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A R T I F I C I A L  I N T E L L I G E N C E  

The foundation of efficient robot learning 
Innate structure reduces data requirements and improves robustness  
By Leslie Pack Kaelbling 

The past 10 years have seen enormous break-
throughs in machine learning, resulting in 
game-changing applications in computer vi-
sion and language processing. The field of in-
telligent robotics, which aspires to construct 
robots that can perform a broad range of tasks 
in a variety of environments with general hu-
man-level intelligence, has not yet been revo-
lutionized by these breakthroughs. A critical 
difficulty is that the data needed for learning 
comes from acting in the world, making it 
costly to acquire, especially because there is 
enormous variability in the situations a gen-
eral-purpose robot must cope with. It will take 
a combination of new algorithmic techniques, 
inspiration from natural systems, and multiple 
levels of machine learning to revolutionize ro-
botics with general-purpose intelligence. 

Most of the successes in deep-learning 
applications have been in supervised ma-
chine learning, a setting in which the learn-
ing algorithm is given paired examples of an 
input and a desired output and it learns to 
associate them. For robots that execute se-
quences of actions in the world, a more ap-
propriate framing of the learning problem is 
reinforcement learning (RL) (1), in which an 
"agent" learns to select actions to take in its 
environment in response to a "reward" sig-
nal that tells it when it is behaving well or 
poorly. One essential difference between 
supervised learning and RL is that the 
agent's actions have substantial influence 
over the data it acquires; the agent's ability 
to control its own exploration is critical to its 
overall success. 

The original inspirations for RL were 
models of animal behavior learning through 
reward and punishment. To apply to inter-
esting real-world problems, RL has to be ex-
tended to handle very large spaces of inputs 
and actions and to work when the rewards 
may arrive long after the critical action was 
chosen. New "deep" RL (DRL) methods, 
which employ complex neural networks 
with many layers, have met these challenges 
and resulted in stunning performance, in-
cluding solving the games of Chess and Go 
(2) and physically solving Rubik's cube with 
a robot hand (3). They have also seen useful 
applications, including improving energy ef-

ficiency in computer installations. Based on 
these successes, it is tempting to imagine 
that RL might completely replace traditional 
methods of engineering for robots and other 
systems with complex behavior in the phys-
ical world. 

There are technical reasons to resist this 
temptation. Consider a robot that is de-
signed to help in an older person's house-
hold. The robot would have to be shipped 
with a considerable amount of prior 
knowledge and ability, but it would also 
need to be able to learn on the job. This 
learning would have to be: sample-efficient 
(require relatively few training examples), 
generalizable (apply to many more situa-
tions than the one(s) it learned), composi-
tional (be represented in a form that allows 
it to be combined with previous 
knowledge), and incremental (be capable of 
adding new knowledge and abilities over 
time). Most current DRL approaches do not 
have these properties: they can learn sur-
prising new abilities, but generally require a 
lot of experience, do not generalize well, and 
are monolithic during training (non-
incremental) and execution (non-
compositional). 

How can sample efficiency, generaliza-
bility, compositionality, and incrementality 
be enabled in an intelligent system? Modern 
neural networks have been shown to be ef-
fective at interpolating: Given a large num-
ber of parameters, they are able to remem-
ber the training data and make reliable 
predictions on similar examples (4). To ob-
tain generalization, it is necessary to provide 
"inductive bias," in the form of built-in 
knowledge or structure, to the learning al-
gorithm. As a simple example, an autono-
mous car with an inductive bias that its 
braking strategy need only depend on cars 
within a bounded distance of it could learn 
from relatively few examples because of the 
limited set of possible strategies that would 
fit well with the data it has observed. Induc-
tive bias, in general, increases sample effi-
ciency and generalizability. Compositionali-
ty and incrementality can be obtained by 
building in particular types of structured in-
ductive bias, in which the "knowledge" ac-
quired through learning is decomposed into 
factors with independent semantics that can 
be combined to address exponentially more 
new problems (5).  

The idea of building in prior knowledge 
or structure is somewhat fraught. Richard 
Sutton, a pioneer of RL, asserts (6) that hu-
mans should not try to build any prior 
knowledge into a learning system, because, 
historically, whenever we try to build some-
thing in, it has been wrong. His essay incited 
strong reactions (7), but it gets at the critical 
question in the design of a system that 
learns: what kinds of inductive bias can be 
built into a learning system that will give it 
the leverage it needs to learn generalizable 
knowledge from a reasonable amount of da-
ta while not incapacitating it through inac-
curacy or over-constraint? 

There are two intellectually coherent 
strategies for finding an appropriate bias, 
which themselves have different time-scales 
and trade-offs, that can be used together to 
discover powerful and flexible prior struc-
tures for learning agents. One strategy is to 
use the techniques of machine learning at 
the "meta" level. That is, use machine learn-
ing offline at system design time (in the ro-
bot "factory") to discover the structures, al-
gorithms, and prior knowledge that will 
enable it to learn efficiently online when it is 
deployed (in the "wild").  

The basic idea of meta-learning has been 
present in machine-learning and statistics 
since at least the 1980s (8). The fundamen-
tal idea is that, in the factory, the meta-
learning process has access to many sam-
ples of possible tasks or environments that 
the system might be confronted with in the 
wild. Rather than trying to learn strategies 
that are good for an individual environment, 
or even a single strategy that works well in 
all the environments, a meta-learner tries to 
learn a learning algorithm that, when faced 
with a new task or environment in the wild, 
will learn as efficiently and effectively as 
possible. It can do this by inducing the 
commonalities among the training tasks and 
using them to form a strong prior or induc-
tive bias that allows the agent in the wild to 
learn only the aspects that differentiate the 
new task from the training tasks.  

Meta-learning can be very beautifully 
and generally formalized as a type of hierar-
chical Bayesian (probabilistic) inference (9), 
in which the training tasks can be seen as 
providing evidence about what the task in 
the wild will be like, and using that evidence 
to leverage data obtained in the wild. The 
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Bayesian view can be computationally diffi-
cult to realize, however, because it requires 
reasoning over the large ensemble of tasks 
experienced in the factory that might poten-
tially be the actual task in the wild.  

Another approach is to explicitly charac-
terize meta-learning as two nested optimi-
zation problems. The inner optimization 
happens in the wild: The agent tries to find 
the hypothesis from some set of hypotheses 
generated in the factory that has the best 
“score" on the data it has in the wild. This 
inner optimization is characterized by the 
hypothesis space, the scoring metric, and 
the computer algorithm that will be used to 
search for the best hypothesis. In traditional 
machine learning, these ingredients are 
supplied by a human engineer. In meta-
learning, at least some aspects are instead 
supplied by an outer “meta" optimization 
process that takes place in the factory. Meta-
optimization tries to find parameters of the 
inner learning process itself that will enable 
the learning to work well in new environ-
ments that were drawn from the same dis-
tribution as the ones that were used for me-
ta-learning. 

Recently, a useful formulation of meta-
learning, called "model-agnostic meta-
learning" (MAML) has been reported (10). 
MAML is a nested optimization framework 
in which the outer optimization selects ini-
tial values of some internal neural network 
weights that will be further adjusted by a 
standard gradient-descent optimization 
method in the wild. The RL2 algorithm (11) 
uses DRL in the factory to learn a general 
small program that runs in the wild but 
does not necessarily have the form of a ma-
chine-learning program. Another variation 
(12), seeks to discover, in the factory, modu-
lar building blocks, such as small neural 
networks, that can be combined to solve 
problems presented in the wild. 

The process of evolution in nature can 
be considered an extreme version of meta-
learning, in which nature searches a highly 
unconstrained space of possible learning al-
gorithms for an animal (of course, in nature, 
the physiology of the agent can change as 
well). The more flexibility there is in the in-
ner optimization problem solved during a 
robot's lifetime, the more resources, includ-
ing example environments in the factory, 
broken robots in the wild, and computing 
capacity in both phases, is needed to learn 
robustly. In some ways, this returns us to 
the initial problem. Standard RL was reject-
ed because, although it is a general-purpose 
learning method, it requires an enormous 
amount of experience in the wild. However, 

meta-RL requires substantial experience in 
the factory which could make development 
infeasibly slow and costly. Thus, perhaps 
meta-learning is not a good solution, either. 

What is left? There are a variety of good 
directions to turn, including teaching by 
humans, collaborative learning with other 
robots, and changing the robot hardware 
along with the software. In all these cases it 
remains important to design an effective 
methodology for developing robot software. 
Applying insights gained from computer 
science and engineering together with in-
spiration from cognitive neuroscience can 
help to find algorithms and structures that 
can be built into learning agents and provide 
leverage to both learning in the factory and 
in the wild.  

A paradigmatic example of this approach 
has been the development of convolutional 
neural networks (13). The idea is to design a 
neural network for processing images in 
such a way that it performs "convolutions:" 
Local processing of patches of the image us-
ing the same computational pattern across 
the whole image. This design simultaneous-
ly encodes the prior knowledge that objects 
have basically the same appearance no mat-
ter where they are in an image (translation 
invariance), and that it is groups of nearby 
pixels that are jointly informative about the 
content of the image (spatial locality). De-
signing a neural network this way means 
that it requires many fewer parameters and, 
hence, much less training, than doing so 
without convolutional structure. Where did 
the idea of image convolution come from? 
Both from engineers and from nature. It was 
a foundational concept in early signal pro-
cessing and computer vision (14). And it has 
long been understood that there are cells in 
the mammalian visual cortex that seem to 
be performing a similar kind of computation 
(15). 

It is necessary to discover more ideas 
like convolution, fundamental structural or 
algorithmic constraints that provide sub-
stantial leverage for learning but will not 
prevent robots from reaching their potential 
for generally intelligent behavior. Some 
candidate ideas include the ability to do 
some form of forward search using a "men-
tal model" of the effects of actions, similar to 
planning or reasoning; the ability to learn 
and represent knowledge that is abstracted 
away from individual objects, but can be ap-
plied much more generally (e.g., for all A and 
B, if A is on top of B and I move B then A will 
probably move too); and the ability to rea-
son about 3-dimensional space, including 
planning and executing motions through it 

as well as using it as an organizing principle 
for memory. There are likely many other 
such plausible candidate principles. Many 
other problems will also need to be ad-
dressed, including developing infrastructure 
for training both in the factory and in the 
wild, and methodologies for helping humans 
specify the rewards and for maintaining 
safety. It will be through a combination of 
engineering principles, biological inspira-
tion, learning in the factory, and ultimately 
learning in the wild that generally intelligent 
robots can finally be created. 
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