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by
Bernd Clauberg
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Master of Science in Electrical Engineering and Computer Science

ABSTRACT _

The main objective of this thesis was to develop an indirect
adaptive depth and heading controller for the autonomous
underwater vehicle (AUV) Sea Squirt. A comparison of the several
estimation methods was done to determine which identification
method worked best for the AUV. The identification methods that
were researched included recursive least square (RLS), normalized
least mean square (NLMS), output error minimization (OEM), and
extended Kalman Filtering (KF). The extended Kalman Filter was
chosen as the preferred method and used in all adaptive
controllers implemented in this report.

The depth controllers implemented and tested using the KF
estimated states and parameters included Pole-Placement, LQG,
and Sliding Mode. All of these designs were implemented on-line
on the AUV Sea Squirt and extensively compared both through off-
line simulation and through in-water testing. The adaptive Pole-
Placement design was chosen as the best controller for this
application because it performed as well or even better than the
more complex Sliding Mode and LQG designs.

Finally, a combined depth and heading controller was
developed for the Sea Squirt using the Pole-Placement design.
Several autonomous in-water tests were done to demonstrate the
performance of the adaptive controller in a real-life environment.
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CHAPTER 1

INTRODUCTION

In this thesis an indirect adaptive controller is developed for a
small autonomous underwater vehicle (AUV), the Sea Squirt. This
vehicle was designed in 1988 by the Charles Stark Draper Laboratory
(CSDL) and the M.LT. Sea Grant Program as a research aid for
autonomous planning and control design. Although the control design
was done specifically with this vehicle in mind, the conclusions are
general enough to allow applications to other systems. The main
objective of this research was to develop a controller that could
achieve good performance and robustness without knowing the
parameters (i.e. hydrodynamic coefficients) of the system a priori
and without having to tune the gains of the controller by hand. The
effectiveness of the control design is then demonstrated on the AUV

Sea Squirt.

1.1 Control Design Problem

The precise control of autonomous underwater vehicles (AUV's)
is difficult because it requires the knowledge of the vehicle's
hydrodynamic model. The problem lies in the difficulty to obtain an
accurate model without extensive tow tank experiments which are

usually extremely costly and inaccurate if a scaled version of the



vehicle has to be used. Also, the hydrodynamics of the vehicle can
change during a mission. For example, the payload may change,
increasing or decreasing the buoyancy and mass properties of the
vehicle. Even the vehicle itself may change as new equipment such
as sensors or additional batteries are installed in the AUV. To
overcome these problems, a feedback controller could adapt in an
on-line fashion so as to reduce the amount of plant uncertainty. The
indirect adaptive controller uses an identification method that
estimates the parameters of a dynamic model of the AUV during
normal operation based on certain sensor readings (e.g., depth,
heading) and the corresponding control inputs (e.g., thrust). The
increased parameter accuracy gained by the identification method
allows one to update the feedback gains of the controller, resulting in
better performance than could have been achieved using a fixed
controller based only on a priori knowledge of the system.

In this thesis several indirect adaptive controllers will be
presented and compared in actual in-water tests. Four different

identification methods and three different control design techniques

will be discussed. The identification methods discussed include the -

most common techniques -- Recursive Least Square (RLS),
Normalized Least Mean Square (NLMS), Output Error Minimization
(OEM), and extended Kalman Filtering (KF). The control designs
presented in this thesis are adaptive Pole-Placement (PP), adaptive
Linear Quadratic Gaussian (LQG), and adaptive Sliding Mode (SM). All
controllers were implemented in C on the testbed AUV Sea Squirt to
evaluate and demonstrate their performance in a real-world

environment.



1.2 Thesis Organization

Chapter 2 describes the details of the testbed underwater
vehicle. All relevant hardware and software components are listed
and described to give the reader an overview of the vehicle. The six-
degree-of-freedom nonlinear equations of motion are presented for
the testbed vehicle. These equations are then simplified by
decoupling the depth and heading dynamics and reducing theni to
two second order independent systems. All assumptions used in this
simplification will be discussed.

Chapter 3 motivates and describes the indirect adaptive
controller. Four identification methods (RLS, NLMS, OEM, KF) are
presented and their advantages and disadvantages are discussed.
Three control methods (PP, LQG, SM) are disc'usséd and compared in
a similar fashion.

Chapter 4 compares the identification methods and controllers
using off-line simulations. The estimation techniques are mainly
compared based on how well they can identify the parameters of a
known plant as a function of signal-to-noise ratio. Computational
requirements of the algorithms are also considered as they must
allow on-line implementation. The control design methods are
compared based on their performance in a six-degree-of-freedom
nonlinear model of the Sea Squirt dynamics. Since these methods are
implemented in an indirect adaptive control setting, their
performance is evaluated both before and after parameter

convergence.

10



Chapter 5 discusses implementation issues such as transient
safety (i.e. safe operation during parameter estimation transients)
and sufficient excitation (i.e. signal being sufficient for correct
identification of the plant parameters). Transient safety will be
achieved by using a safety net approach which guarantees stability
by assuring that the vehicle path remains within some distance of
the desired trajectory even when the parameter estimates are poor.
Since sufficient excitation cannot be guaranteed without the freedom
to design the commanded depth and heading trajectories, conditions
will be developed that allow either the estimation to automatically
stop or to automatically add excitation when necessary. These
conditions will prevent parameter drift and permit adaptation
whenever it is needed.

Chapter 6 compares the depth controllers 'in actual in-water
tests demonstrating the performance of each design both before and
after the parameter estimates have converged. The "best" design is
then chosen for the combined heading and depth control of the
vehicle. The results of a full-scale autonomous test are then
presented to demonstrate the effectiveness of the adaptive controller
in a real-world environment.

Chapter 7 presents the conclusions of this research. A brief
discussion of the future application and possible improvements of

the indirect adaptive controller will be given.
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CHAPTER 2

VEHICLE DESCRIPTION AND DERIVATION OF DISCRETE
TIME DYNAMICS

Before discussing the equations of motion of the Sea Squirt, it is
necessary to give a description of the vehicle including its physical
shape, its hardware and software, as well as its basic operation.
Simplified discrete time depth and heading dynamics are then
derived from the general six-degree-of-fréedom nonlinear model for

underwater vehicles [1].

2.1 Vehicle Description
2.1.1 Physical Description of the Sea Squirt

The Sea Squirt is a battery operated, three feet long, 80 pound,
autonomous submarine which has been developed by CSDL and MIT
Sea Grant as a research and testbed vehicle (Fig. 2.1). As shown in
Figure 2.1, the vehicle has one vertical thruster, one port (left)
thruster, and one starboard (right) thruster. The vertical thruster is
used in depth control while the other two thrusters are used in
heading and speed control. There are no control surfaces such as
stern planes, bow planes or rudders. The vertical thruster applies a
force on the AUV which pushes it straight up or down depending on

the direction of the applied force. The vertical thrusier passes
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through the hull near the center of gravity (c.g.) and center of
buoyancy (c.b.) so that induced pitch and roll angles remain small for
non-zero vertical thrusts. Also, the x, y components of the center of
drag (c.d.) are close to the center of the vertical thruster so that even
for large vertical velocities (1 ft/s), the pitch and roll angles remain

small.

u,X LYV y
Figure 2.1 : CSDL/MIT Sea Grant AUV (Sea Squirt)!

The z-component of the c.d. is below the forward thrusters, due
to the additional drag introduced by the external battery tubes,
causing the vehicle to pitch downward for non-zero forward
velocities or up for non-zero backward velocities. However, for slow
forward speeds the pitch and roll angles are still small. As there are
no actuators to control the pitch and roll of the vehicle, they are

passively stabilized by placing the center of gravity (c.g.) below the

1All variables shown in Figure 2.1 are formally defined in Appendix 1.
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center of buoyancy (c.b.). In general, the buoyancy of the AUV will
always be slightly greater than its weight for safety reasons (this
ensures that the vehicle will surface if no thrust is applied). The port
and starboard thrusters are located along the sides of the vehicle
(see Figure 2.1). This arrangement allows one to use the port and
starboard thrusters to control both the vehicle heading and velocity
independenily. The hardware and software of the vehicle will be
discussed in Sections 2.1.2 and 2.1.3.

2.1.2 Vehicle Hardware

The on-board computer is made up of a GESPAC single board
68020 microprocessor with math coprocessor, a 10-bit A/D and D/A
board, and a communications board. Currently, there is no permanent
Storage available on the vehicle so that all data and programs have to
be stored in volatile memory (which is 512 Kbytes). This means that
the parameter estimates learned by the adaptive controller would
be lost if the on-board computer lost power. A 40 meg hard disk will
be added in the future to extend the data storage capability of the
AUV and to enable permanent storage of data, in the case of the
adaptive controller parameter estimates. As a comparison, the
computing power of the on-board computer is approximately equal
to that of a Mac II

The sensors availablie on the AUV are summarized in Table 2.1.
Our experiments will use only the depth and heading sensors. The

yaw ratec sensor was not used due to the fact that it drifts (i.e.
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produces steady-state rate errors) with time. Although this problem
could have been eliminated, it turned out that the rate measurement
was not necessary for the control of the vehicle. Since the depth
range for the depth sensor is only O to 60 feet (while the vehicle
itself has a depth range of several hundred feet), a different depth
sensor has to be used for missions requiring depth ranges over 60
feet. The advantage of using a depth sensor with a relatively small
range is that the accuracy of the measurement is improved. This is
mainly due to the fact that the entire depth range is quantized by
the A/D converter into 1023 quantization steps. Clearly, if the range
of the sensor is large, accuracy will be lost since the resulting

~ quantization steps will also be large.

Table 2.1: Vehicle Sensors

Measured Varirable Sensor Type

depth electronic nressure gauge (range is 0 to 60
feet depth)

heading electronic flux gate compass

pitch electronic capacitance type

roll electronic capacitance type

yaw rate | gyro (measures turn rate)

speed - paddle wheel type (not currently in use)

temperature electronic thermo couple

15



The power for the vehicle in autonomous operation is supplied
by either silver zinc or D-size batteries. Each of the two large
external batiery containers of the vehicle can hold 21 D-cells (at 1.5
volts per cell) or 24 rechargeable silver zinc cells (at 1.85 volts per
cell). The 21 Duracells are connected in series for a total of 32 volts
with a rated maximum current output of about 1 amp. The 24 silver
zincs are connécted as two batteries (12 cells each) in parallel for a
total of 22 volts with a maximum rated current of about 30 amps.
One set of batteries (i.e. one container) powers the vehicle electronics
including everything except the thrusters. The other set supplies the
power to operate the thrusters. The thrusters need a considerable
amount of current to operate at full power (up to 8 amps each) and,
therefore, usually have to be powered by silver zinc batteries since
these can suppfy much more current than the D-c;ells. The electronics
can be powered by either silver zincs, D-cells, or, if a tether is
attached, by a power supply.

The thrusters are driven by a pulse width modulator that
applies a high frequency square wave of varying duty-ratio and
constant amplitude to the thruster motors. The amplitude is
determined by the battery voltage, V, (which may change as the
batteries drain) and the duty-ratio is adjusted by the modulator
according to. the thrust commanded by the controller. For example, if
the controller commands a thrust of 1 pound, this thrust is changed
to a percentage of maximum thrust (which is 6.5 pounds for the
thrusters on the Sea Squirt) and then the modulator applies a square
wave voltage to the motors which varies between +V volts (positive

V for positive thrust, negative V for negative thrust) and zero volts
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and has a duty-ratio of 1/6.5. The modulating period is much lower
than the response time of the thrusters so that the total thrust
output remains constant for a given thrust command.

One problem with using the thruster controllers described
above is that there is no guarantee that the thrust commanded by
the controller is actually achieved since no feedback is used. If a
torque or propeller speed sensor was available, feedback could be
used to control the thrust more accurately. Also, the thrusters have
nonlinear dynamics and dead zones (see Figure 2.2). The dead zones
are partially inverted by experimentally determining the
approximate location of the forward and reverse set points indicated
in Figure 2.2. The nonlinearities, other than the dead zones, shown in
Figure 2.2 are ignored by the thruster controller sipge they can not
be eaSily measured or calculated. The thruster characteristics

assumed by the controller are shown in Figure 2.3. [2]

Actual
Thrust

Reverse
Set Point
{

Forward
Set Point Commanded

Thrust

Figure 2.2: Nonlinear Thruster Characteristics
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Expected
Thrust, pounds
65 - — — — -
|
Rcvers:c |
65 Set Plomt ‘
I |
| Forward 6.5 Commanded
| Set Point Thrust, pounds
I
—————— -6.5

Figure 2.3: Simplified Thruster Model

2.1.3 Vehicle Software

.For implementation purposes all "software programs (i.e.
controllers and identification algorithms) will be implemented in C
and downloaded from a portable computer (zenith 286) to the on-
board computer via a serial port by connecting a tether. The vehicle
can be operated with or without the tether, but all data collected
during a mission must be passed through the tether to the portable
computer for permanent storage. The on-board computer uses an OS-
9 multitasking operating system, which allows the user to run more
than one program at a time. Since there is only one main processor,
the programs are executed according to a hierarchy with the most
important programs having priority over less important programs.

For example, modules that read the sensors and update the
thrust commands will always be executed at the sampling period, T,

even if other programs such as data storage routines have to be
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temporarily halted. To avoid halting programs that depend on being
executed at regular intervals (such a. the controller which should be
executed at the sampling frequency of 5 Hz), care must to be taken in
determining the computation time of the code involved. This means
that the adaptive controllers presented in this thesis and
implemented on the vehicle had to be coded in such a way that the
on-board microprocessor could perform all necessary calculations in
considerably less than one sampling period (or 0.2 seconds).
Although currently the combined computational load induced by all
programs other than the controller (including routines for reading
the sensors, storing data, generating heading, depth and speed
commands, etc.) is less than 20% of the total CPU time, it was decided
that no more than 50% of the CPU time could be used by the
coﬁtroller to aliow at least 30% CPU time for routines that might be
added in the future such as survey, obstacle avoidance, and

navigation routines.

2.2 Derivation of Simplified Dynamics for the Sea Squirt

In order to implement on-line parameter estimation for the
underwater vehicle dynamic model, it was necessary to determine
the equations that describe the dynamics of the Sea Squirt. The
nominal parameters for the standard submarine equations of motion
[1] are contained in [2]. The equations are reprinted in Appendix 2

for convenience. In order to implement the adaptive controller in an

19



on-line fashion, it is desirable to simplify the equations of motion as
much as possible without neglecting any crucial terms. This
simplification reduces the number of states and the number of
parameters that have to be identified which, in turn, reduces the
computation time of the estimation and control routines and
increases the convergence rate of the parameter estimates; however,
care must be taken in the model reduction, for if the simplified
identification model is incapable of representing the actual dynamics
the estimation is doomed to failure. One significant advantage of the
Sea Squirt dynamics is that the depth and heading dynamics can be
decoupled resulting in two single-input-single-output (SISO) control
problems instead of one multi-input-multi-output (MIMO) control
problem which is' much more difficult to deal with especially in an
on-line control design.

Let us consider the depth dynamics first. The vertical thruster
acts approximately through the center of gravity (c.g.), center of
buoyancy (c.b.), and the center of drag (c.d.) and, since the c.g. is
below the c.b., it can be assumed that both pitch and roll angles
resulting from vertical motion will remain small as long as the
disturbances such as waves are negligible. This is a reasonable
assumption since the AUV will normally operate at a depth of at
least several feet where the wave effects are considerably less than
at the surface. As discussed in Section 2.1.1, the z-component of the
c.d. is below the center of the forward thrusters, causing the vehicle
to pitch down for non-zero forward velocities. Also, the roll angle of
the vehicle will increase if the vehicle experiences significant side

slip, v, (side slip increases with forward speed and with yaw rate).
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Since the vehicle is designed to operate with small pitch and roll
angles (sensors such as the compass will not work properly
otherwise) and since neither pitch nor roll is directly controllable, it
is assumed that the normal operating velocities of the vehicle will be
chosen such that these angles remain small. Using these assumptions
allows one to approximate the equations of motion for the depth

dynamics given in Appendix 2 by the following set of equations:

d—ddetpt—h = w (2.2.1a)
dw (W-B) + Ty
[ S aw+ bwliwl + mass-Zy," (2.2.1b)
where
1
2T mass-Zy Zuw Yo
l .
b = mas's-zwc ZWIWI
upo = some nominal forward velocity
w = depth velocity as a function of time
Ty = vertical tnrust (pounds)

All terms not defined here are given in Appendix 1.

The previous equations assume that u, varies slowly (i.e. its
derivative is small) so that the identification routine can track the
parameters that change as a function of u,.

Since the controller will be implemented on a digital computer,
it was desirable to convert the above continuous time equations to

the corresponding discrete time representation. This transformation
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is not straight forward due to the nonlinearities involved. The
derivation is presented in Appendix 3. The following discrete time

depth dynamics were obtained.

d(N+1) = d(N) + T w(N) + by (Ty(N)+ ¢) (2.2.22)
w(N+1) = a1 w(N) + a2 w(N) Iw(N)I + bp (Ty(N) +¢) (2.2.2b)

where
d = depth
w = depth velocity
T = sampling period ( .2 seconds)
by,aj,az,ba,c parameters to be identified

Note the similarities between the discrete time equations (2.2.2) and
the continuous time equations (2.2.1). The model given in equations
(2.2.2) is a good approximation of the six-degree-of-freedom
nonlinear model un,der' the assuinption that pitch and roll angles as
well as their derivatives are small and w<1 ft/s.

The heading dynamics for the Sea Squirt are almost identical to

its depm_iyqamics._'rhc_diffemnﬁal_thmsx_of_thc_tﬂo_hnﬁznnml
thrusters provides a torque to affect yaw acceleration and any net
positive (or negative) offset in both thrusters determines the
forward (or backward) velocity of the vehicle. As discussed earlier in
this chapter, it is assumed that both pitch and roll angles remain
small during heading control. Also, it is assumed that the side slip
velocity, v, is small and, therefore, does not significantly affect
heading. This is a reasonable assumption since the vehicle drag in the
y-direction is large. Furthermore, the vehicle is fairly symmetric (in

terms of drag) about the y-z plane so that even when side slip
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occurs, the resulting heading change will be small. Of course, the true
validity of all aésumptions will be determined by on-line
performance. With these assumptions the form of the heading
dynamics turns out to be identical to that of the depth dynamics with
depth replaced by yaw (heading) and depth rate replaced by yaw
rate (hezding rate). Although there is no heading term corresponding
to the buoyancy term, c, in the depth dynamics, this biasing term
was retained in the heading model to account for any steady-state
differences in the two horizontal thrusters as well as the effects of
cross cuirents. For simplicity, the same names will be used for the
heading and depth parameters except that all heading parameters

will begin with an h (ie. hbj, haj, haz, hb2, hc).
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CHAPTER 3

ADAPTIVE CONTROL

The indirect adaptive controller consists of a parameter
identification scheme and a controller whose gains are calculated in
an on-line fashion from the identified plant model. The structure of
" the plant model must be known a priori, but the coefficients or
parameters involved can be estimated using the input/output
information available. The block diagram in Figure 3.1 shows the
operation of the indirect adaptive controller. Once the system
identification has identified the model parameters, a controller can

be designed on-line based on this estimated plant.

parameter est. System
state est. Identification .
ref. u Pl
input —_| Contro 1 ant B

Figure 3.1: Block Diagram of the Indirect Adaptive Controller

In the block diagram the reference input is compared to the
estimated plant output, § (i.e. the state estimates), to produce an

internal error signal. The controller uses this error signal to generate
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the control, u, which drives the actuators of the system. The
identification block estimates the plant parameters (and perhaps the
states) from the control signal, u, and the output measurement, y.
This information is then used to update the controller gains according
to one of several control design methodologies. Depending on the
identification methodology either the actual measurement or the
filtered estimates are used in the control law. Sections 3.1 and 3.2
describe the different identification methods and control designs
which will be implemented using the above indirect adaptive control

scheme.

3.1 System Identification

" The system identification is perhaps the most important
element of the indirect adaptive controller because the performance
of the controller is directly related to the accuracy of the plant model
available. Since the controller is designed on-line based on the
parameter estimates obtained from the identification method, any
inaccuracies in these parameter estimates will degrade the
performance of the controller. For this reason, it was thought
necessary to research several estimation methods before deciding
“which would be best suited for the problem at hand. Several

commonly used methods are given below:

1. Recursive Least-Square (RLS)
2. Normalized Least-Mean-Square (NLMS)
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3. Output Error Minimization (OEM)
4. Extended Kalman Filter (KF)

Before discussing each of the above methods in detail, it should be
noted that they all use the following general update equation for

recursive estimation given by

e+ =8 M) +KM)[yN+D-FN+1] (3.1
where
6\ (N+1) = the parameter estimates at time N+1
¥ (N+1) = the estimate of the output based on
information available at time N
K(N) = some gain vector

y(N+1) = the output at time N+1

In -equation 3.1.1, only the gain vector, K(N), changes from one
method to the other. Sections 3.1.1 to 3.1.4 discuss how K(N) is
calculated for each of the four identification methods listed
previously. All of the methods are discussed extensively in the
literature and therefore, only the basic equations necessary for their
implementation are given in the sections to follow. Table 3.1 will
summarize the advantages and disadvantages of each of the
identification methods. Since the indirect adaptive controller will be
implemented on-line on a digital computer, discrete time equations

are used.
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3.1.1 Recursive Least Square

Unlike the extended Kalman Filter, the RLS, NLMS, and OEM
methods cannot be applied to a nonlinear plant without
modifications. In order to clarify this point, we will present the RLS,
NLMS, and OEM methods as they apply to a linear plant model and
then discuss the modifications necessary to apply these methods to
the reduced order nonlinear Sea Squirt model given in equations

(2.2.2).
RLS Applied to_a Linear Plant Model

Assume that the plant to be identified is given by the linear

discrete time  equation

n-1 m-1
yN+1) = 3, a; y(N-i) + 3, b; u(N-i)
i=0 i=0 (3.1.2)

where aj and b; are the unknown parameters.
Define the parameter vector
0 =[a; az ... 3y by by ... b (3.1.3)

and a regressor
X(N)=[y(N) y(N -1) ... y(N-n +l) u(N) u(N-l) u(N-m+l)]T (3.1.4)
so that the estimated output is given by

N +1) = XTQN) O(N) (3.1.5)
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The RLS method minimizes the cost function
J@=|ly-ylk (3.1.6)

It can be shown that the minimum cost is achieved using the

foliowing parameter update technique [3].

Let the gain vector be given by

K (V) = PR X0
XT(N) P (N) X(N) + A (3.1.7)

where
P(N) - K(N) X"(N) P(N)
A (3.1.8)

Lambda is a forgetting factor which allows the RLS method to track

P(N +1) =

parameter changes "forgetting” old information exponentially fast.
Lambda has to satisfy the constraint
O<A<l (3.1.9)
If lambda is equal to 1, all information will be weighed equally and
there is no forgetting. If lambda is very close to 0, only the most
recent input/output information is considered. In the literature the
RLS method with the weighting factor, A, not being equal to 1 is
sometimes referred to as Recursive Weighted Least Square (RWLS).
As discussed in [3], P is usually initialized as a large scalar
constant times the identity matrix if only limited a priori knowledge

of the system is available. This is done because a large P will result
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in large parameter gains which, in turn, cause the parameter
estimates to converge fast. For A equal to 1, the parameter
convergence will slow down as time goes on since P, and therefore K,
will decrease. This means that the gains calculated in (3.1.7) will
eventually be driven toward zero making the algorithm m_lable to

track time varying parameters. Making A less than 1 will prevent P

and K from becoming too small (see (3.1.8)) and therefore, enable

RWLS to track time varying parameters.

In order to apply RLS (as well as NLMS and OEM) to the Sea
Squirt depth dynamics given in equations (2.2.2), an appropriate
regressor, X(N), and parameter vector, 8, must be defired.

The reduced order nonlinear Sea Squirt depth dynamics given
in equations (2.2.2) can be rewritten in the following form by

combining equations (2.2.2a) and (2.2.2b).

d(N+1) = d(N) + a1 T w(N-1) + ap T w(N-1) Iw(N-1)l

+b2 T Ty(N-1) + b1 Ty,(N) + L (3.1.10)
L=(MbT+bj)c (3.1.11)
where
d = depth

w = depth velocity

T = sampling period ( .2 seconds)
Ty = vertical thrust
b1,a1,22,h2,L = parameters to be identified
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Define the parameter vector

@=[blal a2b2l]) (3.1.12)
and a regressor

XN} =[Ty(N) Tw(@N) T w(N-1) wN-1)) T Ty(N-1) 1] (3.1.13)

Since a depth velocity measurement is not available on the Sea

Squirt, w(N) in eq. (3.1.13) has to be approximated as

w(N) = (d(N) - d(N-1))/T. (3.1.14)
Then,
d(N+1) = X(N)T 0 + d(N). {3.1.15)

Although the above choice of X(N) and 0 résults in the identification
of parameter L instead of the buoyancy estimate, ¢ can be
determined easily using the relation given in equation (3.1.11). Given
the parameter and regressor vector, equations (3.1.1), (3.1.7), and
(3.1.8) apply for both linear and nonlinear plants and, therefore,

need not be changed.

3.1.2 Normalized Least Mean Square
As the name suggests this method minimizes the mean value of

the square of the output error, y - f It can be shown [3] that the

necessary gain equation is given by
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1 XA\
e+ XT(N) X(N) (3.1.16)

K(N) =

where € and p are constants aud XT(N) X(N) is the normalizing term.
The regressor, X(N), in (3.1.16) is the same as that for RLS given in
(3.1.4) (or (3.1.13) for the nonlinear Sea Squirt depth dynamics). The
¢ is included to ensure that the denominator is always strictly
positive and therefore, € is chosen to be a small positive number.

The p in (3.1.16) de;ermines the speed of convergence of
algorithm and has to satisfy the following constraint to ensure
stability:

O<p<2 (3.1.17)
The stability proof is given in [3]. Note that the RLS equations (3.1.7)
and (3.1.8) reduce to equation (3.1.16) when P is replaced by a scalar
times the identity matrix. |

The convergence rate of NLMS is fixed by p. The convergence
rate of RLS varies depending on the covariance of the regressor.
Since the covariance in low noise conditions is small, RLS generally
converges faster than NLMS under these conditions. The reason
NLMS is sometimes preferred to RLS is that it performs better in
situations where the sensor noise is high. This is demonstrated
through simulation in Section 4.1. NLMS also has the advantage that
it uses less CPU time than RLS as shown in Table 3.1. In the NLMS
method the convergence rate of some parameters may be
substantially different from that of other parameters if the
magnitude of the parameters differ significantly. Although this

problem can be eliminated by scaling the parameter vector, 8, and
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the regressor, X, it is not easy to determine the scaling factors
especially if the parameters are not known a priori. Scaling the
parameter and regressor vector may also help by decreasing numeric

problems when the computational accuracy is limited.

3.1.3 Output Error Minimization

This method is similar to the RL.S and NLMS in that the goal is

. A . . .
still to have y approximate y in the least squares sense. The main
difference between this method and RLS or NLMS is that it utilizes

the regressor (for the linear plaut model)
XQ) =[F®) Q1) ... YN-n+1) o) uN-1) .. uN-me ) (3.1.18)

Note that the estimated output is used in the regressor instead of the
actual output as was the case for the RLS and NLMS methods. As a
result of using the estimated output in the regressor, the OEM is able
to produce unbiased parameter estimates. As is discussed [3], RLS
and NLMS are both biased estimators. For the reduced order
nonlinear Sea Squirt model, the OEM method uses the same regressor
as given in equation (3.1.13) with the depth rate replaced by the
estimated depth rate.

Even though the regressor chosen here has the advantage of
providing unbiased parameter estimates, it makes it difficult to find
a closed-form solution of the desired minimization as discussed in [3].

Using the approximations discussed in the reference (i.e. small p) a
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closed-form solution can be obtained. For the method discussed here,

the gain is given by (see [3])

K(N) = ¥(N) (3.1.19)
where

Y(N) = X(N) + i ai(N) ¥(N-i)
iml (3.1.20)

The ﬁ\i(N) is the estimate at time N of a; given in (3.1.2). For the
nonlinear Sea Squirt depth dynamics the gain will be calculated as
KN) = p X(N) since equation (3.1.20), which assumes a finite impulse
response (FIR), does not apply to the nonlinear model.

The p is a constant that has to be determined according to the
noise conditions and desired rate of convergence just like that of the
NLMS method. However, the above recursive estnmatnon algorithm
for OEM is not necessanly stable for all choices of p. if the plant has
poles close to the unit circle. This means that p has to be chosen small
enough to ensure stability causing the convergence rate to be
relatively slow. This is one of the main disadvantages of OEM
compared to the KF method discussed in Section 3.1.4. Also, the OEM
presented above requires that the parameters and regressor be

scaled properly as was the case in NLMS.
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3.1.4 Extended Kalman Filter
The extended Kalman Filter also minimizes the cost function

io=lly-ylk (3.1.21)
just as the other methods do, but the KF generates the optimal linear
parameter and state estimates given that the measurement noise, T,
and process noise, q, is white and Gaussian. To define r and q more
clearly, let's look at the state space representation of the plant given
by

x(N) = f (x(N-1), u(N), 8 )+q[N] (3.1.22)
y(N) = C x(N) + r[N] (3.1.23)
where
x(N) = state vector

y(N) = output
q = process noise

r = measurement noise

Define the covariance of q and r as
§71Q = E{qNITq[N-1]}
§{t]R = E(rNITr[N-t])

The main difference between the KF and the other 3
identification methods discussed is that the KF assumes a structure
for the state dynamics to obtain state estimates. It estimates both the
states, x, and the parameters, 6, by augmenting the state vector as

follows:
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o0[23 oS

x(N) | [f{x(N-1), u(N), 6 } (3.1.24)

The output is then given by
y(N) = hz(N)) (3.1.25)
where h is a function of the augmented state.
Since we are now dealing with state estimates as well as parameter
estimates, the general update equation for recursive estimation has
to be written in two parts. One part extrapolates the state estimates
using the equation
Q0 = EFRN-1)", u, 0 (3.1.26)
It is assumed that the parameter estimates remain constant over one
sampling period so that only the state vector is updated, not the
augmented state vector. The superscript (+) and superscript (-) are
introduced to differentiate the state estimate extrapolation from the
state estimate update which is obtained asing the Kalman gain, K(N),
as follows:
20" = Z(N) + KD [yan) - HQV) 2Ny ] (3.1.27)
where Q(N) is the estimate of the augmented state given in (3.1.24).
It can be shown [4] that the optimal gain (assuming r and q to

be Gaussian) is given by

KQ) = PO HOO [R + QD) POy HOV)] (3.1.28)
where

P(N)" = F(N-1) P(N-1)* F'(N-1) + Q (3.1.29)

P(N)* = (I - KN) H(N)) P(N) (3.1.30)

35



F and H are the linearized versions of f and h and are given by

I 0 oh(x)
FN) = | o8
ax) 3f(x) HOD =1 aneo

29 Oox ox (3.1.31)

The KF is an unbiased estimator just as the OEM method. Since
the OEM methed only adjusts parameters, instability can result by
(y-)ﬁ diverging. The KF overcomes this difficulty by adjusting both
the state estimates and parameter estimates. Unlike RLS, NLMS, and
OEM, the KF can be directly applied to systems where the parameters
being identified do not appear linearly in the dynamics. Another
advantage of the KF is that it does not require the scaling of
‘parameters since the covariance matrix, Q, of the parameter's driving
noise can be selected to accommodate scaling differences. However,
in some cases the scaling of the parameters may increase the
performance of the KF by decreasing numeric problems when
computational accuracy is limited. The main disadvantage of the KF is
its complexity. It involves more computation than the other methods
because it takes the dynamics of the system and noise processes into
consideration to obtain state estimates. This means that for a second
order system with 5 parameters, the KF has to deal with matrices of
dimension 7 by 7 while the RLS method only has to deal with

matrices of dimension 5 by 5.
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3.1.5 Summary of Identification Methods

Table 3.1 summarizes the properties of each of the four
identification methods described in Sections 3.1.1 to 3.1.4. The main
advantages and disadvantages are given. The approximate number of
floating point operations given in Table 3.1 for each of the methods
were obtained through Matlab simulations and apply to the reduced
order depth dynamics (5 parameters and 2 states) of the Sea Squirt
chtained in Chapter 2. The number of operations listed include all
calculations necessary for each update of the parameter (and state)
vector. It should be noted that the code used in calculating the
floating point operations was not optimized for the given plant to
make the comparison more general. In practice, the number of
computations of the RLS and KF can be reduced Substantially by
taking into consideration the structure of the plant (i.e. certain
matrix multiplications can be simplified if the matrix contains only a
few nonzero elements). However, the relative outcome of the
comparison should be the same with NLMS and OEM having the least

computations and the KF the most.

37



Table 3.1: Summary of the Estimation Methods
RLS NLMS OEM KF
Conv. Fast Slower Slower Relatively fast
Rate convergence |convergence Jconvergence |convergence
rate ratec than RLS [than other rate
methods
Number | Number of Number of Number of Number of
of Calc. |floating point |fioating point |floating point |floating point
calculations = |calculations = |calculations = |calculations =
623 42 47 2389
Ease of |Simple to Simple to Simple to More complex
Imp. implement implement implement algorithm than
other methods
Biasness | Biased Biased Unbiased Unbiased
estimator estimator estimator estimator
State Est. Ne No No Yes
Noise Yes Yes Some stability Yes
Stability problems for
poles close to
the unit circle

3.2 Feedback Control

The main objective of this thesis was to design an adaptive
controller for the Sea Squirt with good performance characteristics.
However, since the Sea Squirt dynamics are not well known and
change frequently, choosing reasonable performance specifications
was not straightforward. The performance criteria that we were
mostly interested in was fast response time with little or no
overshoot, low output variance once the desired depth (or heading)
was obtained and low power consumption (i.e. unnecessary thrust
variations should be avoided). The problem lies in quantifying these
performance specifications for the Sea Squirt. In order to specify an
achievable response time, past in-water data was used as a guideline.

For example, the maximum depth velocity of the vehicle was known
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to be less than 1 ft/s which means that the response time for a 1 foot
step command must be larger than 1 second. However, since we are
interested in the response time including the time it takes to
accelerate and decelerate the vehicle (since small overshoot is
desired), the best possible response time must be of the order of
several seconds. Although we now have an approximation on the
lower bound of the achievable response time, perhaps a more exact
bound could be obtained from the reduced order Sea Squirt
dynamics (equations 2.2.2) with the parameter estimates (a1, a2, by,
b2) obtained through off-line identification using in-water data. This
is the approach that was used since the model obtained from in-
water data should be a good approximation to the actual vehicle
assuming that the parameter estimates are correct. To verify the
" validity of this model (at least in terms of the response time), several
simulations were done using the six-degree-of-freedom nonlinear
model of the Sea Squirt.

For the Sea Squirt model given in equation‘ (2.2.2) with the
corresponding parameter estimates obtained from in-water data
using the extended Kalman Filter (21=0.9, a2=-0.2, b1=0.002, and
b2=0.02), the best achievable response time of the vehicle to a 1 foot
depth command change was found to be 3.6 seconds. This response
time was obtained by applying maximum thrust (5 pounds) for 2.4
seconds and minimum thrust (-5 pounds) for 1.2 seconds to the
reduced order model (assuming no net buoyancy). This means that
3.6 seconds is a lower bound for the response time (for a 1 foot
depth change with small overshoot) assuming that the parameter

estimates obtained from the extended Kalman Filter are correct.
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However, since this lower bound can only be achieved in the ideal
case (i.e. no net buoyancy, no unmodeled dynamics, correct thruster
calibration, charged batteries, etc.), the performance specification on
the desired response time must be greater than 3.6 seconds if it is to
be achievable. Also, it is not desirable to operate at the thrust limits
if the depth error is small since this would cause unnecessary power
consumption (thrust variations) in the presence of noise. With these
considerations in mind (and after several simulations using the six-
degree-of-freedom nonlinear Sea Squirt model) it was decided that a
response time of 5 seconds should be achievable with little or no
overshoot on the actual vehicle. This response time applies to a 1 foot
depth command change. Step command changes larger than 2 feet
(the response is assumed to be linear for command changes less than
2 feet) will have longer response times due to actuator saturation. A
similar approach was used to obtain a bound for the heading
résponse time. 't will be assumed in this chapter that the response
time is measured as the time required for the depth to reach the
commanded depth to within 5% for a 1 foot depth change.

Another performance specification is that the output (depth or
heading) variations from the desired setpoint should be as small as
possible. However, in order to quantify this specification, a
covariance analysis of the vehicle dynamics would be necessary. This
is not possible because the plant parameters as well as the modeling
uncertainty is not known. One way to overcome this problem would
be to assume bounds on the modeling uncertainty as well as the
noise and disturbances. If these bounds were known, one could

design a controller to minimize (at least for the non-adaptive case)
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the output variance based on these bounds. However, in the case of
the Sea Squirt, these bounds are not known. Therefore, it was
decided to design the controller to have the desired response time to
a unit step change in depth with little or no overshoot and then
evaluate its performance in terms of the output variance under
various conditions (i.e. noise, disturbances, etc.) using the six-degree-
of-freedom nonlinear simulation. The above discussion on the output
variance specification also applies to the thrust variance.

The following list summarizes the performance specifications for the

Sea Squirt controller:

1. Bandwidth - The response time to a unit step command
change to within 5% of the desired depth
should be approximately 5 seconds. This
specification applies only to the linear portion
of the response (i.e. within 2ft of the
commanded depth) since the response time to
large step command changes will take longer'
due to actuator saturation. The 5 second
specification was chosen loose enough to ensure
it would be achievable given reasonable
variations in the vehicle's buoyancy and
dynamics.

2. Overshoot - It is undesirable to have significant (more than
5%) overshoot in closed-loop response of the

vehicle.
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3. Output variance - Once the desired depth has been obtained, the

4. Thrust variance -

variations from this setpoint should be small.

Since the power consumption of the vehicle
increases with increased control action,
unnecessary oscillations in the thrust

commands should be avoided.

As with the identification methods, it was thought nccessary to

compare several different control design methods before deciding

which one would be best for the AUV. Although there are many

popular control designs used today, not all of them are suited for on-

line implementation on the Sea Squirt. For example, the iterative

nature of robust control design techniques would have been too

complex for the limited computing power - available. The control

techniques that were implemented on the Sea Squirt include pole-

placement, sliding mode, and LQG. These methods were chosen for

several reasons:

1. The pole-placement was chosen because it allows the direct

placement of the closed-loop eigenvalues. This makes it a very

simple algorithm to obtain the desired closed-loop bandwidth

(and hence response time). Also, since the eigenvalues are

related to the damping, one can easily place the closed-loop

poles such that the step response of the closed-loop system will

have little or no overshoot.
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2. The sliding mode algorithm was chosen because it enables one
to easily incorporate modeling errors into the control algorithm
by explicitly taking into consideration nonlinear dynamics of
the system. The details on how to represent modeling errors
and disturbances (if bounds are known on these uncertainties)
in discrete sliding mode are given in [5]. Since SM uses a
reference trajectory which determines the closed-loop system
behavior, the performance specifications (small overshoot and
desired bandwidth) can be delt with easily by correctly
choosing the desired reference trajectory and the controller
parameters discussed in Section 3.2.3. Although the algorithm
is more .involved than the pole-placement, it is simpler in

terms of implementation than the LQG method.

3. The LQG method was chosen since given that the plant model is
correct and given that the control and state weighting matrices
can be found to satisfy the response time specification (with
little or no overshoot), it should optimize the state/control
variance tradeoff. This is an advantage since the output and
control variance performance constraints could not be directly
addréssed by the PP and SM designs. Although the LQ control
system (i.e. LQG without an observer) haS guaranteed phase
and gain margins, these properties cannot be guaranteed for
the LQG controller. However, the fact that these properties
cannot be guaranteed for the LQG design does not imply that
they may not be achieved in this specific application. The

extend to which these properties do carry over in this
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application could give the LQG design an additional advantage
over the other control design methods and, therefore, is worth
evaluating. One drawback to this algorithm is that it involves
the solution of the matrix Riccati equation which makes it much
more computationally complex than either of the above

methods.

The following sections describe the pole-placement, sliding
mode, and LQG methods, pointing out there advantages and
disadvantages. Only the discrete version of each of the controllers
will be discussed because the parameter identification was also done
in discrete time and thus only the discrete time parameter estimates
are available. Since the control design will be done on-line using
these parameter estimates, discrete time control is required. The |
exact equations used in the implemcntation on the Sea Squirt will be

given.
3.2.1 Pole-Placement (PP)

Since pole-placement (as well as LQG) is a linear control design,
ii is not clear what should be done to account for the nonlinear terms
such as the one present in the reduced Sea Squirt dynamics given in
equations (2.2.2). Although the effects of the drag term could have
been reduced by subtracting a; wiwl/b2 from the control input or by
using some gain-scheduling technique based on w, neither proved
necessary here (since the performance specification_s were met

without using these techniques). Linearizing equations (2.2.2) about
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w=0 (recall that w is the depth velocity) eliminates the nonlinear
term. For this reasons it was decided that a pole-placement design
_based only on the linear portion of the model given by equations
(2.2.2) would be sufficient here (the nonlinear term is maintained in
the model for accuracy of the parameter identification). Therefore,

the open-loop system is approximated as follows:

x(N+1) = A x(N) + B u(N) (3.2.1)
where
x(N+1) = the state vector at time N+1
= [x1x2]T

u(N) the control input at time N
If we define the control signal as

. u(N) = -K e(N) (3.2.2)
where e(N) is the error between the reference command, r(N), and

the state vector, x(N), then the closed-loop system is given by

x(N+1) = A1 x(N) + BK (N) (3.2.3)
where

Acg=A-BK

In the pole-placement design K is chosen such that the
eigenvalues of Ac] are at the desired location [6], [7]. For low order
systems (such as the reduced order Sea Squirt dynamics derived in
Chapter 2) equation (3.2.3) can be solved analytically for the

feedback gain vector K. This results in very simple code when
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implemented on a digital computer and minimal computational
overhead.

In general, the desired pole location depends on the
performance that is needed and achievable by the actuators.
Especially undesirable is when actuator saturation occurs unnoticed.
Since the identification algorithm uses the commanded control, not
the actual control, to estimate the parameters, any difference
between the two control values will cause incorrect parameter
estimation.

Since the closed-loop poles are being placed in discrete time,
their magnitudes have to be less than one in order for the system to
be stable. Also, the poles should be chosen close to the real axis and

should have a positive real part if oscillations are not desirable.

" Determining the exact location of the desired poles can be done in

several ways. One method is to determine the continuous time poles
based on the desired frequency response and then approximate
these poles in discrete time. Another method is to use simulation in
discrete time to find the poles that meet the desired performance
specifications with minimal actuator saturation. Clearly, there is some
trial-and-error involved in the latter method. For low order systems

either method is acceptable.

Pole-Pl Apolied to the Sea Sauir

The open-loop reduced order discrete time depth dynamics for

the Sea Squirt are reprinted below (3.2.4) for convenience.
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d(N+1) = d(N) + T w(N) + by (Ty(N)+ ¢) (3.2.4a)
w(N+1) = a1 w(N) + a2 w(N) IwN)I + bz (Ty(N) +¢c) (3.2.4b)

where
d = depth
w depth velocity
T sampling period ( .2 seconds)
bi,aj,a2,bz,c = parameters to be identified

Since equations (3.2.4) include a buoyancy term, c, which represents
a constant, steady force on the vehicle, the control law given in
(3.2.2) would result in a non-zero steady-state error. To eliminate
this error, one can either add an integrator state to the system which
integrates the depth error, or one can subtract out the buoyancy
term using the buoyancy estimate obtained from the identification
method. Adding an integrator ‘state ca'uses- the system dimension to
increase from two to three which increases the computational
complexity of the algorithm considerably and makes it more difficult
to determine the desired closed-loop pole locations. Also, integral
control leads to problems such as integrator wind-up. The only
advantage of using the integrator method over the other method is
that it would eliminate steady-state error even if the buoyancy
estimate is poor. However, it was found that the parameter estimates
converge as a group so that if the buoyancy estimate is poor, most
likely all parameter estimates will be poor as well, resulting in
degraded performance. Therefore, even if the integrator eliminates
steady-state error with a poor buoyancy estimate, the overall
response of the closed-loop system will more than likely be less than

desirable anyway. Since the performance of the closed-loop system
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will be degraded by a poor buoyancy estimate, no matter which of
the above methods is used to eliminate steady-state error, we do not
use integral control; and, we develop in Chapter 4 an improved
method to quickly estimate the buoyancy.

The pole-placement algorithm implemented on the Sea Squirt

is given by
Ty(N) = K1 (tef(N) - d(N)) - K2 w(N) - & (3.2.5)

where ¢ corresponds to the net buoyancy estimate and Ty is the
vertical thrust. It should be noted that the actual depth rate, w(N), is
not measured, but its estimate is assumed to be available and used in
the place of w(N). As will be discussed in the next chapter, the depth,
d(N), will also be estimated and used instead of the actual depth to
filter out noise and quantization errors. Substituting equation (3.2.5)
into equations (3.2.4) will result in the cancellation of the "c" term as
desired. If the buoyancy estimate is correct, the steady-state error
will be zero.

For the Sea Squirt the closed-loop pole locations were chosen to
meet the performance specifications given at the beginning of this
section as good as possible. Since small overshoot was desired, the
poles had to be chosen positive (positivé real part) and close to the
real axis to obtain a damping close to 1. Since actuator limitations
had to be considered as well, the exact pole locations were chosen
based on the six-degree-of-freedom nonlinear simulation of the Sea
Squirt such that the response time (bandwidth) and damping

specifications were met. Through these simulations it was found that
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pole locations of 0.7 and 0.8 resulted in a closed-loop control system
which satisfactorily met the desired performance specifications.
Figure 3.2 shows the linear response corresponding to these pole
locations. As can be seen from the figure, the response has no
overshoot as desired and meets the response time specification. It
should be noted that the control signal is limited to +/- 5 pounds for
all controllers implemented on the Sea Squirt to avoid the actual
thruster saturation limits. This ensures that the thrusters operate
only in the linear region of the model (Figure 2.3) so that the

estimation algorithm receives accurate data.
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Figure 3.2: Step Response Corresponding to Poles at 0.7 and 0.8

Due to saturation the linear response shown in Figure 3.2 will
not be attainable if the depth (or heading) error is large enough. For
example, if a depth change of 100 feet is commanded, the vehicle
will descend at the maximum attainable rate (given by the 5 1b

thrust limit) until the depth error is less than some amount. For the
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poles chosen above this amount turned out to be about 2 feet for the
Sea Squirt. For the last few feet the response of the vehicle should
be identical to that dictated by the desired poles. Depending on the
application of the vehicle, it may be desirable to generate a reference
rate so that the depth velocity can be controlled as well as the depth
itself. This change can easily be made in the future and requires only
that the rate error be included in equation (3.2.5) instead of the rate,
w(N).

In order to implement the above pole-placement algorithm one
has to solve for the feedback gain vector, K, given the parameter
estimates aj,bi;, and bz, and the desired closed-loop poles. ‘This was
done by analytically finding the characteristic equation and equating
it to the desired closed-loop equation. For the system given in
equations (3.2.4), the two -feedback gains could be found analytically

in a straightforward manner and are given in equation (3.2.6) below

1
K1 =detA [ -b2(p1 + 1 + ap) - b2(p2 - a1)] (3.2.6a)
; .
K2=3¢(a [ (T b2 -a1b1) (p1 + 1+ a1) + bi(p2-a1)] (3.2.6b)
where
detA [ -b1 b2 - b2(T b2 - a1by)]

P1, p2 = the desired closed-loop poles

Since the identification method estimates the unknown parameters
in equation (3.2.6) on-line, the pole-placement will be adaptive and
the response of the closed-loop system should converge on the

desired closed-loop response shown in Figure 3.2 as the parameter
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estimates converge (assuming that they converge to the correct

values).

3.2.2 Linear Quadratic Gaussian (LQG)

The only difference between the LQG design technique and the
pole-placement method is in the way in which the feedback gain
vector, K, is calculated and therefore, equation (3.2.5) will also apply
here. As discussed above, the estimated state vector will be used in
place of the actual states (when the KF is used) to filter out some of
the measurement noise (for this reason LQG is used and not LQR). In

LQG, K will be determined such that the following cost function

J=Y (xTQx + uTRu) - : (3.2.7)
i=0

is minimized. For the minimization all parameters including c are
assumed to be correct.

Just as the closed-loop poles were the design parameters in the
pole-placement algorithm, the Q and R matrices are the design
parameters that will detérmine the characteristics of the closed-loop
system in LQG. Both Q and R will be fixed for this control design (i.e.
neither will be updated on-line). Which of the two design methods,
PP or LQG, is easier to implement (i.e. placing poles or finding the
weighting matrices) depends on the design criterion that needs to be
met and how difficult it is to represent in terms of the cost function
given in equation (3.2.7). This point will be discussed later in this

section when the LQG design is applied to the Sea Squirt.
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The feedback gain vector that minimizes the cost function in
equation (3.2.7) is given by
K = (R + BTXB)-1BTXA (3.2.8)
where X is the positive semidefinite solution of the discrete time
matrix Riccati equation

X - ATXA + ATXB(R + BTXB)"1BTXA - Q = 0 (3.2.9)

The proof is given in [6].
LOG Applied he Sea Saui

Although the Riccati equation can be solved numerically, the
general algorithm is fairly complex and computationally intense [8]
and [9]. In order to implement the algorithm on-line, the steady-
' state Riccati equatibn was solved analytically for the second order
dynamics 6f the Sea Squirt (linear portion of equations 3.2.4). The
analytic solution for this particular plant is shown in Appendix 4.

Since the LQG cost function determines the feedback gains
which optimize the state/control variance tradeoff for any given R
.and Q, the output and control variance should be low as desired.
However, finding the state weighting matrix, Q, and the control
weighting, R, such that the closed-loop response has small overshoot
(for a step command change) and the desired response time given in
the performance specifications, turned out to be more difficult than
placing the closed-loop poles as was done in the pole-placement
design. The problem was that these specifications could not be easily
represented by the LQG cost function. For simplicity, the Q matrix

was chosen to be diagonal so thai only one weight had to be adjusted
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for each state. As was done in the PP design, the six-degree-of-
freedom simulation was used fo find the values of Q and R such that
the desired performance specifications were met (at least in
simulation). The two non-zero elements in the Q matrix were
determined to give the desired damping .and R (a scalar here) was
adjusted to give the proper control weighting. Although other
methods could have been used to determine Q and R, the approach
used here seemed to work well for the given plant and performance

specifications. The final values chosen for Q and R were as follows:

R =0.15

=Q10]
Q [OCM

where q) = 4 and q2 = 1. Although simulation was used to set Q and
R, we rely on the reduced sensitivity of the closed-loop system to
ensure that the desired closed-loop characteristics are obtained on

the actual vehicle as well.

3.2.3 Sliding Mode (SM)

It should be pointed out that the discrete time sliding mode
method has been researched in the literature only to a limited
extend and has some drawbacks relative to the continuous time
version. However, since the implementation on the AUV calls for a
discrete time coniroller, the discrete version will be used here.

Unlike the pole-placement and LQG, the sliding mode control method
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is nonlinear. This enables one to incorporate certain types of
nonlinear model structures in the feedback control law.

To simplify the discussion of the discrete sliding mode control
algorithm, the regulator problem will be discussed first. It shows
how the control law is chosen ‘such that all states are forced to zero
from an arbitrary initial state. The regulator design will then be
extended to the more general trajectory following case. The following
discussion on discrete SM summarizes only the basics of the method
as it applies to the problem at hand. A more complete presentation of
both continuous and discrete sliding mode can be found in [5].
Whenever possible, the same notation will be used Here as in [5]
since most of the equations presented in this subsection were

obtained from this reference.

The Regulater Problem

As discussed in [5], the'discrete time sliding mode technique
can be applied to linear systems and to nonlinear systems having the
following form:

x'(N+1) = A' x(N) (3.2.10a)
xp(N+1) = f(x(N),N) + b(x(N),N) u(N) (3.2.10b)
where
xX'(N) = [xi(N) xo(N) ... xp-1(N)]T
xp(N) = the nth state

x'(N)
x(n) = [xn(N)]
u(N) = a scalar input
' A’ = a constant (n-i) by (n) matrix
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Define the sliding surface as
s(N) =0
where
s(N) = eT x(N) (3.2.11)
with e being an n dimensional real valued vector of the form

¢ = [e' 1]T (e' is an n-1 dimensional vector).

The vector, e, is selected such that certain system properties
(i.e. stability and performance) are satisfied when s(N) = 0. The
control problem lies in assuring that the sliding surface (s(N)=0) is
reached and that the system will remain on the surface once it is
reacked. The control law is formulated in two parts. One causes the
system. to move toward the sliding surface and another moves it
along the surface. The control needed to maintain the -system on the

sliding surface is found by assuming that s(N)=0 and forcing s(N+1) =
s(N).

Letting s(N+1) = s(N) gives
s(N) = eT A' x(N) + f + b u(N) (3.2.12)
Solving for u(N) gives us the control required to keep s(N+1) = s(N)

u(N) =Bl‘ { s(N) - eT A' x(N) - f} (3.2.13)
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To allow for the case when the initial state does not lic on the sliding
surface, the control law in (3.2.13) must be modified by adding a
term that will force the system onto the surface. Equation (3.2.13)

then becomes

1
u(N) = b { s(N) - eT A' x(N) - f - n_sgn(s(N))} (3.2.14)
where sgn( ) is the "sign” function (i.e. +/- 1 depending on the sign of

s(N)).

Equation (3.2.14) guarantees that a region of radius n around
the sliding surface will be reached within (Is(N=0)I / n+1) sampling
periods after which the state can b~ guaranteed to stay within a
region bounded by +/- n around the surface as discussed in [S]. The
sign term in equation (3.2.-14) could cause' s to oséilla‘ie in ihis region
with the average value of s not necessarily zero even when the
model is correct and noise and disturbances are absent. This is due to
the fact that the control law in (3.2.14) does not force s toward zero
once it is less than . It was found that changing the condition used
to develop equation (3.2.12), namely s(N+1) = s(N), to

S(N+1) = pu s(N) (3.2.15)

where

0<u<i
forces the average value of s towards zero even if it is less than n.
This still ensures that the state stays on the sliding surface as

desired. With this modification, the control input becomes
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u®) =y (4SO - eT A'xN) - £-1 sgaGN))  (3.2.16)

Although the oscillations caused by the sign term in (3.2.14) still

persist, they are centered around s=0 with magnitude 7/2 if the
control input of (3.2.16) is used instead of (3.2.14). Since the sign
term would cause undesirable actuator chattering, it is replaced by a

saturation function as was done in [5] so that u(N) becomes:

. u(N) = % {(wsN) - T A' x(N) - f - n sat(s(N)/®)} (3.2.17)

where sat( ) is the saturation function shown in Figure 3.3.

sat(s(N)/®)

Figure 3.3: Saturation Function

The numerical value for m is determined according to the
modeling uncertainty and expected noise and disturbances while ©

can be selected to obtain the desired linear s dynamics off the

surface as discussed in [5]. Inside the boundary (i.e. Isl<®), the s

dynamics are given by
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SON+1) = ps(N) - % S(N) (3.2.18)

assuming no disturbances or noise. The eigenvalue of equation
(3.2.18) is equal to u-n/®.

Selecting the Sliding Surf

The sliding surface is selected using a pole-placement
technique which determines e' such that the closed-loop eigenvalues
are at the desired location. As explained in [5], one eigenvalue always
_has to be chosen to be zero. The eigenvalue placement is done on the
closed-loop system shown in equation (3.2.19) obtained by

substituting equation (3.2.17) into equatiun (3.2.10):

0
]x(N)+[l] {us(N) - n sar(s(N)/®@)} ~ (3.2.19)

The vectar, e', can now be found using standard nole-placement

techniques for the system in equation (3.2.19).

Traj Followi
Up to now only the regulator problem was addressed. To

extend the above discussion to the trajectory following case, the state

vector, x, is replaced with the state error defined as

X(N) = x(N) - xg(N) (3.2.20)

where xq(N) is the desired state vector at time N.

The control law for trajectory following is given by:
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u(N) = % (nsN) - eT A' x(N) - f + eT xq(N+1) - n sat(s(N)/@))} (3.2.21)

resulting in the closed-loop error dynamics:

e'T A.] X(N) (3.2.22)

"x'(N+l) =[

As discussed in [5], the desired state vector, xd(N), must be consistent
with the system dynamics. For the system given in equation (3.2.10),
if xpg(N) is the desired trajectory, the other elements of xd(N) are

given by:
x'd(N) = A’ x4(N-1) (3.2.23)

where x'4(N) = [ xld(N) o Xp-1g(N)]T.

Sliding Mode Control Applied to the Seq Seui

It was pointed out earlier that one of the drawbacks of the
discrete sliding mode method is that it requires the system to be
either linear or of the form given in equation (3.2.10). The reduced
order Sea Squirt depth dynamics given in equation (3.2.4) fall into
neither one of these categories. The problem is that b; in equation
(3.2.4) is not necessarily equal to zero which means that these
dynamics do not have the form of equation (3.2.10). There are

several possibilities to overcome this problem.
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One method is to transform the Sea Squirt dynamics by
changing the states from d(N) and w(N) to d(N) and d(N-1). Although
the resulting system will be in the form of equation (3.2.10), the
transformed states will no longer include the depth rate. As will be
shown in Chapter 4, using the first order difference rather than the
depth rate estimate of the KF degrades the performance of the
controller considerably due to the large quantization step size of the
A/D converter on the Sea Squirt. Therefore, it was decided that a
state transformation would not be desirable in this case.

An alternative method of adjusting the Sea Squfrt dynamics to
the form of equation (3.2.10) is to neglect b; and incorporate its
affects into the modeling uncertainty (i.e. n). Clearly, this can be done
~only if by is known to be relatively small as was the case for the Sea
Squirt. The six-degree-of-freedom nonlinear simulation was used in
determining 7 because the actual values of the parameters (and
hence the modeling uncertainty) were not known for the AUV. How
to choose n when bounds are known for the plant uncertainty and
noise and disturbances is discussed in detail in [5]. Using this latter
- method, the Sea Squirt depth dynamics, given in equations (3.2.4),
can be written in the form of equation (3.2.10) resulting in the

following control law:

Ty == (1 sON) - €T A x(N) - £+ €T xg(N+1) - sa(sCN)/@))

(3.2.24)

where

Al

(1T]
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f = a3 wiN) + a2 w(N) Iw(N)l + b2 ¢
el = [e'1]
= [A1]

As was done with the PP and LQG controller, the state
estimates (when available) will be used instead of the actual states
and the plant estimate will be used instead of the actual plant
dynamics to make the algorithm adaptive. It should be noted that
the adaptive sliding mode algorithm presented here is not the same
as those presented in [5], [10] or [11]). The algorithm in [7] and [11]
use continuous time sliding mode and therefore, could not be used
with the discrete time system discussed here. Our method differs
from that of [5] in that an extended Kalman Filter is used to generate
péra'mete’r and state estimates.” The benefit of the state estimates is
discussed in Chapter 4.

The model reference was generated such that it had the same
second order desired response (poles at .7 and .8) as shown in Figure
3.2. This was done since the same performance specifications apply
to both the SM and PP design.

The constants u, A, n, and ®, were selected as follows. It should
be noted that some or all of these parameters could have been made
time varying as was done in [5], but were not because it would have
added unnecessary complexity to the algorithm. The slope of the
sliding surface, s, shown in Figure 3.4 is given by -A and was
determined by placing the poles of the system in equation (3.2.19) at
the desired location. Although the desired poles of the trajectory

were .7 and .8, one of the poles of equation (3.2.19) has to be at 0 as
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discussed earlier. The second pole was chosen to be at .8 resulting in
alof 1.

Surface

Figuré 3.4: Discrete Time Sliding Surface with Boundary Layer

Determining the constants, p, ®, and 1 is somewhat more
difficult than finding A. This is due to the fact that the dynamics of s
inside of the boundary layer are affected by all three constants as
was shown in equation (3.2.18) and thereforé, M, ®, and n cannot be
chosen independently. Although m is usually set equal to or larger
than the total system uncertainty (including modeling errors, noise,
and disturbances), it cannot be quantified easily. Not only is the
modeling uncertainty not known, it also changes as the identification
routine improves the parameter estimates over time. For this reason
system stability during the initial parameter convergence will be
guaranteed using a safety net approach as discussed in Chapter 5.

This means that n can be chosen to take into account only those
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uncertainties that persist after parameter convergence. If one
assumes that the identification method correctly estimates the
parameters for the reduced order Sea Squirt dynamics given in
equations (3.2.4) then the "only” modeling uncertainty which has to
be captured by n is that caused by the inability of equation (3.2.4) to
fully capture all the dynamics of the actual system. Since it would
have been difficult to quantify this uncertainty mathematically, the
six-degree-of-freedom nonlinear Sea Squirt simulation was used to
determine which value of n worked best. This is reasonable since the
unmodeled dynamics of the actual vehicle should be similar to those
of the simulation after the parameter estimates have converged
. (assuming that they converged to the correct parameters). However,
before simulations can be done to determine the most favorable
- value of 1, the constants ® and p have to be chosen. |

Since the pole of the s dynamics inside of the boundary layer is
given by pu-n/® (see equation 3.2.18), the only choices of n and ® that
result in stable s dynamics are n/® < 1+p where O<u<l. Furthermore,
the steady state value of s can be guaranteed to stay within the
boundary layer, @, only if the eigenvalue of equation (3.2.18) is
greater than zero (as discussed in [5]) which would limit the choice of
n and @ to /® < pu. In order to allow a reasonable range of values for
n and ® and still satisfy the constraints O<p<l and n/® < p, p was
chosen to be .9.

The boundary layer thickness, ®, shown in Figure 3.4, was
determined along with m using the six-degree-of-freedom nonlinear
simulation. Simulations with the control law designed with good

parameter estimates as well as with poor parameter estimates were .
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done to determine the most favorable values of @ and n. The values
of ® and n which worked best overall were ®=.5 and n=.1. The
resulting pole of the s dynamics inside the boundary layer is .9-.1/.5
=.7.
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CHAPTER 4

SIMULATION COMPARISON OF IDENTIFICATION
METHODS AND CONTROL DESIGNS

4.1 Simulation Comparison of ldentification Methods

The objective of the identification part of the indirect adaptive
controller is to obtain the best possible parameter estimates of an
underwater vehicle model given only the control inputs, and noisy
sensor readings. Since underwater sensors generally have a low
signal-to-noise ratio, the identification methods were compared
mainly based on how well they performed as a function of sensor
‘noise. However, several other issues related to oﬁ-line
implementation on the Sea Squirt had to be addressed as well.

One consideration is the computational complexity of the
estimation algorithm. Any estimation method that requires too many
computations or too much memory is not acceptable. The
computation time required by each of the four identification methods
(RLS, NLMS, OEM, KF) discussed in Chapter 3 was given in Table 3.1.
After implementing these estimation techniques in C on a Mac II and
checking their execution time, it was found that all methods could be
implemented on the Sea Squirt (recall that the Sea Squirt has the
equivalent computing power of a Mac II) with more than enough CPU
time and memory left for the control algorithm assuming second

order depth and heading dynamics.
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Another consideration for on-line system identification is the
problem of insufficient excitation. All estimation methods rely on
sufficiently exciting inputs (in this case thrust commands) for correct
parameter estimation. Generally, this means that the control inputs
must contain enough frequency components within the bandwidth of
the system. A formal definition of sufficient excitation is given in [3]
and [12). Since the control inputs of the Sea Squirt are dependent on
the desired vehicle path, sufficient excitation cannot always be
guaranteed. This problem will be addressed in Chapter 5.

In order to compare the four identification methods (RLS,
NLMS, OEM, KF) in simulation, it was decided that the comparison
should be done for several linear plants as well as for the reduced
order nonlinear Sea Squirt depth dynamics. This was done to reduce
the chances that the outcome of the comparisoﬁ will be blant specific. _
All the linear plant models used in the comparisons were chosen to
have different pole locations. Since similar results were obtained for
all the linear plant models compared, only one of these comparisons
will be presented here as a typical example. A comparison of the

identification methods applied to the reduced order nonlinear Sea

Squirt dynamics will also be presented.

Let's assume that the discrete time model of the system to be

identified is given by

y(N) - 1.5 y(N-1) + .7 y(N-2) = u(N-1) + .5 u(N-2) + e(N) (4.1.1)
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where
y(N) = the output at time N
u(N-1) = the input at time N-1

e(N) = zero mean gaussian noise applied at time N

This model is not intended to represent underwater vehicle
dynamics and was chosen for comparison purposes only. It should be
noted that the above system was also used in [13] to test different
identification methods. The parameters to be identified are the
coefficients of equation (4.1.1), so that the estimated output is given
by

¥ + py 1) + pp §(k2) = p3 u(k-1) + pg u(k-2) (4.1.2)

where

Y(N) = estimated output at time N
Pi = parameters to be identified

As in the reference [13], a Pseudo Random Binary Signal (PRBS)
sequence with amplitude +1 was chosen as the input. Although a
PRBS input would not be encountered in real life, it was chosen
because it ensures persistent excitation of the system. Any
sufficiently exciting input signal could have been used. The problem
of insufficient excitation will be addressed in Chapter 5.

The comparison results shown in Figure 4.1 were obtained
through Matlab simulations of the above system. This figure plots

the Euclidean norm of the final parameter error, after the
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parameters had sufficient time to converge (500 iterations), as a
function of the signal to measurement noise ratio. All methods were
initialized with the same parameter estimates and were allowed to
éonverged for the same period of time. The values for u, A, €, Q, and R,
which determine the performance of the individual estimation
methods, were adjusted to obtain the best possible parameter
estimates at low signal-to-noise ratios and then kept constant. Since
the actual parameters to be identified were constant in these
simulations, the forgetting factor of the RLS method was set to 1 (i.e.

no forgetting).

~

Final Parameter est. error

(normalized)

3
|

Signal to noise ratio

Figure 4.1: Comparison of Identification Methods for a Linear Plant

Although the above comparison is plant dependent, the
identification methods were also compared for different stable linear

plants and the extended Kalman Filter always performed best
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relative to the other methods especially for low signal-to-noise
ratios. This result should be expected since the Kalman Filter is an
optimal mean square linear estimator in the presence of white noise.
However, since the identification method will be used on the Sea

Squirt, the above comparison was repeated using the reduced order

nonlinear Sea Squirt depth dynamics derived in Chapter 2.

In order to represent the Sea Squirt depth dynamics as
accurately as possible, the plant parameters (ai, a2, bl, b2, ¢) of the
reduced order Sea Squirt depth dynamics (given in equations (2.2.2))
were determined using the extended Kalman Filter and in-water
data. The resulting parameter estimates were al=.9, a2=-0.2,
b1=.002, b2=.02, c=-0.5. Now, this model of the Sea Squirt depth
dynamics was used to compare the identification methods (RLS,
NLMS, OEM, and KF) based on how well they could estimate the
parameters given above. The comparison was done using the reduced
Sea Squirt dynamics and not the actual vehicle since the actual
vehicle parameters are not known, making it impossible to
determine which method obtained the best parameter estimates.

To make the comparison of the identification methods applied
to the Sea Squirt depth dynamics as realistic as possible, the depth
quantization (0.05 ft) caused by the A/D converters was included in
the plant modei. Also, instead of using a PRBS sequence as the control
input, a square wave of amplitude 1 with randomly changing duty

ratio was applied as the commanded depth. Feedback control was
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used so that the vehicle depth (in simulation) would always move
toward the commanded depth. Identifying the plant parameters
under feedback control makes the comparison more realistic since
the identification method will also have to estimate the parameters
under these conditions when implemented on the vehicle. As before,
the identification methods will be compared based on how well they
can identify the plant parameters (in this case aj, a2, by, b2, c) as a
function of signal-to-noise ratio. However, as was discussed in
Chapter 3, the NLMS and OEM methods require the scaling of the
regressor and the parameter vector in order for all parameter
estimates to converge at approximately the same rate. This means
that NLMS and OEM will minimize the estimation error based on a
scaled version of the parameters and, not. necessarily the actual
parameters, although the actual parameters can be determined.
Figure 4.2 shows the Euclidean norm of t.he final parameter error
~ (based on aj, a2, by, b2, c, not the scaled parameters), after the
parameters had sufficient time to converge (4000 iterations), as a
function of signal-to-noise ratio (Gaussian white noise was added to
the depth measurement).

Note that the extended Kalman Filter performs better than the
other methods for all signal-to-noise ratios as shown in Figure 4.2.
The fact that it performs better than RLS even for high signal-to-
noise ratios is partially due to the depth velocity approximation used
in the regressor (equation (3.1.13)) which is especially crude with
the added quantization noise. Both NLMS and OEM did not perform
well because they were unable to correctly identify the drag term,

as. This can be explained by the fact that neither NLMS nor OEM use
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a covariance matrix. The correlation between the regressor

components corresponding to aj; and ap makes them difficult to

discriminate.
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Figure 4.2: Comparison of Identification Methods for a Nonlinear

Plant

From Figure 4.2 it should be clear that the KF is the only one of
the four identification methods presented which gives reasonably
good parameter estimates at low signal-to-noise ratios for the given
plant. Another advantage of the Kalman Filter over the other
identification methods is that it provides state estimates which are
required for full state feedback control. This proved to be an
especially important consideration since no depth rate sensor is
available on the Sea Squirt. However, there is a tradeoff between

performance and complexity. The KF requires almost 4 times as
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many calculations as RLS as was shown in Table 3.1. However, since
the available CPU time on the Sea Squirt computer was sufficient to
implement any of the four identification methods on-line, the
complexity of the KF was not a problem. With these considerations in
mind, it was decided that the advantages of the extended Kalman
Filter by far outway its disadvantages. The remainder of this section
will be used to discuss the exact implementation of the KF on the Sea

Squirt.

The general equations necessary to implement the extended
Kalman Filter were presented in Section 3.1.4. For the Sea Squirt
depth dynamics given in Chapter 2, these equations were

implemented as follows:

Let the parameter estimate vector be given by

=1 2y & B, QT (4.1.3)

and the state estimates by

XN) = [d)T weT T (4.1.4)

The augmented state estimate vector for the KF is then given by

2(N) = [T x0T T (4.1.5)
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The state estimates are updated using the equations

A(N+1)" = dN)* + T WN)* + by (Ty(N)+ O (4.1.6a)
wW(N+1)" = a1 WN)* + 22 WN)* IWN)*1 + 62 (Ty(N) + O (4.1.6b)
(N+1)" = B(N)* (4.1.6.c)
where
d = depth estimate
w = depth velocity estimate
T = sampling period ( .2 seconds)

61,21,32,92,3 = parameter estimates

The augmented state estimate vector z(N) is then updated using the
equation

Z(N)* = Z(N)- + K(N) [d(N) - d(N)] (4.1.7)
where K(N) is the Kalman Gain vector given as follows:
K(N) = PNy HQV) [R + HTQN) PONY” HON)] (4.1.8)
where '
~ P(N)" = F(N-1) P(N-1)* F'(N-1) + Q (4.1.9)
P(N)* =(I - KN) H(N)) P(N) (4.1.10)

Since the depth is equal to the measured output in this case, H(N) is
given by
HN)=H=[0000010]T (4.1.11)

The Jacobian matrix F(N) is given by
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I o
F(N) =
AR AG)
a8 &
! ] (4.1.12)
where
af®=[ 1 T l
ox 0 &+25 | (4.1.13)
Y
AR _| 28 =[crv+e) 0 0 i':}]
a8 | AW 0 & W M) B
L 38 ] | 4.1.14)

Although the nonlinear drag term, a2, was not used in the PP
and LQG control designs presented in Chapter 3, including it in the
system- mi)de;l heli:s the identification routine éorrecily estimate
some of the other parameters especially aj. If a linear model were
used, the estimation routine would include the effects of the drag in
.a1 and therefore, a; would no longer be correct. Furthermore, a linear
model could not represent the effects of the drag term for all
velocities resulting in a time varying aj. This is not desirable since all
the parameter estimates could be degraded if the identification
algorithm was not able to track aj correctly. Another disadvantage of
identifying a time varying system is that the convergence rate of the
estimation routine would have to be fast enough to keep up with the
changes in a; which might cause less accurate parameter (and state)

estimation. A similar argument could motivate the inclusion of higher
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order terms in the identification model, but Figure A3.1 showed that
the magnitude of these terms was small for the Sea Squirt.

The weights R and Q in equations (4.1.8) and (4.1.9) are used as
design parameters instead of noise covariances to obtain the most
favorable performance of the extended Xalman Filter for the given
application. The output weight, R, was chosen such that the states
(depth and depth velocity) were filtered sufficiently to reduce the
effects of measurement and quantization noise. If R is made large,
the state estimates will be filtered more than if R is made small and
therefore, the variance of the final parameter estimates will be 'less.
The drawback of making R too large is that the convergence rate of
the Kalman Filter will be reduced. It takes some experimentation to
find the value of R which works best for a given application. For the
Sea Squirt depth dynamics it was found that a range of output
weights work with a value of R around 10 giving the best results.

The state weighting matrix, Q, was chosen to be diagonal so that
one weight exists for each parameter and state. Making an element
of Q large indicates that there is much uncertainty in the associated
parameter or state and causes large and quick changes in this
parameter during adaptation. A relatively small value of an element
of Q indicates confidence in the dynamics and causes the convergence
of the associated parameter to be relatively slow with less sudden
changes in its value. The magnitude of the elements of Q also have to
be adjusted according to the magnitudes of the parameters or states
they apply to. For example, the parameters b; and by in equations
4.1.1 were significantly smaller than the parameters a; and ¢ and

therefore, the weights corresponding to b; and b were made smaller
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than those corresponding to a; and c. This could be accomplished by
scaling parameters b1 and b2, which would have had the added
advantage of increased numerical accuracy. However, since the
variables used in the C code are accurate to more than 20 digits,
scaling was not necessary here.

Although the correct choice of the weights improves the
performance of the parameter and state estimation, it takes some
patience and simulation time to find the weights that work best. For
the Sea Squirs depth dynamics, the diagonal elements of Q we.e
chosen to be .01, 1, 05,01, 1, 1, 1 corresponding to the parameters
b1, a1, a3, by, ¢ and the states d and w, respectively. These values
approximately correspond to the relative magnitudes of the
parameters in the corresponding units. It should be noted that the
extended Kalman Filter performed well -for'a wide range of weights.
This is important since the weights were optimized for the Sea Squirt

model and not for the actual plant.

Fast I lenificati

Since the buoyancy of the vehicle can change significantly from
one mission to another or even during a mission (i.e. if the payload is
changed), the corresponding parameter estimate, c, also experiences
large changes during these transitions. OQne problem with the
identification methods is that the Parameter estimates move as a
group and, therefore, a poor buoyancy estimate can slow down the
convergence of the other parameter estimates. In order to minimize

the effects of buoyancy changes on the performance of the adaptive
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controller, a method was devised that quickly identifies the
buoyancy of the vehicle.

The method uses the fact t| t the thrust needed to maintain
the vehicle at a constant depth must be equal to the net buoyancy.
Since the vehicle depth and the thrust commands will never remain
exactly constant, the thrust commands were averaged over some
time period so that even if the depih changed slightly the average
thrust would still be close to the buoyancy. It was decided that a 16
second averaging period would be sufficient to obtain a good
buoyancy estimate. Clearly, averaging the thrust over a longer period
of time would result in a better buoyancy estimate, but it would also
require that the vehicle remained at a constant (or nearly constant)
depth longer. Averaging the thrust over 16 seconds means that 80
thrust commands will be averaged since the sampling rate is 5 Hz
Since the thrust average will only be equal to the buoyancy of the
vehicle if the depth (d1) and depth rate (w;) at the beginning of the
averaging period is close to the depth (d2) and depth rate (w2) at the
end of the averaging period, the buoyancy estimate was adjusted to
the thrust average only if (Id2-djl + Iwj+w3l) < 0.5. To avoid changing
the buoyancy estimate too often, it was only adjusted using this "fast
buoyancy identification” (FBI) method whenever the resulting
buoyancy estimat¢ change was more than .2 pounds. It should be
noted that this "fast buoyancy identification” method only
complements and speeds up the estimation of the extended Kalman
Filter. Once the FBI occurs, c is optimized by the Kalman Filter.

To demonstrate the effectiveness of this improvement in the

identification method, a simulation is presented which shows the
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parameter convergence with and without FBI under otherwise
identical conditions. Figure 4.3a shows the normal parameter
convergence while Figure 4.3b shows the parameter convergence
with the FBI method. Both simulations were done with identical
reference commands (in this case random step changes in the
commanded depth). The simulations were done using a six-degree-
of-freedom nonlinear model of the Sea Squirt. Note that the
parameters with the improved buoyancy identification method
(Figure 4.3b) converge to approximately the same value as those in
Figure 4.3a in half the time. FBI occurs at time t; indicated in Figure
4.3b. Note that the time scale of Figure 4.3a is twice that of Figure
4.3b.

== Qutput-c

~~ Qutput-b2
— Output-a2
= Quiput-al
~ Qutput-b1

0 100 200
Time in saconds

Figure 4.3a: Parameter Convergence Without Fast Bucyancy Id
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Figure 4.3b: Parameter Convergence with Fast Buoyancy Id

4.2 Simulation Comparison of Control Designs

The controllers that are being compared in this section include
the Adaptive Pole-Placement, Adaptive LQG, and Adaptive Sliding
Mode. All comparisons done in this section Were done usihg a six-
degree-of-freedom nonlinear simulation of the Sea Squirt. The
extended Kalman Filter was used as the identification method for all
simulations and in-water tests to follow. All operating conditions (i.e.
initial conditions, noise, disturbances, A/D quantization, reference
inputs, etc.) were kept the same for the controllers to make the
comparison as fair as possible. The noise added in the simulations to
follow was zero-mean gaussian with the variance of the noise being
identical for all controllers. Note, however, that the magnitude of the
noise at any instance in time is not necessarily the same for all
controllers (i.e. only the variance of the noise is the same). To
compare the controllers in simulation, the following 5 criterion will

be used:

79



1. Performance without sensor noise after parameter
convergence. |

2. Performance with noise after parameter convergence

3. Disturbance rejection

4. Initial transient performance while parameter estimates are
poor. |

5. Ease of implementation (finding weights, computational load,

etc.)

All comparisons presented in this Chapter include quantization
effects caused by the analog-to-digital converter in order to make
the simulations as realistic as possible. Since the controllers have
been designed based on the six-deg"ree-of—fréedom nonlinear
simulation and obtained the desired response time with little or no
overshoot, the comparison here will focus on the output variance and
thrust variance perfcrmance specifications under various operating
conditions (e.g. under the influence of noise, disturbances, and
parameter uncertainty). The transient behavior of the controllers (i.e.
performance with poor parameter estimates) will also be examined
since poor transient behavior may limit the utility of the controller.
Section 4.2.1 compares the controllers after parameter
convergence. Section 4.2.2 repeats the comparison with sensor noise
and disturbances. In Section 4.2.3 the performance of the controllers
is compared during the parameter convergence. Finally, Section 4.2.4

compares the controllers based on how easy they are to implement
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and on the computing power required for each one. A summary of

the comparison is given in Section 4.2.5.

4.2.1 Comparison of Controllers After Parameter Convergence

To compare the performance of the controllers after parameter
convergence, each simulation was run until the parameter estimates
of each simulation converged before starting the comparison. Figure
4.4 shows the response of the 3 adaptive controllers. No noise was
added in this simulation so that the best possible performance of
each controller could be observed. However, the analog-to-digital
quantization of the depth sensor measurement (for this sensor it is .7
inches) was included since it is known a priori and will always be
present on the actual vehicle. Since all the adaptive controllers have
been designed to meet the same performance specifications, it is not
surprising that they all behave in a similar fashion after the
parameters have converged. Since large oscillations in the actuators
(the vertical thrust in these simulations) would cause unnecessary
power consumption, it was thought important to also compare the

thrust commands in these simulations.
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Figure 4.4: Comparison of Controllers After Parameter Convergence
(only quantization noise added)

Figure 4.5 shows the vertical thrust for each of the three
controllers in response to the commanded depth change in Figure 4.4.
In order to demonstrate _tl_le benefit of | using state _estimates,‘ the
vertical thrusi of the pole-placement controller using the actual
states (measured depth and first order difference as depth rate) was
also included (Figure 4.5d). Although therz is almost no noticeable
difference in the control action of the 3 adaptive controllers using the
KF state estimates, the vertical thrust control presented in Figure
4.5d shows considerable chattering due to the unfiltered quantization
noise in the depth measurement (and therefore, in the depth rate).
This demonstrates the effectiveness of the extended Kalman Filter to
smooth out the quantization noise in the depth measurement to
obtain better depth and depth rate estimates and therefore,

smoother control action.

82



a) b)

Sliding Mode Control Pole-Placement Control
6 6
4 E S .§ 4 T
£ g
J p
§ 2 s 2
2 oy~— E 0~
=
215 120 125 130 135 140 115 120 135 130 135 140
Time in seconds Time in seconds
c) d)
Pole-Placement Conirol
LQG Control (not using Kalman state estimates)
6
‘§ 4 ¢ 44
: g
L & r
£ 2 i
3 7
& e
0 T~ £ 0

205 120 125 190 135 140 115 120 125 130 135 140
Time in seconds Time in seconds

Figure 4.5: Thrust Commands Corresponding to Figure 4.4
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4.2.2 Comparison of Controllers with Sensor Noise and Disturbances

The simulations in this subsection were done exactly as those
in Section 4.2.1 with the exception that sensor noise with a variance
of .1 ft was added to the depth measurement. As before, the depth
measurement was also quantized (it was quantized after the noise
was added, just as it would be in the actual vehicle). Again the
parameter estimateé were allowed to converge (»ith the added
noise) before the comparison between the controllers was done.
Figure 4.6a shows the response of the sliding mode controller to a
step change in commanded depth. The reference shown reters to the
reference trajectory generated for the sliding mode controller. Figure
4.6b shows the response of the pole-piacemeht and LQG controllers |
to the same change in commanded depth. Although the performance
of the pole-placement and sliding mode is good for the given noise
level, the performance of the LQG controller is not as good. As shown
in Figure 4.6b the LQG design causes more depth oscillations than the
other two methods for the same noise level and, therefore, the
performance in terms of low output variance is better for the PP and
SM designs than the LQG design. Several simulations were done to
confirm that the LQG performance indeed is worse than that of the
other controllers for the given noise variance. The thrust commands
corresponding to Figures 4.6a and 4.6b are shown in Figure 4.7. The
control action of the LQG is more oscillatory than that of the pole-
placement and sliding mode controllers making the overall

performance of the LQG in the presence of noise worse than that of
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the other two methods. The SM and PP performance is again almost

the same, but the PP actuator commands have better characteristics

(less oscillations) as shown in Figure 4.7.
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Figure 4.7: Thrust Commands Corresponding to Figures 4.6a and 4.6b
Adding Disturbances

Since the disturbances encountered in an AUV are generally in
the form of waves, a sinusoidal disturbance was chosen. In the
simulation a sinusoid of amplitude 1 pound was added to the thrust
input of all the controllers to check their disturbance rejection

capability. Although a wide range of disturbance frequencies were
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used in simulation, the dynamics of the AUV are slow enough so that
only disturbances with considerable wavelength cause oscillations in
the depth. In general, all the adaptive controllers exhibited
approximately the same disturbance rejection characteristics
although the disturbance rejection of the PP and SM controllers was
somewhat better than that of the LQG controller. Therefore, the
performance of the PP and SM controllers in terms of output
variation is better than that of the LQG controller under the influence
of disturbances (ét least for sinusoidal disturbances). Figure 4.8
shows an example of the disturbance rejection of each of the three
controllers for a low frequency sine wave disturbance. The open loop
response of the Sea Squirt is included to demonstrate the effect a 1
pound sinusoid thrust command would have on the depth if no
feedback co_ntrol was used. The disturbance rejection simulation was |
done after parameter convergence and with the parameter
adaptation stopped. The parameter estimation was stopped by the
adaptive controller to avoid adaptation while the control inputs are
not sufficiently exciting. The mechanism used in the adaptive
controller which determines when adaptation should be stopped is

discussed in Chapter 5.
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Figure 4.8: Depth Control for a 1 pound Sinusoidal Thrust Disturbance

423 Comparis‘.on of Controllers during Initial Parameter Estimation

Although the adaptive controllers will usually be operati-ng
after the parameter estimates have converged, their performance
during the initial parameter estimation is also important since poor
transient behavior may limit the utility of the algorithm. Therefore,
the controller that performs best during this transient has an
advantage over the other controllers. However, since the behavior of
the adaptive controllers cannot be predicted while the parameter
estimates are poor, a safety net approach will be presented in
Chapter 5 that guarantees the stability of the closed-loop system
during the initial parameter convergence.

In order to compare the performance of the 3 adaptive
controllers during the initial parameter convergence, all parameter

estimates were initialized to zero except for a; which was initialized
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to .5 (aj is known to be between 0 and 1 and therefore was
initialized to the midpoint of the two limits). The net buoyancy of the
Sea Squirt (in simulation) was set to 1 pound so that the buoyancy
estimate is also initialized to an incorrect value. Figures 4.9a and 4.9b
show the performance of the controllers as the parameter estimates
converge to the correct values. A six-degree-of-freedom nonlinear
model was used in this simulation as was done in Sections 4.2.1 and
4.2.2. No noise (except for quantization noise) or disturbances were
added so that the effects of poor initial parameter estimates on each
of the controllers could be compared more easily. The effects of noise

and disturbances on the closed-loop system were discussed in
Section 4.2.2.
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Figure 4.9a: Sliding Mode Controller Performance During Initial

Parameter Convergence
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Figure 4.9b: PP and LQG Controller Performance During Initial
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The performance of all of the adaptiv.c controllers in this
simulation is almost the same with the sliding mode performing
slightly better than the others. The parameter estimates
corresponding to Figures 4.9a and 4.9b are shown in Figures 4.10a-c.
The large correction in the buoyancy estimate, c, (at time tl)
apparent in these plots demonstrates the effectiveness of the "fast
buoyancy identification” (FBI) discussed earlier. The FBI occurs at a
different time for the SM controller than for the PP and LQG
controllers because the SM controller caused less depth oscillations
during the first step command than the other methods and therefore,
allowed FBI to obtain a good buoyancy estimate earlier in time. For
details on how the FBI was implemented see Section 4.1. It should be
noted that the simulation shown in Figures 4.9a and 4.9b was
continued (beyond 80 seconds) to make sure that the pararm-* 't
estimates presented in Figure 4.10a and 4.10b indeed convergeus ‘o

the same values. It should also be noted that the response of the
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controllers after parameter convergence shown in Figure 4.4 was
obtained by continuing the simulation in Figures 4.9a and 4.9b. Only
the first 80 seconds of this simulation are shown in the Figures 4.9a
and 4.9b so that the details of the initial parameter convergence and
the initial transient performance of the controllers can be seen more

clearly. Since a second order system was used to represent the model

of—the——sixrdegree--of=freedom—n-on-l-inear—simulati'on:—it——was——not— ——————————————
possfble to determine the theoretical values of the parameters being
identified. However, the fact that the responses shown in Figures
4.9a and 4.9b converge to the reference trajectory (see Figure 4.4)
and that all parameter estimates converge to the same values gives
some indication that the parameter estimates are converging to the

correct values.

. [ .
05 ot o o

0.0 1

-0.5 1

1 L/\.JL/ ~

-1.5 0 . ti 2‘0 . 4‘7 ) 6.0 | |

Time in seconds
Figure 4.10a: Parameter Estimates Corresponding to the SM
Controller
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4.2.4 Comparison of Controllers Based on Implementation Issues

Although the issues discussed in Sections 4.2.1 to 4.2.3 are very
important, implementation issues (such as ease of implementation
and required computer time) have to be considered as weil. For

example, it was found that the LQG algorithm uses approximately 10
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times mere CPU time than the pole-placement or sliding mode
algorithms, even if the associated Riccati equation is solved
analytically as was done here. The sliding mode and pole-placement
algorithms both use approximately the same amount of CPU time.

It wﬁs found that choosing the desired closed-loop poles, as is
done in pole-placement, is simpler than determining the desired
weights, Q and R, in the LQG cost function. Clearly, this finding applies
only to the given performance specifications. The sliding mode design
requires one to determine the constants M,A,n, and ® (see Section
3.2.3 for the definitions of these constants) in addition to the desired
trajectory, while the pole~placément technique requires only the
choice of the closed-loop poles. These parameters, although they
have physical significance, do not have the clear interpretation in
terms of closed-loop behavior that the poles have and therefore,
make the SM design more complicated for the application and

desired performance specifications given here.

4.2.5 Summary and Conclusion of Off-Line Control Design Comparison =~

From the comparisons done in Sections 4.2.1 to 4.2.4, it should
be clear that the PP and SM designs have advantages over the LQG
design. In fact, LQG method does not perform better than either one
of the other methcus in any of the comparisons done. The overall
performance of the pole-placement and sliding mode designs is
almost the same. The PP is slightly better in the presence of noise
(Section 4.2.2) and the SM performed slightly better during the

initial parameter convergence. Even the computational load on the
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microprocessor is approximately the same. However, one additional
advantage of the pole-placement design is that it is simpler to
implement. It does not require the generation of a reference
trajectory while SM does. Also, SM requires one to choose several
'parameters related to the sliding surface and boundary layer which
is not necessary in the pole-placement design. Overall, the off-line
simulations suggest that for the given performance specifications the
pole-placement design is slightly better than the sliding mode design
with the LQG method being the least desirable.
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CHAPTER §

IMPLEMENTATION ISSUES

In order to implement the indirect adaptive controller
developed in this thesis, several safety issues had to be addressed.
One important consideration is closed-loop stability. Since the
parameter estimates could be poor initially, one has to guarantee
boundedness of the output to within some limits of the desired
trajectory during the estimation transient. As is discussed in [14],
boundedness alone is not sufficient for practical implementation
unless the value of the bound is kncwn to be reasonable a priori. In
Section 5.1 a safety net approach is presented which guarantees that
the actual path of the vehicle -will stay within some limits of the
desired trajectory. Section 5.2 addresses the problem of identification
during periods of insufficient excitation in the presence ‘of noise
and/or disturbances. A solution is presented which prevents good
parameter estimates from being degraded by stopping adaptation.
Since this solution prevents adaptation if the control inputs are not
sufficiently exciting, it is not acceptable when the parameter
estimates are poor. Section 5.3 presents a method which solves this
problem by adding excitation to the control inputs if necessary to
ensure sufficient excitation when the parameter estimates are

deemed to be poor.
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5.1 Transient Safety

The adaptive controller developed in this thesis assumes a very
limited knowledge of the plant. Since the initial parameter estimates
could be poor, the initial control may be poor as well. If the adaptive
controller is to be used immediately2, stability of the control design
must be guaranteed. In fact, some performance criterion should also
be met to ensure that the cutput is bounded to within some limits of
the desired trajectory. Since the initiavl behavior of the adaptive
controller cannot be anticipated, the robustness will be guaranteed
by switching from the adaptive controller to a robust controller if the
trajectory of the vehicle differs from the desired trajectory by more
than some set bound. This places an envelope around the desired
irajectory of the ;/ehi'cle iﬁside of which the adaptive controller is
used and outside of which a robust controller is used. The desired
trajectory along with the safety net limits are shown in Figure 5.1 for
a typical depth change. The region between the safety net limits,
including the reference trajectory, will be referred to as the desired

trajectory envelope.

2In normal operation the last parameter estimates from one run should be
used as the initial estimates for the ncxt run. Therefore, the parameter
estimates should only be poor the first time the adaptive controller is used and
any time the vehicle dynamics change drastically.
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Figure 5.1: Safety Net for Adaptive Controller

It is assumed that a robust controller can be found with the
available a priori knowledge of the plant. This is reasonable since the
sole purpose of the robust controller .is to return the vehicle to the
desired trajectory envelope in the case that the adaptive controller
should cause the vehicle to leave this envelope (due to poor
parameter estimates). For a stable plant such as the Sea Squirt, it is
easy to find a robust controller with the above property without the
aid of an optimal design technique such as LQG or H.. However, since
the performance of the robust controller depends on the a priori
knowledge of the vehicle, the safety net limits have to be matched to
the robust controller available. It is also necessary to make the
safety net limits large enough to prevent the robust controller from
forcing the vehicle into one side of the desired trajectory envelope
and out the other in a single time step without ever switching to the
adaptive controller. This is important since making the safety net

limits in Figure 5.1 too small would cause the robust controller to
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always control the vehicle even if the parameter estimates are
correct.

To clarify the operation of the safety net design presented
above, let's use the Sea Squirt depth control as an example. Assuming
that the initial parameter estimates are poor, the initial control will
also be poor with fairly large depth oscillations similar to those
shown in Figure 4.8b. If safety net limits shown in Figure 5.1 (1 foot
limits) are used, then some 6f these oscillations might cause the.
vehicle depth trajectory to leave the desired trajectory envelope.
However, as soon as this occurs, the robust controller takes over and
forces the vehicle back into the desired trajectory envelope. Since the
parameter identification continues no matter which controller
(adaptive or robust) is used, the parameter estimates will improve
over time. Although control might switch several times between the
adaptive and robust controllers initially, as soon as the paramecter
estimates have improved enough for the adaptive controller to keep
the vehicle path within the desired trajectory envelope, the robust
controller will not be used again (until the dynamics of the system °

change).

5.2 Preventing Parameter Drift

As was discussed in Chapter 4, the parameter estimates of the
extended Kalman Filter will converge only if the control input (thrust
in the case of the Sea Squirt) is sufficiently exciting. However, if the

input does not change for an extended period of time, parameter
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drift may occur under certain conditions. With a constant input and
no noise or disturbances, the parameter estimates would stay at their
original value indefinitely causing no drift since the residual would
approach zero. If noise or disturbances are present, the identification
routine will try to obtain the mapping from the control input, which
is constant (approximately) here, to the output, which is not constant
due to the noise and/or disturbances that are present. The result is
that the effective signal-to-noise ratio approaches zero which
translates to large parameter estimation errors as was shown in
Figure 4.1. Therefore, even if the parameter estimates are good, they
will drift from their conect values under the above conditions. Since
the residual between the measured output and the estimated output
is kept small in the extended Kalman Filter, the parameter drift is
limited. However, assuming that - the parameter estimates are good, it
is desirable to prevent any parameter movement when the signal-to-
noise ratio is low and therefore, parameter estimation should be
stopped in this case. The problem lies in determining when the
signal-to-noise ratio is too low. One method is to check only for
sufficient excitation and assume that the disturbances and noise are
negligible. However, this method would turn adaptation on whenever
the cortrol input was sufficiently exciting even if the excitation was
caused by large disturbances. The result would be adaptation in the
presence of low signal-to-noise ratio which we were trying to avoid.
If bounds were known on the disturbances, the approach discussed
in [15] could be used to prevent parameter drift. However, since
these bounds are not known for the Sea Squirt a different method

had to be used here. The commanded input was found to be more
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useful in preventing parameter drift (than the control input) since it
gives an indication of the control input excitation without being
affected by noise or disturbances. For the Sea Squirt it was decided
that checking to see if the commanded input (depth or heading) had
changed over the last ¢t seconds would be sufficient to decide
whether or not the control input was sufficiently exciting to prevent
parameter drift. The time interval ¢ was selected according to the
response time of the system and was chosen to be 20 seconds for the
Sea Squirt. The reasoning behind this method is that it takes about
20 seconds for the Sea Squirt to settle to a new depth or heading
after a command change and hence, adaptation shouid continue since
valuable input/output information will be available during this time.
If the commanded input has not Achanged in the last, ¢, seconds, it can
be assumed that any' changes in the control inputs must be due to -
noise and disturbances and therefore, adaptation should be stopped
in this case. Although this method prevents good parameter
estimates from drifting, it does not address the problem of what to
do if the parameter estimates are poor and the control inputs are not

sufficiently exciting. This problem will be addressed in Section 5.3.

5.3 Adding Excitation

Although stopping the parameter estimation whenever the
commanded input has not changed in the last ¢ seconds would solve
the problem of parameter drift due to noise or disturbances, it would

also prevent adaptation when it is desired. For example, the vehicle
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dynamics might change while the commanded input is constant
causing poor tracking of the controller3. Since the co. -ol inputs will
probably not be sufficiently exciting in this case, excitation must be
added in order to adapt to the new dynamics. One solution to the
problem would be to add excitation whenever the commanded input
is constant. This would allow parameter estimation even il the
commanded input is constant, but it would also reduce the
performance of the controller if the parameter estimates are correct.
Also, disturbances larger than the added excitation signal would still
cause incorrect parameter estimation. An alternative strategy is to
add excitation only under special circumstances which are delineated

in Table 5.1.

 Table 5.1: Conditions for Adaptation and Addition of Excitation

commanded commanded input did not
input changed change in last ¢ seconds
in last ¢ seconds
Iresidual avg.l | Iresidual avg.l
> limit* < limit *
adapt? Yes Yes No
add
excitation? No Yes No

* residual average calculated over a period of p seconds

3This is assuming a worst case situation where the dynamics change
unexpectedly. If the time of change is known (i.e. payload deployment) then it
could be used to add excitation and change the covariance P at the correct
instance in time.
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As Table 5.1 indicates, adaptation will remain on if the
commanded input has changed in the last ¢ seconds and no excitation
will be added. Since no parameter drift will occur as long as there is
excitation, this condition is reasorable as long as the command
changes are greater than the noise level or any disturbances that
might be present. As discussed in Section 5.2, the AUV will have
some time constant that determines the response time to command
changes and therefore, the adaptation will be left on for ¢t seconds
after a command change to allow continuous parameter adaptation
during normal operation with sufficient excitation.

If no command change has occurred in the last ¢t seconds,
adaptation may or may not be on depending on the residual average.
The residual average is the average of the difference between the
- measured output and the estimated output over some time period, p;
Since the absolute value of the residual average gives a measure of
parameter correctness, comparing it to a predetermined limit allows
one to add excitation and start adaptation if the parameter estimates
are thought to be inaccurate and to stop adaptation otherwise. Again,
if excitation is added and adaptation is started, it will be continued
for at least ¢+ seconds for the same reason as discussed above. It is
assumed that if a parameter estimate is incorrect, it will cause a bias
in the residual and hence, cause the residual average to be nonzero.
The residual average was used instead of the residual itself in the
hope that some zero mean disturbances in the output (such as waves
in the case of AUV's) which affect the residual would be averaged
out and therefore, would not cause adaptation to occur. Clearly, if

adaptation is allowed to occur during significant disturbances, the
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parameter estimates will be degraded. In simulation the above
method effectively distinguished parameter errors from zero mean
disturbances and hence, allowed one to adapt in the former case and
not in the latter. Even if the disturbances are not zero mean (or have
a period longer than p) and cause adaptation to occur, the added
excitation will improve the chances of correct parameter adaptation.

For the Sea Squirt the parameters ¢ and p were both chosen to
be 20 seconds and the average residual limit in Table 5.1 was chosen
to be .05 ft. Although this value might seem small, it should be noted
that the residual is averaged over 20 seconds or 100 time steps and
therefore, most of the noise and disturbances will be averaged out.
The numerical value for the residual limit should be chosen such that
the absolute value of the residual average will always be less than
the limit when the parameter estimates are correct, but it should
exceed the limit if the controller cannot maintain the desired
trajectory due to incorrect parameter estimates. Some
experimentation will be necessary to find the most favorable average

residual limit.

in itati houl

Although we have determined when excitation should be
added and when not (see Table 5.1), we still need to decide what
type of excitation should be added and how it should be added. In
order to bound the output, it was decided that any excitation should
be added to the commanded input and not the control input. This
enables one to place a bound on the output since the amplitude of

the added excitation will be known a priori. Since the control inputs
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will respond to changes in the commanded input, adequate excitation
can be achieved by ensuring that the commanded input changes
sufficiently. This was done by adding excitation in the form of a
square wave with "randomly” changing period. The amplitude of the
square wave was fixed. The period was changed randomly within
some limits based on the time constant of the system dynamics. For
the Sea Squirt depth dynamics the limits for the period were chosen
to be 1 and 10 seconds and the amplitude was chosen to be +/- 1 ft.
An example of the excitation added by the controller to the

commanded input is shown in Figure 6.11.

104



CHAPTER 6
ON-LINE CONTROL IMPLEMENTATION

In Section 6.1 the three adaptive controllers (SM, PP, and LQG)
that were compared via simulation in Section 4.2 are compared via
in-water tests. The on-line comparison will be similar to the off-line
comparison in Chapter 4.

In Section 6.2 a heading controller is presented for the Sea
Squirt using the control design which performed best in the depth
control comparisons. All ihplementation issues involved in the
heading control are discussed. Autonomous in-water tests are
presented to demonstrate the operation of the heading and depth

controller at sea.

6.1 In-Water Depth Control Comparison

To minimize the differences in the operating conditions of the
three controllers (SM, PP, LQG) being compared, they were tested on
the same day one right after the other. However, it should be noted
that disturbances and sensor noise cannot be controlled and
therefore, will be slightly different for each controlier. One major
source of disturbances was the fact that these tests were performed
with the tether connected (to avoid tﬁé possibility of losing the
vehicle in the Charles River). Not only does the tether significantly
change the drag of the vehicle depending on how far it is stretched, it

also exerts an upward force on the aft section of the vehicle because
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floats are attached to the tether every 5 to 20 feet to make it slightly
buoyant. Although the AUV is capable of pulling the floats
underwater, the tether changes the apparent buoyancy of the vehicle
as a function of depth and as a function of how far the tether is
stretched. With the tether attached to the aft section of the vehicle, it
causes the pitch dynamics to be dependent on depth. In order to
minimize the effects of the tether (especially those caused by
stretching the tether to its limit), the depth control tests in this
section were done with the horizontal thrusters off. However, due to
water currents and surface wind acting on the tether, the actual
vehicle position (tether effects) were different for each comphrison.
These considerations should be kept in mind when looking at the
control design comparisons presented in this section. All in-water
comparisons were done using the extended Kalman Filter with the

safety features discussed in Chapter 5 implemented.

6.1.1 Comparison of Controllers After Parameter Convergence

One basis for comparison is the depth response to a step change
in commanded input after parameter convergence; thus, the
parameter estimates were allowed to converge to their final values
for this first comparison. To ensure adequate excitation, 10 different
step changes in depth were commanded over an 8 minute time
period. The same 10 waypoints were used for each of the three
controllers (SM, PP, and LQG) and the last step change in depth was

selected for the comparison shown in Figure 6.1.
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Figure 6.1: In-Water Comparison of Controllers After Parameter

Convergence

The plot in Figure 6.1 shows the response of the three adaptive
controllers (SM, PP, LQG) as the commanded depth is changed from 5
feet to 1 foot. All the controllers performed almost identically in this
test as the simulation in Section 4.2.1 predicted. The thrust
commands corresponding to Figure 6.1 are shown.in Figure 6.2.

Again, the three controllers behave in a similar fashion and
compare well to the off-line simulation in Figure 4.3. Ii should be
noted that the thrusts shown in Figure 6.2 settle to 2 pounds instead
of zero even though the vehicle's net buoyancy was only about 0.25
pounds. The 1.75 pound difference was due to a miscalibration of the
vertical thruster forward setpoint (see Figure 2.2) which was off by
about 1.8 pounds. The reverse setpoint was close to the correct value.
Since the adaptive controllers incorporated the 2 pound offset into
the buoyancy term, c, the overall performance was not significantly

degraded. This demonstrates one of the advantages of the adaptive
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controller over conventional non-adaptive designs which would not

have been able to correct for the miscalibrated thruster.

Sliding Mode Controi Pole-Placement
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Figure 6.2: Thrust Commands Corresponding to Figure 6.1

It should be noted that all data obtained through in-water tests
was logged only every second, not every sampling period. This
means that some high frequency behavior might be unobservable.

Since the depth and yaw accelerations are fairly slow for the Sea
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Squirt, the depth and heading data should accurately reflect the
vehicles behavior. However, the thrust commands can change
significantly from one sampling point to the other and hence, some
nigh frequency changes might be unobservable in the commanded

thrust plots.

6.1.2 Comparison of controllers during Initial Parameter Estimation

In order to compare the controllers during the initial
parameter convergence, all parameter estimates were set to zero
except for a; which was initialized to 0.5 as was done in the off-line
comparison in Section 4.2.3. The feature discussed in Section 5.3,
which allows the controllers to add excitation to the commanded
input (if necessary), was disabled for ;his test to ensure that the
commanded input would be the same for all 3 controllers. Although
disabling this feature makes the test less realistic and probably
slowed the parameter identification, it was the only way to make a
fair comparison between the controllers during the initial parameter
convergence. Another test will be presented in Section 6.2.2 to
demonstrates that the adaptive controller correctly adds excitation if
necessary.

Figure 6.3a through 6.3c show the performance of the pole-
placement, sliding mode, and LQG controllers, respectively. As can be
seen from the figures the response of each of the controllers
improves as the parameter estimates improve. The safety net limits
were set to 1 foot for this test as shown in Figure 5.1. Only the sliding

mode controller actually reached this limit at approximately 25
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seconds as shown in Figure 6.3b. Both the PP and LQG controllers
stayed within the desired trajectory envelope (i.e. within 1 foot of
the desired trajectory) throughout the test. Surprisingly, the SM
controller shows more oscillations than the other two controllers with
the pole-placement oscillating the least during the initial parameter
estimation. However, the SM recovers quickly from these early
oscillations and performs well after the second depth command
change. The steady state tracking error apparent in Figures 6.3a
through 6.3c during the first depth command is eliminated at time tj
when the buoyancy estimate is adjusted using the "fast buoyancy

identification" developed in Chapter 4.
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Figure 6.3a: PP Controller Performance During Initial Parameter
Convergence
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Figure 6.3c: LQG Controller Performance During Initial Parameter
Convergence

Figures 6.4a-c show the parameter estimates corresponding to
Figures 6.3a-c, respectively. The large correction in the buoyancy
estimate at time t; demonstrates the effectiveness of the "fast
buoyancy identification” discussed in Chapter 4. The changes in the

buoyancy estimate after this initial correction are in part due to the
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floats attached to the tether. Every time the depth was increased,
more tether was pulled underwater and with it more of the floats
were submerged causing changes in the net upward force
experienced by the vehicle. The changes do not always occur at the
same depth because the tether was not pulled down vertically, but
rather at some angle depending on how much the tether was
stretched. Figures 6.4a-c also show that parameter estimation is
turned off (flat regions) during periods where the commanded depth
does not change for an extended period of time (20 seconds). It
should be noted that the parameter estimates were not at their final
value at the end of the 200 second test run, but were close enough to

show the initial "learning” period of the adaptive controllers.
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Figure 6.4c: Parameter Estimates Corresponding to the LQG Controller

Altogether, the three adaptive controllers performed
comparably and no one was clearly superior to the others. They all
achieved the desired response as shown in Figure 6.1 after
parameter convergence, and performed nearly the same during the

initial parameter learning. However, the SM controller did leave the
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desired trajectory envelope briefly while the PP and LQG controllers

did not.

6.1.3 Conclusions of Depth Control Comparison

In the in-water depth control comparison done in the previous
sections, all controllers performed approximately equally after
parameter convergence as was expected from the simulations done
in Chapter 4. During the initial parameter convergence period, the SM
controller caused more depth oscillations than the other two
controllers even though it performed better in the corresponding off-
line simulation in Section 4.2.3. _

Although the SM and PP controilers both performed equally
well m "the on-line and off-line comparisons, the PP design was
~ chosen as the preferred method since it was simpler in terms of
implementation with no apparent loss in performance. The LQG
design was rejected because it is difficult to implement in an on-line
fashion (as discussed in Chapter 4) and its performance was at best
equal to that of the PP design. It should be noted that all the
controller comparisons were done using the Sea Squirt or a model of
the Sea Squirt and that the outcome of the comparison may be

different for other plants.
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6.2 Adaptive Heading Control

To demonstrate a complete closed-loop depth and heading
adaptive control system for the Sea Squirt, a heading controller for
the vehicle was developed using the adaptive pole-placement
technique. The development of the heading controller is presented in
the following section using the same general design. All the steps
involved in developing the heading controller will be discussed in
Section 6.2.1.

The operation of both the heading and depth controllers is
presented in a full-scale autonomous test in Section 6.2.2. Several
runs will be presented which show the effectiveness of the adaptive

controllers under different operating conditions.

6.2.1 Heading Control Design

As discussed in Chapter 2, the heading dynamics of the Sea
Squirt are very similar to the depth dynamics so that the same
discrete time model can be used with depth measurements repiaced
by heading measurements (yaw). To distinguish the heading and
depth parameters, an h will be appended to the heading parameters
as shown in the following equation.

The simplified discrete time heading dynamics are given by:

Y(N+1) = ¥(N) + T r(N) + hby (Tp-Ts + hc) (6.2.1a)
1(N+1) = ha; r(N) + haz r(N) Ir(N)! + hb (Tp-Ts + hc) (6.2.1b)

where
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¥ = yaw

r = yaw rate

Tp = port thrust

Ts = starboard thrust

T = sampling period ( .2 seconds)
hbi, hai, haz, hbz, hc = parameters to be identified

Although there are two thrusters (port and starboard) which
control heading, only their difference, AT, is important in the heading
control so that a SISO system results. The added degree of freedom
will be used in open-loop speed control of the vehicle. The parameter
hc shown in equation 6.2.1 was included to accommodate any
constant torque applied to the vehicle (due to differences in the port
and starboard thrusters or cross flow currents) which might
otherwise cause steady ~state heading errors and identification
problems.- If thé' two horizontal thrusters are mechénically identical
and are calibrated correctly, hc should be zero assuming that there
are no water currents.

Since the form of the heading dynamics model is identical to

that of the depth dynamics with Ty replaced by AT, the PP control

law given in Section 3.2.1 still holds so that
A
AT(N) = K (ref(N) - ¥(N)) - K» f{N) - hc (6.2.2)

where K; and K; are the state feedback gains obtained from the on-
line pole-placement algorithm using the heading parameters. As was
done in the depth control, the Kalman state estimates were used in

the control law instead of the actual values and the thrust command,
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AT, was limited to 5 pounds to avoid actuator saturation. Although a
yaw rate sensor was available and could have been used in the
Kalman filter, it was not used because it may generate rate biases
after a certain operating time. Although these biases could have been
eliminated, this would have added unnecessary complexity to the
code since the controller proved to work well without the rate
measurement.

The port and starboard thrust commands were obtained from

the differential thrust given in equation 6.2.2 as follows:

Tp =AT/2 + speed (6.2.3a)
Tg = -AT/2 + speed (6.2.3b)

where speed is. the desil;ed' net forward force of the two thrusters
which determines the forward velocity of the vehicle. For example, if
50% of the maximum forward velocity is desired, speed would be set
to 50% of the maximum thrust or 2.5 pounds (the maximum thrust
limit per thruster was set to 5 pounds) assuming linearity. Since the
speed sensor of the vehicle was not currently operational and
therefore no feedback could be used to control speed, the speed
achieved by the vehicle was dependent on the drag of the vehicle
and the battery condition. This means that the vehicle will be slower
tethered than untethered even if the same speed is commanded.
Although the speed and heading control will be indeperdent in
the ideal case, they couple when actuator saturation is considered.
For example, if a large percentage of the maximum speed is desired

and the thruster commands are limited to 5 pounds, a heading
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change could easily result in the saturation of one of thrusters
causing either the thrust differential AT to be less than the value
commanded by the controlier, or the forward speed to be less than
the desired value. Since this problem cannot be avoided, it was
decided to give the heading control priority over the speed control.
This means that the speed offset of the thrust command will be
reduced as much as necessary to obtain the desired AT. Whether to
give heading control priority over speed control or vice versa
depends on the application at hand. With the vehicle being used as a
testbed for controllers, either choice would have been acceptable as
long as the identification algorithm uses the appropriate thrusts in
the parameter estimation.

One problem that arises in heading control and not in depth
“control -is that the 'heading error is bounded. Since a heading of 180
degrees and -180 degrees are identical, the heading error can never
be more than 180 degrees (assuming that only the heading itself is
important and not the number of turns made by the vehicle). It was
assumed that the controller should always turn in the direction'
closest to the desired heading. For example, if the current heading is
170 degrees and the commanded heading is -170 degrees, then the
desired path would be to turn clockwise. This means that the heading
will change sign at 180 degrees. To ensure that the heading error
seen by the controller is always between -180 and 180 degrees, 360
degrees are added to the error if it is less than -180 degrees and 360
degrees are subtracted from the error if it is more than 180 degrees.

The same idea also applies to the residual (heading - estimated
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heading) calculated in the Kalman Filter and to the safety net

controlier discussed in Chapter 5.

6.2.2 In-Water Autonomous Depth and Heading Control of the Sea
Squirt

With the depth and heading control design complete, it is now
possible to test the vehicle in an autonomous (untethered) mission.
One advantage of running the vehicle untethered instead of tethered
is that Athe vehicle is no longer influenced by the tether dynamics.
This improves the performance of the adaptive cuntroiler, in terms of
tracking and parameter identification, because none of the tether
dynamics were included in the vehicle model. Another advantage of
operating untethered is that -simultaneous heading and depth control
can be done with significant forward speed. This was not possible in
tethered mode since the tether is only about 80 leet long which
means that it would run out after only 40 seconds at a speed of 2
ft/sec. Furthermore, the normal operating mode of the vehicle is
untethered and therefore, the controller must work in this mode.

To demonstrate the operation of all the features of the adaptive
controller developed in this thesis several autonomous tests had to
be done. All the test runs presented here were donme with speeds
ranging from 2 ft/s to 4 ft/s (this corresponds to 30 to 60 percent of
maximum speed) since this is the normal operating speed range of
the vehicle. All speeds given in this chapter were approximated
using an experimental positioning system developed for the Sea

Squirt. Although the software for position contrcl was not finished in
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time for the autonomous tests done here, the positioning system
provided an effective way of determining the approximate speed of
the vehicle for a given forward thrust command. Note, however, that
the speed was determined from a tethered test and therefore, the
speeds indicated for the wuntethered control tests are only
approximate.

The first autonomous test run was done to demonstrate
parameter convergence and the adaptive controller performance
during parameter convergence. Figure 6.5 shows the adaptive pole-
placement heading control starting with poor initial parameter
estimates. To make the test more realistic, heading and depth control

was done simultaneously with a forward speed of 2 ft/sec.
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Heading setpoint
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Figure 6.5: Autonomous Pole-Placement Heading Control

As can be seen from Figure 6.5, the response to step changes in
the heading setpoint improves significanily over time with the
overshoots and oscillations being almost eliminated at the end of the

run. Also, the steady-state error apparent in the first few step
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changes (Figure 6.5) is eliminated. This error was due to 2
miscalibration of one or both of the horizontal thrusters which
caused them to produce different thrusts for the same commanded
thrust. As will be shown later, the hc parameter Wwas adjusted
correctly by the extended Kalman Filter, thereby eliminating the
steady-state error.

Figure 6.6 shows the port and starboard thrust commands
corresponding to Figure 6.5. As the control response in Figure 6.5
improves over time, SO does the control action shown in Figure 6.6.
The thrust oscillations are minimal during the last 100 seconds of the
run. Note that the starboard thrust settles to about 1.75 pounds
while the port thrust settles to about 1.25 pounds for constant
heading commands. This - means that the two thrusters were

miscalibrated by a total of about .5 pounds.
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Figure 6.6: Thrust Commands Corresponding to Figure 6.5

Figure 6.7a and 6.7b show the parameter estimates for the

heading control shown in Figure 6.5. The figure shows that hc
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converges to a value close to .5 pounds which correctly accounts for
the miscalibration in the thrusters. The other paramétcr estimates
shown in Figures 6.7a and 6.7b also converge to reasonable values.
Although the actual values for these parameters are not known, the
improvement (over time) in the heading response indicates that the

parameter estimates must be converging to the correct values.
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Figure 6.7a: Heading parameters Corresponding to Figure 6.5
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Figure 6.8 shows the depth response corresponding t0 the
heading control presented in Figure 6.5. Again, the controller was

initialized with poor parameter estimates.
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Figure 6.8: Depth Control Corresponding to Figure 6.5

The arrows shown in Figure 6.8 indic-ate the points in time
where heading changes occurred. Although the heading and depth
dynamics were assumed to be decoupled, some coupling clearly does
occur during fast heading changes. The fact that the depth always
increased during turns indicates that the vehicle pitched downward
which caused the horizontal thrusters to exert a downward force on
the vehicle. To reduce the effects of the heading changes on the
depth control, the heading controller bandwidth could be reduced SO
that the vehicle would turn slower. The heading changes shown in
Figure 6.5 were done at turn rates of up tO 50 deg/sec. The
oscillations around the desired depth setpoint shown in Figure 6.8

which are not caused by heading changes are significantly reduced
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after the parameter estimates converged to the correct values. Some
small oscillations persist and are partially due to the large
quantization step size of .7 inches and the non-zero forward speed
which induces non-zero pitch angles. Note that the safety net feature
discussed in Chapter 5 is never used as the vehicle path shown in
Figure 6.8 never leaves the desired trajectory envelope. The thrust
commands corresponding to the depth control of Figure 6.8 are

shown in Figure 6.9.
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Figure 6.9: Thrust Commands Corresponding to Figure 6.8

The arrows in Figure 6.9 show the thrust commands in
response to the depth disturbances caused by the heading changes.
During constant depth control the thrust commands settlc td within
about .3 pounds towards the end of the run (i.e. after parameter
convergence). The buoyancy of the vehicle was very close to zero for
all the autonomous tests and therefore, the thrust values shown in
Figure 6.9 settle to a value close to zero when a constant depth is

being maintained.
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The parameter estimates corresponding to the depth control
shown in_Figure 6.8 are shown in Figure 6.10a and 6.10b. As
expected the buoyancy term, c, settles to a value close to zero. All the
other parameters also settle to reasonable values (the actual
parameter values are not known). Again, several runs were done to
confirm that the parameter estimates settle to the same values

independent of their initial value.

1.0
< P % -\ d
0.8 +
0.6
1
0.4 4 al
] . ' a2
0.2
1 (R c
oo e
.0.2 - » and &I
‘0-4 v L v | | o L] v L} d
0 5C 100 150 200 250

Time (sec)
Figare 6.10a: Parameter Estimates Corresponding to Figure 6.8
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Figure 6.10b: Parameter Estimates Corresponding to Figure 6.8
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\daptation Without Sufficiently Exciting C {1

To demonstrate that the feature discussed in Section 5.3, which
ensures adequate excitation if the parameter estimates are poor,
works on the vehicle, the following in-water test was done. The
parameter estimates for the depth c&ntroller were initialized to good
initial values (obtained from previous tests) and a constant depth
command was given (a speed of 2 ft/sec was used) and the vehicle
and all commands were allowed to reach steady-state. Since no
excitation will be added by the controller unless the parameter
estimates are incorrect, it was necessary to either change the
hydrodynamics of the vehicle or change the parameter estimates .
during the test. It would have been very difficult to actually change
the hydrodynamics of the AUV during a run and, therefore, the‘
parameter estimates were changed instead. By changing the
parameter estimates to incorrect values (bl=0, al=0.5, a2=0, b2=0.01,
c=-1) at a time of 150 seconds (see Figure 6.11), the adaptive
controller has to re-adapt in order to maintain the desired depth.
However, since the commanded input is constant and has been
constant for some time the excitation will not be adequate for
adaptation; the controlier has to add excitation and re-start
adaptation (remember that adaptation is stopped if the commanded
input has not changed in the last 20 seconds to avoid parameter drift
as discussed in Section 5.2). Note that the buoyancy esumate, ¢, was
changed to -1 which directly affects the vertical thrust command and

therefore, causes a steady-state depth error. Figure 6.11 shows the
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depth and commanded depth of the vehicle and clearly shows the
degraded performance of the controller when the parameter
estimates are changed (at a time of 150 seconds). The arrows in
Figure 6.11 indicate the depth changes caused by heading command
changes. The figure shows that the controller maintains the depth of
the vechicle to within 1 to 2 inches, except for the times when the
heading changes occurred, during the first 150 seconds and during
the last 40 seconds of the run (i.e. when the parameter estimates
were close to the actual values). As was desired the controller
correctly added excitation to the depth command to allow adaptation
when it was necessary. The time delay between when the parameter
estimates were changed and when the excitation was added is due to
the fact that the residual average was used instead of the residual
itself in determining when excitation should ‘be added (i.e. it takes
some time for the average to exceed the threshold even though
individual points may). The mechanism used to determine when
excitation should be added by the controller is discussed in Chapter
5.
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Figure 6.11: Depth Control With Parameter Change at. 150 seconds

Figures 6.12a and 6.12b show the parameter estimates
corresponding to Figure €.11 and indicates that adaptation was
turned off (flat region) at time t; - (i.e. 20 seconds after the last
command chahge). At time t3 the 'lparameter estimates were changed
to the incorrect values causing poor tracking of the controller (see
Figure 6.11). At iime t3 the residual average exceeded the thréshold
(given in Section 5.3) indicating that the parameter estimates are
incorrect. Since excitation was not adequate, the controller added
excitation and re-started adaptation. As shown in Figure 6.12a, the
"fast buoyancy identification” (discussed in Chapter 4) re-adjusts the
buoyancy estimate, ¢, to nearly the correct value at time t4. At time
ts the parameter estimates had converged sufficiently close to the
actual values (i.e. the absolute Qalue of the residual average was
below the threshold) and adaptation and excitation was stopped. An
indication that the parameter estimates were nearly correct at time

ts is given by the fact that the tracking performance of the controller
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shown in Figure 6.11 is approximately the same after ts as it was
before the parameter estimates were changed at time t2. This
demonstrates that the adaptive controller correctly adds excitation to
the commanded input to ensure that the estimated depth and

thereby, the parameter estimates, remain close to their actual values.
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Figure 6.12a: Parameter Estimates Corresponding to Figure 6.11
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Figure 6.12b: Parameter Estimates Corresponding to Figure 6.11
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Changing the Safety Net Limi

To demonstrate the robustness of the safety net design
presented in Chapter S, the heading control corresponding to the
depth control in Figure 6.11 was done by changing the safety net
limits and resetting the parameter estimates for the heading 4 times
in 60 second increments. In this section resetting the parameters
means to reinitialize them to 0, 0.5, 0, 0, O for the parameters hbl,
hal, ha2, hb2, hc, respectively. The safety net limits were changed
according to Table 6.1. Figure 6.13 shows the resulting heading

control.

Table 6.1: Safety Net Limits for the Heading Control in Figure 6.13

Time (sec) Safety Net Limit
0 to 60 0.05 deg_

60 to 120 0.2 deg

120 to 180 3 deg

180 to 240 6 deg

240 to 340 10 deg
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Figure 6.13: Heading Control Corresponding to Figure 6.11

Since the safety net limits were set to values less than or equal
to 3 degrees for the first 180 seconds of the run shown in Figure
6.13, the response for this time period is almost completely
determined by the robust controller. This is due to the fact that the
robust controller is unable to control the vehicle to within 3 degrees
of the desired trajectory especially since the two thrusters were
miscalibrated. The miscalibration of the thrusters caused the robust
controller to have a steady-state error of about 5 to 10 degrees
which means that the adaptive controller never got a chance to
control the AUV for any length of time during the first 180 seconds.
This emphasizes the need to match the safety net limits to the
performance of the robust controller as discussed in Chapter 5.

From Table 6.1 it can be secen that the parameter estimates and
safety net limits were not changed after 240 seconds. Since four
command changes occurred during these last 100 seconds, the
parameter estimates had enough time to converge reasonably close

to their actual values and the response of the vehicle improved
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considerably during this period. Although this was the only time
period in this run in which the heading parameter estimates had
enough time to converge before being reset, the pafameter estimates
always started to converge in the correct direction as can be seen in
Figure 6.14a and 6.14b. The vertical dashed lines in Figure 6.14
indicate where the parameter estimates were reset and the safety
net limits were changed. Due to memory limitations of the on-board
computer and due to the fact that the vehicle position could not be
measured on-line, it was not possible to continue any one test run for
more than 7 or 8 minutes. This is why the parameter estimates were
reset at 60 second intervals and not at longer intervals which would
have allowed the parameter estimates to converge for each value of
the safety net limits shown in Table 6.1.

As .can be seen from Figure 6.13, the heading response greatly
improves for the last two step command changes when the
parameter estimates had converged sufficiently to allow adaptive
control. The heading oscillations shown in Figure 6.13 during the first
180 (or even 240) seconds are partially due to the fact that the
robust controller uses the actual heading measurement (as opposed
to the Kalman estimate) and its derivative in the feedback control.
The response time of the robust controller is much longer than that
of the adaptive controllers. This can be seen by comparing the
heading response during the first 180 seconds to the heading

response after 300 seconds when the adaptive controller was used.
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From the previous discussion on the in-water tests using

different safety net limits, it should be clear that not all limits used

in Table 6.1 are acceptable for normal operation. Since the robust

controller was not able to return the vehicle to the desired trajectory

envelope for limits less than about 6 to 10 degrees, the limit should

be chosen larger than 10 degrees. The normal value used for the

safety net limits (i.e. the value used in all in-water heading tests

135



other than the one shown in Figure 6.13) was 18 degrees. This value
was determined through simulation prior to any in-water heading

control tests and worked well for the actual vehicle.
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CHAPTER 7
CONCLUSIONS AND FUTURE APPLICATIONS

7.1 Conclusions

The main goal of this thesis was to develop an indirect adaptive
depth and heading controller for the Sea Squirt and demonstrate its
performance in autonomous testing. This goal was accomplished as
was discussed in Chapter 6. During the development of the adaptive
controller, several identification methods and control designs were
rescarched and compared. In comparing the estimation methods it
was found that the extended Kalman Filter (KF) performed better
than Recursive Least Square, Normalized Least Mean Square, and
Output Error Minimization especially in situatiohs with low signal-to-
noise ratios. The KF also provided state estimates which were
essential for state feedback control of the Sea Squirt. Although the KF
was the best choice for the Sea Squir:, one of the other identification
methods might be better suited for applications where the signal-to-
noise ratio is high and the computational power available is
insufficient for the KF.

The adaptive controliers which were compared in this thesis
using the Kalman Filter identification method included adaptive Pole-
Placement (PP), adaptive Sliding Mode (SM), and adaptive Linear
Quadratic Gaussian (LQG). Both off-line and on-line comparisons were
done. The PP design proved to perform just as well as the SM design

with the LQG design performing worse than either of the other
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methods. Since the PP controller is simpler to implement than the SM
controller and works just as well it was chosen as the preferred
control design. It should be noted, however, that the controller
comparisons were done based on the Sea Squirt or a model of the Sea
Squirt and that the outcome of the comparison could be different for

other plants.

7.2 Future Improvements and Applications

Although the indirect adaptive controller developed in this
thesis worked well, several improvements could be made. For
example, the autonomous in-water test results shown in Chapter 6
indicate that there is significant coupling _betv)een- the heading and
depth dynamics especially during quick heading changes. To reduce
or even eliminate the depth transients caused by heading changes a
multi-input-multi-output (MIMO) controller could be considered. For
the Sea Squirt an adaptive MIMO controller would probably be too
complex for on-line implementation, but future developments in
computers might make such a design feasible. Even if an on-line
implementation of the adaptive controller is not possible for the
MIMO case, it might be possible to use the identification method to
cbtain a model of the vehicle and then do an off-line MIMO design.
The depth transients caused by heading changes could also be
reduced by including the pitch dynamics and measurements in the

depth control design.
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To improve the controllers robustness to thruster modeling
errors and nonlinearities, a closed-loop thruster controller could be
designed. Although this would imply adding a sensor that can
measure either the force applied by the thruster or at least some
measdren_nent from which the force could be approximated such as
propellor rpm, it would ensure that the thrust commanded by the
vehicle controller is actually achieved by the thrusters. Knowing the
thrust applied to the vehicle with greater accuracy would also
improve the performance of the identification routine since it relies
on the thrust commands and output measurements to obtain the
parameter estimates. However, the adaptive controller developed in
this thesis performed well even without closed-loop thrust control.
Therefore, the addition of a sensor for the purpose of thrust
measurement should only be considered if the desired performance‘
cannot be achieved otherwise.

In the case where it is impossible to add a sensor which could
approximate thrust, including the dynamics of the thrusters in the
plant model could be considered. Although this would increase the
system model dimension and the number of parameters that have to
be identified, it would enable the adaptive controller to determine
the dynamics of the thrusters on-line. The result would be improved
performance of the adaptive controller (after parameter
convergence) with less a priori knowledge of the plant. The influence
of thruster dynamics on the behavior of underwater vehicles is

discussed in [16].
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APPENDIX 1
DEFINITION OF VEHICLE RELATED VARIABLES

Tc establish a coordinate frame, the Sea Squirt diagram was
shown in Figure 2.1 while the corresponding eculer angle
representation is given in Figure Al.l. Small letters represent body
relative directions while capital letters represent inertial (fixed)

directions.
X
/(
i Y B X - X
\Q~ N‘

y
Y-Z X-Z XY
plane . Plane * Plare
! . Y
Figure Al.l: Representation of Euler Angles

X

Definiti f Variabl
Ty = vertical thrust
Tp = port thrust

Ts = starboard thrust
m = vehicle mass

B = buoyancy

w = weight
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Fixed reference frame positions Body relative velocities

X = position (X) u = forward velocity
Y = position (Y) v = starboard velocity
Z = position (Z) w = downward velocity
¢ = roll angle p = roll rate

6 = pitch angle q = pitch rate

Yy = yaw angle T = yaw rate

The relations between the body relative and fixed reference frame
\!ariables are as follows:

¢=p +V sin(8)
é= cos(¢) + r sin(¢)

V= r cos(9) + q sin(9)
cos(6)

X=u cos(0) cos(y) + v [sin(¢) sin(0) cos(y) - cos(¢) sin(y))
+ w{sin(¢) sin(y) + cos(¢) sin(0) cos(y)}

Y=u cos(8) sin(y) + v {cos(¢) cos(y) + cos(d) sin(6) sin(y)}
+ w{cos(¢) sin(8) sin(y) - cos(d) sin(¢) cos(y)}

Z=-u sin(0) + v cos(9) sin(¢) + w cos(8) cos(d)
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APPENDiX 2
AUV EQUATIONS OF MOTION

Axial Forces:
m[i - vr + wq - X;(q2 +r2) + Y,(pq - £) + Zy(pr + §)]
= Xt + Xyqul - (W - B) sin(0) + Tp + T,

Lateral Forces:
m{V - wp +ur - Y(r2 + p2) + Zy(qr - p) + X;(qp + 1]
=YV + Ypp + Yii + YyuvM + Yyeur + Yyuv + (W-B) cos(6) sin()

Yertical Forces:
m[W - uq + vp - Z4(p2 +q2) + X;(1p - §) + Y,(rq + p)]
=ZyW + Zig + ZyyWiM + Zyyuw + Zyquq + (W-B) cos(0) cos(¢) + T,

Rolling Moment;

Iiad + (I - Lyy)qr - (& + po)lx + @2 - @)y,

+ (pr - Plxy + m[Yg(W - uq + vp) - Zg(V - wp + ur)]

=Kip + Kiv + (YW - YpB)cos(8) cos(9) - (ZgW - ZyB)cos(0) sin(¢) + TvY,

Pitching Moment:

Iyyd + (Ixx - L)Gpr - (b + qolyy + (02 - 1)y

+(qp - Dy + m[Zg(l - vr + wq) - Xg(W - uq + vp)]

=My + MW + Mywuw + Myquq - (W - X;,B) cos(6) cos(¢)
- (ZgW - ZB) sin(0) - (Tp + Ty)Zg + Ty X

Izt + (yy - Ixndpq - (§ + 1p)ly; + (q%- Py

+(rq - P)Ixx + m[Xg(V - wp + ur) - Y(ui - vr + wq)]

= Nif + Nyv + Nyur + Nywuv + Nygrirl - (XgW - XpB) cos(0) sin()
- (YgW - YpB) sin(6) + Y1(Tp - Ty)
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The approximate numerical values (in standard English units) for the
constants used in the previous equations are shown in Table A2.1
below. These are obtained through hydrodynamic analysis of the
actual vehicle and are, in general, only fair (or even poor)
approximations to the actual values. The values were obtained from

[2].

Table A2.1: Numerical Values For the Sea Squirt Constants

(approximate)

B 80 | Xp 12
Ixx 3 Xg 12
lyy 2.3 Xulul -.84
Izz 2.3 Xy’ -.35
Kpipl -.8 Yp 0.0
Kp' -.025 Yy 0.0
Ky :0079 Yp' .0079
mass 1.97 Yy 0.0
Mglq! -6.5 YT .56
Mg -.41 Yur .042
Myq -.32 Yyy -.3
Myw 1.57 Yyivl -3.00
Mwiwl 0.0 Yy -1.48
My -.02 Zy 0.0
Nrirl -5.6 Zy .091
N¢ -.38 Zq -.02
Nur -.32 Zyq -.042
Nuy -1.57 Zyw -.28
Ny 0.0 Zyiw) -3.49
W 80 Zy -1.32
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Moments of Inertia

Ixx = product of inertia about X-axis
lyy = product of inertia about Y-axis
Iz2 = product of inertia about Z-axis

Moment Products (assumed to be zero for the Sea Squirt)

Ixy = product of inertia about XY-axis

Izx = product of inertia about ZX-axis

Iyz = product of inertia about YZ-axis

Roll Related Coefficients

K = hydrodynamic force component along Y-axis (pitch)
Kp = partial of K(p) with respect to p'

Ky = partial of K(v') with respect to v'

Kpipi = partial of K(plpl) with respect to plpl

Pitch Related Coeffici

M = hydrodynamic force component along Y-axls (pntch)
Mg = partial of M(q) with respect to q'

Myw' = partial of M(w') with respect to w'

Mgqiq = partial of M(qlql) with respect to giql
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Yaw Related Coefficients

N = hydrodynamic moment compcnent along Y-axis (yaw)
Ny = partial of N(r') with respect to r'

Ny = partial of N(v') with respect to V'

Nrr = partial of N(rlrl) with respect to rirl

Axial Coeffici

X = hydrodynamic force component along X-axis

Xp = X coordinate of c.b

Xg = X coordinate of c.g.

Xt = X distance from vehicle c.g. to the horizontal thruster c.g.
Xy = partial of X(u') with respect to u’

Xulul = partial of X(ulul) with respect to ulul

Lateral Coefficients

y 4 = hydrodynamic force component along Y-axis

Y = Y coordinate of c.b

Yg = Y coordinate of c.g. .
Yr = Y distance from vehicle c.g. to the horizontal thruster c.g.
Ypr = partial of Y(p') with respect to p'

Yur = partial of Y(ur) with respect to ur

Yuv = partial of Y(uv) with respect to uv

Yy = partial of Y(v') with respect to v'

Yvivi = partial of Y(vivl) with respect to vivl

Vertical Coeffici

YA = hydrodynamic force component along Z-axis
Zy = Z coordinate of c.b.

Zg = Z coordinate of c.g.

Zg = partial of Z(q') with respect to q'

Z,q = partial of Z(uq) with respect to uq
Zyw = partial of Z(uw) with respect to uw
Zy = partial of Z(w') with respect to w'
Zwiwi = partial of Z(wiwl) with respect to wiwl
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APPENDIX 3
DERIVATION OF DISCRETE TIME DEPTH DYNAMICS

The following derivation converts the continuous time depth
equations (A3.1) to the discrete time depth equations (A3.2).

h
d—"dgtﬂ— = w (A3.1a)
d_w c + Tv
[ S aw+ bwliwl + —mass-Zw' (A3.1b)
where
1
3 = ass-Zy Zuw Yo
1
b = mass-Zw-ZW'“" |
uUp= some nominal forward velocity
w = depth velocity as a function of time
Ty= vertical thrust (pounds)
c = W-B
d(N+1) =d(N) + T w(N) + by (Ty(N)+ ¢) (A3.2a)
w(N+1) = a1 w(N) + a2 w(N) Iw(N)l + b2 (Ty(N) +¢) (A3.2b)
where

d = depth

w = depth velocity

T = sampling period ( .2 seconds)
bi,aj,a2,bz,c = parameters to be identified
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Since the thrust, Ty, and the buoyancy of the vehicle are constant
over one sampling period, equation (A3.1b) can be rewritten as
follows:

%":aw+bw2+D (A3.3)
for w>0 and as

dw 2

z=aw-bw +D (A3.4)

for w<0.
D is a constant (over one sampling period) and is given by

c + TV
D= __mass-Zw- (A3.5)
Since the solution to eq(A3.3) and eq(A3.4) are almost identical, the
detailed math will be shown for eq(A3.3) only (w>0). The D term in
equations (A3.3) and (A3.4) will be dealt with later and is omltted‘
from the following equations to clarify the math.

Equation (A3.3) can be written ir the following form

I ¥ [ 4 (A3.6)

Integration yields

-1 ]la+bw
2 In - —t+C (A3.7)
where C is the constant of integration.
ifa+bw>0,
w(t) = a (A3.8)

e'at e'ac -b
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To evaluate e'aC, let's define an initial condition

a
Wo = W(t=0) =~ (A3.9)
Now equation (A3.8) becomes
a
w(t) = : (A3.10)
e-at (— + b) - b
Wo

To check the math, one can evaluate eq(A3.10) for b=0. This resuits
in the familiar linear solution

w(t) = eat wg (A3.11)

Also, it is known that the depth dynamics are stable, and hence
equation (A3.10) should -approach zero as t approaches infinity.
Indeed this is the case because 'a' is negative and thus the
denominator of equation (A3.10) approaches infinity as t approaches
infinity.

Ifa+bw<0, eq(A3.8) becomes

a

w=" c-ate-aC . b (A3.12)
and eq(A3.9) becomes .
a

Wo = <-aC . p (A3.13)

Combining eq(A3.12) and eq(A3.13) results in eq(A3.10) again.
Therefore, eq(A3.10) holds, in general, for w>O0.
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Starting with eq(A3.4) insicad of eq(A3.3) and repeating the above
steps, results in

a

e-at (_a_+ b)+ b
Wo

w(t) = (A3.14)

for w<0.

To obtain the desired discrete time equivalent of eq(A3.1b), let's

define the following discrete variables:
WN = Wo (A3.15)

wWN+1 = w(T) (A3.16)

where T is the sampling period.

We can now write wN41 in terms of the previous time step wN as

follows
A wN ‘ .
WN+1 =W+_C— (A3.17)
for w>0, and '
A wN
WN+1 = _g wN + C (A3.18)
for w<0
where
A = -a
B = b (1 - exp(-aT))
C = -a exp(-aT)

Eq(A3.17) and eq(A3.18) are not ideally suited for
identification purposes since they would require the identification of
the three parameters A, B, and C which appear nonlinearly;
identification is simplified if the parameters appear linearly in the
model. Also, the sign difference between the two equations might not
be easily dealt with.
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To find a more suitable model representation we use the
Taylor's Series expansion of eq(A3.17) and eq(A3.18). Since w can
take on both positive and negative values, the expansion will be done

around w=0 as follows:

Define wn+1 = f(WN)

then
_ £f0) 2 fO0) 3
f(wN) = f(0) + £(0) wN + 21 WN*tT31 Wt
For w>0,
£(0) = 0
AC | A
£(0) = _a
BwN+O2|, 5 C
22ABC | -2AB
f'(0) = =
O = Bwy + CB| =0 C2
2
£(0) = 6AB2C | _6AB
T BwN+O, o O3
For w<0,
£(0) = 0
AC A
£(0) = ==
(-Bwy + C)2 wN=0 C
-2ABC | 2AB
£(0) = =222
O = CBwn + OBl n=0 2
2 2
er0y = —SABZC | _G6AB

(-BwN + ¥, o C3
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The previous equations for w>0 and w<0 can combined to give the
following result:

A AB AB2 3 AB3 3
WN+1 ='C WN - EEWN'WN! + C_3 Wy - -EZ' WNIwpl +... (A3.20)
where
A= __-1
mass-Zy* Zuw Yo
B = b(l - eaT)
b = 1
mass-Zy,' Zwlwl
= -aeaT
a = -A

One now has to evaluate the coefficients of eq(A3.19) to determine
Low many terms are needed for a good approximation of f(wy).

From above,

%=e3T (A3.21)
B b(l -e-aT
C™ .ic-aT ) (A3.22)

Substituting for 'b’ and 'a’ in equation (A3.22) yields

Zywiwl - Zwlwl e-aT

B
== A3.23
C Zuw e'aT ug ( )
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If ug =0, then 2 = 0 and

OIW

% (A3.24)
To evaluate eq(A3.23) for ug = 0, we apply L'Hapital's Rule which
states

lim f(u) lim f(u)
u=0g(u) ~ u—0 g'(u) (43.23)

Differentiating the numerator and denominator of eq(A3 23) with

respect to ug and taking the limit gives
- lim B Zwwl T
uo—0 C = mass-Zy, (A3.26)

Note: 'a’ is a function of ugy as defined earlier.

For the Sea Squirt eq(A3.26) equals approximately -.21.
Clearly, the terms in eq(A3.20) will decrease in magnitude as long as
%< 1 for all reasonable values of uy. Assuming that the Sea Squirt

has a maximum forward velocity of 10 ft/sec (actually the maximum .

forward velocity is close to 5 ft/sec), the coefficients of eq(A3.20) can
be plotted as a function of ug as follows:

1 ——
osl | —
1st Coefficient
06} -
04 -
02k 2nd Coefficient ]
3rd Coefficient
% 2 4 6 8 10

Forward velocity in ft/sec
Figure A3.1: Taylor Series Coefficients of W(N+1)
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If we limit the depth rate, w, to 1 ft/sec (which is reasonable for the
Sea Squirt), it is sufficient to consider only the first two terms of
eq(A3.20) to obtain a good estimate of wWN4+1.

Since in eq. (A3.1) the vertical thrust, Ty, and the buoyancy, c,
are constant over one sampling period, repetition of this derivation
including the constant D results in eq. A3.2 where Ty and ¢ appear
linearly. This results in the constant b2 in equation (A3.27b).
Integrating the depth velocity yields the desired discrete time depth
dynamics (A3.27).

d(N+1) =d(N) + T w(N) + by (Ty(N)+ ¢) (A3.27a)

w(N+1) = a1 w(N) + a3 w(N) Iw(N)I + b2 (Ty(N) +¢c) (A3.27b)

where

depth

depth velocity
sampling period
.2 seconds

. HE e
nowonon

The thrust and buoyancy also appear in equation (A3.27a) (not only
in equation (A3.27b) because the ‘depth at time N+1 is partially due
to the force applied at time N. Parameters b; and bz are both
dependent on the sampling period, T. The parameters to be identified
are bj, aj, a2, b2, and c¢. Any net buoyarcy of the vehicle will be
captured by parameter c.
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APPENDIX 4

ANALYTIC SOLUTION OF THE DISCRETE TIME RICCATI
EQUATION

The second order Sea Squirt depth equations (derived in Section 2.2)
are given by

d(N+1) = d(N) + T w(N) + b1 (Ty+¢) (3.2.4a)
w(N+1) = a1 w(N) + a2 w(N) Iw(N)I + b2 (Ty +¢) (3.2.4b)
where
d = depth
w = depth velocity
T = sampling period ( .2 seconds)
bi1,a1,a2,b2,c = parameters to be identified

Representing the above equations in matnx form and neglectmg the
" nonlinear term :yields. |

x(N+1) = A x(N) + B u(N)

where

) el

[
XM = [w(N)]
uN) =Ty +c¢
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Since the Riccati equation can not be easily solved analytically
for the A and B matrix given, the system will be transformed to
controllable form as follows (the subscript "c" will be used to refer to
the matrices in controllable form):

Define
z(N) = H x(N)
such that
0 1
A, = )
¢ ['31 1+31] B°-[l]
where Ac=HAH! B.=HB
H=[,h1 hz]
h; hy

After some algebraic manipulations, it can be seen that H is given by

hl=h3=b1+Tb2-b1a1
- h1 bj
2=
1-hyb

To solve the Riccati equation in controllable form, the state weighting
matrix, Q, also has to be converted to controllable form as follows:

Define positive semidefinite weighting matrices Q and Qc

0
Q=[‘h ] =[Qe1 qc]
0q; Q Qc qc2

such tha:

Qc= (HT)-1 QHL
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Note that Q was chosen to be diagonal so that there is one weight for
each state. This choice of Q will not simplify the solution of the Riccati
equation since Qc is not diagonal, but it does simpiify the choice of q1
and q2. The following equations give the relation between the
elements of Qc and those of Q.

Define auxiliary variables

aux, =(h1 hg + hy hz)2

aux, = hf qz
then
Qey = aux, + hi qi
cl auxl

_aux, + h% q;
aux

.Qc2

_aux, "'Eghaﬂh
aux;

qc =

Since we are dealing with a single input system, the control
weighting, R, will be a scalar, r. The matrix Riccati equation can now
be solved using Ac, B¢, Qc, and r define above. To avoid writing
several pages of tedious algebra, only the final analytic solution will
be given here. Some of the algebra involved was done on a Macintosh
using Mathematica software.

Let the solution matrix of the Riccati equation be given by

){_[xl X]
Tl x xp
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To simplify the solution let us define the following variables.

a =1+a;
tp=ar
t1 = qc1 + qc2
t2 =t1/2 +tg (a - 2)
t3 = qc2 - a'tp (2 q¢c + t1)
t4 = qc2 -21to (t1 +aqc) +1t3
2
=Aa/ .
ts 4 t3

: 2 ts

t7=r+1x2

Then the solution to the Riccati equation is given by

=“+\[4' (£2L+t5)‘+t%

X
2 2

x=-310X2+qcty
to + X2

2
ra, x
t7

The feedback gain vector, K, is given by

K=KcH=[k; k,]
where

K, = hle +x)
| -

k2=Mx+xz(Lz+a(h4 - ha))
t7

157



(1]

(2]

(3]

(4]

(51

(61

[7]

(8]

REFERENCES

J. Feldman, "DTNSRDC Revised Standard Submarine Equations of
Motion,” DTNSRDC/SPD-0303-09, June 1979.

Eric Wallar, Design_and Full-Scale Testing of a Sliding Mode
Controller for a Small Underwater Vehicle. Master's Thesis, MIT,
Cambridge, Massachusetts, July 1989.

C. Richard Johnson, Jr. (1988): Lectures on Adaptive Parameter
Estimation, Prentice-Hall, Inc., Englewood Cliffs, N. J.

Arthur Gelb (1974): Applied Optimal Estimation. The MIT Press,
Cambridge, MA.

David M. Delonga, A_Control System Design Technique for
Nonlinear Discrete Time Systems. PhD. Thesis, MIT, Cambridge,
MA, February 1989.

Kwakernaak and Sivan (1972): Linear Optimal Control Systems.
John Wiley and Sons Inc.

Rafel Santos-Mendes and Joseph Aguilar-Martin, "Robust Pole-
Placement Design,” Int. J. Control, 1989, vol. 50, No. 1, 113-128.

T. Pappas, A. J. Laub and N. R. Sandell, "On the Numerical
Solution of the Discrete-Time Algebraic Riccati Equation,” [EEE

" Trans. on_ Automatic Control, vol. 25, No. 4, 1980.

[9]

[10]

[11]

[12]

P. M. Mikild and H. T. Toivonen, "Computational Methods for
Parametric LQ Problems--A Survey,” IEEE Trans. on Automatic
Control, vol. 32, No. 8, 1987.

J.-J. E. Slotine and J. A. Coetsee, "Adaptive Sliding Controller
Synthesis for Non-linear Systems," Int. J. Control, vol. 43, No. 6,
pp. 1631-1651,1986.

R. Cristi, F. A. Papoulias, and A. J. Healey, "Adaptive Sliding
Mode Control of Autonomous Underwater Vehicles in the Dive
Plane,” I[EEE Oceanic Engineering, vol. 15, No. 3, pp. 152-60,
1990.

Rogelio Lozano-Leal, "Robust Adaptive Regulation Without

Persistent Excitation”, [EEE Trans. on Automatic Control, vol. 34,
No. 12, pp. 1260-1267,1989.

158



[13] K. J. Astrom and B. Wittenmark (1984): Computer Controlled
Systems . Prentice-Hall, Inc., Englewood Cliffs, N. J.

(14] Charles E. Rohrs, Rethinking Adaptive Control for the 90's,
Proceedings of the 29th Conference on Decision and Control, Dec.
1990, Honoluiu, Hawaii.

[15] B. B. Peterson and K. S. Narendra, "Bounded Error Adaptive
Control", IEEE Trans. on Automatic Control, vol. 27, No. 6, 1982.

[16] Dana R. Yoerger, "The Influence of Thrusier Dynamics on
Underwater Vehicle Behavior and Their Incorporation Into

Control System Design," IEEE_Qceanic Engineering, vol. 15, No. 3,
pp. 167-78, 1990.

159






