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ABSTRACT

ESSAYS ON OPTIMAL ECONOMIC GROWTH

by
David Levhari

In the first chapter we show that among all exponentials paths in
capital-embodied labor-augmenting technical change, with a homogeneous
of first order production function, the path in which saving is the same
as profit or interest the same as the rate of growth, has maximum per
capita consumption, In Chapter II we prove the same theorem for the
case of fixed coefficients, The third chapter deals with the model
discussed by Arrow, in which, unlike the capital=embodied models of
Chapter I and II, there is divergence between social and private re=
turns, Here we calculate the social return and the subsidy required
to bring social and private return to equality, We then show that
exponential growth is stable in this model, and that among all expo=
nential paths, we again have a dominant one in which saving is equal
to virtual profit, the profit that capitalists would have had they
also received remuneration for the external effects of their investments,

Chapter IV deals with a problem presented by Solow and Tobin on
the determination of the social rate of return and the rate of interest
in the capital-smbodied model, Chapter V shows that the Kaldor-Mirrlees
model is not much different from the neoclassical models, It is
practically impossible to distinguish between this model and those
of Solow and Phelps,

Chapter VI presents a proof of Samuelson's nonsubstitution
theorem in a Leontief model with no joint product and one primary
input, Then we show the impossibility of Ruth Cohen's curiosum with
the whole base of products, Chapter VII indicates possible applications
of ovtimal control theory of Pontryagin and others to problems discussed
With the classical calculus of variations by Samuelson, Solow, and
others,
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Massachusetts Institute of Technology
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CHAPTER I
THE GOLDZN AGE AND GOLDEN RULES

IN VINTAGE CAPITAL MODELS

In recent years there have besen frequent discussions on what

Professor Phelps [1] called the golden rule of ascecumulation, As

Professor Solow [2] commented, the fact that among all exponential paths
sustainable consumption is the highest under equality of the own rate

of interest and the rate of growith, is purely technological,

The value of the golden rule for optimization over time of the

Ramsey type has been recently discussed by Koopmanns [31,

Here we shall prove that even in a more complex technological

situation, i,e,, exponential labor sugmenting embocdied technological

change, still the rules are the sameg <that among all exponential paths,

the path with highest consumption is the path where the rate of saving and

the share of profiis are the same, and so are the rate of interest under

stationary expectation and the rate of growth [4], We shall give separate

Phelps, E,S.y "A Golden Rule of Accumulation", American Ecoromic Review,
September, 19€1, ‘

Solow, Robert M,, Review of Economic Studies, Comments, June, 1962,

Kcopmanns,

e "On the Concept of Optimal Economic Growth", Cowles
Foundatior di

Goie

scussion paper 163, 1963 (unpuklished),

The change has to be Harrod neutral to allor an expmential sclution to exist,

can easily see that in the case of disembodied technologicsl change whera
Qoe = F(e"? ReBF, &M L &MY

The capl*al=outbut ratio can remain constant oniy if wu =0

(Or in the case of Cobb-Douglas, it can be put into this form,) I mention

all this since Phelps on one occasion (American Economic RBVL@W, September,

1961) asserts that his golden rule path hoids for more general cases, See

Paul A, Samuelson, Review of Economic Studies, Juns, 1962, Comments, p, 254,

= b e
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proofs for the case of finite marginsl product of labor at L =0 and
infinite marginal product of labor at L =0 , In the first zasfe we
get finite life of capitaly as time goes on, we shift labor from old
rmachines to new machines and at a certain age, we completely discard the
machines, In the second cése, obsolescence takes the shape of shifting
labor from the old machines to the new machines, but we never completely
discard any capital,
An example of a procuiciion function of type I is the ¢,s,s8, productim function
with elasticity of substitution less than 1 , p>0, o<l ,

ik
Qvst) = vL6IP(v) + (1-8)(e™ L(v,£))P1 P,

4o
a ..V‘ .t - oy i ) ] o ""'3‘- =7 “‘A
OL('vstg = y(1~8)[ I PLlwt )4 (1-8) e~*PY] P ™AV |
as L(v,t)—0, SL 3,2 Solles) P s

An example of the second kind (type II)is the ae,s, production funetion (o_1,
p>0) In the case of equality, we get the known case of Cobb=Douglas,
With o>1 4 since we can producs without labor, it is clear that no pisce
of capital is going to be completely discarded,

We shall start with the probably mors realistic case of production
functions of type I . (This turns oub tc be the mors complicatsd case,)
Then we shall prove shortly a similar thesorem for type IT,

We shall ignore physical decay sven though there is no
difficulty in bringing radioactive depreciation into the model,

Let F(X,L) be homogensous of first degree production function, %-E
is assumed finite at L = 0, Assume labor augmenting capital-embodied

technological change of the form



S

alv,t) = F(I(v), o L(v,) .

Q(v,t) is the output at time t of capital vintage v ., I(v) is
capital vintage v , L(v,t) dis labor allocated to capital vintage v

at time t ., Labor is shiftable, so that competition will bring equality
of marginal product of labor on all vintages, The supply of labor at time

t , L(t) , is exogenously given, The wage at time t , w(t) , is the
oF
oL
then w(t) = h{o) eh(%uT) where T(t) 1is the age of the oldest capital

marginal product of labor on the oldest machines, If h(o) = st 1 =0,

used at time *t ,

d F(I(v), oY Liv,t
o L(Vst’)

= w(t)

implies

éﬂ_&uﬁvlg ¥ 1lv.t)) AV ok .
S (M L(v,t))

Since F 1s homcgeneous of first degree, it can be written in the form

n(SL LTSty Y Ly

I{v)

where h(x) is a monotonic decreasing function,

L¥at) - e ws)) .

I T

L{vet)  «=AV, =l, <AV
O h™ (e w(t)) .
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The foregoing is for vintages for which

3 F(I(v), & Lv,t)

-a L(I‘gt) = W(t) H
for all other vintages
O F(I(v), & L(x,t)
SatmE e
L{w,t)=0

and we allocate no labor to them, The function h“1 ig an increasing
function of v , 2% 5a a decreasing function, and it is not clear
whether at 1t we allocate more labor or less labor to higher vintages,
It is obvious that in efficiency units we allocate more labor per unit
of new machines, but in the natural units, this may turn out, as it does
in the c,e,s, production function, to be less labor per unit of machines,

Qlv,t) = FLI(v), b~ (e™ w(t)) I(v)]

i

T(v) F(1, B-(e" w(t)) .

it

We get the pair of integral equations deseribing the systems

£

L(t) = jF = hul(ew&v k(o) el(t"T)) I(v) dv , Gl
£T(t)

Q(t) = f (1, h"H(e™V (o) Ty 1(v) av . (1.2

t-T(t)
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Given the history I(v) for v < t and labor forcs L(t) , we
solve equation (1,1) for T , It is easy to prove that the right-hand
side of (1,1) is a monotonic increasing function of T , sIt is easy to
see this intuitively, since by inecreasing T we must allocate more labor
to this vintage so as to bring it to equality with the lower marginal
product of labor on the oldest machines with zero rentals, and moreover,
we get soms new machines to which we now allocate labor, which we did not
do before,

After solving (1,1) for T(t) we solve (1,2) for Q(t) . Assuming
now some saving behavior, we get the bshavior of the system along time,
Assuming constant rate of saving s ,

£
w

j~ & 1'1_1(6'“')‘”v h(o) eh(t“T)) I(v) dv , (1,1%)
taT

L(t)

i

t

X jﬂ F(l’ h“l(egkv h(o) ea(taT)) I(v) dv ,
t=T

it

I(t)

It is not easy to deal analytically with these two integral equa-

tions, However, we shall mainly be interssted in a particular exponential

. 5 .
solution, Let L(t) = Loent s Qtty = Qoeg“ o and | I(t) = sQoeg .

t

Loent = sQ ]ﬂ P hul(ewl(v”t*T) h(o)) & dv,
£=T
T

Qoegt = sQO ‘Jﬂ i hwl(euh(vut+T) h(o)) &V dv,

t=T



Substitute now v =v -t + T ,

gt

The etponential
g=n4+d, de,,

of the labor force

We see from
must be a constant

independent of t 3

= 54 _©
Q0

i
(g-A)(t-T) f‘e(€~k)u n"H(k(o) e™%) du
0

T
= seg(t"'T ‘[- o% F[1, h"'l(e'}‘u h(o) J du .

0

solution is admissibie only if n=g - A or
the rate of balanced growth is the rate of increase

in efficiency units, Then

I
SQQ e“’(gﬂl)Tfe(g“;\.)u h“l(h(o) eﬁ?ﬂl) du B (101")
0
i
m%%TfﬁumLhdw“umw)dun (1.2")
0

equations (1,1") and (1,2") that the life of capital T
independent of t , (The L,H,S, of these eguations is

hence, the R,H,S, must be also,) These two equations

are slgebraic eguations for QO and T in terms of s and the other

parameters of the system, It is not hard to see by implicit differentiation,

dT

which we shall perform later, that Qé(5)3>0 and =—<0 3 the level of

ds t

output is larger and the life of machines is shorter, i,e,, ohsolescence is

faster, as the rate of saving goes up,

The share of profit in the economy is



)t h(O) a?\.(t'a-T) Loent h(O) e-ﬂ-’\T Lo
TS é - =1 = ot = ] - ) .
Qoe o]
w(o) L
m=1la= : 2 .
Qo

As one might expect on the exponential path, this distribution is not
changing and remains the same as at t =0, ™ is again, of course; a

function of s , the saving rate ,

We would like to find the path of maximum sustainable consumption,

For this, let us maximize (l-s) QD(S) 5

<Q (s) + (1-s)Q!(s) =0 .

Qi (s)
o) e ke 1
QO = B lesg 3 (.1040

Theorem 1; If (1,1v), (1.2®), and (1,4) hold, they imply s =m ,
Let us differentiate implicitly equations (1,1") and (1,2") with

respect to s ,



L Q(s)
e e ar 21, T dT
0= == WLO - (g=-\) L, 35 +sQ g (o7~ h(o)) 35 .

1 b g
0=2-g L+ o1, g™ o) .
af 1 X
ds s g - sF(1, hml(e“)LT h(o))
Q 1, ar
(g=A) = s = h" (e™ " h(o))
Qé(s), 1 r L0 19
Qozs: = g =8 F(l,h“l(e“)LT h(o)) i
By definition of B~ , h i(e™T n(o)) = P2asl  and  F[L, e (o)
= L{os0)y _ Q(o,0
= F(2, I(o )= Q.%TS_S). g
: o ko g0
Q:(s) (e-h) -5 £ "3
Q (5) =5 Q(o,0 =
P £ =2 STl
But I(o) = sQO ,
Q)(s) ; nL = L(o,0) Q

s [gQO - Q(090) i: - 4

o@.
0

I
V)]



We must interpret the term

ng - Q(0,0)
T channs nL0 z

Remembering that

£
Loent = ‘j LEv,t)y dr
t=T

let us take derivatives of both sides with respect to t ,

t
o)
1«11503”c = L{t,t) - L(t-T,t) + f SL(vat)
AT

¢
il e™ = L(t,t) + f ﬂgi%ﬁ dv
taT

Performing - the same operations on

t
0,65 = [ R(I(v), Ur,t)) av
£
we obtain
1o
2Q_ef% = F(I(t), L(t,t) + f - F%(g()ég%v,t)) aL(a"',;@ av .
i

Remembering now that marginal product of labor for all vintages is

the labor wage, we gets



gt

gQ_e

- 10 -

9

£
Q(t,t) + w(t) fi;i%’-,;ﬁ av
£-T

Q(t,t) + w(t)[nL o™ - L(t,t)] .

ngegt - Q(tyt)

wit) =
o™ - L(t,t)
and
ng - Q(an)
wlo) =
HES =8 L(oirg )
o)
So
Q!(s) Q
o o
= - [ - l}
QOZSS s WOLO 2
Q' (s)
o
a.(s) s [ == -11>0 [5].
5. To see that %(0 ’

o]
Since gQ - Glo,0) = f —BADI_EE)- , it is easy to see that decreasing

returns imply for all

d L(v,t)
a‘t.

-T
v

<0 and g = L {0 .
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On the maximum sustainable path of consumption

il

ey S S st
l-s S ieamian? ISR i 2

Let us now prove the following theorem,

Theorem 23 Theorem 1 implies that under stationary expectations
the rate of interest and the rate of growth are the same on the maximum
sustainable path of consumption,

Look at investment made at v 3 the rental at time t is

T, b
I(v

L(v,t

rvt)i= Ty -

- wlt)

The rate of interest p should satisfy the equations

v+T

T L{v,t =p( Lt
j\ Ivv - w(t) Ivv e p(t=v) dE

’....1
I

v

v+T
fﬂ r1, hl(e™V h(o) o*(t-T);

v

=
1

- h(o)ex(t.r) oM -1 o= hio) eh(t-T)] P (E=v) 44
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Substitubing u=1t -v ,

T
al -_--fs"‘m F[l,h"l(e““'T)h(o))] - 1(o) 6T M plrn(o)e TN au |

o]

The expression in brackets in the integrand is obviously r{o,u) , the
rental of capital vintage o at u .,
Our theorem says that on the maximum sustainable consumption path,

the solution to this equation is g ., We have to prove that

T

1= [¢ ¥4, pL(Mu-T) Bo))] = (u(o) &™) o™ WEE(R(o) T

dua |,
e

o

Taking the deri¥ative of the right-hand expression with respect to
p , we find that wptf‘e”pu r(o,u) du<O , We see that if g is a solu-
tion, it is the only ° solution, Let us denote by p(v,t) profit of
capital vintage v at t , Total profit on this path according to
egt

theorem 1 is SQO

e

p(v,t) = FILE" e VDo) 11(v) - w(t)e™ Tn N Do))1r)

19)
1, A(VettT
sQOegt = sQ, Jﬁ e® (F[1, b (e A(v-t4T) h(o))]
t=T

By }"(0) e?\.(tnT) ewhv h--l(e—?t(\?’wt'"i"T) h(O)) dv



s

Substituting w=v « t + T we find:

iy
€% = [ 4FT1, o™ 1(0))] - B(o) o™ 1K™ (o)) SBET)E gy

o

T
wa AT w AW —l — f:'-:\."i'-
1 :':f Fi1, B (e~ " nlo))] = Hlo) e nitle™ " nia)) s of Sl

C
Now substituting u = -w + T ,

T
1 “~f- fr1, B Dh(0))Tuh(o) oM 0 TnT(n(o)et (BT =82 4u |

o]

So p(s) on the golden rule path satisfies p(s) =g .
Q.E,D,

We shall now prove the analogous theorem for production functions of
type II, production functions which have infinite marginal product of
labor at L =0 , and for which all vintages of capital are always employed,

Using the same notation as before, we find that

Av :
=] va._)_ ) xe—lv 'W(O)

bl

Calling oV L%%;%l = () = o™ w(o) . Differentiating with respect

: =AY
to w(o) , we get L¥(x) %% = Y . B A

dw bo(x)



=

t
Loent = f P S e e

(0

it

e j BLL, b (e Y w(t))] I(v) dv
=0

o
il

t

o™ =sq, [ oMM o)) 1wy av
(D

i)
Q8 =sq, [ o P10 (e (o] T(v) av .

=00

Substituting u=v =t

O
= sQOI sl nH e w(o)) du
- )

T

= feg‘* Rl a (o S ic)illen
P

s
H

These are two equations for Qo(s) and w(o) . Again, it is possible

to show that Qc')(s)>0 . g%gﬂ}O



e

aw Liv,t) o =1, =Av
Using the notation x = e —}ﬁ’}-’)')' =h" (e w(t)) ,

S I(v) F1, o'V 1__,_(%,_1%)_ OF(1,x) v
D Llv,t) (ol °

w(t) =

-

8F§1,x) oMY (k) .

Differsntiating implicitly  with respect to s !

L L : =AU
e dw(o) g_l)u e o
Ua= s T QOESS Q(;(S) " SQO(S) ds f hr(x) S

1, ([ LudF(lx) dx  du(o) 4
s +E’f B g dW(O) d_S du .

The second of these equations takes the forms

=\l

=-+ sw(o) f (g-))u e' ) du .

o
A -
let B = -d;g;g-)-so (g-}\)u .

«Q0

il - = e
S+sw(o)B-O, B = T



il - SQO
o s(l=8) ey
L Q

By methods similar to those used for production function typs I ,
it is possible to find that again on this path the rate of interest and
rate of growth are the same,

Next we shall turn to proving similar theorems for the case of

fixed coefficients,



CHAPTER II
THE GOLDEN RULE IN FIXED-COEFFICIENTS,

CAPITAL-EMBODIED, HARROD-NEUTRAL TECHNOLOGICAL CHANGE

Let v = the date of birth of capital,
t = current time,

Q(v,t) = gross output at t wusing capital vintage v ,

i

I(v) = investment at v ,

L(vst)

]

labor allocated at time t , to capital of vintage v ,

s = saving rate,

Assume Q(v,t) = al(v) = be L(v,t) = min (aI(v), o L(v,t)) . Using

. - s F . . £ . -
capital vintage v , we need for a unit of production = capital and

1 " ; o e :
e labor, We have a process of automation in which the capital-output
be
ratio remains constant while the capital-labor ratio, or output-labor ratio,

declines exponentially, Assume exponential growth in which investment grows

exponentially I(v) = sQOegv . Generally,

t
I(t) = s f o™V 1(v) dv (2.1)
t-m{t)
.t
Loent = %- ‘f‘ o™V I(v) dv , (2.2)
tem(t)

and with the exponential profile of investment,
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SQO

| % — Jg=r)t e o~(g=1) m(t)l

So if g =n + A we are on the exponential path with constant 1life of

il

capital, m(t) =m , To find the effective life of capital, we use

it

+ i
Qeg = 5 ~J'a.QDeg CUTA

t-m

t -
0 e5" = 2 g o (178,

e
ik - R 1. BR) -
m =2 log (1- =) = - oy log (- 524) [1]. (2.3)

We find that the effective life of capital is a decreasing function of the

saving rate, We have a lower bound for the effective 1life of capitaly we

ﬂw S kA iira : A .
get s =1, m= g log (1 - —;-) . All this, of course, is for J;j-—(l .
iaeoj %‘74 s <1 e

Let us now use equation (2,2) to determine Qo , or the level of

the economy as a function of the saving rate, On the exponential path,

~ i : : ;
Lo Ll 5<E£“* then the rate of saving is too small to maintain stsady

growth at rate n + A with constant lifetime, and so m—® .
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t
I..oent = % ‘[‘ se-hv Qoe(nﬁﬁ)v dy
t-m
_. as _ gmrm
Lo ~ bn Qo(l & )
a E%I log (1~ %ﬁ?’
LO = oo SQO(J— =R ) s
et 38
= DA yitA
L, = & sQ [1- (- ]
) di
Q (S) e nLO a 8 .
o B
N4} \N-kA
b~ as)

Now, among all the exponential paths, we want to find the one with sustainable

more consumption, We want to maximize with respect to the saving rate,

® o’
=

nL (1=s)
(1-s) Q_(s) = = ¢
YA DA
1-(2- 5

=

Max las 1
S Il °
E?S-;il 1_’(1“ M)H+K
- as

Call the function to be maximized ¢(s) . We shall now show that

#(s) cannot reach a maximum [2] in the boundaries ¢(s) >0 for a <l

2, All this is very similar to what I have shown in the discussion of Arrow's
model in Chapter III,



w 20 =

and ¢(1) =0, soat 1 we cannot find a maximum, Now let us calculate

§r(s) at HA

a
n_ e
/ A i € DA A Tk n A \ndA T 1 laes
¢'(S) o n fis 52 [l"‘(l“" as) ] + 3 (l"' as ) 52 s E]

A 1A, 2
[1-(1- 2ymh

and it is not hard to see that ¢,(E§L) = ®, So the maximum is attained

at an interior point, and it must be the solution of ¢+(s) =0 ,

1 n

—— —
A\ A o A \IA les
“[1""(1" as) ] 8 8 (1"” as ) s =0 L]
or
n n_ 4
n+A A | n e nth 0 Lles
(1 BRy™A 4 8 (q. 2 = -0 . (2.4)

It is.not possible to solve the equation for s , but in the following we
show that the solution of this equation will be such that the share of profit
with the saving rate that satisfies this equation is equal to the saving rate,
Moreover, with this saving rate, the rate of growth and the rate of return
are the same,

Denote the rental of capital vintage v at t by =r(v,t) .

L At
P(t-—-m,t) =0, 1l - W(t) W =0 , W{-t) = be ( I'ﬂ) B

rlv,t) = a=W(t) iv = A beh(t-m) __%_ = a(l_eh(t-mpv)) ]
be be 2

Let m denote the share of gross profit in the economy,



f r(v,t) I(v) dv

_ tem
L= )

i
a f‘ I(v) dv

t-m

T
]” e eh(t»mdv)) e(n+h)v A7

t-m

t ’
j" e(n+-h)v i

tem

O i o R

n 1. em(n+ﬁ) m

Using the equation for m ,

n

e—nm = (1 n+R)n+A

as 2

3

A
n+ﬁ)n+h
as

°

A
n+h)n+h n+l)
as

(1- as

ke

A
1- (1 + = )

A

sy = 1. 28 Dok y bk DLy -
n(s) = 1- n [(1- s ) - (1 = CE ) ]
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Take our equation for maximum consumption,

n A
DAt |, n l-s h T DN
(1- as) ta s (1~ as ) G
: A
miltiply both sides by (1- ZX)™  and we find
o
n les _ Ay 1A 2 O
e = (1o =) - (- =) ,
s, ) =1.8222 =5
mazt n -a s

So with the optimal saving rate, the share of profits and saving rate are
the same,

Now let us show that in this situation also the rate of interest and
the rate of growth are the same, With perfect foresight, the cost of pro-

ducing a new capital unit and its discounted value should be the same,

Tm ’
a f (1 - e"‘(““"m“t)) e~T(u=t) 4y o g [31 ,
+,

a YT e e“km
;-(1 -8 ) =8 S T 1y

3, Professor Solow has shown that under the assumption of perfect foresight
the only possible rate of interest in this situation is a constant rate,
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r r A
a n+A \nA a kA TikA LR

b= al | — e | s s i :l
15 L1-(1 as > A-r (@ a ) A (1 i

s as *

Now let us try the rate of growth r = n + A as a solution,

A
& e rq BFA a DA \n+A rq DA N
— [1(1-T)] -5 [A-=) - (A-=5)] =1 ,
for the optimizing
A
DA 1A Ay 0 les
(1 Zhymih (qL By S Bl

and

1 arn l-sa -

s n [a s he

So with the s of the golden rule, the rate of growth and the rate

of interest are the same, n + A [4],

L4, It is easy to see that n + A

is the unique solution of this equation
for =



CHAPTER ITI

FURTHER IMPLICATIONS OF LEARNING BY DOING [1]

To make this discussion more or less self-contained, we shall describe
briefly the main features of Arrow's model, Arrow's basic assumption is
that productivity is related to cumulative gross investment, Instead of
having productivity increasing as a function of time, say A(t) with
A(t):>0 , wWe assume that it is a function of cumulative gross investment
G [2], The basic assumptions of the model are the following:

1, Learning depends on gross investment,

2, Technical progress is fully embodied,

3., Fixed coefficients,

I, Fixed physical lifetime of a machine,

We shall use the following notation:

t
G - cumulative gross investment, G =‘[-I(s)d(s) :
v(G) = a - output capacity of a machine with © serial number G=a ,
A(G) = bG™" - labor requirement per unit of time for operating a
machine with serial number G ,
L - total employment,
X - total output of final products,

1, K. J. Arrow, "The Economic Implication of Learning by Dcing", Review
of Economic Studies, June, 1962,

2, Generally, of course, G(t)>0 , so that instead of having techno-
logical change as a function of time, we get technological change as
a function of some monotonic transformation of time, There are many
similarities between the Arrow model and a model of fixed-coefficients
embodied technological change,

RO LES
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We shall assume in what follows that the economic life of a machine is shorter

than its physical life,

G' = the serial number of the oldest machines used at a certain

time,
G
Total output x x~[-y(G) dé = aG - aG' ,
Gl

it

G G
L :f A(G) da = bf 6 de =@ e, nAL,
e G

b log %' 3 n=1 ,

By solving for G' and substituting this solution, we find

15

x = aG[1-(1- —=—)", oA,
cG
: Sib
where ¢ = T »
/
X =g0(1 =0 L’b) . n=l ,

If wage w 1is measured in units of x , then the oldest machines

must earn zero quasi rents, so that

a -Gt ™ =0,

G = (W‘Sﬂ L/n
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Arrow pays special attention to the case of exponential growth, in

which labor is growing at rate ¢— and accumulated gross investment and

cutput are both growing at the rate of Tgi: :  he proves that with

stationary expectation, the interest rate is constant, r

Social and Private Returns

Let us say that society saves an extra h units at 0 when
the serial number of capital is G(0) , The product we produce with the
new capital is ah , but we need to shift labor from the oldest capital,
so that we lose precduct in the amount az , where 2z is the amount of

capital scrapped,

il 1
e 5 e 1-n
2 = [(G)™% TP (@l
A L
2 len L+l-n l-n L\l-n
/\x = ah = a {[(G+h) " - CJ (6 - c) :

Caleulating S = lim 22 . ye find

& _ or1(@hm D10 67 = apa(@y. (3.1)

Thus at a time when the serial number is G , society has an extra pro=-
: : ’ y ' :
duct in the amount of a(l—(gm)n) . It is clear that we could have found

the marginal social product of capital bty calculating

2R - -
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On the other hand, let us now calculate the private rental of an
extra unit of capital investment when the capital serial number is G(o) .
Quasi rent at time t for a unit of capital invested at O is a=-w(t)bG™(0) ,
and wm(t) = % G*™(t) . So the quasi rent of capital invested when % =0 is
a[lu(%i%ggdnﬁ s G'(t) is increasing and at some t>0 , Gr(t) =G(0) ,
and this capital is scrapped.

It is obvipus that uniformly with t ,

-G > an- G

with equality holding only at t =0 , After G'(t)f:-G(O) , the
private rental is 0 ,

It is easy to find out what happens in the éxponential world
described by Arrow, Here ot is constant, and if m is the length of

G
life of capital,

=L (tem) ‘
Gea -
G'* o 2 l-n
G G °
G el“n
(0]
=
. .- : Tem
The marginal social product is then a(l-e ) , which is a constant
independent of time, Quasi rent is
e

- = n(tem)
a[l-(g’_%%)n] = a[l-e"" ],

At t =0 it is the same as the marginal social product a(lue"gnm) , and

then it declines and at t = m it is zero,
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For the case n =1 [3], x = aG(l_e“L/b) y

%?%-m a(lae™ L/b) = a(l- %') :

and MSP = a(l_(%q)n) holds for all n< 1, Let us denote by P the
socizl rate of return and by pp the private rate of interest, In the
exponential world in which Arrow has showm that the rate of interest under
perfect expectation or stationary expectation is constant, it is clear

from the dominance of marginal social product over private rentals that
u

@ - ®
,.ff(x)dx
s Using the identity 'f~f(u) 8 gu=lt , af ‘qu(x)dx is
t t
divergent, we find that at each t +the instantaneous social rate of return
is ps(t) = a(lw(g' z ) . The only case of constant social rate of
return is of constant G*'/G , which occurs in the exponential case, In
the case of "quickening", when G*/G is an increasing function of time,
the instantaneous rate of social return is decreasing; this is clear

intuitively, since we transfer labor from "not very old" capital to new

capital, As an example, if %0 e s, a>0 , then ps(t) o= a(lme&ant).
1
We find %' by %’ Eii Iirn)l“n and by knowing the profiles of L

CG
and G (or saving profile), All pricing processes and distributional

characteristics of the model can be expressed in terms of G*/G .

3., For this case, R, Solow reached the same result by a different approach
(unpublished lectures, 1962),
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It is more difficult to follow the pattern of private rate of return,
If m(v) is the economic life of machines born at v , and assuming

perfect foresight, pp(v) should satisfy the functional equations

e
vem( v ) ]‘ A
= p (V)dd 1_(6" 1% )njdt =l
4 J’ B p L G évg

A’

and

G (vem(v)) = G(v) .

In the exponential case where the life of capital is constant m , the

equation takes the form

t
b n Ig-_g(t_v-m) -f p_(v) du
j-a(lue) - ) e 4 P gEr= 1

v

where i9§: is the rate of growth of output and m is the length of life

of capital, Arrow has shown that this equation possesses one and only
one constant sclution, It is possible to prove that this solution is the

only solution of this functional equation [4],

L, To prove that the functional equation for p_(t) ¢ n have only a constant
for a solution, change the variables to — P T =t -« v and then

m n
fa(l-ei:g G—(ﬂrumo) e~ f Pplvdde gz =

The right-hand side is independent of v and the left<hand side must be

also, Denote ”

f pp(V) du = R(v) .

(o]

R(v+7) = R(v) must be independent of v for all T , The only function
that satisfies this is a linear function, R(v) = p+rv , and since
R(oc) =0, R(v) =rv and Pp =T .
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Shares of Capital and lLabor

The pseudo production function

i

L Jd-n
x = aG[l=(1- Y7y o]
cat

is of inecreasing returns to scale, and it is clear that both capital and

labor cannot get their marginal social productivities, However, let us

calculate
B
ex 1.8 n L _yl-n
L ok -l-n e G‘ (l'- l—ﬂ) 9 (3.2)
CG
l-n Lon
1 i 1. 1-1’1
dx  [( 7)™ s (=)
La ) Gl-n c G3+n
= T "
: L dl-n
btl"(l" l-nl'l) ]

which is the same as the result Arrow gets for %% . So in spite of the
fact that all the income of labor in this model is rent, since labor
offers itself inelastically, labor gets itz social product, which clearly
means that capital cannot get its marginal social product,

Let us assume that capital had received its marginsl social pro=

duct; then the share of capital would have been

n

Ly genilon
e X i

Q/

G

"o

1 9
: 5=
p[1=(1~ --%:;) m
o'
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J x G*\n

et lat)

X 1l - %L
)

1-() G2y
Assume O¢n<l and 0L ———7fr—d 1, using (‘aﬂ‘)él and
L oL
(%19n>>%1' « The implied labor & share is

¢ x G'\n G
i ' G .
i 1l = (E—

Caleculating on the other hand what labor really gets, we find

i Gryn (Gr
a_e@malnen 1 G E
X b G = U l-n e (_g__'_ )

So we get the simple relationship between actual wages and what the wages

would have been had capital received its marginal product, The labor share

is inflated by a factor o= and f-lm-i 51 for O«n<l , Capital share

Gtyn _ GY G! yn
T WL., " 1 (G’ ) - (G ) 1 [l“ (G ) l’l] [;]
x ln , _G' len®™ G 7 e
G G

As a m2ttav of fert. whv not pav capital above its marginal social
product if it increases savings and we are in a situation where more
saving increases total social welfare, This is true in the no=time-
discounting case, at least so long as the saving rate is below the

"golden rule" saving rate, which will be discussed in this section,
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The income of labor is rent; for efficient allocation over time we
must pay capifal its marginal social product without regard to labor wages,
Notice that in this model capital returns are also rent, Saving, or allo-
cation through time, is the only econcmic alloeation problem in the model,
The government can impose a tax on wages at a rate n , and then transfer
the proceeds to all people who once invested, regardless of whether the
capital they invested is being used, The subsidy will increase and will
eventually achieve the level of the marginal soecial product of capital,
Eventually the capital will be scrapped, but marginal social product re=
mains the same, since it increased the serial number,

Thus in the exponential case, Where marginal social product of capital
s (g = i%g) a{1=e"®™)  and vental of capital at t is a(l-eng(t“m))

each unit of capital gets a subsidy of a(l-e™®™) = a(l_eng(tam)) = aewgnm(engtalj

for 0K t<m and a(1-e™®™™) for t>m , It is clear that in the non-

capital vary, we shall get a rather complicated subsidy system, and what is

more important, the subsidy payments are not connected to the use of capital,
Capital may be long "dead®, but since it added to serial number of today, it con-
tinues to have social product, In the exponsntial case the subsidy is of type

SUBS|DY

s t
ae®(ed 1)

O
+
3
o
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For the general case as well as for the exponential case, a simpler
system of subsidy which would accomplish the same result is the following:
tax all profits and proportion n of wages; then give back a subsidy to
all investors so that each receives payment according to the proportion
of his accumulated gross investment in total accumulated gross investment
up to this date, It is clear according to our shares calculation that in
this way capital would get its marginal social product,

To find the welfare effect of our subsidy, we must assume some
welfare function of the type used by Arrow and then assume some functional
relationships between saving and rate of return, In the case described by

Arrow, this type of subsidy guarantees Py B .

ofl- (=8 .

Using Arrow's (40), (%Lon = (1 = é%on where | = %’ :
- odsm B
== OLLL) S

using Arrow's notation (l- Eﬁ =y , v =W, Arrow is showing that
vy = (1= g%Jn on the optimal path, which implies that the "capital-output
ratioc G/x is the same on the optim;l path and on the competitive path
with the subsidies,

The influence of the increase of private return on allocation over
time depends on how saving changes with the rate of return and on our

objective function, We have here followed all of Arrowt's assumptions in
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his last section (p, 171), especially the section before formula (61),
Individuals have a rate of time preference of B 5 +the supply of capital
is infinitely elastic at private return of B , Society will take all
investments at a rate sbove B , none at a rate below B , So the
private return must be B 1in a case where some, but not all, income is
saved, With the subsidy, there is no divergence between the private and

) ! dx '
the social return, Social rate of return = —5 = private rate of return,

d
dx

Jx
G e

and so Sh— = B , We shall show later that implies that we
are on the path calculated by Arrow,

In the exponential world,

Loso—% ! C[Gi’n S Gj“ﬁ eo(t-m)]

T et R

o o
L
= 1, 1l
T 1
CcG
o]
L
o Tk - o N _ ik G
m=-=log (1= e B e log (G .
0 len

G0 s as we shall now show, is a function of the rate of saving s , Then
G . i 3 ‘ : . : : :
o~ isa function of the rate of saving s 3 since all distributional

' ]
characteristics can be expressed as functions of %— s the system is
determined by giving its rate of saving,

Let use Arrow's (23), labor cost per unit of output,

e G*'\n
(G ) .
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Arrowts (39),

7 =0
Gr\n 1.\n len (2 Gs 1-n
(E}H)”(l“;ﬁ: =i as)’ Gml' as ’
o
L G ‘Ten
m = = ey log (G B log (1 = = M (3.5)
l=n l=n
dm
ds<0 *

The first thing that we notice from this is that to get exponential growth,

g o
; . l-n L=n - s mold
a hecessary requirement is ——<1 |, e <a , which clearly implies

as

7—<a . This condition is brought up by Arrow in his section on optimal
consumption, where he requires (52) B>-I%n s, (56) a>B , implying

a>'i%£ . For (g—') to be less than one (i.,e,, for W(v)>0 real) we

must have ﬁ<a and s -]-_-g-ﬁ < a 4 a condition which we will use in the

discussion of an optimal saving program, Secondly, we can solve for Go

as a function of s

I = o
1=-n Lty
(1=- O‘ ) = (1“ ) 9
CGl-n as
o
SO
6, If s <_}_.§_r._1_ s the rate of saving is too small to maintain steady growth

at rate 1%': with constant lifetime,
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Ol 1dR Jden
1- CGl-n = (1- as ) '
0
o3
ek L
lan \len o) Al
1-(1~ as ) = @ Jd<n 7
G
O
A
("
6 (s) = : :
o i L
wn [ 1“ 1—-
[l—(l- 1asn ) n] n

We could get this dirsctly from the exponential solution to the differential

eguation G = &x ,
G?
G

increasing the rate of saving, we get a quickening, i.,e,, shortening of the

As s goes up, is increased, i,e,, m 1is decreased, So by

effective 1life of capital, If s =1, i,e,, with no consumption,
o o]

Eop. ad m=- log (1 - ==E-) , which is the lower

l=n
bound on the effective life of capital,

Stability of Exponential Growth

One of the basic questions which Arrow does not discuss is the
stability of exponential growth, Let us assume a constant saving rate s ,

The motion of the system is described by

L eUt e
G = sx(t) = sa G(t)[1-(1= glmn)l-n] .
C
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o

—
Trying the exponential solution G(t) = G.e Lo , we find
e
= len
1% = sall-(1- 27 .
CGO

Solving for GO in terms of saving rate s we get the previous expression
Bifof s Go(s) , which is a monotonic inecreasing function of s , This is the

only exponential solution of the system, Writing the equation in the form

ot 1
] L e ey
& - safle(1e ~2)t "
¢ g bl
g !
To prove that G(t)—>G & , we must prove that -g-—‘»‘*i-g?l- .
G
Assume that at 0 we start with z > -1%11- . Let
dlog G .G g
at G = G é(t).

4(t) is a positive function, since if ¢(%t) reached zero, then it would

stay on the sxponential path,

log @ = C, + 3% f(t) it
O
Let us now look at the function (¢ (t) = f ¢(t) dt , which is

monotonic since g(i) = ¢g(t)> 0 , There are two pOSblb“'lltles: either

g(t)—>C; , a constant, as t—>c, log G—=>(C +¢C ) e b

s, and
t— o



a8

o)
and G-—b(}oej'"'n , as we want to prove; or else { (t)-—>oo0. We shall
t =00
rule out the second possibility,
c t :
G=e° el'n et(t)
and
ot 1
* L e P
G o len
= = sa[l-(1l- ) ;
G G
Co © eoi e(lmn)E(t)
G L, L
= sa[l=(1l= - Jl-n
a e(l«n)co e(1¢n) (L), iy
If & (t)—>w, the right-hand side tends to zero, a contradiction
. T—> )
to S Similar considerations show that if §<,_g__ at 0
=& 3=n g G len !
it must tend to %=, and G tends to Goel‘n ;

Optimal Saving in the Arrow Model

We should now like to bring up a few interpretations of Arrow's
optimal growth path, First of all, let us point out that Arrow does not

take into account that the initial serial number G(0) is given, So

in (49), U =10, - lin ™Y G(t) + 6(0) , but then in the optimal
t—=om AT
behavior he derives optimal capital expansion of the form G(t) = T .

where G is the constant maximizing the expression

1

L
il =n
Ha-Bea(le—)"""]
G CGl--n
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But for t =0 we find G(0) =G , so that at t = 0 we have a discontinuity

unless G = G(O) . Since we want maximize

(00)
=fe"Bt o(t) at

0 x

intuitively it seems that so long as 3G ° or rather, Eﬁ% s Tthe own
rate of interest, is above B , we should invest everything; then when
marginal product of capital is below B , we should consume everything,

Eventually we reach a path where o B ¢

Gryn _ B .
(G) “1"8. Y o
But on the éxponential path,
n
L [
] 45
G = (- =2
CG

(Arrow denotes this term by V .) The optimal path is obtained by V =¥y ,
which is the solution derived by Arrow, Thus we see that the solution is

of the following typey if ‘; >B , invest everything wntil the path -—g—g» = B
i. reached, Now as labor is continuing to grow, invest exactly the amount

required to remain on a G =8 [7].

7. We know that the path is exponential, since only on the exponential path

: X !
is "é*'"a a constant,
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Alternatively, let us apply optimal control theory,

1
@,n) e 1
SR

s(t), the saving rate, is our controls E'}(t) = s(t) X(G,L) ¢+ O < s(t)< 1.,

Now applying the Pontryagin maximizing principle, we define a Hamiltonian,

H = o™ [1-s(£)] X(G,L) + ¥(t) s(t) x(G,L)

™% x(6,1) + [4(t) - %] x(6,L) s(t),

il

° o =R 3
by = - SHa o Ox ey L oY SEu(y

Now if

He)>e Pt sy =1
(L) < ik ; s(t) =0 .

. - -t , :
In the third case, where (t) =e =~ , the maximizing principle does not

help us in finding the control, It is clear that most of the time the
path would be in the situation ¥(t) = el ; 1;1(’7"-'.-) = =f i s and
t{f(t) = gTPE "g‘% implies %QGE =B .
¥(t) can be interpreted as the price of the capital good in terms
of the consumer good, If it so happens that ¢(t) > s , saving everythings
é(‘?') = X(G,L) and G will be growing in the exponential case fszter than
L until we rsach g—}é- = B , where there is in the exponential case only

one rate of s which will keep us on the path,
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It is obvious from W=v =y =1 = §= that if B dis higher, vy is
lower, and so from v = (%f)n = (1 - é&) it is clear that u = %- is lower,
or that the saving rate is lower, (Obviously O<v<¢l , or O<Bca .)

If =0, i,e,, if we do not apply any purse rate of time preference,
the functional 1s now convergent unless we apply a different utility
function, But we can still find among all exponential patterns one which
dominates the others and which we can call the "gold rule pathv [8], We
shall find the rate of saving such that among all exponential patterns we
get more consumption,

As we have slready shown on the exponential path,

e
5 G
Go(s) = A
1l o \l=n-l-n
1 —— i
[1"'(-‘-“' sa, lun) j
O
Production is growing like x(o) L , and consumption like
=g
(1l-s) Xoel“n . We want to maximize xo(l-s):
- E o
Gla) = SX_ s G, T = S,
implies
=D
KO(S) = Osl—n \
- L 5,05
So we want to maximize xo(l-s) = e (l=s) = ¥(s) 3

8, It is not exactly the ordinary golden rule, since the pseudo-production
function is not homogeneous of first degree,
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la=s 1

o Max =2 ‘L=Max y(s) .
l=n 1 g yl-n-len
a '{.SS.I [1_(1‘- sa len ]

On the boundarises, the function ¢(s) gets the values (1) =0 ,

a
( =D = & =1>0 3 so if the function has one extremum, it mst
a g
len

be the maximum or inflexion point,

?

log Y(s) = log .3.-::"&,;, log G(s)

e AR 2
d log*“gs} = (1-n) - - _3__._) i 1 sa_l-n S :
ds l=5 52 1=n [1 (-q _].__L)lmn]
=\ 52 Ion

d lo S =
i = D

Thus we have a compact set and the maximum is not attained at the

bounaries; the extremum must therefore be a maximum if it is unique:

lea l=n _ 1

y Max (_s_') _‘]___ 9
vy 1- & g yl-nql-n
1-n ¢ s<l [1-(3- sa la-n)

e

1
Max (_J_.__.)l-n ( s =5 & )l.-n ¥

E%H 1=5 S T T T




or a minimum of the reciprocal:
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. S ks s 1=5 _@ \l=nn
: Min ()it == - === i = (8,
.L;n E'Sf..l
- 1 1l 1 g \=n i 1 o_1l-
1(s) = (Ln)(2)™" - Q)5 - 755 1) - na
1 8 (lnS 2 13 .lﬂb a l-n (l-—s )2 (1“5 )2 1 n a
(By =1 5 i
Vs [la-s les a(l- n)] ( 5 1
1 o
_ g0 R 10 e,
s al L-n) las a(l—n) a(l-n)
Substitute
s 2 1 1 =5%5 .
i=s =0 & > les =~ la=s =ty
The equations for y areg
1 1 1
- a T n g, _anh o ol o n g
y = yli- aflmnij =il- a(l-n)- aldon) © i a(lun)] a(l-n) °’
I i 1
= 1 g o] e 5]
7 4102 iyl + riy - iy = - - i) e
n-l L
[0} n ul g n o
sl ah = a(l-n)
E
g n g (o]
X, [l 2r s ] allen) _ a(l-n)
M n=l L’
n n

& SR
ail_n)‘

o e



(0}
S = L - S . (3-?)
1+y L
g n
e
———
1-n

Now we must check that el e

: (83
sl €2

S = . ’

] 7
- oy

5

- 0] .
O<n<l and O<m<l y 1implies

=

n ] 51
L af]inij <1 aif-nf“‘ g
which implies s<1 , The other inequality,

g

ai Lan 5

i = a(flin) 2
<0

: (o}
i Sy

1
1>{um_¥%m?},

0 > -[1-

So

(0] -
O(m<s<l -
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We note that optimal saving is independent of Lo’b , Which gives
o}
only the sale of the economy, and it depends only on 1l=n .
a
Let us now show that on the golden rule path the rate of growth

and the social rate of return are the same, For this, we shall use

Arrow's (39), which says

-

§

fn
-

and (40),
X i
G == (1- 2 = (- ;E)n :

aG

Assuming that the social rate of return is the same as the rate of growth,

g
e G'\nq _ Flon e
Lo afi- (§97) = e 110 200 = R

Solving for u ,

1l/a
o = / p 1 )
T.n \n
1-(1- = )
and the corrssponding saving rate ;

[}

ik gL allon)
T W

l“(lﬂ 1‘“‘. )n
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which is exactly the saving rate that we got by meximizing [9], If
capital, through the subsidy system, receives its marginal product, the

share of profit is

3
B o .

2= w— = e ) =g

oG K lan

(o] 1

L

&

Thus we see that on the golden rule path, the share of profit is equal to
the rate of saving,

It is clear that Arrow's exponential path for B>a >0 dis below
the golden rule path; society, because of its time preference, is not
ready to do the saving to get to the higher path, If society is above
Arrow®s path, it prefers the short outburst of consumption and a return

to the lower path,

9. Clearly we could reverse the derivation and from

1 9
= lan n
le(le == )
derive
ROl
Jd x len




CHAPTER IV
THE RATE OF RETURN AND THE RATE OF INTEREST IN

CAPITAL-EMBODIED TECHNOLOGICAL CHANGE

Let F(XK,L) be the production function of the economy, There is
no technclogical change, and we assume perfect foresight and for simplicity
ignore depreciation [1], The labor force is changing through population
growth, and capital is accumulated through saving, The instantaneous
social rate of return or force of interest in the competitive model is
FK[K(t), L(t)] = r(t) [2], The instantaneous rental of capital at t
is also r(t) , The discounted value of rentals at any t is 1 ,

i.e.y the present value of the rentals stream is equal to the cost of

production of capital, To show this, we have to prove

u
© -fr(v)dv
j’r(u)e o du =1 ,
o
u ®
Substitute w :‘f‘r{u)dv . %% = r(u) , and assume j-r(u)av = @ 3 We
then find : &
u
% - fr(v)dv ot
j‘r(u)e i du zlf.e“ Vaw=1 |,
t t

1, There is no difficulty in bringing into the picture radicactive decay
in rate & , It is easy to find that this will reduce the social rate
of return or the rate of interest by 6 . There are difficulties with
other types of depreciation,

2, For th~ following, see Paul A, Samuelson, "The Evaluation of fSocial
Income®; Capital Formation and Wealth, in The Theory of Capital, Lutz
and Hague, eds, (London, Macmillan, 1961), p. 42,

- 47 -
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It is easy to include in this analysis disembodied techmnological
change also, Again the instantaneous rate of return at t is the marginsl
product of capital at t , As an example, on the exponential path with a
rate of saving s and Cobb-Douglas production function F(K,L) = ehtKl“mﬂx ’
r(t) = (1-a) ﬁ*ﬁ—%-g- [3,4]. Recent discussions of Tobin and Solow [5]
reveal the fact that the situation is quite different in the embodied
technological change, The social rate of return and, since there are no
externalities, the rate of interest turn out to be below the rental or
marginal product of new capital, Solow and Tobin dealt mainly with the
capital-augmenting case, and we shall in the following try to prove that
under general conditions this will be the case,

Let F[I(v), L(v,t),v] be our production function and r(%t,u) the
rental of capital vintage t at u, If m(t) is the effective life of
capital, i.,e,, r[t,t+m(t)] =0 , then the functional equation which should

be satisfied by the rate of interest or rate of return, =(t) , dis [6]

0
tm(t) - [ =ty
1= f r{tyu) e {I( ) du

1

’ A : : T s ‘

3 If s=le«a, r=n+ =y the rate of growth 1s as expected,

4, In an unpublished note, Solow calculated in the disembodied case the
maximum sustainable increase in consumption by one unit of extra
saving today.

5. Robert M, Solow, Capital Theory and the Rate of Return (Amsterdam,
North~Holland Publishing Co,, 1563), p. 56,

6., Here we use an unpublished theorsm of C, Von Weiz#cker which shows
that in capitaleembodied models of this type, the rate of interest
and the social rate of return are the same,
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We do not rule out the case m(t) = @, By the nature of technological
change, we must have 0 < r(t,u)< r(u,u) for all u>t , According to

the theorem proved,

u
fr(u,u)e t du. = 1 9
.t
and hence,
u
tm(t) - j-r(x,x)dx
f r(t,yu)e + e
+

L7

So generally r(x,x) should be greater than the rate of interest, We
cotld not show pointwise dominance, but the instantaneous rate of interest
cannot be the same as the rental of new capital, and generally it is below
it, We have to take into account obsolescence, or in the case of social
return, the fact that new capital is more productive,

As an example let us calculate the social rate of return in Cobb-
Douglas embodied technological change with constant saving rate and a
golden-age path [7],

Let the labor force be L(t) = Loenf’ and investment TI(t) = sQ(t) .

a l-o
In the golden age, Q(t) =@ ef®, Q(t) =B L(t) J(t) , while

15
Ta ¥
J(t) = fe I(v) dv
=00
L S ,
Qoegt = BLg Ll e Qiua [J‘elam I(v) dV]lda ’
o]

7, See Solow, "Investment and Technical Progress", in Arrow, Carlin and Suppes,

eds, , Mathematical Methods in the Social Sciences (stanford University
Press, 1960), We shall use the same notation as Solow,
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and

i l-a
BG'L sa‘
Q= S e
o} 1o y
A
[l-ﬂ. ja

Using the fact that we reshuffle the labor so as to equalize marginal

product, one can get (Solowts equation 9)

?‘ + g)v
LO = h(t) sQ f du

and

Lo =
-—(—-}“ t
(I"" o+ ) 9 e-a' 1“@)

o 0

h(t) N SQ ]
o

We find for the marginal product of labor at t , m(t) ,
Clmel (";‘_.a + g) Lc..a,nl %t
m(t) = aB h(t) = aB [u;;_a____m,} oo :

(o]}

Using Solow's equation (13), the quasirent of capital vintage v abort st

@ o=, A . so(lea) ca(l-a) 2,
o Ba (1»-0, +g) Ls e?t(vu-t)jlwa
a(l=a.) a(l=a) =
%

r(v,t) = (1-a) [




o

Substituting for Q, » We finally find

AT
1 ; = v=t)
_ L= A a..;.cda
rlv,t) === =4 g) e

and
: lax , A
r(t,t) = == (y= + gl .

Now, the rate of interest should satisfy the funetional eguation

v
> nfr(x)dx
1 ZIr(t,n) A du
t
or
u
W ey
N W 1@(‘1 f)e fr(x)dx du
s “leo it &
L
Differsntiating both sides with respect to t ,
u
® A . ¢
-2 CeatY o [ wlix)ax _
a0 Tog ‘ot f"“x) X s Yo sk
5 ‘ia ¥ g>fe % G GRSl S
e

Using the original functional equation,

AL + u:"'.'.,“l"i.u el
lua+r("')”s {luﬁ,+g)’

, 1 A : ; A
TSR R  TR i e

8, Again for s=1l-a , r(t) =g .
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T 1s the rate of capital augmenting, and the rate of return is the

rental or maginal product on new capital minus the rate of capital aug-

menting [9],

e

Remembering that g =n + =, we find that

w(t) = i)y i)

°

Solow [10] claims that unlike the disembedied case, it is quite
possible in the embodied case that the rate of return will be a decreasing
funetion ¢f A and may, though it is not plausible, reach negative wvalues,
We ses that in our cass, »r(t) is instead increasing linearly in A , It

is inversely related to s and has a lower bound for s =1 3

r('{‘;) = -(u-i“:c]-;‘j'a_ t I!.(lcﬂo),

If u is the rate of capital augmenting, r(t,t) 1is generally an increas-
ing function of p , say ¢(u,t) . Tobin and Solow showed that in this
case r(t) = d(pst) = u , and so if %%é- >1 for all t , the rate of
retiurn will be, as in our case, a monotonie increasing function of p o

We could carry on similar discussions on the determination of the

social rate of return in different golden-age situations of the type

discussed in the first chapter of this work, In all these cases, r(t,yt)

9. It is easy to include radicactive decay of capital at a rate of &
we then find by the same methods =»(t) = r(t,t) - & = =

10, Solow, Robert M,, Capital Theory and the Rate of Return, op, git,



e

and r(t) are constants, and using the thecrem we proved r(t) <« r(t,t),
It is hard in these cases to compute explicitly the rats of interest as a
function of the saving rate and the rest of the paramsters of thes system,

We always get squations of the type

t4+m
jﬂ e“r(u”t> tyu) dn =1
15

and because of ths monotonieitfy with respect to r and the fact that the
range of this function is from zero to infinity, we get a unique sclution,
It seems hopeless to solve these equations in the cass of changing rate

of interest,



CHAPTER V

NOTES ON MALDOR-MIRRLEES®' TECHNICAL PROGRESS FUNCTION [1]

Despite all "non-neo-neoclassical® pretensions, the Kaldor-Mirrlees
model is not very different from the classical model, It is especially
similar to Solow’s model of embodied technological change and to Solow's
notion of ex ante substitutability and ex post fixed propertions [2}. It
is especially elose to Phelps' model, "Substitution, Fixed Proportion,
Growth and Distribution® [3].

Let us use Kaldor-Mirrlees notation, Py denotes oubtput per worker
on new machinss, it investment per labor on new machines, For simplicity,
let us ignore physical wear and tear, Let L(t,%t) be labor using ths new
equipment, I(t) the investment in new equipment, Assume with Kaldor and
Mirrlees or Phelps that L(v,t) = L{v,v) for all t2v as long as capital
vintage v 1is uvsed, Kaldor and Mirrlees implicitly assume that after
I(t) is invested, the capitalw-labor ratio is fixed; we cammot alter the
labor necessary to operate the equipment after the equipment is pro-
duced, There is an implicit assumption that capitalists have some freedom
to chocse their technique of produciion before the machines are produced,
but then machines ars either fully operated or not operated at all after-
wards, (Kaldor and Mirrlees make their choice of technique by bringing in
their institutionally determined horizon h , that is, the businessmen want

to get back their investment after h periods.)

1, Kaldor, N,, and J, A, Mirrlees, "A New Model of Economic Growth", Review
of Economic Studies, June, 1962,

2, Solow, Robert M,, "Substitution and Fixed Proportions in the Theory of
Capital®, Review of Economic Studies, June, 1962,

3, Phelps, E,S,, International Economic Review, Septemnber, 1963,

- 54 -
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Kaldor and Mirrlees assume the existence of a "iechnical progress

funetion® £ such thats

% f(-), £(0)>0 , £1>0, <0 .

&
f f’(%} du
For +>0 we find p(t) = Clel , so if capital vintage
v is operated at tov
Qvt,dCefﬂ ) du
L{v,t !
v »

£(3) du
Q(v,t) = C Lv,t)e { * ;

On the assumption that T2 0,

3 L If( ) da
Q(t) = f Q(v,t)dv = f C, L(vyt) e an
fem(t) tem(t)

=10 f L(v,v )eff( 5 dv

tem(t)

o

L(t) = f L(v,t) dv = f L(v,v) dv .
tam(t) tem(t)



Wi o

Now, having the histories of investment I{t) and employment
L{t,t) 4, we can determine m(t) , the age of the oldest capital; and
Q(£)., By assuming some saving behavior, either that all profits are being
saved or rather that I(t) = sQ(t) , and making some behavioristic assump=
tions on the way entrepreneurs choose their techniques of production, we

et the way the system behaves along time, We can of course perform in

0

this system computsr experiments similar to the type proposed by Solow,
We can, for example, assume as Phelps did that entrepreneurs assume that
the rate of interest remains the same while the wage rises exponentially,
There may be soms problems of divergencs of social and private return if
the individual investor does not get the proceeds of the beneficial ine
“lusnces of his investment over total produstivity, but in the Kaldor-
Mirrlees model this is not necessarily so, as we shall try to show,

First of all, on the exponential growth path to which Kaldor and

.

Mirrlees pay spscial attention, %-: B - a constant and, say, A = f(B) ,
\:

Q(v,t) = € & L{v,t) , and with constant capital-output ratio Q(v,t)

aIl{v) . Sc we get exactly the same results as those of Tobin and Solow

i

in unpublished notes on fixed coefficients and Herrod=-neutral embodied
technological change, which ars discussed in Chapter IT of this work,

Of course the causation is different, but insofar as vpositive eco-
nomics" is concerned, we camnct distinguish between the two models «= the
capitalelabor ratio remains the same and the capital-labor ratio is increasing
exponentially, Kaldor and Mirrlees try to bring out some heuristic arguments
as to why exponential growth is a stable path so that if we are not tco far
from the path of exponential growth, we will get roughly the same results,
and indeed, it seems that nature did not perform an experiment with enough

varisncs to distinguish between these models,



o
If we have small varistions in 41 but variations that can be

approximated uniformly quite well by a linear function f(i’;) =q + B(:-iL") [u] ,

®

a + B(%) 9

3 foe
]

B 1=p
alv,t) = ¢ & I(v) L(v,v)

i B 18
(L) = ¢ f o T(v) L{v,v) dv
tem(t)
T
Kt) = [ o) av ,
tem(t)

The similarity between this kind of model and that of Phelps is
obvious, We could have started with embodied neutral technological change
in a Cobb-Douglas production function, Before investing, capitaiists can
choose any capital-iabor ratio, but beyond this point capital is congealed,
We can even bs a little more general and assume that the producer faces ex

ante any first-ordsr homogeneous prodaction function Q = F(K,L) , and

with Hicks-reubral technological change, we get

4, Assume ss an example that the technical progress funection has the shape
L] L} L]

log (A + v *{) = log A + log (1L + f {) , and if variastions in i— ars
aks .

s
e

smsil, this can be approximated by loz & + ;—{: -
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Q(t,t) = o' FLI(L), L(t,t)]

which implies

Where g(K/L) = F(%y b

B, 2. g rCr 0 :
i:v =y + (,E;?;_i_)(%) = o(1)(D) + v .

6(i) is the elasticity of the production function with respect to

K3 in the Cobb-Douglas case it is a constant, So if we have t chnicsl pro-
.

grass funcehbion d(i,i) =y + 9(i)(%§ s, 028(i)<l , we can still give
our model the interpretation, as Phelps does, that the producer faces an
ex ante neoclassiecal production funetiong but once investment is made
according to corresponding expectations, everything is congealed, Once
the history of the capital-labor ratio i{v) and investment I(v) are

given, we get

i
g—'ﬁt‘!"

L{t) = i(v) I{v) dv ,
tem(t)
%
PN O YU rfe)) ZAVD
tom(t)

This set of squations gives us m(t) and Q(t) , The wage rate is

given by the requirement



el

M) o(tm)) = w(t)

Qt) =

e(t)) o¥F (1)  g((tom)) oY EKEN) Tes (o)) (Teme(8)) |
k(%) - k(t-n(t)) ’

I(A)  I(tem(£))(1 — me(t))

L(t) = 7% k(tem(E))

By substitubion we gst

[e(e) ¥t g((bn(e)) &H A gttt M ice),

By investing today an extra unit of capital, society might have today

ey [e(k()) oVt e(i(ean()) o¥¢¥8));
extra units of output, since by transferring one unit of labor, we lose
g(k{tem)) 6*{(13::111(,";)) units of output on the oldest vintage and gain
g(k(t)) o on the newest vintage, and by having one more unit of new
vintage capital, we have to transfer R;L;)m units of labor,
A% time % , society gets from invesment made at < (if v>t = m(t))

extra product of

ey [a(k(7)) o7 gli(tan(t)) tam(t))y

BY] =]

(Wesn v = tem(t) , it is reduced to zero,) The individual investor, on

the othsr hand, gets rentals of
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ey et - BY

w(t) = o) orcenceyy]

Av 'Y( 'Uam('!; ) ) ‘
Ty elidn)) = 3 ki:g;(tmm(m] :

ard there iz ro divergence between social and private return,
The individual imvestor wants to maximize
+otm( )

~ { il )
e’ o(k(t)) = wlv) =5(vat) .
f k(t) = dv

ES
tv

where p 1is the expechted force of interest and m(t) the expected 1ife

of capital, 9.6.y
’\{t . 3 ; 7%
o' g(k(t)) = w(tim(t)) .

We can agair do some snalysis with exponential expectation [ 5.
The main novelty in the Kaldor-Mirrlees discussion is of course
e
whensver fﬂ,iu) carmot be derived or very welil approximated by ordinary neo=

classicgl producticn funstions, In ail
+

thase cases we cannot integrate
L]

explieitly log p(t) = C + f i =-) dt 3 the whole history counts, It

o}
is bard to do analytical analysis with integral equations of this sort,
5, This seems o be the only consistent sexpectation with & ~usstant rate

of intersst,
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Performing computer experiments of the type proposed by Sclow may give us
P ype prop g J B

o =,

ome feeling for how the system is really different from neoclassical

V]

analysis

s

nd the divergence betwesn sccial and private capital [€],
Kaldor sand Mirrlses do not offer us any clues with respect to this

problen [71,

6, Ail the empirical ealculaticns of Kaldor and Mirrless are on the
exponential path where their model gives results no different Trom

those ¢f ten other models, as we have argued before,

7., However, it does seem very surprising that Kaidor in his comments
elaims thet golden rule savings in this model are below the share
of profits




CHAPTER VI

A NONSUBSTITUTION THEOREM AND SWITCHING OF TECHNIQUES [L]

o
Samielson, in his papers in Akerman Festschrift [2] and in his

article on the surrogate production function [3], presents the following
theorems

With one primary input, say labor, and with no jeint products, the
priece pattern at any profit rate is independent of final demand (and the
NNNP [4] is linear),

We shall give in the following proef of this nonsubstitution theorem
in a generalized Leontief model,

Let thers be kl activities which can be used to producs good 1,
al}’ a.l2 i alkl $ k:2 activities to produce good 2 4, ,,. s &nd kn
for good n , BEach activity is composed of & colurm of n + 1 elements,
The first element (which we shall denote by 0 ) gives the labor require-
ments, and the remaining n components give the requirements of inputs of
goods to produce one unit of gross output of the given commodity, There

is only cireular capital in our models each year's capital is used to

L . £ A AR

1, The following theorems have been proved or suggested by P. A. Samuelson,
Hers I shall present complete proof for his theorems,

2, Samuelson, P,A,, "A New Theorem on Nonsubstitution®, in "Money, Growth
and Methodology? and Other Essays in Economies in Honor of Johan Akerman,
H, Hegeland, ed,, (Stockholm, CWK Gleerup Lund, 1961),

3. Samuelson, P,A,, "Parable and Realism in Capital Theory; The Surrogsate
Production Function", Review of Economic Studies, June, 1962,

4, NNNP is the set of baskets of consumption that are open to labor; we
use here the terminology of Samuelsen in reference [2],
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produce the next yearfts output [5], Altogether we have iﬁl kﬁ.

Leontief matrices; let us denote them by a, b, ¢y ... . Assume all these

input-output

matrices to be non-negative indecomposable matrices, In the following, we
discuss only stationary states in which prices and the rate of interest do
not change, We normalize our prices by assuming that the wage rate, paid
at the beginning of the period when the labor is supplied, is unity,

Let a rate of profit of 'r be given, If a has been the only
possible matrix, with a, its correspondent labor requirements, then the

prices in a stationary state satisfy p. = a_.(l+r) + (1+r) a. . P:
3 03 iy e
=

or in vector notation, p :ao(l-i-r) + (l+r)pa and p =3O’1+r)(1=(1+r)a)°1 .
This of course says that in a stationary state, competition drives the
price of a good to its cost of production, r has to be below the maximum

sustainable rate of interest 1™ s 1in other words, A = M'L should be

L
greater than the Frobenius root of a , J\* = -]-f!'-p?re . Then the inverse

[I-(l+r)a]al is composed of all positive elements [6],
Bach p; is an increasing function of r 3 to see this it is

easiest to expand [Ia(1+r)a]”1 and to get

p = a (+r)[TH14r)a + (1+r)° 8° + 2es + ()2 P = o001 71

5. In all this we follow closely Piero Sraffa, Production of Commodities
by Means of Commodities (Cambridge University Press, 1960),

6. See F, R, Gantmacher, Applications of the Theory of Matrices, Vol, II,
(New York, Chelsea Publishing Co,, 1959), DP. 6169,

7o By our assumption that r« r* s the series is convergent %o [Iw(l‘ﬂ“)&]l
see Gantmacher, ibid,

o

9
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So pi(r), with all a elements non-negative,is a monotonic
increasing function of r 3 moreover, pi(r)—mn 88 P oP o

Alternatively, if we look on the factoreprice frontier —%—T we get

Pj\r
a decreasing function which reaches zero at r = = . The
prices can also be written in the form p = ao(lI-a)"l s A= i-i_: , and

all p; are monotonic decreasing functions of A , each with a pole at

: : ’ * L1
the Frobenius root A = Topk °

If we have alternstive techniques for producing some of the goods,
the "invisible hand® will produce a situation in which we find maximum
real wages for a given rate of interest [8], One may be inclined to asks
real wages in terms of what good? Part of the result of Samuelson's non=
substitution theorem sill be that this does not matter, We shall get the
maxinum resl wage in terms of any good or any combination of goedss we
shall be on the outer envelop of the price-factor frontiers for all i ,

n
Theoremz Let A be given, Among the Nl ki metrices there

ai!:

exists one [ ;] for this A which minimizes all the elements of the
a

0

vector p = at(hIna*)ml
Let us start with some matrix a and find its prices p = ao(hIa»a)-l

(r ?i‘;i_._:* 3 otherwise a camot be used), Use these prices, p

=
to
a ?

evaluate the costs of using alternative activities, If for some alternative

activity, say activity (bol, bl) s used for produecing gocd 1 we find

Py = b01(1+r) + bll(l+r) Py, *+ by pZa(l+r) + pee + bnl(1+x°) B

8., See P.,‘A, Samuelson, "Wages and Interest: A Modern Dissection of Marxian
Economic Models", American Economic Review, December, 1957,
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and §l<:Pﬁa , wWe then introduce this activity instead of the activity

that has besn used for producing good 1 , Taking the new lower price, ﬁl .
into unit costs of activities 2, ,.., n we get lower prices for 2, ..., ng
we then must take the new lower prices? feedback, and so on [9], This is
essentially a process that we expect the "invisible hand" to produce,

After introducing the new process, we get a new matrix b with labor
requirements bo . The iterative process described will settle on new
stationary prices, b = b (AI-b)™ ., By construction of b , using the
indecomposability of the matrices, we find that P Py o Continue the
process with b in the same way. Since p is strictly declining during

the process, we cannot return to an "old" matrix, since the prices in the
stationary state will be again as in the old situation, So we have no

cycles and we have a finite number of alternative matrices, and eventually
the process will end, Let us use again a s & to denote a matrix with the
property that if we take the prices generated =ip and use them for
evaluating alternative processes, no process can produce one unit of 1

with cost smaller than Pgi » So for any alternative process bi of producing
good 1

Ap

a1 S AP, =P

(o}

or in matrix notation, for any alternative matrix b ,

9, The indecomposability guarantees that eventually, taking all feedbacks
(pr even n feedbacks are enough), all prices will decline, We use
the fact that if a is indecomposable, then

I+a+ az e e an"l S0
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Pa()\lb) é_ bO 9

Let us multiply both sides by the matrix of positive elements

(JLI=-b)'=l s wWe get
£ b (A\Ib)™ = p
P> % B

So P, is minimm and not even one component may have a lower value with
other matrices, We should show that this is minimum not only among the
matrices which are composed of pure activities but also among those that
are a convex combination of pure activities, For this, it is enough to
prove that if we take a convex combination of the minimizing a,s 2 and
any other bo’ b 4, the prices generated will be no less than P, 3

=1
Py = ao(?\Ina) 9

pb 3 bo(hIﬁb)ml <
The prices generated by convex combination O<«p<l are the solution of
AT = pa = (L=plb] = pa_ + (1-u) b

By construction of a , pa(lI:-b) < b, 3

’

AL < pa = (l=p) b] Z pa_ + (L=p) p, (AI=b)

= pp, (AI-a) + (1-p) p, (AI=b)

)

p, [AI - ua = (1-p) b] .
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Multiplying both sides by the matrix of positive elements [hIwuaa(lub)b]m1 Y

we get

So we have proved that in each rate of interest r there exists a
matrix a composed of pure activities which will minimize prices in terms
of wages, or rather, maximize real wages,

As we change the rate of interest r or the rate of discount A ,
we may of course switch from one matrix to another, Looking at some good i ,
at a certain rate of interest we use activity 8,59 ai s then we may switch
to another activity b ,, b, and so on [10], If p(A) is the transformed
factor-price frontiers, each component pi(l) is a monotonic decreasing
pricewise differentiable function, For bo’ b to be used, we need
Apy(A) = () b* 2b° . Now the function Ap;(A) = p(r) b is not
necessarily monotonic in the relevant domain and we may get few changes
of the sense of the inequality, It is quite possible to get Ruth Cohen's
curiosum [11] that some activity is used at a certain rate of interest, and
as we reduce the rate of profit, we switch to another activity, but
eventuslly as we reduce it further we return to the old technique, In the

following we prove that though it is quite possible that we could use some

10, See the discussions ofs
Robinson, Joan, The Accumulation of Capital, 19563
Sraffa, Piero, Production of Commodities by Means of Commodities, 19603
McManus, M,. "Process Switching in the Theory of Capital", Economica,
May, 19€3,

11, Robinson, Joan, op, cit,, (London, Macmillan, 1956),
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technique of producing good i at a high rate of interest, then switch to
another technique and, as we reduce it further, return to the old technique,
this cannot happen with the whole matrix, We cannot have curiosum with

the whole base, If at a certain rate of interest we use a sd and as we
reduce interest we switch to b, bo s we camnot as we reduce it further
return to the old matrix, In other words, for each i , if the factor=price
frontier of matrix a dominates all other factor-price frontiers, and then
at a certain rate of interest there is a switch and another matrix b has
a factor=price frontier which dominates, and then c¢, d, ... s etc,, we
cannot have a sequence of the type a, by, ¢y ,..5 &2 . We cannot have the
situation represented in the figure below, in which we use a at a high

rate of interest, then b at a lower rate, then ¢, and then return to a,

AL
B =

O | e

Alternatively, we can carry the discussion in the space of A and Pye
The "invisible hand" will minimize P, for given A , so we shall be on

the inner envelop,
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O A

L pia(?\) or pib(?t) have poles at e and 4 respectively, |

il
1+7£'a % IL,+z'zb

If a is to be used with certain A we must get

ao(?\iua)_l (AT -b) <b

ao(lIma)“l (AI-a+a=b) < b,

=1
a, +a (AI-a) (a-b) b,

=l
ao()t.Ima) (a=b) < b =a .

We have shown already that all the slements of ao(?tlaa)ml are monoe
tonic decreasing functions of A , To show it in another way, we can use
the following faet: if the elemen‘t.s of the matrix are functions of para-
meter e,(aij(e)) , then taking the derivative of the identity a(e)a"’l(e)ml
we find

%-é—@- al(e) + a(®e) %—é- a"l(e) = 0
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and

T e70) = =7e) Fa(e) ae) .

Using this for ao(llua)"l we get

=L =2
a, (AT - a)™ =-a,(AI = a)™_

el

Now, for two positive indecomposable matrices there exists a semipositive
vector x such that either (a=b)x>0 , (a=b)x<0 , or (a<b)x =0,

The condition has some economic meaning; there exists some activity

level x such that we need more circular capital of all goods either

with a or with b , or we are indifferent, To show this we can observe
that a and b can be looked upon as the output and input matrices of a

Von Neumamn model, As we know, there exists a maximum rate of expansion

a and activity level ¥ such that ax* = a bx*>0 ~ £ = 0Ly il el
then a.x*=bx*>0; if a<l,’jbx*mi~ax*, bx*a-a.x*>0;‘ if a=1,

then ax® - ¥ =0 . As we have seen, for a to be used we must have
2 (AI-a)™! (ab) < b -a
o =G G

or if we multiply both sides by the semipositive column vector x"|€ s We

find that it is necessary that

=1, * b
ao(hIna) (a-b) x < (bo - ao) X,

Let us call the scalar function on the left ¢(A), ¢°*(A) =

-a_(AI-a)"*(a-b)* , a (\I-a)?> 0 . §'(A) is therefore either



o

monotonic increasing or decreasing, according to whether (anb)x*‘ >0

or (a=b)x <0 s, or it may be a constant if (anb)x* =0, Ina case

in which a has been used and we switch with higher A +to another matrix

b, ¥'(A) must be negative at the switch point, So by the fact that

if it is negative for certain A it is always negative, a cannot

return, The case ¥'(A)>0 prevents symmetrically the return of b if

it has been replaced by b, If #'(A) =0, +¥()) = Const,, we get

either identity or dominance of the factor-price frontier, If

Const, < (b0= a, )x* , a is always preferred over b since if b at

certain A had dominant factor-price frontiers, by the indecomposability

this should also hold for the basket ax (or bk ) and Const,> (bo= a, )x*.
If Const, >(bo-= 2 )x* , a 1is never used, If Const, = (bo= ao)x* .

both factor-price frontiers are identical, Let us now take the matrices

&y Dy voes . We can order them according to their Frobenius roots

la < )”b < ses .« For corresponding high rates of interest, we use matrix a,

This is obvious for the range 134 AL A For A, <A we may eventually

b b
switch to b or ¢, and so on, If we switch, we can disregard as we
increase A 2all the matrices that have been replaced once, As XL is
increased to 1 , rate of interest to zero, we return to the static
situation under which we have the known nonsubstitution theorem, In this
situation the pipes are so filled that labor is the only thing to be

saved and the "invisible hand" will minimize labor usage for each specified

final demand,



CHAPTER VII

APPLICATIONS OF VARIATIONAL METHODS TO OPTIMAL GROWTH POLICIES

In recent years there have been intensive developments in varia-
tional methods, We shall attempt to throw some light on problems of
economic growth discussed by Ramsey and, in multisectoral eccnomy, by
Samuelson and Solow [1]., We shall start by applying the Pontryagin [2]
Maximum Principle to Ramsey's discussion and then to those of Samuelson
and Solow, Later in this chapter we shall apply ordinary calculus for a

solution of discrete analogues of some of these problems,

The Ramsey Model as an QOptimal Control Process

Let C(t) = consumption,
K(t) = capital good,
f(K,t) = production function with some form of teschnological
change, and
u(C,t) = instantaneous utility with some form of time preference,

With K(0) and K(tl) given, maximize

i, Ramsey, F,P,, "A Mathematical Theory of Savings", Economic Journal,
Vol, 38, December, 1928, p, 543,
Samuelson, P,A,, and R,M, Solow, "A Complete Capital Mcdel Involving
Hetsrogensous Capital Goods", Quarterly Journal of Economics,
November, 1956, p, 537,
Samuelson, P,A,, "Efficient Paths of Capital Accumulation in Terms

Pt

matical Methods ir the Social Sciences (Stanford University Press,

1960),

2, Pontryagin, L.S,, V.G, Boltyanskii, R,V. Gamkrelidze and E,F,
Mischenko, The Mathematical Theory of Optimal Control Processes
(New York, Interscience, John Wiley and Sons, 1962),
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it

flugc(-z-),t)dt

o

under the constraint K = f(K,t) - C(t) ,

Let us form the Hamiltonian H @
H=« u(C,t) aF I-btt)[f(Kst) C(t)j 9

where u(t) is an auxiliary varisble (or Lagrange multiplier), Our control
is C't) .
Using the Maximum Principle, the necessary conditions for the

optimal path are:

Q

So=0, -2 uw =0, -u(t)mﬁ-%g%ﬁl

9

se) = - SE = u(e) £k,

il

= #(E = £1(Kst)
or
51.,&%.9;'
at ;
- Qp,c = f?(th) .
3¢

We get the usual solution, However, since the equation is not autonomous
(time appears explicitly), we cannot get the first integral, o-u(t) can be
interpreted as the price of capital at time t 3 w(t) = %%g) shows that
at time t on the optimal path, the producer has the alternative to
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consume and gst {%%‘ extra utility, or to save and get a valus of u(t)

of capital, The condition

dult,
= ud(-'tj = f“(K,t)

can be interpreted as the condition of zero profitsbility or the optimal

path, f*(K,t) is the own rate of interest at t , denoted by r , We
find
d(=u(£))

I‘+“‘-‘:-%%Tmb‘—’0 ~

So on ‘the cptimal path the profit on capital is zero, i.e,, the
decline of the price of capital caused by aceumulation or by approaching
the horizon exactly compensates the income=derived r ,

It seems that the dual price interpretation given by Bliss [3]
can be easily extended to models with time preference and disembodied
technological change,

An alternative formulation of the Ramsey problem is not to fix the
terminal condition in the form of K(tl) , but to assume that the present
generation has some utility funeticn defined by the bequest it leaves to
future gemerations at %, ., We have é[K(tl)j , ‘the utility of the present
generation or the present “planning commission" defined by terminal capital,
Again, of course, the Euler equation holds, since whatever K(tl) we

choose, the path XK(0) - K(tl) should be optimal in the previous sense,

P rre_e

3, Bliss, C,, "Duality and the Ramssy Model®, unpublished notes, 1963,
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tl

Maxs [ v (0(t)) db + §(K(E;)) 5
0
t

Maxs [ u(E(K)-K)at + §K(x)))

In addition to the Euler equation we get a condition to determine the

constant of integration, which takes the form

. . 0gd .. e
£(K)=K) 6K 6K =0,
ug(£(K)=K) * 3% -

= I

or, since 5K1 is arbitrary,

. LN
U-K(f(K)°‘K)+-é"I'{':O 9 tmt’l 9
gau a?+bfzo )
aC ok oKX
We gel the obvious condition
oun., OF o
30 TR R

The marginal utility from extra consumption should be the same as the
marginal utility of an extra unit of terminal eapital,

It is easy to see that in the control formulation we get

94

oKy 4

""J'( tl) =
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i,8,, the price of capital at the terminal point should squal the margingl
utility of terminal capital,

If we have the price of the capital at %, , pK(tI) s d.8.,
é[K(tl)j = pK(tl) K(ﬁl) , We set in the control formulation the trans-

versality condition -u(tl) = pK(tl) ., We solve the equations
BlE) = - u(t) = 24 K+C= £(K)
\ b 3 9 ac 9 - t

with K(0) giveny and u(tl) =z - p(tl) .

A Formulstion of Samielson and Samuelson-Solow Articles as Optimal Control

Procesges [4]

Thsre is an advantage in formulating efficient paths in terms of the
Pontryagin Maximum Principle even in cases which can be handled as well by
means of the classical ealculus of variations, particularly since we get
nstural price valuation of capital goods, Moreover, we get exactly the
same equations deseribing the optimal paths for the dual problems of maxi-
mum terminal capital S, (with given 5,5 eoss Sn> in fixed time or
maximum time for given Sl .

From instantansous efficiency conditions we get the transformation

locus

51 = £81(t)y vaes S(t)s Sy wees 5)) .

Let our controls bee

Szzp‘zl ooilsnﬂp‘n °

4, Samuelson, P,A,; P, A, Samuelson and R,M, Solow, op, cit,, reference [1],
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Maximize

tl
8, (k) =[ (-
(0]

0’ SZ’ sess Sn)dt

with given initial capital goods Sl(O),...., Sn(O) .

termingl capital geods Sz(tl)"’°’ sn(tl)’

Let us form the Hamiltonian:

n
= llfl(t) f(S;!-L) i Z li‘i U-vi .

i=2

The necessary conditions for the optimal paths

0 .
:g%}’* 0, J =25 seos Ny
or
wl(t) +4,(t) =0
S
2
¥ (t) +y,(t) =0
O
vo(t) = =iy (%) i

2
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If we give _¢1(t), a¢2(t), S a¢n(t) a price-path interpretation
(for the corresponding capital goods), we have an ordinary value-of-marginale
product = price-of-factor relationship, The auxiliary varisbles should

satisfy thae equations:

Qs
=

b
B

<
[
~~
ct
~
I
§
Q/
w
ti

z -t D) %ﬁ%:

=

@b
=

of
=4 () =,

=
™o
o M~
(2
s
i
]
o/
(92}
aV]

2 R N OF
‘!’n t) = asn“"i‘i(t) asn °
From the equation
S o f
‘bj(t) = “"b'l(t) bé 9
J
we get by differentiationg
: Q¢ s d OFf Of OF . d OdFf
Pi(t) = ap (T) == = §. (1) = == = § (t) =" == = | o o
J b ds. Ul 5. " >as 0s. 1§r:L(Tf)‘ﬂ';’cis..
J J : J
of df Of d of
- g (t) === (t) - i f (b)) =
¢ 55, 1 )63 o3, ¥y >dtasj

We then get

d of  Of dr  O¢f
dt & A 2
Sj 8Sj aSj asj

9 J= 2y seegn

which is the fundamental efficiency equation (equation 5) of Samuelscn,
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We have a system of 2n differential equstions of first degree,
one equation for each state variable Sj s and one for each auxiliary
variable e In general we need 2n conditions, We have n initial
conditions 5:(0)s +ees 5(0) , (n=1) terminal conditions 52(03, e u,l),
and we get an additional transversality condition uq;l(tl)::l . (Our prices
are normalized in this way,)
Solving the system we get the optimal program of capital accumulation
and the dual price relations -q;l(t) . -tlrn('t) .
Had we given these prices to maximizing producers, we would have
gotten the optimal growth path, Instead of giving the target Max Sl(t’l)”
we could have Max z 015, ('tl) , the equation of optimal path remaining
the same, but instead of terminal conditions for Sz(tl) EN Sn(tl) we
have the transversality conditions mt;ifj(tl) =C, ,

2 (t)
The own rate of interest of d 1 6 e wi‘ For
3 interest of goo is 55 =y . “TY

08, §.(8) “ 9
{532 = - ‘112(135 =T, o and so on, and for the price ratio,

good 2 it is

981  ¥,(%)
we find = = , » From the fundamental relation, we find
38,  ¥y(t)
d. (uq.!.,%.)
dt ¥y
"N (ﬂ‘"‘ L e
qu(“Y
. Vo
Denoting P, = G
it
dp
r, =T +’1’=— - ‘
2 1 P, dt
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Morecver, we see that just as in the Ramsey model, we get a

condition of zero profitability:

qjl
ol wmedemo iz 0
I“l _‘yl 9
7
r, + E; =0 ,

gnd so ony i,8,, own rate of interest exactly compensates for the decline
of the pries of the capital good,

Generalization of the Ramsey problem to the negoods case is

4.

Max [ ule(£) ... C(8)] at
0

subject to

O+ 8 = f(sl ses S

-11 C2+323 see09 cn+sn) 9

n?

and the =ame initial and terminal conditions as before,

Ll
@

Sy = los eees S, =W
Our controls are
1 eee Oy
uz eos pn °

Form the Hamiltonians

H == u(C,(t), ..., Cn(t) + 47 (BILE(S s CHu)-CqT + 4,(%) by + ouw + ¥ (EDu

o
: )
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dy

oH

e - ¥.(t) = O

ST

o
gH.~ an _,.MQ,S;, »
9C, T~ 9%, K wl(t) oA 5,0 i
QB _JF = g9 (¢) afmwﬂt)‘“o
gty c)s c)(c-s-s
)8, _OH Jf o (byim o
Sl S e : S e R
C % n aSn Q(Cn+ Sy
We get
au au 5f

° o _ or
oS §E
d Qdu A T
dt @01 aS. #
L] éH

¢2 =2 B‘E’“ el wl(t)as .



We finally findg

d . & ouiSIEE NS
S (e+5,) % 9% Jf 0%

9

and for any 1

_ afm“ d_ c)u_ﬂmau 9f
a(cia»si) dt ac.l aCy asi

I TR ;
i=1; 25 soe9 B

which are the differential equations which Solow and Samuelson get, Initial
conditions ars 51(0) Gl Sn(O) . Terminal conditions are S, (’i'»l S Sn(t'l )

The part of the_ systems

e e 2
é |2 = q’l(*‘) c)o 5 ﬁz(t) 0

(5

i 52
2R g _
aun e llfl(i’) aé o+ ‘l’n(t) 0

¢ S
]D = . w(L) Pt S
L 1 98,
O. ey f
€, = = ihth) == |
n i, aSn

is exaetly the sams as in the problem discussed by Samuelson, and from
this we can easily get the fundamental efficiency relationship in the

same way that we did earlier, It is clear intuitively that this should
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be the case for whatever program of consumption we decide ong for given
Sziﬁ)s Gen's Sn(t) at any point in *time, we must have max Sl(%) k
Againg we could have a problem in which the terminal conditions
are not given, but instead we have some veluation of the fubure, In the
simplest form this may be given in the form of prices of capital goods

at tl H

pl(tl) L Pn('t;l) a

Then we try to maximize

e .

“ e
f w(Cq o0 C ) dt + Z p,(t,) 8,(t,)

a

Instesad of the terminal conditions we get transversality conditions

‘bj(tj_) = pj(tl) °

0f course, again we have zero profitability on the optimal path,

It is of some interest to note that if we interpret =f &(*) as
the prics of good j end -H as NNP , then according to the Maximum
Principle, <H 1is constant, Se¢ if we use the optimal program, the
desline of capital goods prices is such that it exactly compensates the
increase in ubility u(C. ... Cn L.

A case which can be dealt with compubtationalily as well as snalytieally
is thet of a quadratic utility function and linear input-output relstionships,
Sinee a quadratic utility function implies negative marginal utilities for
big enough C , we shall assume that we use this function only as an approxi-

mation in csriain ranges,
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Let x(%) denote the vector ¢f n capital goods and C(t) the
vector of sonsumption, Let B be the n x n matrix and dv the row

vector (1l xn) ,

u[o(t)] = ¢* BC + d¢

o

Max f (Cv BC + d9¢)dk,
o]

o © dx sl el } < o u 5.8 o i 9
subject to C + o Ax [5!, The initial conditions are x(0) and the
L& B ¥

terminal conditicns are x("c».l) .
H==(C, BC +d) + Ax, §) = (Cs ¥)

whare (a,b) denotes the scalar product of the veators a, b,

We transform by similarity transformation to new variables y . We
assume for simplicity that all roots of matrix A are distine®t so that A
is similar to a disgonal matrix, (It may happen, of course, that this will

be true only in the complex field,)

7= A y(t) + Fo(t) .

e e

o
5. Assume that we get dynamic Leontief inputesubtput sv-lem ¢ = X—axeDx
if b 1is not singular:

X = b‘“l(Iua)x e

9
BT (Tea) = A ,

and eall the vectour of transformed consumption

9
=

Gr=iharc S
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Let =»(t) be the auxiliary variabless

H = «(C,Be+d) + (L\y,r) + (FCit),r)

o/
(@] 1=:]

= =(2BC+d) + Fir(t) = 0

2BC + d = Fer(t)

® paN i mﬁit
:scigt) = AT riﬁt,) = @

p; » Py =r;(0) .
The solution of this system of equationss
- ‘._, B
r(t) = e TS P
AR O -Nt 1 -1
t,tg'r.,.)uéB Ft s -5 B d
vy n
5 4 ; ; o
ylt) = 6Au ¥0) + e At[ e TRG()dr .
(o]
Henceg
.
4 L 1 - o e : o ‘ ‘
y(t) = e y(0) + o f (5 e AT ppel gt o ATpm % cid) dt
)

L.
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Gall M =F"F CF g

~ i
ee‘?“ 8T 0
- Mt BeE 2
e = 5
0 s n
[ _

e ATM@““AT = [m

Yo R A‘j) i :] -
13
Using the fact that A(t) a dt = i(t) db a , where A(t) is the

matrix, a the vector of constants, ws get;

m, .
kA

" =(hg+ A 3)t
W:‘Lj(t) b WY .

: (lr—-S

4
o

e t 1 AR |
yit) = e v(0) + 5 ® w(t) p= 5 HESEgh

y(t,) = eﬂti [y(0) + w(t,)p) = %—"B“l dt .

We solve for p and we have a complete cpbtimal program in terms of
y and v , We transform back to x(%t) and ¢(t) and we have the optimal
consumption path G(%t) and optimal capital expansion x(t) , In this case
of a Leontief type of produstion and guadratic utility function, the sctual
caleulation seems quite simple with present computationsl facilities, The
main problem is of sourse to find characteristic roots of A , It seems
that this simple example can serve alsc for ingquiry inte sensitivity and

other properties of the actual optimal path,
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Application to Fiscal Policy

Problems of a different sort to which these techniques may be
applied is the problem of optimal fiscal and monetary policies [6].

Bconomstric models generally have the structure
x(t) = Ax(t) + Bx(t=1) + Cz(t)

with =x(t) = endogenous variables,

z(t) = exogenous variables,

After estimation of matrices A, B, C, we solve for the endogenous

variables in terms of the predetermined variables;

(I-A) x(t) = Bx(t=1) + Cz(t)

x(t) = (T) Bx(t==1)+(I=A)"'l cz(t)

We get a system of difference equations describing the path of the
endogenous variables under the.foreing functions z(t) , Let us assume
that the functions z(t) are controllable, (Clearly we have ignored
the random elements, and moreover, zj(t) may be erratically uncontrollable,
but we assume that =z(t) is composed of elements such as govermnment
expenditures, taxation, money supply, eté.)‘ We shall use a continuous

analog of the system of different equations:

6, Theil, H,, Economic Forecasts and Policy, 2nd ed, (Amsterdam,
North-Holland Publishing Co,, 1961),

Holt, Charles C,, Linear Decision Rule for Economic Stabilization
and Growth (Plttsburgh Graduate School of Industrial Administration,
Carnegie Institute of Technology, 1960),
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X(t) = Mx(t) + Na(t) .

Assume that the policymaker has some functions y(t) (nx 1

vector) such that ¥(0) = ghy{tl) = @ and that he wants to minimizes

tl tl
[ D el - P a0 0y22 dt
o] ¢]

with termminal condition x(tl) =0

(t,,8)

x(t), Y(t)
x(t)

t)

(0,F)

ct

The first integral shows that the policymaker wants to minimize
the weighted squares of the discrepancies betwsen the actual path of the
economy =x(t) and some designated path y(t) . The second integral
implies that the policymaker tries to minimize the square of discrepancy
x(t) = y(t) without using too much control because of some disutility
that society attaches to control, (We include, of course, the special

case C; = 0.)
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Denote as (a, b) the scalar product of vectors a and b 3

G = ’a c = 'o
0 ’gn 0 'cr
g
Ming [ [x(£)=y(t), Gx(t)5(t)] + (2,02) at .
O

Let us assume for simpliecity no constraints of =z , We form the
Hamiltonisn H and use the Pontryagin theorem to find the optimsl

controls and the behavior of the system undsr these controlss

H = {x(t)=y(t), GLx(t)=y(t)]]+ (2,C2) + (Mx,y) + (Nz,¢)

o)
<2 =202 + Ny

2(t) = - 3 ¢ N y(%)

X(t) = Mx(t) - %"-NG ()

Wty =« E = o y(e) - 200x)
§(t) = A §(t) - 26x(t) + 26y(L) .

In matrix form we get the systems
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1

«gmc"l N . 0
D....GI'.‘OO’) (0.) + )
=M '} Gy

We solve the linear system with 2n equations and 2n boundary

™
s =

it

°
L
LN BN A

¥ =2G

conditions x(0) ﬁf?l . x(tl) =GN

Since boundary conditions are at two different points, we set
¥(0) = m and eventually solve for m , 2Gy are the forcing functions
of this system,

Let ¢(t) be the 2n x 2n fundamental matrix of solutionsg

t) =
= 4(t) () + 4(t) [ ¢7H(r) 2ey(rdar
W(t) .

[ $10(8) ¢ 43,(8) T (Ch) 1 (hY
d(t) = oaonooaoéeonoaooo dgl(t) = ooaoooeogoqoaocoo
9o1() ¢ 9551 Pl T 58
3 %
x(t) = g1,(L)§ + gy m+ 2¢1l(t,)f % 1 (7)ay(r)dr + 2¢12(t)f o (T)Gy(7)dT

t t
Wt) = 4 ()T + doom + 26 ,(8) [ D (ray(n)ar + 24,,(8) [ F,,(rday(rdar .

0

Now we can solve for m (in terms of the initial conditions)s
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%
a1
0 = x(t)) = ¢,,(¢;)5+ dlzitl)rr + Esﬁn(tl)f %lz(T)Gy('f)d'r

0
t

+ 28,(87) [ L p(mday(a)ar

£
41@ O-4,4(t;)T - adll(tl)fxlz('r)Gy('r)dT - Zdlz(tl)f %M(T)Gy(fr)dﬂ

(all this, of course, provided ¢ (tl) exists),
Introducing the value of m , we get the optimal control =z(t) ,

and the optimal path of the economy under this control x(t) .

Nete on Inegualities

The Msximum Prineiple is speciaily designed to extend tc the case ol inequalities
in our contrels, Let f1, ey fn be n production functions of the
economy and dij be the proportion of good j allocated to the produc-

tion of 3, Bys the amount saved out of the production of good i ,

o

S =By T(09895 @758,5 coey ag,S

L]

—.B £ (anl 3L ahESZ’ geol ahnsn) 2

Instantaneous utility is a function of consumptions u[(laBl)Cl,
ooca9 (lusn)cn) o
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T

Max [ ul(1-B)C), o.rp (18000 at
o}

subject to S(0) and S(T) .

Again we can form the Hamiltonian,

H= = o[(1-8)0] + ) ¥;(s,t) Byf,

and our system of equations isg

Max H ,
1 [ ]

But to explicitly solve even quite simple cases seems impossible,
and the only route that may be open is to try computer experiments with
all the difficulties of two=boundary problems, The few atiempts to use
this prineciple in economics have been in linear systems [7], both in
production and in utility, which may be realistic in engineering but not
in economics, and our intuition tends to reject bang-bang type policies

in economics,

Discrete Maximizations over Time

Much of the theory of the Maximum Principle and similar methods

and their application to economics can be employed as well in the discrete

case [8],

7. See, for example, Lionel G, Stoleru, "An Optimal Policy for Economic
Growth", paper presented at the autumn, 1963, meeting of the Econometric
Society, Boston, Massachusetts,

8, As a matter of fact, historically the approach of Euler was such that
he got his differential equation as the limits of the difference
equations,



st

The optimal path will be described by a system of difference equations o
the state variables and the Lagrange multipliers, The controls as
functions of the state variables and the Lagrange multipliers will
again be determined by maximiation of some function H [9],

One of the main differences between the continuous and the
discrete case is that in the continuous case we have a cannonical system

of differential equationssg

S oH o
=5 1;)" ‘qf"“axo

This system does not seem to carry over to the discrete case,
The analogy between the discrete and the continuous case is
especially simple in the case of the Ramsey-type problem [10], Con=

sider the sum:

Nn-1

¢ = z f(tsy.tspt) )
t=0 '

where y 1is a function of %, and Pp = Tpgq = T We get the
necessary conditions for meximizing or minimizing ¢ with respect to

y, by differentiations

24

Sl fyt(t,yt,pt) - fpt(t,yt,pt) + fpt(tul’ Vi s Pegl =0 .

This we may write as fy('t.) - Afp(tml) =0 for 04t< n=l,

9, This has been dons by this author in an unpublished note,

10, Here we shall follow closely Fort, Thomlinson, Finite Differences and
Difference Eguations in the Real Domain (Oxford, Clarendon Press, 1948) ,
Chapter 8,
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It Ve T is not given from outsids, we get "natural boundary conditions"

fy(o) - fp(o) =0 and fp(nml) = 0 , The similarity of this to the

Euler eguation is obvious,
=
For sufficiency, let us denote by aij 3 7 c)?fj and let us

check whether the matrix (aij) is possitive definite (or negative

definite), If |i-j|>1, 25 =03

Sl ¢y,y.

= fo.o, (1) + £ (i=1) +2f (i) + f (1
A pyp; (1) + £ (1-1) S R C I

e £ (121) - . )
yp(l 1) fpp(l 1)

a
=t

We denote by Dj the principal minor composed of the first J rows:

343 %o
Ajo  Hss  8ng
D, = oo o =
J .! ’l '.
a.. a .,
=1 "3
B i)

and define DO =1, We easily find that:

2
D, = ..,D- = 8., D, H
§7 %0y =T sl 52

If this second-order difference equation, subject to initial
=g s has a positive solution, we

A3
get a minimm, If Dj alternates, we get a maximum,

conditions D =1 , D(1) = a



- 95 =

As an example, let our instantaneous utility function,

be given, as are K(o),K(T) and the production conditions, K

We want to maximize

Q

T
.,.f}—-dt.
n

o]

The Euler equation is

2
60 n+2 L] r =
et T
L
rt n+l
K(t) = Al e A, e -
where
r
e,
A_Kﬂ)ngﬂe%l
1 b
rT  n+l
e = €
rT
A2=K(0)a = K(T)
r o
rT Ll v
e =

Extending the horizon to infinity, i.e.,, if T—w,

_I:,_-t
41
K(t) = k(o) & .

2l

el e+l
GlE) = r = K(o) e ,

1
na"'fl',
+C =

rK,

we find
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K

The discrete case analogue production obeys rK £ 9

Tl

and our aim is?

Max S -
(K] [rKy - (Kpp- Ky))

Differentiating with respect to Kt we finds

ol i

et

B - [(Ls)™ e (14r)] K, + (L) (Ler) K5 =0

t

_ 3 n+L
K, = Al(l-i-r) + A2(1+r) "

1%

_K(T) = (o))
1 T S

(14r)T = (L+r )n"'l

A

o = K@) - KD
2

( l-l-r) = (1+r )n+l

If we open the horizon and T—>® we find

£
K, = K(o)(24r) ™,
=N t+l
¢, = K(o) [(1+r)n+1= 1](14r )n+l ,
£+l
LK, = K(o) [(l+r)n+1= 17( 14 )n+l !



- 97 -

We see the complete analogy between this system and the previous
continuous system, Nevertheless, there remain a few unanswered puzzles,
In the continuous autonomous case, when t does not appear explicitly,
it is possible, as is well-known, to get the first integral of the system,
This is what enables Ramsey to give us policy in the form k = §(K)3
knowing K at t we invest ¢(K) .

There does not seem to be a discrete case analogous to the first
integral of the Euler equation in the autonomous case, We have tried a
few examples with different functionals, and while the difference equa-
tions we get are analogous to the Euler equations and have the same form,
we did not find anything analogous to the first integral, We looked at
the difference equation which is analogous to the first integral of the
continious case, but the solution to the second-order "Eulerw difference
equation did not satisfy this equation, It seems that it is impossible
to extend Hamilton theory to the discrete case; and we cannot, in analogy

to Ramsey, give our policy rate in the form K, , = ¢(Kt) 5



BIBLIOGRAPHY

Arrow, K, J., "The Economic Implication of Learning by Doing", Review
of Economic Studies, June, 1962,

Fort, Thomlinson, Finite Differences and Difference Equations in the

Real Domain (Oxford, Clarendon Press, 1048), Chapter 8,

Gantmacher, F,R., Applications of the Theory of Matrices (New York,
Chelsea Publishing Co,, 1959),

Holt, Charles C,, Linear Decision Rule for Economic Stabilization and
Growth (Pittsburgh, Graduate School of Industrial Administration,
Carnegie Institute of Technology, 1960).

Kaldor, N,, and J, A, Mirrlees, "A New Model of Economic Growth", Review
of Economic Studies, June, 1962,

Koopmans, T.C.,, "On the Concept of Optimal Economic Growth®, Cowles
Foundstion Discussion Paper No, 163, 1963,

McManus, M., "Process Switching in the Theory of Capital®, Economica,
May, 1963,

Phelps, E.S.s "A Golden Rule of Accumulation", American Economic Review,
September, 1961,

5 "Substitution Fixed Proportions and Distribution®,
Interns..onal Economic Review, September, 1963,

Pontryaging L, S,, V., G, Boltyanskii, R, V, Gamkerlidze, and E, F,
Mischenko, The Mathematical Theory of Optimal Processes (New York,
Interscience, John Wiley and Son, 1962),

Ramsey, F, P,,"A Mathematical Theory of Savings", Economic Journal, Vol,
38, December, 1928, p., 543,

Robinson, Joan, The Accumulation of Capital (London, Macmillan, 1956).

Samuelson, P, A,, "Efficient Paths of Capital Accumulation in Terms of
the Caiculus of Variations®, in Mathematical Methods in the Social
Sciences, Arrow, Karlin, and Suppes, eds,, (Stanford University
Press, 1960),

, "The Evaluation of 'Social Income' Capital Formation and
Wealth", in The Theory of Capital, Lutz and Hague, eds, (London,
Macmillan, 1960),

— s "A New Theorem of Nonsubstitution", in Money, Growth and
Methodology and Other Essays in Honor of Johan Akerman, H, Hegeland,
ed, (Sweden, CWK Gleerup Lund, 1961). '

igg



- 99 .

Samuelson, P,A,, "Parable and Realism in Capital Theory: The Surrogate
Production Function", Review of Economic Studies, June, 1962,

s "Wage and Interest: A Modern Dissection of the Marxian Eco-
nomic Model", American Economic Review, December, 1957,

s and R, M, Solow, "A Complete Capital Model Involving Hetero-

geneous Goods", Quarterly Journal of Ecomomics, November, 1956,

Solowy R, M,, Capital Theory and the Rate of Return (Amsterdam, Northe
Holland Publishing Co,, 1963),
s "Investment and Technical Progress®, in Mathematical Methods
~in the Soclal Sciences, Arrow, Karlin and Suppes, eds, (Stanford
University Press, 1960)

s "Substitution and Fixed Proportions in the Theory of Capitalw,
Review of Economic Studies, June, 1962,

Sraffa, P., Production of Commodities by Means of Commodities (Cambridge
University Press, 1960),

Stoleru, Lionel G,, "An Optimal Policy for Economic Growth", paper
presented at the fall, 1963, meeting of the Ecorometric Society,

Boston, Mass,

Theil, H,, Economic Forecasts and Policy, 2nd ed, (Amsterdam, North-
Holland Publishing Co,, 1961),




BIOGRAPHICAL NOTES

Name: David Levhari

Marital Statuss Married to Ruth Levhari
Children, Joseph and Michal

Date and Place of Birth: September 24, 1935; Ramat-Gan, Israel
Citizenships Israeli
Education: Hebrew University, Jerusalem

B.A, with honors, 1959

M.A, with honors, 1961

Massachusetts Institute of Technology
1961=64

= 100 =



