
an array of bits. It has one bit mapped to each item in the packet. The way it works is
this: if the bit which maps to a specific element is set (is one), then that data point is
not valid. Calling it a valid array might be a misnomer then, since what it really is
instead is an invalid array. I opted not to call it an “invalid array” in order to combat
the potential confusion of the data which the element contains being invalid (as
though it is the array which is invalid itself). This array can be used as described to
recognize which data points are valid and should be kept, processed, stored, graphed,
filtered, etc., and which data was not collected in this packet and should be ignored.

Every time a new packet is created, the field for the valid array is initialized to zero.
As the signals are received and inserted into the packet, or not, this array is updated.
If a certain signal is not to be collected at this time and this packet will not be
updated with it, then the valid array is updated with a one set in the index
corresponding to that data point, marking that signal invalid in this packet. Similarly,
if a sensor reports that the probe for one or more of its inputs no longer has a reliable
connection to the patient’s body, then the signal received from that device for that
data point is discarded, and the valid array is updated to reflect that by setting the bit
corresponding to that device’s specific channel to one.

WiFi Packet Send Rate

In order to increase the system’s efficiency, we collect multiple packets of data and
group them together into one WiFi packet to send over to the software. This method
enables us to amortize the cost of preparing, sending, and receiving a WiFi packet
through the network over the number of data packets it contains. This aggregate WiFi
packet, in our current system, contains 22 data packets. This was a number that is
maximized, given the number of data points in our data packet, and therefore a data
packet’s size in bytes, to the size limit of the WiFi packet that the WiFiNINA library
appears to be able to support. So, this number was bigger when our data packet size
was smaller. (There doesn’t seem to be any documentation the issue of WiFi packets
having a maximum send size—this is just a problem I observed repeatedly).
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SOFTWARE

Building the software for the system had more than the obvious purpose. Surely, we
must provide an interface with which the data collected with the device can be
examined, but we also needed a playground, a place where we could firstly, and most
importantly, see the data, but also manipulate the data, play around with filtering it,
zoom in and out, and make sure we can see, visibly, all the signals of interest. For
simplicity and breadth of options, we selected Python to be the language of
development for the software. The initial version of this GUI code was created by
Guillermo Bernal and Junqing Qiao, and when I joined the project for my MEng, 1
started modifying and expanding on it—building off of it as the project grew and more
progress was made.

DATA VISIBILITY

In order to confirm that our system and device were both working end-to-end, we had
to verify that we could sce the data from hardware input, through firmware, to
software output. To this end, we used an arbitrary function generator to create
waveforms as inputs to the ADS1299 and tried to observe and monitor them on the
software side.

gram
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FIGURE 14: THE CURRENT APPEARANCE OF THE GUI INTERFACE
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GUI Graphs

For the GUI, we are using the Python libraries pygtgraph and pyQt5, whose graphs
offer an interactive interface for moving and zooming. The graphs automatically snap
to a widget grid, and automatically detect gestures to zoom in and out of each graph,
as well as move the plot around within the plot window.

During earlier stage debugging, I had the serial count of the packet graphed,
observing and monitoring the slope of the line in that graph. Because the serial
number was supposed to be sequential, the slope and linearity of the graph should not
change so long as the zoom and window size remained constant. Using this technique,
I was able to observe perfect lines in earlier stages of the development of the
software. After I included all the sensor data from the system in the data packet, and
developed some software algorithms for debugging and analyzing data, however, |
noticed that breaks in the line started appearing every once in a while, indicating that
the existence of missing packets: there were some packets being dropped, or getting
lost in some other way. This, I discovered later, was due to inefficiencies and slow-
downs in the software programming.

Now, since I am done with that part of the development, I skip graphing the serial
count, and also the valid array and time stamp, so that I can focus on viewing and
observing the actual data in the graphs. However, I've programmed this such that
skipping the graphs of those data points is an option, in case I need to revisit those
graphs for further debugging while continuing the development, or someone using
this code in the future needs to do so.

GUI Improvements

In order to improve readability and observability, I added titles to each graph, which
became necessary as the size of the data packet grew larger while I integrated more of
the sensors in the system. | also modified the titles to include the units in which each
signal is graphed.

In order to better observe the data rate, which I previously printed to the Python
console, I instead included it as a textbox on the GUI window, more visible and
monitorable, updating with the newest data rate as it is calculated.
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SIGNAL VISIBILITY

Next, we had to make sure that not only can we see the correct data, but that we can
detect and see the signals of interest clearly and reliably.

Digital Filters: Research and Implementation

Since the ADSt1299 device is delicate and very sensitive to noise, in order to start
visualizing the signals from it, we must first apply some digital filters to remove parts
of the signal which we know are caused by environmental noise factors. The biggest
and most prominent one is the power line frequency, at 6o Hz, needs to be extracted
from every ADS1299 channel. Therefore, a notch filter, band stopping between 55 and
65 Hz, is applied to each of the eight ADS1299 channels. This is the first stage of
filtering the biological signal data.

The second stage of filtering the ADS1299 biological signal data is applying a digital
band pass filter which filters in the bandwidth for the signal of interest. This is
crucial as we might select a range that isn’t what might be strictly, or even classically
for that matter, considered the typical range for the signal of interest. This is simply
because certain bands within that signal type might be more interesting to us given
our application is specific to sleep studies, and is not difficult to change on the fly
later if we do decide we need a more inclusive range.

To select the target bandwidth for each of the biological signals of interest, we
reviewed some literature around these signals and their applicability to sleep studies
and consulted a gold-standard ADS1299 development board/kit. Based on this
research, the numbers we settled on are as follows: bandpass 1o-500 Hz for both EMG
and EOG signals, and bandpass 5-50 Hz for EEG signals.

FFT Integration

Some of the ADS1299 data is casier to see than others. For example: EMG is a very
strong signal whose magnitude dominates most sources of noise. Conversely, EEG
signals have very miniscule amplitudes and are therefore more sensitive and prone to
distortion and interference by most sources of noise. This makes most EEG signals
very difficult to detect and/or observe. The easiest EEG band to observe is alpha
waves, which should be visible when a person closes their eyes. As we were testing
signal visibility, this waveform proved even more difficult to observe than we
expected. We could not tell whether the data was there. We didn’t know if we were
zoomed in too much or too far zoomed out, or in which axis: time or amplitude. The
signal could have very well been there, but since is it miniscule, and possibly very
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brief, we just missed it. At the same time, it is also possible that we are not seeing
anything because something is wrong with our system or device’s setup, and there
really is no signal being captured there to be seen.

As a solution to this issue, since we know the target bandwidth of the signal, and we
might even know more specifically the sub-bandwidth for the specific band of the
signal we are trying to observe, we decided it would be nice if we could view the data
in the frequency instead of time domain. The Fast Fourier Transform (FFT) allows us
to do just that! It takes as input the waveform data, and extracts the frequencies of the
(possibly infinitely, in the case of a square wave) many sine waves that comprise it.
Based on the amplitude and how often a certain frequency occurs, the FFT algorithm
produces a value mapped to each frequency bin. By looking at the output of an FFT,
you can see how much of each frequency bin your waveform data is made up of. This
allows us to sece the most dominant frequency in a given data set, which is powerful.
But if we produce this plot in real-time as we receive and graph the data itself, it also
importantly enables us to observe the change in the amount of each frequency our
signal contains. This is the key to enabling us to detect biological signals without
rcally seeing them.

The Python implementation of the FFT algorithm I am using is the one in the numpy
library. Because the FFT algorithm is a computationally intensive algorithm (even if
efficiently implemented), I decided to create a separate thread just for the purpose of
performing the FFT calculations. This is important because it improves the reaction
time of the FFT, enabling us to observe the changes in frequency presence and
patterns in the signal more directly and easily. Once this was all done, we tested it by
once again trying to sce an EEG signal. The easiest one to see is alpha, we know that
we expect to see a “spike” in the FFT plot between around 6 and 1o Hz at the time we
would expect the alpha wave to appear. When a person closes their eye, the brain
generates alpha signals. So, when the subject closed their eyes, surely enough, the
FFT graph in the range 6-10 Hz grew a considerable spike, which slowly (because the
data is graphed in big batches, and so new data moves out of frame fairly slowly) faded
away after the person opened their eyes again. Hooreye!

Heart Rate Algorithm

In order for the PPG data to be more digestible for our purposes, we must process it
to calculate the heart rate of the patient, which is a very important measure of their
wellbeing and state of rest. I expected there might be a myriad of Python libraries
which would do exactly what I needed: take raw PPG data and find the heartrate by
finding all the heartbeats and when they occur to calculate the heartrate. After some
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research I realized that the options are much more limited than I thought. The only
library I could find was called heartpy [23], and after a few days” worth of futile
attempts at using it with the PPG sensor data from our device, I decided to stop trying
and give up on using this library.

I realized I had to develop my own real-time heartrate measuring algorithm. To get
started with this task, I took some time to observe and understand the signal, and the
shape of each heartbeat as it appears in the final GUI graph. I took note of its
amplitude and its width, and the variability of each of those things. Since heartrate is
a rate, or speed, measured in number of beats per minute, the goal is to count the
beats, and measure time correctly. These are the most important building blocks of
the algorithm: first is detecting heartbeats accurately and reliably (every heartbeat is
detected, and nothing which isn’t a heartbeat is mis-detected as one), and second is
the accuracy of the timing of the heartbeat. For this reason, I determined it was
necessary to add the timestamp field in each packet. With these things in mind, I
started developing the algorithm, trying as much as possible to keep it parametrized
and adjustable, in order to be able to fine tune it well enough to be applicable and
generalizable to a broader range of people’s resting heartrates. The current (and for
now, final) version of the algorithm is depicted in the figure below.

There are three important arrays in the algorithm: heart sig arr which keeps all
the live PPG signals we are currently looking at and trying to detect a heartbeat in,
heartbeat ts which saves the timestamps of the too most recent detected
heartbeats, and heartrate avg, which stores the oo most recent “local” measured
heartrates, in order to have all the elements be averaged before sharing any of the
local data. In Line 1, I am checking whether the PPG data is valid—if it is, we can
proceed with the heartrate measuring algorithm, otherwise, since there is no new data
to process and incorporate, we do not make any adjustments in the arrays. This is
unless (as checked in line 29) we detect that the PPG signal is invalid due to a lost
connection to the human (and not just a lack of sampling). If the PPG signal is invalid
because the sensor is not connected to the patient (indicated by setting the time
stamp bit in the valid array, while the one for PPG is also set), then we reset all the
arrays, since we want to be able to start from scratch when a secure connection is re-
established to the patient.

If there is valid new PPG data, the real processing happens. Firstly, we take a look at
up to the ten most recent PPG signal values received and try to detect a large enough
drop in magnitude. Since the heartbeats in PPG signal are roughly triangular shaped,
there is a fairly quick and drastic drop (negative edge) at the end of each beat, and
that is what we are trying to check for in lines 2-5. If we do not detect a heartbeat
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after checking the relevant most recent PPG signal values, then all we do is append
the newest PPG signal to the heart sig arr array, and trim all the arrays to the
predetermined maximum size, lines 21-28. If there is a heartbeat detected, however,
we have some work to do. We are now studying the code lines starting at line 7. Once
we detect a heartbeat, we store the timestamp of the packet from which the most
rccent PPG signal came in the heartbeat ts array, line 7. Then, if we have multiple
(more than one) heartbeats detected (line 10), we calculate two heartrates: a local and
an average. The local heartrate is calculated by taking the currently detected
heartbeat (the last timestamp in the array), and the one before it (the second to last in
the array), and differencing them, resulting in the time in milliseconds it took for one
heartbeat (line 12). We take the millisecond difference and convert it to seconds (line
13), then to minutes, and dividing one by that (line 14) resulting in the local heartrate
in BPM (beats per minute). Once we have the local heartrate, we can append it to the
heartrate avg array (line 15) and move on to calculating the average heartrate. The
average heartrate is simply calculated by taking the average of all the local heartrates
stored in the heartrate avg array (line 16). This is the heartrate value we use, test,
and display in the GUI window.

To test this algorithm, I started by ensuring that the beats are all correctly detected,
and nothing extrancous was misinterpreted as a beat. I used this method to fine tune
the numbers in line 5: the minimum and maximum drops in magnitude for a beat to be
considered detected, and the minimum number of PPG samples collected since the
previous detected heartbeat for it to be viable timing for another heartbeat. To do this
test, | graphed a line superimposed on the PPG signal graph to indicate to me that
this specific spot in the signal is where a heartbeat was detected (line 8). Once I was
fairly certain that only and all legitimate heartbeats were being detected by the
thresholds, I moved on to test the actual heartrate. To test the accuracy of the
measured heartrate, I simply compared the result to the displayed heartrate on a smart
watch, which, after some time needed for convergence, fairly consistently produced
values within about 5 BPM of the smart watch. I did the development by myself, so I
did these tests with myself and three other people to make sure it was not too specific
or overfitted to me and my body.
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1 if not ((invalid arr >> i PPG) & 1):

2 ppg_sig = newData[i_PPG]

3 1 = len(heart_sig_arr);

4 for i in range (min (10, 1)):

5) if heart sig arr[l-1-i]l-ppg sig >= 100 and heart sig arr[l-1-i]-ppg sig < 700 and 1>20:
6 ¢

7 heartbeat_ ts.append(newData[i_ TIM])

8 plotBufs[i PPG - start idx][-1] *=-1

9

10 if len(heartbeat ts) > 1:

11 t
12 delta ts = heartbeat ts[-1] - heartbeat ts[len(heartbeat ts)-2]
13 delta_sec = delta_ts / 1000

14 bpm = 1/ (delta_sec/60)

15 heartrate avg.append (bpm)

16 bpm = np.average (heartrate_avg)

17 t = "Heart Rate: " + str(int(bpm)) + " BPM"
18 dataPlottingWidget.HR.setText (t)

19 heart _sig arr = []
20 break
21 heart_sig arr.append(ppg_sig)
22
23 if len(heart_sig_arr) > 25:
24 heart sig arr = heart sig arr[l:]
25 if len(heartbeat_ts) > 100:
26 heartbeat ts = heartbeat ts[1l:]
27 if len(heartrate_avg) > 100:
28 heartrate_avg = heartrate_avg[l:]
29 elif ((invalid arr >> i TIM) & 1):
30
31 heart sig arr = []
2 heartbeat_ts = []
33 heartrate_avg = []

FIGURE 15: HEARTRATE MEASURING ALGORITHM CODE

IMPROVING DATA RATE

While developing the software, I noticed that the rate at which the data packets were
received and processed was very irregular and erratic. There were glitches and
hiccups in the graphing of the plots. As I mentioned previously, I also observed some
dips in the packet serial count graph, indicating missing or dropped packets. I did
some investigations to narrow down the source of the issue and found that doing less
in the Python software allowed it to receive and service the new packets more quickly.
I realized, therefore, that there is some optimization work that needs to be done in
the python scripts in order to improve its efficiency.
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Optimizing

To get started on making efficiency improvements in the software code, I started by
just going through it and making any adjustments with potential that I can think of.
This included removing some avoidable branches (if/else statements), decreasing
computation time when possible, and reducing the number of function calls so as not
to overwhelm the software stack.

Because the first version of the GUI software was not written by me, there were still
some parts of the code which I didn’t have familiarity with because I simply didn’t
have a reason to review or understand them previously. The first confusion I had was
when I noticed a forever waiting loop in the main program loop: while True:
time.sleep (1). When I deleted this, nothing changed in the performance of the
program. This led me to wonder what it is in the program that updates the graphs with
the new data. I discovered that the graphs are updated using a timer which calls the
update plots function, which use updated arrays with the new data prepared by the
dataReadyCallback () function called when a new WiFi packet is received as each
data packet is extracted from it. This timer was originally set to go off every 30
milliseconds (at a frequency of 33 Hz), which is slow compared to our data rates and
graph data array updating speeds (the absolute minimum we use, and only for
debugging purposes, is 250 Hz, but we generally use tooo Hz). So I changed the
timer to go off instead at every millisecond, increasing the graph updating speed to
1000 Hz. To optimize this even further, I added a variable to indicate whether new
data has been processed and the data arrays have been updated since the last graph
update: newData. The way it works is simple: Every time the

dataReadyCallback () function readies a new batch of data in the arrays to update
the graphs, it sets the newData variable to True, and every time the timer goes off,
and the graph update function runs, it first checks if newData is True. If it is, it sets
it to False before updating the graphs. If it is False, then this function doesn’t do
anything. This saves time that could have been wasted re-graphing the plots when
there is no new data, and therefore no reason to plot the graph again.

Another optimization done in the software is running the FFT analysis algorithm in
its own thread, so as not to hog machine time and slow down the graphing and
processing of the data in other plots.

Profiling

Profiling is a tool for analyzing the performance of a program. It is the dynamic
analysis which measures the execution time in every nested part and each function of
the program and reports it back after the termination of that program.
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Some modifications had to be made to the software code in order to enable it to be
profiled. For example, the software program is meant to run indefinitely, receiving
WiFi packets over the network from the device as long as they are being sent. This
strategy does not work if I want to profile the program— the program must terminate
in order to get any profiling stats. To achieve this, I came up with a way for the
program to reach a termination condition: collecting a certain number of data
packets. I implemented this by introducing a variable for the number of desired data
packets to be received and graphed before the program halts execution and using a
running count of the number of packets the system has received so far to compare it
to the set threshold. If the program reaches that point, it terminates all processes and
closes all windows. If the program is to be run normally without a limit to the number
of data packets received, that variable threshold must simply be set to math.inf.

Once the program is set to automatically terminate, it is ready to be profiled. A

Python program can be profiled by running the following line in the terminal window:
python -m cProfile -s cumulative path/to/python/file/to profile.py

[]. The output of this looks like in the figure below. ncalls refers to the number of
calls to that function/line. tottime is the total amount of time spent in that
function/line. percall is ratio tottime/ncalls resulting in the time spent at each call
of the function/line. cumtime is the cumulative time spent in this function/line and
all the function calls that happen within it, nested. This output is sorted by
cumulative time (using the -s cumulative setting). This can be used to observe
which functions take longer than expected and find where the bottleneck of the
program could lie.

In the case of the Python GUI program, as shown in the figure below, the functions
that take the most time to execute are almost entirely graphing related functions such
as updateCurve, setData, addPoints, updateSpots, etc. This is also due to the
sheer number of times they are called, which means that even miniscule improvements
in cfficiency could make a difference if the function in which they exist is called
enough number of times. Because of this, the efforts were focused on making
optimizations in the graphing code which in the GUI code (even though the functions
which appear in the profiling output here are mostly library graphing implementation
functions). Another investigation I conducted was using different graph types offered
by the library, wondering if one of them was more efficiently implemented than the
others. I compared using scatterPlotItem(), plotDataltem(), and
plotCurveItem(), and even though at first it seemed like one of them was more
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slightly performant, I realized after running a few trials that it is just due to the

randomness in exccution and within a margin of inaccuracy.

7626498 function calls (7614977 primitive calls) in 22.090 seconds

Ordered by: cumulative time
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FIGURE 16: SAMPLE OUTPUT OF PROFILING THE PYTHON GUI
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filename:1lineno(function)

{built-in method builtins.exec}
MainGUI.py:2(<module>)

{built-in method exec_}
MainGUI.py:198(updateGUI)
floatingCurves.py:68(updateCurve)
ScatterPlotItem.py:267(setData)
ScatterPlotItem.py:310(addPoints)
ScatterPlotItem.py:549(updateSpots)

ScatterPlotItem.py:121(getSymbolCoords)

{built-in method numpy.empty}
ScatterPlotItem.py:575(getSpotOpts)

<frozen importlib._bootstrap>:978(_find_and_load)

<frozen importlib._bootstrap>:948(_find_and_load_unlocked)
<frozen importlib._bootstrap>:663(_load_unlocked)

<frozen importlib._bootstrap>:211(_call_with_frames_removed)
<frozen importlib._bootstrap_external>:722(exec_module)

ScatterPlotItem.py:661(boundingRect)

0.000 {built-in method numpy.core._multiarray_umath.implement_array_function}

.000
.000
.018
.150
.126
.010

006

.005

000

.000

000

471

000

.000
.000
.073
.000
.004
.000
.003

ScatterPlotItem.py:628(dataBounds)

{method 'reduce' of 'numpy.ufunc' objects}

__init__.py:1(<module>)
__init__.py:3(<module>)
init__.py:5(<module>)

{built-in method builtins.__import__}

GraphicsView.py:152(paintEvent)
{paintEvent}

{method 'copy' of 'numpy.ndarray' objects}
<frozen importlib._bootstrap>:1009(_handle_fromlist)

ScatterPlotItem.py:202(getAtlas)
__init__.py:106(<module>)

<__array_function__
nanfunctions.py:344(nanmax)

internals>:2(nanmax)

<__array_function__ internals>:2(nanmin)

api.py:3(<module>)
nanfunctions.py:229(nanmin)
debug.py:89(w)

{built-in method builtins.id}
ScatterPlotItem.py:731(paint)
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: SUMMARY

THE DATA

EEG Brain wave
EMG Muscle wave
EOG Eye movement
EDA Skin resistance
IMU A acceleration
IMU G gyroscope
PPG Heart signal

Temp @ Body temperature

ADS1299

ADS1299

ADS1299

Arduino ADC

MPU6050

MPU6050

MAX30105

MAX30105

4 channels

3 channels

1 channel

3 axes

3 axes

float

float

float

float

float

4 Bytes each

=16 Bytes

4 Bytes each

=12 Bytes

4 Bytes

4 Bytes

2 Bytes each

=6 Bytes

2 Bytes each

=6 Bytes

4 Bytes

4 Bytes

)

2 % Vier
Channel_Gain X 2%

Sign_Extend (

ADC counts X 3.3X Ry /2% Viuiend)

Not performed:

value X 9.81 /16384

Not performed:

value / 131

No conversion

Arduino Library converts

volts

volts

volts

Ohms

2

| o

N/A

[e]

24

28

32

36

40

42

44

46

48

50

60

Bandstop at 60 Hz, and

Bandpass 5-50 Hz

Bandstop at 60 Hz, and

Bandpass 10-500 Hz

Oversampling and averaging

No filtering at the moment.
Data smoothing algorithms

could be applied.

Heartrate measuring

Not filtered; can be smoothed
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FIGURE 17: TABLE SUMMARIZING HOW SIGNALS IN THE SYSTEM ARE COLLECTED AND PROCESSED
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DEVELOPMENT & DEBUGGING : FIRMWARE

DEVELOPMENT & DEBUGGING

In order to debug the system smoothly and efficiently as I developed the firmware
(and, eventually, the software), I started by focusing on the device which needed the
most firmware development work: the ADS1299. Currently, there is no public Arduino
library that exists for this device. The ADS1299 is a complex device which has many
different options for different settings and configurations. For this reason, I started
off by creating, developing, and building and expanding on a script which acted as a
library to handle setting up, communicating with, and changing the configurations of
the ADS1299.

In the beginning of testing, the development and investigations were not specific to
the Fascia project. As [ mentioned in the Background section, this project builds off
of and is developed alongside the AR/VR headset project, and so [ wrote the library
program to be able to handle both (and multiple versions of) board types for both
projects.

FIRMWARE

ADS1299_SS_CC_WiFi

This was the first set of iterations to develop firmware to interface with, set up, and
change the configurations of the ADS1299 [24]. At this point, setting up the device
was a big black box that had to be revealed and understood. In this version of the
firmware was the first successful ADS1299 internal test signal generation signal set
up. This firmware tested both continuous conversion mode and single shot mode,
enabling the discovery of hardware wiring bugs in the first version of the PCB design
of the project (an incorrect connection from the data ready pin to an Arduino GPIO
pin which cannot be mapped as in external interrupt trigger pin. This was also the
version in which the integration of WiFi connection and basic packet sending first got
implemented and tested.

In this version, the serial debugging interface started being developed with different
functionalities as they became necessary or useful. It allowed a user to change the
gain of any channel, turn each channel on and off, and eventually connect and
disconnect each channel from SRB2.

This version was configurable to run the ADS1299 channels as either regular data
collection probes, or generating internal test signal. It also enabled setting up the
code for multiple version of both the Fascia project boards, and the previous AR/VR
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DEVELOPMENT & DEBUGGING : SOFTWARE

project which it diverged from, in order to test and compare the two. It enabled
selecting the ADS1299 data collection mode: single shot versus continuous
conversion. And lastly, it enabled selectively turning on WiFi and actually sending
data over the network.

Fascia_collect_sensor_data

This version started with the previous one (ADS1299_SS_CC_WiFi) as a base, but
then grew to include more ADSt1299 functionalities as they became needed and
expanded to integrate data collection for the other devices and sensors in the system
[25]. The ADS1299 serial debugging interface grew in this version to include the
functionality to connect each channel’s positive or negative leads to the bias probe or
disconnected any of them from it. Additionally, the interface now supports a command
to print the current status of all the ADS1299 registers.

This software features two new modes: debug mode, and verbose mode. Debug mode,
if activated allows you to use the aforementioned serial debugging interface for the
ADS1299. It prints values and responses to the serial monitor, and takes in commands
from it. If deactivated, no commands can be sent through the serial monitor. Verbose
mode allows the user to enable or disable serial print statements which continuously
stream the values of all the data collected from all the sensors in the device as it is
collected. Since this version integrates all the other devices in the system, not just
the ADS1299, this is actually a lot of data and can be an overwhelming amount to look
at, and it can cause major slow-downs in the data collection and packet sending
routine. That is why we have verbose mode: to enable it when you need to see the data
on the firmware side, but disable it otherwise as it can compromise the efficiency of
the system.

SOFTWARE

GUI

While developing the GUI [26 & 27], it became very helpful to make some
adjustments to help with debugging and observing program behavior. One of the
biggest issues was integrating an FFT graph to perform frequency analysis on a given
(selectable) signal. This enables us to see the channel data in the frequency domain
and determine whether a certain signal of specific bandwidth exists, grows stronger,
or diminishes and disappears. However, because the FFT algorithm can be quite
computationally intensive, this graphing feature was also selectively turned on or off.
Another change to increase performance was to allow optionally skipping graphing
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DEVELOPMENT & DEBUGGING : SOFTWARE

the first n data points in the data packet, so as to be able to focus on the ones that
come later (from other sensors) as they were integrated into the system, bit by bit.

Finally, in order to be able to profile the code, a change had to be made to end the
program eventually. A feature was implemented to allow the option to terminate the
GUI program after collecting a certain specified number of samples.

Signals

In order to ensure the device is detecting the signals of interest, even before making
the specific signal itself visible, there were means of ensuring the system was
behaving appropriately. By following a standard setup procedure of a known
developed system, and observing the results and looking for the target changes in our
device, and comparing those to the expected ones, we can gain some confidence that
the system is functional. The procedure referenced here is setup for EEG as guided by
the Open BCI ADS1299 development kit documentation [28].

Once we know the signal is there, we can focus on being able to view it. For this, we
need to ensure that the digital filters we have in place for each signal are appropriate
and correct for the signals and the bandwidth we are targeting. To this end, after
doing some research to select the settings and filters, the Open BCI documentation
on the firmware and GUI was a very helpful reference to cross check if our selected
firmware settings and digital filter thresholds and constants were reasonable [29 &

30].
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CLOSING

To conclude, this project aims to support and simplify sleep research data by
improving the form factor of the sensors and electrodes placed on a subject during
sleep studies, which enables the patient to sleep more comfortably and thus results in
more authentic signals. The state of the art in the field does not satisfy those
requirements, so the design of the hardware, software, and physical appearance of the
device for this project takes this into account in order to produce a comfortable,
flexible, and, importantly, comprehensive data collection device, which is completely
open-source.

The hardware and firmware facets of the project are almost done and mostly finalized,
but there is still some software work to be done. The remaining work is detailed in the
next section, “Moving Forward.”

I know that this project has great potential, and the amount of progress made on it in
the past year is just the beginning! Once we have algorithms in place to analyze the
collected data, there is no telling how many applications this could have and how
many people it could help. I hope this effort can aid doctors and researchers in
making advancements in the understanding of sleep, and diagnosis of sleep related
issues. Ultimately, I hope this project can help people out there suffering from any
kind of sleep problem. I am honored to have had the opportunity to be part of this
project.
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MOVING FORWARD

Next Steps

L1 Assemble a complete prototype of the device.

00 Compare sensor data with golden standard.

[0 Record or store device data as it is collected in the software.

O Implement reliable lead-off detection (current firmware setup is at the bottom of
the ADS init () function in Fascia collect sensor data).

O Integrate the security chip and encrypt the data being transferred.

Future Work

[0 Use Machine Learning to extract features of interest from signals.

Nice to Finalize
O Further profile and optimize the code.

O Investigate and finalize the digital filters used.

Things to Look Into
O Transferring data using Bluetooth instead of WiFi.

[ Using Lab Streaming Layer (LSL) to collect and stream data:
https://github.com/sccn/labstreaminglayer

00 Utilizing Brainflow to parse and analyze biosensor data:
https://brainflow.readthedocs.io/en/stable/UserAPl.html#python-api-reference
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GLOSSARY

Op-
amp

PCB

DRL

ADC

IC

MCU

DC

AC

SPS

SPI

12C

MSB

LSB

FIFO

BPM

GUI

FFT

GPIO

Operational Amplifier— an electronic chip which can be used to amplify,
difference, and/or buffer analog signals in a circuit.

Printed Circuit Board— a small board which uses printed copper traces to
connect very small surface-mount electronic devices to create a task-specific
circuit.

Driven Right Leg— a circuit for removing the “common-mode noise” from a
physiological signal by sensing the noise from another part of the human body.
Analog to Digital Converter— a device which performs a conversion from an
analog value (e.g. voltage in a circuit), to a digital value in a binary format.
Integrated Circuit— an electronic device packed into a small packet to perform
a specific task.

Microcontroller— a programmable device which enabled the collection and
manipulation of other hardware devices and data.

Direct Current— constant amount of uninterrupted current flowing.

Alternating Current—current flows in a sine wave varying in amplitude
between £ maximum amplitude at a set frequency.

Samples Per Second—a measure of the speed with which a data signal is
sampled.

Serial Peripheral Interface— communication protocol between two IC devices
which uses 1 clock line, 1 data in line, 1 data out line, and 1 “chip select” line
to facilitate the exchange of data.

Inter-IC (integrated circuit)— communication protocol using 1 data line and 1
clock line to facilitate the data exchange between two IC devices.

Most Significant Bit— highest order bit in a binary value or bit-array or
bitmap.

Least Significant Bit— lowest order bit in a binary value or bit-array or
bitmap.

First In, First Out— a data structure or type of buffer in which items are
sequential in insertion order, which is the same as the order of retrieval from
it.

Beats Per Minute— the unit for measuring heartrate.

Graphical User Interface— a program which allows users to view and change
software behavior using a graphical interface.

Fast Fourier Transform— an algorithm for converting waveforms to frequency
data.

General Purpose Input/Output— specific pins on electronic chips which can be
used to output data and/or read-in data.
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APPENDIX A: HOW TO USE (A GUIDE)

About

This guide explains the usage and functionality specification of the Fascia_collect_sensor_data Arduino
firmware in the Fascia_nucleus repo (Fascia_nucleus/Firmware/development/Fascia collect sensor data)
commit hash: commit 12a1f3e36ee31194a78e70afae84bb2bf27b8d47

"some clean up” [31].

Set Up

Software

In order to begin running this code, you must have all the required libraries installed. This
includes wirinina, and mpuc050 by Electronic Cats, both of which you can get from the
Arduino library manager, and
SparkFuniMAX3010xiPulSeiandiProximityiSensoriLibraryVﬂﬁchyounccdthC
modified version of in the repo. This is located in

Fascia nucleus/Firmware/development/Libraries/SparkFun MAX3orox Pulse and Proxi

mity Sensor_Library. I have made changes to speed up the data acquisition in the library,

and reduce wasted wait time. Namely, I made changes to two different functions:
[ readTemperature ()

ISpli[[hiSfunCtiOH hlU)twK)funCtﬂ)nS:requestTemperature(),and readTemperature ().
Previous to this, the library would request a temperature reading from the MAX3orox and
wait for a while for the data to be ready. With this change, I request the temperature using
the request function, then perform other things in the consumer code, and the read the
temperature by calling the read function, without waiting idly for the sensor to be ready.

[ getIR()

This function did a similar thing where once you called it, it would wait 250 ms for the new
data to be ready. Instead of doing this, I made the function take as input the number of milli
seconds you'd like it to wait for the data to be ready, and if the data is still not ready by that
time, the function returns 0, which indicates an invalid/unavailable reading of the PPG
SENsor.

In order to run the code, you must copy this modified library and paste it into your Arduino
libraries folder (usually in your documents folder).

Hardware

Once you're able to start running the code, you might notice that the code hangs in certain
arcas: this will happen if any of the sensors the code expects you to have proper connection
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to are unreachable. Make sure your ADS1299, MAX3010, and MPU5060 are properly
connected all the way to the Fascia Main Board, and that the Arduino can communicate with
them.

. If you are missing one or more of the sensors, you can get the code to run without
expecting said sensor(s) to be connected by commenting out the lines where the code is
setting the sensor(s) up, and where it is retrieving data from the sensor(s). You can find
these lines in the two functions setup () and 1000 (), where sensor setup and data retrieval
occur, respectively.

Configurations

In order to properly get the code to run and do what you’d like to do with it, you’ll want to
make sure you have correctly configured the top of the .ino file with your current setup and
desired output. These settings can be found on lines 19-28 of
Fascia_collect_sensor_data.ino:

CONNECT WIE

e BOARD V F
= DATA MODE RD

> RUN_MODE NORMAL

fdefine v 0
#define debug 1
e comnecT wirt would enable(1)/disable(0) WiFi on the chip. Fascia will not send any data

packets over WiFi when this is disabled (0).

e 5oarD vallows you to specify the board you are working with. This code is specifically
written for Fascia, so I cannot guarantee that any data, other than the ADS1299 data,
would be correct or using the proper pin to which that sensor is connected, if you use
any other 202rD v other than rascia vo 0or rascia vo 1 with this version of this code.

e pata MopE this version of the code only supports roaTa 55 mooe currently; please do not
change this line. This is referring to the ADS1299 Single Shot mode, versus the
Continuous Conversion mode

e ruUN MODE enables you to generate internal-test signals in the ADS1299 instead of reading
external data and signals from the electrodes on the 8 channels of the ADS1299 if you set
it to cen TEST sicnaL. Keep it as norvarn mrecTropes for any purpose other than
generating the mentioned internal test signals.
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v enables/disables verbose print statements in the Serial port. If 1 (enabled) you'll see
all the collected sensor data values printed in the Arduino Serial Monitor. 0 disables
this.

debug enables/disables the ability to change some specific ADS1299 channel settings via
serial messages through the serial monitor. The detailed description of the things you
can do will be printed once setup is complete, if you set debug 1 and run the code. These
things include enabling/disabling Bias, SRB2, and changing the gain of each channel, as
well as turning each channel on/off, and even checking the current status of all the
ADS1299 registers.

Using the Serial Debug Interface

Here is a summary of the commands you can run in the debug serial interface, and what they

d

o0:
type the channel number to print that ADS1299 channel’s data [1-8] (and plot, if you
switch to Serial Plotter)
or type "o’ to stop printing the data.
type BN#o to deactivate biasN for channel # and BN#1 to activate it
type BP#o to deactivate biasP for channel # and BP#1 to activate it
type S#o to deactivate SRB2 for channel # and B#1 to activate it
type G#N to set the gain for channel # to N=o:1, N=1:2, N=2:4, N=3:6, N=4:8, N=5:12,
N=6:24
type T#o to toggle channel # off, and T#1 to toggle channel # on
type "R’ or "r’ to print the current register settings of the ADS1299
type P’ or 'p’ to print these instructions again

Configuring Data Rate

You can adjust the data rate of the ADS1299 (and since all the other signals’ data rates are

p

rogrammed to be a tenth of it) in the firmware, in line 183 of

Fascia_collect_sensor_data.ino by changing the last argument of this line

.
A

DS WREG (ADS1299 REGADDR CONFIGI, ) ¢

The available sampling rates are listed starting on line 152 in the header file ADS1299.h:

> ADS1299 REG

define ADS1299 R
define ADS1299 R
>fine ADS1299 R
>fine ADS1299 R
>fine ADS1299 R

define ADS1299 REG C
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Running/visualizing the code

We have Python code in place to help visualize the sensor data received over WiFi. In order
for this to work, you must set connecT wirt to 1 in the .ino file in order for the two scripts to
be able to connect and share the data. In addition to this, you have to make sure that both
the Arduino and the python code are connecting to the correct WiFi network.

Firmware (.ino)

In the file WiFi Settings.h

SECRET_SSID "raspi wifi

e SECRET PASS "flui

#define HOST ID "192.168.0.101"

Ensure that secreT 5510 has the name of your private WiFi network, and secrer pass has the
password to that network. 105t 10 should be the IP address of your computer if you type
ifconfigin your terminal, and find en0, include the IP address listed under that.

In the same file, take a note of these lines:

#define SEND SIZE 22
1 NUM ELEMENTS 17
e ELEM SIZE 4

You’ll need these values to ensure that the connection to the python script is correct.
Data Visualization Code (.py)

In the file MainGUI.py, you must make sure the IP address that it is connecting to is
correct, and the same as the one you inputted into the firmware code. This is in line 120:

self.ip '192.168.0.101"

Next, take a look at BCI _Data Receiver.py, and the lines 48-50:

num_elements 17
num_ bytes 4*num_elements

num_ packets 22

Make sure that num elemencs in the python script matches the wov mrEvEnTs in the Arduino
header file, and that num packecs in the python script matches sewp 5178 in the Arduino
header file. Lastly, ensure that zrev 5128 in the Arduino header file matches the multiplier
in calculating num bytes in the python script (currently correctly 4).

Now, you are ready to set GUI options to your preference, which are all the lines marked
with a 7000 comment in the MainGUI.py file, near the top (lines 37-59):
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self.start idx 2 TODO

self.graph fft 1

self.fft channel 4
data rate 1000 D
e =start idxis the index of the data packet at which to begin graphing. You can start at o

in order to graph «// the data, or you can skip the first n data points by setting this value

ton

e graph fftis aboolean, if setto 1, an FFT plot will be generated, and if it is 0, no FFT
graph will be plotted in the GUI window

e it channel if you would like to have an FFT, this allows you to select which ADS1299
channel to run the FFT algorithm on and produce the frequency data for

e data rate must match the ADS1299 data rate that is set in the firmware code—
specifically this would be the settings for the ADS1299 register configl

Once you run the Python GUI program, you should be able to view the signals you selected,
and move around and zoom in and out of each graph, as well as see the Current data rate and
current measured heart rate.

Packet break-down

Order | Type Size (byte) | data Description

o int 4 count Serial number of the packet

I int 4 valid array array of bits indicating valid/invalid data in the packet
2-9 float 4 * 8 ADS 8 channel data | sign extended ADS channel data, in order

10-15 int 2 * 6 IMU 6 data points dummy data for now, since sensor not properly connected
16 float 4 EDA raw Arduino ADC counts

17 float 4 temperature

18 int 4 PPG raw IR sensor data

19 int 4 time stamp

. Please note: the valid array holds a 1 in the bit location corresponding to the data point in
the packet which is invalid. For example, if the PPG data is invalid, then the valid array’s
18th bit will be a 1. The index of the bit maps to the location of the data in the packet.
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IMU Data Conversion

If you decide you'd like the IMU data to be converted to metric units instead of being
unitless ADC counts, you must uncomment the lines which perform this conversion in the
get 1MU data() function (lines 752-755 for gyroscope data, and lines 765-767 for
acceleration data), and update the WiFi packet with the floating point data (lines 770-775).

Since this modification changes the size of each IMU data point, it also affects the size of
the data packets, so it is crucial to modify num elements in the python script, and

nuM m5LEMENTS in the Arduino code to 2zo. This enables the firmware to send a data packet of
the correct size, and the software to receive a packet of the correct size.

The last thing you need to change in order to get the IMU conversion working end-to-end is
ensure that the python code can interpret the sent packet data correctly. This is done by
specifying the type, in order, of the elements of the packet. In BCI_data_receiver.py, you’ll
find the line (line # 37):

unpacked data struct.unpack ('i'+'i'+"'f'*8+'h'*6+"'f'+"'f£'+'ii', data[inum bytes: (i+1l) *num bytes])

The data types and the order they appear in maps to the order in the packet, as shown in the
table above. In order to complete this set up, you must change the 'n'+¢ which means six
elements of type short (which is 2 Bytes), to '£'#6, meaning six elements of type float,
which is 4 Bytes and holds our converted data values.
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APPENDIX B: FIRMWARE

https://github.mit.edu/gbernal/Fascia nucleus/tree/master/Firmware
/development/Fascia collect sensor data

adsr299.h

#define int32_t unsigned long
#define SIGN_EXT_24(VAL) ((int32_t)((uint32_t)(VAL) ~ (1UL<<(23))) - (1L<<(23)))
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* Sampling Config *
*************************************************************************************************************************************************/
/**

* \brief Default data rate from the ADS1299.

*

* To monitor electrode impedance continuously, an AC current is pulsed through each electrode and the corresponding

* voltage perturbation observed in the measured signal. This signal will not be easily separable from the EEG if it

* is within the typical ©-100 Hz EEG bandwidth; since the fastest possible AC excitation rate the ADS1299 can

* generate is (data rate)/4, the lowest recommended data rate that allows continuous impedance monitoring is 1000 Hz.

* Using a 500 Hz data rate will generate an AC excitation at 125 Hz, which is dangerously close to, if not in,

* the EEG band.

*/

#define DEFAULT_SAMPLE_RATE 250

#define MAX_CHANNELS 8
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* Other Useful Definitions *
**************************************************************************************************************************************************/

#define SIGN_EXT_24(VAL)  ((int32_t)((uint32_t)(VAL) ~ (1UL<<(23))) - (1L<<(23)))// from Junging inital code, it works but can't understand how it works

#define ADS_data_MSB_mask 0x06800000L
#define sign_extend_bytes 0xFFo00000L

#define SIGNEXTEND(VAL) (VAL & ADS_data_MSB_mask)? (VAL|sign_extend_bytes) : VAL;

/* Default register values */

#define ADS1299 REGDEFAULT_ID ADS1299 DEVICE_ID

#define ADS1299 REGDEFAULT_CONFIG1 0x96 ///< Multiple readback mode, OSC output disabled, DR = FMOD/4096

#define ADS1299 REGDEFAULT_CONFIG2 oxDe ///< Test signal sourced internally, low-amplitude test signal pulsed at FCLK/(2"21)
#define ADS1299 REGDEFAULT_CONFIG3 0x68 ///< Ref buffer off, bias measurement off, internal bias ref, bias buffer off, bias sense disabled
#define ADS1299_REGDEFAULT_LOFF 0x00 ///< 95%/5% LOFF comparator threshold, DC lead-off at 6 nA

#define ADS1299 REGDEFAULT_CHNSET OxEQ ///< Channel off, gain 24, SRB2 disconnected, normal electrode input

#define ADS1299_ REGDEFAULT_BIAS_SENSP  0x00 ///< All BIAS channels disconnected from positive leads

#define ADS1299_REGDEFAULT_BIAS_SENSN  ©0x00 ///< All BIAS channels disconnected from negative leads

#define ADS1299_ REGDEFAULT_LOFF_SENSP  0x00 ///< All LOFF channels disconnected from positive leads

#define ADS1299_ REGDEFAULT_LOFF_SENSN  ©x00 ///< All LOFF channels disconnected from negative leads

#define ADS1299_REGDEFAULT_LOFF_FLIP 0x00 ///< No flipping in this house; source/pull-up at INP, sink/pull-down at INN
#define ADS1299_REGDEFAULT_LOFF_STATP  0x00 ///< This is a read-only register; reset value is 0x00

#define ADS1299_REGDEFAULT_LOFF_STATN  ©0x00 ///< This is a read-only register; reset value is 0x00

#define ADS1299_ REGDEFAULT_GPIO Ox0F ///< All GPIO set to inputs

#define ADS1299_ REGDEFAULT_MISC1 0x00 ///< SRB1 disconnected

#define ADS1299_ REGDEFAULT_MISC2 0x00 ///< Register not used in this silicon; should stay at @xee

#define ADS1299 REGDEFAULT_CONFIG4 0x00 ///< Continuous conversion, LOFF comparator powered down

String ADS_reg_names[24]= {"ID","CONFIG1","CONFIG2","CONFIG3","LOFF","CHISET", "CH2SET",
"CH3SET", "CHASET", "CH5SET", "CH6SET" , "CH7SET" , "CHSSET",

. BIAS_SENSN","LOFF_SENSP","LOFF_SENSN", "LOFF_FLIP",

"LOFF_STATP", "LOFF_STATN", "GPIO" , "MISC1", "MISC2","CONFIGA4"};
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* Typedefs and Struct Declarations/Definitions *
**************************************************************************************************************************************************/

J**

* \brief Error codes for interacting with the ADS1299.
*

*/
typedef int ads1299_error_t;
J**

* \brief ADS1299 register addresses.
*

* Consult the ADS1299 datasheet and user's guide for more information.

*/

#define ADS1299_REGADDR_ID 0x00 ///< Chip ID register. Read-only. ID[4:0] should be 111le.

#define ADS1299_REGADDR_CONFIG1 ox01 ///< Configuration register 1. Controls daisy-chain mode; clock output; and data rate.

#define ADS1299_REGADDR_CONFIG2 0x02 ///< Configuration register 2. Controls calibration signal source, amplitude, and frequency.
#define ADS1299_REGADDR_CONFIG3 0x0e3 ///< Configuration register 3. Controls reference buffer power and the bias functionality.
#define ADS1299_REGADDR_LOFF 0x04 ///< Lead-off control register. Controls lead-off frequency, magnitude, and threshold.

#define ADS1299_ REGADDR_CH1SET 0x0e5 ///< Channel 1 settings register. Controls channel 1 input mux, SRB2 switch, gain, and power-down.
#define ADS1299_ REGADDR_CH2SET 0x06 ///< Channel 2 settings register. Controls channel 2 input mux, SRB2 switch, gain, and power-down.
#define ADS1299_ REGADDR_CH3SET oxe7 ///< Channel 3 settings register. Controls channel 3 input mux, SRB2 switch, gain, and power-down.
#define ADS1299_ REGADDR_CHA4SET oxe8 ///< Channel 4 settings register. Controls channel 4 input mux, SRB2 switch, gain, and power-down.
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#define ADS1299_ REGADDR_CHSSET 0x09 ///< Channel 5 settings register. Controls channel 5 input mux, SRB2 switch, gain, and power-down.

#define ADS1299_ REGADDR_CH6SET Ox0A ///< Channel 6 settings register. Controls channel 6 input mux, SRB2 switch, gain, and power-down.
#define ADS1299_ REGADDR_CH7SET 0xeB ///< Channel 7 settings register. Controls channel 7 input mux, SRB2 switch, gain, and power-down.
#define ADS1299_ REGADDR_CH8SET oxec ///< Channel 8 settings register. Controls channel 8 input mux, SRB2 switch, gain, and power-down.
#define ADS1299_ REGADDR_BIAS_SENSP  0x@D ///< Bias drive positive sense selection. Selects channels for bias drive derivation (positive side).
#define ADS1299_ REGADDR_BIAS_SENSN  Ox@E ///< Bias drive negative sense selection. Selects channels for bias drive derivation (negative side).
#define ADS1299_ REGADDR_LOFF_SENSP  0x@F ///< Lead-off positive sense selection. Selects channels that will use lead-off detection (positive
side).

#define ADS1299_ REGADDR_LOFF_SENSN  ©0x10 ///< Lead-off negative sense selection. Selects channels that will use lead-off detection (negative
side).

#define ADS1299_ REGADDR_LOFF_FLIP ox11 ///< 1: Swaps lead-off current source and sink on the corresponding channel. See datasheet.

#define ADS1299_ REGADDR_LOFF_STATP  0x12 ///< Lead-off positive side status register. Read-only. @: lead on, 1: lead off.

#define ADS1299_ REGADDR_LOFF_STATN  0x13 ///< Lead-off negative side status register. Read-only. @: lead on, 1: lead off.

#define ADS1299_REGADDR_GPIO ox14 ///< GPIO register. Controls state and direction of the ADS1299 GPIO pins.

#define ADS1299_REGADDR_MISC1 ox15 ///< Miscellaneous 1. Connects/disconnects SRB1 to all channels' inverting inputs.

#define ADS1299_REGADDR_MISC2 ox16 ///< Miscellaneous 2. No functionality in current revision of ADS1299.

#define ADS1299_ REGADDR_CONFIG4 ox17 ///< Configuration register 4. Enables/disables single-shot mode and controls lead-off comparator
power.

byte CHANNELS[8] = {ADS1299_REGADDR_CH1SET,
ADS1299_REGADDR_CH2SET,
ADS1299_REGADDR_CH3SET,
ADS1299_REGADDR_CH4SET,
ADS1299_REGADDR_CHSSET,
ADS1299_REGADDR_CH6SET,
ADS1299_REGADDR_CH7SET,
ADS1299_REGADDR_CHSSET};

/*

* \brief ADS1299 SPI communication opcodes.

*

* Consult the ADS1299 datasheet and user's guide for more information.

* For RREG and WREG opcodes, the first byte (opcode) must be ORed with the address of the register to be read/written.
* The command is completed with a second byte @@0n nnnn, where n nnnn is (# registers to read) - 1.

*/

#define ADS1299_OPC_WAKEUP 0x02 ///< Wake up from standby.

#define ADS1299_OPC_STANDBY 0xe4 ///< Enter standby.

#define ADS1299_OPC_RESET 0x06 ///< Reset all registers.

#define ADS1299_OPC_START 0x08 ///< Start data conversions.

#define ADS1299_OPC_STOP OXOA ///< Stop data conversions.

#define ADS1299_OPC_RDATAC ox1e ///< Read data continuously (registers cannot be read or written in this mode).
#define ADS1299_OPC_SDATAC ox11 ///< Stop continuous data read.

#define ADS1299_OPC_RDATA ox12 ///< Read single data value.

#define ADS1299_OPC_RREG 0x20 ///< Read register value.

#define ADS1299_OPC_WREG 0x40 ///< Write register value.
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/**
* \brief Factory-programmed device ID for ADS1299, stored in ID[3:0].
*/

// Factory-programmed device ID for ADS1299. Stored in ID[3:0].
#define ADS1299_DEVICE_ID oeblile
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J**

* \brief Bit location and size definitions for CONFIG1.CLK_EN bit (oscillator output on CLK pin en/disabled).
*

* Consult the ADS1299 datasheet, page 40, for more information.

*/
#define ADS1299_REG_CONFIG1_CLOCK_OUTPUT_DISABLED  (@<<5)
#define ADS1299_REG_CONFIG1_CLOCK_OUTPUT_ENABLED (1¢<5)
J**

* \brief Bit location and size definitions for CONFIG1.DAISY_EN bit.
*

* Consult the ADS1299 datasheet, pp. 40 and 31-34, for more information.
*/

#define ADS1299_REG_CONFIG1_DAISY_CHAIN_MODE (8<<6)
#define ADS1299_REG_CONFIG1_MULTI_READBACK_MODE (1¢<6)
J**

* \brief Bit mask definitions for CONFIG1.DR (data rate).

*

* FMOD = FCLK/2, where FCLK is the clock frequency of the ADS1299. This is normally 2.048 MHz.
*/

#define ADS1299_ REG_CONFIG1_16kSPS
#define ADS1299 REG_CONFIG1_8kSPS
#define ADS1299 REG_CONFIG1_4kSPS
#define ADS1299 REG_CONFIG1_2kSPS
#define ADS1299 REG_CONFIG1_1kSPS
#define ADS1299_REG_CONFIG1_500SPS
#define ADS1299_ REG_CONFIG1_250SPS

///< Data is output at FMOD/64, or 16 kHz at 2.048 MHz.
///< Data is output at FMOD/128, or 8 kHz at 2.048 MHz.
///< Data is output at FMOD/256, or 4 kHz at 2.048 MHz.
///< Data is output at FMOD/512, or 2 kHz at 2.048 MHz.
///< Data is output at FMOD/1024, or 1 kHz at 2.048 MHz.
///< Data is output at FMOD/2048, or 500 Hz at 2.048 MHz.
///< Data is output at FMOD/4096, or 250 Hz at 2.048 MHz.

AUV A WNR®

/**
* \brief Combined value of reserved bits in CONFIG1 register.
*

* Consult the ADS1299 datasheet, page 40, for more information.

*
#défine ADS1299_REG_CONFIG1_RESERVED_VALUE (1<<7) | (1<<a)
/* CONFIG2 REGISTER ******************************************************************************************************************************/
J**

* \brief Bit mask definitions for CONFIG2.CAL_FREQ (calibration signal frequency).
*

* FCLK is the clock frequency of the ADS1299. This is normally 20 MHz.
*/
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#define ADS1299_REG_CONFIG2_CAL_PULSE_FCLK_DIV_2_21 [ ///< Calibration signal pulsed at FCLK/2°21, or approx. 1 Hz at 2.048 MHz.

#define ADS1299 REG_CONFIG2_CAL_PULSE_FCLK_DIV_2_20 1 ///< Calibration signal pulsed at FCLK/2°28, or approx. 2 Hz at 2.048 MHz.
#define ADS1299_ REG_CONFIG2_CAL_DC 3 ///< Calibration signal is not pulsed.

/**

* \brief Bit mask definitions for CONFIG2.CAL_AMP® (calibration signal amplitude).

*/

#define ADS1299_REG_CONFIG2_CAL_AMP_VREF_DIV_2_4_MV (0<<2) ///< Calibration signal amplitude is 1 x (VREFP - VREFN)/(2.4 mV).
#define ADS1299 REG_CONFIG2_CAL_AMP_2VREF DIV 2 4 MV  (1<<2) ///< Calibration signal amplitude is 2 x (VREFP - VREFN)/(2.4 mV).
/**

* \brief Bit mask definitions for CONFIG2.INT_CAL (calibration signal source).
*/

#define ADS1299_REG_CONFIG2_CAL_EXT (0<<4) ///< Calibration signal is driven externally.
#define ADS1299_REG_CONFIG2_CAL_INT (1<<4) ///< Calibration signal is driven internally.
/%

* \brief Combined value of reserved bits in CONFIG2 register.
*

* Consult the ADS1299 datasheet, page 41, for more information.
*/

#define ADS1299_REG_CONFIG2_RESERVED_VALUE (6<<5)
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/ *
\brief Bit mask definitions for CONFIG3.PD_REFBUF (internal voltage reference buffer enable/disable).

Note that disabling the buffer for the internal voltage reference requires that a reference voltage
must be externally applied on VREFP for proper operation. This is not related to the reference ELECTRODE
buffer, which is an external op-amp on the PCB. Brainboard does not apply a voltage to VREFP, and thus

* the buffer must be enabled.

*
*
*
*
*
*

*/
#define ADS1299_REG_CONFIG3_REFBUF_DISABLED (8¢<7)
#define ADS1299_REG_CONFIG3_REFBUF_ENABLED (1¢<7)
/**

* \brief Bit mask definitions for CONFIG3.BIAS_MEAS (enable or disable bias measurement through BIASIN pin).
*/

#define ADS1299_REG_CONFIG3_BIAS_MEAS_DISABLED (8¢<4)
#define ADS1299_REG_CONFIG3_BIAS_MEAS_ENABLED (1<<4)
/**

* \brief Bit mask definitions for CONFIG3.BIASREF_INT (bias reference internally or externally generated).
*/

#define ADS1299_ REG_CONFIG3_BIASREF_EXT (0<<3)

#define ADS1299 REG_CONFIG3_BIASREF_INT (1<<3)

/**

* \brief Bit mask definitions for CONFIG3.PD_BIAS (power-down or enable bias buffer amplifier).
*/

#define ADS1299_REG_CONFIG3_BIASBUF_DISABLED (0<<2)

#define ADS1299_REG_CONFIG3_BIASBUF_ENABLED (1<<2)

J**

* \brief Bit mask definitions for CONFIG3.BIAS_LOFF_SENS (detection of bias lead-off en/disable).
*/

#define ADS1299_REG_CONFIG3_BIAS_LOFF_SENSE_DISABLED  (@<<1)
#define ADS1299_REG_CONFIG3_BIAS_LOFF_SENSE_ENABLED (1¢<1)

/**
* \brief Combined value of reserved bits in CONFIG3 register.
*

* Consult the ADS1299 datasheet, page 42, for more information.
*/
#define ADS1299_REG_CONFIG3_RESERVED_VALUE (3<<5)
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J**

* \brief Bit mask definitions for CONFIG4.SINGLE_SHOT (single-shot or continuous conversion setting).
*

* This can more easily be set with the RDATAC/SDATAC opcodes.

*/
#define ADS1299_REG_CONFIG4_CONTINUOUS_CONVERSION_MODE (8¢<3)
#define ADS1299_REG_CONFIGA_SINGLE_SHOT_MODE (1¢<3)
J**

* \brief Bit mask definitions for CONFIG4.PD_LOFF_COMP (power-down lead-off comparators).
*

*/
#define ADS1299_REG_CONFIGA_LEAD_OFF_DISABLED (8¢<1)
#define ADS1299_REG_CONFIGA_LEAD_OFF_ENABLED (1¢<1)
/**

* \brief Combined value of reserved bits in CONFIG4 register.
*

* Consult the ADS1299 datasheet, page 47, for more information.
*/
#define ADS1299_ REG_CONFIG4_RESERVED_VALUE ]
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/**
* \brief Bit mask definitions for LOFF.COMP_TH (lead-off comparator threshold).
*
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* Definition names are for the positive side (LOFFP). The corresponding LOFFN thresholds
* are the difference between these thresholds and 100%. Default value is _95_PERCENT.
*/

#define ADS1299_REG_LOFF_95_PERCENT (8¢<5)
#define ADS1299_REG_LOFF_92_5_PERCENT (1¢<5)
#define ADS1299_REG_LOFF_9@_PERCENT (2¢<5)
#define ADS1299_REG_LOFF_87_5_PERCENT (3¢<5)
#define ADS1299_REG_LOFF_85_PERCENT (4<<5)
#define ADS1299_REG_LOFF_86_PERCENT (5¢<5)
#define ADS1299_REG_LOFF_75_PERCENT (6<<5)
#define ADS1299_REG_LOFF_7@_PERCENT (7¢<5)

/**
* \brief Bit mask definitions for LOFF.ILEAD_OFF (lead-off current magnitude).
*

* This should be as small as possible for continuous lead-off detection, so as not to noticeably alter
* the acquired signal. Default is _6_NA.
*/

#define ADS1299_REG_LOFF_6_NA

#define ADS1299 REG_LOFF_24 NA

#define ADS1299 REG_LOFF_6_UA

#define ADS1299 REG_LOFF_24_UA

(0<<2)
(1<<2)
(2¢<2)
(3<<2)

///< 6 nA lead-off current.
///< 24 nA lead-off current.
///< 6 uA lead-off current.
///< 24 uA lead-off current.
/ *

\brief Bit mask definitions for LOFF.FLEAD_OFF (lead-off current frequency).

This should be as large as possible for continuous AC lead-off detection to ensure that it is out

of the EEG frequency band (approx. ©-100 Hz for most applications). The excitation signal can then

be filtered out of the acquired overall signal, and its voltage amplitude measured in order to determine
the electrode impedance.

FCLK is the clock frequency of the ADS1299. This is normally 2.048 MHz.

FDR is the output data rate. With the default clock, this must be at least 1 kHz in order to use
continuous AC impedance monitoring, since the excitation frequency of FDR/4 = 250 Hz is the lowest
possible frequency outside of the EEG band. If only a specific band is needed and it is lower than

62.5 Hz or 125 Hz, the 250/500 Hz settings may be used.

X K K K K K X K K K X

*

*/

#define ADS1299_REG_LOFF_DC_LEAD_OFF

#define ADS1299_REG_LOFF_AC_LEAD_OFF_FCLK_DIV_2_18
#define ADS1299_REG_LOFF_AC_LEAD_OFF_FCLK_DIV_2_16
#define ADS1299_REG_LOFF_AC_LEAD_OFF_FDR_DIV_4

///< Lead-off current is at DC.

///< Lead-off current is at FCLK/2718, or 7.8125 Hz at 2.048 MHz.
///< Lead-off current is at FCLK/2716, or 31.25 Hz at 2.048 MHz.
///< Lead-off current is at FDR/4.

[N

J**

* \brief Combined value of reserved bits in LOFF register.
*

*/
#define ADS1299_REG_LOFF_RESERVED_VALUE 0
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J**
* \brief Bit mask definitions for CHnSET.PD (channel power-down).
*/

#define ADS1299_REG_CHNSET_CHANNEL_ON
#define ADS1299_REG_CHNSET_CHANNEL_OFF

(0<<7)
(1<<7)

/ *
\brief Bit mask definitions for CHnSET.GAIN (channel PGA gain).

Take care to ensure that the gain is appropriate for the common-mode level of the device inputs.
Higher gain settings have lower input-referred noise.

* Consult the ADS1299 datasheet, pages 6-7 and 19-20, for more information.

*/

*
*
*
*
*

#define ADS1299_REG_CHNSET_GAIN_1 (0<<4) ///< PGA gain = 1.
#define ADS1299_REG_CHNSET_GAIN_2 (1<<4) ///< PGA gain = 2.
#define ADS1299_REG_CHNSET_GAIN_4 (2¢<4) ///< PGA gain = 4.
#define ADS1299_REG_CHNSET_GAIN_6 (3¢<<4) ///< PGA gain = 6.
#define ADS1299_REG_CHNSET_GAIN_8 (4<<4) ///< PGA gain = 8.
#define ADS1299_REG_CHNSET_GAIN_12 (5¢<<4) ///< PGA gain = 12.
#define ADS1299_REG_CHNSET_GAIN_24 (6<<4) ///< PGA gain = 24.

byte gain_mask = 0bl11<<4;
byte GAINS[7] = {ADS1299_REG_CHNSET_GAIN_1,
ADS1299_REG_CHNSET_GAIN_2,
ADS1299_REG_CHNSET_GAIN_4,
ADS1299_REG_CHNSET_GAIN_6,
ADS1299_REG_CHNSET_GAIN_8,
ADS1299_REG_CHNSET_GAIN_12,
ADS1299_REG_CHNSET_GAIN_24};
int ADS_GAINS[7] = { 1,
2

5

12,
24 };
J**
* \brief Bit mask definitions for CHnSET.SRB2 (channel internal connection to SRB2 pin).
*/

#define ADS1299_REG_CHNSET_SRB2_DISCONNECTED
#define ADS1299_REG_CHNSET_SRB2_CONNECTED

(0<<3)
(1<<3)

/**

* \brief Bit mask definitions for CHnSET.MUX (channel mux setting).
*

* Controls the channel multiplexing on the ADS1299.

* Consult the ADS1299 datasheet, pages 16-17, for more information.

*/

#define ADS1299_ REG_CHNSET_NORMAL_ELECTRODE ] ///< Channel is connected to the corresponding positive and negative input pins.
#define ADS1299_ REG_CHNSET_INPUT_SHORTED 1 ///< Channel inputs are shorted together. Used for offset and noise measurements.
#define ADS1299_ REG_CHNSET_BIAS_MEASUREMENT 2 ///< Used with CONFIG3.BIAS_MEAS for bias measurement. See ADS1299 datasheet, pp. 53-54.



#define ADS1299_REG_CHNSET_MVDD_SUPPLY
#define ADS1299_REG_CHNSET_TEMPERATURE_SENSOR
#define ADS1299_REG_CHNSET_TEST_SIGNAL
#define ADS1299_REG_CHNSET_BIAS_DRIVE_P
#define ADS1299_REG_CHNSET_BIAS_DRIVE_N

///< Used for measuring analog and digital supplies. See ADS1299 datasheet, p. 17.
///< Measures device temperature. See ADS1299 datasheet, p. 17.

///< Measures calibration signal. See ADS1299 datasheet, pp. 17 and 41.

///< Connects positive side of channel to bias drive output.

///< Connects negative side of channel to bias drive output.

Nouhw

/**

* \brief Combined value of reserved bits in CHnSET registers.
*

*/

#define ADS1299_ REG_CHNSET_RESERVED_VALUE ]

/% BIAS_SENSP REGISTER kbbb s st b oo oo S oA S SRS SRS S S SRS RS K

/H*
* \brief Bit mask definitions for BIAS_SENSP register (read-only).
*

* Consult the ADS1299 datasheet, page 44, for more information.
*/

#define ADS1299_REG_BIAS_SENSP_BIASP8  (1<<7)
#define ADS1299_REG_BIAS_SENSP_BIASP7  (1<<6)
#define ADS1299_REG_BIAS_SENSP_BIASP6  (1<<5)
#define ADS1299_REG_BIAS_SENSP_BIASPS  (1<<4)
#define ADS1299_REG_BIAS_SENSP_BIASP4  (1<<3)
#define ADS1299_REG_BIAS_SENSP_BIASP3  (1<<2)
#define ADS1299_REG_BIAS_SENSP_BIASP2  (1<<1)
#define ADS1299_REG_BIAS_SENSP_BIASP1  (1<<@)

byte BIAS_SENSP[7] = {ADS1299_REG_BIAS_SENSP_BIASP1,
ADS1299_REG_BIAS_SENSP_BIASP2,
ADS1299_REG_BIAS_SENSP_BIASP3,
ADS1299_REG_BIAS_SENSP_BIASP4,
ADS1299_REG_BIAS_SENSP_BIASPS,
ADS1299_REG_BIAS_SENSP_BIASP6,
ADS1299_REG_BIAS_SENSP_BIASP8};

/% BIAS_SENSN REGISTER kbbb s sk s st b oo oo oA SRS SR RS S SRS SRR K

/**

* \brief Bit mask definitions for BIAS_SENSN register (read-only).
*

* Consult the ADS1299 datasheet, page 44, for more information.
*/

#define ADS1299_REG_BIAS_SENSN_BIASNS  (1<<7)

#define ADS1299_REG_BIAS_SENSN_BIASN7  (1<<6)

#define ADS1299_REG_BIAS_SENSN_BIASNG  (1<<5)

#define ADS1299_REG_BIAS_SENSN_BIASNS  (1<<4)

#define ADS1299_REG_BIAS_SENSN_BIASN4  (1<<3)

#define ADS1299_REG_BIAS_SENSN_BIASN3  (1<<2)

#define ADS1299_REG_BIAS_SENSN_BIASN2  (1<<1)

#define ADS1299_REG_BIAS_SENSN_BIASN1  (1<<@)

byte BIAS_SENSN[7] = {ADS1299_REG_BIAS_SENSN_BIASN1,
ADS1299_REG_BIAS_SENSN_BIASN2,
ADS1299_REG_BIAS_SENSN_BIASN3,
ADS1299_REG_BIAS_SENSN_BIASN4,
ADS1299_REG_BIAS_SENSN_BIASNS,
ADS1299_REG_BIAS_SENSN_BIASNG,
ADS1299_REG_BIAS_SENSN_BIASNS};

/% LOFF_SENSP REGISTER kb koo s st s b oo oo S oA RS SRS RSSOk

Vi

* \brief Bit mask definitions for LOFF_SENSP register (read-only).
*

* Consult the ADS1299 datasheet, page 45, for more information.
*/

#define ADS1299_REG_LOFF_SENSP_LOFFP8  (1<<7)

#define ADS1299 REG_LOFF_SENSP_LOFFP7  (1<<6)

#define ADS1299_REG_LOFF_SENSP_LOFFP6  (1<<5)

#define ADS1299_REG_LOFF_SENSP_LOFFP5  (1<<4)

#define ADS1299_REG_LOFF_SENSP_LOFFP4  (1¢<3)

#define ADS1299_REG_LOFF_SENSP_LOFFP3  (1¢<2)

#define ADS1299_REG_LOFF_SENSP_LOFFP2  (1<<1)

#define ADS1299 REG_LOFF_SENSP_LOFFP1  (1<<@)

/% LOFF_SENSN REGISTER kbbb s st s oo s oA S SRS SR RS S A SHARHRH S RR S SRSRRH H k /

Vil
* \brief Bit mask definitions for LOFF_SENSN register (read-only).
*

* Consult the ADS1299 datasheet, page 45, for more information.
*/

#define ADS1299_REG_LOFF_SENSN_LOFFN8  (1<<7)
#define ADS1299_REG_LOFF_SENSN_LOFFN7  (1<<6)
#define ADS1299_REG_LOFF_SENSN_LOFFN6  (1<<5)
#define ADS1299_REG_LOFF_SENSN_LOFFNS  (1<<4)
#define ADS1299_REG_LOFF_SENSN_LOFFN4  (1<<3)
#define ADS1299_REG_LOFF_SENSN_LOFFN3  (1<<2)
#define ADS1299_REG_LOFF_SENSN_LOFFN2  (1<<1)
#define ADS1299_REG_LOFF_SENSN_LOFFN1  (1<<@)

/% LOFF_FLIP REGISTER kst soh b s s bbb ool S s S S RSSO  /

Vil

* \brief Bit mask definitions for LOFF_FLIP register (read-only).
*

* Consult the ADS1299 datasheet, page 45, for more information.
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*/

#define ADS1299_REG_LOFF_FLIP_LOFF_FLIP8  (1<<7)
#define ADS1299_REG_LOFF_FLIP_LOFF_FLIP7  (1<<6)
#define ADS1299_REG_LOFF_FLIP_LOFF_FLIP6  (1<<5)
#define ADS1299_REG_LOFF_FLIP_LOFF_FLIPS  (1<<4)
#define ADS1299_REG_LOFF_FLIP_LOFF_FLIP4  (1<<3)
#define ADS1299_REG_LOFF_FLIP_LOFF_FLIP3  (1<<2)
#define ADS1299_REG_LOFF_FLIP_LOFF_FLIP2  (1<<1)
#define ADS1299_REG_LOFF_FLIP_LOFF_FLIP1  (1<<@)

/% LOFF_STATP REGISTER *¥3kkokoskhkok ook ook oo oo ook o 4K ook o 4K Ko oo KKK oo KK oo KK ook KK oo o KK oo KK oo KK ook KK ok oo KKK K

/**
* \brief Bit mask definitions for LOFF_STATP register (read-only).
*

* Consult the ADS1299 datasheet, page 45, for more information.
*/

#define ADS1299_REG_LOFF_STATP_INSP_OFF (1<<7)

#define ADS1299_REG_LOFF_STATP_IN7P_OFF (1<<6)

#define ADS1299_REG_LOFF_STATP_IN6P_OFF (1<<5)

#define ADS1299_REG_LOFF_STATP_INSP_OFF (1<<4)

#define ADS1299_REG_LOFF_STATP_INAP_OFF (1<<3)

#define ADS1299_REG_LOFF_STATP_IN3P_OFF (1<<2)

#define ADS1299_REG_LOFF_STATP_IN2P_OFF (1<<1)

#define ADS1299_REG_LOFF_STATP_IN1P_OFF (1<<@)

/% LOFF_STATN REGISTER *¥3kkokokh ok ook ook oo o b ook o 4K ook oo 4K Kook o 4K Koo 4K KooK Kook KK oo o KK oo KK oo KK oo KK ok oo KKK o

/**
* \brief Bit mask definitions for LOFF_STATN register (read-only).
*

* Consult the ADS1299 datasheet, page 45, for more information.
*/

#define ADS1299_REG_LOFF_STATN_INSN_OFF (1<<7)
#define ADS1299_REG_LOFF_STATN_IN7N_OFF (1<<6)
#define ADS1299_REG_LOFF_STATN_IN6N_OFF (1<<5)
#define ADS1299_REG_LOFF_STATN_INSN_OFF (1<<4)
#define ADS1299_REG_LOFF_STATN_INAN_OFF (1<<3)
#define ADS1299_REG_LOFF_STATN_IN3N_OFF (1<<2)
#define ADS1299_REG_LOFF_STATN_IN2N_OFF (1<<1)
#define ADS1299_REG_LOFF_STATN_ININ_OFF (1<<@)

/% GPIO REGISTER **Hkkok stk ook sk ok ok ook ok ook oo oA ook o 4K o oo o 4K Ko oo KK KooK Koo KK ook KK oo o KK oo K K oo KK ook KK ok oo KKK K

/**

* \brief Bit mask definitions for GPIO.GPIODn (GPIO direction bits).
*

* The ADS1299 has 4 GPIO pins that can be manipulated via the SPI bus if there are not enough
* GPIO pins available on the host.

* GPIOD[4:1] controls the logic levels on GPIO pins 4:1.

*

* Consult the ADS1299 datasheet, page 46, for more information.
*/
#define ADS1299_REG_GPIO_GPIOD4_LOW (0<<7)
#define ADS1299_REG_GPIO_GPIOD4_HIGH (1<<7)
#define ADS1299_REG_GPIO_GPIOD3_LOW (0<<6)
#define ADS1299_REG_GPIO_GPIOD3_HIGH (1<<6)
#define ADS1299_REG_GPIO_GPIOD2_LOW (0<<5)
#define ADS1299_REG_GPIO_GPIOD2_HIGH (1<<5)
#define ADS1299_REG_GPIO_GPIOD1_LOW (0<<4)
#define ADS1299_REG_GPIO_GPIOD1_HIGH (1<<4)

/**

* \brief Bit mask definitions for GPIO.GPIOCn (GPIO level).

*

* The ADS1299 has 4 GPIO pins that can be manipulated via the SPI bus if there are not enough
* GPIO pins available on the host.

* GPIOC[4:1] controls the pin direction on GPIO pins 4:1.

*

* Consult the ADS1299 datasheet, page 46, for more information.
*/

#define ADS1299_REG_GPIO_GPIOC4_OUTPUT (0<<3)

#define ADS1299_REG_GPIO_GPIOC4_INPUT (1<<3)

#define ADS1299_REG_GPIO_GPIOC3_OUTPUT (0<<2)

#define ADS1299_REG_GPIO_GPIOC3_INPUT (1¢<2)

#define ADS1299_REG_GPIO_GPIOC2_OUTPUT (0<<1)

#define ADS1299_REG_GPIO_GPIOC2_INPUT (1¢<1)

#define ADS1299_REG_GPIO_GPIOC1_OUTPUT (0<<0)

#define ADS1299_REG_GPIO_GPIOC1_INPUT (1<<0)

/**

* \brief Combined value of reserved bits in GPIO register.
*

*/
#define ADS1299_REG_GPIO_RESERVED_VALUE 0

/% MISCL REGISTER *Hkkskkdakokokok ok ok ook o ook oo oo b ook oK ook oo 4K Ko oo KK Koo KKK oo KK ook KK oo o KK oo K K oo KK ook KK o oo KKK K

/**

* \brief Bit mask definitions for MISC1.SRB1 (SRB1 internal connection).

*/

#define ADS1299_REG_MISC1_SRB1_OFF (0<<5) ///< Stim/ref/bias 1 turned off.

#define ADS1299_REG_MISC1_SRB1_ON (1<<5) ///< Stim/ref/bias 1 connected to all channel inverting inputs.
/**

* \brief Combined value of reserved bits in MISC1 register.
*

*/



#define ADS1299_REG_MISC1_RESERVED_VALUE ]

/% MISC2 REGISTER *Hkkskkhakdokokok ok ook oo b oh oo oo b ook o 4K ook o o KK Ko oo 4K KooK KK oo KK ook KK oo o KK oo KK oo KK ook KK Kok oo KKK K

J**

* \brief Combined value of reserved bits in MISC2 register.
*

* MISC2 don't do nothin' right now!

* Consult the ADS1299 user's guide, page 46, for more information.
*/

#define ADS1299_ REG_MISC2_RESERVED_VALUE ]

const byte WAKEUP = 0b00000010; // Wake-up from standby mode

const byte STANDBY = 0boeeee@10e; // Enter Standby mode

const byte RESET = 0boeeeel110; // Reset the device

const byte START = 0b00001000; // Start and restart (synchronize) conversions

const byte STOP = 0b@0001@10; // Stop conversion

const byte RDATAC = 0b00010000; // Enable Read Data Continuous mode (default mode at power-up)
const byte SDATAC = 0b00010001; // Stop Read Data Continuous mode

const byte RDATA = 0b00010010; // Read data by command; supports multiple read back

//Register Read Commands
const byte RREG = 0b00100000;
const byte WREG = ©b01000000;

const byte CH1 = 0x05;
const byte CH2 = 0x06;
const byte CH3 = 0x07;
const byte CH4 = 0x08;
const byte CH5 = 0x09;
const byte CH6 = Ox0A;
const byte CH7 = 0x@B;
const byte CH8 = 0x0C;
const byte CHn = OxFF;

Pin_Table_Defs.h

[/ HHEHEHEEEREHEEEHEEEAE SAMD21 Pin Table #HHHHHHHHHHHHHHHHI

#define PAB2 15 NXR1: A@ - EDA Signal
#define PAG4 18 NXR1: LED Red

#define PAB5 19 NXR1: A4 - VBATT Level
#define PAG6 20 NXR1: D8

#define PA@7 21 NXR1: ADS1299 #0 - CLK
#define PB@9 NXR1: A2

#define PB1@ NXR1: DRDY

#define PA16 NXR1: ADS1299 #@8/#1 - SPI MOSI
#define PA17 NXR1: ADS1299 #@/#1 - SPI SCK
#define PA18 NXR1: USB OTG sense

#define PA19 NXR1: ADS1299 #@/#1 - SPI MISO
#define PA20 NXR1: ADS1299 #1 - SPI CS2
#define PA21 NXR1: ADS1299 #@ - SPI CS1
#define PA22 NXR1: ADS1299 #0 - ext CLK trigger
#define PA23 NXR1: ADS1299 #0 - Reset
#define PB11 NXR1: CLK_SEL

#define PBO8
#define PA@8
#define PA@9
#define PA12
#define PA13
#define PAl4
#define PA15
#define PA27
#define PA28
#define PB22
#define PB23
#define PA1@

NXR1: uBlox RST

NXR1: uBlox & IMU & Crypto - I2C
NXR1: uBlox & IMU & Crypto - I2C
NXR1: uBlox - TX_MOSI

NXR1: uBlox - RX_MISO

NXR1: uBlox - RTS_CS

NXR1: uBlox - CTS_SCK

NXR1: uBlox - GPIO®

NXR1: uBlox - ACK

NXR1: uBlox - TX

NXR1: uBlox - RX

#define PA11 3
#define PBO2 16
#define PB@3 17
#define PB10O 4
#define PA@3 25

[/ /] WSS UBLOX Pin Table #HHHHHHHHHHHHHHHHEIE

// //---- MKR101@ / NovaXR v1
// #define LED_GREEN 25 //
// #define LED_BLUE 27 //
//  #define LED_RED 26 //

MKR1010: uBlox
MKR1010: uBlox
= MKR1010: uBlox

//  //---- NovaXR V1 --------
// /] #define LED_BLUE 18 //
// // #define LED_RED 17 // =

NXR: uBlox
= NXR: uBlox




/][] S SAMD21 ADC Definitions #HHHHHHHHHH

// #define ADC_READS_SHIFT 8

// #define ADC_READS_COUNT (1 << ADC_READS_SHIFT)

// #define ADC_MIN_GAIN 0x0400

// #define ADC_UNITY_GAIN 0x0800

// #define ADC_MAX_GAIN (ex1000 - 1)

// #define ADC_RESOLUTION_BITS 12

// #define ADC_RANGE (1 << ADC_RESOLUTION_BITS)
// #define ADC_TOP_VALUE (ADC_RANGE - 1)

// #define MAX_TOP_VALUE_READS 10

/][] S ADS1299 Definitions #HHHHHHHHHHHHHHI
// #define ADS1299_ID Ox1E
// #define MASKADC_ADR @Ox1F

WiFi_Settings.h

#include <WiFiNINA.h>
#include <WiFiUdp.h>
#include <Ethernet.h>

// #define SECRET_SSID "raspi_wifi"
// #define SECRET_PASS "fluidfluid"

//#define SECRET_SSID "gitgudbruh"
//#define SECRET_PASS "giganticorchestra203"

#define SECRET_SSID "#8103"
#define SECRET_PASS "1423qweasd"
#define HOST_ID "10.0.0.74"
#define PORT_NUM 8899

#define SEND_SIZE 22
// 1 for serial count,

// 1 for valid array for the data packet (1 maps to data means invalid)
// 8 for ADS data, ( - status bits, incorporated into valid array)

// 6 for IMU data,

// 1 for EDA

// 1 for temperature

// 1 for PPG

#define NUM_ELEMENTS 17
#define ELEM_SIZE 4
#define PACKET_SIZE (ELEM_SIZE*NUM_ELEMENTS)

// INDICES of PACKET WHERE EACH CATEGORY STARTS
#define i_VALID 1

#define i_ADS i_VALID + 1

#define i_IMU i_ADS + 8

#define i_EDA i_IMU + (3) /* IMU is 6 points, each of which is only 2 bytes */
#define i_TEM i_EDA + 1
#define i_PPG i_TEM + 1
#define i_TIM i_PPG + 1

// Indices of the valid bit for each of these data

// (this is not the same as the indices above due to the size
// difference between the data-- the IMU data is only 2 bytes,
// but are 6 differernt data points)

#define v_ADS 2
#define v_IMU v_ADS +
#define v_EDA v_IMU +
#define v_TEM v_EDA +
#define v_PPG v_TEM +
#define v_TIM v_PPG +

PRrEO®

Fascia_collect_sensor_data.ino

// library includes
#include "SAMD_AnalogCorrection.h"
#include <SPI.h>

#include "wiring_private.h"
//#include "I2Cdev.h"//
#include "MPU6050.h"
#include "Wire.h"//
#include "MAX30105.h"

// header files

#include "Pin_Table_Defs.h"
#include "WiFi_Settings.h"
#include "ads1299.h"

// define enum for boards and data retrieval types

enum board_types {NOVA_XR_V1, NOVA_XR_V2_SISTER, NOVA_XR_V2_MAIN, FASCIA_VO_©, FASCIA_VO_1};
enum data_mode_t {RDATA_CC_MODE, RDATA_SS_MODE};

enum run_mode_t {GEN_TEST_SIGNAL, NORMAL_ELECTRODES};

// settings
#define CONNECT_WIFI 1



#define BOARD_V FASCIA_VO_ 0
#define DATA_MODE RDATA_SS_MODE
#define RUN_MODE NORMAL_ELECTRODES
// v for verbose: lots of prints
#define v @

// debug: serial reads and writes
#define debug @

// REMEMBER: comment out lines in setup() and loop() for the sensors you do not have.

// Setup for SPI communications

SPIClass mySPI (&sercoml, PA19, PA17, PA16, SPI_PAD_0_SCK_1, SERCOM RX_PAD_3);
const int SPI_CLK = 4*pow(10,6) ; //4MHz

// Setup for I2C communications

// PA@8: SDA

// PA@9: SCL

// MPU6@5@ I2C address: ©x110100X where X is the logic level in pin AD@

// and last bit is r/w

#define MPU_ADDR 0b11010000

// define pins depending on boards

int pLED;

int pBAT;

// ADS1299 ADC pins

const int pRESET = PA23; // reset pin

int pCS; // chip select pin
int pDRDY; // data ready pin
// EDA

const int pEDA = PA@2;

// MPU6050 IMU pins
MPU6050 accelgyro;

const int pMPUint = PB@3;
// PPG & temperature pins
MAX30105 particleSensor;

// define variables
int print_ch = -1;
bool LEDval = LOW;

int cnt = 0;

// ADS channel gains

byte ADS_CHANNEL_GAINS[8] = {/*chan 1 EMG Gain 4 */ ADS1299_REG_CHNSET_GAIN_4,
/*chan 2 EMG Gain 4 */ ADS1299_REG_CHNSET_GAIN_4,
/*chan 3 EOG Gain 2 */ ADS1299_REG_CHNSET_GAIN_4,
/*chan 4 EMG Gain 4 */ ADS1299_REG_CHNSET_GAIN_4,
/*chan 5 EEG Gain 12 */ ADS1299_REG_CHNSET_GAIN_12,
/*chan 6 EEG Gain 12 */ ADS1299_REG_CHNSET_GAIN_12,
/*chan 7 EEG Gain 1 */ ADS1299_REG_CHNSET_GAIN_1,
/*chan 8 EEG Gain 1 */ ADS1299_REG_CHNSET_GAIN_1
s

void select_board_pins(void) {
switch (BOARD_V){
case NOVA_XR_V1: {
Serial.println("initializing pins for Nova XR V1");

pCS = PA21;
pDRDY = PA10;
break;

}
case NOVA_XR_V2_MAIN: {
Serial.println("initializing pins for Nova XR V2 main board");
pCS = PA21;
pDRDY = PB10;
// disable other ADS
pinMode(PA208, OUTPUT);
digitalWrite(PA20, HIGH);
break;

}
case NOVA_XR_V2_SISTER: {
Serial.println("initializing pins for Nova XR V2 sister board");
pCS = PA20;
pDRDY = PBO2;
// disable other ADS
pinMode(PA21, OUTPUT);
digitalWrite(PA21, HIGH);
break;

}
case FASCIA Vo_0: {
Serial.println("initializing pins for Fascia V@.0");
pCS = PA20;
pDRDY = PA@7;
pLED = PA@4;
PBAT = PA®5;
break;

}
case FASCIA VO_1: {
Serial.println("initializing pins for Fascia V@.1");

pCS = PA20;
pDRDY = PB10;
break;

}
¥
}

void initialize_pin_modes(void) {
pinMode(pCS, OUTPUT);
pinMode (pDRDY, INPUT);
pinMode (pRESET, OUTPUT);
pinMode (pEDA, INPUT);
pinMode(pLED, OUTPUT);

// Passive Electrode
// Passive Electrode
// Active Electrode
// Active Electrode
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pinMode (pBAT, INPUT);
pinPeripheral(PA19, PIO_SERCOM);
pinPeripheral(PA17, PIO_SERCOM);
pinPeripheral(PA16, PIO_SERCOM);
if (DATA_MODE == RDATA_CC_MODE) {
// attachInterrupt(pDRDY, DRDY_ISR, FALLING); // TODO figure out interrupt with input. malloc maybe?

¥
// attachInterrupt(pMPUint, get_gyro_data, MODEDEODEOD);
}

void ADS_connect(void) {

//enable ADS

digitalWrite(pRESET, HIGH);

digitalWrite(pCS, HIGH);

delay(500);

// select and reset ADS

digitalWrite(pCS, LOW);
mySPI.beginTransaction(SPISettings(SPI_CLK, MSBFIRST, SPI_MODE1));
mySPI.transfer(RESET);
mySPI.endTransaction();
delay(100);

digitalWrite(pCS, HIGH);

delay(50);

// read and print ADS device ID to ensure connection

byte idval = ADS_RREG(0x@,1);

Serial.print("connected to ADS device id "); Serial.println(idval,BIN);

if (idval != Ox3E) {
Serial.println("ADS device not properly connected");
Serial.println("If the ADS ID number is OxFF, you likely have an issue with power");
while(1) { Serial.println("ADS device not properly connected");}

}

}

void ADS_init(void) {

// register map on page 44 of the data sheet;

// pages expading on register descriptions follow in the next pages

byte config2_data = ADS1299 REG_CONFIG2_RESERVED_VALUE | //0b11000000;
ADS1299_REG_CONFIG2_CAL_PULSE_FCLK_DIV_2_21;

byte config3_data = ADS1299_REG_CONFIG3_REFBUF_ENABLED | //0b11101160;
ADS1299_REG_CONFIG3_RESERVED_VALUE |
ADS1299_REG_CONFIG3_BIAS_MEAS_DISABLED |
ADS1299_REG_CONFIG3_BIASREF_INT |
ADS1299_REG_CONFIG3_BIASBUF_ENABLED |
ADS1299 REG_CONFIG3_BIAS_LOFF_SENSE_DISABLED;

byte channel_mode = ADS1299 REG_CHNSET_NORMAL_ELECTRODE;

if (RUN_MODE == GEN_TEST_SIGNAL) {
config2_data = ADS1299_REG_CONFIG2_RESERVED_VALUE | //6b11010000;
ADS1299_REG_CONFIG2_CAL_INT |
ADS1299_REG_CONFIG2_CAL_AMP_2VREF_DIV_2_4 MV |
ADS1299_REG_CONFIG2_CAL_PULSE_FCLK_DIV_2_21;
config3_data = ADS1299_REG_CONFIG3_REFBUF_ENABLED | //6b11100000;
ADS1299_REG_CONFIG3_RESERVED_VALUE |
ADS1299_REG_CONFIG3_BIAS_MEAS_DISABLED |
ADS1299_REG_CONFIG3_BIASREF_EXT |
ADS1299_REG_CONFIG3_BIASBUF_DISABLED |
ADS1299_REG_CONFIG3_BIAS_LOFF_SENSE_DISABLED;
channel_mode = ADS1299_REG_CHNSET_TEST_SIGNAL;
}

ADS_WREG(ADS1299_REGADDR_CONFIG1, ADS1299 REG_CONFIG1_RESERVED_VALUE |
ADS1299_REG_CONFIG1_2kSPS); // last three bits is the data rate page 46 of data sheet
ADS_WREG(ADS1299_REGADDR_CONFIG2, config2_data);
ADS_WREG(ADS1299_REGADDR_CONFIG3, config3_data);
ADS_WREG(ADS1299_REGADDR_CONFIG4, ©x00);//0b000010600);
ADS_WREG(ADS1299_REGADDR_GPIO, 0x00);
ADS_WREG(ADS1299_REGADDR_MISC1, 0x00);

delay(10);
ADS_WREG(ADS1299_REGADDR_CHISET, ADS_CHANNEL_GAINS[@] |
channel_mode |
ADS1299_REG_CHNSET_CHANNEL_ON |
ADS1299_REG_CHNSET_SRB2_DISCONNECTED);
ADS_WREG(ADS1299_REGADDR_CH2SET, ADS_CHANNEL_GAINS[1] |
channel_mode |
ADS1299_REG_CHNSET_CHANNEL_ON |
ADS1299_REG_CHNSET_SRB2_DISCONNECTED);
ADS_WREG(ADS1299_REGADDR_CH3SET, ADS_CHANNEL_GAINS[2] |
channel_mode |
ADS1299_REG_CHNSET_CHANNEL_ON |
ADS1299_REG_CHNSET_SRB2_DISCONNECTED);
ADS_WREG(ADS1299_REGADDR_CHASET, ADS_CHANNEL_GAINS[3] |
channel_mode |
ADS1299_REG_CHNSET_CHANNEL_ON |
ADS1299_REG_CHNSET_SRB2_DISCONNECTED);
ADS_WREG(ADS1299_REGADDR_CHSSET, ADS_CHANNEL_GAINS[4] |
channel_mode |
ADS1299_REG_CHNSET_CHANNEL_ON |
ADS1299_REG_CHNSET_SRB2_CONNECTED) ;
ADS_WREG(ADS1299_REGADDR_CH6SET, ADS_CHANNEL_GAINS[5] |
channel_mode |
ADS1299_REG_CHNSET_CHANNEL_ON |
ADS1299_REG_CHNSET_SRB2_CONNECTED) ;
ADS_WREG(ADS1299_REGADDR_CH7SET, ADS_CHANNEL_GAINS[6] |
channel_mode |
ADS1299_REG_CHNSET_CHANNEL_ON |
ADS1299_REG_CHNSET_SRB2_CONNECTED) ;
ADS_WREG(ADS1299_REGADDR_CH8SET, ADS_CHANNEL_GAINS[7] |
channel_mode |
ADS1299_REG_CHNSET_CHANNEL_ON |



ADS1299_REG_CHNSET_SRB2_CONNECTED) ;

// turn on bias for all EEG Channels (5-8)

ADS_WREG(ADS1299_REGADDR_BIAS_SENSN, ADS1299_REG_BIAS_SENSN_BIASNS |
ADS1299_REG_BIAS_SENSN_BIASN7 |
ADS1299_REG_BIAS_SENSN_BIASNG |
ADS1299_REG_BIAS_SENSN_BIASNS );

// set up Lead-Off detection
/* from page 63 in the manual:
* 10.1.2.1 Lead-Off
*  Sample code to set dc lead-off with pull-up and pull-down resistors on all channels.
* WREG LOFF 0x13 // Comparator threshold at 95% and 5%, pullup or pulldown resistor dc lead-off
* WREG CONFIG4 0x02 // Turn on dc lead-off comparators
* WREG LOFF_SENSP OxFF // Turn on the P-side of all channels for lead-off sensing
* WREG LOFF_SENSN ©xFF // Turn on the N-side of all channels for lead-off sensing
*  Observe the status bits of the output data stream to monitor lead-off status.
*/
// ADS_WREG(ADS1299_REGADDR_LOFF, ox13);
// ADS_WREG(ADS1299_REGADDR_CONFIG4, 0x02);
// ADS_WREG(ADS1299_REGADDR_LOFF_SENSP, @x0F);
// ADS_WREG(ADS1299_REGADDR_LOFF_SENSN, OxFF);
// // TODO make sure this below works
// ADS_WREG(ADS1299_REGADDR_LOFF_FLIP, @xF@); // flip the EEG channels since we are connecting them to the N end

void ADS_start(void) {
digitalWrite(pCS, LOW);
mySPI.beginTransaction(SPISettings(SPI_CLK, MSBFIRST, SPI_MODE1));
mySPI.transfer(START);
if (DATA_MODE == RDATA_SS_MODE) {
mySPI.transfer(RDATA);
} else if (DATA_MODE == RDATA_CC_MODE) {
mySPI.transfer(RDATAC);

}

void Arduino_ADC_setup() {
//https://forum.arduino.cc/index.php?topic=443173.0
//http://yaab-arduino.blogspot.com/2015/02/fast-sampling-from-analog-input.html
//https://forum.arduino.cc/index.php?topic=6549.0

// original SAMD bootloader code set to:

// ADC->CTRLB.reg = ADC_CTRLB_PRESCALER_DIV512 | // Divide Clock by 512.

// ADC_CTRLB_RESSEL_1@BIT; // 1@ bits resolution as default
ADC->CTRLB.reg = ADC_CTRLB_PRESCALER_DIV16 | ADC_CTRLB_RESSEL_12BIT;

Serial.println("done setting up ADC with lower prescaler value and higher bit resolution");

}

void setup_MAX30105() {
if (!particleSensor.begin(Wire, I2C_SPEED_FAST)) {//Use default I2C port, 400kHz speed
while (1){Serial.println("MAX30105 was not found. Please check wiring/power. ");}

//The LEDs are very low power and won't affect the temp reading much but
//you may want to turn off the LEDs to avoid any local heating
// can try setting data output rate (currently (default) close to the slowest)

particleSensor.setup(/*byte powerLevel = */@x1F, /*byte sampleAverage = */4, /*byte ledMode =*/ 3, /*int sampleRate =*/3200); //Configure sensor. Turn

off LEDs
// TODO increase sampling rate here!!l!

//particleSensor.setup(); //Configure sensor. Use 25mA for LED drive
//TODO seems like line below is not actually necessary
particleSensor.enableDIETEMPRDY(); //Enable the temp ready interrupt. This is required.
// particleSensor.setPulseAmplitudeGreen(@); //Turn off Green LED
particleSensor.setPulseAmplitudeRed(@x0A); //Turn Red LED to low to indicate sensor is running
Serial.println("done setting up MAX30105");

}

void setup_MPU6050() {
accelgyro.initialize();
// Test connection
if (laccelgyro.testConnection()) {
while (1){Serial.println("Failed to connect to MPU6050");}

// use the code below to print before/after and change accel/gyro offset values
/*

Serial.println("Updating internal sensor offsets...");
accelgyro.setXGyroOffset(220);

accelgyro.setYGyroOffset(76);

accelgyro.setZGyroOffset(-85);

*/

/*

// data rate change?

// SMPLRT_DIV register
uint8_t getRate();

void setRate(uint8_t rate);*/

/*
// Calibration Routines
void CalibrateGyro(uint8_t Loops = 15); // Fine tune after setting offsets with less Loops.
void CalibrateAccel(uint8_t Loops = 15);// Fine tune after setting offsets with less Loops.
*/
Serial.println("Done setting up MPU6@50");
}

void setup() {
delay(1000);
// initialize communications: spi, I2C, serial, and wifi if applicable
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mySPI.begin();
Wire.begin();
Serial.begin(115200);

// set up indicator LED
select_board_pins();
initialize_pin_modes();
digitalWrite(pLED, HIGH);

#if (CONNECT_WIFI)
setupWifi();
#endif

// initialize board and settings

// make sure settings are compatible

if (BOARD_V == FASCIA_V@_O && DATA_MODE == RDATA_CC_MODE) {
Serial.println("You cannot use Continuous Conversion mode on Fascia Version 0.0");
Serial.println("The DRDY pin on this PCB (PA@7) cannot be configured as an interrupt pin");
while(1);

// speed up analog read speed
Arduino_ADC_setup();

// initialize MAX30105 PPG sensor (we will also be getting temperature data from it)
// setup_MAX30105();

// initialize the IMU MPU6@5@
setup_MPU6050() ;

// initialize ads1299
ADS_connect();
ADS_init();
ADS_start();
Serial.println("Done with setup.");
digitalWrite(pLED, LOW);
#if debug
print_serial_instructions();

#endif

}

void print_serial_instructions() {
Serial.println("Type the channel number to print that channel's data [1-8] (and plot, if you switch to Serial Plotter)");
Serial.println("Or type '@' to stop printing the data.");
Serial.println("type BN#0 to deactivate biasN for channel # and BN#1 to activate it");
Serial.println("type BP#0 to deactivate biasP for channel # and BP#1 to activate it");
Serial.println("type S#0 to deactivate SRB2 for channel # and B#1 to activate it");
Serial.println("type G#N to set the gain for channel # to N=0:1, N=1:2, N=2:4, N=3:6, N=4:8, N=5:12, N=6:24");
Serial.println("type T#0 to toggle channel # off, and T#1 to toggle channel # on");
Serial.println("type 'R' or 'r' to print the current register settings of the ADS1299");
Serial.println("type 'P' or 'p' to print these instructions again");

}

o

void loop() {
#if debug
if(Serial.available()>1){
parse_serial_input();

}
#endif

long packet[NUM_ELEMENTS];
packet[i_VALID] = ©;

#if v
Serial.println("packet #"+String(cnt));
#endif

#if DATA_MODE == RDATA_SS_MODE
DRDY_ISR(packet);
#endif
// get_EDA_data(packet);
if (1(cnt%10)) {
// get_PPG_temp_data(packet);
get_EDA_data(packet);
get_IMU_data(packet);

} else {
packet[i_VALID] |= (1<<v_PPG);
packet[i_VALID] |= (1<<v_TEM);
packet[i_VALID] |= (1<<v_EDA);
packet[i_VALID] |= (@b111111<<v_IMU);

¥

#if CONNECT_WIFI
pushToBuf((char *)packet);
sendWiFiDataPacket();

#endif

}

void DRDY_ISR(long* packet) {

//get all data before sign extending etc

digitalWrite(pCS, LOW);

if (DATA_MODE == RDATA_SS_MODE) {
while(digitalRead(pDRDY));
// Serial.println("DRDY just went low!");
mySPI.transfer(START);
mySPI.transfer(RDATA);

}

// first, read status bytes
byte bl = mySPI.transfer(0x00);
byte b2 = mySPI.transfer(0x00);
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byte b3 = mySPI.transfer(0x00);
Serial.println(bl,BIN);
Serial.println(b2,BIN);
Serial.println(b3,BIN);
// figure out if the data is valid (if so, which)
if ((bl & OxF@) == 0b11000000) {
byte loff_p = (bl<<4) | (b2>>4);
byte loff_n = (b2<<4) | (b3>>4);
Serial.print("loff_p: "); Serial.println(loff_p,BIN);
Serial.print("loff_n: "); Serial.println(loff_n,BIN);
// TODO use loff-p and loff-n to figure out which channels might be invalid
// the first 4 channels are EMG and EOG- they use both leads
int i = @3
for (i; i < 4; i++) {
packet[i_VALID] |= (((loff_p | loff_n) >> i) & 1) << (V_ADS + i);
Serial.print("packet[i_VALID]: "); Serial.println(packet[i_VALID],BIN);
// the last 4 channels are all EEG, they use only the N inputs
for (i; i < 8; i++) {

-

else {
Serial.println("invalid ADS1299 packet");
for (int i = 3; 1 < 27; i++){
mySPI.transfer(0x00);
packet[i_VALID] |= 1 << (i_ADS + (i/3-1));

return;

¥

// read channel data and sign extend it if valid
byte temp[4] = {0,0,0,0};
for (int i = 3; 1 < 27; i++){
temp[2-((i+3)%3)] = mySPI.transfer(0x00);//DOUT[i];
if ((i+3)%3 == 2) {
int32_t d = *((int32_t*)temp);
int ed = SIGN_EXT_24(d);//SIGNEXTEND(d);
float cd = convert_ADC_volts(ed, ADS_GAINS[((ADS_CHANNEL_GAINS[i/3-1])>>4)]);
Serial.println(String(i/3-1)+": "+String(ADS_GAINS[ ((ADS_CHANNEL_GAINS[i/3-1])>>4)]));
packet[i_ADS + (i/3-1)] = *((long*)&cd);//ed;
#if v
Serial.print("ADS ");Serial.print(i/3);Serial.print(" ");Serial.println(ed);
Serial.print("ADS ");Serial.print(i/3);Serial.print(" ");Serial.println(packet[i_ADS + i/3]);
#endif
if (i/3 == (print_ch)) {Serial.println(ed);}

}
¥

oat convert_ADC_volts(int raw_data, int gain) {

float vref = 4.5;

float fs = vref / gain;

float converted_data = fs * raw_data / (pow(2,23)-1);

// Serial.print(raw_data);Serial.print(" -> ");Serial.println(converted_data);
return converted_data;

returns the last byte read
te ADS_RREG(byte r , int n) {
if (r+n - 1> 24)

n=2-r;
digitalWrite(pCS, LOW);
// Serial.print("Register "); Serial.print(r, HEX); Serial.println(" Data");
mySPI.beginTransaction(SPISettings(SPI_CLK, MSBFIRST, SPI_MODE1));
mySPI.transfer(SDATAC);
mySPI.transfer(RREG | r); //RREG
mySPI.transfer(n-1); // 24 Registers
byte to_ret;
for (int i = @; i < n; i++)
{ byte temp = mySPI.transfer(0x00);

Serial.println(temp, HEX);
if ((n-i) == 1) to_ret = temp;

mySPI.endTransaction();
digitalWrite(pCS, HIGH);
return to_ret;

void ADS_WREG(byte r, byte d) {

}

if (r==0 || r==18 || r==19)
Serial.println("Error: Read-Only Register");
else
{ digitalWrite(pCS, LOW);
mySPI.beginTransaction(SPISettings(SPI_CLK, MSBFIRST, SPI_MODE1));
mySPI.transfer(SDATAC);
mySPI.transfer(WREG | r); //RREG
mySPI.transfer(0x00); // 24 Registers
mySPI.transfer(d);
mySPI.endTransaction();
digitalWrite(pCS, HIGH);
Serial.print("Wrote ");Serial.print(d, BIN); Serial.print(" to Register "); Serial.println(r, HEX);
}

void parse_serial_input() {

//TODO consider this

// char* s = Serial.readStringUntil('\n');
char ¢ = Serial.read();

char p;

// if char is '@’ - '8’

if (c >= 0x30 && ¢ <= 0x38) {
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print_ch = (c -0x30);

// ('#'-> #) -> #-1 to index channels
Serial.print("changed printing channel to ");Serial.println(print_ch);
return;

}
switch (c) {
case 'B':
case 'b":
p = Serial.read();
c = Serial.read();
if (c >= 0x31 && ¢ <= 0x38) {

if (p ' || p 'P') change_channel_biasP(c-0x30-1);

if (p == 'n" || p == 'N") change_channel_biasN(c-0x30-1);
break;
case 'S':
case 's':

c = Serial.read();
if (c >= 0x31 && ¢ <= 0x38) {
change_channel_SRB2(c-0x30-1);

break;
case 'G':
case 'g':
c = Serial.read();
if (c >= 0x31 && ¢ <= 0x38) {
change_channel_gain(c-6x30-1);

break;
case 'T':
case 't':
c = Serial.read();
if (c >= 0x31 && ¢ <= 0x38) {
toggle_channel(c-0x30-1);

break;
case 'p':
case 'P':
print_serial_instructions();
break;
case 'r':
case 'R':
print_ADS_reg_settings();
break;
case OxA:
break;
default:
Serial.println(c, HEX);
Serial.println("!!invalid input");
break;
}
}

void change_channel_SRB2(int chan){
char c = Serial.read();
Serial.print("CHANNELS[chan] ");Serial.println(CHANNELS[chan],HEX);
byte old_val = ADS_RREG(CHANNELS[chan], 1);
byte change = 0;
byte new_val;
if (c == '1') {
change = ADS1299_REG_CHNSET_SRB2_CONNECTED;
new_val = old_val | change;
else if (c == '@"){
change = OxFF "~ ADS1299_REG_CHNSET_SRB2_CONNECTED;
new_val = old_val & change;
else {
Serial.println("invalid input");return;

-

-

¥
Serial.print("changing SRB2 of channel "); Serial.print(chan);Serial.print(" to be ");Serial.println(c);
Serial.println(change,BIN);
Serial.print(old_val, BIN);Serial.print(" -> ");Serial.println(new_val, BIN);
ADS_WREG(CHANNELS[chan], new_val);
// START CONVERSION AGAIN
if (DATA_MODE == RDATA_CC_MODE) {
digitalWrite(pCS, LOW);
mySPI.transfer(START);
mySPI.transfer(RDATAC);
}
}

void change_channel_biasN(int chan){
char ¢ = Serial.read();
// Serial.print("CHANNELS[chan] ");Serial.println(CHANNELS[chan],HEX);
byte old_val = ADS_RREG(ADS1299_REGADDR_BIAS_SENSN, 1);
byte change = 0;
byte new_val;
if (c == '1') {

change = BIAS_SENSN[chan];

new_val = old_val | change;

else if (c == '0"){

change = OxFF ~ BIAS_SENSN[chan];

new_val = old_val & change;

else {

Serial.println("invalid input");return;

-

-

Serial.print("changing biasN of channel "); Serial.print(chan);Serial.print(" to be ");Serial.println(c);
Serial.println(change,BIN);

Serial.print(old_val, BIN);Serial.print(" -> ");Serial.println(new_val, BIN);
ADS_WREG(ADS1299_REGADDR_BIAS_SENSN, new_val);

// START CONVERSION AGAIN



if (DATA_MODE == RDATA_CC_MODE) {
digitalWrite(pCS, LOW);
mySPI.transfer(START);
mySPI.transfer(RDATAC);
}
}

void change_channel_biasP(int chan){
char ¢ = Serial.read();
// Serial.print("CHANNELS[chan] ");Serial.println(CHANNELS[chan],HEX);
byte old_val = ADS_RREG(ADS1299_REGADDR_BIAS_SENSP, 1);
byte change = 0;
byte new_val;
if (c == '1') {

change = BIAS_SENSP[chan];

new_val = old_val | change;

else if (c == '@"){

change = OxFF ~ BIAS_SENSP[chan];

new_val = old_val & change;

else {

Serial.println("invalid input");return;

-

-

Serial.print("changing biasP of channel "); Serial.print(chan);Serial.print(" to be ");Serial.println(c);
Serial.println(change,BIN);
Serial.print(old_val, BIN);Serial.print(" -> ");Serial.println(new_val, BIN);
ADS_WREG(ADS1299_REGADDR_BIAS_SENSP, new_val);
// START CONVERSION AGAIN
if (DATA_MODE == RDATA_CC_MODE) {
digitalWrite(pCS, LOW);
mySPI.transfer(START);
mySPI.transfer(RDATAC);
}
}

void change_channel_gain(int chan){

Serial.print("CHANNELS[chan] ");Serial.println(CHANNELS[chan],HEX);
char c = Serial.read();
byte old_val = ADS_RREG(CHANNELS[chan], 1);
byte gain = 0;
byte new_val;
if (c >= 0x30 && ¢ <= 0x36) {

gain = GAINS[c-0x30];

new_val = (old_val & (~gain_mask)) | gain;
} else {

Serial.println("invalid input");return;

Serial.print("changing gain of channel "); Serial.print(chan);Serial.print(" to be ");Serial.println(c-0x30,BIN);

Serial.println(gain,BIN);
Serial.print(old_val, BIN);Serial.print(" -> ");Serial.println(new_val, BIN);
ADS_WREG(CHANNELS[chan], new_val);
// START CONVERSION AGAIN
if (DATA_MODE == RDATA_CC_MODE) {
digitalWrite(pCS, LOW);
mySPI.transfer(START);
mySPI.transfer(RDATAC);
}
}

void toggle_channel(int chan){
Serial.print("CHANNELS[chan] ");Serial.println(CHANNELS[chan],HEX);
char c = Serial.read();
byte old_val = ADS_RREG(CHANNELS[chan], 1);
byte new_val;
if (c == '1') {
new_val = old_val & 0x7F;
else if (c == '@"){
new_val = old_val | 0x80;
} else {
Serial.println("invalid input");return;
¥
Serial.print("turning channel "); Serial.print(chan);Serial.print(" to be ");
if(c=='1") Serial.println("on");
else Serial.println("off");
Serial.print(old_val, BIN);Serial.print(" -> ");Serial.println(new_val, BIN);
ADS_WREG(CHANNELS[chan], new_val);
// START CONVERSION AGAIN
if (DATA_MODE == RDATA_CC_MODE) {
digitalWrite(pCS, LOW);
mySPI.transfer(START);
mySPI.transfer(RDATAC);
}
}

-

void print_ADS_reg_settings() {

for(uint8_t address =0; address<24; address++){
Serial.print("Register Address: ©x"); Serial.print(address,HEX);
Serial.print("\t");
Serial.print(ADS_reg_names[address]);
Serial.print("\t");
if(!(address>12 && address <20)) Serial.print("\t");
byte data = ADS_RREG(address,1);
Serial.print("Register Data: ©x"); Serial.print(data, HEX);
Serial.print("\t");
Serial.print("eb"); Serial.print(data, BIN);
Serial.println();

// // START CONVERSION AGAIN
// if (DATA_MODE == RDATA_CC_MODE) {
// digitalWrite(pCS, LOW);
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// mySPI.transfer(START);
// mySPI.transfer(RDATAC);
// '}

}

inline void get_IMU_data(long* packet){
intl6_t ax, ay, az, gx, gy, 8Z;
accelgyro.getMotion6(&ax, &ay, &az, &gx, &gy, &gz);
// NEED to convert from raw data to some underestandable units

// insert imy data into packet
((intl6_t*)&(packet[i_IMU]))[@] = ax;

((intl6_t*)&(packet[i_IMU]))[1] = ay;
((intl6_t*)&(packet[i_IMU]))[2] = az;
((int16_t*)&(packet[i_IMU]))[3] = gx;

((intl6_t*)&(packet[i_IMU]))[4] = gy;
((intl6_t*)&(packet[i_IMU]))[5] = gz;
#if v
for (int i = @; 1 < 6; i++) {
// Serial.println("IMU "+String(i)+" "+String( ((intl6_t*)packet)[(2*i_IMU)+i])); //wrong indexing
Serial.println("IMU "+String(i)+" "+String( ((intl6_t*)&(packet[i_IMU]))[i]));

}
#endif

/* From MPU605@ register maps (pg 31), Gyroscope:

*

* FS_SEL Full Scale Range LSB Sensitivity

* 2] + 250 °/s 131 LSB/°/s [DEFAULT]
* 1 + 500 °/s 65.5 LSB/°/s

* 2 + 1000 °/s 32.8 LSB/°/s

* 3 + 2000 °/s 16.4 LSB/°/s

*/

// conversion: g/131 = # °/s

/* From MPU605@ register maps (pg 29) , Accelerometer:

*

* FS_SEL Full Scale Range LSB Sensitivity

* e +2g 16384 LSB/g [DEFAULT]
* 1 +4g 8192 LSB/g

2 +8g 4096 LSB/g

* 3 +16 g 2048 LSB/g

*/

// conversion: a/16384 = #g *9.81 = # m/s"2

/*
// MOT_DETECT_STATUS register
uint8_t getMotionStatus();
bool getXNegMotionDetected();
bool getXPosMotionDetected();
bool getYNegMotionDetected();
bool getYPosMotionDetected();
bool getZNegMotionDetected();
bool getZPosMotionDetected();
bool getZeroMotionDetected();

*/

}

// number of eda data points to use to average

int eda_avg_size = 10;

// current index of the value being added

int eda_idx = 0;

// current total so far for the first eda_idx samples
int eda_total = 0;

//int eda_vals[eda_avg_size];

inline void get_EDA_data(long* packet) {
int VEDA = analogRead(pEDA);
// eda_vals[eda_idx] = VEDA;
eda_total += VEDA;
eda_idx = (eda_idx+1l) % eda_avg_size;
// if we have collected enough samples to average
if ((eda_idx % eda_avg_size) == 0) {
// for (int i = @; i < eda_avg_size; i++)
float avg_VEDA = eda_total / eda_avg_size;
float Rskin = convert_eda_adc_to_Rskin(avg_vEDA);
packet[i_EDA] = *((long*)(&Rskin));
eda_total = 0;
else {
// if not ready to average yet, mark EDA as invalid
packet[i_VALID] |= (1<<v_EDA);
}
// Serial.println(String(eda_idx)+" , "+String(eda_total));

-

#if v
// Serial.print("EDA "); Serial.println(vEDA);
Serial.print("EDA "); Serial.println(packet[i_EDA]);
#endif
}

inline float convert_eda_adc_to_Rskin(int sensorValue) {
float Vout = (sensorValue * 3.3)/4095;

// these are constants- should not change between iterations

// values are from the PCB layout/schematic in Fascia Physio Board V@

const int Rref = 820000; // reference resistor between - opamp and gnd

// Rref might actually be 2M or 828K -- undocumented board build value

const float Vref = 3.3 * 208./(20.+140.); // voltage divider output (virtual gnd)



const float i = (float)Vref / (float)Rref;

float Rskin = (Vout - Vref) / ij;
// Serial.println(String(Vref)+", "+ String(Vout)+", "+String(Rskin));
//float Cskin = 1./Rskin;

return Rskinj

}

//inline void get_battery_v(long* packet) {
// packet[i_BAT] = analogRead(pBAT);
//}

inline void get_PPG_temp_data(long* packet) {
particleSensor.requestTemperature();
long irvValue = particleSensor.getIR(1); // ms to wait TODO figure out smallest good
// TODO MATCH THIS WITH DATA SAMPLE RATE IN .SETUP()
packet[i_PPG] = irValue;
// Serial.println(irValue);
if (irvalue < 50000){
#if v
Serial.println("No contact with sensor "+String(irValue));
#endif
packet[i_VALID] |= (1<<v_PPG);
packet[i_VALID] |= (1<<v_TEM); // TODO keep this here????
if (irvalue != @) packet[i_VALID] |= (1<<v_TIM);
// return;

¥

float temperature = particleSensor.readTemperature();
packet[i_TEM] = *(long*)(&temperature); //TODO make sure this casting works properly

#if v
Serial.print("TMP ");Serial.println(temperature);
// Serial.print("TMP ");Serial.println(packet[i_TEM]);

Serial.print("PPG ");Serial.println(irValue);
// Serial.print("PPG ");Serial.println(packet[i_PPG]);
#endif
}

[11711117117111111717111711111177111 WIFL STUFE ///////1/11111111111111111111111111111
//int cnt = @;

//There are two buffer used for wifi data sending.
char sendBuf[2][PACKET_SIZE*SEND_SIZE];

//Indicating which buffer is being written
int wBufIndex = @;

//Indicates how much data packets are written into the current buffer
int wCount = @;
bool isBufReady = false;

//For WIFI

int status = WL_IDLE_STATUS;

char ssid[] = SECRET_SSID;

char pass[] = SECRET_PASS;

unsigned int localPort = PORT_NUM; // local port to listen on

WiFiUDP Udp;

inline char* getWriteBuf()

return sendBuf[wBufIndex];

//Get the buffer for sending
//Have to be in non-interrupt context
inline char* getSendBuf()

if(isBufReady == true)

isBufReady = false;
return wBufIndex == @ ? sendBuf[1] : sendBuf[@];

else
return 0;

}

//Write one data packet into the buffer.
inline void pushToBuf(char* packet)

((int*)packet)[0] = cnt;
((int*)packet)[i_TIM] = millis();
// Serial.println(((int*)packet)[i_TIM]);
cnt++;
//When current buffer is full
if(wCount == SEND_SIZE)
{
//Switch buffer
wBufIndex = (wBufIndex +1)%2;
isBufReady = true;
wCount = 0;
//Serial.println("Switch Buffer");



//Write to buffer

char* buf = getWriteBuf();

memcpy (buf+wCount*PACKET_SIZE, packet, PACKET_SIZE);
wCount++;

}

void printWiFiStatus() {
// print the SSID of the network you're attached to:
Serial.print("SSID: ");
Serial.println(WiFi.SSID());

// print your WiFi shield's IP address:
IPAddress ip = WiFi.localIP();
Serial.print("IP Address: ");
Serial.println(ip);

Serial.print("Data host IP: ");
Serial.println(HOST_ID);

// print the received signal strength:
long rssi = WiFi.RSSI();
Serial.print("signal strength (RSSI):");
Serial.print(rssi);
Serial.println(" dBm");

}

void setupWifi()

//Setup the wifi
// check for the WiFi module:

if (WiFi.status() == WL_NO_MODULE) {
Serial.println("Communication with WiFi module failed!");
// don't continue
while (true);

String fv = WiFi.firmwareVersion();
if (fv < "1.0.0") {
Serial.println("Please upgrade the firmware");

¥

// attempt to connect to Wifi network:
while (status != WL_CONNECTED) {
Serial.print("Attempting to connect to SSID: ");
Serial.println(ssid);
// Connect to WPA/WPA2 network. Change this line if using open or WEP network:
status = WiFi.begin(ssid, pass);

// wait 1@ seconds for connection:
delay(5000);
}
Serial.println("Connected to wifi");
printWiFiStatus();

Serial.println("\nStarting connection to server...");
// if you get a connection, report back via serial:
Udp.begin(localPort);

inline void sendWiFiDataPacket() {
byte* sBuf = (byte*)getSendBuf();

if(sBuf I= @){
Udp.beginPacket (HOST_ID, PORT_NUM);
int nbytes = Udp.write(sBuf, PACKET_SIZE*SEND_SIZE);
Udp.endPacket();
if (nbytes != PACKET_SIZE*SEND_SIZE) {
Serial.println("Failed to send packet. Sent "+String(nbytes)+" bytes only");
} else {
#if v
Serial.println("Successfully sent full packet of "+String(nbytes)+" bytes");
#endif
}

}
LEDval = (cnt%10)? LEDval : !LEDval;

// Serial.println("cnt = "+String(cnt)+" LEDVAL = "+String(LEDval));
digitalWrite(pLED, LEDval);
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APPENDIX C: PYTHON VISUALIZATION CODE

https://github.mit.edu/gbernal/Fascia nucleus/tree/master/Fasc
ia datavViz/Fascia sensor data plotter

CausalButter.py

# "CausalButter.py" is the python class I wrote to implement the causal butterworth filter (same algorithm as Tianhe_filter but in python)

# reference here: http://www.exstrom.com/journal/sigproc/
# http://www.exstrom.com/journal/sigproc/bwbpf.c
import math

class CausalButter:
# the default init method assumes Causal butter is a bandpass filter, and allows signal frequency from f_low to f_high to pass.
# when bandstop == 1, the causal butter filter becomes bandstop and signal frequency from f_low to f_high will be filtered out
def __init__ (self,order,f_low,f_high,sampleRate,bandstop=0):
if order%4 != 0:
print ("the order of CausalButter has to be a multiple of 4")
return
self.f_high = f_high
self.f_low = f_low
self.sampleRate = sampleRate
self.order = order
self.bandstop = bandstop

s = self.sampleRate
a = math.cos(math.pi*(f_high+f_low)/s)/math.cos(math.pi*(f_high-f_low)/s)

a2 = a**2
b = math.tan(math.pi*(f_high-f_low)/s);
b2 = b**2

n = int(order/4)
self.n = int(order/4)
self.a = a

self.a2 = a2

self.b = b

self.b2 = b2

self.A = [0]*n

self.dl = [@]*n
self.d2 = [0]*n
self.d3 = [@]*n
self.d4 = [0]*n
self.wo = [0]*n
self.wl = [0]*n
self.w2 = [0]*n
self.w3 = [0]*n
self.wd = [0]*n

if self.bandstop ==0:

for i in range(n):
r = math.sin(math.pi*(2.8*i+1.0)/(4.0%*n));
s = b2 + 2.0%b*r + 1.0;
self.A[i] = b2/s;
self.d1[i] = 4.0*%a*(1.0+b*r)/s;
self.d2[i] = 2.0%(b2-2.0%a2-1.0)/s;
self.d3[i] = 4.0%a*(1.8-b*r)/s;
self.d4[i] = -(b2 - 2.0*b*r + 1.0)/s;

else:

for i in range(n):
r = math.sin(math.pi*(2.8*i+1.0)/(4.0%*n));
s = b2 + 2.0%b*r + 1.0;
self.A[i] = 1/s;
self.d1[i] = 4.0*a*(1.0+b*r)/s;
self.d2[i] = 2.0%(b2-2.0%a2-1.0)/s;
self.d3[i] = 4.0%a*(1.8-b*r)/s;
self.d4[i] = -(b2 - 2.0*b*r + 1.0)/s;

self.r = 4.0%a;

self.s = 4.0%a2+2.0;

def inputData(self, raw_data):
#BUGMAN 5/24/2017 modified the npts
npts = len(raw_data);
filtered_data = [None]*npts;

# the default is to create a bandpass causal butter filter
if self.bandstop ==0:
for pnt in range(npts):
x = raw_data[pnt]
for i in range(self.n):
self.wo[i] = self.d1[i]*self.wi[i] + self.d2[i]*self.w2[i] + self.d3[i]*self.w3[i] + self.d4[i]*self.wa[i] + x;
x = self.A[i]*(self.w@[i] - 2.@*self.w2[i] + self.w4[i]);
self.wa[i] = self.w3[i];
self.w3[i] = self.w2[i];
self.w2[i] = self.wl[i];
self.wl[i] = self.wo[i];
filtered_data[pnt] = x
else:
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def

for pnt in range(npts):

x = raw_data[pnt]

for i in range(self.n):
self.wo[i] = self.d1[i]
# bandstop method chang
x = self.A[i]*(self.wO[
self.wa[i] = self.w3[i]
self.w3[i] = self.w2[i]
self.w2[i] self.wi[i]
self.wl[i] = self.wo[i]

filtered_data[pnt] = x

return filtered_data

printParams(self):
print('self.f_high is ', self.f hig
print('self.f_low is ', self.f_low)
print('self.sampleRate is ', self.s
print('self.order is ', self.order)
print('self.n is ', self.n)
print('self.a is ', self.a)
print('self.a2 is ', self.a2)
print('self.b is ', self.b)
print('self.b2 is ', self.b2)
print('self.A is ', self.A)
print('self.dl is ', self.d1)
print('self.d2 is ', self.d2)
print('self.d3 is ', self.d3)
print('self.d4 is ', self.d4)

B
print('self.w@ is ', self.wd)
print('self.wl is ', self.wl)
print('self.w2 is ', self.w2)
print('self.w3 is ', self.w3)
print('self.w4 is ', self.wd)

*self.wl[i] + self.d2[i]*self.w2[i] + self.d3[i]*self.w3[i] + self.d4[i]*self.w4[i] + x;
ed some coefficients here

i] - self.r*self.wl[i] + self.s*self.w2[i] - self.r*self.w3[i]+ self.w4[i]);

5

H

H

H

h)

ampleRate)

floatingCurves.py

This class is a widget it allows displaying multiple graphs and float each as a window if needed on real time.
Updating the graph will be done outside of this class.

import sys

from PyQt5 import QtGui, QtCore, QtWidgets
import numpy as np

import pyqgtgraph as pg

class floatingCurves_Max(QtWidgets.QMainWindow):
def __init_ (self, curve:pg.PlotDataItem, oldWidget:pg.PlotWidget ,parent=None):

def

super(floatingCurves_Max, self)._ i
self.oldWidget = oldwidget
self.curve = curve

plotWidget = pg.PlotWidget()
plotWidget.addItem(curve)
centralWidget = QtWidgets.QWidget(s
self.setCentralWidget(plotWidget)

closeEvent(self, a@):
self.oldWidget.addItem(self.curve)

return super().closeEvent(a@)

class floatingCurves(QtWidgets.QWidget):

nit__(parent)

e1f)

def __init_ (self, channelNum, start_i, fft_chan):
super(floatingCurves, self).__init_ ()

self.curvelList = list()
self.plotWidgetList = list()

#Perpare the layout
self.layout = QtWidgets.QGridLayout

self.setlLayout(self.layout)
self.titles = ["packet number", "Va

O

lid array", "ADS 1: EMG 1/2 (volts)", "ADS 2: EMG 4/3 (volts)", "ADS 3: EOG 1/2 (volts)",

"ADS 4: EMG 7/8 (volts)", "ADS 5: EEGL (PASSIVE) (volts)", "ADS 6: EEG2 (PASSIVE) (volts)", "ADS 7: EEG (ACTIVE) (volts)", "ADS 8:

EEG (ACTIVE) (volts)",

arduino’

def

“IMU AX", “IMU Ay","
"EDA: Rskin (Ohm)","

']

IMU Az", "IMU Gx","IMU Gy", "IMU Gz",#"IMU 7", "IMU 8","IMU 9",
temperature (C)", "PPG raw data", "FFT from ADS "+str(fft_chan)]#, "battery voltage level"]#"heart rate

self.generateGraphsArray(channelNum, start_i)

self.addText()

addText(self):

PN = QtWidgets.QLabel()
PN.setText("Packet #: ")
self.layout.addwidget(PN)
self.PN = PN

PDR = QtWidgets.QLabel()
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def

def

def

de

2

PDR.setText("P Data Rate: ")
self.layout.addwWidget(PDR) #pg.TextItem("Data Rate: ")
self.PDR = PDR

ADR = QtWidgets.QLabel()

ADR.setText("A Data Rate: ")
self.layout.addWidget(ADR) #pg.TextItem("Data Rate: ")
self.ADR = ADR

HR = QtWidgets.QLabel()

HR.setText("Heart Rate: ")

self.layout.addwWidget(HR)

self.HR = H

addCurve(self, newCurve:pg.PlotDataltem, x, y, t):
self.curvelList.append(newCurve)

plotWidget = pg.PlotWidget(title=t)

plotWidget.addItem(newCurve)

self.plotWidgetList.append(plotWidget)
self.layout.addWidget(plotWidget,x,y)

#Add the button

button = QtWidgets.QPushButton("+",plotWidget)

button.resize(20,20)
button.clicked.connect(self.make_btn_floatWnd(len(self.curvelList)-1))

generateGraphsArray(self, channelNum, start_i):
for i in range(channelNum):
newCurve = pg.PlotDataltem()
y = int(i/4)
x = i%4
self.addCurve(newCurve ,x,y, self.titles[i+start_i])

make_btn_floatWnd(self, index):

def btn_floatWnd():
newWnd = floatingCurves_Max(self.curvelList[index], self.plotWidgetList[index], self)
newhnd. show()

return btn_floatWnd

updateCurve(self, index, data: list(), data_x: list() = []):
if data_x != []:

self.curvelList[index].setData(x=data_x, y=data)
else:

self.curveList[index].setData(y=data)

#Used for testing

# win =
# win.a

import
import
import
import
import
import
import
class B

def

def

def

pg.GraphicsWindow()
ddPlot()

BCI_Data_Receiver.py

socket

sys

time

numpy as np
threading
struct

time
CI_Data_Receiver(object):

__init__ (self, ip, port, data_plotting_widget):
self.ip = ip

self.port = port

self.sock = None

self.receiveBuff= bytes()

self.dataBuff = []

self.dataReadyCallback = None
self.readingThread = None

self.address = (self.ip, self.port)
self.prev_time_stamp = @
self.prev_EDA_time_stamp = @

# self.prev_PPG_time_stamp = @
self.dataPlottingWidget = data_plotting_widget
self.current_data_rate = 1

self.prev_A_ts = 0;

startConnection(self):
"""Start the socket connection
# self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
#For UDP

self.sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
self.sock.bind(self.address)

print(self.address)

# self.sock.connect(("192.168.1.10",35294))
self.sock.settimeout(30.0)

self.processStream()

asyncReceiveData(self, dataReadyCallback):

"""Receive the data from ADS1299 asynchronously.

if self.readingThread == None:
self.dataReadyCallback = dataReadyCallback
self.readingThread = threading.Thread(target = self.startConnection)
self.readingThread.start()

else:
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raise Exception("The reading thread is already running!")

def processStream(self):
data_names = ["PKT #", "VALID", "ADS 1", "ADS 2", "ADS 3","ADS 4", "ADS 5", "ADS 6", "ADS 7", "ADS 8",
"IMU @", "IMU 1", "IMU 2", "IMU 3", "IMU 4", "IMU 5", #"IMU 7", "IMU 8", "IMU 9",
"EDA ", "TEMP ", "PPG ", "TIM"]#, "BTR "]#"HRT "]
num_elements = 17
num_bytes = 4*num_elements
num_packets = 22
while True:
#Receive data from sensor
data, addr = self.sock.recvfrom(num_bytes*num_packets)
cur_time_stamp = time.time()
# print("data rate: "+str(int(num_packets/(cur_time_stamp-self.prev_time_stamp))) + " Hz")
self.current_data_rate = int(num_packets/(cur_time_stamp-self.prev_time_stamp))
t = "P Data Rate: "+str(self.current_data_rate)+" Hz"
self.dataPlottingWidget.PDR.setText(t)
self.prev_time_stamp = time.time()
# print(data, addr)
#self.receiveBuff = self.receiveBuff + self.sock.recv(40)
self.receiveBuff = self.receiveBuff + data

if(len(self.receiveBuff) >= num_bytes*num_packets):
data = self.receiveBuff[@:num_bytes*num_packets]
self.receiveBuff = self.receiveBuff[num_bytes*num_packets:]
for i in range(num_packets):
unpacked_data = struct.unpack('i'+'i'+'f'*8+'h'*6+'f'+'f'+'ii', data[i*num_bytes: (i+1)*num_bytes])
# unpacked_data = struct.unpack('i'*num_elements, data[i*num_bytes: (i+1)*num_bytes])
#from manual For the 'f', 'd' and 'e' conversion codes, the packed representation uses the IEEE 754 binary32, binary64 or binaryl6

format (for 'f', 'd' or 'e' respectively), regardless of the floating-point format used by the platform.

# print(unpacked_data[19], self.prev_A_ts)

if unpacked_data[19] != self.prev_A_ts:
dr = 1000/ (unpacked_data[19] - self.prev_A_ts)
# print(dr)
t = "A Data Rate: " + str(int(dr)) + " Hz"
self.dataPlottingWidget.ADR.setText(t)
self.prev_A_ts = unpacked_data[19] # milliseconds

# For Walaa: debug prints

# for j in range(num_elements):

# print(data_names[j] + ' ' + str(unpacked_data[j]))

# if (unpacked_data[1] & (1<<16)) == 0:

# # EDA is valid

# print("EDA rate: " + str(int(1 / (cur_time_stamp - self.prev_EDA_time_stamp))) + " Hz")
# self.prev_EDA_time_stamp = self.prev_time_stamp

self.dataReadyCallback(unpacked_data)

MainGUI.py

import os

os.environ[ 'PYQTGRAPH_QT_LIB'] = 'PyQt5’
from PyQt5 import QtGui, QtCore, QtWidgets
import pyqgtgraph as pg

import multiprocessing

import pandas as pd

from BCI_Data_Receiver import *
import floatingCurves as fc
from CausalButter import *

import heartpy as hp
import math
import threading

i_CNT

i_VAL 1
i_ADS 1
i_1MU +8
i_EDA +6
i_TEM 1
i_PPG = 1
i_TIM 1

class mainWindow(QtWidgets.QWidget):
def __init_ (self):

#Init Data structures
super(mainWindow,self).__init_ ()
self.plotBufs = list()
PLOTWNDSIZE = 2000
self.PLOTWNDSIZE = PLOTWNDSIZE

# for plotting

self.start_idx = 2 #TODO: make this @ if you want to graph all the packet data
self.n_plots = 19

self.fft_idx = self.n_plots-self.start_idx

# for FFT
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self.graph_fft = 1 #T0ODO: change this to 1 if you dont want FFT graph

self.FFT_CHANNEL = 4 #TODO: make sure this is the channel you want the FFT for (@ indexed)
self.fft_lock = threading.Lock();

# self.fft_thread = threading.Thread(target = self.fft_calc, args = (self.FFT_CHANNEL,) );
self.moreData = False;

# self.fft_thread.start()

# for initial plotting
for i in range(self.n_plots-self.start_idx + self.graph_fft):
self.plotBufs.append(np.zeros(PLOTWNDSIZE))

# for data Recording
self.isRecording = False
self.recordingBuf = list()

# for filters

data_rate = 1000 #TODO: make sure this matches the data rate of the ADS1299 in the firmware
self.data_rate = data_rate

num_ADS_plots = 8

# Init/store all the required filters

# Do the bandpass filters

self.BPfilters = []

# for i in range(@,num_ADS_plots):

self.BPfilters.append(CausalButter(4, 10, 500, data_rate, @)) # EMG 1/2
self.BPfilters.append(CausalButter(4, 10, 500, data_rate, @)) # EMG 4/3
self.BPfilters.append(CausalButter(4, 10, 500, data_rate, @)) # EOG 1/2
self.BPfilters.append(CausalButter(4, 10, 500, data_rate, @)) # EMG 5/6
self.BPfilters.append(CausalButter(4, 10, 500, data_rate, @)) # EMG 7/8
self.BPfilters.append(CausalButter(8, 5, 50, data_rate, @)) # EEG 1
self.BPfilters.append(CausalButter(8, 5, 50, data_rate, @)) # EEG 2
self.BPfilters.append(CausalButter(8, 5, 50, data_rate, @)) # EEG 3
self.BPfilters.append(CausalButter(8, 5, 50, data_rate, @)) # EEG 4

# and the bandstop filters

self.BSfilters = []

for i in range(@,num_ADS_plots):
self.BSfilters.append(CausalButter(8, 55, 65, data_rate, 1))

# for heart rate measuring algorithm
self.heart_sig_arr =[]
self.heartbeat_ts = []
self.heartrate_avg = []

# initialize the UI
self.title = "Fascia Sensor Data"
self.initUI()

self.timer = QtCore.QTimer()
self.timer.timeout.connect(self.updateGUI)

# The ip of user's machine
self.ip = '10.0.0.74' #TODO make sure this matches intet in en@ in ifconfig
self.port_number = 8899

self.Data_receiver = BCI_Data_Receiver(self.ip, self.port_number, self.dataPlottingWidget)
self.Data_receiver.asyncReceiveData(self.dataReadyCallback)

initUI(self):
self.setWindowTitle(self.title)
self.setGeometry(100,100,1024,768)

hbox = QtWidgets.QHBoxLayout()
self.setLayout (hbox)

#Add the graph arrays

#Perpare the array
self.dataPlottingWidget = fc.floatingCurves(self.n_plots-self.start_idx+self.graph_fft, self.start_idx, self.FFT_CHANNEL)

hbox.addWidget(self.dataPlottingWidget)

#Add the button panel

self.button_panel = QtWidgets.QWidget(self)
self.button_panel_layout = QtWidgets.QVBoxLayout()
self.button_panel.setLayout(self.button_panel_layout)
hbox.addWidget (self.button_panel)

#Add all the buttons

self.ICA btn = QtWidgets.QPushButton("ICA")
self.record_btn = QtWidgets.QPushButton("Record")
self.filter_btn = QtWidgets.QPushButton("Filters")

self.button_panel_layout.addWidget(self.ICA_btn)
self.button_panel_layout.addWidget(self.record_btn)
self.button_panel_layout.addWidget(self.filter_btn)

#
#
#
#
#
#
#
#
#
#
#
#
#
#
# #Connect all button functions
# self.linkBtnFunctions()
self.show()

linkBtnFunctions(self):
self.record_btn.clicked.connect(self.onRecordBtnClicked)

dataReadyCallback(self, newData):
d = list()



temp = np.zeros(len(newData))
invalid_arr = newData[1];

# t = "Packet #: " + str(newData[i_CNT])
# self.dataPlottingWidget.PN.setText(t)

# # for recording purposes
# for i in range(@, self.start_idx):
# temp[i] = newData[i]

if self.graph_fft:
self.fft_thread = threading.Thread(target = self.fft_calc, args = (self.FFT_CHANNEL,) );
self.fft_thread.start()

for i in range(self.start_idx, self.n_plots):

#apply filters to newData

# temp[2+i] = newData[2+i]

# temp[2+i] = self.BPfilters[i].inputData([newData[2+i]])[@]

# temp[2+i] = self.BSfilters[i].inputData([temp[2+i]])[@]

if (1 »1 and i<1@):
temp[i] self.BPfilters[i-i_ADS].inputData([newData[i]])[@]
temp[i] self.BSfilters[i-i_ADS].inputData([temp[i]])[@]

else:
temp[i] = newData[i]

# temp[2+i] = self.HPfilters[i].inputData([convert_ADC_volts(newData[2+i])])[@]
# temp[2+i] = convert_ADC_volts(newData[2+i]);

# print(i)

d.append([temp[i]])

if ((invalid_arr>>i) & 1):
# print("invalid data at "+str(i))
continue

#For plotting

idx = i - self.start_idx

self.plotBufs[idx] = self.plotBufs[idx][1:]
self.plotBufs[idx] = np.append(self.plotBufs[idx],d[idx][@])

# calculate heart rate
# me: if it drops 400 counts in 5 samples -> heart beat
# if not ((invalid_arr >> 18) & 1):
try:
working_data, measures = hp.process(self.plotBufs[18], self.data_rate/10);
heart_rate = measures['bpm']
if not math.isnan(heart_rate):
print("heart rate: ", int(heart_rate)," bpm")
else:
print("hp nan")
except hp.exceptions.BadSignalWarning:
print("hp exception™)
pass

HEHHEHE RS

# below would probably be good if the data is invalid due to lack of connection or incorrect data, instead of
# the sampling rate issue where i am only sampling the PPG data once every 10 packets.
# if ((invalid_arr >> i_PPG) & 1):
# self.heart_sig_arr = []
# self.heartbeat_ts = []
# else:
if not ((invalid_arr >> i_PPG) & 1):
ppg_sig = newData[i_PPG]
1 = len(self.heart_sig_arr);
for i in range(min(1@, 1)):
if self.heart_sig_arr[1-1-i] - ppg_sig >= 100 and self.heart_sig_arr[1l-1-i] - ppg_sig < 700 and 1>20:
print("heart beat!",newData[i_TIM])
self.heartbeat_ts.append(newData[i_TIM])
# self.plotBufs[i_PPG - self.start_idx][-1] *=-1 #mark spot in graph where heartbeat detected
# calculate heart rate
if len(self.heartbeat_ts) > 1:
# delta_ts = time in ms difference between the current and most recent heart beat
delta_ts = self.heartbeat_ts[-1] - self.heartbeat_ts[len(self.heartbeat_ts)-2]
delta_sec = delta_ts / 1000
bpm = 1/(delta_sec/60)
print("local heart rate: "+str(int(bpm)))
self.heartrate_avg.append(bpm)
bpm = np.average(self.heartrate_avg)
print("heart rate:",int(bpm), "bpm, ",len(self.heartbeat_ts)," / ",delta_ts)
t = "Heart Rate: + str(int(bpm)) + " BPM"
self.dataPlottingWidget.HR.setText(t)
self.heart_sig_arr = []
break
self.heart_sig_arr.append(ppg_sig)
# trim arrays to max lengths
if len(self.heart_sig_arr) > 25:
self.heart_sig_arr = self.heart_sig_arr[1:]
if len(self.heartbeat_ts) > 100:
self.heartbeat_ts = self.heartbeat_ts[1:]
if len(self.heartrate_avg) > 100:
self.heartrate_avg = self.heartrate_avg[1:]
elif ((invalid_arr >> i_TIM) & 1):
print("no contact with ppg sensor")
self.heart_sig_arr = []
self.heartbeat_ts = []
self.heartrate_avg = []

print("invalid heart and temp data")
if(self.isRecording == True):

#save new data to the recordingBuf

self.recordingBuf.append(temp)
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def

self.moreData = True

def fft_calc(self, channel):
# while True:
# if self.moreData:
# self.moreData = False;
#FFT stuff here
# FFT_CHANNEL = 1;
# self.fft_lock.acquire()
channel_idx = i_ADS + channel - self.start_idx
# print(channel_idx)
bins = np.fft.rfft(self.plotBufs[channel_idx])
size = len(self.plotBufs[channel_idx])
# self.fft_lock.release()
bins = np.abs(bins)#[np.abs(v) for v in bins]
bins[@] = @ # first element is DC element
timestep = 1/self.data_rate
freq = np.fft.rfftfreq(self.PLOTWNDSIZE, timestep);
self.plotBufs[self.fft_idx] = bins,freq;
# print("fft freq", freq)
# print("fft bins", bins)
# sys.stdout.flush()
# print(len(bins), len(freq))

de

2

start(self):
self.timer.start(1)

de

2

updateGUI(self):
if self.moreData:
self.moreData = False
for i in range(self.n_plots-self.start_idx):
# print(i,type(self.plotBufs[i]),self.plotBufs[i])
self.dataPlottingWidget.updateCurve(i,self.plotBufs[i])
if self.graph_fft:
self.dataPlottingWidget.updateCurve(self.fft_idx,self.plotBufs[self.fft_idx][@],self.plotBufs[self.fft_idx][1])

de

2

keyPressEvent(self, e):

press "r" key to record the data

if e.isAutoRepeat():
return

if( e.key() == QtCore.Qt.Key_R and self.isRecording == False):
self.onRecordBtnClicked()

return super().keyPressEvent(e)

def keyReleaseEvent(self, e):

release "r" key to stop recording data

if e.isAutoRepeat():
return

if( e.key() == QtCore.Qt.Key_R and self.isRecording == True):
self.onRecordBtnClicked()

return super().keyReleaseEvent(e)

de

2

onRecordBtnClicked(self):

The callback function for the click event of record button
if(self.isRecording == False):

self.isRecording = True

#Start Record

self.record_btn.setText("stop")

#Push data to the buffer

#This step is done in the data ready callback

else:
self.record_btn.setText("Record")
self.isRecording = False
#0pen the save file dialog
name = QtWidgets.QFileDialog.getSaveFileName(self, "Save File", "@.csv", "CSV(*.csv)")
if(name[@] != ""):
df = pd.DataFrame(self.recordingBuf)
df.to_csv(name[@], encoding="utf-8', sep="\t", index=False)

#Clear the recording buffer
self.recordingBuf.clear()

de

2

onICABtnClicked(self):

Callback function for the click event of the ICA button

pass

convert_ADC_volts(raw_data, gain = 1): #gain was = 24
# LSB = (2 x VREF)/ Gain / (2"24 - 1)

vref = 4.5

fs = 2*vref / gain

converted_data = fs * raw_data / (2**(24)-1)

# print(raw_data, " -> ", converted_data)

return converted_data
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if __name__ "_main__":

# fs = 4.5/24

# print(convert_ADC_volts(0x000000) == 0)

# print(convert_ADC_volts(0x000001) == fs/(2**23 -1)) #+1

# print(convert_ADC_volts(@x7FFFFF) >= fs) #MAX POS NUM

# # print(convert_ADC_volts(@xFFFFFF) == -fs/(2**23 -1)) #-1

# print(convert_ADC_volts(-1) == -fs/(2**23 -1)) #-1

# # print(convert_ADC_volts(0x800000) <= -fs * 2%*23/(2%*23 -1)) #MAX NEG NUM
# print(convert_ADC_volts(-8388608) <= -fs * 2%%23/(2%*23 -1)) #MAX NEG NUM

app = QtWidgets.QApplication([])
ex = mainWindow()

ex.start()

sys.exit(app.exec_())
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APPENDIX D: CIRCUIT LAYOUT

Physiological Board

https://github.mit.edu/gbernal/Fascia nucleus/tree/master/Fascia p
hysioBoard/fascia physioBoardv0.1
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Main Board

ia nucleus/tree/master/Fascia m

mit.edu/gbernal/Fasc

//github.
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Face Interface Board

https://github.mit.edu/gbernal/Fascia nucleus/tree/master/Fascia f
aceInterface/faceInterfaceVv0.1l
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APPENDIX E: PCB DESIGN

Physiological Board

https://github.mit.edu/gbernal/Fascia nucleus/tree/master/Fascia p
hysioBoard/fascia physioBoardv0.1l

Main Board

https://github.mit.edu/gbernal/Fascia nucleus/tree/master/Fascia m
ainBoard/fasciaMainBoard V0.1

Face Interface Board

https://github.mit.edu/gbernal/Fascia nucleus/tree/master/Fascia f
aceInterface/facelInterfacev0.l
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