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Abstract

Trapped ions can serve as promising scalable qubits through the excitation of their
internal electronic states with lasers to form an effective quantum two-level system,
while the ion’s quantized motional state in a harmonic potential well allows us to
interact neighboring ions via the Coulomb force. As a result, high-fidelity operations
require a precise knowledge of a system’s motional decoherence time, or the time
after which an ion’s motional state is no longer reliably known or can no longer
be controlled. Existing measurements of motional coherence indirectly control and
measure the motional state by coupling the motional state to internal transitions
driven by lasers, and as such, they may be prone to electronic state decoherence and
laser amplitude or frequency fluctuations.

In this thesis, we apply a previously-presented mechanism of direct electric field
manipulation of a trapped ion motional coherent state in a novel free precession
sequence to measure motional coherence times. This sequence consists of two coherent
displacements with a variable phase difference in a continuous harmonic oscillator
phase-space, separated by a variable delay time. Using a strontium-88+ ion trapped 50
micrometers above a niobium surface electrode trap in an ultra-high vacuum chamber
at 4 Kelvin, we measure a motional decoherence rate of (24 ± 5) 𝑠−1. This measured
rate matches the expected decoherence rate for a system where trapped ion heating
dominates other forms of decoherence in magnitude, which is likely the case for our
system.
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Title: Professor of Physics
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Chapter 1

Quantum Mechanics for Computation

In this chapter, we outline the origins of quantum computing by describing the fun-

damental physics governing this field, as well as key historical developments and

applications that generated interest in quantum computing. Section 1.1 describes

qubits, the basic units of a quantum computer, while section 1.2 explains the meth-

ods by which we can manipulate these qubits to perform useful algorithms. Section

1.3 describes the physical requirements for an experimental system to act as a quan-

tum computer. Section 1.4 concludes the chapter by describing the current state of

quantum computing research.

1.1 Qubits

All common modern computing devices can be labeled as "classical". They typically

manipulate the voltages applied to electrical devices called transistors so that each

transistor is characterized by either the presence or absence of charge, abstractly rep-

resented by the numbers 1 and 0. The state of these transistors is referred to as a bit, a

hardware-agnostic term to describe any two-level system. Practical problems are then

encoded binary functions that can be applied to bits. The final state of the bits then

represents a solution to the practical problem, albeit still in binary representation.

Although the increased density of transistors and more efficient hardware has allowed

modern classical computers to solve larger and more complex problems than classical

19



computers of the past, a subset of computational problems remain intractable even

with high amounts of computing power in the form of more bits and faster process-

ing. Quantum computation seeks to solve these complex problems more efficiently

by using fundamentally different logic operations and computation units than those

of classical computers. First, instead of classical binary bits, quantum computers

use quantum bits, or qubits for short. Qubits are not required to deterministically

occupy the 0 or 1 states that a bit must occupy. Instead of being described solely by

Boolean logic as bits are, qubits are governed by the laws of quantum mechanics. We

can use these quantum mechanical properties of qubits to perform unique quantum

logic operations that would be unavailable to a system using bits limited to classical

Boolean operations.

The theoretical origins of quantum computing can be traced to renowned physi-

cist Richard Feynman’s 1981 keynote speech and subsequent paper on simulating

physics with computers [Fey82]. Given classical computers’ weakness with probabil-

ity computations, Feynman argued that classical computers cannot properly simulate

quantum mechanics, a probabilistic theory of nature. He instead called for a quan-

tum computer that could serve as a "universal quantum simulator." Such a computer

could efficiently simulate a quantum mechanical system since it would be built from

fundamentally quantum hardware.

The theory of quantum mechanics predates Feynman’s 1981 speech. This theory

was created and popularized in the early 20th century, then tested experimentally

through the rest of the century and still today. No test has yet disproved quantum

mechanical predictions, solidifying its role as the preeminent theory describing the

fundamental nature of matter. While a complete description of all quantum me-

chanics remains outside of the scope of this thesis, there are a few key concepts and

mathematical descriptions necessary for understanding the basis of quantum com-

puting. While quantum mechanics describes all of nature, its most counter-intuitive

phenomena become evident when describing small units of matter. "Small" refers to

things on the scale of fundamental particles, such as protons, electrons, and photons,

quantized packets of light. Our primary quantum system of interest is an ion, which
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is an atom possessing an imbalance of protons and electrons. Since many common

atoms and molecules are composed of only hundreds or fewer fundamental particles,

they still display the same quantum mechanical behavior of their constituent parti-

cles. However, as more and more atoms combine to form even larger, macroscopic

systems, the quantum mechanical properties of their fundamental particles become

less prominent. To our macroscopic eye, we instead see the behavior of the macro-

scopic, or "classical", system. Classical physics is best summarized by Newtonian

mechanics (governed by Newton’s Three Laws) and Maxwellian electromagnetism

(governed by Maxwell’s Equations). A transistor is one such macroscopic classical

system. However, if we were to strip the transistor down and observe the behavior

of the fundamental particles comprising it, we would need to discard classical physics

and instead use the laws of quantum mechanics.

Given this conceptual overview of when quantum mechanics applies, one should

then ask what specific quantum properties are useful for computation. The two

useful properties relevant to quantum computation are (1) superposition and (2)

entanglement. The first property, superposition, is one of the most prolific quantum

concepts in popular science. Quantum systems, like a fundamental particle or, in

our case, an ion, are described by their state, and this state can have different bases.

Two common bases for a quantum object are energy or position. Superposition is the

counter-intuitive ability for a quantum system to occupy multiple states at one point

in time. This is forbidden in classical physics where an object can only occupy a single

state in all bases, meaning that it is described with a single position, momentum, or

energy. For example, a quantum object (before measurement or observation) could

have two different energies or occupy more than one location. By contrast, a classical

object only occupies one position and possesses one energy, regardless of whether one

has actually measured the state of the object. The second property, entanglement, is

the notion that multiple quantum systems, if prepared properly, can be correlated such

that measurements or operations on one system can affect the other systems without

any physical transfer of information between the system. This is unacceptable in

classical physics; classical principles of causality and locality would require a physical
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mechanism such as light, heat, or sound to transfer information between the two

distinct systems. These non-classical correlations allow for multi-qubit systems to

be described by joint states that enable the use logic operations which could not be

performed by classical system with an equivalent number of bits.

A qubit can be physically implemented within any two-level quantum system.

Those two levels are simply two distinct state values, as discussed above. Using the

bra-ket notation conventionally employed in quantum mechanics, these two distinct

states will hereafter be referred to as |0⟩ or |1⟩, analogous to the classical bit states of 0

and 1. The |..⟩ notation signifies that each state is a complex-valued, two-dimensional

unit vector. A complete mathematical primer on the linear algebra representation of

quantum mechanics can be found at [Kri05]. Due to the property of superposition, to

write the state of an arbitrary qubit denoted by the vector |Ψ⟩, we cannot just write

|0⟩ or |1⟩, which would imply that the qubit could only be measured in one possible

state. Instead, we must include the complex coefficients 𝑎 and 𝑏 to write

|Ψ⟩ = 𝑎 |0⟩ + 𝑏 |1⟩ (1.1)

Classically, we would only be able to have 𝑎 = 0 with 𝑏 = 1, or 𝑎 = 1 with 𝑏 = 0.

In quantum mechanics, the only constraint on these complex coefficients is that

|𝑎|2 + |𝑏|2 = 1 (1.2)

Another convenient, although abstract, representation of a quantum two-state

system takes advantage of the fact that the coefficients 𝑎 and 𝑏 are complex. Since

the sum of their norms squared must always equal one, they can be represented as

points on the surface of a unit sphere with the basis states at the poles, referred to

in physics as the Bloch sphere. Since we are now describing points on sphere, we can

use the polar coordinates Θ and 𝜑 to equivalently describe our state vector |Ψ⟩. Θ

can be used to find the norm squared of the coefficients, while 𝜑 is used to describe

the complex relative phase between the two basis states. This representation is shown

graphically in figure 1-1, while the mathematical depiction of the state in equation

22



(1.1) is now given by:

|Ψ⟩ = cos

(︂
Θ

2

)︂
|0⟩ + sin

(︂
Θ

2

)︂
𝑒𝑖𝜑 |1⟩ (1.3)

Figure 1-1: Bloch sphere representation. The state vector |Ψ⟩ is shown in red on the
spherical surface with radius 1. Instead of complex coordinates 𝑎 and 𝑏, the state is
described by polar coordinates Θ and 𝜑.

One can show that the coefficients in equation (1.3) satisfy the normalization

condition in equation (1.2). This notation will be particularly useful in this thesis,

and in quantum computing in general. With the Bloch sphere in mind, one can easily

describe changes in a qubit’s state by specifying the angles by which the state has

rotated around the sphere. These operations are aptly called single-qubit rotations.

While a single qubit sufficiently demonstrates our first quantum property of su-

perposition, the property of entanglement can only be described using multi-qubit

systems. A system with 𝑁 -qubits requires a higher-dimensional vector space of 2𝑁

dimensions. Some states of this larger system can be written as tensor products of its

2-dimensional subsystems, the individual qubits. States that cannot be written as a

tensor product are referred to as an entangled states. As stated earlier, these states

have no classical correspondence, so this linear algebra notation enables us to math-

ematically describe states beyond the scope of classical notation. This thesis deals
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with the physics of single qubit control and does not warrant any deeper discussion

on the mathematics of entangled states and multi-qubit systems.

1.2 Quantum Operations and Algorithms

Manipulating and preparing entangled superposition states, starting from our initial

state definition (1.2), is achieved through the use of quantum operators, mathemat-

ically represented as 𝑁 × 𝑁 -dimensional matrices. Properly preparing one’s initial

qubit states and then applying the appropriate quantum operators can manipulate

the qubit state similar to classical Boolean logic operations, such as as AND, OR,

NOT, CNOT, and NAND. At a minimum, a quantum computer would be capable

of performing the same calculations as a classical computer by operating on qubit

states that do not use superposition or entanglement. However, by appropriately

preparing and entangling superposition qubit states, properly-constructed quantum

operations can use qubits to perform calculations intractable on classical computers.

The theoretical construction of quantum algorithms and claims of their increased ef-

ficiency over classical algorithms constitutes an entire field of mathematical physics

and computer science.

While their mathematical details will not be discussed here, there are a few key

algorithms whose results merit discussion. These quantum algorithms have garnered

attention by requiring fewer operations than their classical counterparts to solve prac-

tical computational problems. Quantum algorithms can solve some difficult problems

in "polynomial time", rather than the "exponential" time for classical computers.

These times can refer to the number of operations or bits required to arrive at an an-

swer, for a given problem size. Feynman’s rule of simulation requires that the number

of resources required simulate a physical system be proportional to the space-time

volume of the system, preventing any physically-realizable computer, quantum or

classical, from performing large-scale exponential-time computations [Fey82]. While

classical computers can solve small exponential-time problems, solving larger scale

problems with more bits and operations will require the use of a quantum algorithm
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instead. The foremost quantum algorithm of interest is Peter Shor’s eponymous

algorithm introduced in 1997. His algorithm for finding prime factors of large num-

bers piqued the interest of national security organizations due to their reliance on

the RSA encryption algorithm. RSA guarantees secure encryption by assuming that

eavesdropping adversaries are unable to perform the classically difficult task of prime

factorization of large numbers, thought to be an exponential-time problem. However,

possessing a quantum computer would make this factorization possible in polynomial

time, breaking the security of RSA [Sho97]. An equally interesting, although slightly

less popularized, quantum algorithm is Grover’s Algorithm. This algorithm would

enable one to search an unsorted database with 𝑁 -entries with a number of steps on

the order of
√
𝑁 , while the equivalent classical algorithm would typically use on the

order of 𝑁 steps [Gro96]. The practicality of this speedup is obvious, assuming the

database can be loaded efficiently. Although these only represent a small sample of

quantum algorithms, an equally interesting premise is the possibility of discovering

new algorithms and capabilities for quantum computers once the hardware exists to

demonstrate these well-theorized algorithms.

It should be noted that quantum computers will likely not replace classical com-

puters, but rather act as supplemental computational resources to solve the subset of

problems where classical computers fall short. For most practical, smaller-scale prob-

lems, a quantum algorithm would require either the same or a greater number of steps

than a classical algorithm. Even for minor speed-ups, the additional complexity of

controlling quantum hardware and implementing quantum gates may make the clas-

sical computer faster from a practical standpoint. However, if a classical algorithm

for a large-scale problem is exponential-time while a quantum algorithm for the same

problem is polynomial-time, it would clearly be advantageous to possess a quantum

computer. This may seem like a small and selective subset of problems, but as Shor’s

Algorithm and Grover’s Algorithm show, solving difficult problems from this small

subset can have significant practical implications.

25



1.3 Hardware Requirements

The purported advantages detailed above could certainly make any reader a staunch

believer in the power of quantum computers. However, the physical implementation

of a quantum computer is much more challenging than a classical computer. The

requirements to do so are best captured by David DiVincenzo’s five criteria for a

physical quantum computing system [DiV00]. Since their introduction in 2000, these

criteria have governed the growth of particular quantum computing platforms and

accurately predicted the primary experimental challenges faced by scientists today.

According to DiVicenzo, one most possess all of the following to construct and operate

a quantum computer:

1. A scalable system of physical qubits, whose states can be described by a complex

two-dimensional vector in the form of equation (1.1).

2. The ability to reliably initialize any qubit to a known fiducial state. This is

often the |0⟩ state, sometimes referred to as the ground state, but this fiducial

state can vary by system.

3. Decoherence times much longer than quantum operation times, where decoher-

ence describes any undesired interactions between a qubit and its environment

or other qubits.

4. A universal set of gates that can implement any unitary transformation on a sys-

tem of qubits. A unitary transformation is a special type of quantum operation,

and it has been shown that one can implement these transformations by per-

forming only single qubit rotations and two qubit XOR gates [DiV95][BBC+95].

5. The ability to measure specific qubits with fidelity.

The current field of experimental quantum computing faces two overarching chal-

lenges. The first is encompassed by DiVincenzo’s second through fifth criteria. The

precise and reliable control and readout set forth in these criteria, even for only a few

qubits, is difficult, to say the least. For experimental platforms that do manage such
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immaculate control, experimenters face a second challenge of scalability, encompassed

by DiVincenzo’s first criterion. Properly controlling even small systems of qubits often

requires a substantial experimental overhead. Only a handful of qubits may demand

a room’s worth of optical, electronic, or cryogenic equipment. Adding more hardware

to control more qubits is technically challenging, costly, and adds more opportuni-

ties for technical errors which may decrease qubit stability and control fidelity. To

perform any of the useful aforementioned algorithms, experimenters must overcome

both of the two challenges by possessing equally immaculate control over even larger

systems of qubits, going from currently less than 100 controlled qubits to hundreds

of thousands. To enable computation despite a small, but likely inevitable, level of

error, the fields of Quantum Error Correction (QEC) and Fault-Tolerant quantum

computation (FTQC) seek to modify existing algorithms and preparation protocols

to allow for occasional errors while still being able to compute reliable results. A com-

prehensive primer on QEC is given by [DMN13]. However, these improved protocols

require a minimum fidelity, which is a bound on the percentage of faulty operations,

and a minimum number of qubits. No existing quantum computing platform has yet

achieved these thresholds [MLM+19].

1.4 Current State of Quantum Computing

Since its theoretical origins in the 20th century, a multitude of platforms have ap-

peared as potential candidates to satisfy DiVincenzo’s criteria and act as qubits for

the first practical quantum computer. Some prominent systems include supercon-

ducting circuits, ions or atoms, and nitrogen-vacancy (NV) centers. Superconducting

systems utilize superconducting Josephson junction circuits, where the state of the

current in the circuit acts as a quantum two-level system. By applying microwaves

to these circuits, experimenters can manipulate circuit states and couple the states of

adjacent qubits [MLM+19]. These systems have received significant press attention

over the past year, largely due to superconducting circuit research by large corpo-

rations. In early 2019, Google announced the design of a 72-qubit superconducting
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processor, while later in the year, claiming "quantum supremacy" after an experi-

mental demonstration on one of their 53-qubit processors [TQ18, AAB+19]. They

claimed to have sampled in approximately 200 seconds what would classically take

10,000 years to compute.

Another promising candidate for universal quantum computation are trapped ions.

These systems use electromagnetic fields to confine an ion in a harmonic trap, then

use the quantized motional state and the internal electronic state of the particle as

qubits. Experimenters then apply microwaves or lasers to excite the internal energy

state of the ion, as well as add or detract motional quanta from the ion. By cou-

pling the internal state to the motional state of the ion, it is possible to interact

neighboring ions via the Coulomb force and couple their internal spin states through

their collective motion. Trapped ions have also appeared in commercial research

endeavors, exemplified by the recent start-up IonQ. This company has touted their

fully-connected 11-qubit quantum computer using ytterbium ions, with single-qubit

and two-qubit gate fidelities of 99.5% and 97.5%, respectively [WBD+19].

1.5 Outlook

This thesis research looks to contribute to experimental trapped-ion quantum com-

puting efforts by combining existing methods of ion motion control and spectroscopy

into a novel implementation of measuring motional coherence times through a free-

precession sequence, which will be defined in detail in Chapter 4. We perform quan-

tum operations by applying optical laser beams to a strontium-88+ ion trapped above

a surface electrode trap in an ultrahigh vacuum, cryogenic trapping chamber. In

Chapter 2, we describe the physics behind ion trapping and how laser beams applied

to an ion can perform quantum operations on a qubit. We also discuss how ion

traps meet the hardware requirements for quantum computing as discussed earlier

in Section 1.3. In Chapter 3, we delve into the experimental hardware details of our

ion trapping apparatus, such as our cryocooler design, trap design, laser organization,

and methods of ion state detection. In Chapter 4, we discuss the forms of decoherence

28



relevant to a trapped ion and show how we can mathematically represent these pro-

cesses and their effects on trapped ion motional states. In this chapter, we also detail

the specific free-precession sequence that we will use to measure trapped ion motional

coherence. This chpater concludes with analytical models and numerical simulations

to predict the results of our experimental free precession sequences. In Chapter 5,

we first describe how we implement the free precession sequence in our trapped ion

system. We then conclude the chapter with the measured results of our experiments

and calculate a motional decoherence rate from those measurements using the models

developed in the previous chapter. Finally, we conclude with Chapter 6, where we

discuss the implications of our measured decoherence rate for our specific system, as

well as how our measurements can apply to other systems and contribute to trapped

ion quantum computing research at large. We also include a section on improvements

that could be made to our experimental sequence to yield more accurate results and

to compare the results of our sequence with those of other methods.
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Chapter 2

Ion Trapping

Trapped ions have emerged as one of the prominent qubit platforms in research today.

By choosing ions with internal energy level spacings close to the energies of microwaves

and laser beams, researchers have made notable strides in turning systems of ions into

addressable two-level systems for quantum computation. The origins of this method

date back to Cirac and Zoller’s 1995 paper [CZ95]. They presented the first physically

realizable method for trapped ion computation: addressing a linear chain of cold

trapped ions with laser beams and coupling them through collective motional modes.

Their justification for this method also satisfied multiple of DiVincenzo’s criteria

[CZ95]. First, trapped ions hold some of the greatest scalability promise due to the

similarity of all ions. Serving as the fundamental building blocks of matter, all atomic

ions of the same species have the same energy level structure; it is impossible to have

manufacturing defects in an ion. Second, current research demonstrates the feasibility

of reliably initializing and measuring trapped ion qubits, satisfying the second and

fifth criteria. Preparation and readout fidelities above 99.9% have been achieved by

multiple experiments [HAB+14, MSW+08]. Third, any arbitrary quantum gate can

be theoretically applied to groups of ions. It has been proven that any operation can

be decomposed into 2-qubit CNOT gates and single qubit rotations, both of which

have been demonstrated experimentally [SW95]. Lastly, ions display potential for

negligible decoherence during computation. Ion levels with long lifetimes relative to

operation times minimize the possibility of spontaneous emission during operations,
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while existing research looks to improve experimental control parameters, like laser

and magnetic field stability, that can affect ion coherence times [HCW+13].

In this chapter, we begin in Section 2.1 with a discussion of the Paul trap, the basic

mechanism through which we trap ions using electric fields. In Section 2.2, we derive

the Hamiltonian describing the interaction between the ion’s internal energy levels,

motional states, and an externally applied laser beam. In Section 2.3, we discuss the

types of transitions used in trapped ion quantum computing to prepare the ion and

perform quantum operations. In Section 2.4, we list the specific transitions and laser

wavelengths required to address our specific ion, strontium-88. Finally, we conclude

in Section 2.5 with the practical advantages and disadvantages of using trapped ions

for quantum computation and compare our cryogenic systems with room temperature

systems.

2.1 Paul Trap

Precisely trapping and controlling the motion of a single ion requires an experimen-

tal apparatus rarely seen in conventional computing. This piece of technology is the

Paul trap, which earned its inventor, Wolfgang Paul, the 1989 Nobel Prize in Physics

[Pau90]. This technology uses static (DC) and sinusoidally time-variant (RF) electric

fields to create a confining harmonic potential well that can hold charged particles,

like ions, in three dimensions. One may initially think that applying DC fields in all

three directions would be sufficient to confine the ion in said directions. However,

Earnshaw’s Theorem, an important consequence of Maxwell’s equations of electro-

magnetism, forbids this. Consider an ion at position (𝑥, 𝑦, 𝑧) in a static harmonic

potential characterized by

Φ = Φ0

(︀
𝛼𝑥2 + 𝛽𝑦2 + 𝛾𝑧2

)︀
(2.1)

Combining this potential with Laplace’s Equation ∇2Φ = 0 requires either one or

two of the three coefficients 𝛼, 𝛽, 𝛾 to be negative. Therefore, at least one dimension

will be "anti-trapping," eliminating the possibility of fixing the electric field in all
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three dimensions [Bro07]. Paul’s solution to this problem involved fixing a static po-

tential in one dimension while periodically varying the potential in the remaining two

dimensions out of phase, creating a quasi-static three-dimensional quadrupole field

(Figure 2-1(a)) [Pau90]. The orientation of this harmonic saddle potential alternates

between the axes at the applied RF frequency Ω𝑟 (Figure 2-1(b)) [Nie15].

(a) (b)

Figure 2-1: Paul trap in two dimensions. (a) Equipotential lines of the quadrupole
field created by the aforementioned electrodes, (b) contour plot depicting the strength
and sign of the quadrupole field in two dimensions, with the ion depicted at the center.
Figures taken from [Pau90].

To physically generate such a potential, a configuration of four segmented linear

electrode rods can be organized as in Figure 2-2(a), with applied RF voltages 𝑉 (𝑡) =

𝑉0 cos (Ω𝑟𝑡).

(a) (b)

Figure 2-2: Linear Paul trap electrode configurations. (a): Three-dimensional linear
Paul trap created with segmented electrode rods, (b): Electrodes from the 3-D Paul
trap are rearranged onto a planar surface trap. Figures taken from [SSWH11].

The ion’s motion in this x-y quadrupole potential is described by a set of differen-

tial equation’s outlined in Paul’s original publication [Pau90]. A key result of these
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equations is the appearance of a stability parameter 𝑄, defined as 𝑄 = 2𝑞𝑉0/(𝑚𝑟
2Ω2

𝑟),

where 𝑞 is the ion charge, 𝑚 is the ion mass, and 𝑟 is the distance between the center

of the trap and the electrodes. 𝑄 quantifies whether the ion will remain trapped in

the 𝑥 and 𝑦 directions; that is, it will effectively see a static quadrupole potential

because it will not move quickly enough out of the anti-trapping axis before that

axis changes into a trapping axis due to the fluctuating potential. For the electrode

geometry shown, stable trapping is possible when we have 0 < 𝑄 < 0.908 [Nie15].

The ion will oscillate in the 𝑥 and 𝑦 directions with a characteristic radial frequency

𝜔𝑟 = 𝑞Ω𝑟/(2
√

2). As a result, we can then approximate the ion’s motion near the

center of the trap as movement in a static, two-dimension harmonic trap, where the

trap pseudopotential is given by

𝑈𝑟 =
𝑞2𝑉 2

0

4𝑚𝑟4Ω2
𝑟

(︀
𝑥2 + 𝑦2

)︀
(2.2)

To trap the ion in the remaining third dimension, along the 𝑧-axis parallel to the

rods, one must apply static DC potentials to the electrode segments labeled "Static

Voltage" in Figure 2-2(a). The configuration and number of electrode segments will

determine the ion’s location and movement in this "axial" direction. Similar to the

radial frequency, the ion’s motion along the z-axis at low energies is quantized in

terms of an axial frequency 𝜔𝑧 which is typically less than 𝜔𝑟 [WMI+98]. For a

detailed derivation of other trap parameters like spacing for multiple trapped ions

and the complete pseudo-potential derivation, see [ABLW11].

While the electrode rod configuration allows for comparatively simple control of

small numbers of ions, it may face challenges when sizing up to larger-scale quantum

computation. The three-dimensional rod construction would become rather cumber-

some for hundreds to thousands of ions. Individually addressing the ions with laser

beams also presents challenges. Some systems achieve this with individual beams fo-

cused on each ion [WBD+19], but again, in the hundreds-to-thousands of qubit range,

this would require many beams with precise alignment. Additionally, it would remain

difficult to implement two-qubit gates between arbitrary ion pairs for such large chains
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using only the Coulomb interaction, as these arbitrary gates would require controlling

the collective motion of the entire chain, not only the ions of interest. However, an

attractive alternative to this construction eliminates these problems with a scalable

design. One can imagine flattening and laying out the 3D rods in Figure 2-2(a) to

create the 2D planar surface-electrode trap design in Figure 2-2(b) [CBB+05]. For ap-

propriately sized planar electrodes, the planar surface electrode trap in Figure 2-2(b)

generates the same effective potential near the RF null (where the pseudopotential is

zero) as the rod configuration. This surface electrode configuration possesses numer-

ous advantages over the prior design. First, a flat structure allows for utilization of

existing microfabrication and lithography techniques used for classical electronic cir-

cuitry chips [KPM+05]. Second, surface electrode trap chips allow for trapping over

a variety of electrode geometries [ABLW11]. Existing research suggests that surface

electrode traps could solve the aforementioned scalability issues of linear chains. One

possibility includes manipulating the segmented electrode voltages to shuttle the ion

into different regions to be addressed by lasers, coupled to other ions, or stored, with

minimal motional excitation[BKM16, KLS+20]. Surface electrode traps may also fea-

ture integrated photonics, which route laser beams using optical waveguides beneath

the electrodes up through grating couplers, which focus the beams into the trapping

regions [MZMH19, NSSA+20]. This avoids the challenge of generating and focusing

hundreds to thousands of free space beams on individual ions in a single chain.

2.2 Ion-Laser Interactions

A basic introduction into atomic physics is necessary to properly describe the dy-

namics of our ion-laser system, which ultimately describes how qubit states evolve

in time as we apply quantum gates. A single qubit is modeled as a two-level system

(the ion’s 2 internal energy levels) coupled to a harmonic oscillator (the ion’s motion

in the Paul trap) through ion-laser interactions in the following Hamiltonian [Nie15]:

𝐻 = 𝐻𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 +𝐻𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 +𝐻𝑙𝑎𝑠𝑒𝑟 (2.3)
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For this spin-1
2

system with ground and excited basis states |𝑔⟩ and |𝑒⟩, the internal

Hamiltonian is given by:

𝐻𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 =
~𝜔𝑒

2
𝜎𝑧 (2.4)

where ~𝜔𝑒 is the energy of the ion transition, expressed in terms of angular frequency

𝜔𝑒, and 𝜎𝑧 is the conventional Pauli-z spin operator. For low motional energy states,

the ion’s motion is quantized as discussed above, and since we will be mostly concerned

about motional excitations in the axial direction, we can define the relevant terms in

the second Hamiltonian as:

𝐻𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 ≃ ~𝜔𝑧

(︂
𝑛𝑧 +

1

2

)︂
(2.5)

𝑛𝑧 is what will hereafter be referred to as the motional quantum number of the ion.

The most complicated term in the total Hamiltonian is arguably the final component,

𝐻𝑙𝑎𝑠𝑒𝑟. For a beam pointing along the trap axis, hence pointing in the 𝑧-direction,

with wave number 𝑘 and phase 𝜑, the interaction is fully described by

𝐻𝑙𝑎𝑠𝑒𝑟 =
1

2
~Ω0

(︀
𝜎+ + 𝜎−)︀ (︀𝑒𝑖(𝑘𝑧−𝜔𝑡+𝜑) + 𝑒−𝑖(𝑘𝑧−𝜔𝑡+𝜑)

)︀
(2.6)

using Pauli operators, 𝜎± = (𝜎𝑥 ± 𝑖𝜎𝑦) /
√

2, and the laser-induced Rabi frequency,

Ω0, which describes the coupling strength between the oscillating electromagnetic field

and the electric dipole moment of the two ion states [Nie15, Sta04]. By transforming

from this Schrödinger picture Hamiltonian to the Heisenberg picture Hamiltonian in

the frame of the ion, then applying the rotating wave approximation where we neglect

high-frequency terms, we have a more explanatory Hamiltonian given by:

𝐻𝑙𝑎𝑠𝑒𝑟 =
1

2
~Ω0

(︁
𝜎+𝑒𝑖𝜂(𝑎̃+𝑎̃†)𝑒−𝑖Δ𝑡

+ 𝜎−𝑒−𝑖𝜂(𝑎̃+𝑎̃†)𝑒𝑖Δ𝑡
)︁

(2.7)

where we utilize the Heisenberg creation and annhiliation operators with 𝑎̃ and 𝑎̃†,

where 𝑎̃ = 𝑎𝑒−𝑖𝜔𝑧𝑡, and introduce the Lamb-Dicke parameter 𝜂 = 𝑘𝑥0 = 𝑘
√︁

~
2𝑚𝜔𝑧

.

𝑥0 describes the spatial extent of the ion’s ground state wavefunction. The detun-
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ing, ∆ = 𝜔 − 𝜔𝑒, between the laser frequency 𝜔 and ion transition frequency 𝜔𝑒 is

particularly important, as it determines the coupling between the ion’s internal and

motional states. Previously, the motional state, which we will denote as |𝑛⟩, and in-

ternal state, either |𝑔⟩ or |𝑒⟩, have been discussed as two distinct, non-interacting ion

characteristics. However, when the detuning is approximately an integer multiple of

the trap frequency 𝜔𝑧, the laser will drive the transition between a specific motional

and internal state. For example, given a ground state ion with motional state |𝑛⟩,

written as |𝑔, 𝑛⟩, applying a laser with ∆ ≈ (𝑚− 𝑛)𝜔𝑧, will couple the said ground

state with the excited state |𝑒,𝑚⟩ [Nie15]. This excited state has (𝑚− 𝑛) additional

motional quanta than the initial state. The motional states under question affect the

Rabi frequency of the transition, such that the the Rabi frequency for |𝑔, 𝑛⟩ ↔ |𝑒,𝑚⟩

is

Ω𝑛,𝑚 = Ω0

⃒⃒⃒
⟨𝑛| 𝑒𝑖𝜂(𝑎̃+𝑎̃†) |𝑚⟩

⃒⃒⃒
(2.8)

Our particular transitions of interest are 𝑛↔ 𝑛 (the "carrier" transition), 𝑛↔ 𝑛− 1

(the "red sideband" transition), and 𝑛 ↔ 𝑛 + 1 (the "blue sideband"), with the

sideband names coming from the red- or blue-shifted transition frequencies relative to

the internal carrier transition frequency 𝜔𝑒. These transitions are depicted graphically

in Figure 2-3. In the Lamb-Dicke limit of low motional quanta, we have [Nie15]:

Ω𝑛,𝑛 =
(︀
1 − 𝜂2𝑛

)︀
Ω0 (2.9a)

Ω𝑛,𝑛−1 = 𝜂
√
𝑛Ω0 (2.9b)

Ω𝑛,𝑛+1 = 𝜂
√
𝑛+ 1Ω0 (2.9c)

Solving the Hamiltonian in equation (2.7) gives second-order differential equations

for the occupation probabilities of the ground state |𝑔, 𝑛⟩ and excited state |𝑒,𝑚⟩ as

a function of laser detuning and interaction time with the laser (i.e. the duration of
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Figure 2-3: Relevant Ion Transitions. The carrier, red sideband, and blue sideband
transitions for the initial state |𝑔, 𝑛⟩ are depicted between the ground and excited
states. Figure adapted from [Nie15].

an applied laser pulse). The excited state occupation probability is given by [Sta04]:

𝑃𝑒,𝑛→𝑚 (𝑡) =
Ω2

𝑛,𝑚

Ω2
𝑛,𝑚 + ∆2

sin2

(︃√︀
Ω2

𝑛,𝑚 + ∆2𝑡

2

)︃
(2.10)

One can see that for a fixed laser strength and frequency, the excited state population

will oscillate sinusoidally from 0 to Ω2
𝑛,𝑚

Ω2
𝑛,𝑚+Δ2 with time. Maximal excitation occurs

with zero detuning and an interaction time such that Ω𝑛,𝑚𝑡 = 𝜋. Consequently, we

denote this time 𝑡 as the 𝜋-time. Analogously, applying a pulse with a duration such

that Ω𝑛,𝑚𝑡 = 𝜋/2 puts a ground state ion into an equal superposition of the two

states |𝑔, 𝑛⟩ and |𝑒,𝑚⟩. We call this a 𝜋/2-pulse. These pulses can be conveniently

represented as rotations around the Bloch sphere in Figure 2-4. While the phase 𝜑

of the laser is not directly reflected in the excitated population of equation (2.10),

the excited and ground states will accrue a relative phase difference, as reflected in

2-4(c).
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(a) 𝜋 pulse (b) 𝜋/2-pulse (c) With non-zero phase.

Figure 2-4: Bloch sphere rotations for various pulse durations.

2.3 Ion State Preparation and Quantum Operations

While the development of the surface electrode trap is a remarkable feat of engi-

neering in itself, there are multiple other state preparation techniques required for

quantum operations that go beyond simply trapping the ion. In solving our ion-laser

Hamiltonian, we assumed the ion was in a low motional state. Stating this more

precisely, the ion must be in the Lamb-Dicke regime, characterized by the aforemen-

tioned Lamb-Dicke parameter 𝜂. For an ion with an average motional occupation

number 𝑛̄, the Lamb-Dicke regime is given by 𝜂2 (2𝑛̄+ 1) ≪ 1 [Nie15]. To satisfy this

inequality for our system, which has 𝜂 = 0.06125, our 𝑛̄ needs to be on the order of

1. In the absence of any Doppler cooling or sideband cooling, a single ion trapped in

a surface electrode trap will possess motional quanta orders of magnitude larger than

this limit, likely enough to overcome the harmonic barrier of the trap potential.

To initially cool the ion, Doppler cooling is performed. For an ion with a thermal

probability distribution of energies, net cooling will occur in the presence of incoming

red-detuned laser light. This means the wavelength of the light is slightly above that

of the ion’s internal resonant transition wavelength. As the ion moves against this

radiation, it will view the incoming radiation as Doppler-shifted onto resonance, lead-
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ing to absorption. Due to conservation of momentum, the ion consequently receives

a momentum impulse in the direction opposite its motion. With each photon ab-

sorption, the ion will cool down until reaching its "Doppler temperature" [WI79]. At

this temperature, 𝑇𝐷 = ~Γ
2𝑘𝐵

, where Γ is the ion decay parameter, the Doppler cooling

rate reaches equilibrium from the heating rate from spontaneous emission and other

absorption processes [Sta04]. Below the Doppler limit, an alternate cooling technique

Figure 2-5: Doppler cooling in one dimension, for an ion with resonant transition
frequency 𝜔𝑒𝑔 and a laser at frequency 𝜔𝐿. Figure taken from [Sta04].

known as resolved sideband cooling is employed. This technique is depicted graph-

ically in Figure 2-6. A ground state ion |𝑔⟩ with motional occupation number 𝑛 is

driven to the excited state energy level |𝑒⟩, but with one less motional quanta. The

excited ion will then decay back to the ground state, and the process is repeated until

𝑛 = 0 [Pou11]. This is the aforementioned red sideband transition. By detuning the

drive laser by the motional frequency, an incoming photon can only drive this side-

band transition since it requires a lower energy than the carrier transition from 𝑛 to

𝑛. This cooling process is possible below the Doppler temperature because sideband

cooling typically utilizes a quadrupole or Raman transition with a much narrower

linewidth than the Doppler cooling transition. With a narrow linewidth, one can re-

solve the sideband frequencies and cool on them accordingly [Pou11]. It is important

to note that the ion must be in the aforementioned Lamb-Dicke regime for sideband

cooling to work. A common, though by no means universal, fiducial state for most

quantum operations and algorithms is the motional and internal ground state |𝑔, 0⟩.

This is the fiducial state used in all experiments and operations for this work.
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Figure 2-6: Schematic of resolved sideband cooling to the motional ground state.
Figure taken from [Pou11].

2.4 The Strontium-88 Ion

The atomic level structure of the 88Sr+ ion (hereafter referred to as just strontium,

or Sr) determines number of lasers and preparatory operations required to ultimately

drive transitions between qubit states, whether those states are motional or internal

states. The initial step in preparing strontium is ionizing it. Strontium ions are not

readily available on their own; they must be prepared from initially neutral strontium

atoms. As depicted in Figure 2-7, a two-step photoionization process can achieve this

end. An outer electron can first be excited from its ground 1S0 level to the 1P1 level

by applying a 461-nm laser. Then, by applying a 405-nm laser, the ion is again

excited to the 1D2 level. This final level is auto-ionizing, meaning that the electron

possesses enough energy to escape the atom without any additional applied excitation

[VCLB06]. Simultaneously applying 405 and 461-nm light with overlapping beams

ensures that the second transition can occur within the lifetime of the 1P1 state. The

broad linewidth of both transitions eliminates the need for narrow linewidth ionization

laser beams [Bro07]. Strontium possesses an alkali-like level structure with 4 basic

transitions required for state preparation, operations, and measurement. All of these

wavelengths and linewidths can be achieved with diode lasers [Bro07]. Other tran-

sition schemes are possible, requiring alternative laser wavelengths; however, these 4

are some of the most prolific strontium operating wavelengths.

The first two relevant transitions are shown in 2-8(a). After the photoionization

scheme discussed above, the outermost election is in the 2S1/2 sublevel. This electron

can be driven to the 2P1/2 sublevel with a 422 nm laser. The electron will then either
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Figure 2-7: Photoionization scheme for ionizing neutral strontium atoms. Figure
taken from [VCLB06].

decay back to the 2S1/2 level and emit a 422 nm photon or alternatively to the 2D3/2.

In the event of this alternate decay, a "repump" 1092 nm laser is applied to drive

the electron back to 2P1/2. After applying the 422 laser to an unknown ion state,

a re-emitted 422 photon indicates that the ion is in the 2S1/2, while the lack of an

emitted photon indicates an excited state. The broad linewidth of this 422 transition

and short lifetime of 7.9 ns also makes it suitable for Doppler cooling by alternatively

applying a slightly detuned 422 nm beam.

The other two relevant transitions are used to drive quantum operations and side-

band cooling on the ion carrier transition, as shown in Figure 2-8(b). The carrier

transition used for operations and sideband cooling is the 674 nm quadrupole tran-

sition from 2S1/2 to 2D5/2, where 2S1/2 is our ground state, often referred to as |𝑔⟩

or |0⟩, and 2D5/2 is our excited state, |𝑒⟩ or |1⟩. The carrier transition possesses a

narrower linewidth than any of the previous transitions at 0.42 Hz, with an excited

state lifetime of 390 ms [Bro07]. Although driving this quadrupole transition requires

a higher laser power than the other dipole transitions, the long lifetime of the excited

state ensures quantum operations can be performed in the time before the excited

state decays. Single qubit operations are often on the order of microseconds (𝜇s),

while two qubit gates may last between 10-100 𝜇s [BCMS19]. Lastly, to prevent the

ion from remaining shelved in the excited state, which would otherwise require us to

wait for the state to decay before performing a new measurement or initialization, a

1033 nm quench transition is used to drive the intermediary 2D5/2 to 2P3/2 transition,
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after which electron will quickly decay back to the 2S1/2 ground state. From there,

the ion can be cooled back to the motional ground state, leaving it initialized for a

new operation and measurement [Bro07].

(a) (b)

Figure 2-8: Strontium-88 ion level structure and relevant ion operation transitions.
(a): Readout and Doppler cooling, (b): Quantum operations and sideband cooling.
Figure taken from [Bro07].

2.5 Practical Advantages and Disadvantages

Each quantum computing platform has unique experimental requirements which de-

termine the equipment and level of control required to achieve the requisite conditions

for quantum computing. All systems have their own benefits and drawbacks, and the

choice between platforms is a complex one involving scalability, cost, size, and more.

As fundamental building blocks of matter, trapped ions possess a few key prop-

erties that are ideal for qubits. As discussed earlier, the lifetime of the quadrupole

transition makes it suitable for 𝜇s-timescale operations. Just as in DiVincenzo’s cri-

terion, many trapped ion systems have demonstrated coherence times longer than

these operation times and others are making progress towards the times required for

fault-tolerant quantum computation [BXN+17]. The uniformity of atoms is also valu-

able. All strontium ions of the same isotope, regardless of their number, location, or

implementation apparatus, possess the same internal structure, as they are funda-
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mental units of matter. While the energies of their fine and hyperfine splittings can

depend on external factors like an applied magnetic field, such dependencies are well-

quantified. This uniformity eliminates the challenges associated with manufacturing

qubits.

The primary drawback to using a basic unit of matter is the meticulous level of

control required. Isolating a single atom from any interactions with its environment

is no small task. In order to utilize an atom’s quantized motional state, it must be

kept at low temperatures and avoid collision with ambient particles. Background

collisions can excite the ion’s motional mode to higher, non-thermal states which are

unacceptably high for computation [CS14]. Consequently, all trapped ion systems

require ultrahigh vacuum (UHV) reaching approximately 10−9 Torr. While these

pressures can be reached at room temperature, 295 K, using cryogenics to cool the

vacuum chamber to around 4 K enables the system to reach UHV much more quickly,

often around 12 hours. Other advantages of cryogenic systems include reduced elec-

trical noise and ion heating, as well as the ability to use superconducting materials.

The primary drawbacks to a cryogenic trap are their additional cost and mechanical

overhead, controlling of dissipated heat, vibrations from a closed-cycle cryostat, and

incompatibility with standard high-temperature ion sources [ASA+09].
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Chapter 3

Experimental Apparatus

This chapter outlines the various mechanical and electrical components used to trap

and control strontium ions. An overview of our design was originally presented in

2012 by [SKC12]. First, we describe the cryogenic UHV components of the system in

Section 3.1. Next, we describe the various components within the UHV trap chamber

in Section 3.2, which includes the surface electrode trap chip, which we describe in-

depth in Section 3.3. We then describe our process of loading ions to the trap chip

using a two-dimensional magneto-optical trap (MOT) in Section 3.4. We outline the

layout of our laser beams, generated and focused external to the trap chamber, in

Section 3.5. Lastly, we describe our process of imaging the ion and determining its

internal state in Section 3.6.

3.1 Cryogenics and Vacuum

A hallmark of this trapping apparatus is the closed-cycle helium cryocooler, the Model

SHI-4XG-15-UHV refrigerator from Janis Research Systems. This cooling system

enables the trapping chamber to reach 4 K under UHV with low vibration at the

sample location. Based on the Gifford-McMahon thermodynamic cooling cycle, the

compression and expansion of helium gas in a closed cycle loop provides cooling near

the trapping location. The system features three primary components that work in

unison to achieve this task:
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1. The Sumitomo Compressor. This component pumps high-pressure helium to

the cold head and receives returning low-pressure helium.

2. Sumitomo RDK-415D2 Cold Head. Incoming compressed helium expands and

cools in the cold head, then exits through a low-pressure line.

3. Exhange Gas Chamber. A chamber containing a helium exchange gas, which

is in thermal contact with the cold head heat exchanger and the exterior of the

UHV ion trap chamber.

Although the pumping of helium at a characteristic 1.2 Hz creates noticeable vibra-

tions throughout the cold head, the use of the helium exchange gas, contained with

a flexible rubber bellows, minimizes mechanical coupling to the trap chamber.

3.2 UHV Trap Chamber

The ion trap is contained in an decagonal UHV chamber with 8 indium-sealed windows

allowing for optical addressing of the qubit with externally-generated free space laser

beams. To go from room temperature and pressure to approximately 4 K and 10−9

Torr in the vicinity of the trap, multiple vacuum pumping and cooling procedures

are taken. Once the chamber is closed and sealed with a copper gasket ring, high

vacuum of 10−5 Torr is achieved through a combination of turbo-molecular pumping

and an ion pump. At that point, the helium cryostat discussed above is turned on,

in combination with the prior vacuum pumps, leading to crypopumping that brings

the chamber to UHV. Cryopumping is the process of using cryogenic temperatures

to condense any remaining gases to the coldest area of the chamber, the region in

contact with the exchange gas, thereby decreasing the pressure at the more distant

ion trap location. UHV is achieved within 24 hours of cryopumping, eliminating the

lengthy bakeout process required for room temperature vacuum systems.

Within the chamber, the outermost layer of material encompassing the ion trap

is the 50 K copper radiation shield. As indicated in the Figure 3-1, it attaches to

the 50 K stage of the cold stage, keeping this shield at approximately 50 K. Its
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Figure 3-1: Schematic cross-section of UHV chamber containing the ion trap, adapted
from the original design in [SKC12]. Not to scale. The Sumitomo compressor is not
displayed, but would be located directly above the "Cryocooler support", while the
Cold Head and Exchange gas chamber would be located on the inner, non-UHV
interior of the regions labeled "50 K Stage" and "Cold stage". The two magneto-
optical trap (MOT) beams and push beam are orthogonal.

primary purpose is to shield the trapping region from thermal radiation emitted by

the chamber outer walls. It also contains a hollow cylidrical component housing a

helical RF resonator used to step up the RF trap voltage sent into the chamber from

the non-UHV room temperature electronics. BK7 glass windows through the shield

enable optical access to the ion and imaging of ion fluorescence, while small holes

located primarily near the top of the shield enable electrical feedthroughs to supply

trapping voltages.

Within the radiation shield, the cold stage, a copper block, serves as the last

component in thermal contact with the external exchange gas chamber, making it
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the coolest region in the chamber at 4K. This block provides pathways for external

electronics to pass from outside the chamber to the trap region. These electronics

include DC and RF voltage wires, connections to the trap chip temperature diode,

and resistive heater wires to heat the trap.

Figure 3-2: Schematic cross-section of the ion trap tower, originally presented in
[SKC12]. This component can be found in the larger UHV chamber on Figure 3-1.
Not to scale.

Attached to the cold stage is the final electronic and mechanical component before

reaching the ion trap, the tower. A schematic cross-section is shown in Figure 3-2..

The tower serves as a mount for the chip while containing all the final electronic

components and necessary connections to send voltages to the chip, heat the chip,

and measure the chip temperature. It also contains a set of RC low-pass filter boards

on its sides through which all DC voltages pass before going to the trap. A copper

wire from the outer helical resonator passes directly to the trap. On the bottom face

of the tower, there is a 1-mm thick alumina interposer with patterned gold traces.

The DC voltages for each electrode are sent to a single gold trace, then these traces

are connected to their respective trap electrodes via individual gold wirebonds. A

microscope image of gold wirebonds connecting DC traces on the side of the tower

with those on the bottom face is shown in Figure 3-3. Figure 3-4 shows the bottom of

the trap, where a microscope image of the trap is surrounded by a schematic drawing
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of the gold traces and temperature diode on the interposer. While the trap chip itself

is attached with silver paint to the interposer, the interposer is thermally isolated

from the rest of the tower through macor rod attachments. When the chamber is

opened, the entire tower is disconnected from the cold stage and removed from the

chamber for trap removal or attachment.

Figure 3-3: Microscope image of the tower from the side, showing gold wirebonds
connecting DC voltage traces on the tower side to those on the bottom face of the
tower (image is inverted; the bottom of the tower is held upwards in this image).

3.3 Surface-Electrode Trap

The surface electrode-trap is arguably the key innovation in this ion trap setup that

promises scalability for replicable, large-scale quantum computers. Beyond the basic

idea of having segmented electrodes etched on a conducting, two-dimensional plane,

various trap designs and materials have been proposed to meet different experimental

needs. Materials such as gold and niobium are often used for the outer layer of the

trap, while some traps organize their electrodes to enable two-dimensional trapping

and shuttling [CS14, BMCS16, KLS+20]. Our trap is composed of a 2 𝜇m sputtered

niobium layer on top of a 430 𝜇m sapphire substrate. The electrode patterning is

achieved via optical lithography at our in-house MIT Lincoln Laboratory Microelec-

tronics Laboratory. Prior to mounting the trap on the tower, we remove excess dust
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Figure 3-4: Microscope image of ion trap chip surrounded by graphical depictions of
the interposer layer, with interposer electrodes (in yellow) and wirebonds from the
interposer to the trap and between trap electrodes (in pink).

or particulates through a two-step acetone and isopropanol cleaning process.

As a linear trap, this trap chip displays one of the simpler electrode geometries of

existing surface-electrode traps today. While a microscope image of the entire chip

is shown in Figure 3-4, a detailed drawing of the electrodes at the center of the trap,

near the trapping region, is shown in Figure 3-5. While there are a total of 20 DC

electrodes on the trap, some electrodes are wirebonded together in a group such that

they all receive the same voltage. These groups are color-coded in Figure 3-5. As a

result, we only send 8 different DC voltages for these 8 electrode groups. 18 of the

DC electrodes are oriented perpendicular to the trap axis, while two other electrodes,

displayed in Figure 3-5 as groups 4 and 5, run parallel to the trap axis, along with

the RF trapping electrodes. Given a desired axial frequency and ion position, a

boundary-element simulation calculates the requisite voltages to be applied to the

electrode groups, typically ranging anywhere from approximately ±0.5 to ±26 volts.
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Figure 3-5: Graphical rendering of the electrode layout in the vicinity of the trapping
location (center of Figure 3-4), not to scale. The RF electrode and the 8 DC groups
(sets of individual electrodes all receiving the same voltage) are color-coded.

This trap holds the ion about 50 𝜇m from its surface. To compensate for stray

fields and micromotion excitations, we can add small offsets to our standard trapping

voltages to shift the ion in three dimensions from sub-micrometer to hundreds of

micrometer distances.

3.4 Ion Loading via 2D MOT

We use a 2-dimensional magneto-optical trap (MOT) to trap and cool gaseous stron-

tium atoms before directing them towards the trap. This trapping technique is prolific

in atomic physics, first presented in 1987 in [RPC+87]. A MOT uses radiation pressure

to trap and cool a cloud of neutral atoms in two dimensions. Static magnets (labeled

"External MOT magnets" in Figure 3-1) are used to generate spatially-varying Zee-

man splitting, in a trapping region. By heating a block of neutral strontium-88, we

fill the MOT chamber with a gas of hot strontium atoms. We then send two spatially

broad, circularly polarized 461 nm trapping beams in orthogonal directions such that

they cross paths in the center of the trapping region, ideally where the magnetic field
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is zero. These MOT beams are shown conceptually in Figure 3-1. As the hot atoms

move away from the center of this trapping region, the magnetic field strength in-

creases, and the increased Zeeman shift increases the coupling strength between their

∆𝑚 = ±1 transitions and the MOT beams, causing them to absorb incoming MOT

beam photons and receive a momentum kick back to the trap center. This traps the

atoms in the two axes of the beams.

A tightly focused 461 nm push beam is sent orthogonally to the two broad MOT

beams, providing a momentum kick that pushes the cold atoms along the remaining

free axis through a differential pumping tube. This differential pumping tube main-

tains the UHV in the ion chamber despite the connection to the MOT chamber filled

with hot atoms. The push beam passes 50 𝜇m below the center of the trap chip,

thereby pushing strontium atoms to the center of the trapping potential. We finally

direct an overlapped 405/461 nm beam along a different axis to the same location

above the ion trap through one of the UHV chamber windows. The intersection of

the 461 push beam and the 405/461 beam creates a region where neutral atoms prob-

abilistically undergo the 2-step photoionizaton process discussed earlier. If the beams

are properly aligned, one of these newly created ions will be captured in the trapping

potential above the chip.

3.5 Laser Organization

All laser beams are generated external to the UHV chamber, and table-mounted

optics are used to focus the beams through the chamber windows into the trap-

ping region. All beams were generated from commercial continuous-wavelength diode

lasers. Acousto-optic modulators (AOMs) placed in the beam path served as the

primary mechanism for switching the beams on and off and precielsely controlling

laser frequencies. To achieve higher output powers on the 461 nm MOT and push

beams, a 922 nm master output from a tapered amplifier is frequency doubled before

being passed to a 461 nm slave diode laser. This configuration generated a total of

approximately 45 mW of power, which was more than adequate for all three beams.
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The 922, 1033, and 422 nm diode lasers were frequency-stabilized by locking an

852 nm laser to a cesium saturated absorption signal, then using the locked 852

laser to stabilize a Fabry Perot transfer cavity. This cavity would then serve as a

reference for the aforementioned operation lasers. Due to the stability of the 405 and

1092 nm lasers, as well as the broad linewidths allowed for their respective strontium

transitions, these lasers were not locked.

Due to the particular requirements of the quadrupole S-to-D carrier transition,

additional components were required for the 674 laser. The carrier transition requires

both a narrow linewidth and high power beam to achieve acceptable Rabi coupling

frequencies and effectively sideband cool. The output of a single diode laser would be

neither narrow or powerful enough to meet the 674 power distribution needs of the

multiple ion trap experiments within the laboratory, leading to additional frequency

locking and amplification. The 674 master output is first stabilized to an ultralow

expansion (ULE) reference cavity. This cavity generates an extremely stable, narrow

linewidth reference frequency used to lock our master 674 light, which injects a first

slave laser, whose output injects a second slave laser. The second slave output then

passes through a Toptica BoosTA tapered amplifier, delivering approximately 10 mW

of power to the optical table.

Prior to reaching the trap chamber, the 422, 1033, and 674 lasers pass through a

double-pass "cat’s eye" AOM configuration, depicted graphically in Figure 3-6. This

provides fine amplitude control and frequency control to the sub-MHz level. The ad-

vantage of a double-pass over a single-pass setup is that the double-pass output is sent

in the same spatial direction regardless of the frequency by which it is shifted. The

single-pass AOM output is shifted relative to the incoming by by an angle propor-

tional to the frequency shift. The configuration includes either an Isomet or Brimrose

AOM, a focusing lens, a quarter waveplate, an iris, and a mirror. Linearly-polarized

input light first passes through the AOM and the lens to broaden the output, and

the first-order output beam is isolated using the iris. This frequency shifted beam

then passes through the quarter waveplate and reflects back off the mirror, follows the

same path back to the lens, where it is focused into the AOM for a second frequency
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Figure 3-6: Double-pass AOM configuration. The red incoming beam first passes
through the AOM, which diffracts the beam into multiple frequency-shifted orders,
where zeroth, first, and second orders are shown in orange. The first order is isolated
with an iris and sent along the same path back through the AOM, where it is again
frequency shifted into multiple orders shown in brown. The PBS separates the outgo-
ing from the incoming beam, and another iris isolates the frequency shifted first-order
beam.

shift. The first-order frequency-shifted beam after this second pass will always exit

the AOM at the same angle, regardless of the total frequency shift. The first order is

isolated with an iris external to the double-pass configuration, and the output beam

is isolated from the counterpropagating input beam with a polarizing beamsplitter,

as it has shifted its polarization 90 degrees due to the two quarter waveplate passes.

3.6 Imaging and State Detection

As discussed previously in Section 2.4, the 422 nm S-to-P transition is used for state-

dependent fluorescence, in combination with the 1092 nm repumping transition. Cir-

cular windows are placed on the bottom faces of the 50 K radiation shield and the

UHV chamber to allow emitted 422 photons from the 2𝑃1/2 state to escape the cham-

ber. From there, an external imaging objective lens close the UHV lower window

collects a large solid angle of the emitted light and focuses the image of the trap and

the ion to a motorized flipper mirror mount. This mirror can direct the light into

either a Princeton Instruments ProEM 512 CCD camera or a Picoquant PMA Series

photomultiplier detector assembly. A 422 nm optical filter is used to eliminate back-

ground light at the detection devices, while an iris is closed around the focused image

54



to block scattered light from the 422 nm beam. Figure 3-7 displays the CCD image of

the ion. To determine the ion state as bright (2𝑆1/2 or |𝑔⟩) or dark (2𝐷5/2 or |𝑒⟩), we

(a) With 422 scatter (b) Without scatter

Figure 3-7: Images of ion from CCD camera. 3-7(a) shows the iris closed around
the ion with addition 422 beam light intentionally being scattered from the trap
surface for comparison. 3-7(b) shows the same iris closure, but without intentional
422 scatter.

take a series of shots where we apply a 422 nm laser pulse and record the number of

photon counts from the PMT. For each shot, the number of detected photons follows

a normal distribution, so plotting the number of counts for all shots on a histogram

will manifest as either one or two distinct Gaussian distributions. If the ion is in the

dark state, no photons are emitted, and the count distribution on the histogram will

reflect the background detections by the PMT. If the ion is in the bright state, the

histogram count distribution will be centered about a higher number of counts than

that of the background count distribution. If the ion is in a superposition of bright

and dark, two histograms will appear, centered at both the bright state mean counts

and the background mean counts. The fraction of detections falling into either the

upper or lower histogram distribution determines the occupation probabilities. This

technique relies on our ability to resolve the background and bright state histograms.
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Chapter 4

Motional State Free Precession

Sequences

In this chapter, we outline our novel application of trapped ion motional coherent

state manipulation, originally presented in in [MKW+19], for implementing free pre-

cession sequences to measure decoherence rates. Prior methods of motional state ma-

nipulation commonly involved using internal state sideband transitions to indirectly

manipulate the ion’s motional state [dMFV96, Zhe98]. Others used a technique of

modulating the applied Doppler cooling laser to manipulate the ion’s motional state

to generate displaced thermal states [TGD+16]. Our method, hereafter referred to as

coherent driving or electric field displacement, applies an additional RF voltage to the

trap electrodes, creating a resonant electric field perturbation that directly applies a

motional force to the ion, displacing it in phase space. In this manner, the only cou-

pling between the motional and internal states of the ion occur during initialization

to the ground state and during state readout, which utilize either Doppler cooling

and a series of red sideband pulses or a single pulse. All motional state manipulation

is done through the electric drive field.

However, to establish the context and theory necessary to describe the free pre-

cession sequences we perform with the aforementioned motional state manipulation,

we first describe the existing models for motional states and decoherence processes,

which we will later use to simulate the results of our free precession sequences. In
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Section 4.1, we describe harmonic oscillator coherent states and explain how they

are generated through our electric field displacements. In Section 4.2, we describe

the concepts and formalisms of open system dynamics, which we can use to describe

various types of decoherence processes relevant to our trapped ion system. Then, in

Section 4.3, we delve into the specifics of our free precession sequences, describing

their origin in two-level spectroscopy sequences, explaining how to implement them

experimentally, presenting advantages of our method, and finally, deriving the model

equations to predict the results of free precession sequences for various decoherences

processes. We conclude the chapter with Section 4.4, where we explain the method by

which we read out the motional state of the ion by mapping the motional state onto

the internal excited state probability, which we can then detect using our conventional

state-dependent fluorescence methods.

4.1 Coherent States and Motional Coherence

The coherent state is a useful mathematical tool for describing quantum harmonic os-

cillators, such as the ion’s quantized axial motion. While their notation and use fully

obeys the laws and conventions of quantum mechanics, coherent states reflect the

most "classically-possible" quantum state by replicating classical behavior through

their expectation values and possessing minimal uncertainty. In one dimension, the

coherent state position and momentum expectation values ⟨𝑞⟩ and ⟨𝑝⟩ obey the clas-

sical harmonic oscillator equations of motion, while also saturating the Heisenberg

Uncertainty limit of ∆𝑞∆𝑝 = ~/2 in any one dimension 𝑞 [HR87].

Coherent states are parameterized by a complex value 𝛼, allowing us to denote

them as |𝛼⟩. They are also eigenstates of the harmonic oscillator destruction operator

𝑎̂ such that

𝑎̂ |𝛼⟩ = 𝛼 |𝛼⟩ (4.1)

The quantum harmonic oscillator Hamiltonian is given by 𝐻 = ~𝜔𝑎̂†𝑎̂, and the expec-

tation value of the number operator 𝑁̂ = 𝑎̂†𝑎̂ gives the average occupation number 𝑛̄

of the coherent state |𝛼⟩. We find ⟨𝑁⟩ = ⟨𝛼|𝛼*𝛼 |𝛼⟩ = |𝛼|2, so the average occupation
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Figure 4-1: Occupation probabilities in the Fock states |𝑛⟩ basis given coherent state
characterized by 𝛼. The probabilities are distributed in accordance with Eq. (4.4).

number for a coherent state |𝛼⟩ is 𝑛̄ = |𝛼|2.

The coherent state is generated the unitary displacement operator

𝐷̂(𝛼) = exp
(︀
𝛼𝑎̂† − 𝛼*𝑎̂

)︀
(4.2)

Applying the displacement operator with a given complex value of 𝛼 to |0⟩ returns

the coherent state |𝛼⟩, written in the Fock basis as [CN65]

|𝛼⟩ =
∞∑︁
𝑛=0

𝑒−
1
2
|𝛼|2𝛼𝑛

√
𝑛!

|𝑛⟩ (4.3)

This notation displays that |𝛼⟩ is actually a superposition of all harmonic oscillator

number states, or Fock states, indexed here by |𝑛⟩. The normalized probabilities

of measuring the coherent state in any one of these levels are Poisson distributed,

meaning that they obey the following probability distribution, which is displayed in

Figure 4-1:

𝑃𝑛 (𝛼) =
𝑒−|𝛼|2|𝛼|2𝑛

𝑛!
(4.4)

These coherent displacements can be physically implemented by coupling a har-

monic oscillator at frequency 𝜔𝑧 to a sinusoidal driving force at frequency 𝜔. The
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resultant value of 𝛼 will depending on the coupling time, strength, and frequency of

this driving force. The harmonic oscillator Hamiltonian can be appropriately modified

to reflect this interaction by including a time-dependent term. For our purposes, the

driving force comes from an electric field 𝐸 (𝑡) = 𝐸0 cos (𝜔𝑡+ 𝜑) acting on a charged

particle. As such, the driven system Hamiltonian is given by

𝐻 = ~𝜔𝑧𝑎̂
†𝑎̂+ 𝑞𝐸0 cos (𝜔𝑡+ 𝜑) 𝑧0

(︀
𝑎̂† + 𝑎̂

)︀
(4.5)

where we have utilized the ground state harmonic oscillator extent 𝑧0 =
√︀

~/ (2𝑚𝜔𝑧).

We will now quantify the drive field coupling strength with the Rabi frequency Ω0 =

𝑞𝐸0𝑧0/(2~). Assuming the detuning between the two frequencies 𝛿 = 𝜔 − 𝜔𝑧 is

sufficiently small, we can switch to the rotating frame of the oscillator and neglect high

frequency terms, giving us a simpler Hamiltonian in the interaction frame [MKW+19]:

𝐻 = ~Ω
(︀
𝑎̂†𝑒−𝑖(𝛿𝑡+𝜑) + 𝑎̂𝑒𝑖(𝛿𝑡+𝜑)

)︀
(4.6)

In the absence of any decoherence or dephasing processes, coherent states and

displacements can be described by unitary evolution of state vectors [SW10]. Using

the Schrödinger equation, subjecting an initial coherent state |𝛼(𝑡0)⟩ to the interaction

Hamiltonian above for duration 𝑡 gives the final state |Ψ (𝑡)⟩ = |𝛼 (𝑡)⟩. This is a

displaced coherent state described using the displacement operator as

|𝛼 (𝑡)⟩ = 𝐷̂ (𝛼 (𝑡)) |𝛼(𝑡0)⟩ (4.7)

In the case of a time dependent detuning 𝛿(𝑡), a solution 𝛼(𝑡) can be conveniently

derived, as in [MKW+19]:

𝛼̇(𝑡) = 𝛼(𝑡)𝑖𝛿(𝑡) + Ω𝑒𝑖𝜑 (4.8)

𝛼(𝑡0, 𝜏) = 𝑒𝑖
∫︀ 𝑡0+𝜏
𝑡0

𝛿(𝜏1)𝑑𝜏1

[︂
𝛼(𝑡0) + Ω𝑒𝑖𝜑

∫︁ 𝑡0+𝜏

𝑡0

𝑒−𝑖
∫︀ 𝜏2
𝑡0

𝛿(𝜏1)𝑑𝜏1𝑑𝜏2

]︂
(4.9)

By modifying the parameters and recursively using equation (4.9), we are able to

determine the final coherent state after a sequence of electric field drives and free
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evolution periods.

4.2 Open-System Dynamics

In the likely event of decoherence or environmental interactions, one will need to

describe the evolution of a coherent state as open system dynamics, requiring the use

of density matrices to represent the oscillator state. Unitary evolution of state vectors

through the Schrödinger equation only allows population to transfer between the levels

of the state vector, not to any other systems or states. Unwanted interactions with

the environment that result in loss of population or phase coherence are reflected

in the off-diagonal coherences of density matrices. The density matrix 𝜌 for a state

vector |Ψ⟩ is given by

𝜌 = |Ψ⟩ ⟨Ψ| (4.10)

Applying the Schrödinger equation to a density matrix gives the master equation for

its time evolution as the following [SW10]:

𝜕𝜌

𝜕𝑡
=

1

𝑖~
[𝐻, 𝜌] (4.11)

However, this alone is not adequate to enable non-unitary evolution of the density

matrix. Equation (4.11) only considers the internal dynamics of the system. To con-

sider interactions with the environment, we must include correction terms 𝐿̂𝑘, known

as Linblad operators, where 𝑘 is an index over all operators being considered. These

operators must be constructed specifically to represent an open system interaction of

interest. By including them in Equation (4.11), we arrive at the master equation in

Linblad form:

𝜕𝜌

𝜕𝑡
=

1

𝑖~
[𝐻, 𝜌] +

1

2

∑︁
𝑘

(︁
2𝐿̂𝑘𝜌𝐿

†
𝑘 − 𝐿̂†

𝑘𝐿̂𝑘𝜌− 𝜌𝐿̂†
𝑘𝐿̂𝑘

)︁
(4.12)
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4.2.1 Decoherence Processes

As a quantum state couples to its environment, unwanted interactions degrade the

fidelity of the isolated quantum state by altering the relative magnitudes or phases

between levels, and the system typically tends toward a thermal equilibrium with the

environment. This process is generally referred to as decoherence. Coherent states, or

superpositions of these oscillator number states, are sensitive to these processes, and

if unwanted interactions allow them to reach environmental thermal equilibrium, the

original Poisson number state distribution and off-diagonal density matrix coherences

will be replaced by a thermal distribution of states determined by the temperature

of the environment.

Relevant decoherence processes to our quantum harmonic oscillator can be cat-

egorized as amplitude damping and phase damping processes. Amplitude damping,

sometimes called relaxation, involves the transfer of energy between the system and

a larger thermal reservoir. For the harmonic oscillator, this transfer of energy mani-

fests as the creation or annihilation of motional quanta. This alters the number state

distribution of a given harmonic oscillator state. The mathematical form of such

processes will be discussed in the following subsection. Phase damping processes, on

the other hand, do not change the energy of the system. They only affect the rela-

tive phases between the oscillator levels, leading to a exponential time decay of the

off-diagonal density matrix elements [TMK+00]. Such processes include fluctuations

in the harmonic oscillator frequency. Following the convention in [TMK+00], Linblad

operators for dephasing processes are generally described by 𝐿̂ =
√
𝜅𝑎̂†𝑎̂, where 𝜅 is

the dephasing rate.

In a two-level system, relaxation and dephasing are quantified time constants 𝑇1

and 𝑇2, respectively, which describe the exponential decay of an excited state and off-

diagonal matrix elements with time as the systems tends to thermal equilibrium. A

two-level system’s decoherence times are bounded by the inequality 𝑇2 ≤ 2𝑇1. Since 𝑇1

relation processes contribute to dephasing, 𝑇2 is defined as 1/𝑇2 = 1/(2𝑇1)+Γ𝜑, where

Γ𝜑 represents the rate of "pure dephasing" processes. One can see that additional
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pure dephasing decreases 𝑇2 from its maximal value of 2𝑇1 [JC12].

4.2.2 Trapped Ion Heating

One particular decoherence process of interest in our system is trapped ion motional

heating, a form of amplitude damping where electric field fluctuations exert uncon-

trolled Coulomb forces, effectively "heating" the ion by exciting it to higher motional

states in its harmonic potential. This is one of the major sources of decoherence

in trapped ion systems [IMPM03]. Measured in quanta per second (q/s), measured

heating rates are often orders of magnitude larger than what would be caused by

common sources of electric field fluctations, like Johnson noise from electron motion

in the electrode metals [BKW18]. The quanta/s units, hereafter given as q/s, refer to

the number of motional quanta the harmonic oscillator gains or loses per unit time.

Motional heating can degrade the fidelity of multi-qubit gates, which rely on pre-

cise motional control for ion coupling [Bro07]. While a widely-applicable explanation

for the physical mechanism of trapped-ion heating remains unknown, its effects on

quantum harmonic oscillator coherence can be generalized as a amplitude damping

process.

One such amplitude damping description uses the master equation below, Equa-

tion (4.13), originally presented in [IMPM03]. This equation treats the heating pro-

cess as a single trapped ion harmonic oscillator coupled to a thermal reservoir, mod-

eled as an infinite chain of quantum harmonic oscillators at thermal equilibrium at

temperature 𝑇 .

𝜕𝜌

𝜕𝑡
= −Γ (𝑁 + 1)

(︀
𝑎̂†𝑎̂𝜌+ 𝜌𝑎̂†𝑎̂− 2𝑎̂𝜌𝑎̂†

)︀
− Γ𝑁

(︀
𝑎̂𝑎̂†𝜌+ 𝜌𝑎̂𝑎̂† − 2𝑎̂†𝜌𝑎̂

)︀
(4.13)

Γ is the heating constant, in units of inverse time, while 𝑁 is the average number

of thermal excitations in the reservoir, which is a function of 𝑇 . One can see that

this equation is equivalent to the Linblad form of (4.12) using Linblad operators

𝐿̂𝑒 =
√︀

2Γ (𝑁 + 1)𝑎̂ and 𝐿̂𝑎 =
√

2Γ𝑁𝑎̂† and going to the reference frame of the oscil-

lator to eliminate the Hamiltonian commutator term in Equation (4.12). 𝐿̂𝑒 represents
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Figure 4-2: Fitted experimental heating rate of (26 ± 5) 𝑞/𝑠, determined using side-
band ratio spectroscopy.

emission processes where the ion loses motional quanta, while 𝐿̂𝑎 corresponds to ab-

sorption processes where the ion gains motional quanta from the reservoir [IMPM03].

By using a measured trapped ion heating rate for Γ, we can model the time evolution

of a system subject to motional heating modeled as amplitude damping.

One method for measured heating rates uses sideband ratio spectroscopy. As

discussed earlier in this thesis, our use of the narrow quadrupole transition from 2S1/2

to 2D5/2 enables us to resolve the ion’s first-order motional sideband frequencies. Due

to the thermally distributed motional state occupation probabilities, in the Lamb-

Dicke limit, the ratio 𝑅 of the RSB and BSB frequency line amplitudes is related to

the mean occupation number of the ion’s thermal state according to 𝑛̄ = 𝑅/(1 − 𝑅)

[ESL+07]. Measuring this sideband ratio after allowing the ion to freely evolve over a

range of delay times gives the heating rate. One measured heating rate for our system

was (26± 5) q/s, and the motional occupation numbers after various delay times are

shown in Figure 4-2.
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4.3 Free Precession Spectroscopy Sequences

One common method for quantifying trapped ion decoherence involves allowing the

ion to freely evolve during a fixed precession time, then interfering the final state

with the initial state before the precession time. Originally developed in the mid-20th

century by Norman Ramsey, the method is central to high-resolution measurements of

transition frequencies in atomic clocks. Later modifications have made it an invaluable

tool for measuring relevant coherence parameters for quantum information studies,

particularly for 2-level transitions. The measurement involves applying an interaction

field for time 𝜏 on some 2-level transition spaced by a characteristic frequency, waiting

a free precession period, also referred to as a delay period, 𝑇 , then applying another

interaction pulse of time 𝜏 [ATdS+16]. By varying the frequency of the interaction

pulses, the delay time, or the phase difference between the pulses, different properties

about the system and the transition frequency can be obtained.

Our research, however, focuses on higher-dimensional motional states, so we will

need to modify this two-level Ramsey free precession sequence to gain information

about our system. In this section, we derive a mathematical model for our motional

state free precession sequences, which are analogous to the prolific 2-level Ramsey

spectroscopy sequences discussed above. In subsection 4.3.1, we first describe more

details on how Ramsey spectroscopy can probe decoherence processes in a two-level

system to develop intuition for free precession spectroscopy. In subsection 4.3.2, we

move to the specifics of our research by describing the steps of the coherent state free

precession sequence itself. We first describe how the sequence can be implemented

experimentally. We then develop the sequence mathematically by phenomenologically

modeling the expected results for the cases of no decoherence, amplitude damping,

and dephasing, and finally with a more rigorous numerical simulation of a motional

state during the sequence using open-system dynamics.
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4.3.1 Internal State Ramsey Spectroscopy

Trapped ion experiments have implemented the Ramsey method for a variety of two-

level systems. Examples include the ion internal states |𝑔⟩ and |𝑒⟩, motional Fock

states |𝑛⟩ and |𝑛+ ∆⟩, and even cat states, which are superpositions of motional

coherent states [RCM+08, LGRS04, TMK+00]. A brief discussion of the internal state

Ramsey sequence is warranted, since it is particularly common and quite intuitive.

The two states |𝑔⟩ and |𝑒⟩ are separated by the transition frequency 𝜔0. A 𝜋/2 pulse

at the carrier frequency on the initial state |𝑔⟩ puts the system in |𝑔⟩ + |𝑒⟩ (omitting

normalization). In the reference frame of the ion, rotating at 𝜔𝑒, fluctuations in either

the trap or laser frequency during the delay time 𝑇 will manifest as a phase 𝜑(𝑇 ),

whose time dependence is governed by the form of the frequency fluctuations. The

state is now |𝑔⟩ + 𝑒𝑖𝜑(𝑇 ) |𝑒⟩ before the application of another 𝜋/2 pulse, which has

the phase Φ relative to the first pulse. This is represented graphically on the Bloch

sphere in Figure 4-3.

Figure 4-3: Internal State Ramsey Sequence. From left to right, the three sequences
of a Ramsey sequence on the ion internal state transition are displayed: the initial
𝜋/2 pulse, relative phase accumulation 𝜑 during delay time 𝑇 , and a second 𝜋/2 pulse
with an applied phase Φ.

Information about the system can be gained through three variations of the Ram-

sey sequence. These include varying the 𝜋/2 pulse frequency 𝜔, the delay time 𝑇 ,

or the pulse phase difference Φ. Each experiment will display a characteristic line-
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shape. The research in this thesis primarily deals with the variation of both the phase

difference and delay time while keeping the pulse frequency on resonance, as most

trapped ion experiments do. The excitation probability as a function of Φ will oscil-

late sinusoidally with a 2𝜋 period, and the contrast of these oscillations (peak minus

trough amplitude) will depend on the Ramsey delay time 𝑇 and the noise features of

the system, as exemplified in Figure 4-4. Plotting the oscillation contrast versus the

Ramsey delay time shows that the contrast follows an exponential decay exp (−𝑇/𝑇2)

parameterized by a time constant 𝑇2 [LKH+07]. As the ion freely precesses for times

near and beyond 𝑇2, decoherence processes that affect the phase relationship between

the two levels, frequency fluctuations in particular, will become evident [Chw09].

(a) Ramsey Oscillations (b) Ramsey Contrast Decay

Figure 4-4: Properties of a Ramsey sequence for an arbitrary theoretical 2-level system
with 𝑇2 = 11 𝑠. (a) Ramsey oscillations are plotted for various delay times; (b) the
corresponding contrast decay for the oscillations shown in the adjacent graph. These
simulated graphs do not represent any actual data or system under consideration.

Although the research in this thesis will use a different quantum system for Ram-

sey spectroscopy, namely the quantum harmonic oscillator in the form of motional

coherent states, the theory and measured results remain fundamentally similar to

those of a two-level system. The concept of measuring a decoherence time through

the exponential decay of Ramsey oscillation contrast is the key takeaway from this

discussion. The lineshapes and equations displayed in Figure 4-4 will appear multiple

times throughout the rest of this thesis.
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4.3.2 Coherent State Free Precession Sequences

While the context of the two-level free precession sequence is useful, we now need

to apply that background to the motional states. We propose a novel mechanism

of motional coherence measurement via free precession sequences on coherent states

manipulated using the aforementioned electric drive field method. Our free precession

sequences differ from the analogous 2-level Ramsey sequence since they does not

create any interference between two distinct quantum states, which would imply an

effectively two-dimensional Hilbert space. Instead, we measure the coherence of a

single motional state relative to a stable reference oscillator (the drive field) as it

freely evolves. By performing coherent drives, characterized by 𝛼, in place of the

conventional 𝜋/2 pulses in a spin-1/2 Ramsey sequence, we act only on a single

motional coherent state. Over the duration of the drive, the state moves classically

though a position-momentum phase space then occupies a different final state. The

displacement of a harmonic oscillator coherent state in a continuous phase space is

arguably the most classical description possible of a quantum system, yet we can still

observe quantum interference results identical to those of a conventional two-state

superposition. Analogous to the Bloch sphere representation for a two-level system

in Figure 4-3, the three parts of our free precession sequence are displayed graphically

in Figure 4-5.

This method of motional state manipulation via coherent displacement (presented

in [MKW+19]) has been studied in other works, but to the best of our knowledge never

been explicitly used for a free precession sequence capable of quantifying motional

decoherence [LMM+98, WSH+19]. Similar free precession sequences have been per-

formed through modulation of the Doppler cooling laser to displace thermal motional

states [TGD+16], but without this capability to directly modulate the harmonic po-

tential as in our implementation. To our knowledge, we are the first to perform these

sequences and observe Ramsey-like oscillations by varying the relative phase between

the two coherent displacements. The thermal state sequences in [TGD+16] observed

such oscillations by increasing the delay time between in-phase displacements.
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(a) Using delay time 𝑇

(b) Using delay time 𝑇 ′

Figure 4-5: Coherent State Free Precession Sequence, shown in the reference frame
of the oscillator. Fig. 4-5(a) shows the sequence with a delay time 𝑇 , while Fig.
4-5(b) uses a longer delay time of 𝑇 ′ for comparison. From left to right: the ground
harmonic oscillator state is displaced by 𝛼 by a drive field with zero phase. The drive
field is turned off, and the displaced state subject to decoherence moves in phase
space during the delay time. Finally, the drive field, now with relative phase 𝜑, again
displaces the state by 𝛼. We measure the magnitude squared of the final state, |𝛼3|2
(or |𝛼′

3|2 for Fig. 4-5(b)) to quantify the motional state. This magnitude corresponds
to the radial distance from the origin to the coherent state in phase space.
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The primary experimental advantage of this method is that it reduces optical ad-

dressing operations to the bare minimum of ground state initialization and state read-

out through sideband interactions and state-dependent fluorescence. Methods using

sideband transitions to create superpositions of two Fock states or two coherent states

are affected by internal state coherence times, such that the resulting measurement

may not purely reflect the motional coherence of the system. Even Doppler-cooling-

based displacements depend on the ion internal level structure to perform motional

operations. In both cases, any laser operations are subject to potential errors such

as misalignment of the laser to the trap, intensity gradients across the beam profile,

and laser frequency errors and unlocking. This was particularly advantageous in our

system, where an unexplained source of noise caused slow, random drifts of the ion

and trap position relative to the laser beam. Although this will be discussed more in

detail later, using the electrodes to drive the coherent states alleviated this concern.

Lastly, directly-driven coherent state sequences may show promise as an exper-

imental benchmark in continuous-variable quantum computing (CVQC). Conven-

tional quantum computing, as presented in this thesis, uses discrete quantum states,

such as the ion’s internal spin state or quantized motional state. However, an al-

ternate field of CVQC exists, which uses quantum states described by continuous

variables[LB99, WPGP+12]. Examples include position, momentum, and the ampli-

tude of an electric field. As in spin-1/2 Ramsey methods where the coherence times

are influenced by laser stability, measurements from our motional sequences are in-

fluenced by the coherence of our electric drive field as well. Given that this drive field

would serve to coherently control the ion motional modes and could therefore limit

operation fidelity, our implementation of free evolution interferometry could serve as

a method for quantifying the coherence of a CVQC system.

4.3.3 Free Precession Sequences under Unitary Evolution

To observe Ramsey-like oscillations by driving coherent states, we can use the phase-

varying method described earlier. As displayed graphically in Figure 4-5, we can

replace the 𝜋/2 pulses of a spin-1/2 Ramsey sequences with two coherent displace-
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ments characterized by complex values 𝛼 and 𝛼𝑒𝑖𝜑 and separated by the delay time

𝑇 . The two displacements are equal in magnitude, but differ by a relative phase 𝜑,

just like the spin-1/2 case. These displacements are generated by an electric drive

field with Rabi strength Ω and a constant detuning 𝛿 applied for a time 𝜏𝑑. Using

the general formula for a coherent displacement 𝛼(𝑡0, 𝜏), given in Equation 4.9, for

an initial time 𝑡0 = 0, pulse time 𝜏 = 𝜏𝑑, and initial state 𝛼(𝑡0) = 0, we can define

our coherent displacements as:

𝛼 = 𝑖Ω𝑒𝑖𝜑
1 − 𝑒𝑖𝛿𝜏𝑑

𝛿
(4.14)

On resonance, 𝛿 = 0, and this equation simplifies to 𝛼 = Ω𝜏𝑑𝑒
𝑖𝜑, and the final average

motional quanta of the displaced state is [MKW+19]:

𝑛̄ = |𝛼|2

= 2

(︂
Ω

𝛿

)︂2

[1 − cos (𝛿𝜏𝑑)]
(4.15)

We can phenomenologically model the results of this sequence on a coherent state

amplitude for the cases of no damping, amplitude damping, and dephasing. By

assuming a purely coherent state, the physics below are entirely classical dynamics

even though a quantum analysis is employed. This simplified model does not require

the use of density matrices, even though it considers decoherence effects.

Ideal Free Evolution

Consider the following sequence of transforms of the state of a simple Harmonic

oscillator. Let the initial state be

|𝜓0⟩ = |0⟩ , (4.16)
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the ground state. We first displace the state (along a fixed axis, which defines our

phase reference) by 𝛼, as defined in Equation 4.14 for 𝜑 = 0, to produce

|𝜓1⟩ = |𝛼⟩ , (4.17)

a coherent state with parameter 𝛼. This state is then allowed to evolve freely over

time 𝑇 , becoming

|𝜓2⟩ = |𝛼𝑒𝑖𝛿𝑇 ⟩ , (4.18)

We then displace the state again, along a direction determined by a phase 𝜑, relative

to the axis of the first displacement, again by amplitude 𝛼, obtaining

|𝜓3⟩ = |𝛼(𝑒𝑖𝛿𝑇 + 𝑒−𝑖𝜑)⟩ , (4.19)

This is a coherent state with complex amplitude 𝛼3 = 𝛼(𝑒𝑖𝛿𝑇 + 𝑒−𝑖𝜑). If we then

measure 𝑛̄ = ⟨𝜓3|𝑁̂ |𝜓3⟩ as a function of 𝜑, we obtain

⟨𝜓3|𝑁̂ |𝜓3⟩ = |𝛼|2
(︀
𝑒−𝑖𝛿𝑇 + 𝑒−𝑖𝜑

)︀ (︀
𝑒𝑖𝛿𝑇 + 𝑒𝑖𝜑

)︀
(4.20)

= |𝛼|2
(︀
2 + 𝑒𝑖𝜑−𝑖𝛿𝑇 + 𝑒𝑖𝛿𝑇−𝑖𝜑

)︀
(4.21)

= |𝛼|2 (2 + 2 cos(𝜑− 𝛿𝑇 )) (4.22)

= |2𝛼|2 cos2
(︂
𝜑− 𝛿𝑇

2

)︂
, (4.23)

where the amplitude of the oscillations is |2𝛼|2, and from our earlier definition for

|𝛼|2 in Equation 4.24, the amplitude becomes a function of the detuning:

|2𝛼|2 = 4|𝛼|2

= 8

(︂
Ω

𝛿

)︂2

[1 − cos (𝛿𝜏𝑑)]
(4.24)

Thus, we achieve the maximum displacement of 𝑛̄ = |2𝛼|2 = |2Ω𝜏𝑑|2 on resonance

with 𝛿 = 0 when the drive phase difference is a multiple of 2𝜋. For a nonzero detuning,

the amplitude of the oscillations decreases and their maximum displacement occurs
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when 𝜑 = 𝛿𝑇 , as shown in Figure 4-6.

Figure 4-6: Simulation curves for the resultant motional state after a free precession
sequence applied to an initial ground state for various drive frequency detunings.
These curves can be generated using Equation 4.24.

Amplitude Damping

Now, what happens if |𝜓2⟩ decays a bit during its free evolution time 𝑇? We might

phenomenologically model this as an exponential decay of its coherent state ampli-

tude, replacing the original |𝜓2⟩ with

|𝜓′
2⟩ = |𝛼𝑒(−Γ+𝑖𝛿)𝑇 ⟩ , (4.25)

where Γ is the damping rate. Continuing on with the same second displacement as

above, and again assuming this displacement to be of the same magnitude as the first,

as defined in Equation 4.24, we get for the final state

|𝜓′
3⟩ = |𝛼𝑒(−Γ+𝑖𝛿)𝑇 + 𝛼𝑒𝑖𝜑⟩ . (4.26)
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The final measurement then produces

⟨𝜓′
3|𝑁̂ |𝜓′

3⟩ = |𝛼2|
(︀
𝑒(−Γ−𝑖𝛿)𝑇 + 𝑒−𝑖𝜑

)︀ (︀
𝑒(−Γ+𝑖𝛿)𝑇 + 𝑒𝑖𝜑

)︀
(4.27)

= |𝛼|2
(︀
1 + 𝑒−2Γ𝑇 + 𝑒−Γ𝑇−𝑖(𝛿𝑇−𝜑) + 𝑒−Γ𝑇+𝑖(𝛿𝑇−𝜑)

)︀
(4.28)

= 2|𝛼|2𝑒−Γ𝑇 [cos(𝜑− 𝛿𝑇 ) + cosh(Γ𝑇 )] (4.29)

= 2|𝛼|2𝑒−Γ𝑇 [2(cos(𝜑− 𝛿𝑇 ) + 1)/2 − 1 + cosh(Γ𝑇 )] (4.30)

= 2|𝛼|2𝑒−Γ𝑇

[︂
2 cos2

(︂
𝜑− 𝛿𝑇

2

)︂
− 1 + cosh(Γ𝑇 )

]︂
(4.31)

= |2𝛼|2
[︂
𝑒−Γ𝑇 cos2

(︂
𝜑− 𝛿𝑇

2

)︂
− 𝑒−Γ𝑇 (1 − cosh Γ𝑇 )

2

]︂
(4.32)

= |2𝛼|2
[︂
𝑒−Γ𝑇 cos2

(︂
𝜑− 𝛿𝑇

2

)︂
− 𝑒−Γ𝑇 − (1 + 𝑒−2Γ𝑇 )/2

2

]︂
(4.33)

= |2𝛼|2
[︂
𝑒−Γ𝑇 cos2

(︂
𝜑− 𝛿𝑇

2

)︂
− 2𝑒−Γ𝑇 − 1 − 𝑒−2Γ𝑇

4

]︂
(4.34)

= |2𝛼|2
[︂
𝑒−Γ𝑇 cos2

(︂
𝜑− 𝛿𝑇

2

)︂
+

1 − 2𝑒−Γ𝑇 + 𝑒−2Γ𝑇

4

]︂
(4.35)

This is reasonable, in that when Γ𝑇 = 0, the result reduces to the no-damping case

above, and when Γ𝑇 → ∞, the result is |𝛼|2, which is the amplitude of the second

displacement (the effect of the first having damped away, back to |0⟩). During the

delay period, the state decoheres relative to the drive field in all directions in phase

space, with more decoherence occurring with longer delays. As a result, for very long

delays, the decoherence relative to the drive frequency will result in the second drive

pulse, on average, not coherently displacing the state and changing 𝑛̄. Moreover, the

damping reduces the amplitude of the oscillation of 𝑛̄ with respect to 𝜑, while also

changing the midpoint of the oscillatory behavior. In particular, the midpoint is

⟨𝜓′
3|𝑁̂ |𝜓′

3⟩1/2 = |2𝛼2|
[︂
𝑒−Γ𝑇

2
+

1 − 2𝑒−Γ𝑇 + 𝑒−2Γ𝑇

4

]︂
(4.36)

= |2𝛼2|
[︂

1 + 𝑒−2Γ𝑇

4

]︂
(4.37)

= 2|𝛼2|
[︂

1 + 𝑒−2Γ𝑇

2

]︂
(4.38)

= 2|𝛼2| (1 − Γ𝑇 ) +𝑂(Γ2) (4.39)
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where in the last line, we have expanded the expression to leading order in Γ. This

shows that the midpoint starts drifting down. As Γ gets larger, this midpoint must

drift all the way down to the asymptotic value of |𝛼|2.

Dephasing

Another possible decoherence process is dephasing. Instead of a process affecting the

magnitude of the coherent state amplitude, consider one that results in a loss of phase

coherence between the coherent state and the drive field. Suppose that during the

free evolution period, the oscillator is subject to a random phase kick; how does this

affect the final measurement outcome? We may model this by applying a random

phase rotation by angle 𝜃, to |𝜓2⟩, obtaining

|𝜓2⟩ = |𝛼𝑒𝑖𝛿𝑇+𝑖𝜃⟩ , (4.40)

where 𝜃 is drawn from a normal distribution with zero mean and standard deviation

𝜆. The measurement result is then, averaging over this probability distribution:

⟨𝜓3|𝑁̂ |𝜓3⟩ =
1

𝜆
√

2𝜋

∫︁ ∞

−∞
|2𝛼|2 cos2

(︂
𝜑− 𝛿𝑇 − 𝜃

2

)︂
𝑒−𝜃2/2𝜆2

𝑑𝜃 (4.41)

= |2𝛼|2
[︃

1 + 𝑒−𝜆2/2 cos(𝜑− 𝛿𝑇 )

2

]︃
, (4.42)

and this again is as expected: when 𝜆 = 0, this reduces to the no-dephasing outcome,

and when 𝜆 → ∞ this becomes 2|𝛼|2, because the phase is completely scrambled

during the free evolution time. Note that this is different from the asymptotic outcome

obtained for damping; moreover, the midpoint remains unchanged at 2|𝛼|2.

4.3.4 Free Precession Sequence with Open-System Dynamics

Although we have just phenomenologically derived the result for oscillations of co-

herent state magnitudes following our free precession sequence, creating a model for

more general harmonic oscillator states and decoherence mechanisms will require open
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system dynamics. This will involve solving the master equation for the time evolution

of a density matrix with Linblad decoherence operators. A particularly relevant de-

coherence process is trapped ion heating, as presented in Section 4.2.2. We can refer

back to the master equation in Linblad form, as shown in Equation 4.13, where this

amplitude damping process is parametrized by the the heating rate Γ. We will con-

sider this heating rate to be equivalent to the Γ used to represent amplitude damping

in our analytical coherent state model, Equation 4.27, so that we can compare the

results of the free precession oscillations for these two models. Solving the master

equation for a general 𝜌 (𝑡) analytically is difficult, but can be implemented in Python

using the open source QuTip 4.5 software. This package contains a method mesolve()

that solves for 𝜌(𝑡) given a Hamiltonian and a set of Linblad operators. Using the

Hamiltonian in Equation (4.6) with 𝐿̂𝑒 =
√︀

2Γ (𝑁 + 1)𝑎̂ and 𝐿̂𝑎 =
√

2Γ𝑁𝑎̂†, we can

sequentially solve for the state after each displacement and evolution period.

Despite the absence of an analytical model, our numerical QuTiP solutions show

that in the presence of decoherence, the final 𝑛̄ of a motional state after a free preces-

sion sequence with varying phase follows the expected sinusoidal behavior, with the

normalized oscillation contrast decaying exponentially as 𝑒(−𝛾𝑇 ), where 𝛾 is a general-

ized decoherence rate. These results, visualized in Figure 4-7, are analogous to those

of the well-studied spin-1/2 Ramsey decay. By considering only the heating Linblad

heating operators above with heating rate Γ, we find the decay going as 𝛾 = Γ. Ad-

ditional decoherence operators will change this value of 𝛾. This exponential decay

result is supported by the general result for the time evolution of the heating function

in Equation (4.13) from [IMPM03]. This paper found that the time evolution of the

average thermal occupation of a harmonic oscillator subject to heating rate Γ goes as

𝑛̄ = 𝑁(1 − 𝑒−Γ𝑇 ), where N was the thermal average occupation number of the reser-

voir. The amplitude of the oscillations should be normalized relative to the amplitude

of the zero-delay oscillations, since the amplitude of the 𝑛̄ oscillations depend on the

choice of 𝛼. Not normalizing these amplitudes would require an additional scaling

factor in the decay fit that would make comparisons between experiments difficult.

Our simulations show that the normalized oscillation contrast decays with the
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same rate Γ for both the numerical solution and the analytical model presented in

Equation 4.27. The free precession oscillations look similar, but not exactly identical,

due to the inclusion of the thermal reservoir with mean excitation number 𝑁 in the

numerical model. The analytical model oscillations correspond to the case of 𝑁 = 0.

In the numerical results, we find that the 𝑛̄ oscillation curve, for a given delay time 𝑇 ,

is uniformly shifted up by an additional term 𝑁(1− 𝑒−Γ𝑇 ), which, not coincidentally,

is the solution presented in [IMPM03] for the time evolution of a harmonic oscillator

mean occupation number. In Figure 4-7, we use 𝑁 = 0 for all delay times. An

important note here is that the normalized contrast decay is unaffected by the value

of 𝑁 . The rate of decay is dictated by Γ, while 𝑁 affects the final state which the

harmonic oscillator tends towards. Lastly, our numerical simulations show that during

(a) Free Precession Oscillations (b) Oscillation Contrast Decay

Figure 4-7: Simulated Oscillation Decay using Γ = 50, 𝛼 = 2.01, and 𝑁 = 0. (a)
Oscillations for various delay times, (b) Normalized oscillation contrast decay for the
curves shown in (a). Normalization of contrasts is relative to the contrast of the zero
delay point.

long delay times, the coherent state evolves to a thermal equilibrium state with the

environment, characterized by the mean thermal excitation number 𝑁 . After the

second displacement, the distribution of number states within the final state will lie

somewhere between a coherent and a displaced thermal state, the latter of which is

defined in [SH96]. Our final state from the simulation is still characterized by an 𝑛̄

that follows the oscillatory behavior described above. Although we lack an analytical
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model to describe this final state, numerical simulation shows that the final number

state distribution closely resembles that of a coherent state for shorter delay times,

where the oscillation contrast is still visible within error for our experimental data

shown later.

4.4 Internal State Readout

The average motional state 𝑛̄ of a trapped-ion coherent state |𝛼⟩ cannot be read out

directly. We can only measure the internal state through repeated state-selective

fluorescence detections. These repeated detections give us the probability that the

ion is in the excited internal state. As a result, we need a mechanism to determine

the coherent motional state from the ion’s two-level internal state. Following the

derivation used in [MKW+19], a motional coherent state can be read out via a function

that maps the average motional quanta 𝑛̄ to the ion’s internal excited state occupation

probability. This is accomplished by considering the effect of applying an internal

state red sideband laser pulse to a Poisson distribution of motional Fock states. After

an arbitrary sequence of coherent displacements taking the initial state |𝑔, 0⟩ to |𝑔, 𝑛̄⟩,

applying a RSB pulse of duration 𝜏𝑅𝑆𝐵 will excite the internal state to |𝑒⟩ with the

following probability:

𝑃𝑒 (𝑛̄) =
1

2

[︃
1 − 𝑃0 (𝑛̄) −

∞∑︁
𝑚=1

𝑃𝑚 (𝑛̄) cos (2Ω𝑚,𝑚−1𝜏𝑅𝑆𝐵)

]︃
(4.43)

where 𝑃𝑚 (𝑛̄) signifies the Poisson distribution over Fock states |𝑚⟩ with a 𝑛̄ average.

This is a simplification under the assumption that the state has been displaced to |𝑛̄⟩

from the initial number state |0⟩. A slightly more complicated form is required for

cases where the initial number state is a higher motional state [MKW+19], but the

relevant displacements in this thesis are done from the initial ground state. Ω𝑚,𝑚−1 is

the red sideband Rabi frequency corresponding to the |𝑔,𝑚⟩ ↔ |𝑒,𝑚− 1⟩. In contrast

to a simplification of this value discussed earlier in this paper, a proper definition of

the Rabi frequency includes also the Lamb-Dicke parameter 𝜂, the internal carrier
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Rabi frequency Ω0, and the generalized Laguerre polynomial 𝐿1
𝑚−1 (𝜂2):

Ω𝑚,𝑚−1 = Ω0𝑒
−𝜂2/2𝜂

√︂
1

𝑚
𝐿1
𝑚−1

(︀
𝜂2
)︀

(4.44)

As discussed in the previous section, the final number state distribution after our

free precession sequences is not quite that of a coherent state, yet not that of a

displaced thermal state either. However, for the delay times tested experimentally,

we find it suitable to approximate the final state as a coherent state. Replacing the

Poissonian number state distribution in Equation 4.43 with the numerically-generated

final distribution from our simulation yielded nearly identical curves for 𝑃𝑒 when fit

to the experimental data. Due to this similarity, we may refer to the final state

as a coherent state, although its Fock state distribution is not precisely described a

Poissonian distribution.

This definition shows us that 𝑃𝑒 (𝑛̄), as defined in Equation (4.43), is a non-

monotonic function of 𝑛̄ that also contains parameters 𝜂, Ω0, and 𝜏𝑅𝑆𝐵. These pa-

rameters all correspond to laboratory settings that can be chosen, calculated, or

measured. We must first create the coherent state |𝛼⟩ by turning on our electric

drive field at 𝜔 for time 𝜏𝑑 with Rabi coupling strength Ω and phase 𝜑. Note that Ω

signifies the electric drive field Rabi coupling, while Ω0 describes the internal carrier

transition. We defined the magnitude of 𝛼 earlier as a function of the fixed detuning

𝛿 = 𝜔 − 𝜔𝑧 in Equation 4.14. Assuming we are on resonance, |𝛼| = Ω𝜏𝑑. Although

the exact value of Ω depends on multiple parameters, it is proportional to the electric

drive field strength, so this means that we can either fix the drive strength or drive

time, then scan the other variable to effectively scan |𝛼| scaled by some numerical

constant. Then by using 𝑛̄ = |𝛼|2 in Equation (4.43), we are able to plot 𝑃𝑒 as a

function of 𝛼 or 𝜏𝑑, as in Figure 4-8, since |𝛼| is proportional to 𝜏𝑑 when on resonance.

Converting from 𝜏𝑑 to 𝛼 requires knowledge of the Rabi coupling strength Ω. This

value can be determined by fitting 𝑃𝑒(𝜏𝑑) to experimental data, as done in Figure

4-8, it can also be determined by scanning the drive frequency 𝜔 over the resonant

trap frequency 𝜔𝑧. We can combine the functions 𝛼(𝜔) and 𝑃𝑒(𝛼) to get 𝑃𝑒(𝜔), and
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Figure 4-8: Internal state excitation probability as a function of coherent state mag-
nitude |𝛼| and drive time 𝜏𝑑. The blue curve is a fit of Eq. (4.43) to experimen-
tal data points in orange. The resonant electric drive field with a fixed strength is
turned on for a variable time 𝜏𝑑, then the excitation probability is measured after
applying a RSB pulse of time 𝜏𝑅𝑆𝐵 = 16 𝜇s. The fitted Rabi coupling frequency is
Ω = 2𝜋(5.17 ± 0.03) kHz.

for a fixed known drive time and a fixed drive strength, we can then fit 𝑃𝑒(𝜔) to

experimental data with Ω as the fit parameter, shown below in Figure 4-9. The Rabi

coupling from our 𝑃𝑒(𝜔) fit matches the result from our earlier 𝑃𝑒(𝜏𝑑) to 0.1 kHz.

As long as the maximum excitation probability on resonance, 𝑃𝑒(𝜔 = 𝜔𝑧), remains

in the first monotonic region of the experimentally-measured 𝑃𝑒(𝜏𝑑) curve shown

earlier in Figure 4-8, our frequency scan 𝑃𝑒(𝜔) will show a characteristic sinc2(𝜔)

lineshape centered about 𝜔𝑧, as shown below in Figure 4-9. The maximum excitation

on resonance corresponds to a displaced state with 𝑛̄ = |𝛼|2 = (Ω𝜏𝑑)
2.

Using the measurements and fits we have presented above, we can now perform

our desired task of determining the motional state of the ion through measuring its

internal state. We can simply take the fitted calibration curve for 𝑃𝑒(𝛼) (shown

earlier in Figure 4-8) to get a numerical monotonic function for 𝛼(𝑃𝑒) and hence

𝑛̄(𝑃𝑒). The only requirements from now on are that our electric drive field strength

(proportional to Ω) and drive time remain such that our displacements of |𝛼| = Ω𝜏𝑑

remain in the first monotonic region of our experimentally measured 𝑃𝑒(𝛼) curve
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Figure 4-9: Experimental data points, in blue, for the internal state excitation prob-
ability 𝑃𝑒 as a function of electric drive field frequency 𝜔. A single displacement was
applied for time 𝜏𝑑 = 60 𝜇s, then the excited state probability was read out after
applying a single RSB pulse of time 𝜏𝑅𝑆𝐵 = 16 𝜇s. The orange curve is 𝑃𝑒(𝜔) is then
fitted to the data points using the Rabi coupling Ω frequency as the fit parameter.
The fit yielded Ω = 2𝜋(5.1 ± 0.1) kHz. The experimental error bars shown are 1 − 𝜎
error bars for the measured data point.

81



and that the RSB drive time 𝜏𝑅𝑆𝐵 and internal state Rabi coupling Ω0 both remain

constant between the measurement of the 𝑃𝑒(𝛼) calibration curve and the coherent

drive experiment being performed. In the calibration curve, 𝑃𝑒 is a non-monotonic

(a) Free Precession Oscillations (b) Oscillation Contrast Decay

Figure 4-10: Simulated Free Precession Oscillations using Γ = 50, 𝛼 = 2.01, 𝑁 = 0.
(a) Oscillations for 2 color-coded delay times, with the excitation probability shown
on the solid curve and the previously-graphed motional state shown in dashed lines.
(b) Comparing the normalized oscillation contrast decay for the excitation probability
and the motional state.

and non-linear function of 𝛼. As a result, the measuring the excitation probability

after a free precession sequence will not yield the characteristic cos2 (𝜑𝑑/2) lineshape,

as displayed free precession oscillation curves of Figure 4-7(a). Assuming that the

magnitude of the displacement remains in the first monotonic region of the calibration

curve, 𝑃𝑒(𝛼) remains periodic over 2𝜋, but there are nuances in the lineshape that can

be determined by using one’s calibration curve to convert from 𝑛̄ to 𝑃𝑒, and backwards,

as done in [TGD+16]. The differences between the curves are shown below in Figure

4-10(a), where the excitation probability is shown in the solid curves, in contrast to

the cos2 (𝜑/2) curve shown in the dashed lines, which were previously shown in Figure

4-7(a). The most notable consequence of this difference in lineshape is that the decay

of the normalized 𝑃𝑒 oscillation contrast does not follow an exponential decay for

our calibration curve, shown in Figure 4-10(b). As a result, we must convert our

excitation probability measurements to 𝑛̄ before calculating oscillation contrasts and

doing any contrast decay analysis.

82



Chapter 5

Experimental Procedure and Results

In this chapter, we detail the experimental steps required to implement our motional

state free precession sequences, and we conclude by presenting the results of those

experiments. In Section 5.1, we describe how we control and deliver the RF electric

drive field used for coherent displacements. In Section 5.2, we outline our procedure

for calibrating the drive strength, time, and frequency to ensure that we were gen-

erating the desired displacements. In Section 5.3, we list the complete sequence of

laser pulses and drive field displacements used to prepare the ion, perform the free

precession sequence, and read out its state. Finally, in Section 5.4, we present our

measured data for the free precession sequences using four different delay times. Us-

ing this measured data, we extract a normalized oscillation contrast and display an

exponential contrast decay, as predicted by our theory and simulations in Chapter 4.

5.1 Electric Drive Field Control

As previously presented in Section 3.3, our surface electrode trap allows us to deliver

voltages to distinct groups of electrodes to generate particular electric field config-

urations at the location of the ion. To generate an RF drive field for our coherent

displacements, we combined RF drive voltages with the existing DC trapping voltages

for selected electrode groups via bias tees outside of the UHV chamber. To deliver the

RF drive voltages, we selected two DC electrode groups, depicted in Figure 5-1, that
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Figure 5-1: Microscope image of trap indicating the DC electrode groups that received
the coherent drive RF voltages.

were geometrically symmetric across the trap axis (𝑧-axis) such that their 𝑥-axis com-

ponents perpendicular to the trapping axis would cancel, creating only an oscillating

drive field on the same axis as the harmonic trapping potential. This ensured that

we were primarily exciting the axial trapping modes of the ion’s three-dimensional

motion. Although the drive field is non-zero in the radial direction perpendicular to

the trap, the drive frequency is far detuned from resonance with any radial modes,

making radial excitation unlikely. To ensure that adequate RF voltages would pass

through the low-pass filters on the ion trap tower prior to reaching the electrodes, as

well as benefit from the higher signal-to-noise ratio in a higher-power DDS output,

we applied large voltages on the order of volts to 10s of volts, followed by -30 dB

of attenuation, before the bias tees. We then adjusted the digitally-controlled RF

voltage amplitude (in arbitrary units) and attenuation to find an appropriate power

where the ion would display some response for a reasonable drive time, typically on

the order of 10 𝜇s. For our displacements of |𝛼| on the order of 1 with our Rabi fre-

quency of approximately 5 kHz, our calculated electric drive field at the ion location

was on the order of 0.1 mV/cm.

We used the ARTIQ (Advanced Real-Time Infrastructure for Quantum physics)

system, developed my M-Labs, to control the delivery of RF voltages to the trap,
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switch laser beams, and shift laser frequencies via AOM control. Its built-in DDS

outputs were suitable for delivering the appropriate RF voltages to our AOMs as

well as for our RF drive voltages delivered directly to the trap electrodes. ARTIQ

hardware is run using the Python coding language, enabling us to develop individual

scripts capable of controlling both the electric drive field and laser beams required

for coherent drive operations and measurement.

5.2 Electric Drive Field Calibration Procedure

Following our general spectroscopy procedure of finding the carrier, first-order side-

band, and optical pumping transitions to kHz accuracy, we had to calibrate the

strength of our motion drive amplitude and time to determine the Rabi coupling

frequency of the field, as well as ensure that our maximum coherent drive would re-

main in the first monotonic region of 𝑃𝑒(𝛼), given by Equation (4.43) and displayed

graphically in Figure 4-8. As discussed in the previous chapter, we would first scan

the frequency of the coherent drive and identify resonant frequency at the center of

the sinc2(𝜔) function with accuracy ranging from 1-10 kHz, depending on the number

of samples taken. Fitting Equation (4.43) to these data points would also yield an

approximation for the Rabi frequency to a similar accuracy as the center frequency.

Using the resonant frequency identified from the previous scan, we would then

scan the coherent drive time and measure the excitation probability. On resonance,

|𝛼| = |Ω𝜏𝑑|, so this scan served the dual purpose of finding Ω, and hence 𝛼(𝜏𝑑),

after fitting the data to Equation (4.43), while also showing the maximum drive we

could apply before overdriving the state into the non-monotonic region of Equation

(4.43). The calibration curve displayed previously as Figure 4-8 would serve as the

curve used to convert between 𝑃𝑒 and 𝛼 for the 𝑃𝑒 data that would later be taken for

this thesis. The settings used for this calibration curve, as well as the actual thesis

data, involved a RSB probe time of 𝜏𝑅𝑆𝐵 = 16 𝜇s, the shortest time for which we

could maximally excite our RSB transition, and a fitted motion drive Rabi coupling

frequency of Ω = 2𝜋(5.17 ± 0.03) kHz.
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We chose to set our coherent drive time and amplitude such that a single dis-

placement yielded |𝛼| = 2.1 ± 0.2, corresponding to 𝑛̄ = 4.4 ± 0.4. Consequently,

the maximum displacement that would occur during a free precession sequence was

2|𝛼| = 4.2± 0.4 and 𝑛̄ = 16.7± 0.7. This maximal excitation would occur during the

zero or near-zero delay sequences where the pulse phase difference was 0 or an integer

multiple of 2𝜋. In this case, the sequence would effectively act as two consecutive

coherent displacements of |𝛼|. This was a suitable choice of |𝛼| given the calibra-

tion curve in Figure 4-8. The expected maximal excitation, including error, would

remain sufficiently below the maximum allowable 𝛼 of the first monotonic region,

approximately 5.5.

We also implemented a drive frequency stabilization protocol to correct for slow

drifts in axial trap frequency during motion drive sequences. Early attempts at free

precession sequences with long delay times or high drive powers found that the oscil-

lations would gradually increase and decrease in frequency, which should not occur

for oscillations as function of phase. They should remain periodic over 2𝜋. In general

Ramsey spectroscopy, deviations from this ideal periodicity typically indicate a de-

tuning between the drive frequency and resonant frequency. Further measurements

confirmed that the resonant trap frequency would drift as we applied increasing drive

power or after we turned off the drive and waited for times much longer than the drive

time. To obtain useful oscillations, we implemented a frequency stabilization proce-

dure. For a given drive time, strength, and delay time, our stabilization script would

conduct multiple trial sequences at the phase value corresponding to the steepest

slope of the oscillations. This is a common protocol in frequency stabilization, since

this steepest-slope point is the most responsive to frequency fluctuations while also in-

dicating the direction in which the frequency has shifted. Using the result of the prior

trial sequence, the script would incrementally change the drive frequency until the

next trial sequence generated the expected result. Using the new resonant frequency,

the actual data point would be taken. As a result of this stabilization procedure, data

collection was rather slow. Anomalous errors such as ion loss, unexplained ion drifts

relative to the laser beams, or laser frequencies drifting and unlocking would force us
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to abandon the stabilization data for a sequence, forcing us to retake all data for those

delay settings. As a result, we were only able to test 4 delay times - 1, 10, 20, and 50

ms. However, we achieve low error bars on our data points due to the high number

of trials. In our initial unstabilized measurements, we found that the oscillations for

zero delay and 1 ms delay were indistinguishable. Due to experimental challenges and

time restrictions, we were unable to record a stabilized zero-delay sequence, but we

find that the stabilized 1 ms delay data can effectively serve as a zero-delay reference.

5.3 Pulse Sequence

The applied pulse sequence, both laser and electric drive field, can be conceptualized

in a convenient format depicted in Figure 5-2. A single free precession sequence

Figure 5-2: Diagram conceptually depicting the sequences of laser and drive field
operations applied to the ion, reading from left to right in time. The blocks are not
to scale in time.

begins with our usual state preparation for virtually any trapped ion operations:

cooling and initialization to the motional and internal ground states |𝑔, 0⟩. An initial

period of 422 nm Doppler cooling is applied to the ion, followed by a series of RSB

pulses with durations gradually increasing from ∼ 10 𝜇s to ∼ 20 𝜇s, with each RSB

pulse followed by a 1033 quench pulse lasting around 3 𝜇s. Pulse durations would be

slightly adjusted daily to account for changes in laser power or beam alignment. Due

to the ion’s thermal distribution of motional states, each with a different RSB Rabi

frequency, multiple RSB durations must be used to cool all the motional states in the

distribution to the ground state.

Following the initialization blocks, we begin our free precession sequence. We first

apply our initial 𝛼 displacement by turning on the RF drive voltage for time 𝜏𝑑. We

then turn off the RF voltage and wait for delay time 𝑇 . We complete the sequence
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by repeating our initial 𝛼 displacement, but this time with a phase shift of 𝜑𝑑 relative

to the first phase.

We conduct state readout using the RSB method describing in the previous chap-

ter. Applying a single RSB pulse of duration 𝜏𝑅𝑆𝐵 to a distribution of motional states

will put the internal state into a unique superposition of the ground and excited state.

We read out this state as the excitation probability through state-dependent fluores-

cence detection with the 422 nm laser. Using our frequency stabilization script, many

of these measurements are repeated for a single delay time and used for frequency

adjustments. A smaller fraction are used for actual data collection. We then repeat

the process for different phases and delay times to obtain a contrast decay curve.

5.4 Measured and Converted Results

The experimental results for our four frequency-stabilized sequences are displayed in

Figure 5-3. Although the expected maximum excitations should occur for phases

that are multiples of 2𝜋, a uncontrolled phase-reset error in a new DDS caused a

random phase offset for each sequence, in addition to the intended phase passed to

the ARTIQ control. Since the phase offset was constant throughout a single free

precession sequence, it only caused a horizontal shift in the data and did not affect

the actual contrast or validity of the oscillations.

As explained at the conclusion of the previous chapter, the measured experimental

𝑃𝑒(𝜑𝑑) results of a sequence will not display the neat sin2(𝜑𝑑) behavior of 𝑛̄(𝜑𝑑)

sequences. Since we experimentally measure 𝑃𝑒, and not 𝑛̄, our measured oscillation

lineshape will depend on our calibration curve between 𝛼 and 𝑃𝑒. The theoretical

comparison between 𝑛̄(𝜑𝑑) and 𝑃𝑒(𝜑𝑑) was previously displayed in Figure 4-10. We fit

to the experimental 𝑃𝑒(𝜑𝑑) data shown above in Figure 5-3 by converting the expected

𝑛̄(𝜑𝑑) curve into an excitation probability using our calibration curve. The data was

then normalized relative to the maximum and minimum excitation of the 1-ms delay,

where the results were effectively the same as a zero delay sequence. Details on this

normalization, as well as the exact measured excitation probabilities and calculated
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(a) 1 ms delay (b) 10 ms delay

(c) 20 ms delay (d) 50 ms delay

Figure 5-3: Experimental data points in orange for free precession sequences, with
excitation probability as a function of drive phase difference, plotted for 4 different
delay times. The fitted blue 𝑃𝑒(𝜑𝑑) curve is generated by converting the 𝑛̄(𝜑𝑑) output
from our QuTiP numerical simulation into 𝑃𝑒 through our experimentally-generated
𝑃𝑒(𝛼) calibration curve. The orange error bars represent a 1𝜎 statistical uncertainty.

contrasts, are given in Appendix A.

By converting the measured probability contrasts in Figure 5-3 to normalized 𝑛̄

contrasts, we can fit the oscillation contrast decay to an exponential of the form

exp (−𝛾𝑇 ) in Figure 5-4. Our fit finds that 𝛾 = (24 ± 5) 𝑠−1 for our experimental

data.
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Figure 5-4: Free Precession Oscillation Contrast Decay with decay rate 𝛾 = (24 ±
5) 𝑠−1 for calculated normalized contrasts, obtained by converting the measured ex-
citation probability data in Figure 5-3 to 𝑛̄ using our 𝑃𝑒(𝑛̄) calibration curve. These
conversions and data points are listed in Appendix A. The error bars reflect the uncer-
tainty of the 𝑃𝑒(𝜑) fit curves for the raw data in Fig. 5-3, as well as the fit uncertainty
in the calibration curve.
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Chapter 6

Analysis and Conclusions

In this final chapter, we conclude by discussing the implications of our results for

motional coherence measuremnt protocols, as well as look at improvements for future

research. Section 6.1 analyzes measured result for the normalized oscillation contrast

decay rate 𝛾 in terms of our open-system model for trapped ion heating, presented in

Chapter 4. In Section 6.2, we identify specific experimental challenges that limited

the accuracy of our data or hindered our data collection processes, then we suggest

various improvements to address those issues in future tests. We also include possible

variations on our free precession sequences, or different sequences altogether, that

could help validate the results of this method and provide further insight to our

procedure.

6.1 Analyzing the value of 𝛾

A fitted decoherence rate of 𝛾 = (24 ± 5) 𝑠−1 suggests interesting conclusions about

the dominant noise in our trapped ion system. As we displayed earlier in Figure 4-7,

solving the master equation with heating Linblad operators parametrized by heating

rate Γ will cause the free precession oscillation contrast to decay as exp (−Γ𝑇 ). Using

the sideband spectroscopy method to experimentally measure a heating rate in Figure

4-2, we previously determined our heating rate to be Γ = (26 ± 5) 𝑠−1.

The correspondence between 𝛾 and Γ implies that trapped ion heating may be the
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dominant source of decoherence in our system. Solving the Linblad equation with our

measured heating rate as the only source of decoherence would yield an exponential

contrast decay almost identical to the fitted contrast decay from our experimental

free precession sequence data. 𝛾 is a generalized decoherence rate describing differ-

ent decoherence processes affecting the ion, not just heating. Assuming uncorrelated

processes, we found through simulation that a pure dephasing rate of Γ𝑑𝑒𝑝ℎ𝑎𝑠𝑖𝑛𝑔 in ad-

dition to a heating rate of Γ, would lead to a faster exponential contrast decay (larger

𝛾) than the decay from the heating rate Γ alone. The fact that our fitted value for 𝛾 is

nearly identical to our heating rate Γ, measured from sideband spectroscopy, suggests

that these additional pure dephasing processes Γ𝑑𝑒𝑝ℎ𝑎𝑠𝑖𝑛𝑔 are negligible compared to

heating. The ±5 𝑠−1 error on both 𝛾 and 𝛾 suggests the possibility of dephasing

processes Γ𝑑𝑒𝑝ℎ𝑎𝑠𝑖𝑛𝑔 existing on the order of 1 𝑠−1, but not show simply due to the

magnitude of Γ. If the fitted decoherence rate 𝛾 was significantly longer than our

measured heating rate Γ, we would need to include additional Linblad operators to

account for some pure dephasing processes Γ𝑑𝑒𝑝ℎ𝑎𝑠𝑖𝑛𝑔. However, our results are con-

sistent with the conclusion that Γ𝑑𝑒𝑝ℎ𝑎𝑠𝑖𝑛𝑔 is effectively zero, in comparison to the

heating rate Γ.

6.2 Improvements and Further Experimentation

While our data leads to interesting conclusions regarding our system’s motional co-

herence time, some experimental improvements could be made to yield additional

results during future iterations of the motion drive protocol. One of the primary

limiting factors of our current dataset was the small number of delay times tested.

As discussed earlier, this was due to experimental setbacks that caused each set of

data to take a long time while also requiring ideal laboratory conditions. The first

of these include the problem of a changing trap frequency with long delays and large

coherent drives. Although we circumvented this somewhat with a clever frequency

stabilization scheme, more could be done in the future to understand the mechanism

by which the coherent drive varies the static DC potentials to the point of significant
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axial frequency shift. Perhaps this issue could be resolved through a different choice

of DC trapping electrodes for delivery of the RF drive voltages to the ion. Such a

change could alter the geometry of the electric drive field in a manner that may reduce

our measured slow frequency drift.

Although specific to our trapped ion system, two additional setbacks included a

short ion trapping lifetime and an unexplained slow drift in the trap position. These

were particularly problematic because our frequency stabilization script could not

handle these errors, causing us to abandon some data. The former issue is common

amongst many ion trapping apparatuses, but can often be resolved. Stray field com-

pensation, filtering of RF trapping voltages, ensuring proper UHV pressure are ways

to eliminate fluctuations that can kick the ion from its harmonic potential. The slow

ion drift, on the other hand, presents a unique challenge to our system. We have

noticed an anomalous pattern of trap movement relative to the incoming external

laser beams on our imaging camera. Given that the lasers beams are unlikely to drift

in position, we postulate that some form of vibration is shifting the trap position at a

slow, but non-negligible, rate. These non-linear drifts can cause the ion to move out

its optimal addressing position for the 4 laser beams used during operations. Moving

from this position causes a slew of problems, such as reduced Doppler cooling, lower

ion fluorescence, and effective laser power fluctuations leading to fluctuations in the

674 nm beam Rabi coupling frequency. The reduced ion fluorescence was a major

limitation on the efficacy of our frequency stabilization code. We have yet to deter-

mine the source of this trap drift, having already extensively searched for sources of

vibration or motional coupling between the chamber and any mechanical connections

it may have.

Other experimental factors of interest may reveal additional details about our free

precession protocol or about one’s trapped ion system. The parameters of the effective

𝜋/2 displacement of magnitude |𝛼| is one such factor. On resonance, |𝛼| = Ω𝜏𝑑.

In theory, one can arbitrarily choose any set of 𝜏𝑑 and Ω, determined through the

amplitude of the RF drive voltage, yet still deliver the same coherent displacement,

given that the parameters that satisfy the previous equation. In practice, this is
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often not the case, as the signal-to-noise ratio may vary across RF voltage powers,

or the precision of timing controls may be limited. We chose a set of 𝜏𝑑 and Ω that

appeared reasonable for our system, but we did not quantify the effects of varying

these two parameters in a controlled manner. It would be an interesting area of study

to see how the coherent state production, manipulation, and measurement varies in a

system for a fixed |𝛼| but a variable 𝜏𝑑 and Ω. This would also be a useful experiment

for determining whether the apparent trap frequency drift is exacerbated by longer

drives, a more powerful drive field, or a combination of both factors. One could also

consider the consequences of performing long drives that approach the timescale for

decoherence, the inverse of the contrast decay rate.

To gain further understanding into the physical meaning of our fitted contrast

decay, it would be worthwhile to later conduct a more conventional motional coher-

ence measurement, namely a Ramsey sequence using a superposition of two motional

states. As discussed earlier, this can be done with a superposition of Fock states or

with cat states. These are well-studied methods for quantifying motional coherence,

and comparing the measured Ramsey decay from these two-level methods versus our

continuous coherent drive method may give us more insight on our results. Our co-

herent drive procedure could also be conducted on a system with a lower, or perhaps

even a higher, heating rate than our sideband spectroscopy-measured rate of Γ. Us-

ing one with a lower heating rate may allow weaker dephasing processes Γ𝑑𝑒𝑝ℎ𝑎𝑠𝑖𝑛𝑔 to

become visible, while using one with a higher heating rate could verify that 𝛾 does

in fact equal Γ for systems with ion heating as the dominant source of decoherence.

For comparison, a similar free evolution sequence manipulating coherent states with

Doppler cooling pulses was performed in [TGD+16] with a trapped ion system with

a notably higher heating rate than what we have observed in our system.

Lastly, this method shows promise for measuring coherence times using a continuous-

variable quantum system, namely the amplitude of an electric field. This could enable

CVQC to obtain coherence measurements in a method analogous to the use spin-1/2

Ramsey sequences to measure laser coherence.
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Appendix A

Raw and Converted Measurement

Data

The information below explains how we converted our experimentally-measured 𝑃𝑒(𝜑)

free precession sequence data (displayed earlier in Figure 5-3 in Chapter 5) into nor-

malized 𝑛̄ oscillation contrasts, which were then used to demonstrate an exponential

contrast decay (displayed earlier in Figure 5-4 in Chapter 5).

Table A.1: Table of Measured Excitation Probabilities

𝑇 [ms] 𝑃𝑒,𝑚𝑎𝑥 𝑃𝑒,𝑚𝑖𝑛

1 0.85 ± 0.05 0.02 ± 0.05
10 0.86 ± 0.07 0.12 ± 0.07
20 0.58 ± 0.05 0.10 ± 0.05
50 0.71 ± 0.04 0.41 ± 0.04

Using the 𝑃𝑒(𝜑) fit curves to our experimental data, we generated the maximum

and minimum excitation probabilities 𝑃𝑒,𝑚𝑖𝑛 and 𝑃𝑒,𝑚𝑎𝑥 displayed in Table A.1. Then,

using our 𝑃𝑒(𝛼) calibration curve (displayed in Chapter 4 as Figure 4-8), we convert

our measured 𝑃𝑒,𝑚𝑖𝑛 and 𝑃𝑒,𝑚𝑎𝑥 to 𝑛̄𝑚𝑖𝑛 and 𝑛̄𝑚𝑎𝑥 in Table A.2, where the fit error in

the calibration curve is reflected in the error of these converted values.

Finally, normalization is achieved by taking all 𝑛̄ values and scaling them relative

to maximum and minimum 𝑛̄ observed for the 1-ms delay, displayed mathematically in
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Table A.2: Table of Converted & Normalized Motional Quanta

𝑇 [ms] 𝑛̄𝑚𝑎𝑥 𝑛̄𝑚𝑖𝑛 𝑛̄𝑚𝑎𝑥,𝑛𝑜𝑟𝑚 𝑛̄𝑚𝑖𝑛,𝑛𝑜𝑟𝑚 Normalized Contrast
1 16.7 ± 0.7 0.2 ± 1.0 1.00 ± 0.03 0.00 ± 0.05 1.00 ± 0.08
10 17.0 ± 0.9 1.4 ± 0.9 1.02 ± 0.04 0.07 ± 0.04 0.95 ± 0.08
20 8.7 ± 0.5 1.1 ± 0.6 0.52 ± 0.02 0.05 ± 0.02 0.46 ± 0.04
50 11.5 ± 0.4 5.5 ± 0.5 0.68 ± 0.01 0.32 ± 0.02 0.36 ± 0.03

Equation A.1 below. Ideally, this scaling should be done relative to zero-delay data

points, but preliminary measurements found the the 1-ms and zero delay Ramsey

sequence results to be identical. The normalized contrast, in the final column of

Table A.2 is obtained by subtracting 𝑛̄𝑚𝑎𝑥,𝑛𝑜𝑟𝑚 and 𝑛̄𝑚𝑖𝑛,𝑛𝑜𝑟𝑚 for a given delay time

𝑇 .

𝑛̄𝑛𝑜𝑟𝑚 =
𝑛̄− 0.2

16.7 − 0.2
(A.1)
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Appendix B

Release Statement

Massachusetts Institute of Technology Lincoln Laboratory Distribution Statement A:

This work is approved for public release - distribution is unlimited.

Any opinions, interpretations, conclusions, and recommendations are those of the

author, and do not reflect those of the United States government, the Department

of Defense (DOD), or the Department of the Army. DOD approval for public the-

sis release does not imply DOD endorsement or factual accuracy of the presented

material.
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