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ABSTRACT 

Effective disease management requires high quality and accurate information about disease state. 
As science and technology have evolved, the history and physical exam, once the foundations of 
the diagnostic workflow, have been supplemented with modalities that allow physicians to peer 
inside the body and acquire otherwise inaccessible information. To gain maximal information 
about a disease, a promising approach would be to administer a probe that can detect disease 
activity inside the body and emit a signal to the outside world. To this end, our group has developed 
“activity-based nanosensors”, which detect dysregulated protease activity at the site of disease and 
release a reporter that can be measured in the urine. Because proteases are implicated in multiple 
diseases, including cancer, activity-based nanosensors have the potential to enable quantitative, 
noninvasive, and real-time monitoring of disease activity. 
 

Respiratory diseases are leading causes of death and disability, owing in large part to the 
constant exposure of the lungs to the external environment. Though this accessibility makes the 
lungs vulnerable to carcinogens and pathogens, it also provides a unique diagnostic opportunity. 
In this thesis, we aimed to optimize activity-based nanosensors for lung disease sensing in two 
settings: early detection and treatment response monitoring. Finally, we sought to establish a 
generalizable pipeline to rationally design such tools for human disease. 

 
We first delivered a multiplexed panel of sensors via intrapulmonary administration in two 

genetically engineered mouse models of lung adenocarcinoma. We found that our sensor panel 
diagnosed lung cancer in both models, detecting tumors as small as 2.8 mm3 without false positives 
from benign lung inflammation. We then evaluated this approach in monitoring treatment response 
in mouse models of malignant and benign pulmonary disease. We observed dramatic treatment-
induced shifts in pulmonary protease activity in both models, enabling rapid, noninvasive, and 
quantitative evaluation of drug response. Finally, we established a suite of ex vivo assays that 
enabled the bottom-up design of a protease-activated diagnostic probe, opening the door for 
translation to human disease. Collectively, this thesis provides a framework for the clinical 
development of activity-based nanosensors for pulmonary disease diagnosis and monitoring. 
 
Thesis Supervisor: Sangeeta N. Bhatia, MD, PhD 
Title: Wilson Professor of Health Sciences and Technology & Electrical Engineering and 
Computer Science 
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CHAPTER 1. INTRODUCTION 

1.1  The evolution of the diagnosis 

Medical students learn that the process of diagnosis begins at first sight. How does the patient 

appear? Then, with the history and physical exam, ubiquitous staples of the medical workflow, a 

narrative begins to form and hypotheses are generated. This initial phase of the diagnostic workup, 

which relies primarily on external manifestations of disease, is remarkably similar to ancient 

practices. Greek physicians around the time of Hippocrates (c. 460 to c. 370 BC) emphasized the 

importance of undertaking a detailed history and physical examination (1). Much like today, the 

history included a comprehensive review of systems—constitutional, cardiovascular, 

gastrointestinal, respiratory, genitourinary, among others—and symptoms were carefully 

recorded. The physical exam followed a similar framework used today, consisting of inspection, 

palpation, and auscultation (although the modern stethoscope would not be invented for another 

couple thousand years (2)). 

However, even the most skilled clinician (in both ancient and modern times), would 

eventually reach the limits of the insights that physical examination and history-taking are able to 

provide. The signs and symptoms of disease can be confusing, contradictory, and nonspecific. The 

frustrations experienced by ancient clinicians relying exclusively on external manifestations of 

disease to inform diagnosis and treatment planning is exemplified by a quotation in the ancient 

Greek text Prognosis: “There is no point in seeking the name of any disease [for all] may be 

recognized by the same signs (1).”  

The development of modern diagnostic practices—from biochemical assays to 

colonoscopies—has revolutionized medicine. Today, the history and physical exam are but the 

first steps in the dynamic process of establishing a differential diagnosis, which is further refined 

with each piece of new information that is integrated into the clinical picture. As diagnostic 



 15 

methods have become more and more sophisticated, an increasingly greater emphasis has been 

placed on identifying subclinical changes to an individual’s health. In particular, the past several 

decades have seen a dramatic acceleration of efforts to 1) detect disease early and 2) predict and 

monitor disease progression and drug response. 

The principle of medical screening is built on the notion that, for many diseases, the earlier 

an intervention can be administered, the better the patient will fare (3). It is thought that this 

principle was first laid out by the British physician Horace Dobell, who, in 1861, proposed that 

healthy individuals should be routinely subjected to a history, physical exam, and series of 

laboratory tests to detect the “earliest evasive periods of defect in the physiological state (2).” Over 

time, this thinking has evolved and acquired more nuance; now, a screening test is only considered 

effective if it provides actionable information that will provide more benefit than cost. In cancer, 

the success of screening has been varied. Whereas there is little doubt that the Pap smear resulted 

in reduced mortality from cervical cancer (3), prostate-specific antigen (PSA)-based screening for 

prostate cancer has been highly controversial due to the substantial risk of false positives and 

overdiagnosis (4).  

The benefits of lung cancer screening have recently been the subject of much debate. In 

the 1960s and 70s, multiple trials in the United States revealed no survival benefit in individuals 

screened with chest radiography (5). However, screening of high-risk populations with low-dose 

computed tomography (LDCT) has recently emerged as a potentially viable strategy. In 2011, the 

National Lung Screening Trial (NLST) demonstrated a significant reduction in mortality in 

individuals screened with LDCT relative to those screened with chest radiography (6). As a result, 

national guidelines in the US now recommend LDCT-based lung cancer screening in high-risk 

populations. However, the NLST also revealed that the vast majority (96%) of all detected nodules 

were false positives, and that many patients with benign disease subsequently underwent invasive 
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follow-up procedures that carry the risk of complications like pneumothorax (6, 7). Additionally 

there are concerns that high cost and risks associated with radiation exposure may hamper a 

population-level implementation of such a screening approach (5, 7, 8). As a result, despite its 

survival benefit, LDCT screening has not been widely adopted outside of the US (9). 

Once a diagnosis is established, existing diagnostic approaches (for both malignant and 

benign diseases) also often fail to accurately monitor disease progression and drug response. In 

lung cancer, the CT scan is the gold standard modality for assessing drug response (10). However, 

with the exception of oncogene-addicted cancers treated with targeted therapy, response rate by 

CT does not reliably correlate with overall survival. This is especially problematic in patients 

treated with immunotherapy, who often experience a paradoxical increase in tumor size, likely due 

to infiltration of immune cells (10). Relatedly, in lymphangioleiomyomatosis (LAM), which 

results in progressive lung function decline and, ultimately, lung failure, the lack of imaging or 

biochemical markers that correlate with overall survival has slowed drug development efforts (11). 

Currently, assessment of drug response in LAM is performed via pulmonary function tests (PFTs), 

which are non-quantitative, effort-dependent, and change slowly in response to therapy. Though 

significant efforts have been dedicated to identifying predictive biomarkers of drug response in 

LAM (12), no such marker exists today. 

 

1.2  Beyond cells, proteins, and imaging: the new wave of molecular diagnostics 

The limitations of existing biochemical, pathologic, and imaging tests for early detection and drug 

response monitoring have spurred enormous interest in identifying new diagnostic strategies. The 

emergence of highly sensitive nucleic acid detection modalities like polymerase chain reaction 

(PCR) presented one such opportunity. Elevated cell-free DNA levels were first reported in the 

serum of cancer patients in 1977 (13). A slew of studies in the 1990s then revealed that cfDNA in 
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cancer patients harbored mutations that exactly matched those of the primary tumor, raising the 

prospect of a noninvasive “liquid biopsy” test for cancer. Since these seminal publications, 

researchers have sought to leverage ctDNA as a diagnostic and predictive biomarker of cancer. 

During the first decade of the 21st century, ctDNA emerged as a promising biomarkers to assess 

tumor dynamics, especially in the setting of treatment response in advanced cancers (13). 

Foundational work from Diehl and colleagues in 2008 revealed that sequencing of patient tumors 

could reveal the presence of patient-specific mutations, which could then be used to generate 

patient-specific PCR assays for ctDNA profiling (14). This study, and others like it, revealed that 

ctDNA could be used to assess residual disease after treatment and monitor for recurrence (10). 

The development of next generation sequencing raised the possibility that ctDNA might enable 

earlier detection of cancer. Because of the heterogeneity of cancer, early detection requires an 

unbiased approach that tests for large panels of cancer-specific mutations in cfDNA. Though the 

sensitivity of sequencing for individual mutations is lower than that of targeted methods like PCR, 

it provides far greater breadth of coverage (15). Many studies have explored the use of both 

sequencing and targeted mutational profiling to enable detection of localized disease, and several 

companies (e.g. GRAIL, Thrive) have sprung from these efforts (13, 15–18). However, the 

consistently suboptimal sensitivity of these methods for early-stage disease has raised grave doubts 

about the future of ctDNA as a screening tool. Multiple studies have revealed that the abundance 

of ctDNA scales with increased tumor burden and tumor stage (19, 20). Furthermore, a substantial 

proportion of patients with stage I disease have no detectable ctDNA (16, 20). Recent results from 

a large study sponsored by GRAIL demonstrated that the sensitivity of methylation sequencing of 

cfDNA was, on average, just 18% across the subset of patients with stage I cancer (17). Using 

current sequencing strategies, it is estimated that clinically infeasible quantities of blood (~150 

mL) would need to be collected in order to reliably detect stage I cancers (20). 
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1.3 Protease activity has the potential to enable sensitive and specific diagnosis 

of disease 

The limitations of imaging and blood biomarkers for early detection and monitoring of disease 

have spurred interest in developing mechanistically orthogonal diagnostic approaches. In order for 

a diagnostic to be effective in early detection of disease, it must be sensitive enough to detect small 

signals and specific enough to distinguish disease-associated signals from background. The ideal 

biomarker for assessing drug response would provide a rapid readout of disease dynamics and 

correlate with long-term outcomes. Activity-based diagnostics, which detect aberrant protease 

activity in disease, have emerged as a promising approach that may enable both early detection 

and drug response monitoring of disease (21, 22).  

 Protease dysregulation is a hallmark of both benign and malignant disease. Liver fibrosis, 

for example, is characterized by an imbalance of metalloproteases and their inhibitors, which 

results in dysregulated matrix turnover and deposition (23). Similarly, lung function decline in 

LAM is driven by protease-mediated alveolar destruction (11). The role of protease dysregulation 

in cancer has long been appreciated, and recent efforts have revealed that proteases play a direct 

role in every hallmark of cancer (22). Because proteases directly contribute to the hallmarks of 

cancer, measuring protease activity has the potential to enable highly specific detection of cancer. 

Furthermore, proteases harbor the ability to catalyze peptide cleavage events, a feature that can be 

leveraged to amplify their signal and thus increase the sensitivity of disease detection. Multiple 

groups have therefore sought to develop molecular probes that can be delivered to the site of 

disease, where local proteases catalyze cleavage events, yielding a change that is generally 

detectable by imaging (21, 22).  

Early examples of such probes made use of near-infrared (NIR) fluorescence imaging to 

visualize proteolytic activity in disease (24, 25). These probes consist of quenched fluorophores 
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that fluoresce in the near-infrared range upon engagement with proteases at the disease site, and 

such probes are now in clinical development for intraoperative imaging of the tumor bed (26). 

Activatable cell penetrating peptides (ACPPs), a related class of protease-activated imaging 

probes, consist of a polycationic cell penetrating peptide domain in complex with a polyanionic 

domain, linked together via a protease-cleavable substrate (27). Proteolysis at the tumor site results 

in internalization of the cell penetrating peptide, as well as any attached cargo. ACPPs have 

demonstrated preclinical utility in in vivo imaging with both fluorescent and MRI readouts, and 

have entered into clinical development at Avelas Biosciences to enable enhanced intraoperative 

tumor visualization (28–30).  

Activity-based probes (ABPs) are a mechanistically orthogonal approach to imaging 

protease activity. Rather than relying on cleavage of a peptide substrate, ABPs leverage reactive 

warheads that can covalently bind to protease active sites (31). A built-in recognition sequence can 

be designed to enhance ABP specificity for specific proteases. ABPs have emerged as useful tools 

for profiling active proteases in vitro because of their unique ability to covalently bind to the target 

protease, thus enabling mechanistic exploration of underlying protease dysregulation in disease 

and health (31). Furthermore, ABPs can incorporate quenched fluorophores to enable in vivo 

visualization of protease dysregulation (32). 

The power of such imaging methods lies in their ability to directly visualize disease 

processes. Unfortunately, existing imaging methods suffer from very limited capacity for 

multiplexing (33). In optical imaging, fluorophores with wavelengths shorter than ~750 nm suffer 

from very poor penetration through biological tissue and can be confounded by tissue 

autofluorescence (34). Because of the heterogeneity of cancer, single-plex protease sensors have 

little chance of offering high enough sensitivity to enable reliable detection across a population. 

Furthermore, because protease activity is dysregulated in a number of benign diseases in addition 
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to cancer, single-plex sensors are susceptible to false positives from infection, sterile inflammation, 

or fibrosis, among other benign etiologies. Because of these sensitivity and specificity limitations, 

the clinical utility of such imaging approaches has largely been limited to use in patients with 

already established diagnoses of cancer, such as in patients undergoing surgical tumor resection.  

 

1.4 Thesis Overview 

 The past few years have seen the emergence of a new class of activity-based diagnostics 

that aims to overcome the limitations of imaging by converting disease-associated protease activity 

into a urinary readout. These “activity-based nanosensors” (ABNs) are administered into the body 

and can reach the site of disease either by passive accumulation or by active targeting (35–41). 

There, dysregulated proteases cleave peptides presented on the nanoparticle surface, which 

liberates a reporter molecule. This reporter molecule is designed to be small enough to rapidly re-

enter the bloodstream and clear the body via renal filtration. This urinary reporter provides 

additional levers that can be tuned by engineering, and has variably been read out with ELISA 

(36), colorimetric assays (40), and mass spectrometry (35). 

 At the initiation of this thesis, ABNs had been leveraged to enable disease detection in 

xenograft mouse models of cancer, as well as in models of benign disease like pneumonia (39), 

liver fibrosis (35), and thrombosis (42, 43). All of these studies involved intravenous (or, in one 

case, subcutaneous (43)) administration of ABNs. By incorporating active targeting that relied on 

tumor expression of specific integrins, ABNs were able to detect tumors as small as 36 mm3 in an 

orthotopic model of advanced ovarian cancer (38). Furthermore, by leveraging orthogonal mass-

barcoded reporter molecules, up to 20 ABNs had been multiplexed in a single mouse, but the 

integration of these multiplexed signals was limited to linear classifiers which were not evaluated 

prospectively (i.e. on independent test cohorts) (35, 41). ABNs had been shown to enable 
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monitoring of treatment response in lung infection, but had not yet been evaluated in monitoring 

drug response in cancer or other noncommunicable lung diseases. 

 Because respiratory diseases are leading causes of death and disability in the world (44), 

this thesis aimed to optimize ABNs for lung disease sensing. Specifically, we sought to leverage 

multiplexing, machine learning, and intrapulmonary delivery to develop ABNs that enable 

accurate detection and treatment response monitoring in clinically relevant mouse models of lung 

diseases. Furthermore, we aimed to develop tools to query protease activity in tissue samples, a 

key step toward understanding the biology of protease dysregulation in disease and enabling the 

rational design of activity-based diagnostics. In the first section, we combine multiplexing, 

intrapulmonary delivery, and machine learning in genetically engineered mouse models of lung 

cancer to enable detection of small, localized lung tumors. In the second section, we demonstrate 

that such an approach can enable noninvasive drug response monitoring in models of malignant 

and benign lung disease. Finally, in the third section, we establish methods to measure protease 

activity in biospecimens and demonstrate the bottom-up development of a protease-activated 

diagnostic probe. Collectively, this thesis represents a bridge toward clinical implementation of 

activity-based nanosensors for detection and monitoring of pulmonary diseases. 
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CHAPTER 2. DETECT LOCALIZED LUNG CANCER WITH HIGH 
SENSITIVITY AND SPECIFICITY 
 

2.1 Introduction 

Lung cancer is the most common cause of cancer-related death (25.3% of cancer deaths in the 

United States), with dismal 18.6% five-year survival rates (45). Underlying this high mortality is 

the fact that 57% of lung cancer patients have distant spread of disease at the time of diagnosis 

(45). Because patients with regional or localized disease have six- to 13-fold higher five-year 

survival rates than patients with distant metastases (45), substantial effort has been dedicated to 

early detection of lung cancer. In the US, screening with low-dose computed tomography (LDCT) 

is recommended in high-risk patients (adults aged 55 to 80 years with a 30 pack-year smoking 

history (5)) and enabled a relative reduction in mortality of 20% when compared to chest 

radiography in the National Lung Screening Trial (NLST) (6). However, in addition to expense 

(8) and risks associated with radiation exposure (46), LDCT suffers from high false positive rates 

(6), leading to a considerable burden of complications incurred during unnecessary follow-up 

procedures. Transthoracic needle biopsy, for example, is associated with a 15% rate of 

pneumothorax and a 6.6% rate of pneumothorax requiring chest drainage (47). Overall, the risk of 

dying or suffering a major complication in a LDCT-screened patient with a benign nodule is 4.1 

and 4.5 per 10,000, respectively (46). As a result of these limitations, screening by LDCT has not 

been widely adopted outside of the US (9) and there is an urgent need to develop diagnostic tests 

that increase the effectiveness of lung cancer screening. 

Great strides in molecular diagnostics have yielded promising approaches that may be used 

in conjunction with or as an alternative to LDCT for lung cancer screening. Circulating tumor 

DNA (ctDNA) has emerged as a promising tool for noninvasive molecular profiling of lung cancer 

(13, 48). However, the presence of ctDNA scales with tumor burden and there are thus fundamental 
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sensitivity limits for early stage disease (48, 49). In patients with a suspicious nodule identified by 

LDCT, transcriptional profiling of bronchial brushings can enhance the diagnostic sensitivity of 

bronchoscopy alone (50), leveraging the “field of injury” that results from smoking and other 

environmental exposures. However, as with any invasive procedure, bronchoscopy carries the risk 

of attendant complications such as pneumothorax (6, 46). 

Rather than relying on imaging or the detection of endogenous biomarkers in circulation, 

we have developed a class of “activity-based nanosensors” that monitor for a disease state by 

detecting and amplifying the activity of aberrant proteases and which function as urinary reporters 

(35–42). Protease activity is dysregulated in cancer, and proteases across all catalytic classes play 

a direct role in tumorigenesis (22, 51). Activity-based nanosensors leverage dysregulated protease 

activity to overcome the insensitivity of previous biomarker assays, amplifying disease-associated 

signals generated in the tumor microenvironment and providing a concentrated urine-based 

readout. We have previously explored the sensitivity of this approach using mathematical 

modeling (52) and cell transplant models (38). However, to drive accurate diagnosis in a 

heterogeneous disease, a diagnostic must also be highly specific. Here, we explored the potential 

to attain both sensitive and specific lung cancer detection by multiplexing 14 activity-based 

nanosensors in two immunocompetent, autochthonous mouse models driven by either Kras/Trp53 

(KP) mutations or Eml4-Alk (EA) fusion. Clinically, activity-based nanosensors may have utility 

as an alternative to invasive follow-up procedures in patients with positive LDCT findings. 

2.2 Results 

Aberrant protease expression is induced in a Kras- and Trp53-mutant mouse model of lung 

adenocarcinoma 

Common driver mutations of non-small cell lung cancer (NSCLC) in humans include those that 

activate KRAS (10-30%) or inactivate TP53 (50-70%) (53). To examine the ability of activity-
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based nanosensors to detect lung cancer in a relevant mouse model (Fig. 2.1), we selected a 

genetically driven model of adenocarcinoma that incorporates mutations in these genes.  

 

Figure 2.1. Study approach and overview. (A) Activity-based nanosensors are administered to mice by 
intratracheal instillation. (B) At the tumor periphery, disease-associated proteases cleave protease 
substrates, liberating mass-encoded (MS) reporters from the PEG scaffold. (C) These reporters are small 
enough to diffuse into the bloodstream and passively filter into the urine, where they are photocleaved to 
release attached substrate fragments, yielding free mass-encoded reporters. (D) These reporters can 
subsequently be quantified by LC-MS/MS. (E) Classification is performed on a training cohort of mice and 
subsequently applied to an independent test cohort to provide a positive or negative readout of malignancy. 
 

This extensively characterized model uses intratracheal administration of a virus encoding Cre 

recombinase to activate mutant KrasG12D and delete both copies of Trp53 in the lungs (KrasLSL-

G12D/+;Trp53fl/fl (KP) mice; fig. 2.S1A), initiating tumors that closely recapitulate human disease 

progression from alveolar adenomatous hyperplasia (AAH) to grade IV adenocarcinoma (fig. 

2.S1B) (54). 
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Figure 2.S1. KP model genetically and histologically recapitulates human lung adenocarcinoma. (A) 
Disease was induced in the KP model by intratracheal instillation of adenovirus expressing Cre recombinase 
under the control of the surfactant protein C (SPC) promoter, which resulted in activation of mutant K-
rasG12D and excision of both copies of Trp53 in type II alveolar cells (54). (B) Histologically, disease 
progressed from low grade dysplasia to invasive adenocarcinoma over 18-20 weeks (shown are 
representative lesions of each grade in a single, advanced-stage KP mouse). 
 

We analyzed a recently published RNA-Seq dataset (55) that profiled KP tumors (n = 22) across 

disease stages, as well as Kras-mutant, Trp53-WT tumors (K, n = 3) to identify proteases that were 

upregulated in tumor cells relative to normal lung cells (Fig. 2.2A). Because this dataset profiled 

tumor cells sorted by flow cytometry and therefore failed to capture proteases contributed by 

microenvironmental immune and stromal cells, we supplemented this analysis with a bulk gene 

expression microarray dataset profiling K tumors (56), which are transcriptionally similar to early-

stage KP tumors and human lung adenomas (55). We used significance analysis of microarrays 

(SAM) (57) to identify proteases with increased expression in K model tumors relative to normal 

lungs  (Fig. 2.2B). 
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Figure 2.2. Proteases are upregulated in lung cancer and enable classification of human disease. (A-
C) Existing mouse (A,B) and human (C) gene expression datasets were analyzed to identify extracellular 
endoproteases overexpressed in lung cancer. Protease genes in red were selected for the “LUAD protease 
panel”. (D) GSEA was performed in the TCGA (human) dataset using orthologs of the top 20 overexpressed 
protease genes in KP tumors (P = 0.0002). Red bars are genes included in the “LUAD protease panel”. (E) 
A set of 15 proteases was selected as the “LUAD protease panel”. Red: FoldDisease  > 1, Grey: FoldDisease < 
1, where FoldDisease is gene expression in disease relative to control. Black: Not included in dataset. (F) GLM 
classification on the TCGA dataset using the 15 protease genes in the “LUAD protease panel” as features. 
AUC for the test cohort is shown as a function of the number of proteases included in the classifier (n = 50 
combinations of protease genes for each point). Points are mean +/- SD. 
 

Proteases overexpressed in the KP mouse model are relevant to human lung adenocarcinoma 

To ensure that activity-based nanosensors were tuned to address human lung adenocarcinoma 

(LUAD)-associated proteases, we mined The Cancer Genome Atlas (TCGA) dataset (58) and 

analyzed expression of 168 human extracellular endoprotease genes in LUAD and normal adjacent 

tissue  (Fig. 2.2C) (59). Of the 20 most highly upregulated proteases, nine were metalloproteases, 

11 were serine proteases, and several overlapped with proteases overexpressed in KP tumors (Fig. 

2.2C, bottom). Indeed, we found using gene set enrichment analysis (GSEA) (60) that the top 20 

overexpressed extracellular proteases in the KP model were significantly enriched in human 

LUAD (P = 0.0002) (Fig. 2.2D), suggesting that the proteolytic landscape of the KP model 

recapitulated that of human disease. We then performed receiver operating characteristic (ROC) 

analysis on RNA-Seq data curated by the Lung Genomics Research Consortium (LGRC) (61) and 
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found that proteases overexpressed in human LUAD were not increased in interstitial lung disease 

(ILD) or chronic obstructive pulmonary disease (COPD) (fig. 2.S2A). In contrast, classification 

efficiency in LUAD reached above 0.9 for eight out of ten proteases (fig. 2.S2B-D). 

 

Figure 2.S2. Human LUAD-associated proteases are not overexpressed in benign lung diseases. (A) 
RNA-Seq data curated by the Lung Genomics Research Consortium (LGRC) was analyzed to assess the 
classification performance of human lung cancer-associated proteases in interstitial lung disease (ILD, n = 
31) and chronic obstructive pulmonary disease (COPD, n = 41) against normal lung (n = 17). Of the top 20 
overexpressed proteases in human LUAD, 10 were included in the LGRC dataset with FPKM values greater 
than zero for at least half of the samples. ROC analysis was performed for LUAD (from TCGA) and ILD 
and COPD (from LGRC) against their respective controls, using FPKM values for each protease. (B-D) 
ROC curves for individual proteases in the panel are shown. 
 

A panel of proteases overexpressed in human and mouse lung adenocarcinoma enables 

classification of human disease  

We next sought to nominate a set of proteases against which to build our nanosensor panel. We 

excluded any genes for which an active recombinant protease was unavailable, selected six to 

seven of the top 20 overexpressed genes from each dataset, removed duplicates, and arrived at a 
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“LUAD protease panel” of 15 protease genes (Fig. 2.2E, and indicated in bold red text in Fig. 

2.2A-C). This panel included napsin A, a highly sensitive and specific immunohistochemical 

marker for human LUAD (62), and several metalloproteases known to be expressed at the protein 

level in human LUAD (63). To assess whether the expression of these 15 proteases enabled 

classification of LUAD from normal adjacent tissue, we built a generalized linear model (GLM) 

classifier using a subset of the TCGA gene expression data, applied it to an independent test cohort, 

and found that the area under the ROC curve (AUC) was 0.99 when all 15 proteases were used as 

features (Fig. 2.2F). Additionally, as assessed by GSEA, this 15-gene panel was significantly 

enriched in stage I LUAD (fig. 2.S3A, P < 0.0001), as well as all tested molecular subtypes of 

adenocarcinoma, including KRAS-mutant (fig. 2.S3B, P < 0.0001), TP53-mutant (fig. 2.S3C, P = 

0.0002), EGFR-mutant (fig. 2.S3D, P = 0.0004), and BRAF-mutant (fig. 2.S3E, P = 0.0002) 

genetic subtypes. Last, we performed differential expression analysis of lung squamous cell 

carcinoma (LUSC) relative to normal adjacent tissue from the TCGA dataset and found significant 

enrichment of the same 15-protease panel by GSEA (fig. 2.S3F, P = 0.0002). 

 

Figure 2.S3. LUAD protease panel genes are enriched across genetic and histological lung cancer 
subtypes. (A-F) GSEA plots showing enrichment of LUAD protease panel genes in stage I LUAD (A; 
nLUAD = 302, nNAT = 29; P < 0.0001), KRAS-mutant LUAD (B; nLUAD = 75, nNAT = 58;  P < 0.0001), TP53-
mutant LUAD (C; nLUAD = 64, nNAT = 58; P = 0.0002), EGFR-mutant LUAD (D; nLUAD = 28, nNAT = 58; P = 
0.0004), BRAF-mutant LUAD (E; nLUAD = 17, nNAT = 58; P = 0.0002) and LUSC (F; nLUSC = 233, nNAT = 17; 
P = 0.0002). 
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Cleavage of multiplexed substrate panel follows class-specific patterns  

We synthesized 14 fluorogenic peptide substrates (PPQ1-14, table 2.S1) that were known to 

encompass the cleavage preferences of metalloproteases, serine proteases, and aspartic proteases 

(41).  

Name Fluorophore Substrate 
PPQ1 5FAM GGPQGIWGQK(CPQ2)-PEG2-C 
PPQ2 5FAM GGPVGLIGK(CPQ2)-PEG2-C 
PPQ3 5FAM GGPVPLSLVMK(CPQ2)-PEG2-C 
PPQ4 5FAM GGPLGLRSWK(CPQ2)-PEG2-C 
PPQ5 5FAM GGPLGVRGKK(CPQ2)-PEG2-C 
PPQ6 5FAM GGfPRSGGGK(CPQ2)-PEG2-C 
PPQ7 5FAM GGLGPKGQTGK(CPQ2)-kk-PEG2-C 
PPQ8 5FAM GGGSGRSANAKG-K(CPQ2)-PEG2-GC 
PPQ9 5FAM GKPISLISSG-K(CPQ2)-PEG2-GC 
PPQ10 5FAM GILSRIVGGG-K(CPQ2)-PEG2-GC 
PPQ11 5FAM GSGSKIIGGG-K(CPQ2)-PEG2-GC 
PPQ12 5FAM GGPLGMRGG-K(CPQ2)-GC 
PPQ13 5FAM GP-(Cha)-G-Cys(Me)-HAG-K(CPQ2)-GC 
PPQ14 5FAM GAPFEMSAG-K(CPQ2)-GC 

 
Table 2.S1. Reporter and substrate sequences for in vitro recombinant protease screen. 5FAM, 5-
Carboxyfluorescein; CPQ2, quencher; PEG, polyethylene glycol; Cha, 3-Cyclohexylalanine; Cys(Me), 
methyl-cysteine; lowercase letters, D-amino acids. 
 

We incubated each individual probe with each of the 15 proteases in the panel (Fig. 2.3A) and 

measured protease activity by monitoring fluorescence increase over time (Fig. 2.3B). Hierarchical 

clustering of fluorescence fold changes of each substrate revealed separation of proteases of 

different classes (Fig. 2.3C).  
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Figure 2.3: LUAD substrate panel cleavage patterns are driven by protease class. (A) All 15 proteases 
in the “LUAD protease panel” were screened against a panel of 14 Förster resonance energy transfer 
(FRET)-paired protease substrates and fluorescence activation was monitored over 45 minutes. (B) Kinetic 
fluorescence curves are shown for 14 FRET-paired substrates with (upper panel) and without (lower panel) 
addition of MMP3. (C) Fluorescence fold changes at 45 minutes (average of 2 replicates) were log2 
transformed and hierarchical clustering was performed to cluster proteases (vertical) by their substrate 
specificities and substrates (horizontal) by their protease specificities. Proteases labeled in green, orange, 
or blue represent metallo-, serine, or aspartic proteases, respectively. 
 

Whereas certain probes were cleaved selectively by individual classes of proteases, such as 

metalloproteases for PPQ2 and serine proteases for PPQ11, other probes were cleaved by proteases 

of multiple classes (fig. 2.S4). For example, in addition to being cleaved by metalloproteases, 

PPQ3 and PPQ12 were acted upon by aspartic proteases and serine proteases, respectively (fig. 

2.S4). Overall, the dequenching panel results indicated that the set of 14 probes provided coverage 

of the cleavage profiles of all three protease families represented by the LUAD protease panel. 
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Figure 2.S4. Peptide substrates are cleaved by one or a combination of metallo-, serine, and aspartic 
proteases. Quantification of in vitro proteolytic cleavage of fluorogenic peptide substrates. Y axis 
represents fluorescence fold change after 45 minutes of incubation with recombinant protease and dotted 
line is at fold change = 2. Bars are colored according to the catalytic class of the protease (green, 
metalloprotease-specific; orange, serine protease-specific; blue, aspartic protease-specific). 
 

Nanoparticles delivered into mouse airways distribute throughout the lung and reach the 

tumor periphery 

To adapt the activity-based nanosensor platform for detection of localized lung cancer, we sought 

to circumvent background protease activity present in the blood and off-target organs by 

administering the nanosensors via localized intrapulmonary, rather than systemic intravenous, 

delivery. We built activity-based nanosensors using a 40 kDa eight-arm poly(ethylene glycol) 

(PEG-840kDa) nanoparticle coupled to protease substrates bearing terminal mass-encoded reporters 

(Fig. 2.1B). To assess biodistribution of the nanosensors following intrapulmonary delivery, we 

labeled the PEG-840kDa scaffold with near-infrared dye VivoTag750 (VT750), delivered the 

nanoparticles to mice by intratracheal (IT) intubation or intravenous (IV) injection, and collected 

organs after 60 minutes (Fig. 2.4A).  
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Figure 2.4: Intrapulmonary-administered nanoparticle scaffolds penetrate deep within the lung and 
reach the periphery of KP tumors. (A) Wild-type mice were treated IT or IV with VT750-labeled PEG-
840kDa and biodistribution was assessed. (B) Fluorescent imaging of organs was performed 60 min post-IT 
delivery. Clockwise from top-left: lung, spleen, heart, liver, kidneys. (C) Organ-specific biodistribution 
was quantified (n = 4 each condition). Error bars represent SD. (D) Healthy mice were either untreated 
(above, n = 1) or treated with IT administration of biotin-labeled PEG scaffold (below, n = 2), followed by 
excision of lungs and immunohistochemical staining for biotin (brown). (E) Advanced-stage (16.5 week) 
KP mice were either untreated (top, n = 3) or treated with IT administration of biotin-labeled PEG scaffold 
(bottom, n = 3), followed by excision of lungs and immunohistochemical staining as in (D). 

 

Fluorescence imaging revealed deep delivery of nanoparticles to all lung lobes in mice receiving 

IT particles, but negligible delivery to other organs (Fig. 2.4B-C). In contrast, only 14% of organ 

fluorescence was confined to the lung in the IV-delivered group. In the IT-treated mice, the lung 

half-life of PEG-840kDa was 6.3 days (fig. 2.S5).  
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Figure 2.S5. Clearance of PEG-840kDa nanoparticles from lungs follows single phase exponential decay 
kinetics. Fluorescence of lungs, liver, kidneys, heart, and spleen of mice after intrapulmonary delivery of 
VT750-labeled PEG-840kDa (n = 5 per time point). Points are mean +/- SD. Lung clearance data was fit with 
nonlinear regression using single phase exponential decay (t1/2 = 6.3 days, R2 = 0.86). Inset: liver, kidneys, 
heart, and spleen fluorescence are presented on a smaller scale y-axis and were fit with nonlinear regression 
using two phase exponential growth and decay. 

 

No toxicity was observed at either short (2 hours) or longer (24 hours and over 10 days) intervals 

after nanosensor administration in healthy control mice, as assessed by weight tracking (fig. 

2.S6A) and histological assessment by a veterinary pathologist (fig. 2.S6B). 

To assess microscopic distribution of the nanosensor scaffold within the lung, we labeled 

the PEG-840kDa scaffold with biotin and administered the nanoparticles to healthy mice by 

intratracheal instillation. Lungs were collected from mice 20-30 minutes post-IT delivery, fixed, 

and stained for biotin. Whereas lungs from untreated mice were negative for biotin (Fig. 2.4D, 

top), lungs from mice that received the scaffold demonstrated broad distribution of nanoparticles 

throughout the lung (Fig. 2.4D, bottom left), specifically within terminal alveoli (Fig. 2.4D, bottom 

right).  
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Figure 2.S6. No toxicity is observed in mice treated with intrapulmonary activity-based 
nanosensors. (A) Fold changes in mouse weights after treatment with either peptide-
functionalized activity-based nanosensors (red; n = 9, days 0 to 1; n = 6, days 4 to 11) or mannitol 
buffer (‘Vehicle’; grey; n = 8). (B) Representative H&E images of mouse organs at 2 hours, 1 day, 
and 11 days after intrapulmonary activity-based nanosensor treatment. Scale bar is 200 μm. 

 

We then administered biotin-labeled PEG-840kDa scaffold in late-stage KP tumor-bearing 

mice by intratracheal intubation, to assess whether these particles were able to reach the site of 

disease. Again, whereas lungs from untreated KP mice were negative for biotin (Fig. 2.4E, top), 

lungs from KP mice that received intrapulmonary delivery of the biotinylated scaffold 

demonstrated presence of nanoparticles at the margins of tumors (Fig. 2.4E, bottom). 

As a step toward developing a more clinically relevant delivery method, we also sought to 

characterize particle durability and biodistribution after aerosolization. We directly aerosolized 

our PEG carrier particles (fig. 2.S7A-B) and found no aggregation or changes in particle size 

distribution, as assessed by transmission electron microscopy (TEM) (fig. 2.S7C-D) and dynamic 

light scattering (DLS) (fig. 2.S7E). Furthermore, PEG-PPQ5 pre- and post-aerosolization was 

equally sensitive to in vitro cleavage by recombinant MMP13 (fig. 2.S7F). 
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Figure 2.S7. Activity-based nanosensors are stable to aerosolization. (A) Device used for intratracheal 
administration of aerosolized nanosensors. (B) Aerosol produced from 50 μL of buffer. Scale for A and B 
is 1 cm. (C, D) TEM images of nanoparticle PEG-840kDa scaffold pre- (C) and post- (D) aerosolization. 
Scale is 200 nm. (E) Representative DLS quantification of particle sizes pre- and post-aerosolization of 
PEG-840kDa scaffold (n = 3). (F) Fluorescent dequenching by MMP13 of fluorogenic nanosensor PEG-
PPQ5, pre (grey) (n = 4) and post (red) (n = 4) aerosolization. PEG-PPQ5 fluorescence change without 
addition of MMP13 is shown in black (n = 4). 

 

Last, we functionalized the PEG nanoparticles with either a near-infrared dye for 

biodistribution studies or biotin for histological assessment and used pressure-driven 

aerosolization to perform intrapulmonary administration. Gross fluorescent visualization of 

VT750 revealed deep penetration throughout the lung and in all lobes (fig. 2.S8A), without 

distribution to other organs (fig. 2.S8B). Histological staining of fixed lungs collected from mice 

10 minutes post-inhalation demonstrated no biotin staining in control lungs (fig. 2.S8C-D) but 

broad staining throughout the lung overall (fig. 2.S8E) and in terminal alveoli (fig. 2.S8F) in mice 

treated with aerosolized nanoparticles. 
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Figure 2.S8. Aerosolized nanoparticles penetrate deep within the lung and avoid distribution to off-
target organs. (A) Representative image of lungs from a mouse treated with aerosolized fluorophore-
labeled PEG-840kDa. Scale is 5 mm. (B) Organ-specific biodistribution of fluorophore-labeled PEG-840kDa 
60 minutes after aerosol (red) (n = 2) or intravenous (grey) (n = 2) delivery. (C-F) Stained sections of 
untreated lungs (C-D) or lungs fixed 10 min post-aerosol delivery of biotin labeled PEG-840kDa (E-F). Scale 
bar for (C-F) is 200 μm. 

 

Mass-encoded reporters filter from the lung to the urine via the blood and are detectable by 

mass spectrometry 

To enable multiplexed detection of a broad spectrum of disease-associated proteases via a single 

in vivo administration of nanosensors, we conjugated each member of the LUAD substrate panel 

to a uniquely identifiable mass-encoded reporter (PP1-14; Table 2.1). As previously described 

(35), we used variable labeling of the 14-mer glutamate-fibrinopeptide B (Glu-Fib) with stable 

isotope-labeled amino acids to uniquely barcode each of the 14 peptide substrates. Multiple 

reaction monitoring via a liquid chromatography triple quadrupole mass spectrometer (LC-
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MS/MS) enabled quantitative assessment of urinary reporter concentration within a broad linear 

range (1-1000 ng/ml, fig. 2.S9A).  

 
Table 2.1. Reporter and substrate sequences for in vivo urinary diagnostics. ANP 
(photocleavable linker), 3-Amino-3-(2-nitro-phenyl)propionic Acid; Cha, 3-Cyclohexylalanine; 
Cys(Me), methyl-cysteine; lowercase letters, D-amino acids 
 

 

Figure 2.S9. Free reporters enter the bloodstream after pulmonary delivery and are detectable in the 
urine by mass spectrometry. (A) Glu-fib reporters were spiked into urine at concentrations ranging from 
1 to 1000 ng/ml and LC-MS/MS was performed. Goodness of fit was assessed by linear regression and is 
given as Pearson’s R2. (B) Healthy mice (n = 4 each group) were administered MS-encoded free reporters 
(IT and IV) at doses ranging from 2.5 ng to 25 ng and urinary concentrations at 1 hour were assessed by 
LC-MS/MS (slopeIT = 0.075 ng-1, slopeIV = 0.077 ng-1). Geometric mean normalized peak area ratio is 
shown. Error bars represent SD. (C) Cy7-labeled free reporters were administered IT and IV and 
concentration in the blood was assessed over the following 6 hours (n = 4 each group). Error bars represent 
SD. 
 

By administering mass-encoded free reporters by IT and IV administration, we found that urinary 

accumulation scaled linearly with input doses between 2.5 ng and 25 ng for both routes of delivery 

Name Reporter Photolabile 
Group Substrate Nanocarrier 

PP01 e(+2G)(+6V)ndneeGFFsAr ANP GGPQGIWGQC PEG8-40kDa 
PP02 eG(+6V)ndneeGF(+1F)s(+1A)r ANP GGPVGLIGC PEG8-40kDa 
PP03 e(+3G)(+1V)ndneeGFFs(+4A)r ANP GGPVPLSLVMC PEG8-40kDa 
PP04 e(+2G)Vndnee(+2G)FFs(+4A)r ANP GGPLGLRSWC PEG8-40kDa 
PP05 eGVndnee(+3G)(+1F)Fs(+4A)r ANP GGPLGVRGKC PEG8-40kDa 
PP06 e(+2G)(+6V)ndnee(+3G)(+1F)(+1F)s(+1A)r ANP GGfPRSGGGC PEG8-40kDa 
PP07 eG(+6V)ndnee(+3G)(+1F)Fs(+4A)r ANP GGLGPKGQTGC PEG8-40kDa 
PP08 e(+3G)(+1V)ndneeG(+10F)FsAr ANP GGGSGRSANAKGC PEG8-40kDa 
PP09 eGVndneeGF(+10F)s(+4A)r ANP GGKPISLISSGC PEG8-40kDa 
PP10 e(+2G)(+6V)ndneeG(+10F)(+1F)s(+1A)r ANP GGILSRIVGGGC PEG8-40kDa 
PP11 e(+3G)(+1V)ndnee(+2G)(+10F)Fs(+4A)r ANP GGSGSKIIGGGC PEG8-40kDa 
PP12 eGVndneeG(+10F)(+10F)sAr ANP GGPLGMRGGC PEG8-40kDa 
PP13 e(+2G)(+6V)ndnee(+3G)(+10F)(+1F)s(+4A)r ANP GGP-(Cha)-G-Cys(Me)-HAGC PEG8-40kDa 
PP14 e(+3G)(+1V)ndnee(+2G)(+10F)(+10F)sAr ANP GGAPFEMSAGC PEG8-40kDa 
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(slopeIT = 0.075 ng-1, slopeIV = 0.077 ng-1; fig. 2.S9B). Administering a Cy7-labeled version of 

Glu-Fib, we found characteristic single-exponential concentration decay following IV injection 

and a two-phase kinetic profile following IT administration (fig. 2.S9C), suggesting an initial 

phase of partitioning from the alveoli into the blood (peaking at 1 to 2 hours after delivery)  

followed by renal filtration from the blood. 

 

 
Table 2.S2. Quantification of tumor burden in KP mice by microCT. Vavg, average tumor 
volume. MicroCT sensitivity is defined as the number of mice with detectable tumors divided by 
the total number of mice at each time point. 
 

Activity-based nanosensor cleavage is dysregulated in lung cancer mouse models 

We then sought to longitudinally monitor disease progression in KP mice with activity-based 

nanosensors and benchmark their diagnostic performance against micro-computed tomography 

(microCT). After initiating disease via intratracheal administration of adenovirus encoding Cre 

recombinase (fig. 2.S1A), we monitored tumor development by performing microCT at 5 weeks 

(KP5wk), 7.5 weeks (KP7.5wk), and 10.5 weeks (KP10.5wk) after adenoviral induction (Fig. 2.5A, table 

 5 weeks 7.5 weeks 10.5 weeks 

Mouse Multiplicity Volume 
(mm3) Multiplicity Volume 

(mm3) Multiplicity Volume 
(mm3) 

KP1 0 0 1 0.5 1 0.5 
KP2 0 0 0 0 3 5.2 
KP3 1 1.8 3 2.8 6 13 
KP4 3 2.8 3 6.5 6 27 
KP5 0 0 0 0 5 17.8 
KP6 0 0 6 4.4 6 22.7 
KP7 2 4.7 4 7 4 16.8 
KP8 0 0 2 1 Motion Artifact Motion Artifact 

KP9 0 0 2 4.7 3 42.6 
KP10 0 0 0 0 3 16.8 
KP11 0 0 2 4.7 2 4.7 
KP12 1 0.5 1 1.8 8 43.9 

MicroCT 
Sensitivity 33.3% 75% 100% 

Vavg (mm3) 0.775 2.78 19.2 
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2.S2). The sensitivity of microCT at 100% specificity was 33.3% at 5 weeks, 75% at 7.5 weeks, 

and 100% at 10.5 weeks, and average tumor burden at these three time points was 0.775 mm3, 2.78 

mm3, and 19.2 mm3 (Fig. 2.5A, table 2.S2). 

 

Figure 2.5: Activity-based nanosensors distinguish between diseased and healthy mice. (A) Tumor 
development was monitored by microCT in healthy (left, n = 11) and KP5wk (n = 12), KP7.5wk (n = 12), and 
KP10.5wk (n = 11). Right three panels represent time series of a single mouse, with arrow indicating 
development of a single nodule over time. Quantification of tumor volume is shown to the right of each 
image, and percentage of mice with detectable tumors at each time point (% detected) is shown above each 
panel.  (B) Urine output of activity-based nanosensors administered to KP and control animals at 5 weeks 
(KP: n = 11; Control: n = 9), 7.5 weeks (KP: n = 11; Control: n = 12), and 10.5 weeks (KP: n = 12; Control: 
n = 12) after tumor induction. For clarity, PP06 is presented on a larger scale y axis.  * Padj < 0.05, ** Padj 
< 0.01, *** Padj < 0.001 indicate significant differences from control by either two-tailed t-test with Holm-
Sidak correction (for normally distributed reporters) or Mann-Whitney test with Bonferroni correction (for 
non-normal reporters). Error bars represent SEM. (C-E) PCA of mean normalized urinary reporters for KP 
mice and controls at 5 weeks (KP: n = 11; Control: n = 9) (C), 7.5 weeks (KP: n = 11; Control: n = 12) (D), 
and 10.5 weeks (KP: n = 12; Control: n = 12) (E). 
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To characterize activity-based nanosensor performance in vivo relative to microCT, we 

administered all 14 protease-sensitive nanoparticles to the lungs of KP mice and age- and sex-

matched healthy controls at 5, 7.5, and 10.5 weeks after tumor initiation. Several reporters 

differentiated KP mice from healthy controls, with some reporter differences (for example PP03, 

PP11) becoming amplified over time (Fig. 2.5B). At 7.5 and 10.5 weeks, 5 out of 14 reporters were 

significantly different between KP and healthy mice (Padj < 0.05), whereas none of the reporters 

differed at 5 weeks (fig. 2.S10).  

 

Figure 2.S10. Multiple reporters are differentially enriched in the urine of healthy mice and KP mice 
at 7.5 and 10.5 weeks. Mean normalized urinary reporter concentrations in KP mice and healthy mice were 
compared at 5 weeks (KP: n = 11; Control: n = 9), 7.5 weeks (KP: n = 11; Control: n = 12), and 10.5 weeks 
(KP: n = 12; Control: n = 12) after tumor induction and -log10(Padj) was plotted against fold change between 
KP and control. Significance was calculated by either two-tailed t-test followed by adjustment for multiple 
hypotheses with Holm-Sidak correction (for normally distributed reporters) or Mann-Whitney test with 
Bonferroni correction (for non-normal reporters). Dotted line is at Padj = 0.05. Significant reporters are 
color-coded according to the classes of protease that cleave their corresponding peptide substrates in vitro 
(fig. S4) (green, metalloprotease-specific; orange, serine protease-specific; blue, aspartic protease-specific). 

 

In contrast, intratracheal administration of the same 14-plex panel to mice bearing flank 

xenograft tumors (average tumor volume of 448 mm3) derived from a human colorectal cancer 

cell line yielded no differential urinary reporters between xenograft and control mice (fig. 2.S11A-

B).  
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Figure 2.S11. Extrapulmonary disease is undetectable by intrapulmonary activity-based 
nanosensors. (A) Mean normalized urinary reporter output for healthy control mice (black, n = 5) or mice 
bearing flank LS174T tumors (red, n = 5). (B) Volcano plot shows no differential enrichment of any of the 
14 reporters detected in the urine of diseased mice relative to healthy controls, as assessed by either two-
tailed t-test followed by adjustment for multiple hypotheses with Holm-Sidak correction (for normally 
distributed reporters) or Mann-Whitney test with Bonferroni correction (for non-normal reporters). 
 

Of the 5 reporters enriched in KP7.5wk urine, three (PP02, PP03, and PP09) were also 

enriched in KP10.5wk urine, and these sequences corresponded to peptides cleaved by 

metalloproteases or both metalloproteases and aspartic proteases in vitro. However, the most 

significantly enriched reporter in the urine of KP mice at 10.5 weeks (PP11; Padj = 0.0001) 

corresponded to a peptide cleaved only by serine proteases in vitro. Unsupervised dimensionality 

reduction by principal component analysis (PCA) separated most KP and control mice at 7.5 and 

10.5 weeks, but not at 5 weeks (Fig. 2.5C-E).  

 Though the KP model is a well-established, autochthonous model of lung adenocarcinoma, 

it only represents one subset of human disease. We sought to assess the generalizability of activity-

based nanosensors to other genetic subtypes by leveraging the Eml4-Alk (EA) model (64), an 

autochthonous model in which intrapulmonary administration of adenovirus encoding two short 

guide RNAs (sgRNAs) and Cas9 results in translocation and fusion of the Eml4 and Alk genes, 

yielding lung adenocarcinoma that histologically resembles human disease. We administered the 

same panel of 14 nanosensors in EA mice 5 weeks, 7.5 weeks, and 10.5 weeks after adenoviral 

induction and found differential urinary reporter signatures at all three time points (fig. 2.S12A), 
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enabling separation of diseased mice from healthy controls at all three time points, as revealed by 

PCA (fig. 2.S12B). Notably, although several reporters were differentially enriched in the urine of 

both KP and EA mice, others were unique to one model; the consistent enrichment of PP01, a 

robust metalloprotease-specific nanosensor in EA mice but not in KP mice (fig. 2.S10) suggests 

differential regulation of a subset of metalloproteases in these two models. 

 
 
Figure 2.S12: Intrapulmonary activity-based nanosensors differentiate mice bearing Alk-driven lung 
cancer from healthy controls.  (A) Mean normalized urinary reporter concentrations in EA mice and 
healthy mice were compared at 5 weeks (n = 19 each group) (left), 7.5 weeks (EA, n = 20; Control, n = 19) 
(middle) and 10.5 weeks (EA, n = 16; Control, n = 19) (right) after tumor induction and -log10(Padj) was 
plotted against fold change between EA and control. Significance was calculated by either two-tailed t-test 
with Holm-Sidak correction (for normally distributed reporters) or Mann-Whitney test with Bonferroni 
correction (for non-normal reporters). Dotted line is at Padj = 0.05. Significant reporters are color-coded 
according to the classes of protease that cleave their corresponding peptide substrates in vitro (fig. S4) 
(green, metalloprotease-specific; orange, serine protease-specific; blue, aspartic protease-specific). (B) 
PCA of urinary reporter output of EA mice and healthy controls at 5 weeks (n = 19 each group) (left), 7.5 
weeks (EA, n = 20; Control, n = 19) (middle) and 10.5 weeks (EA, n = 16; Control, n = 19) (right) after 
tumor induction. 
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Activity-based nanosensor cleavage signatures are distinct in malignant and benign disease 

models 

Existing lung cancer diagnostic modalities like LDCT suffer from high false positive rates, 

resulting in cost, anxiety, and morbidity to patients due to unnecessary invasive follow-up 

procedures (46). We hypothesized that multiplexed measurements of pulmonary protease activity 

would enable discrimination of malignant from benign disease. To assess the specificity of 

activity-based nanosensors for lung cancer versus benign inflammatory disease, we leveraged a 

well-established model of lung inflammation, induced by intratracheal administration of 

lipopolysaccharide (LPS) (65). We found that several reporters were differentially enriched in the 

urine of KP7.5wk mice (fig. 2.S13A) and EA7.5wk mice (fig. 2.S13B) relative to LPS-treated mice, 

enabling separation of KP, EA, LPS, and healthy mice by PCA (fig. 2.S13C). 

 

Figure 2.S13. Pulmonary activity-based nanosensor cleavage profile is distinct in lung cancer and 
benign lung inflammation. (A-B) Volcano plots of urinary reporter outputs from KP7.5wk (n = 11) (A) and 
EA7.5wk (n = 20) (B) mice relative to LPS-treated mice (n = 11), where -log10(Padj) was plotted against fold 
change. Significance was calculated by either two-tailed t-test with Holm-Sidak correction (for normally 
distributed reporters) or Mann-Whitney test with Bonferroni correction (for non-normal reporters). Dotted 
line is at Padj = 0.05. Significant reporters are color-coded according to the classes of protease that cleave 
their corresponding peptide substrates in vitro (fig. S4) (green, metalloprotease-specific; orange, serine 
protease-specific; blue, aspartic protease-specific).  (C) PCA of urinary reporter outputs from KP7.5wk (n = 
11), EA7.5wk (n = 20), and LPS (n = 11) mice, as well as healthy control mice from all three experiments (n 
= 47). 
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Machine learning classification enables sensitive and specific lung cancer detection  

Having demonstrated that activity-based nanosensors enable detection of two autochthonous 

models of lung adenocarcinoma, with cleavage patterns that were distinct from LPS-induced lung 

inflammation, we leveraged machine learning to build a classifier that could be prospectively 

applied to enable disease diagnosis. We trained a random forest classifier (66) using the urinary 

reporter output from a subset of  KP7.5wk (n = 6), EA7.5wk (n = 6), and healthy (n = 12) mice and 

tested its ability to classify each LUAD model from healthy control mice in an independent test 

cohort consisting of mice that were not included in classifier training (n = 5-31; see table 2.S3 for 

cohort compositions).  

 5 weeks 7.5 weeks 10.5 weeks 
KP v. Healthy (Fig. 2.6A) Train Test Train Test Train Test 

Healthy 0 9 12 6 0 12 
KP 0 11 6 5 0 12 

Eml4-Alk 0 0 6 0 0 0 
Eml4-Alk v. Healthy (Fig. 2.6B) Train Test Train Test Train Test 

Healthy 0 17 12 13 0 19 
KP 0 0 6 0 0 0 

Eml4-Alk 0 19 6 14 0 16 
LUAD v. Healthy (Fig. 2.6C) Train Test Train Test Train Test 

Healthy 0 26 12 19 0 31 
KP 0 11 6 5 0 12 

Eml4-Alk 0 19 6 14 0 16 
LUAD v. Benign (Fig. 2.6D) Train Test Train Test Train Test 

Healthy 0 0 12 19 0 0 
KP 0 0 6 5 0 0 

Eml4-Alk 0 0 6 14 0 0 
LPS 0 0 6 5 0 0 

 

Table 2.S3. Composition of training and test cohorts for random forest classification. Cohort numbers 
used to train and test random forest classifiers applied in Fig. 2.6A-C (KP v. Healthy, Eml4-Alk v. Healthy, 
LUAD v. Healthy) and Fig. 2.6D (LUAD v. Benign). 
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Area under the receiver operating characteristic curve analysis revealed robust 

classification of KP7.5wk and KP10.5wk (AUC7.5wks = 0.95; AUC10.5wks = 0.93) (Fig. 2.6A), as well as 

EA mice at all three time points (AUC5wks = 0.96, AUC7.5wks = 0.98; AUC10.5wks = 0.93) (Fig. 2.6B). 

We also evaluated the classifier on a test cohort that combined both LUAD models (table 2.S3) 

and again found robust classification at 7.5 weeks and 10.5 weeks (AUC7.5wks = 0.97; AUC10.5wks = 

0.93) (Fig. 2.6C). Finally, we sought to determine whether a classifier could be built to distinguish 

lung cancer-bearing mice from both healthy mice and mice with benign lung inflammation. We 

trained a second classifier incorporating KP7.5wk, EA7.5wk, LPS-treated, and healthy control mice 

(table 2.S3), applied it to an independent test cohort, and found that it performed with high 

accuracy in discriminating KP7.5wk, EA7.5wk, and a combination of the two (termed “LUAD7.5wk”) 

from healthy and LPS-treated mice (AUCKP = 0.97; AUCEA = 0.98; AUCLUAD = 0.97) (Fig. 2.6D). 

Together, these data illustrate the power of multiplexed, lung-specific activity-based nanosensors 

for sensitive and specific detection of localized lung cancer. 

2.3 Discussion 

In this work, we present an advance toward clinical translation of a new class of biomarkers, 

activity-based nanosensors. We found that such multiplexed nanosensors, when delivered by 

intratracheal instillation, performed with specificity of 100% and sensitivity up to 95% for 

detection of localized disease in two autochthonous lung adenocarcinoma models representing 

Kras/Trp53 and Alk-mutant disease. Furthermore, we found that LPS-induced lung inflammation 

did not result in false positives. Our approach overcomes the intrinsic sensitivity limitation of 

blood-based diagnostic assays for localized disease by profiling disease activity directly within the 

tumor microenvironment and providing multiple steps of signal amplification (52). Using 

intratracheal instillation delivery, we further ensured that virtually all nanosensors reached the lung 

and bypassed nonspecific activation in off-target organs.  
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Figure 2.6: Machine learning enables sensitive and specific classification of two genetic subtypes of 
lung adenocarcinoma.  (A-C) ROC curves showing performance of a single random forest classifier 
trained on urinary reporters from a subset of KP7.5wk, EA7.5wk, and healthy controls in discriminating an 
independent test cohort of KP (A), EA (B), or a combination of KP and EA (C) mice from healthy controls 
at all three time points. (D) ROC curve showing performance of a random forest classifier trained on urinary 
reporters from KP7.5wk and EA7.5wk mice vs. LPS and healthy control mice in discriminating an independent 
test cohort of KP7.5wk, EA7.5wk, and a combination of the two (termed “LUAD”) from healthy and LPS-
treated mice. All ROC curves are averages over 10 independent train/test trials and show the results in the 
test cohort. n = 5-31; details of cohort sample sizes are shown in table 2.S3. 

 

This study represents a step toward clinical implementation of activity-based nanosensors 

for lung cancer testing, validating the efficacy of the tool in two autochthonous, immunocompetent 

models of localized lung adenocarcinoma. The use of genetically engineered mouse models 
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(GEMMs) offered several advantages over cell transplant models, including the ability to explore 

stage-specific differences, as well as proteolytic contributions from immune cells. Activity-based 

nanosensors detected disease as early as 7.5 weeks after initiating the KP model, when only grade 

1 AAH and grade 2 adenomas are present (54). Furthermore, though metalloprotease-sensitive 

nanosensors were, as expected, preferentially cleaved in KP mice at both 7.5 and 10.5 weeks, the 

activation of PP11 (a serine protease-sensitive substrate) in KP10.5wk mice could point to an 

unexpected role of serine protease activity in tumor progression at this disease stage. One 

hypothesis is that tumor-infiltrating immune cells, which secrete a multitude of serine proteases 

(67), may contribute to nanosensor cleavage in KP10.5wk mice. Indeed, neutrophils are known to 

infiltrate KP tumors around 10 weeks after tumor induction (68). The potential capacity of activity-

based nanosensors to measure immune-mediated protease activity (39) raises the prospect of rapid, 

noninvasive, and longitudinal immunotherapy response monitoring. 

Here, we report improved sensitivity of activity-based nanosensors relative to previous 

work by our group, as well as existing and emerging blood-based diagnostics for cancer. We found 

that our nanosensors could detect tumors in KP7.5wk mice, whose total tumor volumes were, on 

average, just 2.78 mm3 —more than an order of magnitude smaller than our most sensitive method 

to date (36 mm3 in an ovarian cancer model) (38). By comparison, in the LS174T colorectal cancer 

xenograft model, ctDNA is detectable when tumor volumes reach 1,000 mm3 (69), 

carcinoembyonic antigen (CEA) is detectable around 135-330 mm3 (35, 69), and intravenously 

administered activity-based nanosensors have previously been shown to detect disease in this 

model around 130 mm3 (35). Last, in the autochthonous KrasG12D-mutant “K” lung cancer model, 

ctDNA bearing the KrasG12D mutation was only detectable when average tumor volumes were 7.1 

mm3 (70), even with collection of 2.5% of the total mouse blood volume—scaling to 125 ml in 

humans.  
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In the NLST, 96.4% of positive LDCT findings were false positives (6, 46), and many of 

these patients went on to suffer major complications during invasive follow-up procedures (8, 46). 

Therefore, there is a need to develop noninvasive diagnostic methods that can distinguish between 

lung cancer and benign lung disease. Here, we demonstrated the specificity of activity-based 

nanosensors for lung cancer, rather than benign lung inflammation, through multiplexing and 

machine learning. Though fewer than half of the 14 reporters were differentially enriched in the 

urine of KP mice and healthy controls, several more had diagnostic power in EA mice, and others 

were informative in the classification of malignant vs. inflammatory disease. As a result, we found 

that a pre-trained random forest classifier could distinguish between lung cancer-bearing mice 

(regardless of subtype) and benign disease controls. Though a clinical study would be necessary 

to directly assess the effectiveness of activity-based nanosensors in the setting of LDCT lung 

cancer screening, our results suggest that activity-based nanosensors may complement LDCT for 

discrimination of malignant lesions from benign disease. 

Although this work represents a step toward translation of activity-based nanosensors for 

lung cancer detection, there are limitations that must be addressed prior to clinical implementation. 

In this work, we demonstrated the sensitivity and specificity of intrapulmonary activity-based 

nanosensors for localized lung cancer in two GEMMs of LUAD. Though the advantages of 

GEMMs over xenograft models in recapitulating human disease are numerous (71), mouse models 

cannot fully capture the native oncogenic properties or heterogeneity found in human lung cancer 

and further in vivo validation is needed to confirm the generalizability of activity-based 

nanosensors to other lung cancer subtypes. Similarly, though activity-based nanosensors can 

discriminate between lung cancer and LPS-driven lung inflammation, it is possible that clinical 

lung cancer testing may be confounded by other benign lung disease etiologies or chronic exposure 

to tobacco smoke. Because of the inherent limitations of mouse models, clinical trials will be 
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necessary to fully validate the robustness of activity-based nanosensors in detecting lung cancer 

and distinguishing malignant from benign and extrapulmonary disease in humans. Last, the 

intrapulmonary delivery methods presented here must be optimized prior to clinical translation. 

Here, we delivered activity-based nanosensors by intratracheal intubation and demonstrated their 

stability after aerosolization. However, a clinically relevant intrapulmonary delivery method such 

as dry powder inhalation or nebulization will be required for clinical implementation.  

In summary, intrapulmonary activity-based nanosensors perform with high sensitivity and 

specificity for detection of localized lung cancer in autochthonous mouse models, via a 

noninvasive urine test. To engineer these nanosensors, we leveraged analysis of lung 

adenocarcinoma gene expression datasets to nominate candidate proteases, screened these 

proteases in vitro against a panel of peptide substrates, and directly delivered nanosensors carrying 

these substrates into the lungs of mice. Activity-based nanosensors may have clinical utility as a 

rapid, safe, and cost-effective follow-up to LDCT, reducing the number of patients referred for 

invasive testing. With further optimization and validation studies, activity-based nanosensors may 

one day provide an accurate, noninvasive, and radiation-free strategy for lung cancer testing. 

2.4 Materials and Methods 

Study design 

The goal of this study was to determine whether intrapulmonary administration of a multiplexed 

library of activity-based nanosensors could be used to sensitively and specifically detect lung 

cancer in autochthonous mouse models. All animal studies were approved by the Massachusetts 

Institute of Technology (MIT) committee on animal care (protocol 0417-025-20) and were 

conducted in compliance with institutional and national policies. Reporting was in compliance 

with Animal Research: Reporting In Vivo Experiments (ARRIVE) guidelines. Experiments 

involving intrapulmonary delivery of activity-based nanosensors in KP mice consisted of 12 KP 
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mice and 12 healthy control mice; experiments involving intrapulmonary delivery of activity-

based nanosensors in EA mice consisted of 20 EA mice and 20 healthy control mice. These mice 

were monitored, by intratracheal nanosensor administration and microCT, at 5 weeks, 7.5 weeks, 

and 10.5 weeks after tumor induction. Sample size was selected to ensure a sample size greater 

than or equal to five for both training and test groups at each time point and for each treatment 

group. Urine samples with peak area ratio (PAR) values of zero for two or more analytes were 

excluded, as these samples represented failed nanosensor deliveries and would confound analysis. 

For differential expression analysis of protease genes in KP mice, genes for which neither normal 

lung sample was nonzero were excluded, as calculation of fold changes (Tumor/Normal) would 

otherwise yield undefined values. For ROC analysis in the LGRC dataset, genes for which greater 

than half of the samples had FPKM values of zero were excluded. During selection of KP and 

healthy control mice, investigators were blinded to all characteristics but age, sex, and genotype. 

For random forest classification, mice were randomly assigned to training and test cohorts using a 

randomly generated seed. 

Statistical analysis  

For RNA-seq data, binary classification using a generalized linear model was performed using the 

Caret package (72) in the R statistical environment (73). Pre-specified training and testing cohorts 

were randomly assigned, with 75% and 25% of samples used for training and testing, respectively. 

For all urine experiments, PAR values were normalized to nanosensor stock concentrations and 

then mean normalized across all reporters in a given urine sample prior to further statistical 

analysis. To identify differential urinary reporters, all reporters were first tested for normality by 

Kolmogorov-Smirnov normality test with Dallal-Wilkinson-Lilliefor P value. All normally 

distributed reporters were subjected to unpaired two tailed t-test followed by correction for 

multiple hypotheses using the Holm-Sidak method, while non-normal reporters were subjected to 
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Mann-Whitney test with Bonferroni correction in GraphPad Prism 7.0. Padj < 0.05 was considered 

significant. PCA was performed on mean normalized PAR values and implemented in MATLAB 

R2019b (Mathworks). For disease classification based on urinary activity-based nanosensor 

signatures, randomly assigned sets of paired data samples consisting of features (the mean-

normalized PAR values) and labels (for example KP, EA) were used to train random forest (66) 

classifiers implemented with the TreeBagger class in MATLAB R2019b. Estimates of out-of-bag 

error were used for cross-validation, and trained classifiers were tested on randomly assigned, 

held-out, independent test cohorts. The specific composition of train-test cohorts is provided in 

table 2.S3. Ten independent train-test trials were run for each classification problem, and 

classification performance was evaluated with ROC statistics calculated in MATLAB. Classifier 

performance was reported as the mean accuracy and AUC across the ten independent trials. 

Gene expression analysis 

Human RNA-Seq data from The Cancer Genome Atlas (TCGA) Research Network (58) was 

downloaded from https://www.cancer.gov/tcga and human RNA-Seq data from the Lung 

Genomics Research Consortium (LGRC) (61) was downloaded from https://www.lung-

genomics.org/research. The list of human extracellular protease genes was obtained from UniProt. 

Differential expression analysis on the TCGA data was performed using the DESeq2 differential 

expression library in the R statistical environment (Fig. 2.2C) (59, 73). AUROC analysis was 

performed for the TCGA and LGRC datasets using FPKM values from disease samples (LUAD, 

ILD, and COPD) and their respective controls (NAT for LUAD, normal lung for ILD and COPD), 

using GraphPad Prism version 7.0a (fig. 2.S2). Genes in the LGRC dataset for which at least half 

of the samples had FPKM values greater than zero were included in the AUROC analysis, but all 

zero values were excluded. FPKM values for the KP model (55) were downloaded from Gene 

Expression Omnibus (GEO; GSE84447). Top 20 extracellular endoproteases were identified by 
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averaging FPKM values across all tumor bearing mice and dividing by the average FPKM values 

for normal mice (Fig. 2.2A). Genes for which neither of the two normal lung samples had nonzero 

FPKM values were excluded. Microarray counts for the K dataset (56) were downloaded from 

GEO (GSE49200). Gene expression fold changes were determined by performing quantitative 

significance analysis of microarrays (SAM) using the “Standard” regression method, 100 

permutations, and 10 neighbors for k-nearest neighbors (KNN) classification (Fig. 2.2B) (57).  

Pre-ranked GSEA was performed on the LUAD and LUSC gene expression datasets from 

TCGA using a gene set containing the top 20 overexpressed proteases in the KP model (Fig. 2.2D) 

or the 15 genes of the LUAD protease panel (fig. 2.S3) (55). The pre-ranked list of log2(Fold 

Change) was generated previously by DESeq2. A minimum of 10000 permutations by gene set 

were performed to calculate the P value. GSEA was performed via the GenePattern online software 

(74) and the GSEA desktop application using the “classic” scoring scheme. 

Fluorogenic substrate characterization 

Fluorogenic protease substrates were synthesized by CPC Scientific. Recombinant proteases were 

purchased from Enzo Life Sciences, R&D Systems, and Haematologic Technologies. For 

recombinant protease assays, fluorogenic substrates PPQ1-14 (1 μM final concentration) were 

incubated in 30 μL final volume in appropriate enzyme buffer, according to manufacturer 

specifications, with 12.5 nM recombinant enzyme at 37°C (Fig. 2.3). Proteolytic cleavage of 

substrates was quantified by increases in fluorescence over time by fluorimeter (Tecan Infinite 

M200 Pro). Enzyme cleavage rates were quantified as relative fluorescence increase over time 

normalized to fluorescence before addition of protease. Hierarchical clustering was performed in 

GENE-E (https://software.broadinstitute.org/GENE-E/, Broad Institute), using fluorescence fold 

changes at 45 minutes.  

Intratracheal instillation and in vivo aerosolization studies 



 53 

For all mouse experiments, anesthesia was induced by isoflurane inhalation (Zoetis), and mice 

were monitored during recovery. For intratracheal instillation studies, a volume of 50 μl was 

administered by passive inhalation following intratracheal intubation with a 22G flexible plastic 

catheter (Exel), as described elsewhere (54). All aerosolization experiments used a MicroSprayer 

Aerosolizer – Model MSA-250-M (Penn-Century. Inc.) with a volume of 50 μl/mouse by placing 

the aerosolizer tip in the trachea immediately proximal to the carina and rapidly depressing the 

plunger.  

Biodistribution studies 

Biodistribution studies were performed in healthy male C57BL/6 mice. VT750-NHS Ester 

(PerkinElmer) was coupled to 8-arm 40 kDa PEG-amine (PEG-840kDa-amine, JenKem) at a 4:1 

molar ratio, reacted overnight, and purified by spin filtration (Amicon Ultra centrifugal filter units, 

Sigma). Mice were lightly anesthetized via isoflurane inhalation, and PEG-840kDa-VT750 (50 μl 

volume, 5 μM concentration by VT750 absorbance) was administered by intratracheal instillation 

(Fig. 2.4B-C) or aerosolization (fig. 2.S8A-B). Mice in the IV cohort were intravenously 

administered an equal dose of PEG-840kDa-VT750. Animals were sacrificed by CO2 asphyxiation 

at the indicated timepoints post-inhalation/injection and organs were removed for imaging (LICOR 

Odyssey). Organ fluorescence was quantified in Fiji (75) by manually outlining organs, using the 

“Measure” feature, and taking the mean intensity. 

Blood for pharmacokinetics measurements was collected using retro-orbital bleeds with 15 

μL glass capillary collection tubes. Blood was diluted in 40 μL phosphate buffered saline (PBS) 

with 5 mM ethylenediaminetetraacetic acid (EDTA) to prevent clotting, centrifuged for 5 min at 

5,000 x g, and fluorescent reporter concentration was quantified in 384-well plates relative to 

standards (LICOR Odyssey) (fig. 2.S9C). 
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For immunohistochemical visualization of nanoparticles following IT administration, EZ-

Link NHS-Biotin (Thermo Scientific) was coupled to PEG-840kDa-amine at a 2:1 molar ratio and 

reacted overnight, followed by spin filtration (Amicon Ultra centrifugal filter units, Sigma). 

Pulmonary delivery of PEG-840kDa-biotin (50 μl volume, 10 μM concentration) was performed by 

intratracheal instillation (Fig. 2.4D-E) or aerosolization (fig. 2.S8C-F). Fixation was performed 

10-30 minutes later by inflating lungs with 10% formalin. Lungs were excised, fixed in 10% 

formalin at 4°C overnight, and embedded in paraffin blocks. 5 μm tissue slices were stained for 

biotin using the streptavidin-HRP ABC kit (Vector Labs) with 3,3′-Diaminobenzidine (DAB). 

Slides were scanned using the 20x objective of the Pannoramic 250 Flash III whole slide scanner 

(3DHistech). 

In vitro aerosolization studies 

Analysis of nanoparticle stability and protease cleavage susceptibility following aerosolization 

used 0.1 μm-filtered 250 μM PEG-840kDa scaffold (fig. 2.S7B-E) or 5 μM PPQ5 PEG-840kDa 

nanosensors (fig. 2.S7F). Protease cleavage assays of aerosolized nanoparticles used 50 nM of 

recombinant human MMP13 (Enzo). 

Toxicity studies 

Activity-based nanosensor constructs (GluFib-Substrate-PEG-840kDa) were synthesized by CPC 

Scientific. Activity-based nanosensors were dosed (50 μL total volume, 20 μM concentration per 

nanosensor in mannitol buffer (0.28 M mannitol, 5 mM sodium phosphate monobasic, 15 mM 

sodium phosphate dibasic, pH 7.0-7.5)) by intratracheal instillation into healthy male C57BL/6 

mice. The mass of each mouse was monitored for 11 days post-administration and compared with 

masses of control mice administered mannitol buffer. Heart, lung, liver, spleen, and kidney tissues 

were collected from the mice at 2 h, 24 h, or 11 days post-administration, fixed in 10% formalin, 
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paraffin embedded, stained with haematoxylin and eosin, and then examined by a veterinary 

pathologist (Dr. Roderick Bronson).   

Clearance studies 

VT750-NHS Ester (PerkinElmer) was coupled to 8-arm 40 kDa PEG-amine (PEG-840kDa-amine, 

JenKem) at a 4:1 molar ratio, reacted overnight, and purified by spin filtration (Amicon Ultra 

centrifugal filter units, Sigma). Mice were lightly anesthetized via isoflurane inhalation, and PEG-

840kDa-VT750 (50 μl volume, 20 μM concentration by VT750 absorbance) was administered by 

intratracheal instillation (fig. 2.S5). Animals were sacrificed by CO2 asphyxiation at the indicated 

timepoints and organs were removed for imaging (LICOR Odyssey). Organ fluorescence was 

quantified in Fiji (75) by manually outlining organs, using the “Measure” feature, and taking the 

mean intensity. Kinetic data was fit using nonlinear regression in GraphPad 8.0 (Prism). Lung data 

was fit to an exponential decay model (Y=Y0e(-Kt); Y, fluorescence; Y0, initial fluorescence; K, 

rate constant; t, time), and all other organ data was fit to a two-phase growth and decay model 

(Y=A1e(-t/B1)+A2e(-t/B2); Y, fluorescence; t, time; A1/A2/B1/B2, constants). 

KP lung adenocarcinoma model 

KP tumors were initiated by intratracheal administration of 50 μL of adenovirus-SPC-Cre (2.5 x 

108 plaque-forming units (PFU) in Opti-MEM with 10 mM calcium chloride (CaCl2)) in male 

B6/SV129 KrasLSL-G12D/+; Trp53fl/fl (KP) mice (between 18 and 30 weeks old) under isoflurane 

anesthesia (54). Control cohorts consisted of age and sex-matched mice that did not undergo 

intratracheal administration of adenovirus. Tumor growth was monitored by microCT imaging 

(General Electric) and was scored by a blinded radiation oncologist (Dr. Justin Voog) (table 2.S2) 

using MicroView (Parallax Innovations). Tumor volumes were calculated by using the ROI 

sphere/elliptical tool. Tumor-bearing mice and age-matched controls were administered activity-
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based nanosensor constructs via intratracheal intubation at 5, 7.5, and 10.5 weeks after tumor 

induction. 

EA lung adenocarcinoma model 

Tumors were initiated in male C57BL/6 mice between 6 and 10 weeks old as described previously 

(64), by intratracheal administration of 50 μL adenovirus expressing the Ad-EA vector (Viraquest, 

1.5 x 108 PFU in Opti-MEM with 10 mM CaCl2). Control cohorts consisted of age and sex-matched 

mice that did not undergo intratracheal administration of adenovirus. Tumor-bearing mice and age-

matched controls were administered activity-based nanosensor constructs via intratracheal 

intubation at 5, 7.5, and 10.5 weeks after tumor induction. 

Colorectal cancer xenograft model 

For xenograft studies, LS174T (ATCC CL-188) cells were cultured in Eagle’s Minimal Essential 

Medium (EMEM, ATCC) supplemented with 10% (v/v) FBS (Gibco) and 1% (v/v) penicillin-

streptomycin (CellGro). Cells were passaged and harvested for inoculation when confluence 

reached 80%. Female NCR nude mice (4-5 weeks, Taconic) were injected bilaterally with 3 x 106 

LS174T cells, resuspended in Opti-MEM (ThermoFisher), per flank. Ten days after inoculation, 

tumor-bearing mice and age-matched controls were administered activity-based nanosensor 

constructs via intratracheal intubation. 

Lipopolysaccharide (LPS) model  

Lung inflammation was induced in 18 to 20 week-old male C57BL/6 mice via intratracheal 

administration of 0.3 mg of LPS (Sigma Aldrich) in 50 μl water, under isoflurane anesthesia. LPS-

treated mice and age and sex-matched healthy controls were administered activity-based 

nanosensors 3 days after LPS induction. 

In vivo characterization of activity-based nanosensors 
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All activity-based nanosensor experiments were performed in the morning and in accordance with 

institutional guidelines. Nanosensors (GluFib-Substrate-PEG-840kDa) for urinary experiments were 

synthesized by CPC Scientific. Nanosensors were dosed (50 μL total volume, 20 μM concentration 

per nanosensor) in mannitol buffer (0.28 M mannitol, 5 mM sodium phosphate monobasic, 15 mM 

sodium phosphate dibasic, pH 7.0-7.5) by intratracheal intubation, as described above, 

immediately followed by a subcutaneous injection of PBS (200 μl) to increase urine production. 

Bladders were voided 60 minutes after nanosensor administration, and all urine produced 60-120 

min after administration was collected using custom tubes in which the animals rest upon 96-well 

plates that capture urine. Urine was pooled and frozen at -80°C until analysis by LC-MS/MS. 

LC-MS/MS reporter quantification 

LC-MS/MS was performed by Syneos Health using a Sciex 6500 triple quadrupole instrument. 

Briefly, urine samples were treated with ultraviolet (UV) irradiation to photocleave the 3-Amino-

3-(2-nitro-phenyl)propionic Acid (ANP) linker and liberate the Glu-Fib reporter from residual 

peptide fragments. Samples were extracted by solid-phase extraction and analyzed by multiple 

reaction monitoring by LC-MS/MS to quantify concentration of each Glu-Fib mass variant. 

Analyte quantities were normalized to a spiked-in internal standard and concentrations were 

calculated from a standard curve using PAR to the internal standard. Mean normalization was 

performed on PAR values to account for mouse-to-mouse differences in activity-based nanosensor 

inhalation efficiency and urine concentration. 
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CHAPTER 3. REAL-TIME MONITORING OF DRUG RESPONSE IN 
PULMONARY DISEASES 
 

3.1 Introduction 

Quantitative biomarkers of disease progression and treatment response remain a high 

priority for both benign and malignant pulmonary diseases. Lymphangioleiomyomatosis (LAM), 

a rare benign lung disease that primarily affects premenopausal women, is characterized by cystic 

lung destruction and, ultimately, lung failure (11). Consistent with the role of mTOR in this disease 

process, rapamycin has emerged as the gold standard treatment modality for patients with LAM 

(76, 77). However, rapamycin treatment is not curative and is associated with side effects that 

reduce quality of life (77, 78). New drugs are needed for LAM and several are in clinical trials. 

Currently,  pulmonary function tests, including forced expiration volume in 1 second (FEV1), are 

the standard method of monitoring disease burden and response to therapy (79). Unfortunately, 

FEV1 is an imperfect biomarker because it is non-quantitative, effort-dependent, and slow to 

respond to therapy, hindering the pace of clinical trials. Similarly, quantitative biomarkers are need 

to monitor response to therapy in lung cancer. Currently, the gold-standard modality for 

monitoring drug response in lung cancer is computed tomography (CT). However, with the 

exception of oncogene-addicted cancers treated with targeted therapy, response rate by CT does 

not reliably correlate with overall survival (10). This is especially problematic in patients treated 

with immunotherapy, who often experience a paradoxical increase in tumor size, likely due to 

infiltration of immune cells (10). 

Given the limitations of existing tools for monitoring drug response in lung disease, various 

additional blood biomarkers and imaging tools have been explored. Serum VEGF-D levels are 

increased in most patients with LAM (12) and were found to decrease significantly after treatment 

with rapamycin in the Multicenter International Lymphangioleiomyomatosis Efficacy and Safety 
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of Sirolimus (MILES) trial (12, 77). Unfortunately, VEGF-D response at 6 months did not 

correlate with FEV1 response at 12 months, suggesting that VEGF-D concentrations may not 

accurately reflect clinical response in LAM patients. Because of the limitations of VEGF-D, 

additional biomarkers that are predictive of clinical response have been pursued in LAM. A recent 

study revealed 32 circulating biomarkers, including VEGF-D, that changed significantly in the 

serum of LAM patients treated with a combination of rapamycin and hydroxychloroquine (80). 

However, no analyte changes by week 3 of treatment were found to correlate with FEV1 changes 

over the 24-week study duration, again suggesting that serum biomarkers do not accurately predict 

clinical response to treatment in patients with LAM. Finally, high resolution computed 

tomography (HRCT), the gold-standard diagnostic modality in LAM, has been investigated as a 

candidate tool for monitoring therapeutic response (81). However, initial evidence suggests that 

cysts do not change in response to rapamycin treatment, raising doubts about the value of serial 

monitoring of LAM patients with CT. In lung cancer, the most promising non-imaging candidate 

biomarker for monitoring treatment response is circulating tumor DNA (ctDNA) (10). ctDNA has 

been shown to correlate with tumor burden in the context of lung cancer treatment response and 

tumor progression (10). Furthermore, ctDNA can enable noninvasive mutational profiling, 

allowing for the discovery of new mutations that may arise in response to therapy. However, 

ctDNA-based tests are limited by sensitivity, as a large proportion of cancer patients have 

undetectable levels of ctDNA in the blood (10, 17).  

 Instead of relying on correlative blood biomarkers or imaging methods, our group has 

developed a new class of diagnostic nanoparticles, termed “activity-based nanosensors”, that 

directly read out disease activity in vivo (35, 41, 82). Short, 8-12mer peptide substrates are 

conjugated to a nanoparticle and administered into the body. Upon cleavage of peptide substrates 

by dysregulated proteases at the disease site, barcoded products are cleared into the urine, where 
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they can be detected by mass spectrometry (MS). By appending each substrate with a unique 

reporter, multiple substrates can be tested simultaneously. We have sought to leverage the unique 

accessibility of the lungs by leveraging intrapulmonary, rather than intravenous, delivery of 

activity-based nanosensors to enable disease detection and treatment response monitoring in 

mouse models of LAM and Alk-mutant lung cancer. In both of these models, we found that 

activity-based nanosensors enabled longitudinal monitoring of disease development and rapid 

detection of drug response. Collectively, these results support the clinical development of activity-

based nanosensors for monitoring progression and treatment response in lung disease.  

 

3.2 Results 

Tsc2-deficiency induces protease dysregulation 

 LAM is driven by neoplastic cells deficient in tuberous sclerosis complex (TSC) 1 or 2 that 

are thought to grow aberrantly in an unknown primary organ and metastasize to the lung. There, 

LAM cells aberrantly secrete proteases (predominantly matrix metalloproteinases (MMPs) 2 and 

9 and cathepsin K), which are believed to contribute directly to lung degradation and cyst 

formation (11). We therefore sought to establish a mouse model that captured the protease 

dysregulation that is characteristic of LAM. We first established a cell line (termed “105K”) from 

a Tsc2-null renal tumor that spontaneously formed in a Tsc2wt/- mouse. These tumors were found 

to overexpress MMP2, MMP9, and CTSK relative to normal kidney tissue by immunofluorescence 

(Fig. 3.1A). Accordingly, we found that 105K cells secreted MMP2 in vitro and that expression 

was significantly abrogated by reintroduction of Tsc2 (P = 0.0022) (Fig. 3.1B). We also observed 

expression of pro, but not active CTSK in 105K cell lysates, while no CTSK expression was 

observed in normal mouse kidney or lung lysates (Fig. 3.1C). 
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Figure 3.1: Tsc2 deficiency results in aberrant protease expression. A) Immunofluorescence staining 
(green) of MMP9, MMP2, and CTSK in lesions (outlined in red) that formed spontaneously in the kidneys 
of Tsc2wt/- mice (top) compared to kidneys from healthy control mice (bottom). B) Expression of MMP2 in 
conditioned media from 105K cells and 105K cells with lentiviral reintroduction of Tsc2, relative to total 
protein (n = 3). **P < 0.01. C) Western blot against mouse cathepsin K in 105K cell lysates, recombinant 
mouse cathepsin K, and healthy mouse kidney and lung. β-actin immunostaining is shown for each sample. 
 

Tsc2-null cells are responsive to rapamycin in vitro and in vivo 

We then sought to assess responsiveness to rapamycin, the first-line therapy in patients 

with LAM. We treated 105K cells with rapamycin in vitro and found that their growth was slowed 

in a dose-dependent manner (Fig. 3.2A).  

To enable in vivo tracking of disease burden, we performed lentiviral transduction of 105K 

cells with a luciferase expression cassette, performed selection with puromycin, and observed GFP 

expression in 105K cells in vitro. We then performed tail vein injection of 5x105 105K cells in 

nude mice and monitored luciferase expression by IVIS. We found that 105K cells seeded the 

lungs and formed tumors, as assessed by IVIS (Fig. 3.2B). To assess the efficacy of rapamycin in 

vivo, we treated mice with rapamycin (1 mg/kg) either immediately after 105K cell inoculation 

(“Early Rap”) or 20 days after inoculation (“Late Rap”). We observed no disease in mice treated 

with rapamycin at day 0 and almost complete regression of disease within 8 days in mice treated 

at day 20 (Fig. 3.2C-D). 
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Figure 3.2: LAM cells are responsive to rapamycin in vitro and in vivo. A) Cell growth over time is 
shown for 105K cells treated with various doses of rapamycin or vehicle (ethanol) (n = 2 each time point). 
B) Representative IVIS images of LAM mice treated with 1 mg/kg rapamycin 20 days after intravenous 
injection of 105K cells. C) Quantification of lung luminescence in healthy control mice (“Control”), LAM 
mice treated with vehicle from day 20 (“Vehicle”), rapamycin from day 20 (“Late Rap”), or rapamycin 
from day 0 (“Early Rap”) (n = 4 to 5 per group). Arrow denotes the time at which rapamycin was initiated 
in the “Late Rap” group. D) Quantification of lung luminescence at day 28. *P < 0.05, **P < 0.01 by Mann-
Whitney test. Error bars are SD. 
 

Activity-based nanosensors detect dysregulated pulmonary protease activity, enabling 

detection of LAM in mice 

 Having established a mouse model of LAM, assessed its responsiveness to rapamycin, and 

characterized its proteolytic landscape, we next sought to develop activity-based nanosensors 

tuned to detect these proteases. We first selected a panel of peptide substrates that we had 

previously found to be cleavable by proteases across multiple classes, and had enabled detection 

of lung cancer in two autochthonous mouse models (82). To enable multiplexed protease activity 

measurement in vivo, each of these 14 substrates were uniquely labeled a mass-encoded reporter  
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Figure 3.3: Activity-based nanosensors discriminate LAM mice from healthy controls. A) Schematic 
of approach. B) Mean normalized urinary reporter concentrations in LAM mice and healthy controls were 
compared at 14 days (LAM: n = 19; Control: n = 9) and 18 days (LAM: n = 19; Control: n = 10) after 
disease induction and -log10(Padj) was plotted against fold change between LAM and control. Significance 
was calculated by two-tailed t-test followed by adjustment for multiple hypotheses with Holm-Sidak 
correction. Dotted line is at Padj = 0.05. C) PCA of urinary reporter output of LAM mice and healthy controls 
at 14 days and 18 days after disease induction. D) A random forest classifier was trained on urinary reporters 
from a subset of LAM mice and healthy controls at both 14 and 18 days. ROC curves show performance 
of this classifier in discriminating LAM mice from healthy controls in an independent test cohort. 
 

molecule and conjugated to 40 kDa 8-arm poly (ethylene glycol) nanoparticles, as previously 

described (82). This 14-plex nanosensors panel was then administered by intratracheal instillation 

in LAM mice 14 days and 18 days after disease induction (Fig. 3.3A). All urine produced from 1 

to 2 hours after nanoparticle administration was collected and mass spectrometry was performed. 

At 14 days, we observed significantly increased pulmonary protease activity against a single 

nanosensor, PP03, in LAM mice relative to healthy controls (Padj = 0.034) (Fig. 3.3B, left). 

Intriguingly, at 18 days, cleavage of PP03 was further increased in LAM mice (Padj = 1.4x10-5) 
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and PP10 cleavage was also significantly increased (Padj = 0.017) (Fig. 3.3B, right). On the basis 

of these differentially cleaved nanosensors, we observed separation of LAM and healthy mice by 

unsupervised dimensionality reduction with principal component analysis (PCA) at both tested 

time points (Fig. 3.3C). Finally, we trained a random forest classifier using a subset of LAM mice 

and healthy controls at both time points and tested its ability to accurately classify mice in an 

independent cohort. We found that the classifier distinguished LAM mice from healthy controls 

as early as day 14 (AUC = 0.81) and that classification was nearly perfect at 18 days (AUC = 0.95) 

(Fig. 3.3D). Our results suggest that activity-based nanosensors can measure disease-specific 

protease dysregulation in a mouse model of LAM, enabling accurate disease detection. 

Activity-based nanosensors enable rapid treatment response monitoring in LAM 

 Though FEV1 is the gold standard for assessing treatment response in LAM, this metric is 

effort-dependent and suffers from long lag times that limit its clinical utility. We therefore sought 

to assess whether activity-based nanosensors could enable objective, quantitative, and, most 

importantly, rapid assessment of treatment response in LAM. We therefore began treating LAM 

mice with rapamycin 18 days after disease induction and monitored their pulmonary protease 

activity with activity-based nanosensors at both day 20 and day 26, 2 and 8 days after rapamycin 

induction, respectively. We found that both PP10 and PP03 returned to baseline within just two 

days after treatment induction (Padj = N.S. from control) (Fig. 3.4A). Intriguingly, we also observed 

a transient increase above baseline in cleavage of PP04 (Padj = 0.0012 from control) and PP13 (Padj 

= 0.0042 from control) after rapamycin treatment (Fig. 3.4A). Overall, the cleavage of 9/14 

nanosensors was significantly altered by treatment with rapamycin, suggesting a profound shift in 

the pulmonary proteolytic landscape (Fig. 3.4B). By PCA, we observed that nanosensor cleavage 

patterns in LAM mice became progressively more distinct from healthy controls during disease  
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Figure 3.4: Activity-based nanosensors enable rapid assessment of drug response in LAM. A) Control-
normalized urinary reporter signal for each of the 14 ABNs. Transparent lines show ABN trajectories of 
each mouse over time, while opaque lines are averages over all mice. Red lines represent LAM mice prior 
to rapamycin treatment and blue lines represent LAM mice treated with 3 mg/kg rapamycin (3-4 times per 
week). Grey lines represent healthy control mice. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 
from control. Error bars are SD. For clarity, PP14 is presented on a larger scale y axis. B) Volcano plot 
showing the significance (-log10Padj) and fold change of each urinary reporter in LAM mice 18 days after 
105K cell injection (“LAM (d18)”) relative to LAM mice after 2 days of rapamycin treatment (“Rap 
(d20)”). Dotted line is at Padj = 0.05. C) Mean normalized urinary reporter concentrations were normalized 
to matched controls at each time point and subjected to PCA. D) A random forest classifier was trained on 
urinary reporters from a subset of LAM mice at d18 and rapamycin-treated mice at both 20 and 26 days (2 
days and 8 days after rapamycin initiation, respectively). ROC curves show performance of this classifier 
in discriminating rapamycin-treated mice from untreated LAM mice in an independent test cohort. 
 

progression, but gradually became more similar to controls after rapamycin treatment (Fig. 3.4C). 

Finally, we trained a random forest classifier using a subset of LAM mice at day 18 and rapamycin-

treated mice at days 20 and 26 and tested its ability to accurately classify treated mice in an 

independent cohort. We found that the classifier accurately detected treatment response at both 
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tested time points, with the strongest classification just two days after treatment induction (AUC = 

0.96) (Fig. 3.4D). 

Protease activity is dysregulated in an Alk-mutant model of lung adenocarcinoma 

Lung adenocarcinoma in humans is frequently driven by mutations in receptor tyrosine 

kinases, including ALK. To model these mutations in mice, we selected a recently described model 

(Eml4-Alk, or EA) in which intrapulmonary administration of adenovirus encoding two short 

guide RNAs (sgRNAs) and Cas9 results in translocation and fusion of the Eml4 and Alk genes, 

yielding lung adenocarcinoma that histologically resembles human disease (64). We analyzed a 

recent gene expression dataset that revealed differential expression of multiple protease and 

protease inhibitor genes in EA tumors relative to healthy lungs (83), suggesting that protease 

activity was significantly dysregulated downstream of oncogenic ALK signaling (Fig. 3.5).  

 

Figure 3.5: Multiple proteases are differentially expressed in Alk-mutant lung tumors. An existing 
RNA-Seq dataset profiling EA tumors (83) was analyzed for differentially expressed protease genes using 
the DESeq2 library. log2 fold change between EA tumors and healthy lungs is plotted against -log10(Padj) 
for each protease gene. 
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Figure 3.6: Activity-based nanosensors detect dysregulated protease activity in Alk-mutant lung 
cancer. A-B) Mean normalized urinary reporter concentrations in EA mice and healthy controls were 
compared at 3.5 weeks (EA: n = 20; Control: n = 20) (A) and 5 weeks (EA: n = 40; Control: n = 19) (B) 
after tumor induction and -log10(Padj) was plotted against fold change between EA and control. Significance 
was calculated by two-tailed t-test followed by adjustment for multiple hypotheses with Holm-Sidak 
correction. Dotted line is at Padj = 0.05. C-D) PCA of urinary reporter output of EA mice and healthy 
controls at 3.5 weeks (C) and 5 weeks (D) after tumor induction. 
 

Activity-based nanosensors enable detection of Alk-mutant lung adenocarcinoma 

To enable multiplexed detection of protease activity in vivo, we performed intratracheal 

instillation of the 14-plex activity-based nanosensor panel in EA mice and healthy controls 3.5 

weeks and 5 weeks after adenoviral induction and collected all urine generated between 1 and 2 

hours after administration. We found that at 3.5 weeks (EA3.5wks) and 5 weeks (EA5wks) after tumor 

induction, 6 and 8 nanosensors, respectively were differentially cleaved by pulmonary proteases 

in EA and healthy control mice (Fig. 3.6A-B). All 6 of the significantly different sensors in EA3.5wk 

mice remained significant in EA5wk mice, demonstrating the reproducibility of activity-based 
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nanosensors and suggesting persistent mutant ALK signaling over time. The most significantly 

enriched reporters in EA urine at both time points corresponded to nanosensors that were primarily 

cleaved by metalloproteases in vitro (82), suggesting increased pulmonary metalloprotease activity 

downstream of oncogenic ALK signaling. In contrast, the two reporters that were most 

significantly decreased in EA urine were cleaved exclusively by serine proteases in vitro (82). 

PCA revealed separation of disease and healthy mice at both tested time points (Fig. 3.6C-D) 

 
Monitoring of drug response in Alk-mutant lung adenocarcinoma 

To test the hypothesis that pulmonary protease dysregulation in the EA model was driven 

by oncogenic ALK signaling, we treated mice with alectinib, which specifically inhibits ALK  and 

has emerged as the first-line targeted therapy for patients with ALK-mutant lung adenocarcinoma 

(84, 85). We began daily oral gavage of alectinib or vehicle in EA5wk mice and monitored 

pulmonary protease activity via intratracheal instillation of activity-based nanosensors at 5.5 

weeks, 6 weeks, and 7 weeks after disease induction, or 3 days, 1 week, and 2 weeks after treatment 

initiation, respectively.  

We found that alectinib treatment dramatically altered pulmonary protease activity within 

3 days after treatment initiation, with some disease-associated probes like PP01 returning to 

baseline levels (Fig. 3.7A). Additionally, we observed transiently increased cleavage of PP04 in 

alectinib-treated mice, mirroring observations made in rapamycin-treated LAM mice (Fig. 3.4A). 

Unsupervised clustering by principal component analysis (PCA) revealed increased divergence of 

vehicle-treated mice from healthy controls over time (Fig. 3.7B). In contrast, alectinib treatment 

resulted in tighter clustering with healthy controls (Fig. 3.7B). Finally we trained a random forest 

classifier that accurately distinguished pre-treatment from alectinib-treated mice at 3 days, 7 days, 

and 14 days after initiation of therapy (Fig. 3.7C) 
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Figure 3.7: Longitudinal monitoring of drug response in Alk-mutant lung adenocarcinoma reveals 
dynamic shifts in the pulmonary protease landscape. A) EA mice were monitored with ABNs during 
disease development and treatment response with alectinib. Control-normalized urinary reporter signal are 
shown for each of the 14 ABNs. Transparent lines show ABN trajectories of each mouse over time, while 
opaque lines are averages over all mice in each treatment group. Red lines represent vehicle-treated EA 
mice and blue lines represent mice treated with daily alectinib from week 5 after tumor induction. *P < 
0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 between alectinib-treated and vehicle-treated mice. Error 
bars are SD. B) PCA was performed on mean normalized urinary ABN signals from EA (red), alectinib-
treated (blue), and healthy control mice (black) at 3 days (left), 7 days (center) and 14 days (right) after 
initiation of alectinib treatment. C) ROC curve showing accuracy of a random forest classifier in 
distinguishing pre-treatment from alectinib-treated EA mice at all three time points. 
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3.3 Discussion 

In this work, we demonstrate the utility of activity-based nanosensors for monitoring 

progression and treatment response in mouse models of benign and malignant lung disease. In 

LAM, we found that a multiplexed panel of sensors enabled classification of disease, driven 

primarily by increased pulmonary protease activity two sensors, PP03 and PP10. Furthermore, we 

found that this protease activity returned to baseline just two days after treatment initiation, 

enabling near-perfect classification of treatment response. In Alk-driven lung adenocarcinoma, we 

found that several sensors, including PP01, PP07, and PP10 tracked with tumor burden and that 

all three returned to baseline within three days after initiation of targeted therapy.  

LAM treatment response monitoring via in vivo measurements of protease activity offers 

several advantages over other surrogate endpoints like serum biomarkers, imaging, and clinical 

response. In LAM, pulmonary protease dysregulation is known to contribute directly to lung 

degradation, which ultimately results in pulmonary function decline and lung failure (11). 

Therefore, measuring protease activity at the site of disease may offer the most direct means of 

assessing disease activity and predicting long-term outcomes. In contrast, biomarkers found in the 

blood are inherently correlative, as evidenced by the lack of concordance between changes in 

serum biomarker concentrations and long-term clinical outcomes in patients with LAM (12). 

Though imaging methods like HRCT enable direct visualization of cyst volume, which correlates 

with pulmonary function, these findings do not appear to reverse in response to treatment (86). 

Furthermore, longitudinal monitoring with HRCT is impractical due to expense and risks 

associated with long-term radiation exposure. Finally, pulmonary function testing is the gold-

standard method for determining pulmonary function, but its utility is limited in treatment response 

monitoring because of technical variability and long lag times (11). Although a clinical study 

would be necessary to fully validate their utility in predicting functional response, activity-based 
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nanosensors may offer the most direct and rapidly responsive method of reading out disease 

activity and treatment efficacy in LAM. 

This work also provides proof-of-principle evidence that activity-based nanosensors can 

enable treatment response monitoring in lung cancer. Management of patients with lung cancer 

requires accurate and timely information about disease state. CT scanning, the gold standard 

treatment response monitoring modality, provides only a single snapshot in time and may not 

accurately reflect true disease burden (for example, in patients treated with immunotherapy) (10). 

Furthermore, the generalizability of circulating biomarkers like ctDNA is limited by the fact that 

some patients will have no detectable tumor-derived DNA in the blood. Activity-based 

nanosensors may represent a new paradigm in lung cancer treatment response monitoring, 

providing a dynamic readout of disease activity, rather than the static snapshots that can be 

achieved by existing imaging and blood-based diagnostic tools.  

Our work also reveals new insights into the biology of disease progression and rapamycin 

response in our mouse model of LAM. In vitro, PP03 and PP10, the two nanosensors preferentially 

cleaved in LAM mice, are cleaved by napsin A and cathepsin D at low pH (82). Though recent 

work has revealed a potential role of mTOR-mediated extracellular acidification in LAM (87), this 

phenomenon has never been directly observed in vivo. Notably, we found that treatment with 

rapamycin resulted in a rapid return to baseline of both PP03 and PP10, consistent with findings 

that rapamycin treatment inhibits extracellular acidification (87). Finally, we observed transiently 

increased cleavage of multiple nanosensors following rapamycin treatment. PP04, the sensor with 

the most significant increase in cleavage following treatment of LAM mice with rapamycin, was 

also the most significantly increased sensor in EA mice treated with alectinib, suggesting shared 

mechanisms of drug response in these two models. Though further studies will be necessary to 

elucidate the mechanism underlying this transiently increased protease activity, our results 
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highlight the power of activity-based nanosensors to longitudinally monitor disease and treatment-

associated biology in vivo. 

 This work establishes activity-based nanosensors as a new paradigm for monitoring 

progression and treatment response in benign and malignant lung diseases, but several limitations 

must be addressed prior to clinical adoption. The orthotopic LAM mouse model described here 

utilized primary Tsc2-deficient cells, thereby offering advantages over models that utilized cell 

lines that were serially passaged through mice to increase aggressiveness (88). However, mouse 

models cannot fully capture all of the clinical features and heterogeneity of human LAM. 

Furthermore, though we demonstrate that pulmonary cleavage of activity-based nanosensors 

rapidly responds to treatment with rapamycin (in LAM) and alectinib (in Alk-mutant lung cancer), 

we did not assess whether these changes corresponded to long-term functional outcomes in our 

mouse models. Clinical trials will be necessary to assess the utility of activity-based nanosensors 

in predicting long-term response to therapy. Finally, we delivered activity-based nanosensors via 

intratracheal instillation, but a clinically compatible delivery method like dry powder inhalation or 

nebulization will be required for use in humans.  

 In summary, we have demonstrated the utility of activity-based nanosensors in monitoring 

progression and treatment response in mouse models of benign and malignant lung disease. 

Clinically, activity-based nanosensors may enable rapid assessment of treatment response in 

patients treated with clinically approved (e.g. rapamycin, alectinib) or experimental therapies. By 

enabling real-time monitoring of disease activity, activity-based nanosensors may dramatically 

increase the pace of clinical trials and provide accurate and timely information to guide lung 

disease management. 

 

3.4 Materials and Methods 
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Immunofluorescence staining 

Fresh frozen, OCT-embedded kidneys from Tsc2wt/- and WT mice were kindly provided by E. 

Henske (Brigham and Women’s Hospital). Sections were stained with primary antibodies against 

mouse MMP9 (Abcam, ab137867, 1:250 dilution in block buffer), MMP2 (Abcam, ab37150, 

1:200 dilution in block buffer), and CTSK (Abcam, ab19027, 1:250 dilution in block buffer) for 

2.5 hours at RT.  

ELISA for MMP2 

105K cells, a primary line derived from kidney lesions in Tsc2wt/- mice, and 105K cells with 

lentiviral reintroduction of Tsc2 (105k+Tsc2) were kindly provided by E. Henske.  105K and 

105K+Tsc2 cells were cultured in Dulbecco’s modified Eagle medium supplemented with 10% 

fetal bovine serum and 1% penicillin– streptomycin. Secreted levels of MMP2 were measured by 

ELISA, according to the manufacturer’s protocol (R&D Systems). All measurements were 

normalized to total protein in the supernatant, as assessed by Bradford assay. 

Western blot for CTSK 

105K cells were lysed in RIPA buffer supplemented with protease inhibitors. Normal kidney and 

lung were harvested from healthy mice, snap frozen in liquid nitrogen, and subsequently 

homogenized in ice cold RIPA buffer with protease inhibitors. Recombinant active mouse 

cathepsin K (Biovision) was used as a positive control. Samples were loaded into NuPAGE Bis-

Tris Mini Gels (Invitrogen) and western blot was performed. Membranes were subsequently 

stained for cathepsin K (ab19027, Abcam, 1:1000 in 5% milk) and β-actin (ab8227, Abcam, 

1:1000 in 5% milk). 

Rapamycin dose response in 105K cells 



 75 

105K cells were plated at 5,000 cells/well in 24-well plates and treated with either vehicle or 

rapamycin (LC Labs) at 2 nM, 20 nM, or 200 nM. Cells were trypsinized and counted at each time 

point. 

In vivo LAM model 

To enable longitudinal tracking of disease burden, 105K cells were transduced with a lentivirus 

encoding for luciferase and a puromycin selection cassette (LP-hLUC-Lv201-0200, Genecopoeia), 

followed by selection with puromycin (1 ug/mL).  To establish an in vivo LAM model, female 

nude mice (3-4 weeks old) were injected intravenously with 5x105 luciferized 105K cells. Disease 

burden was monitored by subcutaneously administering 100 uL of a 30 mg/mL solution of D-

Luciferin (GoldBio) in PBS and performing IVIS imaging 10 to 25 mins later. For in vivo 

administration, rapamycin was prepared in a vehicle containing 0.25%  PEG-200 and 0.25% 

Tween-80. LAM mice were treated with intraperitoneal injections of either rapamycin (1 mg/kg) 

or vehicle 3-4 times per week and were monitored by IVIS. 

In vivo disease monitoring with activity-based nanosensors 

All activity-based nanosensor experiments were performed in the morning and in accordance with 

institutional guidelines. Nanosensors (GluFib-Substrate-PEG-840kDa) for urinary experiments were 

synthesized by CPC Scientific. Nanosensors were dosed (50 μL total volume, 20 μM concentration 

per nanosensor) in mannitol buffer (0.28 M mannitol, 5 mM sodium phosphate monobasic, 15 mM 

sodium phosphate dibasic, pH 7.0-7.5) by intratracheal instillation, immediately followed by a 

subcutaneous injection of PBS (200 μl) to increase urine production. Bladders were voided 60 

minutes after nanosensor administration, and all urine produced 60-120 min after administration 

was collected using custom tubes in which the animals rest upon 96-well plates that capture urine. 

Urine from each mouse was pooled and frozen at -80°C until analysis by LC-MS/MS. 

 



 76 

LC-MS/MS reporter quantification 

LC-MS/MS was performed by Syneos Health using a Sciex 6500 triple quadrupole instrument. 

Briefly, urine samples were treated with ultraviolet (UV) irradiation to photocleave the 3-Amino-

3-(2-nitro-phenyl)propionic Acid (ANP) linker and liberate the Glu-Fib reporter from residual 

peptide fragments. Samples were extracted by solid-phase extraction and analyzed by multiple 

reaction monitoring by LC-MS/MS to quantify concentration of each Glu-Fib mass variant. 

Analyte quantities were normalized to a spiked-in internal standard and concentrations were 

calculated from a standard curve using PAR to the internal standard. Mean normalization was 

performed on PAR values to account for mouse-to-mouse differences in activity-based nanosensor 

inhalation efficiency and urine concentration. 

Statistical analysis 

For all urine experiments, PAR values were normalized to nanosensor stock concentrations and 

then mean normalized across all reporters in a given urine sample before further statistical 

analysis. To identify differential urinary reporters, all reporters were analyzed by unpaired two-

tailed t test, followed by correction for multiple hypotheses using the Holm-Sidak method in 

GraphPad Prism 7.0. Padj < 0.05 was considered significant. PCA was performed on mean-

normalized PAR values and implemented in R using the ggplot2 package. For disease 

classification based on urinary activity-based nanosensor signatures, randomly assigned sets of 

paired data samples consisting of features (the mean-normalized PAR values) and labels (for 

example, LAM d18 and Rap d20) were used to train random forest classifiers implemented with 

the TreeBagger class in MATLAB R2019b. Estimates of out-of-bag error were used for cross-

validation, and trained classifiers were tested on randomly assigned, held-out, independent test 

cohorts. Ten independent train-test trials were run for each classification problem, and 

classification performance was evaluated with ROC statistics calculated in MATLAB. Classifier 
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performance was reported as the mean accuracy and AUC across the 10 independent trials. 

RNA-Seq data for the EA model was downloaded from GEO (GSE139347) (83). The list of 

mouse protease genes was obtained from UniProt. Differential expression analysis was 

performed using the DESeq2 differential expression library in the R statistical environment. 

EA lung adenocarcinoma model 

Tumors were initiated in male C57BL/6 mice between 6 and 10 weeks old as described 

previously (64), by intratracheal administration of 50 μL adenovirus expressing the Ad-EA 

vector (Viraquest, 1.5 x 108 PFU in Opti-MEM with 10 mM CaCl2). Control cohorts consisted of 

age and sex-matched mice that did not undergo intratracheal administration of adenovirus. 

Alectinib (MedChemExpress) was prepared in vehicle containing 0.02 N hydrochloric acid, 10% 

dimethylsulfoxide, 10% Cremophor EL, 15% PEG400, and 15% 2-hydroxypropyl-b-

cyclodextrin and sterile filtered with 0.2 um syringe filters prior to in vivo administration. Mice 

were treated with daily oral gavage of alectinib (20 mg/kg) or vehicle. 
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CHAPTER 4. ESTABLISHING AN INTEGRATED PIPELINE TO 
DEVELOP PROTEASE-ACTIVATED DIAGNOSTICS 
 
4.1 Introduction 

Protease activity is dysregulated across multiple disease states, including cancer, fibrosis, and 

infection. In cancer, matrix metalloproteinases (MMPs) are one of several classes of enzymes 

known to degrade the extracellular matrix, enabling tumor invasion, neoangiogenesis, and 

metastasis (89). As a result of this dysregulation, proteases have long been considered as a potential 

diagnostic and therapeutic target of cancer. The past decade has seen the emergence of new classes 

of “activity-based” diagnostics (40, 82, 90–95) and therapeutics (96–101), which are specifically 

activated in response to proteases dysregulated in cancer. For example, probodies are a novel class 

of activity-based therapeutics consisting of a tumor-targeting antibody masked via a protease-

cleavable linker (96), which improves tumor specificity and reduces off-target toxicity. Likewise, 

activity-based diagnostics have demonstrated promise both pre-clinically and clinically, 

leveraging protease dysregulation in cancer to improve imaging specificity or intraoperative 

evaluation of tumor margins (29, 30, 91–93, 102, 103). Protease-activated diagnostics and 

therapeutics typically leverage peptide linkers that are designed to be cleaved by disease-

associated proteases. However, development of these technologies is currently hindered by a 

dearth of methods to dissect protease activity in human disease (104). Recent clinical studies have 

indicated that masked probodies incorporating such linkers show suboptimal activation efficiency 

within the tumor microenvironment, further motivating the need for modular tools to profile 

protease activity ex vivo to improve design (105). Therefore, development of protease-responsive 

diagnostics and therapeutics would be dramatically accelerated by high throughput and modular 

methods to identify peptide substrates that are maximally cleaved by disease-associated proteases 

and minimally degraded in off-target tissues. Furthermore, the ability to localize these cleavage 
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events in situ (i.e., in a tissue section) would enable finer dissection of disease-associated protease 

biology, such as cell type-specific protease dysregulation. Finally, to accelerate translation, these 

methods must be compatible with clinically-available biospecimens, such as biofluids or biopsy 

cores. 

Several methods have been developed with the aim of measuring protease activity in 

biospecimens, but these methods generally lack the modularity, spatial resolution, or clinical 

compatibility to warrant their use in discovering disease-responsive peptide substrates. Proteome-

derived substrates have been quantified via mass spectrometry to discover endogenous cleavage 

products in cell protein extracts (106–108) and serum (109). However, this method is limited to 

the discovery of natural substrates, which cannot be readily translated to protease-activated 

diagnostics or therapeutics because they may lack specificity, rely on tertiary structure for proper 

presentation, or suffer from slow cleavage kinetics (104). Recent approaches leveraging synthetic 

substrates have used droplet-based microfluidics (110) or highly multiplexed peptide libraries  

(111, 112) to profile protease activity in patient-derived biospecimens. However, these assays do 

not provide insight on spatial localization of protease activity within the tissue and have not been 

shown to directly yield peptides that can be incorporated into activatable diagnostics or 

therapeutics for in vivo use. In situ zymography has long been the gold standard for visualizing 

protease activity in tissue sections (113), but this method is limited to visualizing the activity of 

proteases against natural cleavage sites in gelatin and therefore lacks the modularity to enable 

discovery of disease-specific peptide substrates. Activity-based probes (ABPs) leverage reactive 

warheads that covalently bind to protease active sites, enabling detection of active proteases in 

vivo and ex vivo (92, 114). However, because ABPs detect protease activity via covalent binding 

rather than substrate cleavage, they are less compatible with proteases of certain catalytic classes,  
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Figure 4.1. Approach and overview. (a) Multiplexed protease activity profiling with barcoded substrate 
libraries. Uniquely barcoded protease-cleavable peptide substrates are coupled to magnetic beads. 
Multiplexed bead complexes are incubated with recombinant enzymes or biospecimens. Substrate-specific 
proteolysis liberates barcodes, which can be isolated via magnetic pull-down of beads and quantified to 
measure substrate cleavage. (b) Activatable zymography probes (AZPs). AZPs consist of a poly-arginine 
domain (polyR, blue) carrying a tag (e.g., fluorophore; maroon star) linked to a poly-glutamic acid domain 
(polyE, red) via a protease-cleavable linker (green). Upon application to frozen tissue sections, AZPs are 
cleaved by tissue-resident enzymes, liberating the tagged polyR which then binds the tissue. Microscopy 
enables in situ localization of substrate-specific protease activity. (c) Disease-responsive peptide substrates 
nominated from ex vivo activity profiling can be directly incorporated into protease-activated diagnostics, 
e.g., in vivo imaging probes, or therapeutics, e.g., probodies, proteolytically-activated antibodies that 
require linker cleavage for target binding, for in vivo evaluation. 
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and profiling with ABPs has not been used to identify peptide substrates that can be directly 

incorporated into activatable diagnostics and therapeutics (92). 

 

We therefore built a modular toolkit to identify and validate disease-responsive peptide substrates 

(Fig. 4.1, Table 4.S1). To this end, we developed two cleavage-based approaches for measuring 

protease activity in tissues, including both a multiplexed assay using barcoded synthetic peptide 

substrates and a modular in situ activity assay (Fig. 4.1, Table 4.S1), and applied these methods to 

prostate cancer (PCa) models and samples. This novel integration of multiplexed substrate screens 

that nominate lead substrates with cleavage-based zymography assays that validate candidate 

probes in situ presents a new framework relevant to both discovery and engineering efforts that 

seek to understand and leverage protease dysregulation. To validate our approach, we evaluated 

the ability of these tools to inform the bottom-up design of protease-activatable agents in a 

clinically-relevant model of disease. We performed a multiplexed screen and discovered a single 

peptide that was specifically cleaved by disease-associated proteases in a genetically-engineered 

mouse model (GEMM) of PCa. This peptide was then translated into an activatable zymography 

probe (AZP) to localize protease activity in situ, and was ultimately incorporated into a protease-

activated probe that selectively accumulated in diseased mouse prostates in vivo. Together, these 

assays constitute an integrated toolkit for measuring and localizing protease activity against 

synthetic peptide substrates directly in biospecimens. In applying our tools to a PCa GEMM, we 

demonstrate that substrates discovered and validated through these assays can be directly 

translated into an in vivo protease-activated diagnostic, accelerating the design, build, and test 

cycle. We envision that these methods will facilitate design of protease-activatable diagnostics and 

therapeutics and advance understanding of protease dysregulation in human disease. 
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Table 4.S1. Strategies for profiling protease activity ex vivo. 
 

Assay type Sample type Throughput Spatial 
information 

Applications 

Cleavage of 
fluorogenic 
substrates 

Recombinant 
enzymes, tissue 
homogenates, 
biofluids 

Single probe per 
reaction volume 

No; bulk assay Measure substrate 
cleavage kinetics in 
real time 

Pooled screen 
with barcoded 
substrates 

Recombinant 
enzymes, tissue 
homogenates, 
biofluids 

Many probes per 
reaction volume 

No; bulk assay Identify lead probes 
from substrate 
library 

In situ localization 
with AZPs 

Fresh frozen 
tissue sections 

Small numbers of 
probes per tissue 

Yes Characterize lead 
probes across tissue 
sections 
 
Study protease 
biology 

 

4.2 Results 

Synthetic peptide substrates read out tumor-associated protease activity ex vivo 

We first sought to assess whether tumor-associated protease activity could be read out by 

monitoring the cleavage of synthetic peptide substrates ex vivo. As a proof of concept, we 

established flank xenogafts of two human PCa cell lines, including an aggressive, undifferentiated 

line (PC3) derived from a bone metastasis and a less aggressive line (22Rv1) derived from a 

primary tumor. We incubated homogenates of these two xenografts, as well as of healthy mouse 

prostate, with a panel of quenched fluorescent peptide substrates and measured protease activity 

by monitoring fluorescence increase over time (Fig. 4.S1a-b). Multiple substrates were 

differentially cleaved by each of the two xenograft types, relative to normal prostate tissue (Fig. 

4.S1c). Further, several substrates exhibited distinct cleavage patterns in homogenates from more 

(PC3) versus less (22Rv1) aggressive tumors (Fig. 4.S1c), which separated clearly on the basis of 
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Figure 4.S1. Multiplexed protease activity measurements in tissue specimens enable PCa 
classification. (a) Schematic of cleavage screen using panel of FRET-paired peptide substrates against 
homogenates of PC3 xenografts (n = 4), 22Rv1 xenografts (n = 4), and healthy mouse prostates (n = 3). (b) 
Kinetic fluorescence curves for panel of 16 FRET-paired substrates incubated with PC3 tumor 
homogenates. Each line represents a distinct substrate (n = 4; mean ± s.d.). (c) Fluorescence fold changes 
after 20 minutes were mean normalized across all peptides for each sample, and two-tailed t-test followed 
by adjustment for multiple hypotheses using the Holm-Sidak method was used to identify peptides that 
were differentially cleaved between PC3 and 22Rv1 (left), 22Rv1 and healthy prostate (center), and PC3 
and healthy prostate (right). -log10(Padj) is plotted as a function of fold change. Dotted line is at Padj = 0.05. 
(d) Hierarchical clustering of z-scores of mean normalized cleavage product concentrations (calculated 
from fluorescence fold changes at 20 minutes) was used to identify distinct substrate cleavage patterns 
differentiating the three tissue types. (e) PCA of cleavage data in (d). 
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hierarchical clustering (Fig. 4.S1d) and principal component analysis (PCA) (Fig. 4.S1e) of these 

cleavage data. Consistent with this activity-based assay, proteomic analysis revealed that the 

abundance of several proteases (Fig. 4.S2a) and inhibitors (Fig. 4.S2b) were differentially 

expressed in the two xenografts. 

 
 
Figure 4.S2. Proteomic profiling in tumor homogenates distinguishes more and less aggressive tumor 
types. (a, b) Protease (a) and protease inhibitor (b) abundance in homogenates of more (PC3, n = 3) and 
less (22Rv1, n = 3) aggressive prostate cancer xenografts was quantified using a multiplex antibody array. 
Volcano plots show fold changes in analyte abundance between PC3 (n = 3) and 22Rv1 (n = 3) xenograft 
homogenates (x-axis) and -log10(Padj) (y-axis). Significance was calculated by two-tailed t-test followed by 
adjustment for multiple hypotheses using the Holm-Sidak method. Dotted line is at Padj = 0.05. 
 

Protease specificity mapping with barcoded peptide substrates 

Although the fluorescence assay enabled discrimination of PC3, 22Rv1, and healthy prostate 

homogenates, it required large quantities of analyte and was limited in throughput, as bulk enzyme 

activity against each substrate was assayed in a separate reaction volume (Table 4.S1). Scalable 

methods for multiplexed substrate screening in biospecimens could be used to identify lead 

peptides for eventual incorporation into protease-activated diagnostics and therapeutics.  
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Figure 4.2. Protease activity profiling with barcoded substrate libraries. (a) Heat map showing in vitro 
cleavage of mass-barcoded substrates (x-axis) by selected recombinant proteases (y-axis; 
metalloproteinases, green; serine proteases, yellow). Cleavage products were quantified by mass 
spectrometry and unsupervised hierarchical clustering was performed. (b) Correlation of relative substrate 
cleavage z-scores for serine protease substrate S6-Q/S6-M (quenched/mass encoded, respectively) and 
metalloproteinase substrate S16-Q/S16-M (quenched/mass encoded, respectively), as measured by 
fluorescence with quenched substrates (x-axis) and mass spectrometry with bead-conjugated substrates (y-
axis). (c) Kinetics of substrate cleavage obtained from mass-barcoded library screen for the serine protease 
uPA (left) and the metalloproteinase MMP13 (right) as representative examples. Kinetics were assessed via 
quantification of liberated barcodes isolated via magnetic separation at various time points after addition of 
protease, followed by mass spectrometry quantification. Lines represent means of two technical replicates. 
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Therefore, we developed a method to measure cleavage of a multiplexed panel of peptides in a 

single reaction volume, which could eventually be scaled up to enable screening of hundreds or 

thousands of peptide substrates simultaneously (Fig. 4.1a). As a proof of concept, we selected a 

panel of 18 peptides previously found by our group to be recognized and cleaved by a diverse array 

of metallo- and serine proteases that are dysregulated in PCa, (41) and appended each peptide with 

a unique, mass-encoded reporter molecule. We coupled these barcoded substrates to magnetic 

beads via a non-cleavable poly(ethylene glycol) (PEG) linker and incubated the bead cocktail with 

each of 10 recombinant proteases to assay their individual cleavage patterns. Beads were pulled 

down via magnetic separation, and liberated reporter molecules that remained in the supernatant 

were measured by mass spectrometry, enabling quantification of substrate cleavage by each 

protease. Unsupervised hierarchical clustering of the cleavage data revealed distinct substrate 

specificities of the screened metallo- and serine proteases (Fig. 4.2a). Furthermore, we found that 

the cleavage scores measured through the multiplexed bead screen correlated with those from a 

screen of fluorescently-quenched versions of the same substrates incubated individually with the 

same selected collection of recombinant proteases (41) (Fig. 4.2b; Fig. 4.S3). Cleavage kinetics 

were assessed by performing magnetic separation at multiple time intervals following addition of 

protease and quantifying the liberated reporters by mass spectrometry (Fig. 4.2c; Fig. 4.S4). Taken 

together, these results indicate that the multiplexed bead assay can be used to faithfully query 

cleavage specificities and kinetics of target proteases against a barcoded library of peptide 

substrates. 

 

In situ labeling of protease activity with activatable zymography probes 

The multiplexed bead assay can be used to generate substrate specificity maps and to identify 

peptide substrates cleaved by proteases within a complex matrix, but this method lacks spatial  
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Figure 4.S3. Correlation of cleavage profiles of mass barcoded and FRET-paired peptide substrates. 
Correlation of FRET-paired free peptide cleavage to mass-barcoded peptides conjugated to the surface of 
magnetic beads, calculated as Pearson’s rho across all proteases using cleavage z-scores. 
 

 
 
Figure 4.S4. Profiling cleavage kinetics using mass-barcoded bead library. Kinetics of substrate 
cleavage obtained from mass-barcoded library screen for the serine protease PRSS3 (a) and the 
metalloproteinase MMP9 (b). Kinetics were assessed via quantification of liberated barcodes isolated via 
magnetic separation at various time points after addition of protease, followed by mass spectrometry 
quantification with LC-MS/MS. Lines represent means of two independent measurements. 
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resolution (Table 4.S1). In situ labeling of protease activity offers several advantages, including 

the opportunity to elucidate the spatial distribution of protease activity within a tissue (e.g., at the 

invasive front of a tumor) and to colocalize protease activity with cell type-specific markers (Table 

4.S1). Drawing from previous work using cell-penetrating peptides (27, 29, 30), we hypothesized 

that peptides that consist of a cationic poly-arginine (polyR) domain complexed to an anionic poly-

glutamic acid (polyE) domain via a protease-cleavable linker could enable in situ labeling of 

protease activity on tissue sections (Fig. 4.1b). Specifically, we reasoned that degradation of the 

protease-cleavable linker component of these activatable zymography probes (AZPs) would 

liberate the fluorophore-labeled polyR, which could then electrostatically interact with negatively-

charged molecules in the tissue, enabling localization by microscopy. 

 

We first validated this technique on a tissue type with a known spatial distribution of protease 

expression. Since colon epithelial cells secrete serine proteases (115) including urokinase 

plasminogen activator (uPA) (116), we synthesized a Cy5-labeled serine protease-cleavable AZP, 

termed S6-Z, and applied it to fresh-frozen sections of normal mouse colon (Fig. 4.3a). 

Fluorescence signal from S6-Z was detected in the epithelial regions of the colon, and a free polyR 

was used as a binding control (Fig. 4.3b). No signal was observed on colon tissue incubated with 

the non-cleavable, d-stereoisomer version of the probe, termed dS6-Z, which indicated that 

proteolytic processing was required to activate the probe. Furthermore, this spatially-resolved S6-

Z labeling was abrogated by addition of the serine protease inhibitor 4-(2-

aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF; Fig. 4.3b). 
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Figure 4.3. In situ localization of protease activity with AZPs. (a) The serine protease-responsive AZP, 
S6-Z, was applied to fresh frozen sections of healthy mouse colon (left). Hematoxylin and eosin (H&E) 
stain of a representative colon tissue region (right). (b) Staining of frozen colon sections with PolyR-Cy7 
(left column, teal) and either uPA-activatable S6-Z-Cy5 (top and middle rows; S6-Z, red) or d-stereoisomer 
dS6-Z-Cy5 (bottom row; dS6-Z, red). Top and middle rows show staining of consecutive sections without 
(top) and with (bottom) the serine protease inhibitor AEBSF. (c) Region of colon tissue showing staining 
from activated S6-Z (red) with staining for the epithelial cell marker E-cadherin (green). (d) Quantification 
of nuclear S6-Z signal intensity from E-cadherin negative (n = 15864) and E-cadherin positive (n = 12207) 
cells (quantification over one representative colon section; center line represents median, dashed lines 
represent quartiles; two-tailed unpaired t-test, ****P < 1 x 10-15). All scale bars = 100 µm.  
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To validate the extent and specificity of this activity-dependent probe localization, we applied the 

activatable S6-Z to colon sections and co-stained for the epithelial cell marker E-cadherin. As the 

primary source of serine proteases in this tissue has been shown to be colon epithelial cells (115, 

116), our observation that E-cadherin+ cells exhibited brighter labeling by S6-Z than E-cadherin- 

cells (P < 1 x 10-15) was consistent with our hypothesis that AZPs enable proximal localization of 

cell type-specific protease activity in situ (Fig. 4.3c-d). Together, these results indicate that AZPs 

can directly measure peptide cleavage events in situ to spatially localize protease activity with low 

background binding. 

 

Discovery of human PCa-responsive protease substrates  

We next sought to validate the use of AZPs as a tool to identify disease-responsive peptides in 

human tissue. To this end, we designed a library of 19 AZPs based on a panel of peptides 

previously found by our group to be recognized by proteases dysregulated in PCa (41). With the 

exception of the protease-cleavable linker and fluorophore, these AZPs were identical in design to 

the serine protease-responsive S6-Z. We first sought to verify that proteolysis was required for 

tissue binding across the entire AZP library. We found that AZP pre-cleavage by a cognate 

recombinant protease with specificity for the AZP linker  (Fig. 4.2; MMP13 for MMP-responsive 

substrates; PRSS3, KLK14, or KLK2 for serine protease-responsive substrates) resulted in 

increased tissue binding for all 19 probes (Fig. 4.S5). The proteolysis-dependent tissue labeling 

observed across the probe library supports the modularity of the AZP platform. 

 

Given that serine proteases are among those known to be dysregulated in human PCa (41), we 

selected two serine protease-responsive AZPs (S10-Z and S2-Z) to evaluate against a fresh-frozen 

human tissue microarray (TMA) containing biopsies from normal prostates and PCa tumors across 
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a range of Gleason scores (Fig. 4.S6). Tissue binding of S10-Z (Fig. 4.4a-b) and S2-Z (Fig. 4.S7a-

b) was abrogated by a broad-spectrum cocktail of protease inhibitors. We then investigated 

whether either of the tested AZPs preferentially labeled PCa tissue relative to normal prostate. 

Both serine protease-responsive AZPs, S10-Z (P = 0.0063, Fig. 4.4c) and S2-Z (P = 0.0284, Fig. 

4.S7c), exhibited significantly increased labeling of PCa relative to normal prostate tissue, 

enabling strong classification of diseased tissue (S10-Z AUC = 0.948, Fig. 4.4d; S2-Z AUC = 

0.917, Fig. 4.S7d). These findings demonstrate that serine protease activity is dysregulated in 

human PCa and suggest that AZPs may be used to discover peptide substrates responsive to human 

disease. 

  

 
 
Figure 4.S5. AZP library characterization. AZPs, either intact or with linkers pre-cleaved by a cognate 
recombinant protease, were applied to fresh frozen colon tissue for 30 minutes, and fluorescent signal 
intensity of bound probes was quantified (n = 1-2 replicates per probe; mean ± s.d.). 
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Figure 4.S6. Fresh frozen human prostate cancer tissue microarray (TMA). (a) H&E stain of human 
prostate cancer (PCa) TMA. Scale bar = 2 mm. (b) Hematoxylin and eosin stain of select biopsy cores from 
Gleason 7 PCa tumor (left) and normal prostate (right). Scale bars = 200 µm. (c) TMA map detailing the 
Gleason scores (i.e., G4-G10) for prostate cancer specimens. N = normal. (b) Distribution across Gleason 
scores for cores in the TMA.  
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Figure 4.4. Discovery of a human PCa-responsive protease substrate. (a) Application of S10-Z AZP to 
a human PCa tissue microarray (TMA) consisting of 24 prostate adenocarcinoma samples and 4 normal 
prostate samples (S10-Z, top). A consecutive TMA was stained with S10-Z along with a cocktail of protease 
inhibitors (S10-Z + INH, bottom). Dotted lines are shown below normal prostate samples. Scale bars = 2 
mm. (b) Higher-magnification images of boxed cores from (a) showing Gleason 7 PCa (top) and normal 
prostate (bottom). Scale bars = 200 µm. (c) Quantification of average S10-Z intensity relative to polyR 
(binding control) intensity across each TMA core (n = 28) for sections incubated with (S10-Z + INH) and 
without (S10-Z) protease inhibitors (two-tailed paired t-test, ****P < 0.0001). (d) Quantification of relative 
S10-Z intensity from normal (n = 4) and PCa tumor (n = 24) cores (mean ± s.d.; two-tailed unpaired t-test, 
**P = 0.0063). (e) Receiver-operating characteristic (ROC) curve showing performance of relative AZP 
signal (S10-Z/polyR) in discriminating normal from PCa tumor cores (AUC = 0.948, 95% confidence 
interval 0.8627-1.000; P = 0.0048 from random classifier shown in dashed line). 
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Figure 4.S7. S2-Z selectively labels human PCa tissue. (a) Application of S2-Z AZP to a human PCa 
tissue microarray (TMA) consisting of 24 prostate adenocarcinoma samples and 4 normal prostate samples 
(S2-Z, top). A consecutive TMA was stained with S2-Z along with a cocktail of protease inhibitors (S2-Z 
+ INH, bottom). Dotted lines are shown below normal prostate samples. Scale bars = 2 mm. (b) Higher-
magnification image of boxed cores from (a) showing Gleason 7 PCa (top) and normal prostate (bottom). 
Scale bars = 200 µm. Scale bars = 2 mm. (c) Quantification of average S2-Z intensity relative to polyR 
(binding control) intensity across each TMA core (n = 28) for sections incubated with (S2-Z + INH) and 
without (S2-Z) protease inhibitors (two-tailed paired t-test, ****P < 0.0001). (d) Quantification of relative 
S2-Z intensity from normal (n = 4) and PCa tumor (n = 24) cores (mean ± s.d.; two-tailed unpaired t-test, 
*P = 0.0284). (e) Receiver-operating characteristic (ROC) curve showing performance of relative AZP 
signal (S2-Z/polyR) in discriminating normal from PCa tumor cores (AUC = 0.917, 95% confidence 
interval 0.8103-1.000; P = 0.0086 from random classifier shown in dashed line).  
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Discovery and validation of a PCa-responsive peptide substrate in the Hi-Myc model 

Having developed both a bulk, multiplexed cleavage assay and highly modular in situ activity 

probes, we next sought to leverage these tools to probe the biology of protease dysregulation in a 

clinically-relevant mouse model and, in so doing, rationally design a protease-activatable 

diagnostic or therapeutic from the bottom up. We therefore turned to the Hi-Myc GEMM, wherein 

c-Myc is overexpressed in the murine prostate, resulting in invasive PCa (117). We screened 

homogenates of prostates from Hi-Myc mice and age-matched healthy controls against our 

multiplexed, mass-encoded bead library and found distinct cleavage patterns between diseased and 

healthy prostates (Fig. 4.S8a).  

 
 
Figure 4.S8. Differential cleavage of peptide S16 is driven by MMP dysregulation and drives 
differentiation of Hi-Myc from healthy prostates. (a) Hierarchical clustering of cleavage data from 
multiplexed protease substrate screen of mass-encoded bead library against homogenates of prostates from 
healthy (gray, n = 5) and Hi-Myc (red, n = 7) mice. (b-d) PCA of cleavage data from homogenates incubated 
without inhibitor (b), with the metalloprotease inhibitor marimastat (c), or with the serine protease inhibitor 
AEBSF (d). 
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Figure 4.5. Identification and in situ localization of a PCa-responsive peptide substrate in the Hi-Myc 
model. (a) Volcano plot showing log2 fold change in mean normalized cleavage product concentrations 
between Hi-Myc (n = 7) and healthy (n = 5) prostate homogenates (x-axis) and -log10(Padj) (y-axis). 
Significance was calculated by two-tailed t-test followed by adjustment for multiple hypotheses using the 
Holm-Sidak method. Dotted line is at Padj = 0.05. (b) Quantification of S16-M cleavage for healthy prostate 
homogenates (n = 5)  and Hi-Myc prostate homogenates, either uninhibited (Hi-Myc, n = 7), in the presence 
of the MMP inhibitor marimastat (Hi-Myc + MAR, n = 4), or in the presence of the serine protease inhibitor 
AEBSF (Hi-Myc + AEBSF, n = 4) (mean ± s.d.; one-way ANOVA with Tukey’s correction for multiple 
comparisons, ****P < 0.0001, ns = not significant). (c) H&E staining of Hi-Myc prostate tissue, 
representative example shown. Solid and dashed boxes indicate tissue regions in (d) and (e), respectively. 
Scale bar = 500 µm. (d) Staining of boxed Hi-Myc tumor region from (c) with MMP-activatable S16-Z-
FAM (S16-Z, top). A consecutive section was stained with S16-Z in the presence of marimastat (S16-Z + 
MAR, bottom). Scale bars = 50 µm. (e) Application of S16-Z (green), with or without MAR, to prostate 
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tissues from Hi-Myc and healthy mice with co-staining for the proliferation marker Ki-67 (red). Sections 
were counterstained with DAPI (blue). Detected cells were classified on the basis of S16-Z and Ki-67 
staining intensities to produce cell classification maps (red: Ki-67+; green: S16-Z+; yellow: S16-Z+ and 
Ki-67+, ++). Images of Hi-Myc tissues show the glandular region boxed in (c). Scale bars = 200 µm. (f) 
Quantification of fraction of detected nuclei positive for S16-Z (n = 2 consecutive sections per group, 
>100,000 cells per replicate; mean ± s.d.; two-tailed unpaired t-test, *P = 0.0122, **P = 0.00794, ***P = 
0.000803). (g) Quantification of fraction of detected nuclei positive for both S16-Z and Ki-67 in healthy, 
MMP-inhibited healthy (Healthy + MAR), Hi-Myc, and MMP-inhibited Hi-Myc (Hi-Myc + MAR) prostate 
tissue sections (n = 2 consecutive sections per group, >100,000 cells per replicate; mean ± s.d.; two-tailed 
unpaired t-test, nsP = 0.973, *P = 0.0185, ***P = 0.000429). 
 
Intriguingly, this assay revealed that a single peptide sequence (“S16”, or “S16-M” when 

coupled to mass barcode) was differentially cleaved by Hi-Myc prostate homogenates relative to 

samples from healthy control mice (Fig. 4.5a). Based on the results of the bead screen of peptide 

substrates against recombinant proteases (Fig. 4.2b), we predicted that the observed cleavage of 

the S16-M probe was likely mediated by MMP activity. Consistent with this hypothesis, we 

found that pre-treatment of the prostate homogenates with the MMP inhibitor marimastat (MAR) 

fully inhibited cleavage of S16-M by the Hi-Myc mouse-derived samples (P < 0.0001, Fig. 

4.5b), whereas pre-treatment with the serine protease inhibitor AEBSF had no effect. 

Accordingly, unsupervised dimensionality reduction by PCA succeeded in separating the 

uninhibited homogenates (Fig. 4.S8b) and homogenates treated with AEBSF (Fig. 4.S8c), but 

this separation was abrogated by addition of marimastat (Fig. 4.S8d). 

 

In order to localize cleavage of S16 in situ, we synthesized an AZP that incorporated this substrate 

(S16-Z), verified that tissue binding was dependent on linker degradation (Fig. 4.S9), and applied 

this probe to fresh-frozen sections of prostates from Hi-Myc mice (Fig. 4.5c). Fluorescence signal 

from S16-Z was observed in Hi-Myc tumors and was abrogated by the MMP inhibitor marimastat, 

suggesting that S16-Z measured in situ tumor-associated MMP activity in Hi-Myc prostates (Fig. 

4.5d). In addition, we found that S16-Z labeled histologically normal glands  
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Figure 4.S9. S16-Z tissue binding depends on proteolytic cleavage. (a) Binding of intact or MMP12 pre-
cleaved (PC) S16-Z to fresh frozen colon tissue following incubation at 4° C. Scale bars = 25 µm. (b) 
Quantification of S16-Z binding for intact probe or probe pre-cleaved by MMP12 (n = 2-3 replicates; mean 
± s.d.; two-tailed unpaired t-test, ****P < 0.0001). 
 

 
Figure 4.S10. S16-Z labeling of Hi-Myc tissue is dependent on in situ MMP activity. Staining of Hi-
Myc tissue with PolyR-Cy7 (left column, teal) and either MMP-activatable S16-Z-FAM (top and middle 
rows; S16-Z, green) or d-stereoisomer dS16-Z-FAM (bottom row; dS16-Z, green). Top and middle rows 
show staining of consecutive sections without (top) and with (middle) the MMP inhibitor marimastat 
(MAR). Sections were counterstained with DAPI (blue). Scale bars = 200 µm. 
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of the Hi-Myc ventral lobe (Fig. 4.5c), and that this labeling was abrogated by marimastat (Fig. 

4.S10). Furthermore, no tissue labeling was observed in sections treated with the non-cleavable 

probe dS16-Z, further validating that S16-Z tissue binding was proteolytically driven (Fig. 4.S10). 

Finally, a co-incubated positive control peptide (free polyR) exhibited consistent binding under all 

three (S16-Z, S16-Z+MAR, dS16-Z) conditions (Fig. 4.S10). 

 

Though these glands appeared histologically normal, their positivity for the proposed tumor-

specific activity probe, S16-Z, raised the possibility of local, underlying pro-tumorigenic activity 

in these regions. In an effort to undertake further biological characterization, we applied S16-Z to 

prostate tissue sections from Hi-Myc and age-matched healthy mice and co-stained for the 

proliferation marker Ki-67(118) (Fig. 4.S11). Strikingly, we observed robust Ki-67 staining in 

S16-Z-positive, but otherwise histologically normal, glands of the Hi-Myc prostate, but no Ki-67 

staining and reduced S16-Z labeling in a histologically similar region of ventral prostate from 

healthy mice (Fig. 4.5e). Segmentation-based, cell-level classification indicated the presence of 

cells that stained positively for both S16-Z and Ki-67 within this glandular region of Hi-Myc 

tissue, but an absence of such double-positive cells in healthy prostatic glands (Fig. 4.5e). Similar 

analyses of a Hi-Myc tumor showed the presence of S16-Z-positive tumor cells that also stained 

positively for Ki-67 (Fig. 4.S12). Furthermore, S16-Z labeling across both glandular and tumor 

regions of Hi-Myc tissues was abrogated by marimastat, while MMP inhibition appeared to have 

a minimal effect on S16-Z staining in healthy tissues (Fig. 4.5e; Fig. 4.S12). 
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Figure 4.S11. S16-Z and Ki-67 staining of healthy and Hi-Myc prostate tissue sections. (a, b)  S16-Z, 
with or without MAR, was applied to prostate tissues from Hi-Myc and healthy mice with co-staining for 
the proliferation marker Ki-67. Detected cells were classified on the basis of S16-Z and Ki-67 staining 
intensities to produce cellular classification maps (green: S16-Z+, red: Ki67+, yellow: S16-Z+ and Ki-67+). 
Scale bars = 1 mm. 
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Figure 4.S12. MMP activity drives S16-Z labeling of proliferative tumor regions in Hi-Myc prostates. 
(a, b) Staining of Hi-Myc tumor region (a) and healthy prostate tissue (b) with S16-Z (green) with co-
staining for the proliferation marker Ki-67 (red). Consecutive sections were stained with S16-Z and Ki-67 
in the presence of marimastat (MAR). Sections were counterstained with DAPI (blue). Detected cells were 
classified on the basis of S16-Z and Ki-67 staining intensities to produce cellular classification maps (green: 
S16-Z+, red: Ki67+, yellow: S16-Z+ and Ki-67+). Scale bars = 50 µm. 
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Figure 4.S13. Whole sample, cell-by-cell quantification of S16-Z and Ki-67 fluorescent staining. Cell-
by-cell quantification of S16-Z and Ki-67 fluorescence intensity in detected nuclei from representative Hi-
Myc and healthy prostate tissue sections incubated with or without the MMP inhibitor marimastat (MAR). 
Lines represent thresholds for positivity for each of the markers. 
 
To quantify these differences, we performed cell-by-cell quantification of S16-Z and Ki-67 

staining intensities across entire Hi-Myc and healthy prostate tissue sections (Fig. 4.S13). This 

analysis indicated that Hi-Myc tissue exhibited a significantly increased proportion of S16-Z-

positive cells relative to healthy prostates (P = 0.000803, Fig. 4.5f). Furthermore, incubation 

with marimastat significantly reduced the number of S16-Z-positive cells in Hi-Myc prostates (P 

= 0.00794, 72.7% decrease; Fig. 4.5f), and, to a lesser extent, in healthy prostates (P = 0.0122, 

46.9% decrease; Fig. 4.5f). In line with our qualitative observations, Hi-Myc tissues contained a 

significantly greater fraction of Ki-67-positive cells relative to healthy prostate tissue (P = 

0.000859, Fig. 4.S14). Finally, as suggested by cell-based segmentation analysis, we observed a 

significantly greater fraction of S16-Z, Ki-67 double-positive cells in Hi-Myc prostate sections 

relative to healthy tissues (P = 0.000429, Fig. 4.5g), while the majority of detected cells in 
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healthy prostates were negative for both markers (Fig. 4.S14). Taken together, these in situ 

measurements and quantitative analyses revealed significant dysregulation of MMP activity and 

cell proliferation in both tumor-containing and histologically normal regions of Hi-Myc tissue 

that was absent in healthy prostates. 

 
Figure 4.S14. Quantification of proliferation in healthy and Hi-Myc prostate tissue sections. (a) 
Quantification of fraction of detected nuclei positive for Ki-67 in healthy, MMP-inhibited healthy (Healthy 
+ MAR), Hi-Myc, and MMP-inhibited Hi-Myc (Hi-Myc + MAR) prostate tissue sections (n = 2 consecutive 
sections per group, >100,000 cells per replicate; mean ± s.d.; two-tailed unpaired t-test, nsP = 0.707, *P = 
0.0158, ***P = 0.000859). (d) Quantification of fraction of detected nuclei negative for both S16-Z and 
Ki-67 in healthy, MMP-inhibited healthy (Healthy + MAR), Hi-Myc, and MMP-inhibited Hi-Myc (Hi-Myc 
+ MAR) prostate tissue sections (n = 2 consecutive sections per group, >100,000 cells per replicate; mean 
± s.d.; two-tailed unpaired t-test, *P = 0.0113, **P = 0.00900,  ***P = 0.0004723). 
 

Motivated by these results, we next sought to identify the specific metalloprotease that was 

responsible for S16-M and S16-Z cleavage in the Hi-Myc model. We first screened a quenched 

fluorescent version of this substrate, S16-Q, against a panel of recombinant MMPs and found that 

this probe was broadly MMP-cleavable (Fig. 4.S15a-b). Next, we queried previously reported gene 

expression data from the Hi-Myc model (117) and found that the elastase MMP12, which 

efficiently cleaved S16-Q in vitro, was significantly upregulated at the gene expression level in 

Hi-Myc PCa relative to healthy prostate tissue (Fig. 4.S15c). We then validated this transcript at 

the protein level and found a significant increase in MMP12 in Hi-Myc prostates relative to age-

matched healthy controls (P = 0.0034, Fig. 4.S15d). Additionally, Hi- 
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Figure 4.S15. Discovery of MMP12 dysregulation in Hi-Myc model. (a) Fluorescent dequenching 
measurements for panel of MMPs against fluorescent version (S16-Q) of Hi-Myc-responsive substrate S16. 
(b) Addition of MMP inhibitor marimastat (MAR) abrogated fluorescence increase for panel of MMPs 
against S16-Q. (c) Relative expression of the top 5 MMPs most significantly upregulated in Hi-Myc 
prostates relative to age-matched healthy controls, analyzed by Affymetrix microarray, adapted from 
Ellwood-Yen et al., Cancer Cell 2003 (two-tailed unpaired t-test; **P < 0.01, *P < 0.05, ns = not 
significant). (d) ELISA results comparing protein-level abundance of MMP12 in homogenates of Hi-Myc 
prostates relative to age-matched healthy controls (n = 7 Hi-Myc, n = 5 healthy; mean ± s.d.; Welch’s t-
test; **P = 0.0034). (e) Immunofluorescence staining for MMP12 in fresh-frozen sections of healthy and 
Hi-Myc prostates, showing histologically similar regions of healthy and Hi-Myc prostates (Healthy, Hi-
Myc glands) as well as a Hi-Myc tumor region (Hi-Myc tumor). Scale bars = 100 µm. (f) 
Immunofluorescence staining for MMP12 in histologically normal-appearing region of Hi-Myc tissue in 
Figure 4.5. Scale bar = 200 µm. 
 

Myc prostates stained positively for MMP12 while healthy prostates did not (Fig. 4.S15e). Finally, 

in situ staining revealed that MMP12 localized to the histologically normal-appearing, S16-Z, Ki-

67-positive region of Hi-Myc tissue (Fig. 4.5e; Fig. 4.S15f). Overall, these results suggest that 
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MMP12 may be responsible for S16 cleavage in Hi-Myc prostates, highlighting the power of AZPs 

to enable biological characterization of protease dysregulation in disease. 

 

In vivo validation of a protease-activated probe in the Hi-Myc model 

Having identified that S16 was preferentially cleaved in situ in proliferative glands of Hi-Myc 

prostates, we sought to validate the utility of this peptide sequence to drive tumor accumulation of 

molecular probes in vivo. We synthesized a quenched imaging probe, S16-QZ, that was similar in 

design to activatable cell-penetrating peptides (27, 30) and incorporated S16 as a protease-

cleavable linker. In this design, degradation of the protease-cleavable linker liberates the 

fluorophore-tagged polyR, resulting in a positively-charged, tissue-binding particle with Cy5 

fluorescence. Accordingly, in vitro incubation of S16-QZ with MMP12 resulted in fluorescence 

activation, whereas the uncleavable dS16-QZ remained quenched even after incubation with the 

protease (Fig. 4.6a). To verify that tissue binding was dependent on linker degradation, we pre-

cleaved S16-QZ with recombinant MMP12, incubated the probe with tissue sections at 4º C to 

allow tissue binding in the absence of protease activity, and observed significantly enhanced tissue 

fluorescence relative to intact S16-QZ (Fig. 4.6b, c).  

 

Having verified that proteolytic processing was required for both fluorescence activation and tissue 

binding of this PCa-targeted probe, we next sought to assess disease-dependent probe activation 

and accumulation in vivo. S16-QZ and the uncleavable control peptide, dS16-QZ, were PEGylated 

to improve solubility and increase circulation time (27) and were subsequently administered 

intravenously into Hi-Myc mice and age-matched healthy controls (Fig. 4.6d). Significantly 

increased Cy5 fluorescence was observed in explanted prostates of Hi-Myc mice injected with 

S16-QZ relative to the uncleavable dS16-QZ (P < 0.0001, Fig. 4.6e), whereas no such difference 



 106 

between the probes was observed in healthy prostates (P = 0.0990, Fig. 4.6e). Furthermore, Cy5 

fluorescence after S16-QZ injection was found to be significantly increased in Hi-Myc prostates 

relative to healthy prostates (P < 0.0001, Fig. 4.6e), enabling perfect discrimination of diseased 

and healthy mice (AUC = 1.000, Fig. 4.6f). These results suggest that peptide substrates nominated 

via ex vivo activity profiling can be directly incorporated into protease-activated agents for in vivo 

use.  

 
Figure 4.6. In vivo validation of an activatable imaging probe. (a) The quenched probe S16-QZ, 
consisting of a fluorophore-tagged polyR (grey star + blue rectangle) and quencher-tagged polyE (orange 
hexagon + red rectangle) linked via an MMP-cleavable linker (green), was incubated with recombinant 
MMP12, and fluorescence activation was monitored over time (left). Dequenching measurements for S16-
QZ and d-stereoisomer dS16-QZ following incubation with recombinant MMP12 (right). (b) Binding of 
intact or MMP12 pre-cleaved (PC) S16-QZ to fresh frozen sections of healthy mouse colon tissue following 
incubation at 4° C. Scale bars = 25 µm. (c) Quantification of S16-QZ binding for intact probe or probe pre-
cleaved by MMP12 (n = 2 replicates; mean ± s.d.; two-tailed unpaired t-test, *P = 0.0382). (d) S16-QZ-
(PEG2K) or uncleavable dS16-QZ-(PEG2K) was administered intravenously into age-matched Hi-Myc 
and healthy mice. 4 hours after injection, prostates were excised and imaged by IVIS (n = 5 per group). 
Representative prostates shown at right. (e) Quantification of epifluorescence radiant efficiency from 
experiment in (d) via IVIS imaging (n = 5 per group; mean ± s.d.; one-way ANOVA with Tukey’s 
correction for multiple comparisons, ****P < 0.0001, nsP = 0.0990). (f) Receiver-operating characteristic 
(ROC) curve showing performance of S16-QZ-(PEG2K) signal in discriminating healthy from Hi-Myc 
prostate explants (AUC = 1.000, 95% confidence interval 1.000-1.000; P = 0.0090 from random classifier 
shown in dashed line). 
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4.3 Discussion 

In this work, we present an integrated set of ex vivo assays to discover and validate synthetic 

peptide substrates for use in activatable diagnostics and therapeutics. We first developed a 

multiplexed peptide cleavage assay that faithfully captured known substrate preferences of 

recombinant proteases. We then designed a modular in situ probe that enabled identification of 

two peptides that are preferentially cleaved by human PCa-associated proteases. Next, we 

demonstrated a bottom-up approach to the development of activatable diagnostics in the Hi-Myc 

model of PCa. We identified a peptide, S16, cleaved specifically by PCa-associated 

metalloproteinases, and found that its cleavage localized to proliferative, MMP12-positive glands 

in histologically normal regions of diseased prostates. Finally, we demonstrated that disease-

responsive substrates identified via these ex vivo assays could be integrated into agents for in vivo 

protease-activated use. 

 

Unlike isolated tools for multiplexed substrate profiling in bulk homogenates or for in situ 

zymography, our pipeline synergizes these two strategies to inform the rational design of protease-

activated diagnostics and therapeutics. Each of these methods provides key advantages—

multiplexed screening enables high-throughput discovery of candidate substrates, but in situ 

labeling is necessary to explore underlying biology and to validate the relevance of candidate 

substrates for specific applications. For example, an activatable therapeutic like a probody would 

ideally incorporate a peptide substrate that is cleaved broadly throughout the tumor, whereas an 

activatable imaging probe designed to monitor responses to immunotherapy might leverage a 

peptide that is strictly cleaved by proteases produced by tumor-infiltrating lymphocytes. Here, we 

demonstrate the power of our approach in the Hi-Myc model of PCa, identifying the disease-

responsive peptide substrate S16 from a multiplexed screen and using in situ activity profiling with 
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AZPs, coupled with immunostaining and quantitative analysis, to find that S16 cleavage localized 

to both tumor cells and Ki-67-positive glands that had not yet progressed to adenocarcinoma. This 

ability to quantitatively co-localize protease activity signals with other markers may enable 

concurrent identification of both disease-specific peptide linkers and biological targets for rational 

design of protease-activated diagnostics and therapeutics. Last, we show that an in vivo imaging 

probe incorporating S16 exhibited enhanced signal in Hi-Myc prostate explants, and future work 

is warranted to determine whether this probe could enable in vivo visualization of early-stage 

tumorigenesis in this model. Multiplexed screening followed by in situ labeling is therefore a 

powerful approach to enable the rational design of activatable agents for in vivo use.  

 

AZPs offer several advantages over existing methods of measuring and localizing protease activity 

in situ. While in situ activity profiling with fluorescently-tagged probodies has recently been 

shown to correlate with in vivo therapeutic efficacy, this approach requires target antigen 

expression for probe binding and is therefore limited in its generalizability (119). AZPs address 

this limitation in that they provide a modular, antigen-independent means to directly measure 

substrate-specific protease activity. Activity-based probes, which covalently bind to protease 

active sites, consist of two components (a recognition sequence and a reactive functional group) 

that must be redesigned for each new protease target (92). AZPs, in contrast, consist of two 

constant regions (polyR and polyE, Fig. 4.1b) and a single protease-cleavable linker that can be 

replaced with any sequence of interest. This modularity enabled us to synthesize a library of 19 

AZPs, all of which were dependent on proteolysis for tissue labeling (Fig. 4.S5). Therefore, we 

expect that AZPs could readily be designed to incorporate any candidate peptide substrate 

identified in a multiplexed screen, a degree of modularity unmatched by existing in situ probes.  
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This work also establishes AZPs as a molecular tool to probe protease-mediated biological 

processes in situ. Many proteases, including MMPs, are synthesized as zymogens and require 

proteolytic processing for activation (89). Furthermore, protease activity is dependent on 

environmental factors like post-translational processing and the abundance of endogenous protease 

inhibitors (92). Because proteases exert their function through their activity, direct measurements 

of protease activity rather than abundance may enable new insights into the roles of enzymatic 

biology in health and disease. For example, though proteases are known to be expressed in the 

intestine and are critical to intestinal homeostasis, their precise functions have remained poorly 

understood, in part because of the lack of available tools to measure and localize protease activity 

(115). The ability of AZPs to label serine protease activity in the colon may enable improved 

understanding of intestinal physiology and pathology. Furthermore, in this work, we uncovered an 

increase in metalloproteinase activity in both tumor regions and, unexpectedly, in histologically 

normal prostatic glands in the Hi-Myc PCa GEMM. This finding was powered by the identification 

of S16, a metalloproteinase-sensitive peptide cleaved by proteases in the Hi-Myc model, followed 

by in situ labeling with S16-Z. Additional investigation revealed that S16-Z-positive glands and 

tumor regions were also positive for the proliferation marker Ki-67 and overexpressed MMP12. 

Quantification of these in situ measurements verified robust and significant dysregulation of cell 

proliferation and metalloproteinase activity in Hi-Myc prostates. Metalloproteinase dysregulation 

may serve as a marker for early tumorigenesis in the Hi-Myc model and further investigation is 

warranted to elucidate its biological significance. This novel integration of in situ activity profiling, 

immunostaining, and quantitative image analysis could provide a powerful paradigm to dissect 

and understand protease biology. 
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Though the cleavage-based methods presented here offer several advantages over existing 

methodology, their primary limitation is specificity, as proteases of the same class exhibit 

substantial cross-cutting against short peptides (Fig. 4.2a). Multiplexed screens followed by in situ 

labeling with AZPs can be readily deployed as a pipeline to discover and validate peptide linkers 

for conditionally activated diagnostics or therapeutics, which must be selective for cancer relative 

to healthy tissue but need not be specific to any one protease (96). In contrast, further optimization 

is needed before such cleavage-based methods can be reliably leveraged as a tool to dissect 

protease biology with single enzyme resolution. High throughput screens of peptides enriched with 

unnatural amino acids may yield protease substrates with dramatically improved specificities (120, 

121). 

 

In summary, we have established a modular pipeline to discover and validate disease-responsive 

protease substrates. We present a bottom-up approach to the design of an activatable imaging probe 

in a PCa GEMM and also show that our methods can be used to directly probe protease activity in 

human tissue. We expect that our pipeline, which can be readily adapted to any tissue type or set 

of peptide substrates, will help elucidate the multifaceted roles of proteases in health and disease 

and accelerate the development of highly specific protease-activated diagnostics and therapeutics. 

 

4.4 Materials and Methods 

Peptide synthesis  

All peptides were synthesized by CPC Scientific (Sunnyvale, CA) and reconstituted in 

dimethylformamide (DMF) unless otherwise specified.  

Hi-Myc PCa model 
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All animal studies were approved by the Massachusetts Institute of Technology (MIT) committee 

on animal care (protocol 0417-025-20). Reporting complied with Animal Research: Reporting In 

Vivo Experiments (ARRIVE) guidelines. Hi-Myc mice (FVB-Tg(ARR2/Pbsn-MYC)7Key/Nci) 

were obtained from Jackson Labs. The Hi-Myc model was generated as previously described(117). 

Age-matched healthy male FVB/NJ mice (Jackson Labs) were used as controls in all experiments. 

Mouse dissections and tissue isolation 

For prostate tissue, urogenital organs from Hi-Myc mice and age-matched healthy male FVB/NJ 

mice (Jackson Labs) were isolated, and prostates were microdissected. Adipose tissue surrounding 

the prostates was removed using forceps, and the entirety of the mouse prostate (ventral, dorsal, 

lateral, and anterior lobes) was separated from the urethra. For preparation for tissue 

homogenization, prostates were flash frozen in liquid nitrogen and stored at -80° C until use. For 

preparation for cryosectioning, prostates were immediately embedded in optimal-cutting-

temperature (OCT) compound (Sakura), and frozen using isopentane chilled with dry ice. Colons 

were harvested from healthy C57BL/6J mice (Jackson Labs), rinsed with PBS to remove feces, 

filled with undiluted OCT using a blunt 20-gauge needle, embedded in OCT, and frozen using 

isopentane chilled with dry ice. 

Classification of PCa xenografts with fluorogenic peptide substrates 

PC3 (ATCC CRL-1435) and 22Rv1 (ATCC CRL-2505) cells were grown in F-12K (ATCC) or 

RPMI-1640 (ATCC) media, respectively, supplemented with 10% (v/v) FBS (Gibco) and 1% (v/v) 

penicillin-streptomycin (CellGro). Four- to six-week-old male NCr nude mice (Taconic) were 

injected bilaterally with 3.5 x 106 PCa cells per flank in a 1:1 ratio of OptiMEM (ATCC) and 

Matrigel (Corning). PC3 and 22Rv1 xenografts were explanted at an average volume of ~200 mm3, 

flash frozen in liquid nitrogen, and stored at -80° C until use. Normal mouse prostates from healthy 

NCr nude mice (Taconic) were also harvested and flash frozen in liquid nitrogen. Immediately 
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prior to fluorogenic cleavage assay, tumors and prostates were placed in tubes with high-impact 

zirconium beads (Benchmark Scientific), and phosphate buffered saline (PBS) was added to 

achieve a concentration of 100 to 600 mg tissue per mL of PBS. Homogenization was performed 

using a BeadBeater homogenizer (BioSpec). Bradford assay (Bio-Rad) was performed, and all 

samples were prepared at the same final protein concentration (~1 mg/mL). Fluorogenic substrates 

(0.33 μM final concentration) were synthesized by CPC Scientific (Sunnyvale, CA) and incubated 

in 30 μL final volume with tissue homogenate for 20 minutes at 37° C. Proteolytic cleavage of 

substrates was quantified by increases in fluorescence over time as measured by fluorimeter (Tecan 

Infinite M200 Pro).  

Proteome profiler proteomics analysis of proteases and protease inhibitors 

To prepare samples for proteomic analysis, Protease Inhibitor Cocktail (100x, P8340, Sigma 

Aldrich) including EDTA (100x, Thermo Scientific) and Triton X-100 (1% v/v, Sigma Aldrich) 

was added to tissue homogenates of PC3 and 22Rv1 xenografts (homogenization method 

previously described). Protein concentration was measured via Bradford assay (Bio-Rad) and 

normalized across samples. Protease and protease inhibitor abundance was assayed using 

Proteome Profiler Human Protease/Protease Inhibitor Array kits (R&D Systems, ARY025) 

according to manufacturer’s instructions. Signal intensity was quantified using ImageJ (NIH). 

Synthesis of peptide-functionalized magnetic beads 

For synthesis of peptide-functionalized magnetic beads, amine-functionalized magnetic beads 

(DynabeadsTM M-270 Amine, Invitrogen) were washed and resuspended in PBS prior to coupling, 

per manufacturer’s instructions. For conjugation of peptides to magnetic beads, the beads were 

first reacted with MAL-PEG(5k)-SVA (Laysan Bio) in PBS at room temperature for 30 minutes 

with gentle rotation to introduce sulfhydryl-reactive maleimide handles. Cysteine-terminated 

peptides (CPC Scientific) with mass-encoded barcodes were then reacted in PBS with up to 30% 
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DMF to the PEG-coated magnetic beads overnight at room temperature with gentle rotation. 

Following overnight incubation, any remaining sulfhydryl-reactive handles were quenched with 

L-cysteine (Sigma Aldrich) by reacting for at least 15 minutes at room temperature. Peptide-

functionalized magnetic beads were then pooled, washed in bead wash buffer (0.5% (w/v) bovine 

serum albumin (BSA), 0.01% (v/v) Tween-20 in PBS) according to manufacturer’s instructions, 

buffer exchanged into PBS, and then resuspended into PBS at the original bead concentration 

provided by the manufacturer. Peptide-functionalized magnetics beads were stored at 4° C until 

use. Relative substrate concentrations were quantified via LC-MS/MS analysis of stock bead 

cocktail solution. 

LC-MS/MS reporter quantification 

LC-MS/MS was performed by Syneos Health (Princeton, NJ) using a Sciex 6500 triple quadrupole 

mass spectrometer. Samples were treated with ultraviolet irradiation to photocleave the 3-amino-

3-(2-nitro-phenyl)propionic acid (ANP) and liberate the barcoded reporter from residual peptide 

fragments. Samples were extracted by solid-phase extraction and analyzed by multiple reaction 

monitoring by LC-MS/MS to quantify concentrations of each barcoded mass variant. Analyte 

quantities were normalized to a spiked-in internal standard, and concentrations were calculated 

from a standard curve using peak area ratio (PAR) to the internal standard. Initial peptide 

concentrations were quantified via LC-MS/MS analysis of stock bead solution used in the cleavage 

reaction.  

In vitro recombinant protease cleavage assays  

For bead cleavage assays, magnetic beads functionalized with mass-barcoded peptide substrates 

were synthesized and prepared as described above. Recombinant proteases were purchased from 

Enzo Life Sciences, R&D Systems, and Haematologic Technologies. Assays for each recombinant 

protease were conducted in appropriate enzyme buffer according to manufacturer specifications, 



 114 

with 12.5 nM recombinant enzyme. For each cleavage reaction, 1.2 x 108 beads, consisting of an 

isokinetic mixture of beads carrying unique substrate-reporter pairs and resuspended to a volume 

of 60 μL in appropriate enzyme buffer, were added to a PCR reaction tube, and 20 μL of 

recombinant protease was added and mixed with the bead solution to achieve a final enzyme 

concentration of 12.5 nM in 80 μL reaction volume. Reactions were incubated at 37° C with gentle 

rotation (to prevent bead settling) for 1 hour. Following incubation and proteolysis, two rounds of 

magnetic bead pull-down were used to isolate liberated reporters present in the supernatant. 

Samples were frozen at -80° C until analysis by LC-MS/MS as described above. Initial peptide 

concentrations were quantified via LC-MS/MS analysis of stock bead solution used in the cleavage 

reaction. To determine the relative concentrations of cleavage-liberated reporters, liberated 

reporter PAR values were normalized to stock reporter PAR values. 

For fluorescence cleavage assays, intramolecularly quenched peptide substrates (S16-Q, 

S16-QZ, dS16-QZ) were reacted with recombinant proteases to characterize cleavage kinetics. 

Substrates were incubated with recombinant MMP12 (Enzo Life Sciences) at a final peptide 

concentration of 1 μM and a final enzyme concentration of 12.5 nM in a reaction volume of 30 μL 

in MMP-specific buffer (50 mM Tris, 300 mM NaCl, 10 mM CaCl2, 2 µM ZnCl2, 0.02% (v/v) 

Brij-35, 1% (w/v) BSA, pH 7.5) at 37° C. Proteolytic cleavage of substrates was quantified by 

increases in fluorescence over time as measured by fluorimeter (Tecan Infinite M200 Pro). 

Bead cleavage assays with tissue homogenates 

Prostates from Hi-Myc and age-matched healthy FVB/NJ male mice were harvested and fresh 

frozen as described above. Prior to fluorogenic cleavage assay, prostates were placed in tubes with 

high-impact zirconium beads (Benchmark Scientific), and PBS was added to achieve a 

concentration of 100 to 300 mg tissue per mL of PBS. Homogenization was performed using a 

BeadBeater homogenizer (BioSpec). Bradford assay (Bio-Rad) was performed, and all samples 
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were prepared to twice (~2 mg/mL) the desired final assay protein concentration (~1 mg/mL). For 

inhibited conditions, 1 mM AEBSF (Sigma Aldrich) or 2 mM marimastat (Sigma Aldrich) were 

pre-incubated with tissue homogenates for at least 30 minutes prior to cleavage assay. 

Magnetic beads functionalized with mass-barcoded peptide substrates were synthesized 

and prepared as described above. For each cleavage reaction, 1.2 x 108 beads, comprised of a 

multiplexed cocktail of beads carrying unique substrate-reporter pairs and resuspended to a volume 

of 40 μL in PBS, were added to a PCR reaction tube, and 40 μL of tissue sample (2 mg/mL protein 

concentration) was added and mixed with the bead solution to achieve a final protein concentration 

of 1 mg/mL in 80 μL reaction volume. Reactions were incubated at 37° C with gentle rotation (to 

prevent bead settling) for 1 hour. Following incubation and proteolysis, two rounds of magnetic 

separation were used to isolate liberated reporters. Samples were frozen at -80° C until analysis by 

LC-MS/MS as described above. To determine the relative concentrations of cleavage-liberated 

reporters, mean normalization was performed on reporter PAR values to account for tissue-to-

tissue differences in substrate and protein concentration. 

In situ zymography with AZPs 

Organs were extracted and immediately embedded and frozen in optimal-cutting-temperature 

(OCT) compound (Sakura). Cryosectioning was performed at the Koch Institute Histology Core. 

Prior to staining, slides were air dried and fixed in ice-cold acetone for 10 minutes. After hydration 

in PBS (3x5 minutes), tissue sections were blocked in protease assay buffer (S6-Z: 50 mM Tris, 

0.01% (v/v) Tween 20, 1% (w/v) BSA, pH 7.4; S2-Z/S10-Z: 50 mM Tris, 150 mM NaCl, 10 mM 

CaCl2, 0.05% (v/v) Brij-35, 1% (w/v) BSA, pH 7.5; S16-Z: 50 mM Tris, 300 mM NaCl, 10 mM 

CaCl2, 2 µM ZnCl2, 0.02% (v/v) Brij-35, 1% (w/v) BSA, pH 7.5) for 30 minutes at room 

temperature. Blocking buffer was aspirated, and solution containing fluorescently labeled AZP (1 

µM) and a free poly-arginine control (polyR, 0.1 µM) diluted in the relevant assay buffer was 
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applied. Slides were incubated in a humidified chamber at 37° C for 4 hours. For inhibited controls, 

400 µM AEBSF (Sigma Aldrich) or 1 mM marimastat (Sigma Aldrich) was added to the buffer at 

both the blocking and cleavage assay steps for S6-Z and S16-Z experiments, respectively. For co-

staining experiments, primary antibodies (E-cadherin, AF648, R&D Systems, 20 µg/mL; Ki-67, 

ab15580, Abcam, 1 µg/mL) were included in the AZP solution. Following AZP incubation, slides 

were washed in PBS (3x5 minutes), stained with Hoechst (5 µg/mL, Invitrogen) and the 

appropriate secondary antibody if relevant (Invtirogen), washed in PBS (3x5 minutes), and 

mounted with ProLong Diamond Antifade Mountant (Invitrogen). Slides were scanned on a 

Pannoramic 250 Flash III whole slide scanner (3DHistech).  

AZP library characterization 

AZPs (10 µM final concentration) were incubated with recombinant protease (100 nM final 

concentration) in 60 µL final volume of appropriate enzyme buffer at 37° C for at least 2 hours to 

run cleavage reactions to completion. Recombinant proteases were selected on the basis of 

substrate characterization and cleavage specificity (Fig. 4.2). S1-Z, S3-Z, S7-Z, S14-Z, S15-Z, 

S16-Z, and S19-Z were incubated with recombinant MMP13 (Enzo Life Sciences); S2-Z, S6-Z, 

S9-Z, S11-Z, S12-Z, S13-Z, S17-Z, and S20-Z AZPs were incubated with recombinant PRSS3 

(R&D Systems); S5-Z, S8-Z, and S18-Z were incubated with recombinant KLK14 (R&D 

Systems); and S10-Z was incubated with recombinant KLK2 (R&D Systems). Following pre-

cleavage with recombinant enzymes, AZP solutions were diluted to a final peptide concentration 

of 1 µM in appropriate enzyme buffer. Cognate in-tact AZPs (1 µM in appropriate enzyme buffer) 

and pre-cleaved AZPs were applied to fresh frozen sections of normal mouse colon (slide 

preparation previously described) and incubated at 37° C for 30 minutes. Following AZP 

incubation, slides were washed, stained with Hoechst, mounted, and scanned as previously 

described. The MMP12-responsive probes incorporating the substrate S16, S16-Z and S16-QZ, 
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were additionally characterized using pre-cleavage by MMP12 (Enzo Life Sciences), followed by 

application to fresh frozen sections of normal mouse colon and incubation at 4° C for 30 minutes. 

AZP analysis of human PCa tissue microarray (TMA) 

Fresh frozen human PCa TMAs (BioChain Institute, Inc.; T6235201) were air dried and fixed in 

ice-cold acetone for 10 minutes. After hydration in PBS (as previously described), tissue sections 

were blocked in serine protease assay buffer (50 mM Tris, 150 mM NaCl, 10 mM CaCl2, 0.05% 

(v/v) Brij-35, 1% (w/v) BSA, pH 7.5) for 30 minutes at room temperature. Blocking buffer was 

aspirated, and solution containing AZP (1 µM) and a free poly-arginine control (polyR, 0.1 µM) 

diluted in assay buffer was applied. Slides were incubated in a humidified chamber at 37° C for 4 

hours. For inhibited controls, protease inhibitor cocktail (P8340, Sigma Aldrich) spiked with 400 

µM AEBSF (Sigma Aldrich) and 1 mM marimastat (Sigma Aldrich) was added to the buffer at 

both the blocking and cleavage assay steps. Following AZP incubation, slides were washed, 

stained with Hoechst, mounted, and scanned as previously described. 

ELISA for MMP12 

Tissue levels of MMP12 in Hi-Myc and healthy FVB/NJ prostate homogenates were measured by 

ELISA according to manufacturer’s protocol (ab246540, abcam). Prostate homogenates were 

prepared as previously described. Protein concentration was measured via Bradford assay (Bio-

Rad) and normalized across samples. 

Immunofluorescence staining for MMP12 

Slides of fresh-frozen tissue sections were prepared as described above. Slides were blocked in 

serum-based blocking buffer and incubated with primary antibody against MMP12 (MA5024851, 

Invitrogen, 1:50, 20 µg/mL). Slides were washed in PBS (3x5 minutes), incubated with the 

appropriate secondary antibody (Invitrogen) and Hoechst (5 µg/mL, Invitrogen), and washed in 

PBS (3x5 minutes). Slides were mounted and scanned as previously described. 
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Quantification of AZP staining 

AZP staining was quantified in QuPath(122) by using cell detection on the DAPI channel with a 

threshold of 1. For TMA analysis, nuclear AZP staining was calculated as a fold change of the 

AZP signal over the polyR signal. All nuclei were averaged across the entire tissue section or TMA 

core. Nuclei with a polyR intensity of less than 3 were excluded from analysis.  

Synthesis of activatable probes for in vivo administration 

The peptides S16-QZ and uncleavable control dS16-QZ were reconstituted to 1 mg/mL in water. 

Peptides were then reacted with mPEG-Maleimide, MW 2000 g/mol (Laysan Bio), for PEG 

coupling via maleimide-thiol chemistry. After completion of the reaction, the final compounds 

were purified using HPLC. All reactions were monitored using HPLC connected with mass 

spectrometry (LC/MS). Characterization of final compounds, S16-QZ-(PEG2K) and dS16-QZ-

(PEG2K), using HPLC and MALDI-MS indicated that products were obtained with more than 

90% purity and at the expected molecular weight. 

In vivo administration of activatable probes and imaging of explanted prostate tissues 

Male Hi-Myc mice (FVB-Tg(ARR2/Pbsn-MYC)7Key/Nci; 32-36 wks) and age-matched FVB/NJ 

healthy controls (Jackson Labs; 28-36 wks) were anesthetized using isoflurane inhalation (Zoetis). 

S16-QZ-(PEG2K) or dS16-QZ-(PEG2K) (4.5 nmoles in 0.9% NaCl) was administered 

intravenously via tail-vein injection. Four hours after probe injection, mice were euthanized by 

isoflurane overdose followed by cervical dislocation, and prostates were dissected as previously 

described. Explanted prostates were imaged on an in vivo imaging system (IVIS, PerkinElmer) by 

exciting Cy5 at 640 nm and measuring emission at 680 nm. Fluorescence signal intensity was 

quantified using the Living Image software (PerkinElmer). 

Statistical analysis 
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PCA was performed in the R statistical environment (https://www.r-project.org/) using the prcomp 

function. Hierarchical clustering was performed using GENE-E (Broad Institute; 

https://software.broadinstitute.org/GENE-E/). All remaining statistical analyses were conducted in 

GraphPad 7.0 (Prism). All sample sizes and statistical tests are specified in figure legends.  
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CHAPTER 5. PERSPECTIVE AND FUTURE DIRECTIONS 

5.1 Advances in activity-based diagnostics for disease detection and monitoring 

Accurate information about disease state is needed to guide clinical decision making at every stage. 

Diagnosis of disease is effective if it enables therapeutic intervention that alters the natural history 

of disease (i.e. reducing the risk of morbidity and mortality). This requires that the information is 

accurate (e.g. it can distinguish malignant from benign disease) and that it arrives early enough for 

effective treatment (e.g. surgical resection) to be administered. Once a disease is diagnosed and a 

treatment administered, effective treatment response monitoring is crucial to ensure that the patient 

is on the optimal therapy. Here, a rapid readout of disease activity that accurately predicts long-

term outcomes is desired.  

This thesis sought to validate the hypothesis that protease activity could be harnessed as an 

effective biomarker for pulmonary disease diagnosis and treatment response monitoring. Along 

the way, we have made discoveries and developed new technologies that stand to impact the field 

of activity-based diagnostics. We 1) leveraged direct intrapulmonary delivery to enhance 

sensitivity and specificity for pulmonary disease, 2) integrated multiplexed activity measurements 

with machine learning to enable reliable classification of multiple disease states, 3) provided a 

clear window into the dynamics of drug response, and 4) created new tools to explore the 

underlying biology of protease dysregulation and enable the rational design of protease-activated 

diagnostic probes. 

 

Leveraging organ-specific delivery to enhance diagnostic sensitivity and specificity 

Lung cancer causes more death than any other cancer (45). Additionally, the lung plays host to a 

great many deadly diseases of infectious, fibrotic, and genetic etiologies, several of which are 
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mediated by dysregulated protease activity (44). This thesis therefore aimed to optimize ABNs for 

detection and monitoring of pulmonary diseases.  

Intuitively, one would expect that increasing the accumulation of ABNs at the site of 

disease and decreasing their exposure to background protease activity in the blood and healthy 

organs would increase the signal-to-noise ratio, enabling detection of smaller and smaller disease-

associated signals. Previous computational modeling work by our group validated this hypothesis 

mathematically: increasing the delivery of ABNs to the tumor and decreasing their degradation in 

the blood was predicted to enable detection of 5-mm tumors in humans, a feat that the model found 

would be unattainable with current intravenous ABN formulations (52). This finding motivated 

future iterations of the ABN technology, which incorporated integrin-targeted tumor penetrating 

peptides that enhanced tumor accumulation and enabled detection of locally advanced ovarian 

tumors totaling 36 mm3 in mice (38).  

We reasoned that direct intrapulmonary delivery would provide a universal strategy for 

increasing the sensitivity and specificity of ABNs for pulmonary diseases. We first sought to test 

the hypothesis that intratracheal delivery would increase on-target (i.e. lung) delivery and decrease 

off-target (i.e. other organ) delivery. Whereas intravenous delivery of a fluorescent ABN variant 

resulted in only 0.16 times as much fluorescence in the lungs as in all other tested organs (heart, 

spleen, liver and kidneys) combined, this number was greater than 100 for intratracheally delivered 

particles, representing a 600-fold biodistribution improvement (82). Accordingly, when we 

performed intratracheal instillation of our 14-plex sensor cocktail in an autochthonous mouse 

model of lung cancer, we found that we were able to detect disease when total tumor volume was, 

on average, just 2.8 mm3. Organ-specific delivery therefore represents a promising strategy for 

improving the signal-to-noise ratio of activity-based diagnostics, enabling ultrasensitive disease 

detection. 
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Integrating multiplexed signals with machine learning 

The power of the ABN platform lies in its ability to measure the activities of multiple disease-

associated proteases simultaneously, overcoming the limitations of molecular imaging methods 

(21, 33). In humans, the heterogeneity of cancer presents fundamental limitations for any single-

plex diagnostic, as no single analyte is likely to be shared among all tumors. Furthermore, the 

multitude of benign diseases that involve protease dysregulation present a great risk of false 

positives. Multiplexing offers solutions on both fronts. By querying multiple proteases 

simultaneously, ABNs are better suited to capture the proteolytic diversity of cancer, reducing the 

risk of missed diagnoses (false negatives). Furthermore, multiplexing offers the opportunity to 

create disease-specific signatures, or classifiers, that can quantitatively identify subtle differences 

in the protease profiles of malignant and benign disease, enabling differential diagnosis and 

reducing the risk of false positives. 

 In this thesis, we leveraged machine learning to integrate 14-plex urinary ABN outputs into 

unbiased classifiers that could be prospectively applied. We first showed that we could train a 

single machine learning classifier to successfully diagnose mice with two distinct molecular 

subtypes of lung cancer (Fig. 2.6A-C). We then demonstrated that this same classifier could 

distinguish both mouse models of lung cancer from a mouse model of benign lung inflammation 

(Fig. 2.6D). These examples highlight the power of combining machine learning and multiplexing 

to both capture the heterogeneity of lung cancer and reduce the risk of false positives from benign 

lung disease. Had we attempted to use the ABN PP01, which most strongly differentiated Eml4-

Alk mice from healthy controls, as a single plex in the KP model, it would have had no diagnostic 

power. Similarly, though several individual sensors were unable to distinguish between mice with 

lung cancer and benign lung inflammation (Fig. 2.S13A-B), our machine learning classifier, which 
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integrated the signals from all 14 sensors, enabled near-perfect discrimination of malignant and 

benign disease models (Fig. 2.6D).  

Multiplexed ABNs, when combined with machine learning, can be applied to a wide range 

of classification problems. In this thesis, we also demonstrated that such a paradigm enabled 

detection of therapeutic response within days after initiation of rapamycin in a mouse model of 

LAM and alectinib in a mouse model of Alk-mutant lung adenocarcinoma. We further expect that 

this approach may be extensible to other clinically relevant applications, such as the differential 

diagnosis of bacterial and viral pneumonia, an area of active investigation in our group.  

 

Interrogation of drug response in benign and malignant disease 

Effective management of disease requires that response to treatment can be reliably assessed. 

Accurate and timely information about drug response can guide individual treatment plans, and 

can also accelerate the pace of the drug development and testing process (10). In this thesis, we 

demonstrate that multiplexed ABNs can provide unprecedented insight into the dynamics of drug 

response in both benign and malignant disease. In both LAM and Eml4-Alk driven lung cancer, 

we found that multiple ABNs tracked with disease progression, and that treatment with small 

molecule inhibitors rapidly returned the signal from these sensors to baseline. The fact that the 

same cocktail of 14 sensors enabled response monitoring in two entirely distinct disease models 

raises the prospect of a single sensor panel that can be generally applied to any pulmonary disease 

that is characterized by protease dysregulation. Furthermore, the transient, treatment-induced 

increase in PP04, in both LAM and Eml4-Alk mice, could suggest shared mechanisms of drug 

response in these two disease models. However, at the time of this work, few methods existed to 

connect disease-associated biology to in vivo ABN cleavage. The final aim of this thesis sought to 

address this disconnect.  



 125 

 

Closing the loop: ex vivo assays reveal biological insights and enable bottom-up design of 

protease-activated diagnostics 

The first two aims of this thesis demonstrated the power of multiplexed ABNs for detection and 

drug response monitoring of pulmonary diseases. However, we were left with little insight into the 

biological underpinnings of the differential ABN cleavage observed in different disease states. We 

therefore sought to develop new tools to query the biology of protease dysregulation in disease. 

Our multiplexed assay using tissue homogenates allowed us to not only discover a peptide cleaved 

specifically by cancer-associated proteases, but also to perform inhibition studies that revealed the 

protease class, metalloproteases, responsible for its cleavage. Our in situ assay then led us to the 

surprising finding that this peptide was cleaved in histologically normal glands, which further 

investigation revealed to be positive for both MMP12 and Ki67. Finally, we closed the loop by 

incorporating this peptide into an in vivo diagnostic probe that demonstrated significantly 

enhanced signal in diseased tissue. Future efforts will be directed toward applying this paradigm 

in reverse, by converting key ABNs like the Eml4-Alk marker PP01 and the treatment response 

marker PP04 into in situ probes in order to query their biological relevance. 

 

5.2 Future Directions 

Immunotherapy response monitoring 

The emergence of immunotherapy has dramatically altered cancer management. In non-small cell 

lung cancer, checkpoint blockade with antibodies targeting the PD-1/PD-L1 axis has been shown 

to improve progression free and overall survival in a wide range of settings, including in patients 

with treatment-naïve or heavily pre-treated metastatic disease and as a neoadjuvant in patients 

undergoing resection of local, early-stage tumors (123). However, only a subset of patients exhibits 
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lasting responses to immunotherapy, and existing biomarkers (e.g. PD-L1 expression on tumor 

cells) fail to reliably predict which patients will respond. Furthermore, the utility of CT scanning 

is limited in assessing response to immunotherapy, as patients may present with stable disease or 

even an apparent increase in tumor burden (likely due to infiltrating immune cells) before 

eventually responding (10, 124).  

 The work presented in this thesis provides a framework for developing ABNs for rapid, 

noninvasive assessment of immunotherapy response. Many elements of the immune response are 

orchestrated by proteases, including granzyme B and neutrophil elastase, and work from our group 

and others has demonstrated that measuring such proteases in vivo can enable detection of 

immune-associated processes like graft rejection and response to infection (39, 125). Incorporating 

ABNs that can detect such proteases into our panel may enable early detection of treatment 

response in patients undergoing immunotherapy. 

  

High dimensional in situ screening for disease-specific peptide substrates 

The activatable zymography probes (AZPs) that we described in Chapter 4 enabled spatial 

profiling of protease activity in a tissue section. However, this approach relied on fluorescence 

imaging, which is inherently limited in its multiplexing capacity. Advances in DNA barcoding 

strategies have enabled the emergence of high dimensional methods to profile gene and protein 

expression in situ (126–128). Such principles could also be applied to enzyme activity. DNA 

barcoding could be used to uniquely label hundreds of peptide substrates, which could then be 

tethered to a slide. Overlaying these slides with healthy or diseased tissue sections could then 

enable comprehensive mapping of the cleavage patterns of these peptides. Such methods could 

dramatically accelerate efforts to understand fundamental protease biology and to develop 

protease-activated diagnostics and therapeutics. 



 127 

 

Protease-activated therapeutics 

Many promising drug candidates suffer from dose-limiting toxicity. An emerging concept is to 

leverage disease-specific protease substrates to promote activation of such drugs specifically in 

the disease microenvironment (22, 99, 101, 129). Such protease-activated therapeutics generally 

consist of a masking region that can be removed via proteolysis of a peptide linker. By leveraging 

our ex vivo assays, described in Chapter 4, to screen for peptides that are cleaved efficiently in 

diseased tissue but not in healthy tissues or in the blood, highly selective protease-activated 

therapeutics can be rationally designed. To realize the full potential of this strategy, it will also be 

important to design higher throughput substrate screening strategies that are compatible with tissue 

homogenates and other biospecimens. 

 

5.3 Conclusions 

In this work, we demonstrated the potential of activity-based nanosensors for noninvasive 

detection and treatment response monitoring in pulmonary disease. We further established a suite 

of assays to enable new insights into protease dysregulation in disease and to inform the rational 

design of the next generation of protease-activated diagnostics. We hope that these tools will help 

provide physicians with information to guide clinical decision making and ultimately improve 

outcomes for patients. 
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