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ESSAYS ON OPTIMAL ECONOMIC GROWTH

by
David Levhari

In the first chapter we show that among all exponentials paths in
capital=embodied labor-augmenting technical change, with a homogeneous
of first order production function, the path in which saving is the same
as profit or interest the same as the rate of growth, has maximum per
capita consumption, In Chapter II we prove the same theorem for the
case of fixed coefficients, The third chapter deals with the model
discussed byArrow, in which, unlike the capital-embodied models of
Chapter I and II, there is divergence between social and private re-
turns, Here we calculate the social return and the subsidy required
to bring social and private return to equality, We then show that
exponential growth is stable in this model, and that among all expo-
nential paths, we again have a dominant one in which saving is equal
to virtual profit, the profit that capitalists would have had they
also received remuneration for the external effects of their investments,

Chapter IV deals with a problem presented by Solow and Tobin on
the determination of the social rate of return and the rate of interest
in the capitale-smbodied model, Chapter V shows that the Kaldor-Mirrlees
model is not much different from the neoclassical models, It is
practically impossible to distinguish between this model and those
of Solow and Phelps,

Chapter VI presents a proof of Samuelson's nonsubstitution
theorem in a Leontief model with no joint product and one primary
input, Then we show the impossibility of Ruth Cohen's curiosum with
the whole base of products, Chapter VII indicates possible applications
of optimal control theory of Pontryagin and others to problems discussed
with the classical calculus of variations by Samuelson, Solow, and
others,
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CHAPTER I

THE GOLDEN AGE AND GOLDEN RULES

IN VINTAGE CAPITAL MODELS

In recent years there have been frequent discussions on what

Professor Phelps [1] called the golden rule of accumulation, As

Professor Solow [2] commented, the fact that among all exponential paths

sustainable consumption is the highest under equality of the own rate

of interest and the rate of growth, is purely technological,

The value of the golden rule for optimization over time of the

Ramsey type has been recently discussed by Koopmanns [31,

Here we shall prove that even in a more complex technological

situation, i,e,, exponential labor augmenting embodied technological

change, still the rules are the sameg that among all exponential paths,

the path with highest consumption is the path where the rate of saving and

the share of profits are the same, and so are the rate of interest under

stationary expectation and the rate of growth [4], We shall give separate

il, Phelps, E,S., "A Golden Rule of Accumulation", American Economic Review,
September, 19€1,

2. Solow, Robert M,, ReviewofEconomicStudies, Comments, June, 1962,

~ Keopmanns, ™,C,. "On the Concept of Optimal Economic Growth", Cowles
Foundatior discussion paper 163, 1963 (unpublished),

The change has to be Harrod neutral to allov sn expmential solution to exist,
can easily see that in the case of disembodied technological change where

t iE To An ®Qe" = F(e"" Ke SE ay,
The capital-oltpult ratio can remain cBnstant only Af wu=0

(Or in the case of Cobb-Douglas, it can be put into this form,) I mention
all this since Phelps on one occasion (American Economic Review, September,
1961) asserts that his golden rule path holds for more general cases, See
Paul A, Samuelson, Review of Economic Studies, June, 1962, Comments, p, 254,



proofs for the case of finite marginal product of labor at L =0 and

infinite marginal product of labor at L = 0 , In the first case we

get finite life of capital; as time goes on, we shift labor from old

machines to new machines and at a certain age, we completely discard the

machines, In the second case, obsolezcence takes the shape of shifting

labor from the old machines to the new machines, but we never completely

discard any capital,

An example of a procuction function of type I is the ¢,2,s, productim function

with elasticity of substitution less than 1, p&gt;0, o&lt;l,

z
av,t) = v[sT™P(v) + (Bs Lv,t)) 01°,

kg
Sota) 2 V3 Tile than) oY FB oY

wh
ash Liv, 2)-=&gt;0 LULL (1-6) aT

An example of the second kind (type II)is the nes production function (o_1,

p&gt; 0) In the case of equality, we get the known case of Cobb=Douglas,

With o&gt;1 , since we can produces without labor, it is clear that no piece

of capital is going to be completely discarded,

We shall start with the probably more realistic case of production

functions of type I . (This turns out toc be the more complicated case.)

Then we shall prove shortly a similar theorem for type II,

We shall ignore physical decay ven though there is ne

difficulty in bringing radioactive depreciation inte the model,

Let F(K,L) be homogenecus of first degree production function, 25

is assumed finite at L = 0, Assume labor augmenting capital-embodied

technological change of the form

oy



al(v,t) = #(Elv), oY Lv, 2)

Q(v,t) is the output at time t of capital vintage v . I{v) is

capital vintage v , L(v,t) is labor allocated to capital vintage Vv

at time t , Labor is shiftable, so that competition will bring equality

of marginal product of labor on all vintages, The supply of labor at time

t , L(t), is exogenously given, The wage at time t , w(t) , is the

marginal product of labor on the oldest machines, If h(o) = of zt l=,

then w(t) = h{o) MET) where T(t) is the age of the oldest capital

used at time £ ,

Av
0 F(I(v), e' I(v,t)) Bln)

0 L(v,t)

implies

DERE) 2 Heal) av= Ege he &amp; &lt;= w(t) g

Oo (e L{v,t))

Since F dis homogeneous of first degree, it can be written in the form

Av
h(E BsTy- e¥ w(t) 9

I(v)

where h(x) is a monotonic decreasing function,

a7 1Lv.t wl, «AVSBA)= HoT w(t)itv

(vet) = =AvV, =l, «AVMad ea Ble w{z))
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The foregoing is for vintages for which

I F(I(v), o Lv t)  _ Ral:
aq I{r,t Re 3

for all other vintages

O F(I(v), "7 Liz,

L{v,5)=0

and we allocate no labor to them, The function nt is an increasing

fanotion of .v, 50 ay decreasing function, and it is not clear

whether at t we allocate more labor or less labor to higher vintages,

It is obvious that in efficiency units we allocate more labor per unit

of new machines, but in the natural units, this may turn out, as it does

in the c¢,e,s, production function, to be less labor per unit of machines,

cml, AVQ(v,t) = F[I{v), hb (e”  w(t)) I(v)]

= I(v) F(1, be w(t))

We get the pair of integral equations describing the systems

d= fee SES ae GL,
t-T(L)

ay = [FL we ne) A) 100) av (2.2)
t-T(t)
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Given the history I(v) for v&lt; 1 and labor fores L(t) , we

solve equation (1,1) for T , It is easy to prove that the right-hand

side of (1,1) is a monotonic increasing function of T . "Tt is easy to

see this intuitively, since by increasing T we must allocate more labor

to this vintage so as to bring it to equality with the lower marginal

product of labor on the oldest machines with zero rentals, and moreover,

we get somes new machines to which we now allocate labor, which we did not

do before,

After solving (1.1) for T(%) we solve (1.2) for Qt) , Assuming

now some saving bshavior, we get the bshavior of the system along time,

Assuming constant rate of saving s ,

WE) = / eT prt ii, py METeivs (1,17)
tT

i Lwly «AV
I(t) = s [ Bl, B50 oy MEY ny

t=T

It is not easy to deal analytically with these two integral equa-

tions, However, we shall mainly be interested in a particular exponential
4 4golution, Let L(t) = A g Jt) = q ef s Bnd TL) = sq _e®

+ &lt;w &amp;3 “a “5

Le" ” sQ_ 7 S AV Lie Av t+T) n(o)) = dv,
tT

QF" = sq, [ ra, FET nes) 7,
Tr
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Substitute now u=v «+t + T ,

%

ne a sq, ot)(+-T) [ 8A =linoy My qu
0

St. se t-T / oe F[1, Kite ™® his) Vdu,
0

The exponential solution is admissible only if n=g - A or

g=n+Xi, i,e,, the rate of balanced growth is the rate of increase

of the labor force in efficiency units, Then

T ’

0

a2 gu “le Au. | "l= se e®" F(1, hm (e his)) du, (1,2v)
0

We see from equations (1,1v) and (1,2%) that the life of capital T

mist be a constant independent of +t , (The L,H.S, of these equations is

independent of t 3 hence, the R,H,S, must be also,) These two equations

are algebraic egiuations for QW and T in terms of s and the other

parameters of the system, It is not hard tc see by implicit differentiation,

which we shall perform later, that Q!(s)&gt;0 and $E&lt;0 ; the level of

output is larger and the life of machines is shorter, i.,e,, obsolescence is

faster, as the rate of saving goes up,

The share of profit in the economy is

C

o

-



xy * wa /h(o) ME T) I. o&gt; ho) e AT L
wit) I(T 0 0

FE EE =~ pr oe
Q 6° )

wo) L
m= la Gi

Q

As one might expect on the exponential path, this distribution is not

changing and remains the same as at t =0, m 1s again, of course, a

function of s , the saving rate ,

2(0) o~2I(s) L,
= % eo y.2)B57

0

We would like to find the path of maximum sustainable consumption,

For this, let us maximize (l-s) Q (s) .

~Q (s) + (1-s)Q!(s) =0 ,

0 5 =n

Theorem 1: If (1,1), (1.2%), and (1,4) hold, they imply s = mw,

Let us differentiate implicitly squations (1.1v) and (1,2") with

respect to s

C
&gt;



as Bm

Lo 9s)WS dr =1(=AT df
0 = S oh (5) To mm (g=A) L, de + sQ g (e h(o)) ds

3, ol J0 =5~g 5+ oFl1, g™e™ mol EE.

i a dma
gs g - s7(1, mil h(o))

Di Lil, 0
gr) = 8 pk" a™  n{o})

ys FAT niaY)

By definition of BL, He nlo)) = Liao) and Zl, hia sa]
x Ito,0)  S{o0,0
= F(1, To) j= (0)

Q; io ,.0
(g-A) = 5 = Asy a ay

(=) 5 Load |g = s I(o

But (so) = SQ, .

ey orl Bn
2.5)" = gq ~ @(o,0) L_ ~ :



We must interpret the term

gQ, ~- Q(o,0)
ico) - nL

Remembering that

Lo % | vt) dv
tT

let us take derivatives of both sides with respect to t ,

0
rLo™ = L(t,t) - LteT,t) + [ SHTably

ao

7 oD /

Res nit Ys i’ 2L(v,t) 4,0 St
tT

Performing the same operations on

gt :4,5 = [ Hale), UrtN ov
t.=T

we obtain

gt Spit). 17.53) Abiv.y)60,05 = F(I(t), Utst) + | aan{LovtT

Remembering now that marginal product of labor for all vintages is

the labor wage, we get:

. 3



ge o%" = Q(t,t) + w(t) J 23) dv ,
tT

gt _ nt
gQ © = t,t) + w(t)[nL_e o- Mitt .

gq ef" - Wt ,5)
A TT

gQ, = Q(o,0)
W(O) = ems a

nl, = L{c,0d
0°

Qs) 3 Q, "
= - ?Q,(s) Ss w lL,

Q!(s)laaa)" s mie

dT
5. To see that ==&lt;0 ,

EE ng
ds S 0-5 Bt, Aire h(o))

i
Sa i gE ~ oc

0

Since gQ  - 0,0) = I Ahh , it is easy to see that decreasing
returns imply for all “2 ie

2 1,5) an 25% 42.0) a

10 -

and

S80

and
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On the maximum sustainable path of consumption

Q(s) in .
Q,(s) =a ik

WEE oo ni sim
Yo8 8s “onl Lea co

Q.E.D,

Let us now prove the following theorem,

Theorem 23 Theorem 1 implies that under stationary expectations

the rate of interest and the rate of growth are the same on the maximum

sustainable path of consumption,

Look at investment made at v 3 the rental at time t is

; - Nr. Liv,try) = 4d - wie) Lp

The rate of interest p should satisfy the equations

v+T
i vl 1iv.t =p (t=v| lo et at

v

v+T

fie [ fos (eV n(o) MET)
Vv

% h(o)e (E-T) AV 1 ra nod sn op (t=v) sh

- =

i:

. fd
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Substituting u=%t -v ,

1 = { oP forte Thon - Blo aE on) du
0

The expression in brackets in the integrand is obviously #laa) o the

rental of capital vintage o at u.

Our theorem says that on the maximum sustainable consumption path,

the solution to this equation is g . We have to prove that

a 3, Rat) Bla = (nledieiilD oh ial STN
1 [8 SRL, BT (e : i

0

Taking the derivative of the right-hand expression with respect to
7

Pp , we find that flan r(o,u) du&lt;0 , We see that if g is a solu-

tion, it is The only ° solution, Let us denote by olv.t) profit of

capital vintage v at t . Total profit on this path according to

theorem 1 is sq oF" 3

x en, a asf. em cine wt;ple 4) = 7p3, ne Tt Sree i) Th Tet pr

Isq_o%" = 5Q y e&amp;V fo, h Ys AM(vat4T) h(o))]
tT

To et ad won| dv

Ta
|
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Substituting w=v = t + T we find:

T ’

eB = J Pit, eT nla] - we) oS nile onl SRETY 27 i,
0

L
7 pT wr lw,

X | fo eT Well - Heh Re on] EY yy
©

Now substituting uw =-w + T ,

T

1 = 3 116 (2116) )J-h(o0) HT) eB? du
©

So p(s) on the golden rule path satisfies p(s) =g .
Q.%.0,

We shall now prove the analogous theorem for production functions of

type IT, production functions which have infinite marginal product of

labor at L = 0 , and for which all vintages of capital are always employed,

Using the same notation as before, we find that

Av
ga iv. &gt; Lo maen( Shah) y = 0” w(o) ,

AY Iiv,.% AY y shod La 2
Calling e TTayE = x Mz) =e w(o) . Differentiating with respect

=AY
, fin Gn -. dx

to w(o) , we get L%(x) = =e Xr: i Fre
Le(x)



1,6" = | oT 5 (oT wie) Tada.
-CD

go" = J P00, Bite te NT a) a
—00

L

Bo = sQ, { 8-1 Ivy = A (v-t) wio)) Iv) dv
-D

g off = SQ, 0 oEV BIE Ne Ct on Xv) dy ,
-00

Substituting u=v = t 3

L = 2, | o{8-A Ju We w(o)) du
C0

1 = s i= F[1, nt Tas w(o))] du

These are two equations for Q (s) and w(o) . Again, it is possible

to show that QI(s)&gt;0 , dro) :

Ake -



Av Lim.) | ot NYUsing the notation x = e Hyd = WaT nll,

. Av Tiy EY
w(t) = © I(v) FIL, y 5 S700 ov

- d Liv,t dX ’

o —0F(1l,x)=aAVw(t)voX

Differentiating implicitly with respect to s |

Lon : Au
i dw(o) (g-A)ue =

0 = == 3.05)7 Q!(s) + sQ (s) Tr / e erin du,
CD

iE By eg SRA. mY de iauladir
0 = : +s[ &amp; 3x TS “oy duit,

=00

The second of these equations takes the forms

1 {g-A)n in0=5+sno) [ o By
00

2 AU
_ duo) (g=A)u e_Jet B = = J e ETE du ,

«aX

Yi ocdz=0, Ew lien
Ss 2w(o) s

3



On the maximum sustainable consumption path,

Q!(s) Ri
Q (5) i

3 5 id
Lt we yt 50 Bad,

iL 1 a
pet ?Oo s(1-3) w(o) 5%

Ls 2 9,
8 #oy

w(o) L,
Sie Joo rg ’

Q.E.D,

By methods similar to those used for production function type I ,

it is possible to find that again on this path the rate of interest and

rate of growth are the same,

Next we shall turn to proving similar theorems for the case of

fixed coefficients,

16



CHAPTER II

THE GOLDEN RULE IN FIXED~COEFFICIENTS,

CAPITAL-EMBODIED, HARROD-NEUTRAL TECHNOLOGICAL CHANGE

Let, v = the date of birth of capital,

t = current time,

Q(v,t) = gross output at t using capital vintage v ,

I{v) = investment at v ,

L(v,t) = labor allocated at time + , to capital of vintage v ,

s = saving rate,

; AN A AY ; Ts ¢ AV
Assume Q(v,t) = al{v) = be" L(v,t) = min (aI(v), be" L(v,t)) . Using

capital vintage v , we need for a unit of production = capital and

aC] labor, We have a process of automation in which the capital-ocutput
be’
ratio remains constant while the capital-labor ratio, or output-labor ratio,

declines exponentially, Assume exponential growth in which investment grows

exponentially I(v) = sq_e®" . Generally,

I(t) = s / eV I(v) av , (2.1)
t-m{t)

5, ek = 5 J e Tiwydy, (2.2)
tom t)

and with the exponential profile of investment,

who on (g=A)vLe =e J sQ e ark,
tlt)

Cos



sQ :le Lad) mt)L cit =Z oo &amp; [1-0 ]

So if g =n + A we are on the exponential path with constant life of

capital, m(t) Em , To find the effective life of capital, we use

Seb as { 20 o5t at 30 0

tem

gt sa,gt,,_-gmGet = Seg a lee Ys

1=2 01.7,
g

i Ein : 5 kA)
BE ie (le Bhs oo he Tonle ny IRD (2.3)

We find that the effective life of capital is a decrsasing function of the

saving rate, We have a lower bound for the effective life of capital; we

gat § wl im w Sh Jog (1 sa . All this, of course, is for BL ;

eh, Shoes,
a ca «x

Let us now use equation (2.2) to determine Q, » or the level of

the economy as a function of the saving rate, On the exponential path,

Liry 5 HEL then the rate of saving is tos small to maintain steady
growth at rate n + A with constant lifetime, and so m—&gt;®

NZ



wis a | ~A 7 (nd )v
Loe Clk / se Q.° dv,

t-m

. 2s _ gnL, gt bn Q (1 e ) 9

n n+A

5. ming in ls REN log (1- 7,
AI

tl

i nth TkL = sq [1- (1. Zy™y

Q (s) = ma
BoE wc

n4 2 NA
Ealis ee)

Now, among all the exponential paths, we want to find the one with sustainable

more consumption, We want to maximize with respect to the saving rate,

nL 21 (1s)
(1-5) Q (s) = on

1-01: fl yneh
as

Max trib
+SI : : wen

o &lt;3¢ 10 Ih
as

Call the function to be maximized ¢(s) . We shall now show that

#(s) cannot reach a maximum [2] in the boundaries ¢(s) &gt; 0 for a &lt;2

2, All this is very similar to what I have shown in the discussion of Arrow's
model in Chapter III.

1G



and ¢(1) =0 , so at 1 we cannot find a maximum, Now let us calculate

dr(s) at BEE
a

see hel
" 1 3 . MAA. on nth nth 1 lesgv(s) GE n : = [1-(1= a ] of a (1- as ) Z 8

nA (1A 2[1-07 uy

and it is not hard to see that gr (22 = ®, So the maximum is attained

at an interior point, and it must be the solution of dels) = 0,

sec 2NA|TAnnAAlesof nL SBT fe = (J Si) = 0,

n BetanA \n+A|,Nnfhkhles(1 Bhymh 8 (gm, 2-0, (2.4)

It is not possible to solve the equation for s , but in the following we

show that the solution of this equation will be such that the share of profit

with the saving rate that satisfies this equation is equal to the saving rate,

Moreover, with this saving rate, the rate of growth and the rate of return

are the same,

Denote the rental of capital vintage v at t by =r(v,t) .

o 1 i Alam)

Etim CG, 1 Wt) YEE) =0 0 Wit) = be :

r(v,t) = a= W(t) ~~ =a - pet (t=) Bom zz a(1.gt (E17) .
a Av AVe be

Let mm denote the share of gross profit in the economy,

“HZ

Or



- ol ow

| rv) Iv) av
a

m= T

a I I(v) dv
Tm

[ fils oH TV) y (nh )v oo
tm Ea

mT =

[ Jnr )v Te
tm

1) om a oF
Tr = — olden \N+A) Mm1-8

Using the squation for m ,

a
STI (le Bie

as

P
oh — (1- YifeA yak |

35

AnA\nAnACR nA (1- - (1- b=
] 1-3 + 5h)

as

a- i as nA\nATih=n(s) = 1- 22 (1. Thy (2H

5



Take our equation for maximum consumption,

Ih ih
n+ i" HAN(i- 3 i + 3 Le {1- ity TA wil

we
mltiply both sides by (1 ZE)™ | and we find

in
Nn les _ nA NTA nebA
a s Fd a ==

m(s Yel !
max na s

So with the optimal saving rate, the share of profits and saving rate are

the same,

Now let us show that in this situation also the rate of interest and

the rate of growth are the same, With perfect foresight, the cost of pro-

ducing a new capital unit and its discounted value should be the same,

To

5 / 1 Mh {u-n=t)y o~r(u-t) dal PIE

=I =Am
a TT © - © =
Rilo Yi 3, Hmmm = 1,

? Professor Solow has shown that under the assumption of perfect foresight
the only possible rate of interest in this situation is a constant rate,

22 -
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T Zz A
a nA ANA a aA AA Bed oA2 [1.(1. Ey Bop. ER Lg BARE og

Now let us try the rate of growth r =n + A as a solution,

eel
a n+A a NFA (NFA rid foEra. By] Lp BM LLB) ag

for the optimizing

tirnAynAndAy_0l=s3(2 S25) ~~ :

lL a pn laSyEpi j=.

So with the s of the golden rule, the rate of growth and the rate

of interest are the same, n + A [4],

© It is easy to see that n + A is the unique solution of this equation
for rr,
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CHAPTER III

FURTHER IMPLICATIONS OF LEARNING BY DOING [1]

To make this discussion more or less self-contained, we shall describe

briefly the main features of Arrow's model, Arrow's basic assumption is

that productivity is related to cumulative gross investment, Instead of

having productivity increasing as a function of time, say A(t) with

A(t)&gt;0 , We assume that it is a function of cumulative gross investment

G [2]. The basic assumptions of the model are the following:

1, Learning depends on gross investment,

2, Technical progress is fully embodied,

3, Fixed coefficiernts,

4, Fixed physical lifetime of a machine,

We shall use the following notation:

- cumulative gross investment, G = [ (sXe) ;

v{G) = a - output capacity of a machine with © serial number G=a |,

2G) = BG" - labor requirement per unit of time for operating a

machine with serial number G ,

L = total employment,

- total output of final products,

1, K. J, Arrow, "The Economic Implication of Learning by Doing", Review
of Economic Studies, June, 1962,

Generally, of course, a(t)&gt;0 , so that instead of having techno-
logical change as a function of time, we get technological change as
a function of some monotonic transformation of time, There are many
similarities between the Arrow model and a model of fixed-coefficients
embodied technological change,

G
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n=

We shall assume in what follows that the economic life of a machine is shorter

than its physical life,

G!' = the serial number of the oldest machines used at a certain

time,
G

Total output = = [ v(G) dG = aG - aG' |,

G?

&gt; i

L = [ AG) dg = b [ ¢" ag = LE (avi nfl
Ge G?

G
=H log ay n=l .

By solving for G*' and substituting this solution, we find

A
L 1-x = aG[l-{1-EETRinflcG

oewhere (C= Te

/
wail ~ oT 00 al

If wage w 31s measured in units of x , then the oldest machines

must earn zero quasi rents, so that

a -wG™=0,

G' = (w 2 L/z



Arrow pays special attention to the case of exponential growth, in

which labor is growing at rate o— and accumulated gross investment and

output are both growing at the rate of Tr : he proves that with

stationary expectation, the interest rate is constant, r ,

Let us say that society saves an extra h units at O when

the serial number of capital is G(O0) . The product we produce with the

new capital is ah , but we need to shift labor from the oldest capital,

so that we loss product in the amount az , where z is the amount of

capital scrapped,

Lo oi
1- l= l-n Lyl-n7 = [(G+h) He 2] Zo (G n 3) ?

1 7
Iz = ah = 2 Jom. Lyi-n. (a2, Lyn

Calculating == lim St s We find
Ah—&gt;0 2

HE
dx l-n Lyl-n ,-nq _ Gyndh = a[1-(G “r =) G ] = al1-(= ) 1s (3.4)

Thus at a time when the serial number is G , society has an extra pro

duct in the amount of a(1-(£4)") . It is clear that we could have found

the marginal social product of capital bycalculating

0 x(G,L G'22503 ST

SE



On the other hand, let us now calculate the private rental of an

extra unit of capital investment when the capital serial number is G(o) .

Quasi rent at time t for a unit of capital invested at 0 is a-w(t)bG™ (0) ,

and wt) = 2 vie) . So the quasi rent of capital invested when t =0 is

[1-44] JG Gt) is increasing and at some t&gt;0 , Gv(%) = G(0) ,

and this capital is scrapped,

It is obvipus that uniformly with t ,

Gils ln GiLti\2[1-3 1&gt; e014) To

with equality holding only at t = 0 , After G'(£)&gt;G(0) , the

private rental is 0 ,

It is easy to find out what happens in the éxponential world

described by Arrow, Here i is constant, and if m is the length of

life of capital,

oy
G om - =n

Gy 0 ie l=n
a oe) - |

go
0

ae von
! : % : len i ; :

The marginal social product is then a(l-e ) , which is a constant

independent of time, Quasi rent is

Jm=(tem)

[1-H = al1e! 1G (O

At tt =0 it is the same as the marginal social product a( Le EM) s and

then it declines and at +t =m it is zero,

20 .
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Forthe cage n=1[3], x= a(1-e"L/P) ,

SF -1./b G*
i= alle ) = a(l- Z ) 9

and MSP = a(1-(2")™) holds for all n&lt; 1, Let us denote by g the

social rate of return and by Py the private rate of interest, In the

exponential world in which Arrow has shown that the rate of interest under

perfect expectation or stationary expectation is constant, it is clear

from the dominance of marginal social product over private rentals that

&gt; - | £Ge)ax im
BoB to Using the identity [ gi duml , iT [ £Gxdax is

fe 1S

divergent, we find that at each t the instantaneous social rate of return

is p(t) = a(1-(F5 3) . The only case of constant social rate of

return is of constant G'/G , which occurs in the exponential case, In

the case of "quickening", when G*/G is an increasing function of time,

the instantaneous rate of social return is decreasing; this is clear

intuitively, since we transfer labor from "not very old" capital to new

capital, As an example, if g wo” ys a&gt;0 , Athen p(t) 2 olan 20,
1

We find &amp;' by gr = {1 aye and by knowing the profiles of L
G G ogl-r

and G (or saving profile), All pricing processes and distributional

characteristics of the model can be expressed in terms of G'/G ,

3, For this case, R, Solow reached the same result by a different approach
(unpublished lectures, 1962).



It is more difficult to follow the pattern of private rate of return,

If m(v) is the economic life of machines born at v , and assuming

perfect foresight, pv) should satisfy the functional equations

vm v) |=i po {vy .. Ll 1 .5 | er p [1-(Z v filo =
iy

Gr (vam(v)) = G(v) ,

In the exponential case where the life of capital is constant m 4, the

equation takes the form

Vm n Tottn) AF p_(v) du
[a(i-e) ’ ) e gl p 3% wm
RE

where a is the rete of growth of output and m is the length of life

of capital, Arrow has shown that this equation possesses one and only

one constant solution, It is possible to prove that this solution is the

only solution of this functional equation [4],

4, To prove that the functional equation for p_(t) ¢'n have only a constant
for a solution, change the variables to Ti P ~ = t « v and then

oeCE) 7[ns7 $a" Jaden, an,Vv
0

The right-hand side is independent of wv and the left-hand side must be
also, Denote

[0 {v) du = Biv),
oP

R(v+r) = R(Vv) must be independent of v for all T , The only function
that satisfies this is a linear function, R(v) = p+rv , and since
R(o) =0 , R(v) = rv and fat,

- 29° .
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SharesofCapitalandLabor

The pseudo production function

=
x = aB{1-{1- —Lyt

CG

is of increasing returns to scale, and it is clear that both capital and

labor cannot get their marginal social productivities, However, let us

calculate

a
Dx i 8 nd L lenm—" Tt com— ga. G {1- ren) 9 {2.2}
OL l-n¢ cat

len la
5 1 Yiql=nL2r [2-3 (=EmsaSASRrisoC oi |

a T=lien en iE
CG

which is the same as the result Arrow gets for fe . So in spite of the

fact that all the income of labor in this model is rent, since labor

offers itself inelastically, labor gets ites social product, which clearly

means that capital cannot get its marginal social preduct,

Let us assume that capital had received its marginal social pro=

duct; then the share of capital would have heen

3 atsdx o1-n_ Ly c=nT-n63% [1a 8) 67]
a

i l=Bille wed iy
oo

-~ 30 -



J x G!\n

Xx 1 = i

eX
l= (z-) Gt

Assume O¢n&lt;l and OC ——pr-&lt; 1, using (7)&lt;1 and
1i~ = |

(E57 LL . The implied labor E share is

xg (Emo EnUo i ipArsepri1 1-8Tig

Calculating on the other hand what labor really gets, we find

a Gtyn_ (GY
dl _g (Fo geil) go! . 1 (G a (3 )
x b G = G* len ni. (&amp; )

So we get the simple relationship between actual wages and what the wages

would have been had capital received its marginal product, The labor share
a igs : 3 5. : She? 5is inflated by a factor iy and FE &gt;1 ToriQecncl,Daplislshaveis

Gt\n GY G' \n
1. wl 1m i (3 ) qd (Z ) . 1 - (Z ) r i [5]

X 1=n 1 Ge TT 1-0 1 Ge 5
i! G

5. As a matter of fact, why mot pav capital above its marginal social
product if it increases savings and we are in a situation where more
saving increases total social welfare, This is true in the no-time-
discounting case, at least so long as the saving rate is below the
Hoolden rules" saving rate, which will be discussed in this section,

-

x



32

=

The income of labor is rent; for efficient allocation over time we

must pay capital its marginal social product without regard to labor wages,

Notice that in this model capital returns are also rent, Saving, or allo-

cation through time, is the only economic allocation problem in the model,

The government can impose a tax on wages at a rate n , and then transfer

the proceeds to all people who once invested, regardless of whether the

capital they invested is being used, The subsidy will increase and will

eventually achieve the level of the marginal social product of capital,

Eventually the capital will be scrapped, but marginal social product re=

mains the same, since it increased the serial number,

Thus in the exponential case, where marginal social product of capital

ig {(g= ) 2{1-e "Fy and rental of capital at t is a (1-o08( tm) ;

each unit of capital gets a subsidy of ales") . a(1-o78( t=) = a Sy TEE ay

for OC t&lt;m and a{l-e™®™) for t&gt;m, It is clear that in the non

exponential case, where marginal social product, private return, and life of

capital vary, we shall get a rather complicated subsidy system, and what is

more important, the subsidy payments are not connected to the use of capital,

Capital may be long "dead", but since it added to serial number of today, it cone

Tinues to have social product, In the exponential case the subsidy is of type

SUBSIDY

a(i-¢ ye

age)



For the general case as well as for the exponential case, a simpler

system of subsidy which would accomplish the same result is the followings

tax all profits and proportion n of wages; then give back a subsidy to

all investors so that each receives payment according to the proportion

of his accumulated gross investment in total accumulated gross investment

up to this date, It is clear according to our shares calculation that in

this way capital would get its marginal social product,

To find the welfare effect of our subsidy, we must assume some

welfare function of the type used by Arrow and then assume some functional

relationships between saving and rate of return, In the case described by

Arrow, this type of subsidy guarantees Pai Bie

ofl « EF =5 .

Using Arrow's (40), (F)" mid. = where nu = 2 4

11 = = : :

1- £ = (3. 27 =W ,

using Arrow'!s notation (l= 2 =v, y=W, Arrow is showing that

v = (l= SH on the optimal path, which implies that the %capital"-output

ratio G/x is the same on the optimal path and on the competitive path

with the subsidies,

The influence of the increase of private return on allocation over

time depends on how saving changes with the rate of return and on our

objective function, We have here followed all of Arrow'!s assumptions in

1
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his last section (p, 171), especially the section before formula (61),

Individuals have a rate of time preference of B ; the supply of capital

is infinitely elastic at private return of B , Society will take all

investments at a rate above B , none at a rate below B , So the

private return must be B in a case where some, but not all, income 1s

saved, With the subsidy, there is no divergence between the private and

the social return, Social rate of return = 22 = private rate of return,

and so 2x= B , We shall show later that $2 8 implies that we

are on the path calculated by Arrow,

In the exponential world,

lt - gis Ea i oo (t=) ;

L = can Yano

oT = 1 gr = oy
0

m= - = log (i= Th = - —=— log (&amp;) ;
CG ke

G, s as we shall now show, is a function of the rate of saving s , Then

2. is a function of the rate of saving s 3 since all distributional

characteristics can be expressed as functions of e, the system is

determined by giving its rate of saving,

Let use Arrows (23), labor cost per unit of output,

W(v) = w(v) aor} = w(v) BL = (Fy
v[G(v)]



Arrowts (39),

ml Alala

—— LE
Gra. am 1-n 2 gr Len

(Ty =~) = (0 ~ Td Rl = as 9

WL
ra BLY ot Sd-n= er i log iY emetie lon (8 = SR a {2.5}

l=n l=n

dm
ds £0

The first thing that we notice from this is that to get exponential growth,os10I3 . Leni Len ot to :

a necessary requirement is il Pg &lt;a , which clearly implies

FE . This condition is brought up by Arrow in his section on optimal

consumption, where he requires (52) Epa + (36) "ang, lmpiyine

A . For &amp; to be less than one (i.e., for W(v)&gt;0 real) we

must have Te and LL &lt;a 4, a condition which we will use in the

discussion of an optimal saving program, Secondly, we can solve for G,

28 8 funotion of s?

(1 5 {0 33,
id . i £2 9

a a2
0

or eran

Sot Ton in ce s the rate of saving is too small to maintain steady growth

at rate Tos with constant lifetime,

B50.
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1, on

ltCG
0

A 1
Joly adlemy Pp

1-(1- as ) fin gl=n ?
o

R
Le Lei
(5)Sle) =

lan \ienql=nRIE i

We could get this dirsctly from the exponential solution to the differential

equation G gg

As s goes up, i is increased, i.,e.,, m is decreased, So by

increasing the rate of saving, we get a quickening, i,e,, shortening of the

effective life of capital, If s=1, i.e,, with no consumption,
2 oe

i mil 4a emda, Yn - 2) , which is the lower
a a a

len
bound on the effective life of capital,

One of the basic questions which Arrow does not discuss is the

stability of exponential growth, Let us assume a constant saving rate s ,

The motion of the system is described by

. Le" he
¢ = gx(t) = sa G(t)1l-{1l=~ eligi) Tetng%



gme T,

Trying the exponential solution G(t) = Ge f= , we find

g 5 Be
go wm Salle. pia
l= ogl=n

0

Solving for G, in terms of saving rate s we gel the previous expression

for G(s) , which is a monotonic increasing function of s , This is the

only exponential solution of the system, Writing the equation in the form

L CF ri
§ = sall-1- =)

ea =

o ’

rls el
To prove that G(t)—&gt;G_e , we must prove that ZT -&gt;3=

G
Assume that at 0 we start with 37&gt; A

dlogG G_.o.at % = alas Jk

#(t) is a positive function, since if ¢(t) reached zero, then it would

stay on the exponential path,

oo a 34log G = C, + 3% t + [ 4(t) at,

Let us now look at the function ( (t) = J g(t) at , which is
. 0

monotonic since Cv) = g(t) &gt; 0 , There are two possibilities: either

¢(t)=&gt;C; , a constant, as t—&gt;co, log G—=&gt;(C_+0C,) +t, and
3 id 0 i len



ggo 1,

and G SR , as we want to prove; or else { (t)-—&gt; oo. We shall
5 =&gt; 00

rule out the second possibility,

Cc ==t
G=e° er oT (¥)

; Let A= = sa[l-(1l- aTETG C (lonCo © cot (1-0) ET (¢)

: 2 I
ke safle(le =m—— ra Y1l-n

C o(1-n)C_ (1m) LE, ]

If &amp; (t)—&gt; mo, the right-hand side tends to zero, a contradiction
. t—&gt;00 .

to £&gt;=&amp; , similar considerations show that if $cZ at 0,
% fon

31 mugt fond to =—1 an] CG tends tc Ge :len 0

OptimalSavingintheArrowModel

We should now like to bring up a few interpretations of Arrow's

optimal growth path, First of all, let us point out that Arrow does not

take into account that the initial serial number G(0) is given, So

in (49), U=1U, - lime" G(t) + G(0) , but then in the optimal
t= Ty %

behavior he derives optimal capital expansion of the form Hi) = Ge =3 ’

where G is the constant maximizing the expression

Ha-g-a(l Zo 1
3 8 oD wed, “gl ’

38.

and
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But for t= 0 we find G0) =G , so that at t = 0 we have a discontinuity

unless G = G(0) . Since we want maximize

co

fr ot) at
o

EA . 0 x dG
intuitively it seems that so long as Su or rather, 3G s the own

rate of interest, is above B , we should invest everythings; then when

marginal product of capital is below B , we should consume everything,

Eventually we reach a path where £2 = 8

Gn
afl = (5) 1=8

Bon(% ) l= a Y °

But on the exponential path,

n
L omens

G! Leren = (Tole Stm,
og

(Arrow denotes this term by V +) The optimal path is obtained by VY =v

which is the solution derived by Arrow, Thus we see that the solution is

of the following types if 225g s invest everything until the path 12 = 8

i. reached, Now as labor is continuing to grow, invest exactly the amount

required to remain on 24 = 3 [7],

7, We know that the path is exponential, since only on the exponential path
. AD

mn +
is SG a constant,
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Alternatively, let us apply optimal control theory,

A
1 (lenox(G,L) = aG[1-(1- —5—) os

CG

s(t), the saving rate, is our control; G(%t) = s(t) X(G,L) ; 0&lt;s(t)&lt;1i,

Now applying the Pontryagin maximizing principle, we define a Hamiltonian,

el 2 ;Hf =o" [1-a(8)] EL) + 508) (2) Ta,L)

. «Bt if A =BT 7.=o X(G,L) + [¥(%) ~ e771 X(G,L) s(t),

 oH -Bt 0 x ~fty 0 x
| x a gp eae TR, ——— ly ‘ ow pea e .

Now if

-BtHe)&gt; a, s(t) =1;

=BLglo) wa BIS =ig,

In the third case, where ¢(t) = PE s the maximizing principle does not

help us in finding the control, It is clear that mest of the time the
om), : Btpath would be in the situation {t) =e ox 3 HtY=ax0¢ P ond

eS i DL ee aly(t) © 38 implies SG Bs
¥(t) can be intervreted as the price of the capital good in terms

[a
of the consumer good, If it so happens that y(t) &gt; oir , Saving everythings

G(t) = X(G,L) and G will be growing in the exponential case feaster than
3

L until we reach 5 = B , where there is in the exponential case only

one rate of s which will keep us on the path,
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It is obvious from W =v =v =1-2 that if B is higher, v is

lower, and so from v = (&amp; Y= in. =) it is clear thet up = = is lower,

or that the saving rete is lower. (Obviously O&lt;v&lt;¢l , or Oc¢B&lt;ca .)

If B=0, i.,e,s 1f we do not apply any pure rate of time preference,

the functional is now convergent unless we apply a different utility

function, But we can still find among all exponential patferns one which

dominates the others and which we can call the "gold rule path" [8]. We

shall find the rate of saving such that among all exponential patterns we

get more consumption,

As we have already shown on the exponential path,

3
L, 1=n

(55)I ee
1 o ylengl-n

NE ifi-0le 2 vii

=f
Production is growing like x(o) eR , and consumption like

c
lan k

(1-5) Xe , We want to maximize x(1-5):

ay ws ne

G{c) = SX a

implies
o

Zig) = Oa l=n
0 3

JE c G(s)
So we want to maximize x (1s) 5 ie nfl (1-5) = 4(s) 3

8. It is not exactly the ordinary golden rule, since the pseudo-production
function is not homogeneous of first degree,

1



1-5 i =
Tl Max == Te
1=n 1 og ylen-lena &lt; scl [1-(1- sa nt J

On the boundaries, the function {(s) gets the values (1) =0 ,
g

p(=22) = pies = 13&gt; 03: so if the function has one extremum, it must
len

be the maximum or inflexion point,

les
log ¢(s) = log === + log G(s) ;

g doo is) Ss 3 0) sa len s2SorHelo1)2(-3p) 0 pe ERIE E

ds les 5° 1=n 01d 2 Y=
hat sa tn

d log y(s) = a
ds

wo
Qo wgTR

Thus we have a compact set and the maximum is not attained at the

bounaries; the extremum must therefore be a maximum if it is unique:

1l=g len i

SL 58 a
cn 1 og \len.l-n1 ———sciSc—sal [il1. oy

3
pox 1 \l=n Ss 15 O \1=n2+TTTinlMEEe)lon 2rR—gBad

HZ
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or a minimum of the reciprocal;1 (Bm)? (feoFEEET5 Min (iin) = i Hil a T=) = (1.{s),

Sif oh

- 3 Ss 2 1.9 yn 1 3 g 1
0 (5) = (Ln) Peds © (Ln ){5Ee o fm Eo E)™ [ois of ine 7d ZO)

leg (l-s 2 1l=5 1-2 a l-n (1s S (Les) l-n a

TE ir Pg, ors rei er
tnt i Ei al or [1 - a(l-ny +

1 z
Sr wade TS I pep BE ales des [1 wd ls [1 a iy a(i-n) °

Substitute

Ss 3 EE TR
Fer Ta 1-8 = 1 «= AER

The equations for y are:

x oz 3
oe g n og. n a g n ag

y= yi- a end - [= a ny atin) J fie a a Bete y

Z 1 on
Oo - 0 og oO m0 rn Fg = In ote iy ly Bey Oey a

Lol” LE
: g n 2 given

J pa prey ! i ee
LE
ani2hg en.

- n=l - :
g n glx a n[ly orion 00©[lecpltaTesytory]



I &gt;3 1+y a {3, 7)
g qnCE end

2
| ; len

Now we must check that SEE. i Bn

Hay- L

ibell

Oeinn=l" and O&lt;srmy&lt;t s implies

L
a n o =

Pie orfnyt =&lt; Barmy

which implies s&lt;1 , The other inequality,

g
3 &gt; pilin) °

; ~n
i=l ls iy

L
- . [8] =X1&gt; {1-00 gry]

L
oo =11

C.D wfi= a ’

0 « YL Sls &lt;&lt;]

EL

Sa



We note that optimal saving is independent of L,sb , Which gives
o

only the sale of the economy, and it depends only on 1l=n ,
a

Let us now show that on the golden rule path the rate of growth

and the social rate of return are the same, For this, we shall use

Arrow's (39), which says

2 or
ET TE

and (40),

SINT ert man d\nEY =v = (1- B= 1. 2°

Assuming that the social rate of return is the same as the rate of growth,

&gt; a28507 Gil 2am den33m Gre bode} BE
Sclving fer un, ar eRrrRa = x

len nn
1m(l= )

and the corrssponding saving rate ,

a

eeRYT a 1
len \n

1-{1- = )

Le



which is exactly the saving rate that we got by maximizing [9], If

capital, through the subsidy system, receives its marginal product, the

share of profit is

0 x a
Oh TR
ie ET ’

Thus we see that on the golden rule path, the share of profit is equal to

the rate of saving,

It is clear that Arrow's exponential path for B&gt;a&gt;0 is below

the golden rule paths society, because of its time preference, is not

ready to do the saving to get to the higher path, If society is above

Arrow?!s path, it prefers the short outburst of consumption and a return

to the lower path,

9. Clearly we could reverse the derivation and from

g

is al lan)
- eh

SN leit Nl
fell wii

derive

2
J x 7 oti
9G a
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CHAPTER IV

THE RATE OF RETURN AND THE RATE OF INTEREST IN

CAPITAL-EMBODIED TECHNOLOGICAL CHANGE

Let F(K,L) be the production function of the economy, There is

no technological change, and we assume perfect foresight and for simplicity

ignore depreciation [1], The labor force is changing through population

growth, and capital is accumulated through saving, The instantaneous

social rate of return or force of interest in the competitive model is

FelR(t), I{t)1 = »{t) [2]. The instantoneous rental of capital at *%

is also x(t) , The discounted value of rentals at any £ is 1,

i.e.y the present value of the rentals stream is equal to the cost of

production of capital, To show this, we have to prove

&gt; - [ x(v)av
J=(ade + dw =,
t

A =

Substitute w = | x(u)av 5 A r{u) , and assume [ (wav = 3 We
then find t zi

J

5 - [r(wdav js Siw
[ x(a) % du =o du=3 1,
EZ L

' There is no difficulty in bringing into the picture radioactive decay
in rate &amp;§ , It is easy to find that this will reduce the social rate
of return or the rate of interest by 6 , There are difficulties with
other types of depreciation,

For th~ following, see Paul A, Samuelson, "The Evaluation of Social
Income®; Capital Formation andWealth, in The Theoryof Capital, Lutz
and Hague, eds, (London, Macmillan, 1961), p. 42,

1

or

mn

el



It is easy tec include in this analysis disembodied technological

change also, Again the instantaneous rate of return at +t is the marginal

product of capital at t , As an example, on the exponential path with a

rate of saving s and Cobb-Douglas production function F(K,L) = of iplmars ,

rit) = {1 x) ~ten [3,4]. Recent discussions of Tobin and Solow [5]

reveal the fact that the situation is quite different in the embodied

technological change, The social rate of return and, since there are no

externalities, the rate of interest turn out to be below the rental or

marginal product of new capital, Solow and Tobin dealt mainly with the

capital-gugmenting case, and we shall in the following try to prove that

under general conditions this will be the case,

Let F[I(v), L(v,t),v] be our production function and r(t,u) the

rental of capital vintage + at u, If m{t) is the effective life of

capital, i.,e., r[t,tsm(t)] = 0 , then the functional equation which should

be satisfied by the rate of interest or rate of return, r{(t) , is [6]

io}

tnt) - [=a
Ho J r(tyu) e + du

th

Be If s=ml «gl, T=n+ A, the rate of growth is as expected,

" In an unpublished note, Solow calculated in the disembodied case the
maximum sustainable increase in consumption by one unit of extra
saving today,

Robert M, Solow, Capital Theory and the Rate of Return (Amsterdam,
NortheHolland PubliSHing Co.s 1563), Ds 50.

Hers we use an unpublished theorem of C, Von Weilz#icker which shows
that in capital-embodied models of this type, the rate of interest
and the social rate of return are the same,

183



La

We do not rule out the case mt) = w, By the nature of technological

change, we must have 0&lt; r(t,u) o{n,u) forall uw&gt;t, According io

the theorem proved,

2 - J r{x,x)dx
[ECE /, Alize dl,
tL

and hence,
ua

TrFmd t) 5 | ripe)
r(tyu)e 5 du &amp;

So generally r(x,x) should be greater than the rate of interest, We

could not show pointwise dominance, but the instantaneous rate of interest

cannot be the same as the rental of new capital, and generally it is below

it, We have to take into account obsolescence, or in the case of social

return, the fact that new capital is more productive,

As an example let us calculate the socisl rate of return in Cobb=

Douglas embodied technological change with constant saving rate and a

golden-age path [7],
Let the labor force be L(t) = L e™ and investment I(t) = s(t) .

a la
In the golden age, Q(t) = g off y SEY = BILLY JI%) , while

bh
inJt) = IE Hylan

«00

Ba wr

Q ef" = BL, SE st py L / oo I(v) ari ’
0

, See Solow, "Investment and Technical Progress", in Arrow, Carlin and Suppes,
eds, , Mathematical Methods in the Social Sciences (Stanford University
Press, 1960 ), We shall use the same notation as Solow.
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Using the fact that we reshuffle the labor so as to equalize marginal

product, one can get (Solowts equation 9)

BE Ai dmemi my
% i nit) sQ [e 1a dn |,0 0
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We find for the marginal product of labor at t+ , m(t) ,

A ACum. hme, oq
n(t) = aB h(t) = ab [Em 01i=t

al

Using Solow's equation (13) , the quasirent of capital vintage v at fds
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Substituviing Jor Qe. , We finally find

: snl rt)
? Lo ore

ard

da A,pih,%) == 5 (r= oe g) ®

Now, the rate of interest should satisfy the functional equation
JF

: - I r(x )dx
% = | r(5,0) 2 3 2

ge

Jo mm (gat) =|r{x)dxdet2A1-1Jz= a {ph du5 3 fats + g) I e ® 7 a
+

Differentiating both sides with respect to t ,

GC

BE 1h sr Tmt) = fale, EE i
=e ot La ec of Eo Su = cra ¢ =p (feta) fe + Unlined)-ETLabrieofee
Using the original funectionsl equation,

he f+) = l= Ben 5a a i: lay,AAA» 2 £2 Commun cmon = sree = : do fg SSeS, .r(t)=32(fo+g)=i=(t,t)-py[6]8. Agsin for s=l ean, wlt)=2z,
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_ is the rate of capital augmenting, and the rate of return is the

rental or maginal product on new capital minus the rate of capital auge-

menting [9],

Remembering that g =n + A, we find that

rt) = &amp; = of l=s) Xie (la) |
sla jo s

Solow [10] claims that unlike the disembcdied case, it is quite

possible in the embodied case that the rate of return will be a decreasing

funetion ¢f A and may, though it is not plausible, reach negative values,

We see that in our cass, r(t) is instead increasing linearly in A , It

is inversely related to s and has a lower bound for s = 1 ¢

w(t) = et n{l-a),= Ja

If u is the rate of capital augmenting, r(t,t) is generally an increas-

ing function of uw , say ¢(u,t) , Tobin and Solow showed that in this

case vii) =dlp bt) -4 , and so AL de 1 forall ©. ithe vate of

return will bs, as in our case, a monotonic increasing function of wu ,

We could carry on similar discussions on the determination of the

social rate of return in different golden-age situations of the type

discussed in the first chapter of this work, In all these cases, r{t,t)

9. It is easy to include radicactive decay of capital at a rate of 8 j
we then find by the same methods »(t) = r(t,t) = § = Ths :10, Solow, Robert M,,CapitalTheoryandtheRateofReturn,op,oil,

£9
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and r(t) are constants, and using the theorem we proved =r(t) &lt; r(t,t),

It is hard in these cases to compute explicitly the rats of interest as a

function of the saving rate and the rest of the parameters of the system,

We always get equations of the type

t+m
(Ut : :

7 e (ust) ita) dn=21
i

and because of the monotonicity with respect to r and the fact that the

range of this function is from zeros to infinity, we get a unique sclution,

It seems hopeless to solve these equations in the cass of changing rate

of interest,
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CHAPTER V

NOTES ON MALDOR-MIRRIEES®' TECHNICAL PROGRESS FUNCTION [1]

Despite all "noneneo-neoclassical® pretensions, the Kaldor-Mirrlees

model is not very different from the classical model, It is especially

similar to Solow's model of embodied technological change and to Solow's

notion of exante substitutability and expost fixed proportions [2]. It

is espscially close to Phelps' model, "Substitution, Fixed Proportion,

Growth and Distribution [3],

Let us use Keldor-Mirrlees notation, Py denotes oubput per worker

on new machines, 1 investment per labor on new machines, For simplicity,

let us ignore physical wear and tear, Let L(t,.) be labor using ths new

equipment, I(t) the investmeni in new equipment, Assume wilh Kaldor and

Mirrlees or Phelps that L{v,t) = L{v,v) for all t2v as long as capital

vintage v is used, Kaldor and Mirrlees implicitly assume thal after

I(t) is invested, the capital-labor ratio is fixed; we camnot aller the

labor nscessary to operate the equipment after the equipment is pro-

duced, There is an implicit assumption that capitalists have some freedom

to choose their technique of production before the machines ars produced,

but then machines ars either fully operated or not operated at all after

wards, (Kaldor and Mirrlees make their choice of technique by bringing in

their institutionally determined horizon h , that is, the businessmen want

to get back their investment after h periods.)

1, Kaldor, N,, and J, A, Mirrlees, "A New Model of Economic Growth", Review
of Economic Studies, June, 1962,

Solow, Robert M,, "Substitution and Fixed Proportions in the Theory of
Capital", Review of Economic Studies, June, 1962,

3. Phelps, E.S., International Economic Review, September, 1963,
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Kaldor and Mirrlees assume the existence of a "technical progress

function” ff such thats

p+) i :
BE = 1h ,  fe)r»0, £20, fmc0

[#3 a
Por 4&gt;0 we find pit) = ee i ; SO if capital vintage

v 1s operated at tov

/ 0

LAY aa hs duSheaty DTG

:

J rea dua(vyt) = C_ Liv,t)e 4

On the assumption that a Os

i £($) du
Wy «| alvtler= [oc Uvm)ey Tan

Teatt{ 1) t-m(t)
F ’

© [e® 38
= C J I{v,v) » ) dy ile

tal L)

I(t) = J Lv,b) dv = [ L(v,v) dv
Lamlt) tem( t)
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Now, having the histories of investment I(t) and employment

L{t,-) , we can determine m(%t) , the age of the oldest capital; and

Q(t), By assuming some saving behavior, either that all profits are being

saved or rather that I(t) = sQ(t) , and making some behavioristic assump-

tions on the way entrepreneurs choose their techniques of production, we

get the way the system behaves along time, We can of course perform in

this system computer experiments similar to the type proposed by Solow,

We can, for example, assume as Phelps did that entrepreneurs assume that

the rate of interest remains the same while the wage rises exponentially,

There may be somes problems of divergence of social and private return if

the individual investor does not get the proceeds of the beneficial ine

fluences of his investment over total productivity, but in the Kaldor-

Mirrlees model this is not necessarily so, as we shall try to show,

First of all, on the exponential growth path to which Kaldor and

Mirrlees pay special attention, $= 8B - a constant and, say, A = £{(B) ,

Qv,t) = JC L{v,t) , and with constant capital-output ratio Q(v,t)

= aIl(v) , Sc we get exactly the same results as those of Tobin and Solow

in unpublished notes on fixed coefficients and Harrod-neutral smbodied

technological change, which are discussed in Chapter II of this work,

Of course the causation is different, but insofar as “positive eco-

nomics" is concerned, we cammct distinguish between the two models == the

capital-labor ratio remains the same and the capital~labor ratio is increasing

exponentially, Kaldor and Mirrlees try to bring out some heuristic arguments

as tc why exponential growth is a stable path so that if we are mol too far

from the path of exponential growth, we will get roughly the same results,

and indeed, it seems that nature did not perform an experiment withenough

variances to distinguish between these models,
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If we have small variations in ‘i but variations that can be
¥

a © o or oO 3 i i

approximated uniformly quite well by a linear function fi) = qq + B($) ful,

22 mal + B{F) 9
P 2

ohp=Ce 3F ;

B LeovHy,b) = 0 a Tv) Livy)

av oF 2AE Yeni J a Tle) Ilwylidy
tet)

ete [wien
+. emt t)

The similarity between this kind of model and that of Phelps is

obvious, We could have started with embodied neutral technological change

in a Cobb-Douglas production function, Before investing, capitaiists can

choose any capitalelabor ratio, but beyond this point capital is congealed,

We can even be a little more general and assume that the producer faces ex

ante any firste-ordsr homogeneous production function Q = Pu.) , zd

with Hicks-rneubral technological change, we get

4, Assume as an example that the techrical progress function has the shape
5 3’

3 : 5 v4 2 es : i

log (A + v £) = log A + log (1 + i =) , and if varistions in § are
i .

pag] do Fad I “ » “i XY i
small, this can be approximated by loz 4 + ry



tQ(t,t) = e’ BEAL), Bi, 010,

which implies

B, =e z(t. JE,

K/L % ahsWhere ot 1). F(T Li

B. Fo mel ee? .+ 5 iN = SINE
Zot a of elemYE SE Var NOLS IER) de= vo iting)=iilo(i) is the elasticity cf the production function with respect to

K; in the Cobb-Douglas case it is a constant, So if we have technical pro
¥

¢ S
D, 1..2 © o o al o 8 0 wy 8

grass function ¢(i,1) = vy + o(1)(3) , 028{i)&lt;l , we can 2%ill give

our model the interpretation, as Phelps does, that the producer faces an

ex ante neoclassical production function; but once investment is made

according to corresponding expectations, everything is congealed, Once

the history of the capital-labor ratio i{v) and investment I(v) are

given, we get

Me) = [ swede
LL)

&gt; 4. om Yv £ a I.v 3

At) = eV’ glk(v)) Tp=tdv.
tom t)

This set of equations gives us mt) and Q(t) . The wage rate is

given by The requirement

EO



. 55.

Tot 2. Ff 2 doNE) p(t) = w(t)

ol tL EY ;

oy pe) VF T(8)  gOtem)) oV CED) neon(6)) (Tamed) |
1} = ne - RET ;

ow Ltd I(tem(t) JI = ms 53)L(t) = k(t RL aml)

By substitution we get

i ie vt pf Dl BY |, ps Altmt) 3):at) = BE foe) 6% lire) VE pptran nel EHD),

By investing today an extra unit of capital, society might have today

o &lt; 4 ” . “4 + +phe [e(k(£)) oF g((tn(t)) o74*10);

extrs wiits of output, since by transferring one unit of labor, we lose
Fn to} % o n o og(k(t-m)) i mt) units of output on the oldest vintage and gain

g(k(%)) 6° on the newest vintage, and by having one more unit of new

vintage capital, we have to transfer os units of labor,

At time t , society gets from investment made at - (if v&gt;t = m{t))

extra product of

x WW to 4 ;7.7 [E0r)) o¥7a g(k(tun(s)) oV(P2ED7

Wesrnn v = tem(t) , it is reduced to zero,) The individual investor, on

the othsr hand, gets rentals of



oy a(n) - HRkv k{v

: tmr(t)) 4w(t) = o elk(t-m(t))] ,

Av tem t -

Ty ERY); - k(v

ard there iz ro divergence between social and private return,

The individual investor wants to maximize

7 vt ,i FY Efege’ plkit)) w Wlv) «5(valSe ) e 5(% ) diy :
KL

where p is ths expected forse of interest and m{t) the expected life

of zaplial, 1.2,

eV" (k(t) = w(n(t))

We can sgair do some analysis with exponential expectation [5],

The mein novelty in the Kaldor-Mirrlees discussion is of course

whenever £3) cannot be derived or very well approximated by ordinary neo=

classical production functions, In all these cases we cannot integrate
Et

explieitly log p(t) = C + [=® dt 3 the whole history counts, It
0

is bard to do analytical analysis with integral equations of this sort,

5. This seems to bs the only consistent expectation with &amp; ~czstant rate
of intersst.
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Performing computer experiments of the type proposed by Sclow may give us

some feeling for how the system is really different from neoclassical

analysis and the divergence beftwesn social and private capital Fal,

Kaldor and Mirrlses do not offer us any clues with respect to this

problem [7],

© All the empirical calculations of Kaldor and Mirrlees are on the
exponential path where their model gives results no different Irom
those of ten other models, as we have argued befors,

However, it does ssem very surprising that Kaldor in his comments
olaims that golden rule savings in this model are below the share
of profits,



CHAPTER VI

A NONSUBSTITUTION THEOREM AND SWITCHING OF TECHNIQUES [1]

Samuelson, in his papers in Akerman Festschrift [2] and in his

article on the surrogate production function [3], presents the following

theorems

With ons primary input, say labor, and with no joint products, the

price pattern at any profit rate is independent of final demand (and the

NNNP [4] is linear),

We shell give in the following proof of this nonsubstitution theorem

in a generalized Leontief model,

Let thers be le, activities which can be used te produce good 1,

aii a sk, activities to produce good 2 5 ,,, 5 8nd kp

for good n , Bach activity is composed of a column of =n+ 1 elements,

The first element (which we shall denote by 0 ) gives the labor require

ments, and the remaining n components give the requirements of inputs of

goods to produce one unit of gross output of the given commodity, There

is only circular capital in our model; each year’s capital is used to

1. The following theorems have been proved or suggested by P., A. Samuelson,
Here I shall present complete proof for his theorems,

Samuelson, P.A,, "A New Theorem on Nonsubstitution®, in "Money, GrowthandMethodology?and Other Essays in Economies in Honorof Johan k kerman,H, Hegeland. ed, (Stockholm, CWK GleerupLund,i961).Samuelson, P.,A,, "Parable and Realism in Capital Theory; The Surrogate
Production Function®, Review of Economic Studies, June, 1962,

NNNP is the set of baskets of consumption that are open to labor; we
use here the terminology of Samuelson in reference [2],

AY .



produce the next years output [5], Altogether we have a ke input-output

Leontisf matrices; let us denote them by a, by, ¢y ... . Assume all these

matrices to be non-negative indecomposable matrices, In the following, we

discuss only stationary states in which prices and the rate of interest do

not change, We normalize our prices by assuming that the wage rate, paid

at the beginning of the period when the labor is supplied, is unity,

Let a rate of profit of 'r be given, If a has been the only

possible matrix, with a, its correspondent labor requirements, then the

prices in a stationary state satisfy p, = a, 5(1+r) + : (14r) a34 Py
or in vector notation, p =a(l+r) + (l4r)pa and p = aLer) (Tu(Tte day

This of course says that in a stationary state, competition drives the

price of a good to its cost of production, r has to be below the maximum

sustainable rate of interest r* $ in other words, A = od should be

greater than the Frobenius root of a , \* = ok . Then the inverse

(T-{Bir)al is composed of all positive elements [6],

Bach Py is an increasing function of r 3 to see this it is

easiest to expand (Trl Linda Tr and to get

p = a (l+r)[7H14r)a + (se alin ele dle 0 TTY,

5, In all this we follow closely Piero Sraffa, Production of CommoditiesbyMeansofCommodities(CambridgeUniversityPress,1960),See F, R, Gantmacher, Applications of the Theory of Matrices, Vol, II,(New York, Chelsea PERRNOShSe

By our assumption that rcr™ s the series is convergent to [T-tlrdaT 3
see Gantmacher, ibid,
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So py (rls with all a elements non-negative,is a monotonic

increasing function of r § moreover, p,(r) &gt; as ror .

Alternatively, if we look on the factor-price frontier los we get
i

a decreasing function which reaches zero at r = rr : The

prices can also be written in the form p = a (AI-a)™ g Aim che s and

all p; are monotonic decreasing functions of A , each with a pole at
: * 1

the Frobenius root A" = Tonk

If we have alternative techniques for producing some of the goods,

the "invisible hand" will produce a situation in which we find maximum

real wages for a given rate of interest [8], One may be inclined to asks

real wages in terms of what good? Part of the result of Samuelson's non-

substitution theorem sill be that this does not matter, We shall get the

mexioum rssl wage in terms of any good or any combination of goods; we

shall be on the cuter envelop of the price-factor frontiers for all 1 ,

n
Theorem Let A be given, Among the sT k. metrices therese Hr

a

exists one [ ie for this A which minimizes all the elements of the
a

vector p = Loney

Let us start with some matrix a and find its prices p= a (AL-2)™"

(r &gt; ow s otherwise a cannot be used), Use these prices, P, to
“a

evaluate the costs of using alternative activities, If for some alternative

activity, say activity (bgp s by) , used for producing goed 1 we find

Py = bg; (1+4r) + by (Lr) Py, + boy po, (141) 4 gee + b 4 (1+r) 0.

8, See P, A, Samuelson, "Wages and Interests A Modern Dissection of Marxian
Economic Models", American Economic Review, December, 1957,
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and Di&lt; Py, , We then introduce this activity instead of the activity

that has been used for producing good 1 , Taking the new lower price, Py ’

into unit costs of activities 2, ...s n We get lower prices for 2, ,..s 103

we then must take the new lower prices' feedback, and so on [9], This is

essentially a process that we expect the "invisible hand" to produce,

After introducing the new process, we get a new matrix b with labor

requirements = . The iterative process described will settle on new

stationary prices, Py, © A . By construction of b , using the

indecomposability of the matrices, we find that P&lt; P, Continue the

process with b in the same way, Since p is strictly declining during

the process, we cannot return to an "old" matrix, since the prices in the

stationary state will be again as in the old situation, So we have no

cycles and we have a finite number of alternative matrices, and eventually

the process will end, Let us use again as &amp; to denote a matrix with the

property that if we take the prices generated - Pp, and use them for

evaluating alternative processes, no process can produce one unit of 1

with cost smaller than Pos » So for any alternative process by of producing

good 1 ,

APs SAB; TB +P, ok

ADs = pb" % Ue ti

or in matrix notation, for any alternative matrix b ,

9. The indecomposability guarantees that eventually, taking all feedbacks
(or even n feedbacks are enough), all prices will decline. We use
the fact that if a is indecomposable, then

Toi g roads also.
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p, (AI-b) &lt; b_ °

Let us multiply both sides by the matrix of positive elements

OIL) s we get

vb OTH=pB= TG hb °

So P, is minimum and not even one component may have a lower value with

other matrices, We should show that this is minimum not only among the

matrices which are composed of pure activities but also among those that

are a convex combination of pure activities, For this, it is enough to

prove that if we take a convex combination of the minimizing as a and

any other bs b , the prices generated will be no less than p, $

: al

p, = a (AI-a) .

pp, = b_(ALb)™ .

The prices generated by convex combination O«p&lt;l are the solution of

mAL « pa = (Lep)b] = pa + (1=p) b_

By construction of a , p,(AI-b) 4b i

MAL = pa = (1-p) b] Z pa + (1l=p) p, (AI=b)

= pp, (AI-a) + (1l-p) p, (AI=b)

=p, [AT = pa = (1=p) b] ,
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Multiplying both sides by the matrix of positive elements [Tne IhysIr 3

we get

nz p,

So we have proved that in each rate of interest r there exists a

matrix a composed of pure activities which will minimize prices in terms

of wages, or rather, maximize real wages,

As we change the rate of interest r or the rate of discount A ,

we may of course switch from one matrix to another, Looking at some good i

at a certain rate of interest we use activity a4 = 3 then we may switch

to another activity b_ ;, b , and so on [10]. If p(A) is the transformed

factor=-price frontiers, each component p; (A) is a monotonic decreasing

pricewise differentiable function, For bs b to be used, we need

Ap, (2) ~ pla) wt =bo . Now the function Ap; (1) = p(L) b&gt; is mot

necessarily monotonic in the relevant domain and we may get few changes

of the sense of the inequality, It is quite possible to get Ruth Cohen's

curiosum [11] that some activity is used at a certain rate of interest, and

as we reduce the rate of profit, we switch to another activity, but

eventually as we reduce it further we return to the old technique, In the

following we prove that though it is quite possible that we could use some

10, See the discussions of’
Robinson, Joan, The Accumulation of Capital, 1956;
Sraffa, Piero, ProductionofCommoditiesbyMeansofCommodities,19603
McManus, M,. "Process Switching in the Theory of Capital", Economica,

May, 1963,

11, Robinson, Joan, op, cit,, (London, Macmillan, 1956),
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technique of producing good 1 at a high rate of interest, then switch to

another technique and, as we reduce it further, return to the old technique,

this cannot happen with the whole matrix, We cannot have curiosum with

the whole base, If at a certain rate of interest we use as and as we

reduce interest we switch to Db, ob, , We cannot as we reduce it further

return to the old matrix, In other words, for each i , if the factor=price

frontier of matrix a dominates all other factor=price frontiers, and then

at a certain rate of interest there is a switch and another matrix b has

a factor-price frontier which dominates, and then c¢, dy ... 5s otc,, We

cannot have a sequence of the type a, b, Cy ,..s 8 » We cannot have the

situation represented in the figure below, in which we use a at a high

rate of interest, then b at a lower rate, then c¢, and then return to a,

Alternatively, we can carry the discussion in the space of A and Ps.

The "invisible hand" will minimize Py for given A 4, so we shall be on

the inner envelop,



no .

[ (A) or (A) have poles at Timed oie respectively, |
Pia Pip Tr 2 3

If a dis to be used with certain A we must get

8 Ya AL =) Th
0 =O

a (1I-a)"! (AI-ateb) &lt;b

2. +a (ATE Yai) ils
0 0 -"o *

ola (1I-a) (a=b) 2B -a,

We have shown already that all the slements of a_(AI-a)™ are mono-

tonic decreasing functions of A , To show it in another way, we can use

the following fact: if the elements of the matrix are functions of para=

meter 0, (a; 4(8)) s then taking the derivative of the identity (0) "(+1
we find

da(f) =1 d=]9208) 5-16) + a(8) $= a™X(8) = 0

= iD



an”

d =1 =1 d 1
5a (8) = =aT(8) Fz ale) a7 (0) .

Using this for a (\I~a)™t we get

d =1 =2
I 2 (Al - ay = =a, (AI -a) in

Now, for two positive indecomposable matrices there exists a semipositive

vector x such that either (a=b)x&gt;0 , (a=b)x&lt;0 , or (a&lt;b)x =0,

The condition has some economic meaning; there exists some activity

level x such that we need more circular capital of all goods either

with a or with b , or we are indifferent, To show this we can observe

that a and b can be looked upon as the output and input matrices of a

Von Neumann model, As we know, there exists a maximum rate of expansion

a and activity level x* such that ax* = a bx*&gt; 0 ’ x* z0 35 42 aFi,

then ax® - ox* &gt;0 3 if a&lt;l , bx* = ax® ’ bx. ax &gt; 0 3 if ao=1.,

then ax’ - bxX¥ = 0 , As we have seen, for a to be used we must have

a (3T-2Y {2-B})&lt; Hh =a
0 ==0 Ou?

or if we multiply both sides by the semipositive column vector = WE ar

find that it is necessary that

=1 *” &gt;
a (AI-a) (a-b) x &lt; (b, - a) 2,

Let us call the scalar function on the left (A), ¢°*(A) =

-a_(AI-a) %(ab)* . 2 (30-2) 2&gt; 0. ¥'(A) is therefore either

0

nal



7) =

monotonic increasing or decreasing, according to whether (a=b)™ &gt;0

or (a&lt;b)* &lt;0 s or it may be a constant if (a&lt;b)x™ =0, Ina case

in which a has been used and we switch with higher A to another matrix

b, ¥'(A) mst be negative at the switch point, So by the fact that

if it is negative for certain A it is always negative, a cannot

return, The case ¥'(1)&gt;0 prevents symmetrically the return of b if

it has been replaced by b , If (A) =0, #(1) = Const,, we get

either identity or dominance of the factor-price frontier, If

Const, &lt; (b_- 2, Yr s &amp; 1s always preferred over b since if b at

certain A had dominant factor-price frontiers, by the indecomposability

this should also hold for the basket ax” (or xr ) and Const,&gt; (b= a)".

If Const. &gt;(b,_- so , a is never used, If Const, = (bo - a Jt 2

both factor-price frontiers are identical, Let us now take the matrices

&amp;y Dy o0os » We can order them according to their Frobenius roots

ir Ay &lt; ... + For corresponding high rates of interest, we use matrix a,

This is obvious for the range A 2 AL Ay » Por A &lt; A we may eventually

switch to b or e¢ , and so on, If we switch, we can disregard as we

increase 2 211 the matrices that have been replaced once, As A is

increased to 1 , rate of interest to zero, we return to the static

situation under which we have the known nonsubstitution theorem, In this

situation the pipes are so filled that labor is the only thing to be

saved and the "invisible hand" will minimize labor usage for each specified

final demand,

Ty



CHAPTER VII

APPLICATIONS OF VARIATIONAL METHODS TO OPTIMAL GROWTH POLICIES

In recent years there have been intensive developments in varia-

tional methods, We shall attempt to throw some light on problems of

economic growth discussed by Ramsey and, in multisectoral economy, by

Samuelson and Solow [1]. We shall start by applying the Pontryagin [2]

Maximum Principle to Ramsey's discussion and then to those of Samuelson

and Solow, Later in this chapter we shall apply ordinary calculus for a

solution of discrete analogues of some of these problems,

z C(t) = consumption,

K(t) = capital good,

(Kot) = production function with some form of technological

change, and

u(C,t) = instantaneous utility with some form of time preference,

With K(0) and K(t;) given, maximize

Ramsey, F,P,, "A Mathematical Theory of Savings", Economic Journal,
Vol, 38, December, 1928, p, 543%,

Samuelson, P,A,, and R,M, Solow, "A Complete Capital Model Involving
Heterogeneous Capital Goods", Quarterly Journal of Beonomics,
November, 1956, p, 537.

Samuelson, P,A,, "Efficient Paths of Capital Accumulation in Terms
of Caleulus of Variations", in Arrow, Karlin and Suppes, ed,, Mathe=
matical Methods ir the Social Sciences (Stanford University Press,
1960).
Pontryagin, L,S,, V,G, Boltyanskii, R.V, Gamkrelidze and E.F,
Mischenko, TheMathematicalTheoryofOptimalControl Processes
(New York, Interscience. John Wiley and Sons, 1962),

Let
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iE Ww ole) tt
C

under the constraint K = f(K,t) = C(t) ,

Let us form the Hamiltonian H

H= = w(C,t) 4s BW S(T 5 = c(t] 9

where u(t) is an auxiliary varisble (or Lagrange multiplier), Our control

Ze NC EYE

Using the Maximum Principle, the necessary conditions for the

optimal path are:

OH du dulc 2)
RET - aS -uft) = 0, - u(t) = ac 9

at) = = TE = u(t) £e(k,1)
dK z °

° + ;Bn = Iv(K,t) 9

g ov
dat c ss 7

i Lilt)
a0

We get the usual solution, However, since the equation is not autonomous

(time appears explicitly), we cannot get the first integral, u(t) can be

interpreted as the price of capital at time t § u(t) = oe shows that

at time © on the optimal path, the producer has the alternative to

3
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consume and gst $2 extra utility, or to save and get a values of u(t)

of capital, The condition

= fie = £9(K,t)

san be interpreted as the condition of zero profitability on the optimal

path, Ff (K,t) is the own rate of interest at © , denoted by r . We

find

dA =ult))
r + flr =i s

So on the optimal path the profit on capital is zero, i,e,, the

decline of the price of capital caused by accumulation or by approaching

the horizon exactly compensatss the incoms-derived =r ,

It seems that the dual price interpretation given by Bliss [3]

can be easily extended to models with time preference and disembodied

technological change,
An alternative formulation of the Ramsey problem is not to fix the

terminal condition in the form of K(t,) , but to assume that the present

generation has some utility function defined by the bequest it leaves to

future generations at t, , We have p[K(t)] , the utility of the present

generation or the present “planning commission" defined by terminal capital,

Again, of course, the Euler equation holds, since whatever K(ty) We

choose, the path K{(0O) = E(t) should be optimal in the previous sense,

3, Bliss, C,, "Duality and the Ramssy Model", unpublished notes, 1963,



Ly

Mexs [vu (G(8)) ab + GRE) 5
0

Maxs J w(£(K)K)dt + F(K(E))
0

In addition to the Euler equation we get a condition to determine the

constant of integration, which takes the form

a2(£(K)K) 8K + 2s x = 0,0 test,
1

or, since 6Ky is arbitrary,

b&gt; s of

ug (£(K)=K) + == 0, t=1%t ,

2h Bs Alen
8% af" gk

We get the obvious condition

DOr 0
aC 3K,’ Lomi

The marginal utility from extra consumption should be the same as the

marginal utility of an extra unit of terminal capital,

It is easy to see that in the control formulation we get

od
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i,8,, the price of capital at the terminal point should squal The marginal

utility of terminal capital,

If we have the price of the capital at 1, , pe(ty) vi Et

pK ty) a Pelty) K(%,) , we set in the control formulation the trans

varsality condition =u) = P(t) . We solve the equations

er. od H 0 1 ° a
We) = = 5%» w(t) = SF K+ C= £(K),

with X(O) given; and uw(tq) wi p(t) ;

A Formulation ofSamielsonandSamuelson-SolowArticlesasOptimalControl

Processes[4]
There is an advantage in formulating efficient paths in terms of the

Portryagin Maximum Principle even in cases which can be handled as well by

means of the classical calculus of variations, particularly since we get

natural price valuation of capital goods, Moreover, we get exactly the

same equations deseribing the optimal paths for the dual problems of maxi-

mum terminal capital 8 (with given 5,5 oes 5,) in fixed time or

maximum time for given S54 s

From instantansous efficiency conditions we get the transformation

locus

Sq = £18,(t), eoe 9 5(t)s Sos 0009 5) °

Let our controls bes

So ® Hoy sees S, mE

4, Samuelson, P,A,; P, A, Samuelson and R.M, Solow, op, ¢it,, reference [1],
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Maximize

i 0 .

s.(t) = [ £(Syy wees Sy Sys wees SAE
0

with given initial capital goods 51(0)sveees s.(0) )

terminal capital goods 3. t)senns S(t).

Let us form the Hamiltonian:

4)

B= yp (8) £550) + D4 uy
j=2

The necessary conditions for the optimal paths

OH
rR J® 25 aues Bg

of :
p(t) =5— + §,(t) = 0

os2

&gt; f i
$40) ey (LY mG
L 3 q n

ofbot) = p(t) Ta
Z ilge

or



If we give =, (t), =i,(t), sey y(t) a price-path interpretation

(for the corresponding capital goods), we have an ordinary value-of-marginale

product = price-of-factor relationship, The auxiliary variables should

satisfy the equations?

: OH ay of
Tod Bose mle mip LB) lie

: oH Jf
p(t) = = Sh = ay(0) SE
2° 05, x oS,

he OH df
(0) mn he ov of, (4) Fellb(t) Sa a

From the equation

df
¥5(t) = w(t) E50

3

we get by differentiation:

: Of rend Be LT ae 4 dz
G0) = wp (BYTE py (8) Tp Bho wp (0) Se Be (8) Tp BE

J Wise, ah TE he Rg TT RAS
J J J J i

or Jf 3« dae- Ses LR SL Ly ny SSE
Vi 38s TV 35 my TW Eng

J J J

We then get

Fol aS BE, SE ares .
dt J = 2 S 9 = £9 0609 9Ss Ss: 33, SJ 0 3 3 J J

which is the fundamental efficiency equation (equation 5) of Samuelson,

FE er



We have a system of 2n differential equations of first degree,

one equation for each state variable 5, s and one for each auxiliary

variable je In general we need 2n conditions, We have n initial

conditions 54(0)s 3 pie 5,,(0) , (n=l) terminal conditions 5,(0), air? 5,(t)s

and we get an additional transversality condition =y, (£;)=1 . (Our prices

are normalized in this way, )

Solving the system we get the optimal program of capital accumulation

and the dual price relations =i, (t) ath y(t) 2

Had we given these prices to maximizing producers, we would have

gotten the optimal growth path, Instead of giving the target Max 5,( ts

we could have Max i) C;S,(%;) , the equation of optimal path remaining

the same, but instead of terminal conditions for S,(t;) ... 5 (t;) we

have the transversality conditions jr{t,) =C, , oEa, (2)
The own Take SURSHES Tek of good 1 is EE py INE) oe BOTd2iti)forth©good 2 it is v5 = = =r, , and so on, and for the price ratio,Q S, ¥,0 t) 2

98; y(t)
we find —&lt;= = = === From the fundamental relation, we find

38,  ¥y(t)

4. 2
dt ¥q
Sea

y(t)
Vo

Denoting p, = ==
2 bq

dp
rr, =r, 4 3 ne :

2 i P, dt

70



Moreover, we see that just as in the Ramsey model, we gel a

condition of zero profitability:

v
my Hts 0 9

Z

y
Ps i = = 0 9

Zz

and s0 on, i,8,, own rate of interest exactly compensates for the decline

of the price of the capital good,

Gensralization of the Ramsey problem to the negoods case is

.

Max | ulC,(t) ooo C (t)] dt 9
0

subject to

r o ®

yd 84 £(S4 0s 0 Sp C, =f Sos s0e9 Se + 5,) 9

and the same initial and terminal conditions as befors,

Sy = lye co09 S, = Hy, °

Our controls are

Cq e oo C. 9

Hs eoe My °

Form the Hamiltoniang

H = oo w(G. (LT), ses 9 c (+) od {EN Ls.. Cu ) =C. i = a fe rca " ws

430



J Svd=. SE ¥,(t) = 09%
J y

= v(t) = a Cy 9

OH Ou of
Wifes te oo Sim op $ ALY woe@ 0QC, aC, vy ) a ng 4

SE. 232 pip Ot oy Yee
2 08, (C+ 5,

OH JH ofa 2 mm , m—— ef (£3) =O
Cu o 2 nge 5 (Cc,+ Sp)

We get

ou Ee
PY ra. oC - ° $

2 1 9{c+s,)

2 an af
hee TEs he J5 9

gd. 2a © Ju or
at 3%] a0; 33,

] OH : Of

ky mde

i 2



We finally finds

S gq aa a BTreeseSome||fomifnoer|08mre9dines) T HENLEY

and for any 1 ,

ET TE qf. TH hE0VR3(0,+85,) 9% do, Ju, O85

which are the differential equations which Solow and Samuelson get, Initial

conditions are 5:(0) soe 8 (0) . Terminal conditions are S;(B;) one S(t).

The part of the systems

OH ofik +)mef(t) = 0gE=(8)Sv(0)z

JH oFep) Er (= 0
ak 3 oS ¥

n

iyi. 2 ¥. (t) mene7 ?1 i o Sq

~ 97EPEC R=
n i A S,

is exactly the same as in the problem discussed by Samuslson, and from

this we can sasily get the fundamental efficiency relationship in the

same way that we did earlier, It is clear intuitively that this should

. 82 ..



be the case for whatever program of consumption we decide ong for given

2a as s(t) at any point in time, we must have max 5,(t) 4
So

Againg we could have s problem in which the terminal conditions

are not given, but instead we have some valuation of the fubure, In the

simplest form this may be given in the form of prices of capital goods

gr 2.

pq (ty) eo 0 p,(ty) a

Then we try to maximize

t
1 - .

11 dt + © t S. t.Jog, coon dite 5 pit ym ley
0

Instead of the terminal conditions we get transversality conditions

= ) = ptbit)=pyle)Of course, again we have zero profitability on the optimal path,

It is of some interest to note that if we interpret «i. (1) as

the prices of good j and H as NNP , then according to the Maximum

Principle, H is constant, So if we use the optimal program, the

declines of capital goods prices is such that it exactly compensates the

incresss in ubility u(Cy ie c,) ”

A case which can be dealt with computationally as well as analytically

is thet of a quadratic utility function and linear input-output relationships,

Since a quadratic utility function implies negative marginal utilities for

big enough C , we shall assume that we use this function only as an approxi

mation in certain ranges,

- 83



Let x(t) denote the vector of n capital goods and C(t) the

vector of consumption, let B be the nxn matrix and d¢ the row

vector (1 xn) ,

wo(t) = gs BO L410,

t1
Max / (Cv BC + diC)dt,

0

subject to C + Z = Ax [5], The initial conditions are x(0) and the

terminal conditions are x(t, ) ly

H = =(C, BC +d) + Ax, v) T (Cy ¥) 0

wheres (a,b) denotes the scalar product of the vectors a, b ,

We transform by similarity transformstion to new variables y . We

assume for simplicity that all roots of matrix A sare distinet so that A

is similar to a disgonal matrix, (It may happen, of course, that this will

be true only in the complex field, )

y= A y(t) + Foe)

f o °

5. Assume that we get dynamic Leontief inpubtesutput sv-em © = X-4XDX
if b is not singulars

X = Th Ta GE :

WT) =A,
and call the vector of transformed consumption

a
Q=b ¢
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Let »(t) be the auxiliary variables

H = «(C,B0+d) + (L\y,») + (FC{t),r)

3:
32 = =(2BC+d) + Fir(t) = 0

BC + d = Fer(t)

EE i wl

o 0 H § ?
Mt) 2 eo T= a rt(8)==Sh=0AF23)7. (bt) = =A, p r.(t) = g=M1% p, =r. (0)tit RT he Py » EE

The solution of this system of equations

&lt;3 +,(th) = e A p

a(t) = + B™ Fe RELY Pp 2 git d

ty oyWt) = ot 70) + e my oe”©TRC(Yar
Heneeg

By; * = Pa [= - A co x 4 .

Ea



© $ I «~3

roid pl inCall M =F CF 3

Jeh ;

= Nt,
e =

0 snl

Ne al wk 3 A : 0

&amp; Me™" = lg )1]

Using the fact that A(t) a db = a(t) dt a , where A(t) is the

matrix, a the vector of constants, we gel

oS A

a (As + A4)EWy 4(t) sa (os 9
ZS

; t wyWi) = Lt v(0) + = ot w(t) p= = B a i,

: Alen ; asl
y(t, ) =e + [y(0) + w(t, Je) = ZB 48

We solve for p and we have a complete optimal program in terms of

y and r , We transform back to x(t) and ¢(t) and we have the optimal

consumption path G(%) and optimal capital expansion x(t) , In this case

of a Leontief type of production and quadratic utility function, the actual

caleulation seems quite simple with present computational facilities, The

main problem is of zourse to find characteristic roots of A , It seems

that this simple example can serve alse for inquiry into sensitivity and

other properties of the actual optimal path,
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Application to Fiscal Policy

Prcblems of a different sort to which these techniques may be

applied is the problem of optimal fiscal and monetary policies [6].

Econometric models generally have the structure

x(t) = Ax(t) + Bx(t=1) + Cz(t)

with x(t) = endogenous variables,

z(t) = exogenous variables,

After estimation of matrices A, B, C, we solve for the endogenous

variables in terms of the predetermined variables:

(I-A) x(t) = Bx{t-1) + Cz(t)

-l =lx(t) = (T-A)™ Ba(t-1) + (T-AY"" Ca(t) .

We get a system of difference equations describing the path of the

endogenous variables under the forcing functions z(t) ., Let us assume

that the functions z(t) are controllable, (Clearly we have ignored

the random elements, and moreover, z(t) may be erratically uncontrollable;

but we assume that z(t) is composed of elements such as government

expenditures, taxation, money supply, ste.) We shall use a continuous

analog of the system of different equations:

5 Theil, H,, Economic Forecasts and Policy, 2nd ed, (Amsterdam,
North-Holland Publishing Go, 1961),

Holt, Charles C,, LinearDecisionRuleforEconomicStabilization
and Growth (Pittsburgh, Graduate School of Industrial Administration,
Carnegie Institute of Technology, 1960).
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ai

X(t) = Mx(%t) + Nz(t) .

Assume that the policymaker has some functions y(t) (nx 1

vector) such that y(0) = T y(tq) = © and that he wants to minimizes

Ly z ty :
J PRAAC ~7. (ey +f ik cI,
2 0

with terminal condition x(t) =0 ,

At,8)
x(t), y(t)

x(t)

sit)

CL BN

(0,F)

The first integral shows that the policymaker wants to minimize

the weighted squares of the discrepancies between the actual path of the

economy x(t) and some designated path y(t) . The second integral

implies that the policymaker tries to minimize the square of discrepancy

x(t) = y(t) without using too much control because of some disutility

that society attaches to control, (We include, of course, the special

case C, = 0.3



+ 30 w=

Dencte as (a, b) the scalar product of vectors a and b

“1 . ~

G = 0 = .

| 2 Ty v

1
Ming | [x(t)sy(t), Gx(t)-y(t)] + (z,Ca) dt

O

Let us assume for simplicity no constraints of z , We form the

Hamiltonian H and use the Pontryagin theorem to find the optimal

controls and the behavior of the system under these controls

H= {x(t)=y(t), GLx(t)=y(t)]] + (z,Cz) + (Mx 4) + (Nzoy)

OH
= 2Cz + Ny

2(t) = = 2 671 Wh w(t)

X(t) = Mx(t) = = NC N© g(t)

5 a ;H(t) = = 5 = M(t) - 26(x-y)

y(t) = Mb y(t) = 26x(t) + 26y(t) .

In matrix form we get the system:



2 ¥ azn x 0 \

| a a 4 i| = 8Wb 20 ¥ ww!

We solve the linear system with 2n equations and 2n boundary

conditions x(0) =51 » x(t) =0,
Since boundary conditions are at two different points, we set

¥(0) = m and eventually solve for m , 2Gy are the forcing functions

of this system,

Let ¢(t) be the 2n x 2n fundamental matrix of solutions:

wl 4) z 1
= g(t) (3) + (1) [ §°H(r) wy(rdar

y(t) :

$1208) ¢ dot)] Za) X30) |
oT a a pd es os a An a ae pa§(t) = : | ile) =

2 x . ¥ |
g(t) ° $228)| o7(t) ° hated |

X(8) = §0(8)F 1 + doom + 2613(2) [ X(nayimdar + 2),(8) [ Zp (vday(edar
0 0

t t

b(t) = 4,,(£)T + 4m + 24, (t) J D1 ,(7)Gy(T)dT + 24,,(t) | 2, (T)Gy(T)dT
0 o

Now we can solve for 1m (in terms of the initial conditions):

aM?



1
= = XY ]8=x(t))=419(6)F+d1,(tIm+243,(2))|Fp(mdap(ndar0

+ 28, (t) I Xo (T)Gy (ddr
0

t T.
j=l, 1 1

0 0

(all this, of course, provided 47 (t) exists),
Introducing the value of mw , we get the optimal control z(t) ,

and the optimal path of the economy under this control x(t) ,

Nete on Ineguaiities

The Maximum Principle is specially designed to extend tc the case of inequalities

in our controls, Let fs and £, be n production functions of the

economy and % 4 be the proportion of good J allocated to the produc

tion of i, Bys the amount saved out of the production of good i ,

Sy = By £,(019875 07855 oes ag,S,)

5, = B,, fo 4545 aSs 0009 aS.) 9

n

“ “ Tak§ iB, SL, Dn, o
J=1

Instantaneous utility is a function of consumptions uf (1-B1)C 5

0009 (1-8,)C,) °
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&amp;a i wy

fy

Max | ul (1-B)Cy, 8009 (1-8 JC, J dt 9
0

subject to S(0) and S(T) .

Again we can form the Hamiltonian,

B= oo ul(1-8)C] + &gt; wy(st) BE,

and our system of equations iss

5 = 2%, iy =o 2, Max H 0
i 1 [4,45 BJ

But to explicitly solve even quite simple cases seems impossible,

and the only route that may be open is to try computer experiments with

all the difficulties of two-boundary problems, The few attempts to use

this principle in economics have been in linear systems [7], both in

production and in utility, which may be realistic in engineering but not

in economics, and our intuition tends to reject bang-bang type policies

in economics,

Discrete Maximizations over Time

Much of the theory of the Maximum Principle and similar methods

and their application to eccnomics can be employed as well in the discrete

case [8],

, See, for example, Lionel G, Stoleru, "An Optimal Policy for Economic
Growth", paper presented at the autumn, 1963, meeting of the Econometric
Society, Boston, Massachusetts,

«» As a matter of fact, historically the approach of Euler was such that
he got his differential equation as the limits of the difference
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The optimal path will be described by a system of difference equations of

the state variables and the Lagrange multipliers, The controls as

functions of the state variables and the Lagrange multipliers will

again be determined by maximiation of some function H [9].

One of the main differences between the continuous and the

discrete case is that in the continuous case we have a cannonical system

of differential equations

2 oy Lienov’ ax

This system does not seem to carry over to the discrete case,

The analogy between the discrete and the continuous case is

especially simple in the case of the Ramsey-type problem [10], Con=

sider the sum}

Nel
Xx

$ = vi £(t,y,5p; ) 9
t=0

where y is a function of t , and Dy = Jaen = Tr We get the

necessary conditions for maximizing or minimizing ¢ with respect to

Yi by differentiations

Smt mm) ol (hy pn YD Sl mam =D,
Ot Yo TET Pp ETE Pt, y Fal? iat

This we may write as £(t) = AL(t-1) =O for 0&lt;t&lt; nal,

SG, This has been done by this author in an unpublished note,

10, Here we shall follow closely Fort, Thomlinson, Finite Differences and
Difference Equations in the Real Domain (Oxford, Clarendon Press, 1948),
Chapter 8.
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Ir AT is not given from outsides, we get "natural boundary conditions"

£,(0) = £50) =0 and £,(n-1) =O , The similarity of this to the

Euler equation is obvious,
D2

For sufficiency, let us denote by a,. agI and let us
1) 97;97;

check whether the matrix (a, 5) is possitive definite (or negative

definite), If | 13 | &gt;L, 8,01

ca = 2 To.D. 3) + 2 {l-1) + 2 (3) + 2 (3a4 by.5, pip (1)+£(11)+20(1)+£.(1)85 9 = £ p11) - £opli=1) 5

We denote by D, the principal minor composed of the first J rows:

=i Io
“1 fmm

D, = SR
J o .

ay a
Jd=1 J

and define D, = 1, We easily find that:

Zz
D.==8..D, - 8. D. °
37238 TEL TE

If this second-order difference equation, subject to initial

conditions D=1, Dl) mag =4d , has a positive solution, we
0 n Yq

get a minimum, If D, alternates, we get a maximum,

oly



As an example, let our instantaneous utility function, = Sn 9

be given, as are X(o),K(T) and the production conditions, K + C = rK,

We want to maximize

1 Le aC
0

The Euler equation is

Z
TER x x
E-ierl+ AnE=0 9

0
rt nL

K(t) =A; e +4, e |

where

r—
_ K(T) = K(o) ot

Aq = ;ndrT n+l
ge = 8

i
a, = Klojet K(T)

etirre i ’
7 n+l

eg =e

Extending the horizon to infinity, i,e.,, if T—mw, we find

rat
K(t) = K(o) 1

i pe
g(t) =» =r K(o) e ,

idK === gle). ,



The discrete case analogue production obeys rKy = Cy + Kya Ke ’

and our aim is?

ox &gt; eh
[1 [eKy = (Ryp- Ky)!

Differentiating with respect to Ke we finds

2 2
n+l +n o

Kyyq™ [(L4r) + (1+r)] K, + (1+r) (1+) a

WEA
Ea n+lB= A,(1+r) + A (lr)

I.
As K(T) = (oer it

1 i
(Ler) - (Ler Yor

is _ K(o)(asr)’ - KT)
2 I

(Leo) - (anil

If we open the horizon and T—&gt;w® we find

ae
K, = K(o)(L4x) ™*

a tl
8, = le) (tel. AY

Jn +l
AK, = K(o) [(L+r)™a 1](14r)™

a



We see the complete analogy between this system and the previous

continuous system, Nevertheless, there remain a few unanswered puzzles,

In the continuous autonomous case, when t does not appear explicitly,

it is possible, as is well&lt;known, to get the first integral of the system.

This is what enables Ramsey to give us policy in the form K = §(K)s

knowing K at t we invest ¢(K) ,

There does not seem to be a discrete case analogous to the first

integral of the Euler equation in the autonomous case, We have tried a

few examples with different functionals, and while the difference equa-

tions we get are analogous to the Euler equations and have the same form,

we did not find anything analogous to the first integral, We looked at

the difference equation which is analogous to the first integral of the

continuous case, but the solution to the second-order "Euler® difference

equation did not satisfy this equation, It seems that it is impossible

to extend Hamilton theory to the discrete case; and we cannot, in analogy

to Ramsey, give our policy rate in the form KX,4 = WK) ;

gv
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