
1

FASCIA: A SLEEP MASK FOR

CONDUCTING SLEEP STUDIES

By W alaa A lkhanaizi

B.S. M.I.T., 2019

Submitted to the

Department of Electrical Engineering and Computer Science
in Partial Fulf i l lment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology

May 2020

The author hereby grants M.I.T. permission to reproduce and to distribute publicly
paper and electronic copies of this thesis document in whole and in part in any

medium now known or hereafter created.

Author: ___

Department of Electrical Engineering and Computer Science
10th May 2020

Certified by: __
Pattie Maes, Professor of Media Arts and Sciences, Thesis Supervisor	

10th May 2020
Accepted by: __

Katrina LaCurts, Chair, Master of Engineering Thesis Committee

2

FASCIA: A SLEEP MASK FOR CONDUCTING SLEEP STUDIES

By
Walaa Alkhanaizi

Submitted to the Department of Electrical Engineering and Computer Science on May
10, 2020 in Partial Fulf i l lment of the Requirements for the Degree of Master of

Engineering in Electrical Engineering and Computer Science

A B S T R A C T

In this thesis, I discuss the importance of s leep and therefore the study of s leep. I
highlight l imitations with existing methodologies to conduct s leep studies and collect
s leep data, and present a solution to overcome current l imitations by providing better
mechanisms for sensing during sleep in the wild.

This document detai ls the thought process of every aspect of design and development
of the progress made on the project so far. First, I present the motivation for the
project and provide general background. Second, I discuss the physiological signals
that s leep studies monitor and their relationship to sleep. I f the reader is familiar
with these physiological signals and how they are relevant to sleep studies, they
should feel free to skip that section. Next, I provide an overview of some existing
alternatives in the market and discuss why they do not satisfy the purpose of in-the-
wild sleep studies. Next, I detai l the design of the device, physical ly and on the
system level. Then, I go into a detai led description of the components of the device in
hardware, f irmware, and software. I include a brief description of some of the efforts
made in the code to make it easier to debug while developing. Lastly, I discuss what
work was completed, and what work remains to be done. I close with a ful l l ist of the
tasks remaining and some implementation concerns.

There is a glossary near the end of the document of terms and acronyms I use
throughout the thesis. Feel free to consult i t should any confusion arise regarding the
meaning of words used.

The document ends with a l ist of appendices starting with a complete usage guide for
the system in its current state. The other appendices include copies of al l the
f irmware and software code, and circuit and PCB designs.

Thesis Supervisor: Pattie Maes
Tit le: Professor of Media Arts and Sciences, 	

3

T A B L E O F C O N T E N T S

FASCIA: A SLEEP MASK FOR CONDUCTING SLEEP STUDIES ________________________ 1

ABSTRACT __ 2

TABLE OF CONTENTS ___ 3

LIST OF FIGURES ___ 6

INTRODUCTION ___ 7

BACKGROUND __ 8

SIGNALS OF INTEREST __ 8
EEG (ELECTROENCEPHALOGRAM) __ 8
EOG (ELECTROOCULOGRAPHY) ___ 8
EMG (ELECTROMYOGRAPHY) ___ 9
EDA (ELECTRODERMAL ACTIVITY) ___ 9
PPG (PHOTOPLETHYSMOGRAM) __ 9
TEMPERATURE ___ 10
MOTION SENSING ___ 10

EXISTING SOLUTIONS ___ 10
GETTING STARTED ___ 11

THE DEVICE: DESIGN __ 12

PHYSICAL DESIGN __ 12
SYSTEM DESIGN __ 14

HARDWARE ___ 15

EDA BLOCK __ 15
EEG/EMG/EOG SENSING __ 16
PPG/TEMPERATURE SENSOR ___ 18
IMU UNIT __ 18
COMMUNICATION AND NETWORKING __ 19
SECURITY ___ 19
MICROCONTROLLER (MCU) __ 19

FIRMWARE ___ 20

DATA ASPECTS ___ 20
DATA SIZE __ 20
DATA RATE ___ 20

4

DATA CONVERSION ___ 21
PHYSIOLOGICAL & SENSOR SIGNAL DATA ___________________________________ 21

ADS1299 DATA (EMG/EOG/EEG SIGNALS) ___________________________________ 21
EMG & EOG SIGNALS ___ 25
EEG SIGNAL __ 25
EDA DATA ___ 26
PPG / TEMPERATURE DATA __ 28
IMU DATA __ 30

WIFI PACKET SPECIFICATIONS ___ 31
WIFI PACKET ANATOMY __ 32
VALID ARRAY __ 33
WIFI PACKET SEND RATE ___ 33

SOFTWARE __ 34

DATA VISIBILITY ___ 34
GUI GRAPHS __ 35
GUI IMPROVEMENTS ___ 35

SIGNAL VISIBILITY __ 36
DIGITAL FILTERS: RESEARCH AND IMPLEMENTATION _______________________________ 36
FFT INTEGRATION __ 36
HEART RATE ALGORITHM ___ 37

IMPROVING DATA RATE __ 40
OPTIMIZING ___ 41
PROFILING __ 41

THE DATA: SUMMARY __ 44

DEVELOPMENT & DEBUGGING __ 45

FIRMWARE __ 45
ADS1299_SS_CC_WIFI ___ 45
FASCIA_COLLECT_SENSOR_DATA ___ 46

SOFTWARE __ 46
GUI __ 46
SIGNALS ___ 47

CLOSING __ 48

MOVING FORWARD ___ 49

NEXT STEPS ___ 49
FUTURE WORK ___ 49
NICE TO FINALIZE ___ 49
THINGS TO LOOK INTO ___ 49

5

GLOSSARY ___ 50

BIBLIOGRAPHY __ 51

APPENDICES ___ 54

APPENDIX A: HOW TO USE (A GUIDE) ___ 55

ABOUT __ 55
SET UP ___ 55

SOFTWARE ___ 55
HARDWARE ___ 55

CONFIGURATIONS ___ 56
USING THE SERIAL DEBUG INTERFACE ___ 57
CONFIGURING DATA RATE ___ 57

RUNNING/VISUALIZING THE CODE __ 58
FIRMWARE (.INO) ___ 58
DATA VISUALIZATION CODE (.PY) __ 58

PACKET BREAK-DOWN __ 59
IMU DATA CONVERSION __ 60

APPENDIX B: FIRMWARE __ 61

ADS1299.H __ 61
PIN_TABLE_DEFS.H ___ 67
WIFI_SETTINGS.H __ 68
FASCIA_COLLECT_SENSOR_DATA.INO ___ 68

APPENDIX C: PYTHON VISUALIZATION CODE __________________________________ 79

CAUSALBUTTER.PY __ 79
FLOATINGCURVES.PY ___ 80
BCI_DATA_RECEIVER.PY ___ 81
MAINGUI.PY __ 82

APPENDIX D: CIRCUIT LAYOUT __ 87

PHYSIOLOGICAL BOARD ___ 87
MAIN BOARD __ 88
FACE INTERFACE BOARD __ 90

APPENDIX E: PCB DESIGN ___ 91

PHYSIOLOGICAL BOARD ___ 91
MAIN BOARD __ 91
FACE INTERFACE BOARD __ 91

6

L I S T O F F I G U R E S

FIGURE 1: EEG SIGNAL (ALPHA) .. 8

FIGURE 2: EMG SIGNAL .. 9

FIGURE 3: PPG SIGNAL SHOWING HEART BEATS ... 9

FIGURE 4: FORM FACTOR OF THE SLEEP MASK DESIGNED FOR THIS PROJECT .. 12

FIGURE 5: EXPLODED VIEW DISSECTING THE COMPONENTS OF THE DEVICE ... 13

FIGURE 6: EARLY PROTOTYPE OF FASCIA, SHOWING THE MAIN PARTS ... 13

FIGURE 7: EDA SENSOR CIRCUIT, FROM [8] .. 15

FIGURE 8: THE DATA OUTPUT PACKET FROM THE ADS1299, DISSECTED, [9] ... 23

FIGURE 9: ADS1299 INTERNALLY GENERATED TEST SIGNAL UPON REQUIRED CONVERSIONS 24

FIGURE 10: TABLE DETAILING THE RANGES OF EACH EEG BAND, [13] .. 26

FIGURE 11: ABRIDGED EDA CIRCUIT- EDA PROBES. ADAPTED FROM BUT NOT IDENTICAL TO PART OF THE CIRCUIT IN [8] 27

FIGURE 12: SCR VS SCL COMPONENTS OF EDA, [14] ... 28

FIGURE 13: TABLE DETAILING THE COMPONENTS OF A DATA PACKET .. 32

FIGURE 14: THE CURRENT APPEARANCE OF THE GUI INTERFACE .. 34

FIGURE 15: HEARTRATE MEASURING ALGORITHM CODE ... 40

FIGURE 16: SAMPLE OUTPUT OF PROFILING THE PYTHON GUI .. 43

FIGURE 17: TABLE SUMMARIZING HOW SIGNALS IN THE SYSTEM ARE COLLECTED AND PROCESSED 44

7

I N T R O D U C T I O N

We know that i t is essential for humankind to get suff icient and regular s leep, not just
for a good rest, but also for a collection of crit ical cognitive developments in the
brain. Although we sti l l understand very l i t t le about sleep, we know that some of the
most important mental and physical processes in the human body happen during
sleep, such as memory consolidation and immune system forti f ication. Sleep studies
are imperative because they help doctors to diagnose patients with sleep disorders
that would otherwise be very dif f icult to f ind conclusive symptoms for. Sleep studies
require patients to come in and sleep in “sleep centers” which are equipped for
people to sleep while the brain and body of the subjects are monitored. The data
typical ly collected involves EEG sensing, eye movement, oxygen levels in the blood,
heart rate and breathing rate, snoring, and body movements [1].

Sleep studies have largely been viewed as a nuisance for the subjects being studied.
This is due to the major discomfort caused when the subject must come into the
research center or hospital and sleep there while their vitals and different
physiological signals are constantly monitored by bulky equipment. In order to detect
these signals, a variety of electrodes and sensors are distributed across the head and
the rest of the body, and secured using tape or glue, and therefore cause signif icant
discomfort. Centers assure patients that they’l l “sti l l have plenty of room to move and
get comfortable” and that they are being monitored by sleep study technologists who
“can help i f they need to use the bathroom” [1]. Sti l l , according to the National Sleep
Foundation, many people wonder how they wil l be able to sleep under such
conditions. Researchers believe this setup and procedure result in inaccurate or at
least inconsistent data as the subjects are not s leeping as they normally would- in the
comfort of their home, free of unfamiliar wires and electrodes probing their bodies.

That is where this project comes in. With the previous insights in mind, the project
aims to tackle those challenges by creating a comfortable and minimal “sleep mask”
which houses al l the required sensors and electrodes to record the vitals and signals
needed for s leep studies, in a compact and user-friendly format. The device takes the
form of a s leep mask, which consists of a f lexible printed circuit board with integrated
electrodes and sensors that are close to the skin, and two conventional PCBs to house
the components that perform the signal processing, data analysis, s ignal forwarding
and storage, farther away from the skin. The resulting mask can be taken home,
enabling sleep studies to be conducted “in the wild.”

BACKGROUND : SIGNALS OF INTEREST

8

B A C K G R O U N D

S I G N A L S O F I N T E R E S T

In order to conduct polysomnography (sleep studies), technologists typical ly place
sensors on the patient’s scalp, temples, chest, and legs, as well as a cl ip on the f inger,
al l of which are connected by wires to a computer. This is in preparation to monitor
the fol lowing signals: brain waves, eye movements, heart rate, breathing pattern,
blood oxygen level, body position, chest and abdominal movement, l imb movement,
and snoring [4].

The device we are building for the purpose of improving sleep studies aims to
integrate each of the fol lowing sensors, which detect the signals specif ied below:

E E G (E l e c t r o e n c e p h a l o g r a m)

FIGURE 1: EEG SIGNAL (ALPHA)

EEG is an electrophysiological detection mechanism to monitor electrical activity of
the brain and record brain wave patterns. Usually this sensor takes the form of
noninvasive electrodes (small metal surface connected with thin wire) contacting the
scalp, although versions of i t which pierce the skin also exist. EEG wave patterns are
well-studied and there are known patterns that healthy brains emit, so doctors can
observe abnormal patterns and study whether they are a cause for concern and what
they might entai l [5]. For our purposes, EEG can be used to monitor s leep stages and
cycles; whether the patient is in REM or NREM.

E O G (E l e c t r o o c u l o g r a p h y)

EOG is a physiological signal that detects and measures eye movements (through the
eyelid) by measuring the corneo-retinal distance between the front and back of the
eye. This is done by placing two electrodes on both sides of the eye, either the right
and left , or front and back, and measuring the potential dif ference between them,
which would vary as the eye moves [7]. For our purposes, this is used to detect what

BACKGROUND : SIGNALS OF INTEREST

9

stage of s leep the patient is in. REM is an acronym for rapid eye movement, so we can
know that the patient is in REM by detecting random and rapid eye movement.

E M G (E l e c t r o m y o g r a p h y)

FIGURE 2: EMG SIGNAL

EMG is performed to evaluate the healthiness of muscles and the associated motor
neurons (nerves that control those muscles). The motor neurons transmit signals to
the muscles that cause muscles to either contract or relax. The electrical
measurement of such a signal is cal led EMG. Monitoring and studying the EMG signal
can al low doctors to detect muscle and nerve disorders [6]. For our application, EMG
variance can be used to assess s leep behaviors in terms of muscle movements around
the body. Specif ical ly, cheek, forehead, and chin EMG signals are the ones we focus
on in our device.

E D A (E l e c t r o d e r m a l A c t i v i t y)

EDA is also known as GSR (galvanic skin response), and it represents skin
conductance which continuously varies in the human body. EDA is measured by using
two electrodes that make contact with the skin and measuring the resistance between
them. This rel ies on the discovery that the resistance of skin changes based on the
(even minute) activity of the sweat glands in the skin, which are controlled by the
sympathetic nervous system. EDA is a measure of psychological and physiological
arousal. For our application, this signal means we are able to detect the emotional
response and state of the patient.

P P G (P h o t o p l e t h y s m o g r a m)

FIGURE 3: PPG SIGNAL SHOWING HEART BEATS

BACKGROUND : EXISTING SOLUTIONS

10

PPG uses a type of sensor which is an optical ly detected plethysmogram, used to
measure the volume of blood going through the veins under the skin. This is often
done by shining a l ight on the skin and measuring variations in l ight absorption.
Because the volume of blood changes as the heart pumps it to the periphery, this
enables us to measure heart rate.

T e m p e r a t u r e

By measuring the temperature of the body, we are able to deduce the stage and depth
of s leep that the patient is in. Sleep stages are associated with temperature ranges; we
can observe drops and changes depending on the stage in the cycle.

M o t i o n s e n s i n g

Measuring the movements of the patients via Gyroscopes, magnetometers, or
accelerometers enables us to detect muscle spasms and whether the patient is tossing
and turning, which can be valuable data for doctors to be able to diagnose certain
sleep disorders.

E X I S T I N G S O L U T I O N S

The main challenges with conventional s leep studies are twofold: the patient’s
comfort, and the accuracy of the collected data, given the context in which the
patients s leep. There are three existing products in the market that try to tackle those
issues, that we are aware of.

First, a product cal led Neuroon Open, which is marketed as a s leep enhancing
wearable device. This is an IoT product whose sel l ing point is helping customers
improve the quality of their s leep through EEG monitoring and lucid dreaming
induction, as well as smart meditation sessions. This is achieved by al lowing the IoT
device to control the l ighting, music, and the temperature in the bedroom of the
customers, which the device adjusts in accordance with what the customer needs are
based on the sleep stage they are in [2]. This device is mainly aimed at helping an
individual s leep better by monitoring brain waves, and less at helping researchers
study sleep in order to diagnose patients with potential s leep disorders, and better
understand sleep in general. Therefore, the use-case for this product is l imited to
helping the customer sleep more soundly, and is thus much narrower than the goal of
this project.

Second, a product cal led Muse Headband. Muse monitors mental activity and uses i t
to produce “guiding” nature sounds to help the user reach a mental state of what they

BACKGROUND : GETTING STARTED

11

cal l a “focused calm.” Muse selects dif ferent sounds to represent dif ferent states of
mind: i f the subject is calm, i t plays peaceful weather sounds, and as the customer
starts to get more distracted or busy-minded, i t starts to play more stormy and loud
weather sounds to cue the user to focus their attention back to their meditation
routine. Muse is also mostly l imited to the use of EEG sensing to help guide users
through immersive meditation sessions. Some iterations of the product include PPG
sensors, as well as a gyroscope and accelerometers, although al l of these added
sensors are used to optimize the same functionality: helping the user to calm their
mind [3].

Third, a product cal led ZMax by Hypnodyne Corp. This product takes the form of an
elastic headband with a box that sits on the forehead housing al l the sensors and
electronics. It has two EEG channels, measures heartrate, skin temperature, l ight and
noise levels, and head position and movement. It comes with a range of software
suites and options, as well as add-on sensors to optionally monitor other signals.
ZMax seems to target a wide range of audiences including researchers as well as
consumers, attracting them with lucid-dreaming specif ic setups and tutorials [32].

All of these products roughly satisfy the form factor for this project (though ZMax is
on the bulkier side), but they lack sensing a some of the signals that this project aims
to encompass with a design that supports medical and scientif ic s leep research.

G E T T I N G S T A R T E D

The PhD Research Assistant that I am working with for this project with, Guil lermo
Bernal, had previously developed an AR/VR headset with most of the same sensors
and some powerful signal processing as the application required measuring more
signals and using them to manipulate other signals related to graphics. Starting from
that project, i t was decided that the form factor would definitely need to be reduced,
which was not an issue since this project did not require any of the optics-related
components from the previous project.

THE DEVICE: DESIGN : PHYSICAL DESIGN

12

T H E D E V I C E : D E S I G N

To overcome the shortcomings of existing products for the purpose of s leep research,
we made sure to design our product so as to maximize both the quantity and quality of
sensor signals, as well as user comfort (which helps produce more accurate data).

P H Y S I C A L D E S I G N

FIGURE 4: FORM FACTOR OF THE SLEEP MASK DESIGNED FOR THIS PROJECT

The physical design of the device was decided with the most minimal footprint to be
the least intrusive i t possibly can, so as to enable the user to be as comfortable as
possible, and the data to be as accurate and noise and error-free as possible. This
resulted in the selection of the sleep mask as the form of the device- a garment used
only while people sleep for the purpose of aiding in sleep. For the sensors requiring
electrodes, a f lexible PCB design was used to maximize user comfort. Other
considerations included placement of components other than electrodes: those were
init ial ly going to be in one or two larger conventional PCBs on the forehead, but they
were recently changed to be two equally sized conventional PCBs in the eye area
where foam padding and fabric wil l cover them.

Work was done to ensure the non-flexible PCBs in the device were appropriate. The
init ial design involved placing a somewhat large PCB on the forehead, connected to a
smaller PCB above it . In order to maximize comfort, the form factor of each PCB was

THE DEVICE: DESIGN : PHYSICAL DESIGN

13

FIGURE 5: EXPLODED VIEW DISSECTING THE COMPONENTS OF THE DEVICE

reduced such that we can f i t each PCB in one eye-patch of the sleep mask. This was
done by revising the PCB design and, while checking for errors and correcting them,
also removing unnecessary connections or unused wires.

As shown in f igures 5 & 6, the emptiness inside the rim of the mask, which is the
f lexible PCB, houses the two conventional PCBs, with additional padding on both
sides.

FIGURE 6: EARLY PROTOTYPE OF FASCIA, SHOWING THE MAIN PARTS

THE DEVICE: DESIGN : SYSTEM DESIGN

14

S Y S T E M D E S I G N

The device was designed with free and open-source software ethics in mind, therefore
al l the designs and information are publicly avai lable for anyone to benefit from. This
also guided many design decisions regarding hardware and software selection: the
hardware design was developed in Eagle and the f irmware was developed in the
Arduino language and IDE, and the visualization software is written in Python.

Additionally, due to the importance of privacy of information, the goal is to eventually
have the device encrypt the data before sending it over the network to keep it safe
from any sniffers.

Speed and power eff iciency are essential to the project as the device is going to be
wirelessly worn throughout an entire night. This means we have a relatively small
battery that we must conserve to last as the system’s power source al l night. This led
to some decisions regarding data rates and burst data packaging, as well as using
interrupts versus poll ing the integrated circuit chips (ICs) that comprise the device.
The data rate is as fast as possible to al low the processing code to perform its tasks
without interruption, while not being so fast that we receive too much data that is
redundant or unnecessary. To ensure these delicate t iming constraints, we only use
one device’s interrupt feature and service i t with a routine which reads, converts, and
stores the data, so that the other devices do not interrupt while this is being serviced
or while the code is processing something else, to prevent messier handling and less
predictable behaviors and t imings.

HARDWARE : EDA BLOCK

15

H A R D W A R E

The hardware architecture consists of a main processing unit and wireless
communication, a couple of physiological sensing units, and a f lexible PCB that works
as an electrode array. This section discusses the blocks, design decisions and
progress that were made for each of them.

E D A B l o c k

To detect and monitor EDA, we began by implementing, incorporating, and testing a
new circuit for EDA measurements which promises simpler signal processing for
feature extraction from the data while also offering simple circuitry. This new method
was detai led in the paper “Electrodermal Activity Sensor for Classif ication of
Calm/Distress Condition” published by Universidad de Casti l la-La Mancha in Spain
[8]. The circuit for this EDA sensor, as cited in the paper, looks as in Figure 7.

The circuit consists of three distinct stages. The f irst stage is an operational amplif ier
(op-amp) used to isolate a voltage divider, creating what the paper cal ls a “virtual
ground.” This signal, labeled as VDD/2 in f igure 1, is the reference voltage for the
next part of the circuit, which is the sensor. The sensor stage, cal led “current
source,” is measuring the EDA signal using a current source by connecting two
electrodes to the skin, which are connected to the negative input and the output of
the op-amp, enabling the op-amp to generate a current which is injected into the skin
and fed-back into the negative input terminal. R r e f is used to l imit the current going
through the skin of the wearer. The output signal of this stage is referenced as V o u t .
The next and last stage of the circuit is an elaborate low-pass f i l ter to clean up the
signal of the many potential sources of noise.

FIGURE 7: EDA SENSOR CIRCUIT, FROM [8]

HARDWARE : EEG/EMG/EOG SENSING

16

This circuit was f irst built and tested on a breadboard, and then integrated into an
existing init ial prototype PCB, and tested in that context as well . This testing was
important because it required ensuring that the circuit worked under our use
conditions which included isolated power and ground rai ls to minimize noise and
interference from other parts of the PCB dealing with other signals. To perform the
isolation, an opto-isolation chip (HCNR200-300E) was integrated, which uses LEDs
and l ight sensors to replicate the voltage on the LED side of the circuit without
al lowing any of the varying ground and power levels (which are isolated for the EDA
circuit, and therefore not necessari ly equal to the common power and ground) to
interfere with i t by measuring the optical brightness of that LED and using that
sensed value.

Another aspect of testing that took place was optimizing the value for the virtual
ground and inspecting the behavior of values lower and higher than VDD/2. This is to
optimize accuracy because the f inal signal is going to be read by an ADC (analog to
digital converter) on the microcontroller, which has set resolution and input range.
By examining and tweaking the f inal output range, focusing on the extreme values, in
volts (given what we expect the range of inputs of human skin resistances to be), we
can make sure that out output range uti l izes the ADC range maximally, enabling us
maximum precision by mapping each ADC bit to a smaller voltage unit, without
saturating the ADC. I tr ied out dif ferent values for the voltage divider and calculated
their resolution to optimize the signal read by the microcontroller (to perform the
signal processing on). The software to process this signal and classify the results is
yet to be done.

E E G / E M G / E O G S e n s i n g

All three signals of EEG, EMG, and EOG were collected in the same hardware unit
using a device from Texas Instruments which is specif ical ly made for collecting and
measuring biological signals, the ADS1299. This is a very powerful device (and the
most costly component in our setup) that enables the measurement of eight dif ferent
biopotential s ignal channels simultaneously, and apply independent gains (between 1
and 24 as fol lows: 1 , 2, 4, 6, 8, 12, 24) and different modes of operation on each of
them. For example, i t a l lows each channel to have both a posit ive (P) and a negative
(N) lead, and it a lso al lows you to use only one channel lead, and use a “bias” probe as
a reference for the signal, which can be used for as many channels as the user desires.
Additionally, i t implements a Right-Leg-Drive (RLD or DRL, for Driven-Right-Leg)
circuit which senses what is cal led “common-mode interference,” which is noise in
the body that could interfere with the signals of interest, and uses an op-amp to

HARDWARE : EEG/EMG/EOG SENSING

17

subtract those noisy signals from the bio-signals of interest. To enable this feature
for a specif ic channel, you must connect SRB2 for that channel. Even more usefully,
the chip has a very customizable internal circuit to detect whether the probes and
leads on the human’s body are loose or completely off , given false or inaccurate bio-
signals. This feature is referred to as “lead-off detection.” This device also offers two
modes of communication: both I2C and SPI; we use SPI in this project. The device
also offers a “continuous conversion” mode which pulls an interrupt pin low when the
data is ready, and a “single shot” mode in which you poll the device for data; we are
using the single shot mode due to some wiring issues in the f irst version, but plan on
switching to continuous conversion mode in the future versions.

We are using the eight channels of the ADS1299 as fol lows: one EOG channel, three
EMG channels, and four EEG channels. Each EOG and EMG channel uses two leads,
both the positive and negative probes of a channel, which are connected to two sides
of a muscle to measure the potential across i t . Using this setup, which is referred to
as a sequential montage, the ADS1299 measures the potential dif ference across the
pair of electrodes which should be placed across a muscle; one on each end. We use a
gain of 2 or 4 for each of these channels as they are fair ly visible already due to their
fair ly large magnitudes. For EEG, we only use one channel probe (either the positive
or the negative), and connect the other one to the bias probe, measuring the EEG
signal with respect to a single reference electrode. This setup is cal led a referential
montage, and it helps el iminate noise and clean up the EEG signals which are much
smaller in magnitude compared to other biopotential s ignals. Additionally, we use
higher gains of 12 or 24 for these electrodes due to the miniscule size of the EEG
signals. We also connect these channels to SRB2 to enable the RLD circuit to remove
as much noise as possible from these sensit ive and minute signals. To add even more
accuracy, we use two types of electrodes for EEG detection: passive (such as the ones
used for EMG and EOG), and active, which has built- in circuitry to actively magnify
the signal as i t is sensed. For the active electrode channels, we can use a smaller gain
of as low as 1 .

To begin testing this set up, we f irst took advantage of a built- in functionality in the
ADS1299: generating test signals. This is another feature of the device where it
internally generates square waves at selectable frequency and amplitude and feeds
that signal into the channels that are enabled to be tested. This is a great feature to
test the init ial ization routine of the chip such as wiring, power levels, register
settings, and data out package reception.

The next step in the testing process for this device was to inject external signals into
each of the channels and be able to receive the correct data. For this, we used a

HARDWARE : PPG/TEMPERATURE SENSOR

18

function generator to produce arbitrary waveforms, and used a simple attenuation
circuit to make the signal even smaller (since we want to test the abil i ty of the device
to detect miniscule signals), and tested each of the channels’ abil i ty to transfer those
arbitrary waveforms (sine, sawtooth, etc.) at diminishing amplitudes (1-0.01 volts) and
varying frequencies (10-1000 Hz).

P P G / T e m p e r a t u r e S e n s o r

For our PPG sensor, we use the MAX30105 which is a particle and proximity sensor
with PPG and temperature sensing. This device is placed in i ts own mini PCB board
and connected to the rest of the system using a 4-pin JST connector to connect the
I2C and power l ines to the board. This separation from the main and even secondary
PCBs al lows the temperature sensor to be more accurate in representing the
temperature of the patient, s ince it is not skewed by any nearby hardware. It Also
enables the PPG sensor to have reduced noise data as i t uses a red LED and infrared
sensor to measure the pulses in the veins, and by having it l ive in a separate unit (i ts
own mini PCB) it better ensures a more secure connection to the patient’s skin,
acting as a probe on their forehead. To test this unit, i t was only necessary to collect
the data and graph it , to see i f the heart beats are visible in the graph. The PPG sensor
also has a data ready interrupt pin that is not in use currently.

I M U U n i t

The IMU being used for this project is the MPU6050, which is a three-axis
accelerometer and gyroscope (and no magnetometer) which communicates through
I2C. Because of i ts lack of magnetometer, and because it was wired improperly (sadly
due to a funky Eagle l ibrary) in the f irst version of the PCB design, there were some
considerations of replacing the MPU6050 for a complete triaxial one with an
accelerometer, gyroscope and magnetometer. Upon doing some research and reading
of the l i terature in the topic, we determined that the accelerometer and gyroscope
should be enough for the kinds of analyses we aim to do with our device for s leep
studies. This sensor also has a data ready interrupt pin that we are not currently
using. To test this device’s wiring (and how we revealed the wiring error in the f irst
PCB design), we attempt to establish a connection with the device via I2C and take a
look at the data we receive. In the case of the incorrect wiring, the device was never
found, because it was improperly wired and thus disconnected from power and
ground, and the data and clock l ines were al l jumbled up.

HARDWARE : COMMUNICATION AND NETWORKING

19

C o m m u n i c a t i o n a n d N e t w o r k i n g

To ensure the project meets state-of-the-art performance, the device need not only
collect data and process i t , but i t a lso has to export i t and send it to a server or device
which collects and stores al l the sensor data. We incorporated a Bluetooth/WiFi chip
to keep our options open in terms of which method of communication we prefer to use
based on which could work better and be faster or more reliable. We use the ublox
NINA-W102 which is a chip that is rated safe to be in close proximity to the human
body, which our device wil l be.

S e c u r i t y

Due to the nature of the project which involves personal data, security is a serious
and important consideration. To this end, we integrated a special ized security chip
into the design of the device. We selected the ATECC508A which enables us to
encrypt any data using I2C before sending or sharing it with the world outside of the
device’s PCB. Although this part is important, i t is not a priority in terms of
development and testing of the device at i ts current state, therefore there has been no
testing done or software written for this cryptographic device yet.

M i c r o c o n t r o l l e r (M C U)

The device has a single microcontroller, in which al l the sensor and signal data is
col lected and processed before being sent over the network. The MCU in the device is
the ARM M0, a 32-bit ATSAMD21G which communicates with the WiFi/Bluetooth
module, NINA-W102 using SPI. The selection of the microcontroller was due to the
design decision to make the whole project, hardware and software, open-source and
accessible, without increasing the price too much: Arduino is an open-source and
affordable resource, and offers a familiar IDE and programming interface for many
people.

FIRMWARE : DATA ASPECTS

20

F I R M W A R E

Each of the types of data that are collected in hardware had to be processed and
cleaned up differently in order to be viewable and interpretable. In this section, I wil l
detai l these procedures that are in place to receive and process the data from the
sensors to make it more visualizable.

But before I do so, we must discuss a few important aspects of data collection that are
at play in this system: data size, data rate, and data conversion.

D A T A A S P E C T S

D a t a S i z e

It is important to take into consideration the size of our data in bits or bytes for two
main reasons. The f irst one is that each device could give data in dif ferent sizes and
formats, which could affect their precision and how we can interpret them and
correctly read them. The second is that our data size affects the total s ize of the data
packets that we send over the WiFi network. The Arduino WiFiNINA library seems to
have a l imit to the size of the packet i t can send as one packet without splitt ing it , and
the size of each of our data points plays an important role in the creation and packing
of this data packet.

D a t a R a t e

Data rate is an essential variable in our system. Clearly, i t matters because we aim to
make our device fast and eff icient. More importantly, however, is i ts effect on the data
which we collect, which is twofold. First ly, for each type of signal we collect, there is
a range of frequencies which that biological signal tends to remain within. For us to
be able to capture that signal accurately, our data collection rate must be at least
twice the highest frequency (or the bandwidth) of the signal we are interested in
collecting, in theory. For example, i f s ignal S has a nominal bandwidth of f , but i ts
frequency can go up to fmax , then the theoretical minimum rate with which we can
sample signal S would be 2´fmax. This is cal led the Nyquist Rate, and it specif ies
this minimum value as a prerequisite for being able to reproduce the signal exactly
identical ly to the original signal, constituting al ias-free sampling. Secondly, we apply
digital f i l ters to clean up and remove unwanted noise in our collected signals. The
way these digital f i l ters work depends on the data rate at which the data was collected,
in order to al low some frequencies to pass the f i l ter (within the bandpass, BP), and
some frequencies blocked out of the f i l ter (within the band stop, BS), as desired.

FIRMWARE : PHYSIOLOGICAL & SENSOR SIGNAL DATA

21

These frequencies and the accuracy of the points at which the f i l ter al lows and stops
al lowing data to pass through depends heavily on the accuracy and steadiness of our
data rate.

D a t a C o n v e r s i o n

Most of the data collected from the sensors and hardware blocks is received through
SPI or I2C, for which it is more eff icient i f i t is packed in ADC counts or non-
standard sizes of data. Therefore, upon receiving the data, some work has to be done
in order to make sure that the data makes sense and is usable and readable for our
f inal use cases. This could include conversions from ADC counts to real, metric units,
or simply sign-extending the data to a standard size, or even both.

P H Y S I O L O G I C A L & S E N S O R S I G N A L D A T A

In this section, I wil l discuss how each aspect of data was handled for each type of
signal received from hardware blocks.

A D S 1 2 9 9 D a t a (E M G / E O G / E E G S i g n a l s)

The ADS1299 is the single device which gives us the most data in our device, eight
data points to be precise. Moreover, the kind of data that we collect from it is the
most sensit ive in terms of t iming and frequency of collection. This is because we use
it to sense EEG, EMG, and EOG signals, which require sensit ive circuitry in order to
detect and measure. Having a sensit ive circuit natural ly exposes our target signals to
electromagnetic noise from the environment and even from other parts of the circuit.
For this reason, al l of our signals from the ADS1299 need to be f i l tered. The most
prominent electromagnetic environmental noise is the power l ine AC frequency, of 60
Hz in the U.S.A, and 50 Hz in most other countries. Therefore, the f irst f i l ter we run
the ADS1299 data through is a digital notch (band stop) f i l ter at 60 Hz. The second
f i l ter we run each of the signals through is a band pass f i l ter to al low in only the range
of frequencies in which that signal l ives into the f i l ter, discarding al l other
frequencies from our f inal signal. Because of the sensit ivity of the signals and their
frequency ranges, and because we run them through two different digital f i l ters which
rely on a constant and accurate data collection rate, we al low the ADS1299 to lead and
determine the frequency of data collection for al l the other devices and signals in the
system of the device.

FIRMWARE : PHYSIOLOGICAL & SENSOR SIGNAL DATA

22

D at a R a t e

The data rate of the ADS1299 is programmable, anywhere between 250 samples per
second (SPS), and 16,000 SPS. There are two main criteria for selecting the data rate
of the ADS1299: the frequency range for each of the signals i t col lects, and the
frequency ranges for the other signals to be collected in other hardware blocks in the
system. First ly, the frequency of the signals collected in the ADS1299. As mentioned
in the Data Rate section above, the theoretical minimum sampling rate for a signal is
double the maximum frequency for that signal. In practice, however, we found that
going a bit below that minimum sti l l works quite well . This is l ikely because the
theoretical value is t ied to the abil i ty to recreate an identical s ignal to the input
signal. Since we are not concerned with re-forming the same signals, we have found
that the features and shapes of the signals can be faithfully collected by using a data
rate lower than the Nyquist Rate. Secondly, the data rate of the ADS1299 depends on
the frequencies of the other signals to be collected in the system using other IC
devices. This is because I made the decision to use the ADS1299 as the data rate
leader, for aforementioned reasons. Therefore, the other signals and their frequency
ranges have to be taken into account when making decisions regarding the ADS1299
data rate. Because of these restrictions, the acceptable data ranges for the ADS1299
go from a minimum of 500 SPS and up.

The data rate that is programmed into the ADS1299 determines the rate at which it
samples, converts, and signals that the data is ready to be read, or sends the data over,
depending on the settings for receiving the data. As previously mentioned in the
Hardware section, the ADS1299 can be set either to continuous conversion mode or
single shot mode. In continuous conversion mode, the data ready pin would be pulled
low at the specif ied rate as the data gets sampled and converted. In the single shot
mode, the device would continue to sample and convert at the given rate, but would
not incur interrupts or pull the data ready pin low unti l polled for the data, in which
case it would pull the data ready pin low and proceed to send the requested data.

D at a C o n v e r s io n

Each data packet we receive from the device includes two main components. First is
information on which leads might be off of the patient’s body (a.k.a. lead-off status)
This section of the packet would only carry meaningful information i f the device
configured to keep track of the leads and report the status of their contact with the
patient’s body. Following the lead-off status is the converted data from al l eight input
channels of the device. The size of the status portion, in addition to al l the channel
data combined is 216 Bits (54 Bytes), or 24 Bits (three Bytes) for each of the 9 data

FIRMWARE : PHYSIOLOGICAL & SENSOR SIGNAL DATA

23

points. The ADS1299 sends each of these data points MSB (most signif icant bit) f irst,
and LSB (least signif icant bit) last, as shown in the f igure below. The data for each of
the channels is sent in the form of ADC counts, which need to be converted to volts.

To convert from ADS counts to volts, we f irst need to determine the value of one ADC
count Bit in Volts. That turns out to be a simple ratio: the ful l-scale range of volts,
divided by the ful l-scale range of bits. Since the data is given in 24 bits, that makes
the range of bits equal to 2 2 4 . As to the range in Volts, the maximum voltage we can
measure is fed to the IC, V R E F . There is one more variable, however. The gain of each
channel is adjustable, which l imits the original scale of voltage to V R E F /Gain, on a per
channel basis. Final ly, because the voltage can range from +V R E F to -V R E F , the ful l-
scale range in Volts is actual ly 2´(V R E F /Gain). The result is then the ratio =
(2´(V R E F /Gain) Volts) /(2 2 4 Bits); that is the value of one LSB (or one Bit). This
means that to convert the received ADC counts value to volts, we simply multiply the
received value by the ratio we just derived, and get the voltage sensed at that channel,
given that we know our V R E F and the gain we used for that specif ic channel.

FIGURE 8: THE DATA OUTPUT PACKET FROM THE ADS1299, DISSECTED, [9]

Now, the data conversion story is not quite over yet. The voltage is encoded in 24 bits
of what’s known as binary two’s complement, which is an algorithm for representing
positive and negative numbers in binary format. This is actual ly the format most
computers and programming languages use and understand, except for one important
detai l : the data type. Most computers and programming languages only use data types
whose size is a power of two: two, four, eight, sixteen, thirty-two, and sixty-four Bits
of size. However, the data we receive from this device is 24 Bits, three Bytes. This
means we have to sign-extend the data to a standard size, of which the closest one is
four Bytes, or 32 Bits. In order to explain that, I ’ l l f irst brief ly explain how binary
two’s complement encoding works.

In Two’s Complement, the MSB encodes whether the number is negative. I f the MSB
is set, meaning it ’s a one, then the number that is represented is negative. I f i t is not
set, or cleared, meaning it ’s a zero, then the number represented is posit ive. Each set
bit, or one, at a specif ic index in the binary representation corresponds to the
addition of the value 2bit_index , including the MSB, which always corresponds to the
addition of the negative of that value. For example: 0b01 is the largest posit ive
number that can be represented with two-bit two’s complement: just one, and 0b10 is

FIRMWARE : PHYSIOLOGICAL & SENSOR SIGNAL DATA

24

the largest negative number that can be represented in the same system, negative two.
Only two more numbers can be represented in between: 0b00 for zero, and 0b11 for
negative one. As you can see, Two’s Complement is always asymmetric- enabling the
representation of one additional number in the negative domain than in the positive
domain.

To sign-extend a number is to represent the same number in binary two’s complement
in more bits than the original representation. In our case, we want to sign extend a
value from 24 to 32 Bits, adding 8 Bits, or a whole Byte. The simplest way to do that is
by copying the MSB from the original representation and f i l l ing the additional bits in
the new representation, on the MSB side of the number, with the same value. More
concretely, i f the MSB is zero, we know the number is posit ive, so we can duplicate
the MSB of zero over eight more t imes at the MSB side of the number, producing an
unchanged positive number, just padded with more zeros. On the f l ip side, i f we have
a negative number, with an MSB of one. This turns out to be sl ightly more diff icult to
explain, but when you duplicate that one over the most signif icant Byte of a 32 Bit
value, you wind up taking the value of the original number as though it was a direct
representation and not a two’s complement value, and adding the values
corresponding to the f irst seven Bits added, and subtracting the value corresponding
to the MSB (eighth Bit) added, which is the largest one. This preserves i ts negative
sign and value (you can prove it to yourself by doing some examples!).

There is no current Arduino l ibrary for the ADS1299, so I had to build a lot of the
code from scratch using the elaborate (and very often confusing) datasheet. In order
to test the ADS1299 register settings, ADC counts to Volts conversion, and sign-
extension algorithm, I set up the internal test signal generation feature and graphed
the results. The resulting square-wave graph is shown in the f igure below, which
passes through zero, showing both positive and negative numbers, at the expected
amplitude and frequency (yippee!).

FIGURE 9: ADS1299 INTERNALLY GENERATED TEST SIGNAL UPON REQUIRED CONVERSIONS

Because there is currently no Arduino Library for the ADS1299, I have had to
develop, debug, and test f irmware from scratch to do everything from the simplest
reading and setting registers, to understanding the register settings that would work

FIRMWARE : PHYSIOLOGICAL & SENSOR SIGNAL DATA

25

for each use case and application. A more detai led description of these development
efforts is in a section to fol low, “Development & Debugging.”

Now that we have discussed the device in general, and al l the common processes
pertaining to al l the data collected from it, we can move on to specif ics, depending on
the signal type. In the next two sub-sections, I wil l discuss the specif ic biological
signals collected in the ADS1299, and the difference between them in terms of the
programming of the f irmware of the device.

E M G & E O G S i g n a l s

The range of frequencies in which EMG activity l ives is wide and uncertain; i t starts at
5 or 10 Hz, and ends anywhere between 250 and 500 Hz, but even up to 3000 in some
cases [10]. The bandwidth of the EOG signal ranges between DC-100 Hz [11]

To program the ADS1299 to detect disconnected probes (activate lead-off detection),
we f irst select the power type to use: AC or DC. We use DC for simplicity, s ince AC
has a frequency which could, based on the frequency, interfere with our signals of
interest. Then, we decide on the comparator thresholds. Lead off detection works by
injecting a current or voltage, and monitoring how much of i t reaches the other side;
i f there is no connection to the other side, then the two ends hit the rai ls, power and
ground [12]. The comparator thresholds set the l imit of how close the channel leads
have to get to the rai ls in order to be considered “off”. This setup is for al l channels.

Then, we set the bits corresponding to the channels for EMG and EOG in
LOFF_SENSEP and LOFF_SENSN , indicating that the lead-off for these channels
should be detected for both ends of the probes: posit ive and negative.

E E G S i g n a l

This signal has multiple types: Alpha, Beta, Delta, Theta, Gamma, and Mu, each of
which l ives in i ts own range of frequencies. There is a tremendous amount of
variabil i ty and uncertainty in the range of frequencies in each band, the f igure below
depicts the typical ranges based on the number of publications pertaining to the
signal type, and the extremes of those ranges [13].

For EEG channels, lead-off is a bit more complex since we only use the negative
terminal of each channel for the signal. The return path for the electrical s ignals is
through the bias probs, which the ADS1299 does check for, i f you set i t to. Currently,
I have not managed to get lead-off detection to work for EEG signals, but the current
set up also involves f l ipping the lead-off input signal through the channel terminals,
entering at the N terminal instead of the P (which we are not using).

FIRMWARE : PHYSIOLOGICAL & SENSOR SIGNAL DATA

26

 % o f
P u b l i c a t i o n s

T y p i c a l r a n g e
(H z)

M i n i m u m s t a r t
v a l u e (H z)

M a x i m u m e n d
v a l u e (H z)

D e l t a 70 1.3-3.5 0 6

T h e t a 84 4-7.5 2.5 8

A l p h a 85 8-13 6 14

B e t a 80 12.5-30 12 50

G a m m a 18 30-40 20 100

FIGURE 10: TABLE DETAILING THE RANGES OF EACH EEG BAND, [13]

E D A D a t a

The EDA data is col lected through a built- in Arduino ADC, on demand, meaning, the
value at the Analog pin which corresponds to the EDA data can be sampled and read at
any point in t ime, and the Arduino bootloader would read the Analog signal at that
pin, then feed it to an ADC, produce a digital value corresponding to the original
analog voltage, and return it to the f irmware code which cal led the analog-pin-read
function.

D at a R at e

Because the EDA signals tend to have lower frequencies (ranging 1-10 Hz) [14], and
because the data is fair ly erratic and noisy, the best processing for this data is to
smooth it via averaging every set number of samples. Given the frequency with which
we collect the entire set of signals in the packet, we can afford to average every ten
EDA data samples to produce one mean value which we actual ly use and send in our
data packet. Performing this averaging technique also increases the effective
resolution of our ADC: when you take multiple integers (e.g. 2 and 3) and average
them, you could get a non-integer average (2+3 = 5, 5/2 = 2.5), adding a decimal
point of precision to the value that is going to be used in the rest of the system and
analysis. This technique is referred to as oversampling and averaging [15].
Oversampling because we take more samples than we use, and we average a certain
chunk of those samples to produce data at a lower sample.

The default setting for the Arduino ADC (set in i ts bootloader), is 10-bits of
resolution, and the “prescaler” value, which determines the speed of the conversion
(speed equals clock speed divided by the pre-scaler value) is set to a default of 512.
When I ran into issues with speed of data processing in the f irmware, I realized that
the default was that s low value, and changed the prescaler value to 16, multiplying the
speed of the conversion by 32. I a lso changed the resolution of the ADS from ten bits
to twelve, increasing the precision of our ADC conversions and thereby our

FIRMWARE : PHYSIOLOGICAL & SENSOR SIGNAL DATA

27

measurements of the EDA signal. Both of these changes are done by modifying the
ADC->CTRLB.reg variable in the Arduino SAMD bootloader in the l ine:
ADC->CTRLB.reg = ADC_CTRLB_PRESCALER_DIV16 | ADC_CTRLB_RESSEL_12BIT.

Even sti l l , the EDA measurement was sti l l s low compared to the ADS1299 f irmware
code. That fact, in addition to that the EDA signal is already at s lower frequencies
than the other signals, lead me to decide to only sample the EDA every once in a
while. I experimented with dif ferent frequencies, and landed on sampling the EDA
signal at every ten samples of the ADS1299. Both of the above techniques combined
(assuming a negligible conversion delay after changing the prescaler to 16), in
addition to this last note, would have our EDA signal being sampled at
f E D A = f A D S 1 2 9 9 /10/10 = f A D S 1 2 9 9 /100. The f irst division by ten is for the sampling
every ten ADS1299 samples, and the second one is from oversampling and averaging.

D at a C o n v e r s io n

The 12-bit ADC count value we get then needs to be converted to a useful unit. The
most popular way to measure EDA is by measuring the skin conductance (G) in micro-
Siemens (µS). The relationship between resistance (R s k i n) in Ohms (W), which is the
most direct value we can get by using the voltage level measured and encoded by the
ADC, and skin conductance (G s k i n) is s imply reciprocal. So, the conversion is as
fol lows: G s k i n = 1/R s k i n [16]. Now that we know how to get conductance from
resistance, we can talk about how to get resistance from ADC counts.

R s k i n is the resistance of the human as
measured between the two EDA probes (plus,
and minus) placed on the human body, as
shown in the f igure to the left . We can
measure this value by f irst converting the
ADC counts to voltage. This is the voltage
measured at the output of the op-amp, or V o u t .
We also know that, by the ideal op-amp
assumption, the voltage at the two terminals
must be equal. This means that the voltage
across R r e f is known and is equal to
V v i r t u a l g r o u n d . We can use this information to
f ind the current, i , across R r e f , which is the

same current going through R s k i n . Now we know the voltage across R s k i n , V s k i n = ADC
counts (bits) ´ 3.3 (volts) /212 (bits), and the current across i t , i = V v i r t u a l

FIGURE 11: ABRIDGED EDA CIRCUIT- EDA

PROBES. ADAPTED FROM BUT NOT

IDENTICAL TO PART OF THE CIRCUIT IN [8]

FIRMWARE : PHYSIOLOGICAL & SENSOR SIGNAL DATA

28

g r o u n d / R r e f . We can use those two pieces of information to calculate R s k i n = V s k i n /i ,
and from there take the reciprocal to f ind the skin conductance.

The EDA signal is comprised of two main
components: skin conductance response
(SCR), and skin conductance level
(SCL). The SCR can be considered the
micro changes in the EDA signal, the
smaller and faster disturbances and
waveforms that appear superimposed on
top of a more constant “level,” which is
the SCL. So the SCL is the component
which can be considered as the macro
view of the EDA signal without paying
much mind to the smaller changes in
what, from a zoomed-out view, seems
l ike a smooth l ine. SCL is the slower

component and one which can resemble the DC (value of offset) component of the
signal. SCR levels can reveal information on the subject’s emotional arousal, whereas
SCL is more general ly an indication of the sympathetic nervous system’s arousal [17].
A depiction of the distinction between SCL and SCR in the EDA signal can be seen in
the f igure to the left . This analysis and separation of SCL and SCR is yet to be
performed in our system and our device.

P P G / T e m p e r a t u r e D a t a

The MAX30105 sensor l ives on its own hard PCB connected to the f lexible PCB in
order to optimize the quality of the data we receive from it. This sensor is equipped
with an interrupt pin which we do not currently uti l ize (due to the decision that the
ADS1299 would lead the data rate and determine the frequency of collection of the
other signals), and two I2C l ines which we use to communicate with the device.

There is a SparkFun Arduino l ibrary for the MAX30105, so instead of writ ing my own
API to interface with i t from scratch, we decided to go with the existing l ibrary. The
l ibrary is cal led SparkFun MAX3010x Pulse and Proximity Sensor Library and can be
used by importing MAX30105.h [18]. First, we must create and init ial ize the class,
using the l ine: MAX30105 particleSensor_name . The l ibrary al lows us to set the
sampling rate, the data averaging rate, an even the power consumption level. We can
use the l ibrary’s API to set up the device f irst using the function cal l :
particleSensor_name.setup(powerLevel, sampleAverage, ledMode,

FIGURE 12: SCR VS SCL COMPONENTS OF EDA, [14]

FIRMWARE : PHYSIOLOGICAL & SENSOR SIGNAL DATA

29

sampleRate, pulseWidth, adcRange) . Then, we can retrieve both PPG and
temperature data from the device, using the fol lowing two function cal ls:
particleSensor_name.getIR() , and particleSensor_name.
readTemperature() , respectively.

D at a R at e

Because I noticed a clear and drastic s low-down in the data collection rate of the
device (even when I setup the MAX30105 to have a high data rate), I had to investigate
the source of this s low-down. I revised the code repeatedly and narrowed down the
source of the issue to be the l ibrary implementation. When I took a deeper look at the
l ibrary code, I realize that both the temperature and IR retrieval functions include
some sort of (long) wait or delay. The readTemperature() function includes a
register-write to request data before a 100 mil l isecond wait as the device awaits the
response for i ts request. The getIR() function includes an up to 250 mil l isecond
wait for new data to appear at the IR sense output FIFO, where it just repeatedly
checks for the avai labil i ty of new data.

So, I modified the l ibrary by f irst removing each of the delays in both of the functions
and taking a look at the data they were returning. Both of the functions were
returning that there was no data avai lable more than f i f ty percent of the t ime. Because
of this, I adjusted the wait t ime to a middle-ground compromise value and observed
that many of the data points were actual ly avai lable. At this point, I decided to make
the functions more performant based on the use-case of the consumer code, so I
changed the function signatures. For the readTemperature() function, I added a
requestTemperature() function that performs the requesting of the temperature
reading with no wait, and modified readTemperature() to simply check the
avai labil i ty of a temperature reading without waiting. For the getIR() function, I
modified it to take as input the number of mil l iseconds the consumer wants to wait for
data to be avai lable, getIR(wait_ms) . Then, in the f irmware code, I f irst cal l
requestTemperature() , then getIR(1) (which happens to be a very good value
and we can sti l l see the heart beats and waveforms with great accuracy), and f inal ly I
cal l readTemperature() , indirectly inserting a wait in the temperature collection
routine.

D at a C o n v e r s io n

The Sparkfun l ibrary collects the PPG data and returns i t as a 32 Bit integer (even
though according to the range of values that ADC range can be set to, i t cannot be
larger than a 16 Bit integer). The PPG data units do not matter as what we care about.
From that signal is the shape of i t , in order to be able to detect heart beats and

FIRMWARE : PHYSIOLOGICAL & SENSOR SIGNAL DATA

30

calculate heart rates, and therefore reveal any irregularit ies in the cardiovascular
system of the patient. One important aspect of the measurement of PPG is that having
very good contact with the device is essential in order to get accurate data. Luckily,
the MAX30105 is a particle and proximity sensor as well , and once the f inger (or
hand, or, in our case, forehead) loses good contact with the sensor, i t automatical ly
switches to proximity sensing instead, which produces numbers, returned by the
getIR() function which are multiple orders of magnitude smaller than the PPG data.
This way, we can detect i f the patient has good contact with the sensor, and therefore
know if our data is accurate.

The Temperature received using the l ibrary function getTemperature() already
has appropriate units, degrees Celsius, received as a Float type (four Bytes). So, no
processing needs to be done to this data, as the l ibrary takes care of the conversions.

Temperature change is a very slow process, and heart beat signals (ranging between
60-100 BPM for average resting heart rate in humans [19]) is a relatively s low signal
compared to the other vitals and biological signals being sensed in our system, we do
not need to sample these signals as frequently as we do the others. For this reason, we
only sample this data one out of every 10 t imes we sample the ADS1299 data, resulting
in an effective data rate which is a tenth of the frequency of the ADS1299, for both the
PPG and the temperature sensor. The effective data rate for these signals, in practice,
is much less regular and more erratic, and often slower. This is because of the
reduced wait t imes in the API functions, and the frequency of avai labil i ty of data (or
lack thereof). This does not affect the quality of our data, as we are able to monitor
the avai labil i ty and discard the data returned when it wasn’t avai lable, but i t does
affect our practical sampling rate for these signals.

I M U D a t a

There are numerous Arduino l ibraries for the MPU6050, which is the IMU unit we
decided to go with for our device. The l ibrary we chose was the MPU6050 by the
Electronic Cats and can be used by importing MPU6050.h [20]. Before using the
l ibrary, we must f irst create the class using the l ine: MPU6050 accelgyro , and
init ial ize i t using: accelgyro.initialize() . We can optionally adjust other
parameters including data rate and data value ranges using the appropriate API
functions, but the default settings work well for us, so we do not uti l ize those
functions. The l ibrary has dif ferent API functions to retrieve each of the acceleration
and gyroscope values in each of the three axes. But i t a lso has the handy function to
get al l of them at the same time with one function cal l :
accelgyro.getMotion6(ax, ay, az, gx, gy, gz) .

FIRMWARE : WIFI PACKET SPECIFICATIONS

31

D at a C o n v e r s io n

Each of the data points returned by the l ibrary is a 16-bit two’s complement value raw
ADC count value. In order to get any useful units out of this value once fetched, a
conversion must take place. For the acceleration, the default settings have a ful l-scale
range of ±2g (4g), and since the ADC has a resolution of 16 bits. The conversion to
acceleration units is then aval´4g/216= aval´g/16384 (m/s2), where a is the
acceleration and g is the earth’s gravity. For the gyroscope data, the default settings
have a ful l-scale range of ±250°/s (500°/s). The conversion to gyroscope units is
then gval´500°/s/216=gval/131 (°/s) [21].

These conversions convert a 16 Bit integer value to a 32 Bit f loat value, which
presents a qualm. It ’s a tradeoff between having standard units and a bigger WiFi
packet, versus having a (potential ly marginal ly) faster WiFi packet. For now, I have
elaborate comments explaining this conversion in detai l in the code, and commented-
out code in place to perform the conversions, because I do not believe we currently
need the IMU data in general to be in any specif ic units. No matter the units, we are
able to detect the motion, the type of movement, and the axis, without needing the
metric units. Sti l l , I left the code in there in case that situation changes and a
conversion to metric units becomes necessary.

D at a R at e

Movement and motion, especial ly during sleep, are fair ly s low processes, especial ly
compared to the EEG, EMG, and EOG waves collected on the ADS1299. For this
reason, this is yet another signal that can be sampled and collected at a fraction of the
frequency as the ADS1299. Specif ical ly, l ike the others, i t is sampled at an effective
rate of a tenth of the frequency of the ADS1299 sampling rate.

W I F I P A C K E T S P E C I F I C A T I O N S

There is an Arduino l ibrary for using the WiFi/Bluetooth module in our device, the
ublox NINA-W102, which is used by including WiFiNINA.h [22]. Because of this
existence of this l ibrary, the project was developed to send data over WiFi, for
simplicity and speed of development. However, the prospect of using Bluetooth for
communications and data transfer is st i l l v iable and possibly desirable. For now, let’s
discuss the detai ls of the data sent from the device as a WiFi packet over to the
software for storage and further processing.

FIRMWARE : WIFI PACKET SPECIFICATIONS

32

W i F i P a c k e t A n a t o m y

All the aforementioned data and signals needs to be combined into the WiFi packet to
be sent over to the software. A ful l data packet has four EEG data points, three EMG
data points, one EOG data point, three acceleration data points, three gyroscope data
points, one EDA data point, one heart data point, one temperature data point, one
serial number, one val id array, and one t ime stamp, for a total of 20 data points, in
the order shown in the table below. The number and sizes of al l the elements total to
68 Bytes for the whole packet.

 FIGURE 13: TABLE DETAILING THE COMPONENTS OF A DATA PACKET

It is worth noting here that the IMU data, al l s ix data points, are currently only two
Bytes each because I do not perform the conversion as I deemed it currently
unnecessary. However, i f the conversion is to be performed and the converted data to
be packed into the data packet instead, each of the IMU data points would be four
Bytes instead of two, which would increase the total s ize of the packet by 12 Bytes,
making it 80 Bytes instead of 68.

Sequentia l order Signal Size (Bytes) Byte at which i t s tarts

1 Serial packet number 4 0
2 Valid array 4 4
3 EMG 4 8
4 EMG 4 12
5 EOG 4 16
6 EMG 4 20
7 EEG 4 24
8 EEG 4 28
9 EEG 4 32
10 EEG 4 36
11 Acceleration x 2 40
12 Acceleration y 2 42
13 Acceleration z 2 44
14 Gyroscope x 2 46
15 Gyroscope y 2 48
16 Gyroscope z 2 50
17 EDA 4 52
18 Temperature 4 56
19 PPG 4 60
20 Time stamp 4 64

FIRMWARE : WIFI PACKET SPECIFICATIONS

33

V a l i d A r r a y

Because not al l the data is col lected at the same (highest) rate, there are some packets
where the only val id data we send is the ADS1299 data, as well as the obvious serial
packet number, and t ime stamps. Some data is sent less frequently and is therefore
invalid much of the t ime as i t was not collected. Some data is truly invalid because of a
system issue, such as an ADS1299 having a lead-off detected, or the MAX30105
revealing a lack of a secure connection to the patient. For these reasons, I ’ve
introduced a component in the packet cal led the val id array, which can be viewed as
an array of bits. It has one bit mapped to each item in the packet. The way it works is
this: i f the bit which maps to a specif ic element is set (is one), then that data point is
not val id. Call ing it a val id array might be a misnomer then, since what i t real ly is
instead is an invalid array. I opted not to cal l i t an “invalid array” in order to combat
the potential confusion of the data which the element contains being invalid (as
though it is the array which is invalid i tself) . This array can be used as described to
recognize which data points are val id and should be kept, processed, stored, graphed,
f i l tered, etc., and which data was not collected in this packet and should be ignored.

Every t ime a new packet is created, the f ield for the val id array is init ial ized to zero.
As the signals are received and inserted into the packet, or not, this array is updated.
I f a certain signal is not to be collected at this t ime and this packet wil l not be
updated with it , then the val id array is updated with a one set in the index
corresponding to that data point, marking that signal invalid in this packet. Similarly,
i f a sensor reports that the probe for one or more of i ts inputs no longer has a rel iable
connection to the patient’s body, then the signal received from that device for that
data point is discarded, and the val id array is updated to ref lect that by setting the bit
corresponding to that device’s specif ic channel to one.

W i F i P a c k e t S e n d R a t e

In order to increase the system’s eff iciency, we collect multiple packets of data and
group them together into one WiFi packet to send over to the software. This method
enables us to amortize the cost of preparing, sending, and receiving a WiFi packet
through the network over the number of data packets i t contains. This aggregate WiFi
packet, in our current system, contains 22 data packets. This was a number that is
maximized, given the number of data points in our data packet, and therefore a data
packet’s size in bytes, to the size l imit of the WiFi packet that the WiFiNINA library
appears to be able to support. So, this number was bigger when our data packet size
was smaller. (There doesn’t seem to be any documentation the issue of WiFi packets
having a maximum send size—this is just a problem I observed repeatedly).

SOFTWARE : DATA VISIBILITY

34

S O F T W A R E

Building the software for the system had more than the obvious purpose. Surely, we
must provide an interface with which the data collected with the device can be
examined, but we also needed a playground, a place where we could f irst ly, and most
importantly, see the data, but also manipulate the data, play around with f i l tering it ,
zoom in and out, and make sure we can see, visibly, al l the signals of interest. For
simplicity and breadth of options, we selected Python to be the language of
development for the software. The init ial version of this GUI code was created by
Guil lermo Bernal and Junqing Qiao, and when I joined the project for my MEng, I
started modifying and expanding on it—building off of i t as the project grew and more
progress was made.

D A T A V I S I B I L I T Y

In order to confirm that our system and device were both working end-to-end, we had
to verify that we could see the data from hardware input, through f irmware, to
software output. To this end, we used an arbitrary function generator to create
waveforms as inputs to the ADS1299 and tried to observe and monitor them on the
software side.

FIGURE 14: THE CURRENT APPEARANCE OF THE GUI INTERFACE

SOFTWARE : DATA VISIBILITY

35

G U I G r a p h s

For the GUI, we are using the Python l ibraries pyqtgraph and pyQt5 , whose graphs
offer an interactive interface for moving and zooming. The graphs automatical ly snap
to a widget grid, and automatical ly detect gestures to zoom in and out of each graph,
as well as move the plot around within the plot window.

During earl ier stage debugging, I had the serial count of the packet graphed,
observing and monitoring the slope of the l ine in that graph. Because the serial
number was supposed to be sequential , the slope and l inearity of the graph should not
change so long as the zoom and window size remained constant. Using this technique,
I was able to observe perfect l ines in earl ier stages of the development of the
software. After I included al l the sensor data from the system in the data packet, and
developed some software algorithms for debugging and analyzing data, however, I
noticed that breaks in the l ine started appearing every once in a while, indicating that
the existence of missing packets: there were some packets being dropped, or getting
lost in some other way. This, I discovered later, was due to ineff iciencies and slow-
downs in the software programming.

Now, since I am done with that part of the development, I skip graphing the serial
count, and also the val id array and t ime stamp, so that I can focus on viewing and
observing the actual data in the graphs. However, I ’ve programmed this such that
skipping the graphs of those data points is an option, in case I need to revisit those
graphs for further debugging while continuing the development, or someone using
this code in the future needs to do so.

G U I I m p r o v e m e n t s

In order to improve readabil ity and observabil i ty, I added t it les to each graph, which
became necessary as the size of the data packet grew larger while I integrated more of
the sensors in the system. I also modified the t i t les to include the units in which each
signal is graphed.

In order to better observe the data rate, which I previously printed to the Python
console, I instead included it as a textbox on the GUI window, more visible and
monitorable, updating with the newest data rate as i t is calculated.

SOFTWARE : SIGNAL VISIBILITY

36

S I G N A L V I S I B I L I T Y

Next, we had to make sure that not only can we see the correct data, but that we can
detect and see the signals of interest clearly and reliably.

D i g i t a l F i l t e r s : R e s e a r c h a n d I m p l e m e n t a t i o n

Since the ADS1299 device is delicate and very sensit ive to noise, in order to start
visualizing the signals from it, we must f irst apply some digital f i l ters to remove parts
of the signal which we know are caused by environmental noise factors. The biggest
and most prominent one is the power l ine frequency, at 60 Hz, needs to be extracted
from every ADS1299 channel. Therefore, a notch f i l ter, band stopping between 55 and
65 Hz, is applied to each of the eight ADS1299 channels. This is the f irst stage of
f i l tering the biological signal data.

The second stage of f i l tering the ADS1299 biological signal data is applying a digital
band pass f i l ter which f i l ters in the bandwidth for the signal of interest. This is
crucial as we might select a range that isn’t what might be strict ly, or even classical ly
for that matter, considered the typical range for the signal of interest. This is simply
because certain bands within that signal type might be more interesting to us given
our application is specif ic to sleep studies, and is not dif f icult to change on the f ly
later i f we do decide we need a more inclusive range.

To select the target bandwidth for each of the biological signals of interest, we
reviewed some l i terature around these signals and their applicabil i ty to sleep studies
and consulted a gold-standard ADS1299 development board/kit. Based on this
research, the numbers we sett led on are as fol lows: bandpass 10-500 Hz for both EMG
and EOG signals, and bandpass 5-50 Hz for EEG signals.

F F T I n t e g r a t i o n

Some of the ADS1299 data is easier to see than others. For example: EMG is a very
strong signal whose magnitude dominates most sources of noise. Conversely, EEG
signals have very miniscule amplitudes and are therefore more sensitive and prone to
distortion and interference by most sources of noise. This makes most EEG signals
very dif f icult to detect and/or observe. The easiest EEG band to observe is alpha
waves, which should be visible when a person closes their eyes. As we were testing
signal visibi l i ty, this waveform proved even more diff icult to observe than we
expected. We could not tel l whether the data was there. We didn’t know if we were
zoomed in too much or too far zoomed out, or in which axis: t ime or amplitude. The
signal could have very well been there, but since is i t miniscule, and possibly very

SOFTWARE : SIGNAL VISIBILITY

37

brief, we just missed it . At the same time, i t is a lso possible that we are not seeing
anything because something is wrong with our system or device’s setup, and there
real ly is no signal being captured there to be seen.

As a solution to this issue, since we know the target bandwidth of the signal, and we
might even know more specif ical ly the sub-bandwidth for the specif ic band of the
signal we are trying to observe, we decided it would be nice i f we could view the data
in the frequency instead of t ime domain. The Fast Fourier Transform (FFT) al lows us
to do just that! It takes as input the waveform data, and extracts the frequencies of the
(possibly infinitely, in the case of a square wave) many sine waves that comprise i t .
Based on the amplitude and how often a certain frequency occurs, the FFT algorithm
produces a value mapped to each frequency bin. By looking at the output of an FFT,
you can see how much of each frequency bin your waveform data is made up of. This
al lows us to see the most dominant frequency in a given data set, which is powerful.
But i f we produce this plot in real-t ime as we receive and graph the data i tself , i t a lso
importantly enables us to observe the change in the amount of each frequency our
signal contains. This is the key to enabling us to detect biological signals without
real ly seeing them.

The Python implementation of the FFT algorithm I am using is the one in the numpy

l ibrary. Because the FFT algorithm is a computationally intensive algorithm (even i f
eff iciently implemented), I decided to create a separate thread just for the purpose of
performing the FFT calculations. This is important because it improves the reaction
t ime of the FFT, enabling us to observe the changes in frequency presence and
patterns in the signal more directly and easi ly. Once this was al l done, we tested it by
once again trying to see an EEG signal. The easiest one to see is alpha, we know that
we expect to see a “spike” in the FFT plot between around 6 and 10 Hz at the t ime we
would expect the alpha wave to appear. When a person closes their eye, the brain
generates alpha signals. So, when the subject closed their eyes, surely enough, the
FFT graph in the range 6-10 Hz grew a considerable spike, which slowly (because the
data is graphed in big batches, and so new data moves out of frame fair ly s lowly) faded
away after the person opened their eyes again. Hooreye!

H e a r t R a t e A l g o r i t h m

In order for the PPG data to be more digestible for our purposes, we must process i t
to calculate the heart rate of the patient, which is a very important measure of their
wellbeing and state of rest. I expected there might be a myriad of Python l ibraries
which would do exactly what I needed: take raw PPG data and f ind the heartrate by
f inding al l the heartbeats and when they occur to calculate the heartrate. After some

SOFTWARE : SIGNAL VISIBILITY

38

research I realized that the options are much more l imited than I thought. The only
l ibrary I could f ind was cal led heartpy [23], and after a few days’ worth of futi le
attempts at using it with the PPG sensor data from our device, I decided to stop trying
and give up on using this l ibrary.

I realized I had to develop my own real-t ime heartrate measuring algorithm. To get
started with this task, I took some time to observe and understand the signal, and the
shape of each heartbeat as i t appears in the f inal GUI graph. I took note of i ts
amplitude and its width, and the variabil i ty of each of those things. Since heartrate is
a rate, or speed, measured in number of beats per minute, the goal is to count the
beats, and measure t ime correctly. These are the most important building blocks of
the algorithm: f irst is detecting heartbeats accurately and reliably (every heartbeat is
detected, and nothing which isn’t a heartbeat is mis-detected as one), and second is
the accuracy of the t iming of the heartbeat. For this reason, I determined it was
necessary to add the t imestamp field in each packet. With these things in mind, I
started developing the algorithm, trying as much as possible to keep it parametrized
and adjustable, in order to be able to f ine tune it well enough to be applicable and
generalizable to a broader range of people’s resting heartrates. The current (and for
now, f inal) version of the algorithm is depicted in the f igure below.

There are three important arrays in the algorithm: heart_sig_arr which keeps al l
the l ive PPG signals we are currently looking at and trying to detect a heartbeat in,
heartbeat_ts which saves the t imestamps of the 100 most recent detected
heartbeats, and heartrate_avg , which stores the 100 most recent “local” measured
heartrates, in order to have al l the elements be averaged before sharing any of the
local data. In Line 1, I am checking whether the PPG data is val id—if i t is, we can
proceed with the heartrate measuring algorithm, otherwise, since there is no new data
to process and incorporate, we do not make any adjustments in the arrays. This is
unless (as checked in l ine 29) we detect that the PPG signal is invalid due to a lost
connection to the human (and not just a lack of sampling). I f the PPG signal is invalid
because the sensor is not connected to the patient (indicated by setting the t ime
stamp bit in the val id array, while the one for PPG is also set), then we reset al l the
arrays, since we want to be able to start from scratch when a secure connection is re-
established to the patient.

I f there is val id new PPG data, the real processing happens. First ly, we take a look at
up to the ten most recent PPG signal values received and try to detect a large enough
drop in magnitude. Since the heartbeats in PPG signal are roughly triangular shaped,
there is a fair ly quick and drastic drop (negative edge) at the end of each beat, and
that is what we are trying to check for in l ines 2-5. I f we do not detect a heartbeat

SOFTWARE : SIGNAL VISIBILITY

39

after checking the relevant most recent PPG signal values, then al l we do is append
the newest PPG signal to the heart_sig_arr array, and trim al l the arrays to the
predetermined maximum size, l ines 21-28. I f there is a heartbeat detected, however,
we have some work to do. We are now studying the code l ines starting at l ine 7. Once
we detect a heartbeat, we store the t imestamp of the packet from which the most
recent PPG signal came in the heartbeat_ts array, l ine 7. Then, i f we have multiple
(more than one) heartbeats detected (l ine 10), we calculate two heartrates: a local and
an average. The local heartrate is calculated by taking the currently detected
heartbeat (the last t imestamp in the array), and the one before it (the second to last in
the array), and differencing them, resulting in the t ime in mil l iseconds it took for one
heartbeat (l ine 12). We take the mil l isecond difference and convert i t to seconds (l ine
13), then to minutes, and dividing one by that (l ine 14) resulting in the local heartrate
in BPM (beats per minute). Once we have the local heartrate, we can append it to the
heartrate_avg array (l ine 15) and move on to calculating the average heartrate. The
average heartrate is simply calculated by taking the average of al l the local heartrates
stored in the heartrate_avg array (l ine 16). This is the heartrate value we use, test,
and display in the GUI window.

To test this algorithm, I started by ensuring that the beats are al l correctly detected,
and nothing extraneous was misinterpreted as a beat. I used this method to f ine tune
the numbers in l ine 5: the minimum and maximum drops in magnitude for a beat to be
considered detected, and the minimum number of PPG samples collected since the
previous detected heartbeat for i t to be viable t iming for another heartbeat. To do this
test, I graphed a l ine superimposed on the PPG signal graph to indicate to me that
this specif ic spot in the signal is where a heartbeat was detected (l ine 8). Once I was
fair ly certain that only and al l legitimate heartbeats were being detected by the
thresholds, I moved on to test the actual heartrate. To test the accuracy of the
measured heartrate, I s imply compared the result to the displayed heartrate on a smart
watch, which, after some time needed for convergence, fair ly consistently produced
values within about 5 BPM of the smart watch. I did the development by myself , so I
did these tests with myself and three other people to make sure it was not too specif ic
or overfitted to me and my body.

SOFTWARE : IMPROVING DATA RATE

40

FIGURE 15: HEARTRATE MEASURING ALGORITHM CODE

I M P R O V I N G D A T A R A T E

While developing the software, I noticed that the rate at which the data packets were
received and processed was very irregular and erratic. There were glitches and
hiccups in the graphing of the plots. As I mentioned previously, I a lso observed some
dips in the packet serial count graph, indicating missing or dropped packets. I did
some investigations to narrow down the source of the issue and found that doing less
in the Python software al lowed it to receive and service the new packets more quickly.
I realized, therefore, that there is some optimization work that needs to be done in
the python scripts in order to improve its eff iciency.

SOFTWARE : IMPROVING DATA RATE

41

O p t i m i z i n g

To get started on making eff iciency improvements in the software code, I started by
just going through it and making any adjustments with potential that I can think of.
This included removing some avoidable branches (i f/else statements), decreasing
computation t ime when possible, and reducing the number of function cal ls so as not
to overwhelm the software stack.

Because the f irst version of the GUI software was not written by me, there were sti l l
some parts of the code which I didn’t have familiarity with because I simply didn’t
have a reason to review or understand them previously. The f irst confusion I had was
when I noticed a forever waiting loop in the main program loop: while True:
time.sleep(1) . When I deleted this, nothing changed in the performance of the
program. This led me to wonder what i t is in the program that updates the graphs with
the new data. I discovered that the graphs are updated using a t imer which cal ls the
update plots function, which use updated arrays with the new data prepared by the
dataReadyCallback() function cal led when a new WiFi packet is received as each
data packet is extracted from it. This t imer was original ly set to go off every 30
mil l iseconds (at a frequency of 33 Hz), which is s low compared to our data rates and
graph data array updating speeds (the absolute minimum we use, and only for
debugging purposes, is 250 Hz, but we general ly use 1000 Hz). So I changed the
t imer to go off instead at every mil l isecond, increasing the graph updating speed to
1000 Hz. To optimize this even further, I added a variable to indicate whether new
data has been processed and the data arrays have been updated since the last graph
update: newData . The way it works is simple: Every t ime the
dataReadyCallback() function readies a new batch of data in the arrays to update
the graphs, i t sets the newData variable to True, and every t ime the t imer goes off ,
and the graph update function runs, i t f irst checks i f newData is True . I f i t is, i t sets
i t to False before updating the graphs. I f i t is False, then this function doesn’t do
anything. This saves t ime that could have been wasted re-graphing the plots when
there is no new data, and therefore no reason to plot the graph again.

Another optimization done in the software is running the FFT analysis algorithm in
its own thread, so as not to hog machine t ime and slow down the graphing and
processing of the data in other plots.

P r o f i l i n g

Profi l ing is a tool for analyzing the performance of a program. It is the dynamic
analysis which measures the execution t ime in every nested part and each function of
the program and reports i t back after the termination of that program.

SOFTWARE : IMPROVING DATA RATE

42

Some modifications had to be made to the software code in order to enable i t to be
profi led. For example, the software program is meant to run indefinitely, receiving
WiFi packets over the network from the device as long as they are being sent. This
strategy does not work i f I want to profi le the program— the program must terminate
in order to get any profi l ing stats. To achieve this, I came up with a way for the
program to reach a termination condition: collecting a certain number of data
packets. I implemented this by introducing a variable for the number of desired data
packets to be received and graphed before the program halts execution and using a
running count of the number of packets the system has received so far to compare it
to the set threshold. I f the program reaches that point, i t terminates al l processes and
closes al l windows. If the program is to be run normally without a l imit to the number
of data packets received, that variable threshold must simply be set to math.inf .

Once the program is set to automatical ly terminate, i t is ready to be profi led. A
Python program can be profi led by running the fol lowing l ine in the terminal window:
python -m cProfile -s cumulative path/to/python/file/to_profile.py
[] . The output of this looks l ike in the f igure below. ncalls refers to the number of
cal ls to that function/line. tottime is the total amount of t ime spent in that
function/line. percall is ratio tottime/ncalls resulting in the t ime spent at each cal l
of the function/line. cumtime is the cumulative t ime spent in this function/line and
al l the function cal ls that happen within it , nested. This output is sorted by
cumulative t ime (using the -s cumulative sett ing). This can be used to observe
which functions take longer than expected and f ind where the bottleneck of the
program could l ie.

In the case of the Python GUI program, as shown in the f igure below, the functions
that take the most t ime to execute are almost entirely graphing related functions such
as updateCurve , setData , addPoints , updateSpots , etc. This is also due to the
sheer number of t imes they are cal led, which means that even miniscule improvements
in eff iciency could make a dif ference i f the function in which they exist is cal led
enough number of t imes. Because of this, the efforts were focused on making
optimizations in the graphing code which in the GUI code (even though the functions
which appear in the profi l ing output here are mostly l ibrary graphing implementation
functions). Another investigation I conducted was using different graph types offered
by the l ibrary, wondering i f one of them was more eff iciently implemented than the
others. I compared using scatterPlotItem() , plotDataItem() , and
plotCurveItem() , and even though at f irst i t seemed l ike one of them was more

SOFTWARE : IMPROVING DATA RATE

43

sl ightly performant, I realized after running a few trials that i t is just due to the
randomness in execution and within a margin of inaccuracy.

FIGURE 16: SAMPLE OUTPUT OF PROFILING THE PYTHON GUI

44

T H E D A T A : S U M M A R Y

FIGURE 17: TABLE SUMMARIZING HOW SIGNALS IN THE SYSTEM ARE COLLECTED AND PROCESSED

Tem
p

PPG

IM
U

 G

IM
U

 A

ED
A

EO
G

EM
G

EEG

Signal

B
ody tem

perature

H
eart signal

gyroscope

acceleration

S kin resistance

Eye m
ovem

ent

M
uscle w

ave

B
rain w

ave

Brief D
escription

M
A

X
30105

M
A

X
30105

M
PU

6050

M
PU

6050

A
rduino A

D
C

A
D

S1299

A
D

S1299

A
D

S1299

H
ardw

are

1 1

3 axes

3 axes

1

1 channel

3 chann els

4 channels

N
um

ber

f
l
o
a
t

i
n
t

i
n
t

i
n
t

f
l
o
a
t

f
l
o
a
t

f
l
o
a
t

f
l
o
a
t

D
ata

type

4 B
ytes

4 B
ytes

2 B
ytes each

= 6 B
ytes

2 B
ytes each

= 6 B
ytes

4 B
ytes

4 B
ytes

4 B
ytes each

= 12 B
y tes

4 B
ytes each

= 16 B
ytes

D
ata size

A
rduino Library converts

N
o conversion

N
ot perform

ed:

value / 131

N
ot perform

ed:

value ´
9.81 / 16384

A
D

C
 counts ´

3.3´
R
ref / (2

12´
V
virtua lg nd)

Sign_Extend(2 ×	VREF
Channel_Gain × 224

)

Process of conversion

°
C

N
/A

°
/ s

m
/s

2

O
hm

s

volts

volts

volts

units

18

19

16

15

14

13

12

11

17

5 6 4 3

10

9 8 7

idx packe t

56

60

50

48

46

44

42

40

52

16

20

12

8

36

32

28

24

Byte

N
o t filtered ; can be sm

oothed

H
eartrate m

easur ing

algorithm

N
o filtering at the m

om
ent.

D
ata s m

oothing algorithm
s

could be app lied.

O
versam

plin g and averaging

B
andstop at 60 H

z, and

B
andpass 10 -5 00 H

z

B
andstop at 60 H

z, and

B
andpass 5- 50 H

z

S oftw
are filter

!! " 	 fA
D

S1299

!!"" fA
D

S1299

Data rate is programmable by setting the ADS1299’s data rate

in the firmware, fADS1299

feffective

DEVELOPMENT & DEBUGGING : FIRMWARE

45

D E V E L O P M E N T & D E B U G G I N G

In order to debug the system smoothly and eff iciently as I developed the f irmware
(and, eventually, the software), I started by focusing on the device which needed the
most f irmware development work: the ADS1299. Currently, there is no public Arduino
l ibrary that exists for this device. The ADS1299 is a complex device which has many
different options for dif ferent settings and configurations. For this reason, I started
off by creating, developing, and building and expanding on a script which acted as a
l ibrary to handle setting up, communicating with, and changing the configurations of
the ADS1299.

In the beginning of testing, the development and investigations were not specif ic to
the Fascia project. As I mentioned in the Background section, this project builds off
of and is developed alongside the AR/VR headset project, and so I wrote the l ibrary
program to be able to handle both (and multiple versions of) board types for both
projects.

F I R M W A R E

A D S 1 2 9 9 _ S S _ C C _ W i F i

This was the f irst set of i terations to develop f irmware to interface with, set up, and
change the configurations of the ADS1299 [24]. At this point, setting up the device
was a big black box that had to be revealed and understood. In this version of the
f irmware was the f irst successful ADS1299 internal test signal generation signal set
up. This f irmware tested both continuous conversion mode and single shot mode,
enabling the discovery of hardware wiring bugs in the f irst version of the PCB design
of the project (an incorrect connection from the data ready pin to an Arduino GPIO
pin which cannot be mapped as in external interrupt trigger pin. This was also the
version in which the integration of WiFi connection and basic packet sending f irst got
implemented and tested.

In this version, the serial debugging interface started being developed with dif ferent
functionalit ies as they became necessary or useful. It a l lowed a user to change the
gain of any channel, turn each channel on and off, and eventually connect and
disconnect each channel from SRB2.

This version was configurable to run the ADS1299 channels as either regular data
collection probes, or generating internal test signal. It a lso enabled setting up the
code for multiple version of both the Fascia project boards, and the previous AR/VR

DEVELOPMENT & DEBUGGING : SOFTWARE

46

project which it diverged from, in order to test and compare the two. It enabled
selecting the ADS1299 data collection mode: single shot versus continuous
conversion. And last ly, i t enabled selectively turning on WiFi and actual ly sending
data over the network.

F a s c i a _ c o l l e c t _ s e n s o r _ d a t a

This version started with the previous one (ADS1299_SS_CC_WiFi) as a base, but
then grew to include more ADS1299 functionalit ies as they became needed and
expanded to integrate data collection for the other devices and sensors in the system
[25]. The ADS1299 serial debugging interface grew in this version to include the
functionality to connect each channel’s posit ive or negative leads to the bias probe or
disconnected any of them from it. Additionally, the interface now supports a command
to print the current status of al l the ADS1299 registers.

This software features two new modes: debug mode, and verbose mode. Debug mode,
i f activated al lows you to use the aforementioned serial debugging interface for the
ADS1299. It prints values and responses to the serial monitor, and takes in commands
from it. I f deactivated, no commands can be sent through the serial monitor. Verbose
mode al lows the user to enable or disable serial print statements which continuously
stream the values of al l the data collected from al l the sensors in the device as i t is
col lected. Since this version integrates al l the other devices in the system, not just
the ADS1299, this is actual ly a lot of data and can be an overwhelming amount to look
at, and it can cause major slow-downs in the data collection and packet sending
routine. That is why we have verbose mode: to enable i t when you need to see the data
on the f irmware side, but disable i t otherwise as i t can compromise the eff iciency of
the system.

S O F T W A R E

G U I

While developing the GUI [26 & 27], i t became very helpful to make some
adjustments to help with debugging and observing program behavior. One of the
biggest issues was integrating an FFT graph to perform frequency analysis on a given
(selectable) signal. This enables us to see the channel data in the frequency domain
and determine whether a certain signal of specif ic bandwidth exists, grows stronger,
or diminishes and disappears. However, because the FFT algorithm can be quite
computationally intensive, this graphing feature was also selectively turned on or off .
Another change to increase performance was to al low optionally skipping graphing

DEVELOPMENT & DEBUGGING : SOFTWARE

47

the f irst n data points in the data packet, so as to be able to focus on the ones that
come later (from other sensors) as they were integrated into the system, bit by bit.

Final ly, in order to be able to profi le the code, a change had to be made to end the
program eventually. A feature was implemented to al low the option to terminate the
GUI program after collecting a certain specif ied number of samples.

S i g n a l s

In order to ensure the device is detecting the signals of interest, even before making
the specif ic signal i tself visible, there were means of ensuring the system was
behaving appropriately. By fol lowing a standard setup procedure of a known
developed system, and observing the results and looking for the target changes in our
device, and comparing those to the expected ones, we can gain some confidence that
the system is functional. The procedure referenced here is setup for EEG as guided by
the Open BCI ADS1299 development kit documentation [28].

Once we know the signal is there, we can focus on being able to view it . For this, we
need to ensure that the digital f i l ters we have in place for each signal are appropriate
and correct for the signals and the bandwidth we are targeting. To this end, after
doing some research to select the settings and f i l ters, the Open BCI documentation
on the f irmware and GUI was a very helpful reference to cross check i f our selected
f irmware settings and digital f i l ter thresholds and constants were reasonable [29 &
30].

48

C L O S I N G

To conclude, this project aims to support and simplify s leep research data by
improving the form factor of the sensors and electrodes placed on a subject during
sleep studies, which enables the patient to sleep more comfortably and thus results in
more authentic signals. The state of the art in the f ield does not satisfy those
requirements, so the design of the hardware, software, and physical appearance of the
device for this project takes this into account in order to produce a comfortable,
f lexible, and, importantly, comprehensive data collection device, which is completely
open-source.

The hardware and f irmware facets of the project are almost done and mostly f inalized,
but there is st i l l some software work to be done. The remaining work is detai led in the
next section, “Moving Forward.”

I know that this project has great potential , and the amount of progress made on it in
the past year is just the beginning! Once we have algorithms in place to analyze the
collected data, there is no tel l ing how many applications this could have and how
many people i t could help. I hope this effort can aid doctors and researchers in
making advancements in the understanding of s leep, and diagnosis of s leep related
issues. Ultimately, I hope this project can help people out there suffering from any
kind of s leep problem. I am honored to have had the opportunity to be part of this
project.

49

M O V I N G F O R W A R D

N e x t S t e p s

� Assemble a complete prototype of the device.

� Compare sensor data with golden standard.

� Record or store device data as i t is col lected in the software.

� Implement rel iable lead-off detection (current f irmware setup is at the bottom of
the ADS_init() function in Fascia_collect_sensor_data).

� Integrate the security chip and encrypt the data being transferred.

F u t u r e W o r k

� Use Machine Learning to extract features of interest from signals.

N i c e t o F i n a l i z e

� Further profi le and optimize the code.

� Investigate and f inalize the digital f i l ters used.

T h i n g s t o L o o k I n t o

� Transferring data using Bluetooth instead of WiFi.

� Using Lab Streaming Layer (LSL) to collect and stream data:
https://github.com/sccn/labstreaminglayer

� Util izing Brainflow to parse and analyze biosensor data:
https://brainflow.readthedocs.io/en/stable/UserAPI.html#python-api-reference

50

G L O S S A R Y

Op-
amp

Operational Amplifier— an electronic chip which can be used to amplify,
difference, and/or buffer analog signals in a circuit .

PCB
Printed Circuit Board— a small board which uses printed copper traces to
connect very small surface-mount electronic devices to create a task-specific
circuit .

DRL Driven Right Leg— a circuit for removing the “common-mode noise” from a
physiological signal by sensing the noise from another part of the human body.

ADC Analog to Digital Converter— a device which performs a conversion from an
analog value (e.g. voltage in a circuit) , to a digital value in a binary format.

IC Integrated Circuit— an electronic device packed into a small packet to perform
a specific task.

MCU Microcontroller— a programmable device which enabled the collection and
manipulation of other hardware devices and data.

DC Direct Current— constant amount of uninterrupted current f lowing.

AC
Alternating Current—current f lows in a sine wave varying in amplitude
between ± maximum amplitude at a set frequency.

SPS Samples Per Second—a measure of the speed with which a data signal is
sampled.

SPI
Serial Peripheral Interface— communication protocol between two IC devices
which uses 1 clock l ine, 1 data in l ine, 1 data out l ine, and 1 “chip select” l ine
to facil i tate the exchange of data.

I2C Inter-IC (integrated circuit)— communication protocol using 1 data l ine and 1
clock l ine to facil i tate the data exchange between two IC devices.

MSB Most Significant Bit— highest order bit in a binary value or bit-array or
bitmap.

LSB Least Significant Bit— lowest order bit in a binary value or bit-array or
bitmap.

FIFO
First In, First Out— a data structure or type of buffer in which i tems are
sequential in insert ion order, which is the same as the order of retr ieval from
it .

BPM Beats Per Minute— the unit for measuring heartrate.

GUI Graphical User Interface— a program which al lows users to view and change
software behavior using a graphical interface.

FFT Fast Fourier Transform— an algori thm for convert ing waveforms to frequency
data.

GPIO General Purpose Input/Output— specific pins on electronic chips which can be
used to output data and/or read-in data.

51

B I B L I O G R A P H Y

 0. “6. The MEng Thesis Proposal.” 6. The MEng Thesis Proposal | MIT EECS,
https://www.eecs.mit.edu/node/5422.

1. “How Does a Sleep Study Work?” National Sleep Foundation,
https://www.sleepfoundation.org/excessive-sleepiness/diagnosis/how-does-sleep-study-
work.

2. Adamczyk, Kamil. “Neuroon Open - Advanced Open-Source Sleep Tracking EEG Mask and
Band.” Product Hunt, 11 Sept. 2019, https://www.producthunt.com/posts/neuroon-open.

3. “Neurofeedback EEG Device - How It Works.” Muse, https://choosemuse.com/how-it-
works/.

4. “Polysomnography (Sleep Study).” Mayo Clinic, Mayo Foundation for Medical Education and
Research, 17 Nov. 2018, https://www.mayoclinic.org/tests-
procedures/polysomnography/about/pac-20394877.

5. “EEG (Electroencephalogram) (for Parents) - Nemours KidsHealth.” Edited by KidsHealth
Medical Experts, KidsHealth, The Nemours Foundation,
https://kidshealth.org/en/parents/eeg.html.

6. “Electromyography (EMG).” Healthline, Healthline Media,
https://www.healthline.com/health/electromyography/.

7. “Electrooculography.” Wikipedia, Wikimedia Foundation, 28 Nov. 2019,
https://en.wikipedia.org/wiki/Electrooculography.

8. Zangróniz, et al. “Electrodermal Activity Sensor for Classification of Calm/Distress Condition.”
MDPI, Multidisciplinary Digital Publishing Institute, 12 Oct. 2017,
https://www.mdpi.com/1424-8220/17/10/2324/htm#B25-sensors-17-02324.

9. “ADS1299-x Low-Noise, 4-, 6-, 8-Channel, 24-Bit, Analog-to-Digital Converter for EEG and
Biopotential Measurements.” TI, Texas Instruments, July 2012, revised Jan 2017.
http://www.ti.com/lit/ds/symlink/ads1299.pdf?&ts=1588889413443

10. Reis, Pedro M. R. “What Is the Range of Human EMG Signal Frequencies: Min. and Max?,”
August 21, 2013.
https://www.researchgate.net/post/What_is_the_range_of_Human_EMG_signal_frequencie
s_Min_and_Max2.

52

11. “Electrooculography.” Electrooculography - an overview | ScienceDirect Topics, n.d.
https://www.sciencedirect.com/topics/engineering/electrooculography.

12. “Understanding Lead-Off Detection in ECG.” TI, Texas Instruments, May 2012, revised Jan
2015. http://www.ti.com/lit/an/sbaa196a/sbaa196a.pdf

13. Newson, Jennifer J., Thiagarajan, and Tara C. “EEG Frequency Bands in Psychiatric Disorders:
A Review of Resting State Studies.” Frontiers. Frontiers, December 11, 2018.
https://www.frontiersin.org/articles/10.3389/fnhum.2018.00521/full.

14. Farnsworth, Bryan. “What Is EDA? And How Does It Work?” imotions, n.d, 4 June 2019.
https://imotions.com/blog/eda/.

15. “AN118 Improving ADC Resolution by Oversampling and Averaging.” Cypress. Silicon
Laboratories, July 2013. https://www.cypress.com/file/236481/download.

16. Boucsein, Wolfram. Electrodermal Activity. New York: Springer, 2012, pg 49.

17. “Publication Recommendations for Electrodermal Measurements.” Society for
Psychophysiological Research, 2012. https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1469-
8986.2012.01384.x.

18. “GitHub.” GitHub. SparkFun, n.d.
https://github.com/sparkfun/SparkFun_MAX3010x_Sensor_Library/blob/master/.

19. Gholipour, Bahar. “What Is a Normal Heart Rate?” LiveScience. Purch, January 12, 2018.
https://www.livescience.com/42081-normal-heart-rate.html.

20. “GitHub.” GitHub. Electronic Cats, n.d. https://github.com/ElectronicCats/mpu6050.

21. “MPU-6000 and MPU-6050 Register Map and Descriptions” InvenSense Inc, 19 August 2013.
https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Register-Map1.pdf

22. “GitHub.” GitHub. Arduino, n.d. 22. https://github.com/arduino-libraries/WiFiNINA.

23. “Python Heart Rate Analysis Toolkit.” Python Heart Rate Analysis Toolkit, n.d.
https://python-heart-rate-analysis-toolkit.readthedocs.io/en/latest/.

24. Alkhanaizi, Walaa, and Bernal, Guillermo. “GitHub.” GitHub. MIT, n.d.
https://github.mit.edu/gbernal/Fascia_nucleus/tree/master/Firmware/development/ADS12
99_SS_CC_WiFi

53

25. Alkhanaizi, Walaa, and Bernal, Guillermo. “GitHub.” GitHub. MIT, n.d.
https://github.mit.edu/gbernal/Fascia_nucleus/tree/master/Firmware/development/Fascia
_collect_sensor_data.

26. Alkhanaizi, Walaa, Bernal, Guillermo, and Qiao, Junqing. “GitHub.” GitHub. MIT, n.d.
https://github.mit.edu/gbernal/Fascia_nucleus/tree/master/Fascia_dataViz/ADS1299_data
plotter

27. Alkhanaizi, Walaa, Bernal, Guillermo, and Qiao, Junqing. “GitHub.” GitHub. MIT, n.d.
https://github.mit.edu/gbernal/Fascia_nucleus/tree/master/Fascia_dataViz/Fascia_sensor_
data_plotter

28. “Setting up for EEG · OpenBCI Documentation.” OpenBCI Documentation, n.d.
https://docs.openbci.com/docs/01GettingStarted/02-Biosensing-Setups/EEGSetup#3-
launch-the-gui-and-adjust-your-channel-settings.

29. “GitHub.” GitHub. OpenBCI, n.d. https://github.com/OpenBCI/OpenBCI_GUI.

30. “GitHub.” GitHub. OpenBCI, n.d. https://github.com/OpenBCI/OpenBCI_Cyton_Library

31. Made with the initial help of notion.so

32. “Hypnodyne ZMax Is an Advanced and Simple to Use EEG Home Sleep Monitor Used by
Researchers but Available to Everyone.” Hypnodyne ZMax, hypnodynecorp.com/index.php.

54

A P P E N D I C E S

55

A P P E N D I X A : H O W T O U S E (A G U I D E)

A b o u t

This guide explains the usage and functionality specification of the Fascia_collect_sensor_data Arduino
firmware in the Fascia_nucleus repo (Fascia_nucleus/Firmware/development/Fascia_collect_sensor_data)
commit hash: commit 12a1f3e36ee31194a78e70afae84bb2bf27b8d47
"some clean up" [31] .

S e t U p

S o f t w a r e

In order to begin running this code, you must have a l l the required l ibraries instal led. This
includes WiFiNINA , and MPU6050 by Electronic Cats, both of which you can get from the
Arduino l ibrary manager, and
SparkFun_MAX3010x_Pulse_and_Proximity_Sensor_Library which you need the
modif ied version of in the repo. This is located in
Fascia_nucleus/Firmware/development/Libraries/SparkFun_MAX3010x_Pulse_and_Proxi
mity_Sensor_Library. I have made changes to speed up the data acquisi t ion in the l ibrary,
and reduce wasted wait t ime. Namely, I made changes to two di f ferent functions:

• readTemperature()

I spl i t this function into two functions: requestTemperature(), and readTemperature().
Previous to this , the l ibrary would request a temperature reading from the MAX3010x and
wait for a whi le for the data to be ready. With this change, I request the temperature using
the request function, then perform other things in the consumer code, and the read the
temperature by cal l ing the read func tion, without wait ing idly for the sensor to be ready.

• getIR()

This function did a s imilar thing where once you cal led i t , i t would wait 250 ms for the new
data to be ready. Instead of doing this, I made the function take as input the number of mil l i
seconds you'd l ike i t to wait for the data to be ready, and i f the data is s t i l l not ready by that
t ime, the function returns 0, which indicates an inval id/unavai lable reading of the PPG
sensor.

In order to run the code, you must copy this modif ied l ibrary and paste i t into your Arduino
l ibraries folder (usual ly in your documents folder) .

H a r d w a r e

Once you're able to start running the code, you might notice that the code hangs in certain
areas: this wi l l happen i f any of the sensors the code expects you to have proper connection

56

to are unreachable. Make sure your ADS1299, M AX3010, and MPU5060 are properly
connected a l l the way to the Fascia Main Board, and that the Arduino can communicate with
them.

💡I f you are missing one or more of the sensors, you can get the code to run without
expecting said sensor(s) to be connected by commenting out the l ines where the code is
sett ing the sensor(s) up, and where i t is retr ieving data from the sensor(s) . You can f ind
these l ines in the two functions setup() and loop(), where sensor setup and data retr ieval
occur, respectively.

C o n f i g u r a t i o n s

In order to properly get the code to run and do what you'd l ike to do with i t , you'l l want to
make sure you have correct ly configured the top of the . ino f i le with your current setup and
desired output. These sett ings can be found on l ines 19-28 of
Fascia_col lect_sensor_data. ino:

// settings

#define CONNECT_WIFI 1

#define BOARD_V FASCIA_V0_0

#define DATA_MODE RDATA_SS_MODE

#define RUN_MODE NORMAL_ELECTRODES

// v for verbose: lots of prints

#define v 0

// debug: serial reads and writes

#define debug 1

• CONNECT_WIFI would enable(1)/disable(0) WiFi on the chip. Fascia wi l l not send any data
packets over WiFi when this is disabled (0) .

• BOARD_V a l lows you to speci fy the board you are working with. This code is speci f ical ly
writ ten for Fascia, so I cannot guarantee that any data, other than the ADS1299 data,
would be correct or using the proper pin to which that sensor is connected, i f you use
any other BOARD_V other than FASCIA_V0_0 or FASCIA_V0_1 with this version of this code.

• DATA_MODE this version of the code on ly supports RDATA_SS_MODE currently; please do not
change this l ine. This is referring to the ADS1299 Single Shot mode, versus the
Continuous Conversion mode

• RUN_MODE enables you to generate internal-test s ignals in the ADS1299 instead of reading
external data and s ignals from the electrodes on the 8 channels of the ADS1299 i f you set
i t to GEN_TEST_SIGNAL. Keep i t as NORMAL_ELECTRODES for any purpose other than
generat ing the mentioned internal test s ignals.

57

• v enables/disables verbose print statements in the Seria l port . I f 1 (enabled) you'l l see
a l l the col lected sensor data values printed in the Arduino Seria l Monitor. 0 d isables
this.

• debug enables/disables the abi l i ty to change some specif ic ADS1299 channel sett ings v ia
seria l messages through the seria l monitor. The detai led descript ion of the things you
can do wi l l be printed once setup is complete, i f you set debug 1 and run the code. These
things include enabl ing /disabl ing Bias, SRB2, and changing the gain of each channel, as
wel l as turning each channel on/off , and even checking the current status of a l l the
ADS1299 registers.

U s i n g t h e S e r i a l D e b u g I n t e r f a c e

Here is a summary of the commands you can run in the debug seria l interface, and what they
do:
• type the channel number to print that ADS1299 ch annel's data [1-8] (and plot, i f you

switch to Seria l Plotter)
• or type '0' to stop print ing the data.
• type BN#0 to deact ivate biasN for channel # and BN#1 to act ivate i t
• type BP#0 to deact ivate biasP for channel # and BP#1 to act ivate i t
• type S#0 to deact ivate SRB2 for channel # and B#1 to act ivate i t
• type G#N to set the gain for channel # to N=0:1, N=1:2, N=2:4, N=3:6, N=4 :8, N=5:12,

N=6:24
• type T#0 to toggle channel # of f , and T#1 to toggle channel # on
• type 'R' or 'r' to print the current register sett in gs of the ADS1299
• type 'P' or 'p' to print these instructions again

C o n f i g u r i n g D a t a R a t e

You can adjust the data rate of the ADS1299 (and s ince a l l the other s ignals' data rates are
programmed to be a tenth of i t) in the f irmware, in l ine 183 of
Fascia_col lect_sensor_data. ino by changing the last argument of this l ine
ADS_WREG(ADS1299_REGADDR_CONFIG1,________);

The avai lable sampling rates are l is ted start ing on l ine 152 in the header f i le ADS1299.h:

#define ADS1299_REG_CONFIG1_16kSPS 0 // Data is output at FMOD/64, or 16 kHz at 2.048 MHz

#define ADS1299_REG_CONFIG1_8kSPS 1 // Data is output at FMOD/128, or 8 kHz at 2.048 MHz

#define ADS1299_REG_CONFIG1_4kSPS 2 // Data is output at FMOD/256, or 4 kHz at 2.048 MHz

#define ADS1299_REG_CONFIG1_2kSPS 3 // Data is output at FMOD/512, or 2 kHz at 2.048 MHz

#define ADS1299_REG_CONFIG1_1kSPS 4 // Data is output at FMOD/1024, or 1 kHz at 2.048 MHz

#define ADS1299_REG_CONFIG1_500SPS 5 // Data is output at FMOD/2048, or 500 Hz at 2.048 MHz

#define ADS1299_REG_CONFIG1_250SPS 6 // Data is output at FMOD/4096, or 250 Hz at 2.048 MHz

58

R u n n i n g / v i s u a l i z i n g t h e c o d e

We have Python code in place to help v isual ize the sensor data received over WiFi. In order
for this to work, you must set CONNECT_WIFI to 1 in the . ino f i le in order for the two scripts to
be able to connect and share the data. In addit ion to this, you have to make sure that b oth
the Arduino and the python code are connecting to the correct WiFi network.

F i r m w a r e (. i n o)

In the f i le WiFi_Sett ings.h

#define SECRET_SSID "raspi_wifi"

#define SECRET_PASS "fluidfluid"

#define HOST_ID "192.168.0.101"

Ensure that SECRET_SSID has the name of your private WiFi network, and SECRET_PASS has the
password to that network. HOST_ID should be the IP address of your computer i f you type
ifconfig in your terminal , and f ind en0, include the IP address l is ted under that .

In the same f i le, take a note of these l ines:

#define SEND_SIZE 22

#define NUM_ELEMENTS 17

#define ELEM_SIZE 4

You'l l need these values to ensure that the connection to the python script is correct.

D a t a V i s u a l i z a t i o n C o d e (. p y)

In the f i le MainGUI.py, you must make sure the IP address that i t is connecting to is
correct, and the same as the one you inputted into the f irmware code. This is in l ine 120:

self.ip = '192.168.0.101'

Next, take a look at BCI_Data_Receiver.py, and the l ines 48-50:

num_elements = 17

num_bytes = 4*num_elements

num_packets = 22

Make sure that num_elements in the python script matches the NUM_ELEMENTS in the Arduino
header f i le, and that num_packets in the python script matches SEND_SIZE in the Arduino
header f i le. Last ly, ensure that ELEM_SIZE in the Arduino header f i le matches the mult ipl ier
in calculat ing num_bytes in the python script (current ly correct ly 4) .

Now, you are ready to set GUI options to your preference, which are a l l the l ines marked
with a TODO comment in the MainGUI.py f i le, near the top (l ines 37 -59):

59

for plotting

self.start_idx = 2 #TODO: make this 0 if you want to graph all the packet data

...

for FFT

self.graph_fft = 1 #TODO: change this to 1 if you dont want FFT graph

self.fft_channel = 4 #TODO: make sure this is the channel you want the FFT for (0 indexed)

...

for filters

data_rate = 1000 #TODO: make sure this matches the data rate of the ADS1299 in the firmware

• start_idx i s the index of the data packet at which to begin graphing. You can start at 0
in order to graph all the data, or you can skip the f irst n data points by sett ing th is value
to n

• graph_fft i s a boolean, i f set to 1 , an FFT plot wi l l be generated, and i f i t is 0 , no FFT
graph wi l l be plotted in the GUI window

• fft_channel i f you would l ike to have an FFT, this a l lows you to select which ADS1299
channel to run the FFT algorithm on and produce the frequency data for

• data_rate must match the ADS1299 data rate that is set in the f irmware code—
specif ical ly this would be the set t ings for the ADS1299 register config1

Once you run the Python GUI program, you should be able to view the s ignals you selected,
and move around and zoom in and out of each graph, as wel l as see the Current data rate and
current measured heart rate.

P a c k e t b r e a k - d o w n

💡Please note: the val id array holds a 1 in the bit locat ion corresponding to the data point in
the packet which is inval id. For example, i f the PPG data is inval id, then the val id array's
18th bit wi l l be a 1 . The index of the bit maps to the locat ion of the data in the packet.

O r d e r T y p e S i z e (b y t e) d a t a D e s c r i p t i o n

0
int 4 c o u n t S e r i a l n u m b e r o f t h e p a c k e t

1
int 4 v a l i d a r r a y a r r a y o f b i t s i n d i c a t i n g v a l i d / i n v a l i d d a t a i n t h e p a c k e t

2 - 9
float 4 * 8 A D S 8 c h a n n e l d a t a s i g n e x t e n d e d A D S c h a n n e l d a t a , i n o r d e r

1 0 - 1 5
int 2 * 6 I M U 6 d a t a p o i n t s d u m m y d a t a f o r n o w , s i n c e s e n s o r n o t p r o p e r l y c o n n e c t e d

1 6
float 4 E D A r a w A r d u i n o A D C c o u n t s

1 7
float 4 t e m p e r a t u r e

1 8
int 4 P P G r a w I R s e n s o r d a t a

1 9
int 4 t i m e s t a m p

60

I M U D a t a C o n v e r s i o n

I f you decide you'd l ike the IMU data to be converted to metric units instead of being
unit less ADC counts, you must uncomment the l ines which perform this conversion in the
get_IMU_data() function (l ines 752-755 for gyroscope data, and l ines 765-767 for
accelerat ion data), and update the WiFi packet with the f loat ing point data (l ines 770-775).

Since this modif icat ion changes the s ize of each IMU data point, i t a lso af fects the s ize of
the data packets, so i t is crucial to modify num_elements in the python script, and
NUM_ELEMENTS in the Arduino code to 20 . This enables the f irmware to send a data packet of
the correct s ize, and the software to receive a packet of the correct s ize.

The last thing you need to change in order to get the IMU conversion working end-to-end is
ensure that the python code can interpret the sent packet data correct ly. This is done by
specifying the type, in order, of the elements of the packet. In BCI_data_receiver.py, you'l l
f ind the l ine (l ine # 37):

unpacked_data = struct.unpack('i'+'i'+'f'*8+'h'*6+'f'+'f'+'ii', data[inum_bytes:(i+1)*num_bytes])

The data types and the order they appear in maps to the order in the packet, as shown in the
table above. In order to complete this set up, you must change the 'h'*6 which means s ix
e lements of type short (which is 2 Bytes), to 'f'*6, meaning s ix e lements of type float,
which is 4 Bytes and holds our converted data values.

61

A P P E N D I X B : F I R M W A R E

https://github.mit.edu/gbernal/Fascia_nucleus/tree/master/Firmware
/development/Fascia_collect_sensor_data

a d s 1 2 9 9 . h

#define int32_t unsigned long
#define SIGN_EXT_24(VAL) ((int32_t)((uint32_t)(VAL) ^ (1UL<<(23))) - (1L<<(23)))

/***
 * Sampling Config *
 ***/

/**
 * \brief Default data rate from the ADS1299.
 *
 * To monitor electrode impedance continuously, an AC current is pulsed through each electrode and the corresponding
 * voltage perturbation observed in the measured signal. This signal will not be easily separable from the EEG if it
 * is within the typical 0-100 Hz EEG bandwidth; since the fastest possible AC excitation rate the ADS1299 can
 * generate is (data rate)/4, the lowest recommended data rate that allows continuous impedance monitoring is 1000 Hz.
 * Using a 500 Hz data rate will generate an AC excitation at 125 Hz, which is dangerously close to, if not in,
 * the EEG band.
 */
#define DEFAULT_SAMPLE_RATE 250
#define MAX_CHANNELS 8

/**
* Other Useful Definitions *
**/

#define SIGN_EXT_24(VAL) ((int32_t)((uint32_t)(VAL) ^ (1UL<<(23))) - (1L<<(23)))// from Junqing inital code, it works but can't understand how it works

#define ADS_data_MSB_mask 0x00800000L
#define sign_extend_bytes 0xFF000000L
#define SIGNEXTEND(VAL) (VAL & ADS_data_MSB_mask)? (VAL|sign_extend_bytes) : VAL;

/* Default register values */
#define ADS1299_REGDEFAULT_ID ADS1299_DEVICE_ID
#define ADS1299_REGDEFAULT_CONFIG1 0x96 ///< Multiple readback mode, OSC output disabled, DR = FMOD/4096
#define ADS1299_REGDEFAULT_CONFIG2 0xD0 ///< Test signal sourced internally, low-amplitude test signal pulsed at FCLK/(2^21)
#define ADS1299_REGDEFAULT_CONFIG3 0x68 ///< Ref buffer off, bias measurement off, internal bias ref, bias buffer off, bias sense disabled
#define ADS1299_REGDEFAULT_LOFF 0x00 ///< 95%/5% LOFF comparator threshold, DC lead-off at 6 nA
#define ADS1299_REGDEFAULT_CHNSET 0xE0 ///< Channel off, gain 24, SRB2 disconnected, normal electrode input
#define ADS1299_REGDEFAULT_BIAS_SENSP 0x00 ///< All BIAS channels disconnected from positive leads
#define ADS1299_REGDEFAULT_BIAS_SENSN 0x00 ///< All BIAS channels disconnected from negative leads
#define ADS1299_REGDEFAULT_LOFF_SENSP 0x00 ///< All LOFF channels disconnected from positive leads
#define ADS1299_REGDEFAULT_LOFF_SENSN 0x00 ///< All LOFF channels disconnected from negative leads
#define ADS1299_REGDEFAULT_LOFF_FLIP 0x00 ///< No flipping in this house; source/pull-up at INP, sink/pull-down at INN
#define ADS1299_REGDEFAULT_LOFF_STATP 0x00 ///< This is a read-only register; reset value is 0x00
#define ADS1299_REGDEFAULT_LOFF_STATN 0x00 ///< This is a read-only register; reset value is 0x00
#define ADS1299_REGDEFAULT_GPIO 0x0F ///< All GPIO set to inputs
#define ADS1299_REGDEFAULT_MISC1 0x00 ///< SRB1 disconnected
#define ADS1299_REGDEFAULT_MISC2 0x00 ///< Register not used in this silicon; should stay at 0x00
#define ADS1299_REGDEFAULT_CONFIG4 0x00 ///< Continuous conversion, LOFF comparator powered down

String ADS_reg_names[24]= {"ID","CONFIG1","CONFIG2","CONFIG3","LOFF","CH1SET","CH2SET",
 "CH3SET","CH4SET","CH5SET","CH6SET","CH7SET","CH8SET",
 "BIAS_SENSP","BIAS_SENSN","LOFF_SENSP","LOFF_SENSN","LOFF_FLIP",
 "LOFF_STATP","LOFF_STATN","GPIO","MISC1","MISC2","CONFIG4"};

/**
* Typedefs and Struct Declarations/Definitions *
**/

/**
 * \brief Error codes for interacting with the ADS1299.
 *
 */
typedef int ads1299_error_t;

/**
 * \brief ADS1299 register addresses.
 *
 * Consult the ADS1299 datasheet and user's guide for more information.
 */
#define ADS1299_REGADDR_ID 0x00 ///< Chip ID register. Read-only. ID[4:0] should be 11110.
#define ADS1299_REGADDR_CONFIG1 0x01 ///< Configuration register 1. Controls daisy-chain mode; clock output; and data rate.
#define ADS1299_REGADDR_CONFIG2 0x02 ///< Configuration register 2. Controls calibration signal source, amplitude, and frequency.
#define ADS1299_REGADDR_CONFIG3 0x03 ///< Configuration register 3. Controls reference buffer power and the bias functionality.
#define ADS1299_REGADDR_LOFF 0x04 ///< Lead-off control register. Controls lead-off frequency, magnitude, and threshold.
#define ADS1299_REGADDR_CH1SET 0x05 ///< Channel 1 settings register. Controls channel 1 input mux, SRB2 switch, gain, and power-down.
#define ADS1299_REGADDR_CH2SET 0x06 ///< Channel 2 settings register. Controls channel 2 input mux, SRB2 switch, gain, and power-down.
#define ADS1299_REGADDR_CH3SET 0x07 ///< Channel 3 settings register. Controls channel 3 input mux, SRB2 switch, gain, and power-down.
#define ADS1299_REGADDR_CH4SET 0x08 ///< Channel 4 settings register. Controls channel 4 input mux, SRB2 switch, gain, and power-down.

62

#define ADS1299_REGADDR_CH5SET 0x09 ///< Channel 5 settings register. Controls channel 5 input mux, SRB2 switch, gain, and power-down.
#define ADS1299_REGADDR_CH6SET 0x0A ///< Channel 6 settings register. Controls channel 6 input mux, SRB2 switch, gain, and power-down.
#define ADS1299_REGADDR_CH7SET 0x0B ///< Channel 7 settings register. Controls channel 7 input mux, SRB2 switch, gain, and power-down.
#define ADS1299_REGADDR_CH8SET 0x0C ///< Channel 8 settings register. Controls channel 8 input mux, SRB2 switch, gain, and power-down.
#define ADS1299_REGADDR_BIAS_SENSP 0x0D ///< Bias drive positive sense selection. Selects channels for bias drive derivation (positive side).
#define ADS1299_REGADDR_BIAS_SENSN 0x0E ///< Bias drive negative sense selection. Selects channels for bias drive derivation (negative side).
#define ADS1299_REGADDR_LOFF_SENSP 0x0F ///< Lead-off positive sense selection. Selects channels that will use lead-off detection (positive
side).
#define ADS1299_REGADDR_LOFF_SENSN 0x10 ///< Lead-off negative sense selection. Selects channels that will use lead-off detection (negative
side).
#define ADS1299_REGADDR_LOFF_FLIP 0x11 ///< 1: Swaps lead-off current source and sink on the corresponding channel. See datasheet.
#define ADS1299_REGADDR_LOFF_STATP 0x12 ///< Lead-off positive side status register. Read-only. 0: lead on, 1: lead off.
#define ADS1299_REGADDR_LOFF_STATN 0x13 ///< Lead-off negative side status register. Read-only. 0: lead on, 1: lead off.
#define ADS1299_REGADDR_GPIO 0x14 ///< GPIO register. Controls state and direction of the ADS1299 GPIO pins.
#define ADS1299_REGADDR_MISC1 0x15 ///< Miscellaneous 1. Connects/disconnects SRB1 to all channels' inverting inputs.
#define ADS1299_REGADDR_MISC2 0x16 ///< Miscellaneous 2. No functionality in current revision of ADS1299.
#define ADS1299_REGADDR_CONFIG4 0x17 ///< Configuration register 4. Enables/disables single-shot mode and controls lead-off comparator
power.

byte CHANNELS[8] = {ADS1299_REGADDR_CH1SET,
 ADS1299_REGADDR_CH2SET,
 ADS1299_REGADDR_CH3SET,
 ADS1299_REGADDR_CH4SET,
 ADS1299_REGADDR_CH5SET,
 ADS1299_REGADDR_CH6SET,
 ADS1299_REGADDR_CH7SET,
 ADS1299_REGADDR_CH8SET};
/**
 * \brief ADS1299 SPI communication opcodes.
 *
 * Consult the ADS1299 datasheet and user's guide for more information.
 * For RREG and WREG opcodes, the first byte (opcode) must be ORed with the address of the register to be read/written.
 * The command is completed with a second byte 000n nnnn, where n nnnn is (# registers to read) - 1.
 */
#define ADS1299_OPC_WAKEUP 0x02 ///< Wake up from standby.
#define ADS1299_OPC_STANDBY 0x04 ///< Enter standby.
#define ADS1299_OPC_RESET 0x06 ///< Reset all registers.
#define ADS1299_OPC_START 0x08 ///< Start data conversions.
#define ADS1299_OPC_STOP 0x0A ///< Stop data conversions.

#define ADS1299_OPC_RDATAC 0x10 ///< Read data continuously (registers cannot be read or written in this mode).
#define ADS1299_OPC_SDATAC 0x11 ///< Stop continuous data read.
#define ADS1299_OPC_RDATA 0x12 ///< Read single data value.

#define ADS1299_OPC_RREG 0x20 ///< Read register value.
#define ADS1299_OPC_WREG 0x40 ///< Write register value.

/* ID REGISTER ***/

/**
 * \brief Factory-programmed device ID for ADS1299, stored in ID[3:0].
 */
// Factory-programmed device ID for ADS1299. Stored in ID[3:0].
#define ADS1299_DEVICE_ID 0b1110

/* CONFIG1 REGISTER **/

/**
 * \brief Bit location and size definitions for CONFIG1.CLK_EN bit (oscillator output on CLK pin en/disabled).
 *
 * Consult the ADS1299 datasheet, page 40, for more information.
 */
#define ADS1299_REG_CONFIG1_CLOCK_OUTPUT_DISABLED (0<<5)
#define ADS1299_REG_CONFIG1_CLOCK_OUTPUT_ENABLED (1<<5)

/**
 * \brief Bit location and size definitions for CONFIG1.DAISY_EN bit.
 *
 * Consult the ADS1299 datasheet, pp. 40 and 31-34, for more information.
 */
#define ADS1299_REG_CONFIG1_DAISY_CHAIN_MODE (0<<6)
#define ADS1299_REG_CONFIG1_MULTI_READBACK_MODE (1<<6)

/**
 * \brief Bit mask definitions for CONFIG1.DR (data rate).
 *
 * FMOD = FCLK/2, where FCLK is the clock frequency of the ADS1299. This is normally 2.048 MHz.
 */
#define ADS1299_REG_CONFIG1_16kSPS 0 ///< Data is output at FMOD/64, or 16 kHz at 2.048 MHz.
#define ADS1299_REG_CONFIG1_8kSPS 1 ///< Data is output at FMOD/128, or 8 kHz at 2.048 MHz.
#define ADS1299_REG_CONFIG1_4kSPS 2 ///< Data is output at FMOD/256, or 4 kHz at 2.048 MHz.
#define ADS1299_REG_CONFIG1_2kSPS 3 ///< Data is output at FMOD/512, or 2 kHz at 2.048 MHz.
#define ADS1299_REG_CONFIG1_1kSPS 4 ///< Data is output at FMOD/1024, or 1 kHz at 2.048 MHz.
#define ADS1299_REG_CONFIG1_500SPS 5 ///< Data is output at FMOD/2048, or 500 Hz at 2.048 MHz.
#define ADS1299_REG_CONFIG1_250SPS 6 ///< Data is output at FMOD/4096, or 250 Hz at 2.048 MHz.

/**
 * \brief Combined value of reserved bits in CONFIG1 register.
 *
 * Consult the ADS1299 datasheet, page 40, for more information.
 */
#define ADS1299_REG_CONFIG1_RESERVED_VALUE (1<<7)|(1<<4)

/* CONFIG2 REGISTER **/

/**
 * \brief Bit mask definitions for CONFIG2.CAL_FREQ (calibration signal frequency).
 *
 * FCLK is the clock frequency of the ADS1299. This is normally 20 MHz.
 */

63

#define ADS1299_REG_CONFIG2_CAL_PULSE_FCLK_DIV_2_21 0 ///< Calibration signal pulsed at FCLK/2^21, or approx. 1 Hz at 2.048 MHz.
#define ADS1299_REG_CONFIG2_CAL_PULSE_FCLK_DIV_2_20 1 ///< Calibration signal pulsed at FCLK/2^20, or approx. 2 Hz at 2.048 MHz.
#define ADS1299_REG_CONFIG2_CAL_DC 3 ///< Calibration signal is not pulsed.

/**
 * \brief Bit mask definitions for CONFIG2.CAL_AMP0 (calibration signal amplitude).
 */
#define ADS1299_REG_CONFIG2_CAL_AMP_VREF_DIV_2_4_MV (0<<2) ///< Calibration signal amplitude is 1 x (VREFP - VREFN)/(2.4 mV).
#define ADS1299_REG_CONFIG2_CAL_AMP_2VREF_DIV_2_4_MV (1<<2) ///< Calibration signal amplitude is 2 x (VREFP - VREFN)/(2.4 mV).

/**
 * \brief Bit mask definitions for CONFIG2.INT_CAL (calibration signal source).
 */
#define ADS1299_REG_CONFIG2_CAL_EXT (0<<4) ///< Calibration signal is driven externally.
#define ADS1299_REG_CONFIG2_CAL_INT (1<<4) ///< Calibration signal is driven internally.

/**
 * \brief Combined value of reserved bits in CONFIG2 register.
 *
 * Consult the ADS1299 datasheet, page 41, for more information.
 */
#define ADS1299_REG_CONFIG2_RESERVED_VALUE (6<<5)

/* CONFIG3 REGISTER **/

/**
 * \brief Bit mask definitions for CONFIG3.PD_REFBUF (internal voltage reference buffer enable/disable).
 *
 * Note that disabling the buffer for the internal voltage reference requires that a reference voltage
 * must be externally applied on VREFP for proper operation. This is not related to the reference ELECTRODE
 * buffer, which is an external op-amp on the PCB. Brainboard does not apply a voltage to VREFP, and thus
 * the buffer must be enabled.
 */
#define ADS1299_REG_CONFIG3_REFBUF_DISABLED (0<<7)
#define ADS1299_REG_CONFIG3_REFBUF_ENABLED (1<<7)

/**
 * \brief Bit mask definitions for CONFIG3.BIAS_MEAS (enable or disable bias measurement through BIASIN pin).
 */
#define ADS1299_REG_CONFIG3_BIAS_MEAS_DISABLED (0<<4)
#define ADS1299_REG_CONFIG3_BIAS_MEAS_ENABLED (1<<4)

/**
 * \brief Bit mask definitions for CONFIG3.BIASREF_INT (bias reference internally or externally generated).
 */
#define ADS1299_REG_CONFIG3_BIASREF_EXT (0<<3)
#define ADS1299_REG_CONFIG3_BIASREF_INT (1<<3)

/**
 * \brief Bit mask definitions for CONFIG3.PD_BIAS (power-down or enable bias buffer amplifier).
 */
#define ADS1299_REG_CONFIG3_BIASBUF_DISABLED (0<<2)
#define ADS1299_REG_CONFIG3_BIASBUF_ENABLED (1<<2)

/**
 * \brief Bit mask definitions for CONFIG3.BIAS_LOFF_SENS (detection of bias lead-off en/disable).
 */
#define ADS1299_REG_CONFIG3_BIAS_LOFF_SENSE_DISABLED (0<<1)
#define ADS1299_REG_CONFIG3_BIAS_LOFF_SENSE_ENABLED (1<<1)

/**
 * \brief Combined value of reserved bits in CONFIG3 register.
 *
 * Consult the ADS1299 datasheet, page 42, for more information.
 */
#define ADS1299_REG_CONFIG3_RESERVED_VALUE (3<<5)

/* CONFIG4 REGISTER **/

/**
 * \brief Bit mask definitions for CONFIG4.SINGLE_SHOT (single-shot or continuous conversion setting).
 *
 * This can more easily be set with the RDATAC/SDATAC opcodes.
 */
#define ADS1299_REG_CONFIG4_CONTINUOUS_CONVERSION_MODE (0<<3)
#define ADS1299_REG_CONFIG4_SINGLE_SHOT_MODE (1<<3)

/**
 * \brief Bit mask definitions for CONFIG4.PD_LOFF_COMP (power-down lead-off comparators).
 *
 */
#define ADS1299_REG_CONFIG4_LEAD_OFF_DISABLED (0<<1)
#define ADS1299_REG_CONFIG4_LEAD_OFF_ENABLED (1<<1)

/**
 * \brief Combined value of reserved bits in CONFIG4 register.
 *
 * Consult the ADS1299 datasheet, page 47, for more information.
 */
#define ADS1299_REG_CONFIG4_RESERVED_VALUE 0

/* LOFF REGISTER ***/

/**
 * \brief Bit mask definitions for LOFF.COMP_TH (lead-off comparator threshold).
 *

64

 * Definition names are for the positive side (LOFFP). The corresponding LOFFN thresholds
 * are the difference between these thresholds and 100%. Default value is _95_PERCENT.
 */
#define ADS1299_REG_LOFF_95_PERCENT (0<<5)
#define ADS1299_REG_LOFF_92_5_PERCENT (1<<5)
#define ADS1299_REG_LOFF_90_PERCENT (2<<5)
#define ADS1299_REG_LOFF_87_5_PERCENT (3<<5)
#define ADS1299_REG_LOFF_85_PERCENT (4<<5)
#define ADS1299_REG_LOFF_80_PERCENT (5<<5)
#define ADS1299_REG_LOFF_75_PERCENT (6<<5)
#define ADS1299_REG_LOFF_70_PERCENT (7<<5)

/**
 * \brief Bit mask definitions for LOFF.ILEAD_OFF (lead-off current magnitude).
 *
 * This should be as small as possible for continuous lead-off detection, so as not to noticeably alter
 * the acquired signal. Default is _6_NA.
 */
#define ADS1299_REG_LOFF_6_NA (0<<2) ///< 6 nA lead-off current.
#define ADS1299_REG_LOFF_24_NA (1<<2) ///< 24 nA lead-off current.
#define ADS1299_REG_LOFF_6_UA (2<<2) ///< 6 uA lead-off current.
#define ADS1299_REG_LOFF_24_UA (3<<2) ///< 24 uA lead-off current.

/**
 * \brief Bit mask definitions for LOFF.FLEAD_OFF (lead-off current frequency).
 *
 * This should be as large as possible for continuous AC lead-off detection to ensure that it is out
 * of the EEG frequency band (approx. 0-100 Hz for most applications). The excitation signal can then
 * be filtered out of the acquired overall signal, and its voltage amplitude measured in order to determine
 * the electrode impedance.
 * FCLK is the clock frequency of the ADS1299. This is normally 2.048 MHz.
 * FDR is the output data rate. With the default clock, this must be at least 1 kHz in order to use
 * continuous AC impedance monitoring, since the excitation frequency of FDR/4 = 250 Hz is the lowest
 * possible frequency outside of the EEG band. If only a specific band is needed and it is lower than
 * 62.5 Hz or 125 Hz, the 250/500 Hz settings may be used.
 */
#define ADS1299_REG_LOFF_DC_LEAD_OFF 0 ///< Lead-off current is at DC.
#define ADS1299_REG_LOFF_AC_LEAD_OFF_FCLK_DIV_2_18 1 ///< Lead-off current is at FCLK/2^18, or 7.8125 Hz at 2.048 MHz.
#define ADS1299_REG_LOFF_AC_LEAD_OFF_FCLK_DIV_2_16 2 ///< Lead-off current is at FCLK/2^16, or 31.25 Hz at 2.048 MHz.
#define ADS1299_REG_LOFF_AC_LEAD_OFF_FDR_DIV_4 3 ///< Lead-off current is at FDR/4.

/**
 * \brief Combined value of reserved bits in LOFF register.
 *
 */
#define ADS1299_REG_LOFF_RESERVED_VALUE 0

/* CHnSET REGISTERS **/

/**
 * \brief Bit mask definitions for CHnSET.PD (channel power-down).
 */
#define ADS1299_REG_CHNSET_CHANNEL_ON (0<<7)
#define ADS1299_REG_CHNSET_CHANNEL_OFF (1<<7)

/**
 * \brief Bit mask definitions for CHnSET.GAIN (channel PGA gain).
 *
 * Take care to ensure that the gain is appropriate for the common-mode level of the device inputs.
 * Higher gain settings have lower input-referred noise.
 * Consult the ADS1299 datasheet, pages 6-7 and 19-20, for more information.
 */
#define ADS1299_REG_CHNSET_GAIN_1 (0<<4) ///< PGA gain = 1.
#define ADS1299_REG_CHNSET_GAIN_2 (1<<4) ///< PGA gain = 2.
#define ADS1299_REG_CHNSET_GAIN_4 (2<<4) ///< PGA gain = 4.
#define ADS1299_REG_CHNSET_GAIN_6 (3<<4) ///< PGA gain = 6.
#define ADS1299_REG_CHNSET_GAIN_8 (4<<4) ///< PGA gain = 8.
#define ADS1299_REG_CHNSET_GAIN_12 (5<<4) ///< PGA gain = 12.
#define ADS1299_REG_CHNSET_GAIN_24 (6<<4) ///< PGA gain = 24.

byte gain_mask = 0b111<<4;
byte GAINS[7] = {ADS1299_REG_CHNSET_GAIN_1,
 ADS1299_REG_CHNSET_GAIN_2,
 ADS1299_REG_CHNSET_GAIN_4,
 ADS1299_REG_CHNSET_GAIN_6,
 ADS1299_REG_CHNSET_GAIN_8,
 ADS1299_REG_CHNSET_GAIN_12,
 ADS1299_REG_CHNSET_GAIN_24};
int ADS_GAINS[7] = { 1,
 2,
 4,
 6,
 8,
 12,
 24 };
/**
 * \brief Bit mask definitions for CHnSET.SRB2 (channel internal connection to SRB2 pin).
 */
#define ADS1299_REG_CHNSET_SRB2_DISCONNECTED (0<<3)
#define ADS1299_REG_CHNSET_SRB2_CONNECTED (1<<3)

/**
 * \brief Bit mask definitions for CHnSET.MUX (channel mux setting).
 *
 * Controls the channel multiplexing on the ADS1299.
 * Consult the ADS1299 datasheet, pages 16-17, for more information.
 */
#define ADS1299_REG_CHNSET_NORMAL_ELECTRODE 0 ///< Channel is connected to the corresponding positive and negative input pins.
#define ADS1299_REG_CHNSET_INPUT_SHORTED 1 ///< Channel inputs are shorted together. Used for offset and noise measurements.
#define ADS1299_REG_CHNSET_BIAS_MEASUREMENT 2 ///< Used with CONFIG3.BIAS_MEAS for bias measurement. See ADS1299 datasheet, pp. 53-54.

65

#define ADS1299_REG_CHNSET_MVDD_SUPPLY 3 ///< Used for measuring analog and digital supplies. See ADS1299 datasheet, p. 17.
#define ADS1299_REG_CHNSET_TEMPERATURE_SENSOR 4 ///< Measures device temperature. See ADS1299 datasheet, p. 17.
#define ADS1299_REG_CHNSET_TEST_SIGNAL 5 ///< Measures calibration signal. See ADS1299 datasheet, pp. 17 and 41.
#define ADS1299_REG_CHNSET_BIAS_DRIVE_P 6 ///< Connects positive side of channel to bias drive output.
#define ADS1299_REG_CHNSET_BIAS_DRIVE_N 7 ///< Connects negative side of channel to bias drive output.

/**
 * \brief Combined value of reserved bits in CHnSET registers.
 *
 */
#define ADS1299_REG_CHNSET_RESERVED_VALUE 0

/* BIAS_SENSP REGISTER **/

/**
 * \brief Bit mask definitions for BIAS_SENSP register (read-only).
 *
 * Consult the ADS1299 datasheet, page 44, for more information.
 */
#define ADS1299_REG_BIAS_SENSP_BIASP8 (1<<7)
#define ADS1299_REG_BIAS_SENSP_BIASP7 (1<<6)
#define ADS1299_REG_BIAS_SENSP_BIASP6 (1<<5)
#define ADS1299_REG_BIAS_SENSP_BIASP5 (1<<4)
#define ADS1299_REG_BIAS_SENSP_BIASP4 (1<<3)
#define ADS1299_REG_BIAS_SENSP_BIASP3 (1<<2)
#define ADS1299_REG_BIAS_SENSP_BIASP2 (1<<1)
#define ADS1299_REG_BIAS_SENSP_BIASP1 (1<<0)

byte BIAS_SENSP[7] = {ADS1299_REG_BIAS_SENSP_BIASP1,
 ADS1299_REG_BIAS_SENSP_BIASP2,
 ADS1299_REG_BIAS_SENSP_BIASP3,
 ADS1299_REG_BIAS_SENSP_BIASP4,
 ADS1299_REG_BIAS_SENSP_BIASP5,
 ADS1299_REG_BIAS_SENSP_BIASP6,
 ADS1299_REG_BIAS_SENSP_BIASP8};

/* BIAS_SENSN REGISTER **/

/**
 * \brief Bit mask definitions for BIAS_SENSN register (read-only).
 *
 * Consult the ADS1299 datasheet, page 44, for more information.
 */
#define ADS1299_REG_BIAS_SENSN_BIASN8 (1<<7)
#define ADS1299_REG_BIAS_SENSN_BIASN7 (1<<6)
#define ADS1299_REG_BIAS_SENSN_BIASN6 (1<<5)
#define ADS1299_REG_BIAS_SENSN_BIASN5 (1<<4)
#define ADS1299_REG_BIAS_SENSN_BIASN4 (1<<3)
#define ADS1299_REG_BIAS_SENSN_BIASN3 (1<<2)
#define ADS1299_REG_BIAS_SENSN_BIASN2 (1<<1)
#define ADS1299_REG_BIAS_SENSN_BIASN1 (1<<0)

byte BIAS_SENSN[7] = {ADS1299_REG_BIAS_SENSN_BIASN1,
 ADS1299_REG_BIAS_SENSN_BIASN2,
 ADS1299_REG_BIAS_SENSN_BIASN3,
 ADS1299_REG_BIAS_SENSN_BIASN4,
 ADS1299_REG_BIAS_SENSN_BIASN5,
 ADS1299_REG_BIAS_SENSN_BIASN6,
 ADS1299_REG_BIAS_SENSN_BIASN8};

/* LOFF_SENSP REGISTER **/

/**
 * \brief Bit mask definitions for LOFF_SENSP register (read-only).
 *
 * Consult the ADS1299 datasheet, page 45, for more information.
 */
#define ADS1299_REG_LOFF_SENSP_LOFFP8 (1<<7)
#define ADS1299_REG_LOFF_SENSP_LOFFP7 (1<<6)
#define ADS1299_REG_LOFF_SENSP_LOFFP6 (1<<5)
#define ADS1299_REG_LOFF_SENSP_LOFFP5 (1<<4)
#define ADS1299_REG_LOFF_SENSP_LOFFP4 (1<<3)
#define ADS1299_REG_LOFF_SENSP_LOFFP3 (1<<2)
#define ADS1299_REG_LOFF_SENSP_LOFFP2 (1<<1)
#define ADS1299_REG_LOFF_SENSP_LOFFP1 (1<<0)

/* LOFF_SENSN REGISTER **/

/**
 * \brief Bit mask definitions for LOFF_SENSN register (read-only).
 *
 * Consult the ADS1299 datasheet, page 45, for more information.
 */
#define ADS1299_REG_LOFF_SENSN_LOFFN8 (1<<7)
#define ADS1299_REG_LOFF_SENSN_LOFFN7 (1<<6)
#define ADS1299_REG_LOFF_SENSN_LOFFN6 (1<<5)
#define ADS1299_REG_LOFF_SENSN_LOFFN5 (1<<4)
#define ADS1299_REG_LOFF_SENSN_LOFFN4 (1<<3)
#define ADS1299_REG_LOFF_SENSN_LOFFN3 (1<<2)
#define ADS1299_REG_LOFF_SENSN_LOFFN2 (1<<1)
#define ADS1299_REG_LOFF_SENSN_LOFFN1 (1<<0)

/* LOFF_FLIP REGISTER **/

/**
 * \brief Bit mask definitions for LOFF_FLIP register (read-only).
 *
 * Consult the ADS1299 datasheet, page 45, for more information.

66

 */
#define ADS1299_REG_LOFF_FLIP_LOFF_FLIP8 (1<<7)
#define ADS1299_REG_LOFF_FLIP_LOFF_FLIP7 (1<<6)
#define ADS1299_REG_LOFF_FLIP_LOFF_FLIP6 (1<<5)
#define ADS1299_REG_LOFF_FLIP_LOFF_FLIP5 (1<<4)
#define ADS1299_REG_LOFF_FLIP_LOFF_FLIP4 (1<<3)
#define ADS1299_REG_LOFF_FLIP_LOFF_FLIP3 (1<<2)
#define ADS1299_REG_LOFF_FLIP_LOFF_FLIP2 (1<<1)
#define ADS1299_REG_LOFF_FLIP_LOFF_FLIP1 (1<<0)

/* LOFF_STATP REGISTER ***/

/**
 * \brief Bit mask definitions for LOFF_STATP register (read-only).
 *
 * Consult the ADS1299 datasheet, page 45, for more information.
 */
#define ADS1299_REG_LOFF_STATP_IN8P_OFF (1<<7)
#define ADS1299_REG_LOFF_STATP_IN7P_OFF (1<<6)
#define ADS1299_REG_LOFF_STATP_IN6P_OFF (1<<5)
#define ADS1299_REG_LOFF_STATP_IN5P_OFF (1<<4)
#define ADS1299_REG_LOFF_STATP_IN4P_OFF (1<<3)
#define ADS1299_REG_LOFF_STATP_IN3P_OFF (1<<2)
#define ADS1299_REG_LOFF_STATP_IN2P_OFF (1<<1)
#define ADS1299_REG_LOFF_STATP_IN1P_OFF (1<<0)

/* LOFF_STATN REGISTER ***/

/**
 * \brief Bit mask definitions for LOFF_STATN register (read-only).
 *
 * Consult the ADS1299 datasheet, page 45, for more information.
 */
#define ADS1299_REG_LOFF_STATN_IN8N_OFF (1<<7)
#define ADS1299_REG_LOFF_STATN_IN7N_OFF (1<<6)
#define ADS1299_REG_LOFF_STATN_IN6N_OFF (1<<5)
#define ADS1299_REG_LOFF_STATN_IN5N_OFF (1<<4)
#define ADS1299_REG_LOFF_STATN_IN4N_OFF (1<<3)
#define ADS1299_REG_LOFF_STATN_IN3N_OFF (1<<2)
#define ADS1299_REG_LOFF_STATN_IN2N_OFF (1<<1)
#define ADS1299_REG_LOFF_STATN_IN1N_OFF (1<<0)

/* GPIO REGISTER ***/

/**
 * \brief Bit mask definitions for GPIO.GPIODn (GPIO direction bits).
 *
 * The ADS1299 has 4 GPIO pins that can be manipulated via the SPI bus if there are not enough
 * GPIO pins available on the host.
 * GPIOD[4:1] controls the logic levels on GPIO pins 4:1.
 *
 * Consult the ADS1299 datasheet, page 46, for more information.
 */
#define ADS1299_REG_GPIO_GPIOD4_LOW (0<<7)
#define ADS1299_REG_GPIO_GPIOD4_HIGH (1<<7)
#define ADS1299_REG_GPIO_GPIOD3_LOW (0<<6)
#define ADS1299_REG_GPIO_GPIOD3_HIGH (1<<6)
#define ADS1299_REG_GPIO_GPIOD2_LOW (0<<5)
#define ADS1299_REG_GPIO_GPIOD2_HIGH (1<<5)
#define ADS1299_REG_GPIO_GPIOD1_LOW (0<<4)
#define ADS1299_REG_GPIO_GPIOD1_HIGH (1<<4)

/**
 * \brief Bit mask definitions for GPIO.GPIOCn (GPIO level).
 *
 * The ADS1299 has 4 GPIO pins that can be manipulated via the SPI bus if there are not enough
 * GPIO pins available on the host.
 * GPIOC[4:1] controls the pin direction on GPIO pins 4:1.
 *
 * Consult the ADS1299 datasheet, page 46, for more information.
 */
#define ADS1299_REG_GPIO_GPIOC4_OUTPUT (0<<3)
#define ADS1299_REG_GPIO_GPIOC4_INPUT (1<<3)
#define ADS1299_REG_GPIO_GPIOC3_OUTPUT (0<<2)
#define ADS1299_REG_GPIO_GPIOC3_INPUT (1<<2)
#define ADS1299_REG_GPIO_GPIOC2_OUTPUT (0<<1)
#define ADS1299_REG_GPIO_GPIOC2_INPUT (1<<1)
#define ADS1299_REG_GPIO_GPIOC1_OUTPUT (0<<0)
#define ADS1299_REG_GPIO_GPIOC1_INPUT (1<<0)

/**
 * \brief Combined value of reserved bits in GPIO register.
 *
 */
#define ADS1299_REG_GPIO_RESERVED_VALUE 0

/* MISC1 REGISTER **/

/**
 * \brief Bit mask definitions for MISC1.SRB1 (SRB1 internal connection).
 */
#define ADS1299_REG_MISC1_SRB1_OFF (0<<5) ///< Stim/ref/bias 1 turned off.
#define ADS1299_REG_MISC1_SRB1_ON (1<<5) ///< Stim/ref/bias 1 connected to all channel inverting inputs.

/**
 * \brief Combined value of reserved bits in MISC1 register.
 *
 */

67

#define ADS1299_REG_MISC1_RESERVED_VALUE 0

/* MISC2 REGISTER **/

/**
 * \brief Combined value of reserved bits in MISC2 register.
 *
 * MISC2 don't do nothin' right now!
 * Consult the ADS1299 user's guide, page 46, for more information.
 */
#define ADS1299_REG_MISC2_RESERVED_VALUE 0

const byte WAKEUP = 0b00000010; // Wake-up from standby mode
const byte STANDBY = 0b00000100; // Enter Standby mode
const byte RESET = 0b00000110; // Reset the device
const byte START = 0b00001000; // Start and restart (synchronize) conversions
const byte STOP = 0b00001010; // Stop conversion
const byte RDATAC = 0b00010000; // Enable Read Data Continuous mode (default mode at power-up)
const byte SDATAC = 0b00010001; // Stop Read Data Continuous mode
const byte RDATA = 0b00010010; // Read data by command; supports multiple read back

//Register Read Commands
const byte RREG = 0b00100000;
const byte WREG = 0b01000000;

const byte CH1 = 0x05;
const byte CH2 = 0x06;
const byte CH3 = 0x07;
const byte CH4 = 0x08;
const byte CH5 = 0x09;
const byte CH6 = 0x0A;
const byte CH7 = 0x0B;
const byte CH8 = 0x0C;
const byte CHn = 0xFF;

P i n _ T a b l e _ D e f s . h

// ###################### SAMD21 Pin Table ####################

#define PA02 15 // =========== NXR1: A0 - EDA Signal
#define PA04 18 // =========== NXR1: LED Red
#define PA05 19 // =========== NXR1: A4 - VBATT Level
#define PA06 20 // =========== NXR1: D8
#define PA07 21 // =========== NXR1: ADS1299 #0 - CLK
#define PB09 32 // =========== NXR1: A2
#define PB10 4 // =========== NXR1: DRDY
#define PA16 8 // =========== NXR1: ADS1299 #0/#1 - SPI MOSI
#define PA17 9 // =========== NXR1: ADS1299 #0/#1 - SPI SCK
#define PA18 24 // =========== NXR1: USB OTG sense
#define PA19 10 // =========== NXR1: ADS1299 #0/#1 - SPI MISO
#define PA20 6 // =========== NXR1: ADS1299 #1 - SPI CS2
#define PA21 7 // =========== NXR1: ADS1299 #0 - SPI CS1
#define PA22 0 // =========== NXR1: ADS1299 #0 - ext CLK trigger
#define PA23 1 // =========== NXR1: ADS1299 #0 - Reset
#define PB11 5 // =========== NXR1: CLK_SEL

#define PB08 31 // =========== NXR1: uBlox RST
#define PA08 11 // =========== NXR1: uBlox & IMU & Crypto - I2C
#define PA09 12 // =========== NXR1: uBlox & IMU & Crypto - I2C
#define PA12 26 // =========== NXR1: uBlox - TX_MOSI
#define PA13 27 // =========== NXR1: uBlox - RX_MISO
#define PA14 28 // =========== NXR1: uBlox - RTS_CS
#define PA15 29 // =========== NXR1: uBlox - CTS_SCK
#define PA27 30 // =========== NXR1: uBlox - GPIO0
#define PA28 35 // =========== NXR1: uBlox - ACK
#define PB22 14 // =========== NXR1: uBlox - TX
#define PB23 13 // =========== NXR1: uBlox - RX
#define PA10 2

#define PA11 3
#define PB02 16
#define PB03 17
#define PB10 4
#define PA03 25

// // ###################### UBLOX Pin Table ####################

// //---- MKR1010 / NovaXR v1 --------
// #define LED_GREEN 25 // =========== MKR1010: uBlox
// #define LED_BLUE 27 // =========== MKR1010: uBlox
// #define LED_RED 26 // =========== MKR1010: uBlox

// //---- NovaXR V1 --------
// // #define LED_BLUE 18 // =========== NXR: uBlox
// // #define LED_RED 17 // =========== NXR: uBlox

68

// // #################### SAMD21 ADC Definitions #############
// #define ADC_READS_SHIFT 8
// #define ADC_READS_COUNT (1 << ADC_READS_SHIFT)
// #define ADC_MIN_GAIN 0x0400
// #define ADC_UNITY_GAIN 0x0800
// #define ADC_MAX_GAIN (0x1000 - 1)
// #define ADC_RESOLUTION_BITS 12
// #define ADC_RANGE (1 << ADC_RESOLUTION_BITS)
// #define ADC_TOP_VALUE (ADC_RANGE - 1)
// #define MAX_TOP_VALUE_READS 10

// // ################### ADS1299 Definitions #################
// #define ADS1299_ID 0x1E
// #define MASKADC_ADR 0x1F

W i F i _ S e t t i n g s . h

#include <WiFiNINA.h>
#include <WiFiUdp.h>
#include <Ethernet.h>

// #define SECRET_SSID "raspi_wifi"
// #define SECRET_PASS "fluidfluid"

//#define SECRET_SSID "gitgudbruh"
//#define SECRET_PASS "giganticorchestra203"

#define SECRET_SSID "#8103"
#define SECRET_PASS "1423qweasd"
#define HOST_ID "10.0.0.74"
#define PORT_NUM 8899

#define SEND_SIZE 22
// 1 for serial count,
// 1 for valid array for the data packet (1 maps to data means invalid)
// 8 for ADS data, (- status bits, incorporated into valid array)
// 6 for IMU data,
// 1 for EDA
// 1 for temperature
// 1 for PPG
#define NUM_ELEMENTS 17
#define ELEM_SIZE 4
#define PACKET_SIZE (ELEM_SIZE*NUM_ELEMENTS)

// INDICES of PACKET WHERE EACH CATEGORY STARTS
#define i_VALID 1
#define i_ADS i_VALID + 1
#define i_IMU i_ADS + 8
#define i_EDA i_IMU + (3) /* IMU is 6 points, each of which is only 2 bytes */
#define i_TEM i_EDA + 1
#define i_PPG i_TEM + 1
#define i_TIM i_PPG + 1

// Indices of the valid bit for each of these data
// (this is not the same as the indices above due to the size
// difference between the data-- the IMU data is only 2 bytes,
// but are 6 differernt data points)
#define v_ADS 2
#define v_IMU v_ADS + 8
#define v_EDA v_IMU + 6
#define v_TEM v_EDA + 1
#define v_PPG v_TEM + 1
#define v_TIM v_PPG + 1

F a s c i a _ c o l l e c t _ s e n s o r _ d a t a . i n o

// library includes
#include "SAMD_AnalogCorrection.h"
#include <SPI.h>
#include "wiring_private.h"
//#include "I2Cdev.h"//
#include "MPU6050.h"
#include "Wire.h"//
#include "MAX30105.h"
// header files
#include "Pin_Table_Defs.h"
#include "WiFi_Settings.h"
#include "ads1299.h"

// define enum for boards and data retrieval types
enum board_types {NOVA_XR_V1, NOVA_XR_V2_SISTER, NOVA_XR_V2_MAIN, FASCIA_V0_0, FASCIA_V0_1};
enum data_mode_t {RDATA_CC_MODE, RDATA_SS_MODE};
enum run_mode_t {GEN_TEST_SIGNAL, NORMAL_ELECTRODES};

// settings
#define CONNECT_WIFI 1

69

#define BOARD_V FASCIA_V0_0
#define DATA_MODE RDATA_SS_MODE
#define RUN_MODE NORMAL_ELECTRODES
// v for verbose: lots of prints
#define v 0
// debug: serial reads and writes
#define debug 0
// REMEMBER: comment out lines in setup() and loop() for the sensors you do not have.

// Setup for SPI communications
SPIClass mySPI (&sercom1, PA19, PA17, PA16, SPI_PAD_0_SCK_1, SERCOM_RX_PAD_3);
const int SPI_CLK = 4*pow(10,6) ; //4MHz
// Setup for I2C communications
// PA08: SDA
// PA09: SCL
// MPU6050 I2C address: 0x110100X where X is the logic level in pin AD0
// and last bit is r/w
#define MPU_ADDR 0b11010000

// define pins depending on boards
int pLED;
int pBAT;
// ADS1299 ADC pins
const int pRESET = PA23; // reset pin
int pCS; // chip select pin
int pDRDY; // data ready pin
// EDA
const int pEDA = PA02;
// MPU6050 IMU pins
MPU6050 accelgyro;
const int pMPUint = PB03;
// PPG & temperature pins
MAX30105 particleSensor;

// define variables
int print_ch = -1;
bool LEDval = LOW;

int cnt = 0;

// ADS channel gains
byte ADS_CHANNEL_GAINS[8] = {/*chan 1 EMG Gain 4 */ ADS1299_REG_CHNSET_GAIN_4,
 /*chan 2 EMG Gain 4 */ ADS1299_REG_CHNSET_GAIN_4,
 /*chan 3 EOG Gain 2 */ ADS1299_REG_CHNSET_GAIN_4,
 /*chan 4 EMG Gain 4 */ ADS1299_REG_CHNSET_GAIN_4,
 /*chan 5 EEG Gain 12 */ ADS1299_REG_CHNSET_GAIN_12, // Passive Electrode
 /*chan 6 EEG Gain 12 */ ADS1299_REG_CHNSET_GAIN_12, // Passive Electrode
 /*chan 7 EEG Gain 1 */ ADS1299_REG_CHNSET_GAIN_1, // Active Electrode
 /*chan 8 EEG Gain 1 */ ADS1299_REG_CHNSET_GAIN_1 // Active Electrode
 };

void select_board_pins(void) {
 switch (BOARD_V){
 case NOVA_XR_V1: {
 Serial.println("initializing pins for Nova XR V1");
 pCS = PA21;
 pDRDY = PA10;
 break;
 }
 case NOVA_XR_V2_MAIN: {
 Serial.println("initializing pins for Nova XR V2 main board");
 pCS = PA21;
 pDRDY = PB10;
 // disable other ADS
 pinMode(PA20, OUTPUT);
 digitalWrite(PA20, HIGH);
 break;
 }
 case NOVA_XR_V2_SISTER: {
 Serial.println("initializing pins for Nova XR V2 sister board");
 pCS = PA20;
 pDRDY = PB02;
 // disable other ADS
 pinMode(PA21, OUTPUT);
 digitalWrite(PA21, HIGH);
 break;
 }
 case FASCIA_V0_0: {
 Serial.println("initializing pins for Fascia V0.0");
 pCS = PA20;
 pDRDY = PA07;
 pLED = PA04;
 pBAT = PA05;
 break;
 }
 case FASCIA_V0_1: {
 Serial.println("initializing pins for Fascia V0.1");
 pCS = PA20;
 pDRDY = PB10;
 break;
 }
 }
}

void initialize_pin_modes(void) {
 pinMode(pCS, OUTPUT);
 pinMode(pDRDY, INPUT);
 pinMode(pRESET, OUTPUT);
 pinMode(pEDA, INPUT);
 pinMode(pLED, OUTPUT);

70

 pinMode(pBAT, INPUT);
 pinPeripheral(PA19, PIO_SERCOM);
 pinPeripheral(PA17, PIO_SERCOM);
 pinPeripheral(PA16, PIO_SERCOM);
 if (DATA_MODE == RDATA_CC_MODE) {
 // attachInterrupt(pDRDY, DRDY_ISR, FALLING); // TODO figure out interrupt with input. malloc maybe?
 }
 // attachInterrupt(pMPUint, get_gyro_data, MODEDEODEOD);
}

void ADS_connect(void) {
 //enable ADS
 digitalWrite(pRESET, HIGH);
 digitalWrite(pCS, HIGH);
 delay(500);
 // select and reset ADS
 digitalWrite(pCS, LOW);
 mySPI.beginTransaction(SPISettings(SPI_CLK, MSBFIRST, SPI_MODE1));
 mySPI.transfer(RESET);
 mySPI.endTransaction();
 delay(100);
 digitalWrite(pCS, HIGH);
 delay(50);
 // read and print ADS device ID to ensure connection
 byte idval = ADS_RREG(0x0,1);
 Serial.print("connected to ADS device id "); Serial.println(idval,BIN);
 if (idval != 0x3E) {
 Serial.println("ADS device not properly connected");
 Serial.println("If the ADS ID number is 0xFF, you likely have an issue with power");
 while(1) { Serial.println("ADS device not properly connected");}
 }
}

void ADS_init(void) {
 // register map on page 44 of the data sheet;
 // pages expading on register descriptions follow in the next pages
 byte config2_data = ADS1299_REG_CONFIG2_RESERVED_VALUE | //0b11000000;
 ADS1299_REG_CONFIG2_CAL_PULSE_FCLK_DIV_2_21;
 byte config3_data = ADS1299_REG_CONFIG3_REFBUF_ENABLED | //0b11101100;
 ADS1299_REG_CONFIG3_RESERVED_VALUE |
 ADS1299_REG_CONFIG3_BIAS_MEAS_DISABLED |
 ADS1299_REG_CONFIG3_BIASREF_INT |
 ADS1299_REG_CONFIG3_BIASBUF_ENABLED |
 ADS1299_REG_CONFIG3_BIAS_LOFF_SENSE_DISABLED;
 byte channel_mode = ADS1299_REG_CHNSET_NORMAL_ELECTRODE;

 if (RUN_MODE == GEN_TEST_SIGNAL) {
 config2_data = ADS1299_REG_CONFIG2_RESERVED_VALUE | //0b11010000;
 ADS1299_REG_CONFIG2_CAL_INT |
 ADS1299_REG_CONFIG2_CAL_AMP_2VREF_DIV_2_4_MV |
 ADS1299_REG_CONFIG2_CAL_PULSE_FCLK_DIV_2_21;
 config3_data = ADS1299_REG_CONFIG3_REFBUF_ENABLED | //0b11100000;
 ADS1299_REG_CONFIG3_RESERVED_VALUE |
 ADS1299_REG_CONFIG3_BIAS_MEAS_DISABLED |
 ADS1299_REG_CONFIG3_BIASREF_EXT |
 ADS1299_REG_CONFIG3_BIASBUF_DISABLED |
 ADS1299_REG_CONFIG3_BIAS_LOFF_SENSE_DISABLED;
 channel_mode = ADS1299_REG_CHNSET_TEST_SIGNAL;
 }

 ADS_WREG(ADS1299_REGADDR_CONFIG1, ADS1299_REG_CONFIG1_RESERVED_VALUE |
 ADS1299_REG_CONFIG1_2kSPS); // last three bits is the data rate page 46 of data sheet
 ADS_WREG(ADS1299_REGADDR_CONFIG2, config2_data);
 ADS_WREG(ADS1299_REGADDR_CONFIG3, config3_data);
 ADS_WREG(ADS1299_REGADDR_CONFIG4, 0x00);//0b00001000);
 ADS_WREG(ADS1299_REGADDR_GPIO, 0x00);
 ADS_WREG(ADS1299_REGADDR_MISC1, 0x00);

 delay(10);
 ADS_WREG(ADS1299_REGADDR_CH1SET, ADS_CHANNEL_GAINS[0] |
 channel_mode |
 ADS1299_REG_CHNSET_CHANNEL_ON |
 ADS1299_REG_CHNSET_SRB2_DISCONNECTED);
 ADS_WREG(ADS1299_REGADDR_CH2SET, ADS_CHANNEL_GAINS[1] |
 channel_mode |
 ADS1299_REG_CHNSET_CHANNEL_ON |
 ADS1299_REG_CHNSET_SRB2_DISCONNECTED);
 ADS_WREG(ADS1299_REGADDR_CH3SET, ADS_CHANNEL_GAINS[2] |
 channel_mode |
 ADS1299_REG_CHNSET_CHANNEL_ON |
 ADS1299_REG_CHNSET_SRB2_DISCONNECTED);
 ADS_WREG(ADS1299_REGADDR_CH4SET, ADS_CHANNEL_GAINS[3] |
 channel_mode |
 ADS1299_REG_CHNSET_CHANNEL_ON |
 ADS1299_REG_CHNSET_SRB2_DISCONNECTED);
 ADS_WREG(ADS1299_REGADDR_CH5SET, ADS_CHANNEL_GAINS[4] |
 channel_mode |
 ADS1299_REG_CHNSET_CHANNEL_ON |
 ADS1299_REG_CHNSET_SRB2_CONNECTED);
 ADS_WREG(ADS1299_REGADDR_CH6SET, ADS_CHANNEL_GAINS[5] |
 channel_mode |
 ADS1299_REG_CHNSET_CHANNEL_ON |
 ADS1299_REG_CHNSET_SRB2_CONNECTED);
 ADS_WREG(ADS1299_REGADDR_CH7SET, ADS_CHANNEL_GAINS[6] |
 channel_mode |
 ADS1299_REG_CHNSET_CHANNEL_ON |
 ADS1299_REG_CHNSET_SRB2_CONNECTED);
 ADS_WREG(ADS1299_REGADDR_CH8SET, ADS_CHANNEL_GAINS[7] |
 channel_mode |
 ADS1299_REG_CHNSET_CHANNEL_ON |

71

 ADS1299_REG_CHNSET_SRB2_CONNECTED);

 // turn on bias for all EEG Channels (5-8)
 ADS_WREG(ADS1299_REGADDR_BIAS_SENSN, ADS1299_REG_BIAS_SENSN_BIASN8 |
 ADS1299_REG_BIAS_SENSN_BIASN7 |
 ADS1299_REG_BIAS_SENSN_BIASN6 |
 ADS1299_REG_BIAS_SENSN_BIASN5);

 // set up Lead-Off detection
 /* from page 63 in the manual:
 * 10.1.2.1 Lead-Off
 * Sample code to set dc lead-off with pull-up and pull-down resistors on all channels.
 * WREG LOFF 0x13 // Comparator threshold at 95% and 5%, pullup or pulldown resistor dc lead-off
 * WREG CONFIG4 0x02 // Turn on dc lead-off comparators
 * WREG LOFF_SENSP 0xFF // Turn on the P-side of all channels for lead-off sensing
 * WREG LOFF_SENSN 0xFF // Turn on the N-side of all channels for lead-off sensing
 * Observe the status bits of the output data stream to monitor lead-off status.
 */
// ADS_WREG(ADS1299_REGADDR_LOFF, 0x13);
// ADS_WREG(ADS1299_REGADDR_CONFIG4, 0x02);
// ADS_WREG(ADS1299_REGADDR_LOFF_SENSP, 0x0F);
// ADS_WREG(ADS1299_REGADDR_LOFF_SENSN, 0xFF);
// // TODO make sure this below works
// ADS_WREG(ADS1299_REGADDR_LOFF_FLIP, 0xF0); // flip the EEG channels since we are connecting them to the N end
}

void ADS_start(void) {
 digitalWrite(pCS, LOW);
 mySPI.beginTransaction(SPISettings(SPI_CLK, MSBFIRST, SPI_MODE1));
 mySPI.transfer(START);
 if (DATA_MODE == RDATA_SS_MODE) {
 mySPI.transfer(RDATA);
 } else if (DATA_MODE == RDATA_CC_MODE) {
 mySPI.transfer(RDATAC);
 }
}

void Arduino_ADC_setup() {
 //https://forum.arduino.cc/index.php?topic=443173.0
 //http://yaab-arduino.blogspot.com/2015/02/fast-sampling-from-analog-input.html
 //https://forum.arduino.cc/index.php?topic=6549.0

 // original SAMD bootloader code set to:
 // ADC->CTRLB.reg = ADC_CTRLB_PRESCALER_DIV512 | // Divide Clock by 512.
 // ADC_CTRLB_RESSEL_10BIT; // 10 bits resolution as default
 ADC->CTRLB.reg = ADC_CTRLB_PRESCALER_DIV16 | ADC_CTRLB_RESSEL_12BIT;
 Serial.println("done setting up ADC with lower prescaler value and higher bit resolution");
}

void setup_MAX30105() {
 if (!particleSensor.begin(Wire, I2C_SPEED_FAST)) {//Use default I2C port, 400kHz speed
 while (1){Serial.println("MAX30105 was not found. Please check wiring/power. ");}
 }
 //The LEDs are very low power and won't affect the temp reading much but
 //you may want to turn off the LEDs to avoid any local heating
 // can try setting data output rate (currently (default) close to the slowest)
 particleSensor.setup(/*byte powerLevel = */0x1F, /*byte sampleAverage = */4, /*byte ledMode =*/ 3, /*int sampleRate =*/3200); //Configure sensor. Turn
off LEDs
 // TODO increase sampling rate here!!!!

 //particleSensor.setup(); //Configure sensor. Use 25mA for LED drive
 //TODO seems like line below is not actually necessary
 particleSensor.enableDIETEMPRDY(); //Enable the temp ready interrupt. This is required.
 // particleSensor.setPulseAmplitudeGreen(0); //Turn off Green LED
 particleSensor.setPulseAmplitudeRed(0x0A); //Turn Red LED to low to indicate sensor is running
 Serial.println("done setting up MAX30105");
}

void setup_MPU6050() {
 accelgyro.initialize();
 // Test connection
 if (!accelgyro.testConnection()) {
 while (1){Serial.println("Failed to connect to MPU6050");}
 }

 // use the code below to print before/after and change accel/gyro offset values
 /*
 Serial.println("Updating internal sensor offsets...");
 accelgyro.setXGyroOffset(220);
 accelgyro.setYGyroOffset(76);
 accelgyro.setZGyroOffset(-85);
 */

 /*
 // data rate change?
 // SMPLRT_DIV register
 uint8_t getRate();
 void setRate(uint8_t rate);*/

 /*
 // Calibration Routines
 void CalibrateGyro(uint8_t Loops = 15); // Fine tune after setting offsets with less Loops.
 void CalibrateAccel(uint8_t Loops = 15);// Fine tune after setting offsets with less Loops.
 */
 Serial.println("Done setting up MPU6050");
}

void setup() {
 delay(1000);
 // initialize communications: spi, I2C, serial, and wifi if applicable

72

 mySPI.begin();
 Wire.begin();
 Serial.begin(115200);
 // set up indicator LED
 select_board_pins();
 initialize_pin_modes();
 digitalWrite(pLED, HIGH);

 #if (CONNECT_WIFI)
 setupWifi();
 #endif

 // initialize board and settings
 // make sure settings are compatible
 if (BOARD_V == FASCIA_V0_0 && DATA_MODE == RDATA_CC_MODE) {
 Serial.println("You cannot use Continuous Conversion mode on Fascia Version 0.0");
 Serial.println("The DRDY pin on this PCB (PA07) cannot be configured as an interrupt pin");
 while(1);
 }

 // speed up analog read speed
 Arduino_ADC_setup();

 // initialize MAX30105 PPG sensor (we will also be getting temperature data from it)
// setup_MAX30105();

 // initialize the IMU MPU6050
 setup_MPU6050();

 // initialize ads1299
 ADS_connect();
 ADS_init();
 ADS_start();
 Serial.println("Done with setup.");
 digitalWrite(pLED, LOW);
 #if debug
 print_serial_instructions();
 #endif
}

void print_serial_instructions() {
 Serial.println("Type the channel number to print that channel's data [1-8] (and plot, if you switch to Serial Plotter)");
 Serial.println("Or type '0' to stop printing the data.");
 Serial.println("type BN#0 to deactivate biasN for channel # and BN#1 to activate it");
 Serial.println("type BP#0 to deactivate biasP for channel # and BP#1 to activate it");
 Serial.println("type S#0 to deactivate SRB2 for channel # and B#1 to activate it");
 Serial.println("type G#N to set the gain for channel # to N=0:1, N=1:2, N=2:4, N=3:6, N=4:8, N=5:12, N=6:24");
 Serial.println("type T#0 to toggle channel # off, and T#1 to toggle channel # on");
 Serial.println("type 'R' or 'r' to print the current register settings of the ADS1299");
 Serial.println("type 'P' or 'p' to print these instructions again");
}

void loop() {
 #if debug
 if(Serial.available()>1){
 parse_serial_input();
 }
 #endif

 long packet[NUM_ELEMENTS];
 packet[i_VALID] = 0;

 #if v
 Serial.println("packet #"+String(cnt));
 #endif

 #if DATA_MODE == RDATA_SS_MODE
 DRDY_ISR(packet);
 #endif
// get_EDA_data(packet);
 if (!(cnt%10)) {
// get_PPG_temp_data(packet);
 get_EDA_data(packet);
 get_IMU_data(packet);
 } else {
 packet[i_VALID] |= (1<<v_PPG);
 packet[i_VALID] |= (1<<v_TEM);
 packet[i_VALID] |= (1<<v_EDA);
 packet[i_VALID] |= (0b111111<<v_IMU);
 }

 #if CONNECT_WIFI
 pushToBuf((char *)packet);
 sendWiFiDataPacket();
 #endif
}

void DRDY_ISR(long* packet) {
 //get all data before sign extending etc
 digitalWrite(pCS, LOW);
 if (DATA_MODE == RDATA_SS_MODE) {
 while(digitalRead(pDRDY));
 // Serial.println("DRDY just went low!");
 mySPI.transfer(START);
 mySPI.transfer(RDATA);
 }

 // first, read status bytes
 byte b1 = mySPI.transfer(0x00);
 byte b2 = mySPI.transfer(0x00);

73

 byte b3 = mySPI.transfer(0x00);
// Serial.println(b1,BIN);
// Serial.println(b2,BIN);
// Serial.println(b3,BIN);
 // figure out if the data is valid (if so, which)
 if ((b1 & 0xF0) == 0b11000000) {
 byte loff_p = (b1<<4) | (b2>>4);
 byte loff_n = (b2<<4) | (b3>>4);
// Serial.print("loff_p: "); Serial.println(loff_p,BIN);
// Serial.print("loff_n: "); Serial.println(loff_n,BIN);
 // TODO use loff-p and loff-n to figure out which channels might be invalid
 // the first 4 channels are EMG and EOG- they use both leads
 int i = 0;
 for (i; i < 4; i++) {
// packet[i_VALID] |= (((loff_p | loff_n) >> i) & 1) << (v_ADS + i);
 }
// Serial.print("packet[i_VALID]: "); Serial.println(packet[i_VALID],BIN);
 // the last 4 channels are all EEG, they use only the N inputs
 for (i; i < 8; i++) {
 }
 } else {
 Serial.println("invalid ADS1299 packet");
 for (int i = 3; i < 27; i++){
 mySPI.transfer(0x00);
 packet[i_VALID] |= 1 << (i_ADS + (i/3-1));
 }
 return;
 }

 // read channel data and sign extend it if valid
 byte temp[4] = {0,0,0,0};
 for (int i = 3; i < 27; i++){
 temp[2-((i+3)%3)] = mySPI.transfer(0x00);//DOUT[i];
 if ((i+3)%3 == 2) {
 int32_t d = *((int32_t*)temp);
 int ed = SIGN_EXT_24(d);//SIGNEXTEND(d);
 float cd = convert_ADC_volts(ed, ADS_GAINS[((ADS_CHANNEL_GAINS[i/3-1])>>4)]);
// Serial.println(String(i/3-1)+": "+String(ADS_GAINS[((ADS_CHANNEL_GAINS[i/3-1])>>4)]));
 packet[i_ADS + (i/3-1)] = *((long*)&cd);//ed;
 #if v
 Serial.print("ADS ");Serial.print(i/3);Serial.print(" ");Serial.println(ed);
// Serial.print("ADS ");Serial.print(i/3);Serial.print(" ");Serial.println(packet[i_ADS + i/3]);
 #endif
 if (i/3 == (print_ch)) {Serial.println(ed);}
 }
 }
}

float convert_ADC_volts(int raw_data, int gain) {
 float vref = 4.5;
 float fs = vref / gain;
 float converted_data = fs * raw_data / (pow(2,23)-1);
 // Serial.print(raw_data);Serial.print(" -> ");Serial.println(converted_data);
 return converted_data;
}

// returns the last byte read
byte ADS_RREG(byte r , int n) {
 if (r + n - 1 > 24)
 n = 24 - r ;
 digitalWrite(pCS, LOW);
 // Serial.print("Register "); Serial.print(r, HEX); Serial.println(" Data");
 mySPI.beginTransaction(SPISettings(SPI_CLK, MSBFIRST, SPI_MODE1));
 mySPI.transfer(SDATAC);
 mySPI.transfer(RREG | r); //RREG
 mySPI.transfer(n-1); // 24 Registers
 byte to_ret;
 for (int i = 0; i < n; i++)
 { byte temp = mySPI.transfer(0x00);
// Serial.println(temp, HEX);
 if ((n-i) == 1) to_ret = temp;
 }
 mySPI.endTransaction();
 digitalWrite(pCS, HIGH);
 return to_ret;
}

void ADS_WREG(byte r, byte d) {
 if (r == 0 || r == 18 || r == 19)
 Serial.println("Error: Read-Only Register");
 else
 { digitalWrite(pCS, LOW);
 mySPI.beginTransaction(SPISettings(SPI_CLK, MSBFIRST, SPI_MODE1));
 mySPI.transfer(SDATAC);
 mySPI.transfer(WREG | r); //RREG
 mySPI.transfer(0x00); // 24 Registers
 mySPI.transfer(d);
 mySPI.endTransaction();
 digitalWrite(pCS, HIGH);
 Serial.print("Wrote ");Serial.print(d, BIN); Serial.print(" to Register "); Serial.println(r, HEX);
 }
}

void parse_serial_input() {
 //TODO consider this
 // char* s = Serial.readStringUntil('\n');
 char c = Serial.read();
 char p;
 // if char is '0' - '8'
 if (c >= 0x30 && c <= 0x38) {

74

 print_ch = (c -0x30);
 // ('#'-> #) -> #-1 to index channels
 Serial.print("changed printing channel to ");Serial.println(print_ch);
 return;
 }
 switch (c) {
 case 'B':
 case 'b':
 p = Serial.read();
 c = Serial.read();
 if (c >= 0x31 && c <= 0x38) {
 if (p == 'p' || p == 'P') change_channel_biasP(c-0x30-1);
 if (p == 'n' || p == 'N') change_channel_biasN(c-0x30-1);
 }
 break;
 case 'S':
 case 's':
 c = Serial.read();
 if (c >= 0x31 && c <= 0x38) {
 change_channel_SRB2(c-0x30-1);
 }
 break;
 case 'G':
 case 'g':
 c = Serial.read();
 if (c >= 0x31 && c <= 0x38) {
 change_channel_gain(c-0x30-1);
 }
 break;
 case 'T':
 case 't':
 c = Serial.read();
 if (c >= 0x31 && c <= 0x38) {
 toggle_channel(c-0x30-1);
 }
 break;
 case 'p':
 case 'P':
 print_serial_instructions();
 break;
 case 'r':
 case 'R':
 print_ADS_reg_settings();
 break;
 case 0xA:
 break;
 default:
 Serial.println(c, HEX);
 Serial.println("!!invalid input");
 break;
 }
}

void change_channel_SRB2(int chan){
 char c = Serial.read();
 Serial.print("CHANNELS[chan] ");Serial.println(CHANNELS[chan],HEX);
 byte old_val = ADS_RREG(CHANNELS[chan], 1);
 byte change = 0;
 byte new_val;
 if (c == '1') {
 change = ADS1299_REG_CHNSET_SRB2_CONNECTED;
 new_val = old_val | change;
 } else if (c == '0'){
 change = 0xFF ^ ADS1299_REG_CHNSET_SRB2_CONNECTED;
 new_val = old_val & change;
 } else {
 Serial.println("invalid input");return;
 }
 Serial.print("changing SRB2 of channel "); Serial.print(chan);Serial.print(" to be ");Serial.println(c);
 Serial.println(change,BIN);
 Serial.print(old_val, BIN);Serial.print(" -> ");Serial.println(new_val, BIN);
 ADS_WREG(CHANNELS[chan], new_val);
 // START CONVERSION AGAIN
 if (DATA_MODE == RDATA_CC_MODE) {
 digitalWrite(pCS, LOW);
 mySPI.transfer(START);
 mySPI.transfer(RDATAC);
 }
}

void change_channel_biasN(int chan){
 char c = Serial.read();
 // Serial.print("CHANNELS[chan] ");Serial.println(CHANNELS[chan],HEX);
 byte old_val = ADS_RREG(ADS1299_REGADDR_BIAS_SENSN, 1);
 byte change = 0;
 byte new_val;
 if (c == '1') {
 change = BIAS_SENSN[chan];
 new_val = old_val | change;
 } else if (c == '0'){
 change = 0xFF ^ BIAS_SENSN[chan];
 new_val = old_val & change;
 } else {
 Serial.println("invalid input");return;
 }
 Serial.print("changing biasN of channel "); Serial.print(chan);Serial.print(" to be ");Serial.println(c);
 Serial.println(change,BIN);
 Serial.print(old_val, BIN);Serial.print(" -> ");Serial.println(new_val, BIN);
 ADS_WREG(ADS1299_REGADDR_BIAS_SENSN, new_val);
 // START CONVERSION AGAIN

75

 if (DATA_MODE == RDATA_CC_MODE) {
 digitalWrite(pCS, LOW);
 mySPI.transfer(START);
 mySPI.transfer(RDATAC);
 }
}

void change_channel_biasP(int chan){
 char c = Serial.read();
 // Serial.print("CHANNELS[chan] ");Serial.println(CHANNELS[chan],HEX);
 byte old_val = ADS_RREG(ADS1299_REGADDR_BIAS_SENSP, 1);
 byte change = 0;
 byte new_val;
 if (c == '1') {
 change = BIAS_SENSP[chan];
 new_val = old_val | change;
 } else if (c == '0'){
 change = 0xFF ^ BIAS_SENSP[chan];
 new_val = old_val & change;
 } else {
 Serial.println("invalid input");return;
 }
 Serial.print("changing biasP of channel "); Serial.print(chan);Serial.print(" to be ");Serial.println(c);
 Serial.println(change,BIN);
 Serial.print(old_val, BIN);Serial.print(" -> ");Serial.println(new_val, BIN);
 ADS_WREG(ADS1299_REGADDR_BIAS_SENSP, new_val);
 // START CONVERSION AGAIN
 if (DATA_MODE == RDATA_CC_MODE) {
 digitalWrite(pCS, LOW);
 mySPI.transfer(START);
 mySPI.transfer(RDATAC);
 }
}

void change_channel_gain(int chan){
 Serial.print("CHANNELS[chan] ");Serial.println(CHANNELS[chan],HEX);
 char c = Serial.read();
 byte old_val = ADS_RREG(CHANNELS[chan], 1);
 byte gain = 0;
 byte new_val;
 if (c >= 0x30 && c <= 0x36) {
 gain = GAINS[c-0x30];
 new_val = (old_val & (~gain_mask)) | gain;
 } else {
 Serial.println("invalid input");return;
 }
 Serial.print("changing gain of channel "); Serial.print(chan);Serial.print(" to be ");Serial.println(c-0x30,BIN);
 Serial.println(gain,BIN);
 Serial.print(old_val, BIN);Serial.print(" -> ");Serial.println(new_val, BIN);
 ADS_WREG(CHANNELS[chan], new_val);
 // START CONVERSION AGAIN
 if (DATA_MODE == RDATA_CC_MODE) {
 digitalWrite(pCS, LOW);
 mySPI.transfer(START);
 mySPI.transfer(RDATAC);
 }
}

void toggle_channel(int chan){
 Serial.print("CHANNELS[chan] ");Serial.println(CHANNELS[chan],HEX);
 char c = Serial.read();
 byte old_val = ADS_RREG(CHANNELS[chan], 1);
 byte new_val;
 if (c == '1') {
 new_val = old_val & 0x7F;
 } else if (c == '0'){
 new_val = old_val | 0x80;
 } else {
 Serial.println("invalid input");return;
 }
 Serial.print("turning channel "); Serial.print(chan);Serial.print(" to be ");
 if(c=='1') Serial.println("on");
 else Serial.println("off");
 Serial.print(old_val, BIN);Serial.print(" -> ");Serial.println(new_val, BIN);
 ADS_WREG(CHANNELS[chan], new_val);
 // START CONVERSION AGAIN
 if (DATA_MODE == RDATA_CC_MODE) {
 digitalWrite(pCS, LOW);
 mySPI.transfer(START);
 mySPI.transfer(RDATAC);
 }
}

void print_ADS_reg_settings() {
 for(uint8_t address =0; address<24; address++){
 Serial.print("Register Address: 0x"); Serial.print(address,HEX);
 Serial.print("\t");
 Serial.print(ADS_reg_names[address]);
 Serial.print("\t");
 if(!(address>12 && address <20)) Serial.print("\t");
 byte data = ADS_RREG(address,1);
 Serial.print("Register Data: 0x"); Serial.print(data, HEX);
 Serial.print("\t");
 Serial.print("0b"); Serial.print(data, BIN);
 Serial.println();
 }

// // START CONVERSION AGAIN
// if (DATA_MODE == RDATA_CC_MODE) {
// digitalWrite(pCS, LOW);

76

// mySPI.transfer(START);
// mySPI.transfer(RDATAC);
// }
}

inline void get_IMU_data(long* packet){
 int16_t ax, ay, az, gx, gy, gz;
 accelgyro.getMotion6(&ax, &ay, &az, &gx, &gy, &gz);
 // NEED to convert from raw data to some underestandable units

 // insert imy data into packet
 ((int16_t*)&(packet[i_IMU]))[0] = ax;
 ((int16_t*)&(packet[i_IMU]))[1] = ay;
 ((int16_t*)&(packet[i_IMU]))[2] = az;
 ((int16_t*)&(packet[i_IMU]))[3] = gx;
 ((int16_t*)&(packet[i_IMU]))[4] = gy;
 ((int16_t*)&(packet[i_IMU]))[5] = gz;

 #if v
 for (int i = 0; i < 6; i++) {
// Serial.println("IMU "+String(i)+" "+String(((int16_t*)packet)[(2*i_IMU)+i])); //wrong indexing
 Serial.println("IMU "+String(i)+" "+String(((int16_t*)&(packet[i_IMU]))[i]));
 }
 #endif

 /* From MPU6050 register maps (pg 31), Gyroscope:
 *
 * FS_SEL Full Scale Range LSB Sensitivity
 * 0 ± 250 °/s 131 LSB/°/s [DEFAULT]
 * 1 ± 500 °/s 65.5 LSB/°/s
 * 2 ± 1000 °/s 32.8 LSB/°/s
 * 3 ± 2000 °/s 16.4 LSB/°/s
 */
 // conversion: g/131 = # °/s

 /* From MPU6050 register maps (pg 29) , Accelerometer:
 *
 * FS_SEL Full Scale Range LSB Sensitivity
 * 0 ± 2 g 16384 LSB/g [DEFAULT]
 * 1 ± 4 g 8192 LSB/g
 * 2 ± 8 g 4096 LSB/g
 * 3 ± 16 g 2048 LSB/g
 */
 // conversion: a/16384 = #g *9.81 = # m/s^2

/*
 // MOT_DETECT_STATUS register
 uint8_t getMotionStatus();
 bool getXNegMotionDetected();
 bool getXPosMotionDetected();
 bool getYNegMotionDetected();
 bool getYPosMotionDetected();
 bool getZNegMotionDetected();
 bool getZPosMotionDetected();
 bool getZeroMotionDetected();
*/
}

// number of eda data points to use to average
int eda_avg_size = 10;
// current index of the value being added
int eda_idx = 0;
// current total so far for the first eda_idx samples
int eda_total = 0;
//int eda_vals[eda_avg_size];

inline void get_EDA_data(long* packet) {
 int vEDA = analogRead(pEDA);
// eda_vals[eda_idx] = vEDA;
 eda_total += vEDA;
 eda_idx = (eda_idx+1) % eda_avg_size;
 // if we have collected enough samples to average
 if ((eda_idx % eda_avg_size) == 0) {
// for (int i = 0; i < eda_avg_size; i++)
 float avg_vEDA = eda_total / eda_avg_size;
 float Rskin = convert_eda_adc_to_Rskin(avg_vEDA);
 packet[i_EDA] = *((long*)(&Rskin));
 eda_total = 0;
 } else {
 // if not ready to average yet, mark EDA as invalid
 packet[i_VALID] |= (1<<v_EDA);
 }
// Serial.println(String(eda_idx)+" , "+String(eda_total));

 #if v
// Serial.print("EDA "); Serial.println(vEDA);
 Serial.print("EDA "); Serial.println(packet[i_EDA]);
 #endif
}

inline float convert_eda_adc_to_Rskin(int sensorValue) {
 float Vout = (sensorValue * 3.3)/4095;

 // these are constants- should not change between iterations
 // values are from the PCB layout/schematic in Fascia Physio Board V0
 const int Rref = 820000; // reference resistor between - opamp and gnd
 // Rref might actually be 2M or 820K -- undocumented board build value
 const float Vref = 3.3 * 20./(20.+140.); // voltage divider output (virtual gnd)

77

 const float i = (float)Vref / (float)Rref;

 float Rskin = (Vout - Vref) / i;
// Serial.println(String(Vref)+", "+ String(Vout)+", "+String(Rskin));
 //float Cskin = 1./Rskin;

 return Rskin;
}

//inline void get_battery_v(long* packet) {
// packet[i_BAT] = analogRead(pBAT);
//}

inline void get_PPG_temp_data(long* packet) {
 particleSensor.requestTemperature();
 long irValue = particleSensor.getIR(1); // ms to wait TODO figure out smallest good
 // TODO MATCH THIS WITH DATA SAMPLE RATE IN .SETUP()
 packet[i_PPG] = irValue;
// Serial.println(irValue);
 if (irValue < 50000){
 #if v
 Serial.println("No contact with sensor "+String(irValue));
 #endif
 packet[i_VALID] |= (1<<v_PPG);
 packet[i_VALID] |= (1<<v_TEM); // TODO keep this here????
 if (irValue != 0) packet[i_VALID] |= (1<<v_TIM);
// return;
 }

 float temperature = particleSensor.readTemperature();
 packet[i_TEM] = *(long*)(&temperature); //TODO make sure this casting works properly

 #if v
 Serial.print("TMP ");Serial.println(temperature);
 // Serial.print("TMP ");Serial.println(packet[i_TEM]);

 Serial.print("PPG ");Serial.println(irValue);
 // Serial.print("PPG ");Serial.println(packet[i_PPG]);
 #endif
}

/////////////////////////////////// WIFI STUFF //////////////////////////////////////
//int cnt = 0;

//There are two buffer used for wifi data sending.
char sendBuf[2][PACKET_SIZE*SEND_SIZE];

//Indicating which buffer is being written
int wBufIndex = 0;

//Indicates how much data packets are written into the current buffer
int wCount = 0;
bool isBufReady = false;

//For WIFI
int status = WL_IDLE_STATUS;
char ssid[] = SECRET_SSID;
char pass[] = SECRET_PASS;
unsigned int localPort = PORT_NUM; // local port to listen on

WiFiUDP Udp;

inline char* getWriteBuf()
{
 return sendBuf[wBufIndex];
}

//Get the buffer for sending
//Have to be in non-interrupt context
inline char* getSendBuf()
{
 if(isBufReady == true)
 {
 isBufReady = false;
 return wBufIndex == 0 ? sendBuf[1] : sendBuf[0];
 }
 else
 {
 return 0;
 }
}

//Write one data packet into the buffer.
inline void pushToBuf(char* packet)
{
 ((int*)packet)[0] = cnt;
 ((int*)packet)[i_TIM] = millis();
// Serial.println(((int*)packet)[i_TIM]);
 cnt++;
 //When current buffer is full
 if(wCount == SEND_SIZE)
 {
 //Switch buffer
 wBufIndex = (wBufIndex +1)%2;
 isBufReady = true;
 wCount = 0;
 //Serial.println("Switch Buffer");
 }

78

 //Write to buffer
 char* buf = getWriteBuf();
 memcpy(buf+wCount*PACKET_SIZE, packet, PACKET_SIZE);
 wCount++;

}

void printWiFiStatus() {
 // print the SSID of the network you're attached to:
 Serial.print("SSID: ");
 Serial.println(WiFi.SSID());

 // print your WiFi shield's IP address:
 IPAddress ip = WiFi.localIP();
 Serial.print("IP Address: ");
 Serial.println(ip);

 Serial.print("Data host IP: ");
 Serial.println(HOST_ID);

 // print the received signal strength:
 long rssi = WiFi.RSSI();
 Serial.print("signal strength (RSSI):");
 Serial.print(rssi);
 Serial.println(" dBm");
}

void setupWifi()
{
 //Setup the wifi
 // check for the WiFi module:
 if (WiFi.status() == WL_NO_MODULE) {
 Serial.println("Communication with WiFi module failed!");
 // don't continue
 while (true);
 }

 String fv = WiFi.firmwareVersion();
 if (fv < "1.0.0") {
 Serial.println("Please upgrade the firmware");
 }

 // attempt to connect to Wifi network:
 while (status != WL_CONNECTED) {
 Serial.print("Attempting to connect to SSID: ");
 Serial.println(ssid);
 // Connect to WPA/WPA2 network. Change this line if using open or WEP network:
 status = WiFi.begin(ssid, pass);

 // wait 10 seconds for connection:
 delay(5000);
 }
 Serial.println("Connected to wifi");
 printWiFiStatus();

 Serial.println("\nStarting connection to server...");
 // if you get a connection, report back via serial:
 Udp.begin(localPort);

}

inline void sendWiFiDataPacket() {
 byte* sBuf = (byte*)getSendBuf();

 if(sBuf != 0){
 Udp.beginPacket(HOST_ID, PORT_NUM);
 int nbytes = Udp.write(sBuf, PACKET_SIZE*SEND_SIZE);
 Udp.endPacket();
 if (nbytes != PACKET_SIZE*SEND_SIZE) {
 Serial.println("Failed to send packet. Sent "+String(nbytes)+" bytes only");
 } else {
 #if v
 Serial.println("Successfully sent full packet of "+String(nbytes)+" bytes");
 #endif
 }
 }
 LEDval = (cnt%10)? LEDval : !LEDval;
// Serial.println("cnt = "+String(cnt)+" LEDVAL = "+String(LEDval));
 digitalWrite(pLED, LEDval);
}

79

A P P E N D I X C : P Y T H O N V I S U A L I Z A T I O N C O D E

https://github.mit.edu/gbernal/Fascia_nucleus/tree/master/Fasc
ia_dataViz/Fascia_sensor_data_plotter

C a u s a l B u t t e r . p y

"CausalButter.py" is the python class I wrote to implement the causal butterworth filter (same algorithm as Tianhe_filter but in python)

reference here: http://www.exstrom.com/journal/sigproc/
http://www.exstrom.com/journal/sigproc/bwbpf.c
import math

class CausalButter:
 # the default init method assumes Causal butter is a bandpass filter, and allows signal frequency from f_low to f_high to pass.
 # when bandstop == 1, the causal butter filter becomes bandstop and signal frequency from f_low to f_high will be filtered out
 def __init__(self,order,f_low,f_high,sampleRate,bandstop=0):
 if order%4 != 0:
 print ("the order of CausalButter has to be a multiple of 4")
 return
 self.f_high = f_high
 self.f_low = f_low
 self.sampleRate = sampleRate
 self.order = order
 self.bandstop = bandstop

 s = self.sampleRate
 a = math.cos(math.pi*(f_high+f_low)/s)/math.cos(math.pi*(f_high-f_low)/s)
 a2 = a**2
 b = math.tan(math.pi*(f_high-f_low)/s);
 b2 = b**2
 n = int(order/4)
 self.n = int(order/4)
 self.a = a
 self.a2 = a2
 self.b = b
 self.b2 = b2

 self.A = [0]*n
 self.d1 = [0]*n
 self.d2 = [0]*n
 self.d3 = [0]*n
 self.d4 = [0]*n
 self.w0 = [0]*n
 self.w1 = [0]*n
 self.w2 = [0]*n
 self.w3 = [0]*n
 self.w4 = [0]*n

 if self.bandstop ==0:
 for i in range(n):
 r = math.sin(math.pi*(2.0*i+1.0)/(4.0*n));
 s = b2 + 2.0*b*r + 1.0;
 self.A[i] = b2/s;
 self.d1[i] = 4.0*a*(1.0+b*r)/s;
 self.d2[i] = 2.0*(b2-2.0*a2-1.0)/s;
 self.d3[i] = 4.0*a*(1.0-b*r)/s;
 self.d4[i] = -(b2 - 2.0*b*r + 1.0)/s;
 else:
 for i in range(n):
 r = math.sin(math.pi*(2.0*i+1.0)/(4.0*n));
 s = b2 + 2.0*b*r + 1.0;
 self.A[i] = 1/s;
 self.d1[i] = 4.0*a*(1.0+b*r)/s;
 self.d2[i] = 2.0*(b2-2.0*a2-1.0)/s;
 self.d3[i] = 4.0*a*(1.0-b*r)/s;
 self.d4[i] = -(b2 - 2.0*b*r + 1.0)/s;
 self.r = 4.0*a;
 self.s = 4.0*a2+2.0;

 def inputData(self, raw_data):
 #BUGMAN 5/24/2017 modified the npts
 npts = len(raw_data);
 filtered_data = [None]*npts;

 # the default is to create a bandpass causal butter filter
 if self.bandstop ==0:
 for pnt in range(npts):
 x = raw_data[pnt]
 for i in range(self.n):
 self.w0[i] = self.d1[i]*self.w1[i] + self.d2[i]*self.w2[i] + self.d3[i]*self.w3[i] + self.d4[i]*self.w4[i] + x;
 x = self.A[i]*(self.w0[i] - 2.0*self.w2[i] + self.w4[i]);
 self.w4[i] = self.w3[i];
 self.w3[i] = self.w2[i];
 self.w2[i] = self.w1[i];
 self.w1[i] = self.w0[i];
 filtered_data[pnt] = x
 else:

80

 for pnt in range(npts):
 x = raw_data[pnt]
 for i in range(self.n):
 self.w0[i] = self.d1[i]*self.w1[i] + self.d2[i]*self.w2[i] + self.d3[i]*self.w3[i] + self.d4[i]*self.w4[i] + x;
 # bandstop method changed some coefficients here
 x = self.A[i]*(self.w0[i] - self.r*self.w1[i] + self.s*self.w2[i] - self.r*self.w3[i]+ self.w4[i]);
 self.w4[i] = self.w3[i];
 self.w3[i] = self.w2[i];
 self.w2[i] = self.w1[i];
 self.w1[i] = self.w0[i];
 filtered_data[pnt] = x

 return filtered_data

 def printParams(self):
 print('self.f_high is ', self.f_high)
 print('self.f_low is ', self.f_low)
 print('self.sampleRate is ', self.sampleRate)
 print('self.order is ', self.order)
 print('self.n is ', self.n)
 print('self.a is ', self.a)
 print('self.a2 is ', self.a2)
 print('self.b is ', self.b)
 print('self.b2 is ', self.b2)
 print('self.A is ', self.A)
 print('self.d1 is ', self.d1)
 print('self.d2 is ', self.d2)
 print('self.d3 is ', self.d3)
 print('self.d4 is ', self.d4)
 print('self.w0 is ', self.w0)
 print('self.w1 is ', self.w1)
 print('self.w2 is ', self.w2)
 print('self.w3 is ', self.w3)
 print('self.w4 is ', self.w4)

f l o a t i n g C u r v e s . p y

"""
This class is a widget it allows displaying multiple graphs and float each as a window if needed on real time.
Updating the graph will be done outside of this class.
"""

import sys
from PyQt5 import QtGui, QtCore, QtWidgets
import numpy as np
import pyqtgraph as pg

class floatingCurves_Max(QtWidgets.QMainWindow):
 def __init__(self, curve:pg.PlotDataItem, oldWidget:pg.PlotWidget ,parent=None):
 super(floatingCurves_Max, self).__init__(parent)
 self.oldWidget = oldWidget
 self.curve = curve
 plotWidget = pg.PlotWidget()
 plotWidget.addItem(curve)
 centralWidget = QtWidgets.QWidget(self)
 self.setCentralWidget(plotWidget)

 def closeEvent(self, a0):
 self.oldWidget.addItem(self.curve)

 return super().closeEvent(a0)

class floatingCurves(QtWidgets.QWidget):

 def __init__(self, channelNum, start_i, fft_chan):
 super(floatingCurves, self).__init__()
 self.curveList = list()
 self.plotWidgetList = list()

 #Perpare the layout
 self.layout = QtWidgets.QGridLayout()

 self.setLayout(self.layout)
 self.titles = ["packet number", "Valid array", "ADS 1: EMG 1/2 (volts)", "ADS 2: EMG 4/3 (volts)", "ADS 3: EOG 1/2 (volts)",
 "ADS 4: EMG 7/8 (volts)", "ADS 5: EEG1 (PASSIVE) (volts)", "ADS 6: EEG2 (PASSIVE) (volts)", "ADS 7: EEG (ACTIVE) (volts)", "ADS 8:
EEG (ACTIVE) (volts)",
 "IMU Ax", "IMU Ay","IMU Az", "IMU Gx","IMU Gy", "IMU Gz",#"IMU 7", "IMU 8","IMU 9",
 "EDA: Rskin (Ohm)","temperature (C)", "PPG raw data", "FFT from ADS "+str(fft_chan)]#,"battery voltage level"]#"heart rate
arduino"]
 self.generateGraphsArray(channelNum, start_i)
 self.addText()

 def addText(self):
 PN = QtWidgets.QLabel()
 PN.setText("Packet #: ")
 self.layout.addWidget(PN)
 self.PN = PN
 PDR = QtWidgets.QLabel()

81

 PDR.setText("P Data Rate: ")
 self.layout.addWidget(PDR) #pg.TextItem("Data Rate: ")
 self.PDR = PDR
 ADR = QtWidgets.QLabel()
 ADR.setText("A Data Rate: ")
 self.layout.addWidget(ADR) #pg.TextItem("Data Rate: ")
 self.ADR = ADR
 HR = QtWidgets.QLabel()
 HR.setText("Heart Rate: ")
 self.layout.addWidget(HR)
 self.HR = HR

 def addCurve(self, newCurve:pg.PlotDataItem, x, y, t):
 self.curveList.append(newCurve)
 plotWidget = pg.PlotWidget(title=t)
 plotWidget.addItem(newCurve)
 self.plotWidgetList.append(plotWidget)
 self.layout.addWidget(plotWidget,x,y)
 #Add the button
 button = QtWidgets.QPushButton("+",plotWidget)
 button.resize(20,20)
 button.clicked.connect(self.make_btn_floatWnd(len(self.curveList)-1))

 def generateGraphsArray(self, channelNum, start_i):
 for i in range(channelNum):
 newCurve = pg.PlotDataItem()
 y = int(i/4)
 x = i%4
 self.addCurve(newCurve ,x,y, self.titles[i+start_i])

 def make_btn_floatWnd(self, index):
 def btn_floatWnd():
 newWnd = floatingCurves_Max(self.curveList[index], self.plotWidgetList[index], self)
 newWnd.show()
 return btn_floatWnd

 def updateCurve(self, index, data: list(), data_x: list() = []):
 if data_x != []:
 self.curveList[index].setData(x=data_x, y=data)
 else:
 self.curveList[index].setData(y=data)

#Used for testing

win = pg.GraphicsWindow()
win.addPlot()

B C I _ D a t a _ R e c e i v e r . p y

import socket
import sys
import time
import numpy as np
import threading
import struct

import time

class BCI_Data_Receiver(object):

 def __init__(self, ip, port, data_plotting_widget):
 self.ip = ip
 self.port = port
 self.sock = None
 self.receiveBuff= bytes()
 self.dataBuff = []
 self.dataReadyCallback = None
 self.readingThread = None
 self.address = (self.ip, self.port)
 self.prev_time_stamp = 0
 self.prev_EDA_time_stamp = 0
 # self.prev_PPG_time_stamp = 0
 self.dataPlottingWidget = data_plotting_widget
 self.current_data_rate = 1

 self.prev_A_ts = 0;

 def startConnection(self):
 """Start the socket connection"""
 # self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 #For UDP
 self.sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
 self.sock.bind(self.address)
 print(self.address)
 # self.sock.connect(("192.168.1.10",35294))
 self.sock.settimeout(30.0)
 self.processStream()

 def asyncReceiveData(self, dataReadyCallback):
 """Receive the data from ADS1299 asynchronously."""
 if self.readingThread == None:
 self.dataReadyCallback = dataReadyCallback
 self.readingThread = threading.Thread(target = self.startConnection)
 self.readingThread.start()
 else:

82

 raise Exception("The reading thread is already running!")

 def processStream(self):
 data_names = ["PKT #", "VALID", "ADS 1", "ADS 2", "ADS 3","ADS 4", "ADS 5", "ADS 6", "ADS 7", "ADS 8",
 "IMU 0", "IMU 1", "IMU 2", "IMU 3", "IMU 4", "IMU 5", #"IMU 7", "IMU 8", "IMU 9",
 "EDA ", "TEMP ", "PPG ", "TIM"]#, "BTR "]#"HRT "]
 num_elements = 17
 num_bytes = 4*num_elements
 num_packets = 22
 while True:
 #Receive data from sensor
 data, addr = self.sock.recvfrom(num_bytes*num_packets)
 cur_time_stamp = time.time()
 # print("data rate: "+str(int(num_packets/(cur_time_stamp-self.prev_time_stamp))) + " Hz")
 self.current_data_rate = int(num_packets/(cur_time_stamp-self.prev_time_stamp))
 t = "P Data Rate: "+str(self.current_data_rate)+" Hz"
 self.dataPlottingWidget.PDR.setText(t)
 self.prev_time_stamp = time.time()
 # print(data, addr)
 #self.receiveBuff = self.receiveBuff + self.sock.recv(40)
 self.receiveBuff = self.receiveBuff + data

 if(len(self.receiveBuff) >= num_bytes*num_packets):
 data = self.receiveBuff[0:num_bytes*num_packets]
 self.receiveBuff = self.receiveBuff[num_bytes*num_packets:]
 for i in range(num_packets):
 unpacked_data = struct.unpack('i'+'i'+'f'*8+'h'*6+'f'+'f'+'ii', data[i*num_bytes: (i+1)*num_bytes])
 # unpacked_data = struct.unpack('i'*num_elements, data[i*num_bytes: (i+1)*num_bytes])
 #from manual For the 'f', 'd' and 'e' conversion codes, the packed representation uses the IEEE 754 binary32, binary64 or binary16
format (for 'f', 'd' or 'e' respectively), regardless of the floating-point format used by the platform.

 # print(unpacked_data[19], self.prev_A_ts)
 if unpacked_data[19] != self.prev_A_ts:
 dr = 1000/(unpacked_data[19] - self.prev_A_ts)
 # print(dr)
 t = "A Data Rate: " + str(int(dr)) + " Hz"
 self.dataPlottingWidget.ADR.setText(t)
 self.prev_A_ts = unpacked_data[19] # milliseconds

 # For Walaa: debug prints

 # for j in range(num_elements):
 # print(data_names[j] + ' ' + str(unpacked_data[j]))

 # if (unpacked_data[1] & (1<<16)) == 0:
 # # EDA is valid
 # print("EDA rate: " + str(int(1 / (cur_time_stamp - self.prev_EDA_time_stamp))) + " Hz")
 # self.prev_EDA_time_stamp = self.prev_time_stamp

 self.dataReadyCallback(unpacked_data)

M a i n G U I . p y

import os
os.environ['PYQTGRAPH_QT_LIB'] = 'PyQt5'
from PyQt5 import QtGui, QtCore, QtWidgets
import pyqtgraph as pg
import multiprocessing
import pandas as pd

from BCI_Data_Receiver import *
import floatingCurves as fc
from CausalButter import *

import heartpy as hp
import math
import threading

i_CNT = 0
i_VAL = i_CNT + 1
i_ADS = i_VAL + 1
i_IMU = i_ADS + 8
i_EDA = i_IMU + 6
i_TEM = i_EDA + 1
i_PPG = i_TEM + 1
i_TIM = i_PPG + 1

class mainWindow(QtWidgets.QWidget):

 def __init__(self):

 #Init Data structures
 super(mainWindow,self).__init__()
 self.plotBufs = list()
 PLOTWNDSIZE = 2000
 self.PLOTWNDSIZE = PLOTWNDSIZE

 # for plotting
 self.start_idx = 2 #TODO: make this 0 if you want to graph all the packet data
 self.n_plots = 19
 self.fft_idx = self.n_plots-self.start_idx

 # for FFT

83

 self.graph_fft = 1 #TODO: change this to 1 if you dont want FFT graph
 self.FFT_CHANNEL = 4 #TODO: make sure this is the channel you want the FFT for (0 indexed)
 self.fft_lock = threading.Lock();
 # self.fft_thread = threading.Thread(target = self.fft_calc, args = (self.FFT_CHANNEL,));
 self.moreData = False;
 # self.fft_thread.start()

 # for initial plotting
 for i in range(self.n_plots-self.start_idx + self.graph_fft):
 self.plotBufs.append(np.zeros(PLOTWNDSIZE))

 # for data Recording
 self.isRecording = False
 self.recordingBuf = list()

 # for filters
 data_rate = 1000 #TODO: make sure this matches the data rate of the ADS1299 in the firmware
 self.data_rate = data_rate
 num_ADS_plots = 8
 # Init/store all the required filters
 # Do the bandpass filters
 self.BPfilters = []
 # for i in range(0,num_ADS_plots):
 self.BPfilters.append(CausalButter(4, 10, 500, data_rate, 0)) # EMG 1/2
 self.BPfilters.append(CausalButter(4, 10, 500, data_rate, 0)) # EMG 4/3
 self.BPfilters.append(CausalButter(4, 10, 500, data_rate, 0)) # EOG 1/2
 self.BPfilters.append(CausalButter(4, 10, 500, data_rate, 0)) # EMG 5/6
 self.BPfilters.append(CausalButter(4, 10, 500, data_rate, 0)) # EMG 7/8
 self.BPfilters.append(CausalButter(8, 5, 50, data_rate, 0)) # EEG 1
 self.BPfilters.append(CausalButter(8, 5, 50, data_rate, 0)) # EEG 2
 self.BPfilters.append(CausalButter(8, 5, 50, data_rate, 0)) # EEG 3
 self.BPfilters.append(CausalButter(8, 5, 50, data_rate, 0)) # EEG 4
 # and the bandstop filters
 self.BSfilters = []
 for i in range(0,num_ADS_plots):
 self.BSfilters.append(CausalButter(8, 55, 65, data_rate, 1))

 # for heart rate measuring algorithm
 self.heart_sig_arr = []
 self.heartbeat_ts = []
 self.heartrate_avg = []

 # initialize the UI
 self.title = "Fascia Sensor Data"
 self.initUI()

 self.timer = QtCore.QTimer()
 self.timer.timeout.connect(self.updateGUI)

 # The ip of user's machine
 self.ip = '10.0.0.74' #TODO make sure this matches intet in en0 in ifconfig
 self.port_number = 8899

 self.Data_receiver = BCI_Data_Receiver(self.ip, self.port_number, self.dataPlottingWidget)
 self.Data_receiver.asyncReceiveData(self.dataReadyCallback)

 def initUI(self):
 self.setWindowTitle(self.title)
 self.setGeometry(100,100,1024,768)

 hbox = QtWidgets.QHBoxLayout()
 self.setLayout(hbox)

 #Add the graph arrays

 #Perpare the array
 self.dataPlottingWidget = fc.floatingCurves(self.n_plots-self.start_idx+self.graph_fft, self.start_idx, self.FFT_CHANNEL)

 hbox.addWidget(self.dataPlottingWidget)

 # #Add the button panel
 # self.button_panel = QtWidgets.QWidget(self)
 # self.button_panel_layout = QtWidgets.QVBoxLayout()
 # self.button_panel.setLayout(self.button_panel_layout)
 # hbox.addWidget(self.button_panel)
 # #Add all the buttons
 # self.ICA_btn = QtWidgets.QPushButton("ICA")
 # self.record_btn = QtWidgets.QPushButton("Record")
 # self.filter_btn = QtWidgets.QPushButton("Filters")
 #
 # self.button_panel_layout.addWidget(self.ICA_btn)
 # self.button_panel_layout.addWidget(self.record_btn)
 # self.button_panel_layout.addWidget(self.filter_btn)
 #
 # #Connect all button functions
 # self.linkBtnFunctions()

 self.show()

 def linkBtnFunctions(self):
 self.record_btn.clicked.connect(self.onRecordBtnClicked)

 def dataReadyCallback(self, newData):
 d = list()

84

 temp = np.zeros(len(newData))
 invalid_arr = newData[1];
 # t = "Packet #: " + str(newData[i_CNT])
 # self.dataPlottingWidget.PN.setText(t)

 # # for recording purposes
 # for i in range(0, self.start_idx):
 # temp[i] = newData[i]

 if self.graph_fft:
 self.fft_thread = threading.Thread(target = self.fft_calc, args = (self.FFT_CHANNEL,));
 self.fft_thread.start()

 for i in range(self.start_idx, self.n_plots):
 #apply filters to newData
 # temp[2+i] = newData[2+i]
 # temp[2+i] = self.BPfilters[i].inputData([newData[2+i]])[0]
 # temp[2+i] = self.BSfilters[i].inputData([temp[2+i]])[0]
 if (i >1 and i<10):
 temp[i] = self.BPfilters[i-i_ADS].inputData([newData[i]])[0]
 temp[i] = self.BSfilters[i-i_ADS].inputData([temp[i]])[0]
 else:
 temp[i] = newData[i]

 # temp[2+i] = self.HPfilters[i].inputData([convert_ADC_volts(newData[2+i])])[0]
 # temp[2+i] = convert_ADC_volts(newData[2+i]);
 # print(i)
 d.append([temp[i]])

 if ((invalid_arr>>i) & 1):
 # print("invalid data at "+str(i))
 continue

 #For plotting
 idx = i - self.start_idx
 self.plotBufs[idx] = self.plotBufs[idx][1:]
 self.plotBufs[idx] = np.append(self.plotBufs[idx],d[idx][0])

 # calculate heart rate
 # me: if it drops 400 counts in 5 samples -> heart beat
 # if not ((invalid_arr >> 18) & 1):
 # try:
 # working_data, measures = hp.process(self.plotBufs[18], self.data_rate/10);
 # heart_rate = measures['bpm']
 # if not math.isnan(heart_rate):
 # print("heart rate: ", int(heart_rate)," bpm")
 # else:
 # print("hp nan")
 # except hp.exceptions.BadSignalWarning:
 # print("hp exception")
 # pass

 # below would probably be good if the data is invalid due to lack of connection or incorrect data, instead of
 # the sampling rate issue where i am only sampling the PPG data once every 10 packets.
 # if ((invalid_arr >> i_PPG) & 1):
 # self.heart_sig_arr = []
 # self.heartbeat_ts = []
 # else:
 if not ((invalid_arr >> i_PPG) & 1):
 ppg_sig = newData[i_PPG]
 l = len(self.heart_sig_arr);
 for i in range(min(10, l)):
 if self.heart_sig_arr[l-1-i] - ppg_sig >= 100 and self.heart_sig_arr[l-1-i] - ppg_sig < 700 and l>20:
 print("heart beat!",newData[i_TIM])
 self.heartbeat_ts.append(newData[i_TIM])
 # self.plotBufs[i_PPG - self.start_idx][-1] *=-1 #mark spot in graph where heartbeat detected
 # calculate heart rate
 if len(self.heartbeat_ts) > 1:
 # delta_ts = time in ms difference between the current and most recent heart beat
 delta_ts = self.heartbeat_ts[-1] - self.heartbeat_ts[len(self.heartbeat_ts)-2]
 delta_sec = delta_ts / 1000
 bpm = 1/(delta_sec/60)
 print("local heart rate: "+str(int(bpm)))
 self.heartrate_avg.append(bpm)
 bpm = np.average(self.heartrate_avg)
 print("heart rate:",int(bpm), "bpm, ",len(self.heartbeat_ts)," / ",delta_ts)
 t = "Heart Rate: " + str(int(bpm)) + " BPM"
 self.dataPlottingWidget.HR.setText(t)
 self.heart_sig_arr = []
 break
 self.heart_sig_arr.append(ppg_sig)
 # trim arrays to max lengths
 if len(self.heart_sig_arr) > 25:
 self.heart_sig_arr = self.heart_sig_arr[1:]
 if len(self.heartbeat_ts) > 100:
 self.heartbeat_ts = self.heartbeat_ts[1:]
 if len(self.heartrate_avg) > 100:
 self.heartrate_avg = self.heartrate_avg[1:]
 elif ((invalid_arr >> i_TIM) & 1):
 print("no contact with ppg sensor")
 self.heart_sig_arr = []
 self.heartbeat_ts = []
 self.heartrate_avg = []
 # else:
 # print("invalid heart and temp data")
 # if(self.isRecording == True):
 # #save new data to the recordingBuf
 # self.recordingBuf.append(temp)

85

 self.moreData = True

 def fft_calc(self, channel):
 # while True:
 # if self.moreData:
 # self.moreData = False;
 #FFT stuff here
 # FFT_CHANNEL = 1;
 # self.fft_lock.acquire()
 channel_idx = i_ADS + channel - self.start_idx
 # print(channel_idx)
 bins = np.fft.rfft(self.plotBufs[channel_idx])
 size = len(self.plotBufs[channel_idx])
 # self.fft_lock.release()
 bins = np.abs(bins)#[np.abs(v) for v in bins]
 bins[0] = 0 # first element is DC element
 timestep = 1/self.data_rate
 freq = np.fft.rfftfreq(self.PLOTWNDSIZE, timestep);
 self.plotBufs[self.fft_idx] = bins,freq;
 # print("fft freq", freq)
 # print("fft bins", bins)
 # sys.stdout.flush()
 # print(len(bins), len(freq))

 def start(self):
 self.timer.start(1)

 def updateGUI(self):
 if self.moreData:
 self.moreData = False
 for i in range(self.n_plots-self.start_idx):
 # print(i,type(self.plotBufs[i]),self.plotBufs[i])
 self.dataPlottingWidget.updateCurve(i,self.plotBufs[i])
 if self.graph_fft:
 self.dataPlottingWidget.updateCurve(self.fft_idx,self.plotBufs[self.fft_idx][0],self.plotBufs[self.fft_idx][1])

 def keyPressEvent(self, e):
 """
 press "r" key to record the data
 """
 if e.isAutoRepeat():
 return
 if(e.key() == QtCore.Qt.Key_R and self.isRecording == False):
 self.onRecordBtnClicked()
 return super().keyPressEvent(e)

 def keyReleaseEvent(self, e):
 """
 release "r" key to stop recording data
 """
 if e.isAutoRepeat():
 return
 if(e.key() == QtCore.Qt.Key_R and self.isRecording == True):
 self.onRecordBtnClicked()

 return super().keyReleaseEvent(e)

 def onRecordBtnClicked(self):
 """
 The callback function for the click event of record button
 """
 if(self.isRecording == False):
 self.isRecording = True
 #Start Record
 self.record_btn.setText("stop")
 #Push data to the buffer
 #This step is done in the data ready callback

 else:
 self.record_btn.setText("Record")
 self.isRecording = False
 #Open the save file dialog
 name = QtWidgets.QFileDialog.getSaveFileName(self, "Save File", "0.csv", "CSV(*.csv)")
 if(name[0] != ""):
 df = pd.DataFrame(self.recordingBuf)
 df.to_csv(name[0], encoding='utf-8', sep="\t", index=False)

 #Clear the recording buffer
 self.recordingBuf.clear()

 def onICABtnClicked(self):
 """
 Callback function for the click event of the ICA button
 """
 pass

def convert_ADC_volts(raw_data, gain = 1): #gain was = 24
 # LSB = (2 x VREF)/ Gain / (2^24 - 1)
 vref = 4.5
 fs = 2*vref / gain
 converted_data = fs * raw_data / (2**(24)-1)
 # print(raw_data, " -> ", converted_data)
 return converted_data

86

if __name__ == "__main__":
 # fs = 4.5/24
 # print(convert_ADC_volts(0x000000) == 0)
 # print(convert_ADC_volts(0x000001) == fs/(2**23 -1)) #+1
 # print(convert_ADC_volts(0x7FFFFF) >= fs) #MAX POS NUM
 # # print(convert_ADC_volts(0xFFFFFF) == -fs/(2**23 -1)) #-1
 # print(convert_ADC_volts(-1) == -fs/(2**23 -1)) #-1
 # # print(convert_ADC_volts(0x800000) <= -fs * 2**23/(2**23 -1)) #MAX NEG NUM
 # print(convert_ADC_volts(-8388608) <= -fs * 2**23/(2**23 -1)) #MAX NEG NUM
 app = QtWidgets.QApplication([])
 ex = mainWindow()
 ex.start()
 sys.exit(app.exec_())

87

A P P E N D I X D : C I R C U I T L A Y O U T

P h y s i o l o g i c a l B o a r d

https://github.mit.edu/gbernal/Fascia_nucleus/tree/master/Fascia_p
hysioBoard/fascia_physioBoardV0.1

88

M a i n B o a r d

https://github.mit.edu/gbernal/Fascia_nucleus/tree/master/Fascia_m
ainBoard/fasciaMainBoard_V0.1

89

90

F a c e I n t e r f a c e B o a r d

https://github.mit.edu/gbernal/Fascia_nucleus/tree/master/Fascia_f
aceInterface/faceInterfaceV0.1

91

A P P E N D I X E : P C B D E S I G N

P h y s i o l o g i c a l B o a r d

https://github.mit.edu/gbernal/Fascia_nucleus/tree/master/Fascia_p
hysioBoard/fascia_physioBoardV0.1

M a i n B o a r d

https://github.mit.edu/gbernal/Fascia_nucleus/tree/master/Fascia_m
ainBoard/fasciaMainBoard_V0.1

F a c e I n t e r f a c e B o a r d

https://github.mit.edu/gbernal/Fascia_nucleus/tree/master/Fascia_f
aceInterface/faceInterfaceV0.1

