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We study the effects of industrial robots on US labor markets. We show
theoretically that robots may reduce employment and wages and that
their local impacts can be estimated using variation in exposure to ro-
bots—defined from industry-level advances in robotics and local indus-
try employment. We estimate robust negative effects of robots on em-
ployment and wages across commuting zones. We also show that areas
most exposed to robots after 1990 do not exhibit any differential trends
before then, and robots’ impact is distinct from other capital and tech-
nologies. One more robot per thousand workers reduces the employment-
to-population ratio by 0.2 percentage points and wages by 0.42%.
I. Introduction
In 1929, John Maynard Keynes famously predicted that the rapid spread
of automation technologies would bring “technological unemployment”
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(Keynes 1931). Wassily Leontief prophesied similar problems for workers,
writing, “Labor will become less and less important. . . . More and more
workers will be replaced by machines. I do not see that new industries
can employ everybody who wants a job” (quoted in Curtis 1983, 8). Though
these predictions have not come to pass, there is renewed concern that ad-
vances in robotics and artificial intelligence will lead to massive job losses
(e.g., Brynjolfsson and McAfee 2014; Ford 2015). There is mounting evi-
dence that the automation of a range of low- and medium-skill occupations
has contributed to wage inequality and employment polarization (e.g.,
Autor, Levy, and Murnane 2003; Goos and Manning 2007; Michaels, Natraj,
and Van Reenen 2014). These concerns notwithstanding, we have little sys-
tematic evidence on the equilibrium impact of automation technologies,
and especially of robots, on employment and wages.1

In this paper, we estimate the equilibrium impact of a leading automa-
tion technology—industrial robots—on local US labor markets. The In-
ternational Federation of Robotics (IFR) defines an industrial robot as
“an automatically controlled, reprogrammable, and multipurpose [ma-
chine]” (IFR 2014). That is, industrial robots are fully autonomous ma-
chines that do not need a human operator and can be programmed to
perform several manual tasks, such as welding, painting, assembly, han-
dling materials, and packaging. Textile looms, elevators, cranes, or trans-
portation bands are not robots since they have a unique purpose, cannot
be reprogrammed to perform other tasks, and/or require a human oper-
ator. This definition excludes other types of equipment and enables an in-
ternationally and temporally comparable measurement of a class of tech-
nologies—industrial robots—that are capable of replacing human labor
in a range of tasks.

Robotics technology advanced significantly in the 1990s and 2000s, lead-
ing to a fourfold rise in the stock of (industrial) robots in the United States
and western Europe between 1993 and 2007. As figure 1 shows, the increase
amounted to one new robot per thousand workers in the United States and
1.6 new robots per thousand workers in western Europe. The automotive
industry employs 38% of existing robots, followed by the electronics indus-
try (15%), plastics and chemicals (10%), and metal products (7%).

Our empirical approach is based on a model where robots and workers
compete in the production of different tasks. Our model builds on Zeira
(1998), Acemoglu and Autor (2011), and Acemoglu and Restrepo (2018c)
1 Frey and Osborne (2013), World Development Report (2016), and McKinsey Global
Institute (2017) estimate which types of jobs are susceptible to automation on the basis
of various technological projections. Such approaches are not informative about the equi-
librium impact of automation since they do not take into account how other sectors and
occupations will respond to these changes. See also Arntz, Gregory, and Zierahn (2016) on
other problems with these methodologies.
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but extends these frameworks so that the share of tasks performed by robots
varies across sectors and there is trade between labor markets specializing in
different industries. Improvements in robotics technology negatively affect
wages and employment owing to a displacement effect (as robots directly dis-
place workers from tasks that they were previously performing), but there is
also a positive productivity effect (as other industries and/or tasks increase
their demand for labor). Our framework clarifies that, because of the dis-
placement effect, robots can have very different implications for labor de-
mand than capital deepening or factor-augmenting technologies. Our model
also shows that the effects of robotics technologies on employment and wages
can be estimated by regressing the change in these variables on exposure
to robots. Exposure to robots is a Bartik-style measure (Bartik 1991), con-
structed from the interaction between baseline industry shares in a local
labor market and technological possibilities for the introduction of ro-
bots across industries.

We first document that there is considerable variation in robot adop-
tion across industries and show that the same industries are rapidly adopt-
ing robots in both the United States and Europe. We further show that at
the industry level, there is no strong positive correlation between robot
adoption and any of the other major trends affecting US local labor mar-
kets, such as import competition from China and Mexico, offshoring,
the decline of routine tasks, investments in information technology (IT)
capital, and overall capital deepening. Moreover, consistent with theory,
robot adoption at the industry level is associated with lower labor share
and employment and greater value added and labor productivity.

After presenting industry-level correlations, we investigate the equilib-
rium impact of robots in local labor markets, proxied by commuting zones
FIG. 1.—Industrial robots per thousand workers in the United States and Europe.
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in the United States.2 We construct our measure of exposure to robots us-
ing data from the IFR on the increase in robot usage across 19 industries
(roughly at the two-digit level outside manufacturing and at the three-digit
level within manufacturing) and their baseline employment shares from
the census before the onset of recent advances in robotics technology.
To focus on the component of investment in robots driven by technolog-
ical advances, we exploit adoption trends in European economies that are
ahead of the United States in robotics. Our identifying assumption is that
commuting zones housing industries with greater advances in robotics
technology are not differentially affected by other labor market shocks
or trends—a presumption that we investigate from a number of angles.3

Using this strategy, we estimate a negative relationship between a com-
muting zone’s exposure to robots and its post-1990 labor market out-
comes. Our estimates imply that between 1990 and 2007 the increase in
the stock of robots (approximately one additional robot per thousand work-
ers from 1993 to 2007) reduced the average employment-to-population
ratio in a commuting zone by 0.39 percentage points and average wages
by 0.77% (relative to a commuting zone with no exposure to robots).
These estimates are sizable but not implausible. For example, they imply
that one more robot in a commuting zone reduces employment by about
six workers; this estimate includes both direct and indirect effects, the lat-
ter caused by the decline in the demand for nontradables as a result of
reduced employment and wages in the local economy.

To understand the aggregate implications of these estimates, we need
to make additional assumptions about how different commuting zones in-
teract. Greater use of robots in a commuting zone generates benefits for
the rest of the US economy by reducing the prices of tradable goods pro-
duced using robots and by creating shared capital income gains. Our
2 Not all equilibrium responses take place within commuting zones—the most important
other responses are trade with other local labor markets, which we model explicitly below;
migration, which we investigate empirically; and the response of technology and new tasks
to changes in factor prices emphasized in Acemoglu and Restrepo (2018c). All the same,
recent research suggests that much of the adjustment to shocks, in both the short and
the medium run, takes place locally (e.g., Acemoglu, Autor, and Lyle 2004; Moretti 2011;
Autor, Dorn, and Hanson 2013).

3 We show in Acemoglu and Restrepo (2018a) that greater robot adoption in these
countries is largely a consequence of their more rapid demographic change than in the
United States. Our empirical strategy is similar to that used by Autor, Dorn, and Hanson
(2013) and Bloom, Draca, and Van Reenen (2016) to estimate the effects of Chinese im-
ports. Though not a panacea for all sources of omitted variable bias, this strategy allows us
to filter out variation in robot adoption coming from idiosyncratic US factors (e.g., US-
specific declines or worsening labor relations in some industries). This strategy would
be compromised if changes in robot usage in other advanced economies were correlated
with adverse shocks to US industries. For instance, there might be common shocks affect-
ing the same industries across advanced economies, such as other technological changes
or import competition, and these shocks could induce the same industries everywhere
to adopt robots. We show later that these confounders are not responsible for our results.
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model enables us to quantify these positive spillovers across commuting
zones and leads to smaller but still negative aggregate effects. With our
preferred specification, our estimates imply that one more robot per
thousand workers reduces the aggregate employment-to-population ra-
tio by about 0.2 percentage points and wages by about 0.42% (compared
with its larger local effects, 0.39 percentage points and 0.77%, respec-
tively), or equivalently, one new robot reduces employment by about
3.3 workers.

We verify that our measure of exposure to robots is unrelated to past
trends in employment and wages from 1970 to 1990, a period that preceded
the onset of rapid advances in robotics technology. Several robustness checks
further bolster our interpretation. First, our results are robust to includ-
ing differential trends by various baseline characteristics, linear com-
muting zone trends, and controls for other changes affecting demand
or productivity in various industries. Second, we show that the automotive
industry, which is the most robot-intensive sector, is not driving our results.
Third, consistent with our theoretical emphasis that robots (and more gen-
erally, automation technologies) have very different labor market effects
than other types of machinery and overall capital deepening, we find no
negative employment and wage effects from capital, other IT technologies,
or overall productivity increases.

The employment effects of robots are most pronounced in manufactur-
ing and particularly in industries most exposed to robots. They are also
concentrated in routine manual, blue-collar, assembly, and related occupa-
tions. Consistent with the presence of spillovers on nontradables, we esti-
mate negative effects on construction and retail as well as personal services.

Besides the papers that we have already mentioned, our work is related
to the empirical literature on the effects of technology on wage inequality
(Katz and Murphy 1992), employment polarization (Autor, Levy, and
Murnane 2003; Goos and Manning 2007; Autor and Dorn 2013; Michaels,
Natraj, and Van Reenen 2014), aggregate employment (Autor, Dorn, and
Hanson 2015; Gregory, Salomons, and Zierahn 2016), the demand for la-
bor across cities (Beaudry, Doms, and Lewis 2006), and firms’ organization
and demand for workers with different skills (Caroli and Van Reenen 2001;
Acemoglu et al. 2007; Bartel, Ichniowski, and Shaw 2007).

Most closely related to our work is the pioneering paper by Graetz and
Michaels (2018). Focusing on the variation in robot usage across indus-
tries in different countries, Graetz and Michaels estimate that industrial
robots increase productivity and wages but reduce the employment of
low-skill workers. Although we rely on the same IFR data, we utilize a dif-
ferent empirical strategy, which enables us to go beyond cross-country,
cross-industry comparisons and exploit plausibly exogenous changes in
the spread of robots to estimate the equilibrium impact of robots on local
labor markets.
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The rest of the paper is organized as follows. Section II presents a sim-
ple model of the effects of robots on employment and wages. Section III
introduces our data and sources. Section IV documents the correlation
between robot adoption at the industry level and employment, the labor
share, and value added. Section V presents our main empirical results
and various robustness checks. This section also looks at the differential
effects of robots on workers in different industries, occupations, and skill
groups. Section VI presents our instrumental variable (IV) estimates and
evaluates the local and aggregate implications of the spread of robotics
technology in the United States. Section VII concludes. The appendix
(available online) presents proofs, additional theoretical results, and ro-
bustness checks.
II. Robots, Employment, and Wages: A Model
This section presents a model building on Acemoglu and Restrepo (2018c)
to exposit the potential effects of robots on employment and wages and de-
rives our estimating equations. To develop intuition, we start with a setting
without trade between commuting zones.
A. Effects of Robots in Autarky Equilibrium
The economy consists of jCj commuting zones. Each commuting zone
c ∈ C has preferences defined over an aggregate of the output of jI j in-
dustries, given by

Yc 5 o
i ∈ I

n
1=j
i Y j21ð Þ=j

ci

� �j= j21ð Þ
, (1)

where j > 0 denotes the elasticity of substitution across goods produced
by different industries and the ni’s are share parameters that designate
the importance of industry i in the consumption aggregate (with
oi ∈ Ini 5 1).

In the autarky equilibrium, a commuting zone consumes its own pro-
duction of each good, denoted by Xci. Hence, for all i ∈ I and c ∈ C, we
have Yci 5 Xci . We choose the consumption aggregate in each commut-
ing zone as numeraire (with price normalized to one) and denote the
price of the output of industry i in commuting zone c by PX

ci .
Each industry produces output by combining capital with a continuum

of tasks indexed by s ∈ ½0, 1�, each of which can be produced using indus-
trial robots or human labor. We use xci(s) to denote the quantity of task s
utilized in the production of Xci. These tasks must be combined in fixed
proportions so that
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Xci 5 a2að1 2 aÞ2ð12aÞAci ½min
s ∈ ½0,1�

fxciðsÞg�aK 12a
ci , (2)

where Kci denotes the nonrobot capital used in industry i, 1 2 a repre-
sents its share in the production process, Aci represents the productivity
of industry i, and the term a2að1 2 aÞ2ð12aÞ is a convenient normalization.
Differences in the Aci’s will translate into different industrial composi-
tions of employment across commuting zones.

Industrial robots replace workers in some of the tasks that they were
previously performing. Specifically, in industry i, tasks [0, vi] are techno-
logically automated and can be performed by robots. We assume that all
commuting zones have access to the same technology—that is, the same
vi in industry i. Denoting the productivity of labor by gL and the produc-
tivity of robots by gM > 0, we have

xciðsÞ 5
gMMciðsÞ 1 gLLciðsÞ  if  s ≤ vi,

gLLciðsÞ  if  s > vi,

(

where Lci(s) and Mci(s) represent, respectively, the numbers of workers
and robots used in task s. Because tasks above vi have not yet been tech-
nologically automated, they must be performed by labor.

In each commuting zone c, labor is supplied by a representative house-
hold with preferences

C12w
c 2 1

1 2 w
2

B

1 1 ε
L11ε

c ,

where Cc denotes this household’s consumption and Lc represents its la-
bor supply. Its budget constraint is Cc ≤ WcLc 1 Pc , where Pc is nonlabor
(capital and profit) income. In this specification, w determines the in-
come elasticity of labor supply, and ε is the inverse of the wage elasticity
of labor supply.

Robots are produced using investment (in units of the final good), de-
noted by Ic, with the production function Mc 5 Dð1 1 hÞI 1=ð11hÞ

c and have
a rental price of RM

c . This formulation, with h > 0, allows the supply of ro-
bot services to a commuting zone to be upward sloping. This is reason-
able in the medium term, since about two-thirds of the costs of robots
are for services supplied by local, specialized robot integrators that in-
stall, program, and maintain this equipment (Leigh and Kraft 2018). Fi-
nally, in the autarky model, we take the supply of capital in commuting
zone c to be fixed at Kc and denote its price by RK

c .
An equilibrium is a tuple of prices fWc , RM

c , RK
c gc ∈ C and quantities

fCc , Yc , Ic , Lc , Mcgc ∈ C, such that in all commuting zones, firms maximize
profits, households maximize their utility, and the markets for capital, la-
bor, robots, and final goods clear:
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o
i ∈ I

ð
½0,1�

LciðsÞ 5 Lc ,   o
i ∈ I

ð
½0,1�

MciðsÞ 5 Mc ,   o
i ∈ I

KciðsÞ 5 Kc ,   

Cc 5 Yc 2 Ic :

We prove in the appendix that an equilibrium exists and is unique.
To analyze the equilibrium impact of robots, let us first define cost sav-

ings from using robots in commuting zone c as

pc 5 1 2
gLRM

c

gMWc

:

Robots will not be adopted when pc < 0. In what follows, we focus on the
case where pc > 0 in all commuting zones. The next proposition charac-
terizes the partial equilibrium impact of an advance in automation/ro-
botics technology for industry i, denoted by dvi.
Proposition 1. Suppose that pc > 0. Then,

d lnLci 5 2
dvi

1 2 vi
1

1

a
d lnYc 2 j 1

1

a
2 1

� �
d lnPX

ci , (3)

where Lci denotes the employment in industry i in commuting zone c.
Like all other results in this section, a proof of this proposition is pre-

sented in the appendix.
Equation (3) highlights three different forces shaping labor demand

of industry i, represented by Lci. First, there is a negative displacement
effect: an increase in vi leads to the use of robots in tasks otherwise per-
formed by labor, displacing workers employed in these tasks. This dis-
placement effect always reduces the labor share in the industry undergo-
ing automation and may also reduce its overall labor demand.4 However,
because of the positive productivity effect represented by the second term,
labor demand does not necessarily decline following advances in auto-
mation technology. Intuitively, automation lowers the cost of production
(thus increasing productivity) and via this channel raises the demand
for labor in nonautomated tasks in all industries. Finally, there is a com-
position effect, represented by the third term: industries undergoing au-
tomation expand at the expense of others, and this raises the demand
for labor coming from their nonautomated tasks.
4 The negative impact on the labor share can be seen by computing total production in
industry i as Xci 5 Acia

2að1 2 aÞ2ð12aÞ fmin½gMMci=vi , gLLci=ð1 2 viÞ�gaK 12a
ci , which shows

that an increase in vi always makes production less labor intensive (see Acemoglu and
Restrepo 2018c, 2019b). In the appendix, we establish that a sufficient condition for the dis-
placement effect to dominate the other forces and reduce (relative) industry employment is
j < 1 1 ð1 2 pc sLicÞ=apc sLic , where sLic is the industry’s labor share in production tasks. This
condition is easily satisfied for plausible parameter values.
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We can aggregate the industry-level implications of proposition 1 to de-
rive the effects of robots on local labor demand as follows:

d lnLc 52o
i ∈ I

‘ci
dvi

1 2 vi
1

1

a
d lnYc 2 j 1

1

a
2 1

� �
o
i ∈ I

ð‘ci 2xciÞ d lnPX
ci , (4)

where ‘ci represents industry i’s share in total employment in commuting
zone c, while xci represents this industry’s share of value added in the local
economy. The first two terms are direct analogues of the displacement
and productivity effects in (3). The third term shows that the impact of
the composition effect for labor demand depends on whether automa-
tion is reallocating output toward sectors that are more labor intensive
than average (those for which ‘ci > xci). This composition effect disap-
pears when all industries have the same labor share.

Equation (4) provides a partial equilibrium characterization of how
the demand for labor changes following automation. The next proposi-
tion links changes in prices and total output to automation technologies
and thus derives the full equilibrium impact of automation.
Proposition 2. Suppose that pc > 0 for all c ∈ C and that vi 5 0 for

all i ∈ I . Then,

d lnLc 5 ½2zdisp 1 zprodpc 2 z inc
c,Lw� � o

i ∈ I
‘ci

dvi
1 2 vi

gL

gM

, (5)

d lnWc 5 ½2zdispε 1 zprodεpc 1 z inc
c,Ww� � o

i ∈ I
‘ci

dvi
1 2 vi

gL

gM

, (6)

where zdisp 5 ð1 2 a 1 hÞ=L, zprod 5 ð1 1 hÞ=L, z inc
c,L 5 apc=Lc , z inc

c,W 5
aðpc 2 ð1 2 pcÞð1 2 a 1 hÞÞ=L, and L 5 ðgL=gM Þð1 2 a 1 aw 1 εÞ > 0.

The assumption that vi 5 0 for all i simplifies the relevant expressions
by removing the composition effect. The economic effects are similar
when this assumption is relaxed, as shown in the appendix.5

Proposition 2 establishes that the response of both employment and
wages to automation is shaped by the term oi ∈ I‘ci½dvi=ð1 2 viÞ�ðgL=gM Þ,
which is the basis of our measure of exposure to robots. In addition, the
coefficient on this variable in both equations comprises three distinct
terms. The first term, 2zdisp, represents the displacement effect. The sec-
ond, zprod, represents the productivity effect, generated by cost savings,
pc. When cost savings from automation are limited, automation decreases
employment and wages. Conversely, whenpc is large, automation increases
5 Composition effects arise when the term ‘ci 2 xci (or equivalently, the labor share) is
correlated with the introduction of robots across industries. The correlation between
the labor share of an industry in 1992 and subsequent robot usage is 0.1 across all indus-
tries and 20.04 within manufacturing, suggesting a minor role for composition effects.
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them. Finally, the third term in both equations incorporates the negative
income effect of automation on labor supply.

The impacts of robots highlighted in proposition 2 are very different
from the effects of overall capital deepening (an increase in the supply
of capital, Kc) or from technological changes that increase the productiv-
ity of robots (gM) or industry productivity (Aci). Capital deepening, greater
productivity of robots, and increases in industry productivity do not dis-
place workers from the tasks they are performing and always raise wages
and employment.6 This observation clarifies that the displacement effect
created by automation is responsible for its potentially negative impact on
labor demand.
B. Effects of Robots When Commuting Zones Trade
The autarky model transparently illustrates the displacement and produc-
tivity effects of automation but ignores how its economic consequences
may spill over across local labor markets. Trade in goods and services
changes the sensitivity of employment and wages to robot adoption and
their aggregate implications. We now incorporate automation/robots into
a simple model of trade between commuting zones building on Arming-
ton (1969) and Anderson (1979). Specifically, we modify our model in two
ways. First, we assume that the representative household’s utility depends
on a tradable good, Cc, and a nontradable (service) good, Sc:

ðCf
c S12f

c Þ12w 2 1

1 2 w
2

B

1 1 ε
L11ε

c : (7)

This specification implies that a constant share f ∈ ð0, 1Þ of spending
goes to the tradable good. We assume that this nontradable good is pro-
duced with labor—that is, Sc 5 LS

c —and we denote the price of the non-
tradable good in commuting zone c by Pc. The remaining labor, Lc 2 LS

c ,
is used in the production of tradable goods.

The second modification is to assume that the tradable good is produced
as in (1) but now with inputs sourced from all commuting zones so that

Yci 5 o
s ∈ C

u
1=l
si Xsci

l21ð Þ=l
� �l= l21ð Þ

 ðfor all c and iÞ, (8)

where l is the elasticity of substitution between varieties sourced from dif-
ferent commuting zones and the share parameters—the usi’s—indicate
6 As we show in Acemoglu and Restrepo (2018b, 2019b), labor-augmenting technolog-
ical changes have very different effects from automation as well unless the elasticity of sub-
stitution between labor and machines is implausibly low (in particular, lower than the share
of machines in value added). Here we took this elasticity to be zero for simplicity, since this
simplification does not impact any of the implications we are focusing on.
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the desirability of varieties from different sources. We assume that there
are no trade costs, so that the price of the tradable good is equalized
across commuting zones, and we choose it as the numeraire. Denoting
the amount of good i exported from commuting zone c to destination
d by Xcdi (including d 5 c), market clearing imposes

Xci 5 o
d ∈ C

Xcdi  ðfor all c and iÞ:

We also assume that the initial stock of capital of the economy, K, is
perfectly mobile across commuting zones, and we modify the budget
constraint of households to Cc 1 PcSc ≤ WcLc 1 xP

c P, where P is the na-
tional nonlabor income and a share xP

c of this income is allocated to
commuting zone c (with oc ∈ CxP

c 5 1). The main result of this section is
presented in the next proposition, which parallels proposition 2.
Proposition 3. Suppose that pc 5 p0 for all c ∈ C and that vi 5 0 for

all i ∈ I . Then,

d lnLc 5 ½2�zdispf 1 �zprodfp0 2 �z inc
L w�o

i ∈ I
‘ci

dvi
1 2 vi

gL

gM

1 �zY
L d lnY

1 �zP
Ld lnP 1 �z

price
cL ,

(9)

d lnWc 5 ½2�zdispε 1 �z prodεp0 1 �z inc
W w�o

i ∈ I
‘ci

dvi
1 2 vi

gL

gM

1 �zY
W d lnY

1 �zP
W d lnP 1 �z

price
cW ,

(10)

where the �z’s are functions of the underlying parameters.
This proposition assumes that pc is the same across commuting zones

as well as vi 5 0 for all i; we provide a more general version with similar
implications in the appendix.

As before, the �z’s summarize the local impact of robots on employment
and wages. Trade between commuting zones implies that productivity
gains and price changes in one area will be shared with others. The pro-
ductivity spillovers, generated by the change in national income d ln Y,
are captured by the �zY terms, while spillovers from changes in prices
are summarized by the �z price terms. Finally, the �zP terms represent the in-
come effects and the demand for nontradables resulting from nonlabor
income, d ln P. These general equilibrium effects are not functions of ex-
posure to robots in the own commuting zone, and thus we obtain the
same reduced-form relationship between robots and local labor demand
as in the autarky model. The aggregate effects of robots, however, depend
on the extent of trade across commuting zones because of the additional
spillover terms and because the �z’s in this proposition differ from their
autarky counterparts in proposition 2. We take these differences into ac-
count in our quantitative evaluation.

(10)

(9)
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C. Empirical Specification
Propositions 2 and 3 summarize the effects of advances in the robotics
technology on local employment and wages. The key equations, (9) and
(10), show that the equilibrium impact of robots depends on the same
object, which we will call a commuting zone’s US exposure to robots,

US exposure to robotsc 5 o
i ∈ I

‘ci � APRi (11)

(recall that ‘ci is the baseline employment share of industry i in commut-
ing zone c), and

APRi 5
dvi

1 2 vi

gL

gM

5
dMi

Li

2
dYi

Yi

Mi

Li

(12)

is the (US) adjusted penetration of robots in industry i. Exposure to ro-
bots is thus a Bartik-style measure combining industry-level variation in
the usage of robots and baseline employment shares. Our model implies
a specific form for this relationship, including an adjustment for the over-
all expansion of each industry’s output, given by the last term in (12).

With this measure of exposure to robots, we can estimate

d lnLc 5 bL � US exposure to robotsc 1 eLc ,

d lnWc 5 bW � US exposure to robotsc 1 eWc ,

(13)

regardless of whether there is trade between commuting zones, though
the coefficients bL and bW have different interpretations in these two cases.
In these equations, eLc and eWc represent other factors affecting labor sup-
ply and demand, and in our empirical work, we model them as functions
of various baseline characteristics and observed economic changes.

The models in equation (13) can be estimated using ordinary least
squares (OLS) with the variable for US exposure to robots computed
from US data on the adjusted penetration of robots. Yet there are two re-
lated reasons why the US exposure to robots could be correlated with the
error terms, eLc and eWc , leading to biased estimates. First, some industries
may be adopting robots in response to other changes that they are under-
going, which could directly impact their labor demand. Second, any shock
to labor demand in a commuting zone affects the decisions of local busi-
nesses, including robot adoption.7

(13)
7 An example of the first concern would be the automotive industry adopting more ro-
bots in the United States because of greater wage push from its unions. An example of the
second would be a local recession in Detroit, Michigan, that impacts the automotive indus-
try that has a large footprint there.
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Ideally, we want to use changes in robot penetration only driven by ex-
ogenous improvements in technology, dvi. To identify the component of
robot penetration driven by changes in technology, we instrument the US
exposure to robots using an analogous measure constructed from the
penetration of robots in European countries that are ahead of the United
States in robotics technology. To do so, we construct

Exposure to robotsc 5 o
i ∈ I

‘ci � APRi, (14)

where APRi represents the adjusted penetration of robots computed
from European countries. We describe and motivate this choice in greater
detail in the next section.
III. Data
In this section, we describe our main data sources.
A. Robots
Our main data consist of counts of the stock of robots by industry, country,
and year from the IFR. The IFR data are based on yearly surveys of robot
suppliers and cover 50 countries from 1993 to 2014, corresponding to
about 90% of the industrial robots market. However, the stock of industrial
robots by industry going back to the 1990s is available only for Denmark,
Finland, France, Germany, Italy, Norway, Spain, Sweden, and the United
Kingdom, which together account for 41% of the world industrial robot
market.8 Outside of manufacturing, we have data for the use of robots in
six broad industries: agriculture, forestry, and fishing; mining; utilities; con-
struction;education,research,anddevelopment;andservices.Withinman-
ufacturing, we have data on the use of robots for 13 more disaggregated
industries: food and beverages, textiles (including apparel), wood and fur-
niture, paper and printing, plastics and chemicals, minerals, basic metals,
metal products, industrial machinery, electronics, automotive, shipbuild-
ing and aerospace, and miscellaneous manufacturing (e.g., production of
jewelry and toys). We use this industry classification throughout and refer
to it as the “IFR industries.”

Figure 1 and table A1 (tables A1–A34 are available online) depict the
evolution of robot stocks for different groups of European countries
and for the United States. In figure 1, we separately show the evolution
of the stock of robots for Germany; for the United States; the average
8 Though the IFR also reports data by industry for Japan, these data underwent a major
reclassification. We follow the recommendations of the IFR and exclude Japan from our
analysis.
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for Denmark, Finland, France, Italy, and Sweden; and the average for
Norway, Spain, and the United Kingdom. The trends for Denmark, Fin-
land, France, Germany, Italy, and Sweden are particularly interesting, be-
cause these countries are technologically more advanced than the United
States in robotics.9 US robot usage starts near 0.4 robots per thousand
workers in the early 1990s, increases to 0.7 in 2000, and then rises rapidly
to 1.4 in the late 2000s; this evolution closely tracks the average of Den-
mark, Finland, France, Italy, and Sweden, but its level is about 20% lower.10

The IFR data have some noteworthy shortcomings. First, not all robots
are classified into one of the 19 IFR industries. About 30% of robots are
unclassified, and this percentage has declined throughout our sample.
We allocate these unclassified robots to industries in the same propor-
tions as in the classified data. Second, although the IFR reports data on
the total stock of industrial robots in the United States from 1993 onward,
it does not provide industry breakdowns until 2004. This does not affect
the measure of exposure to robots computed from European data, and in
section VI.A we describe how we use US data in our IV strategy. Finally, the
IFR reports only the overall stock of robots for North America. Though
this aggregation introduces noise in our measures of US exposure to ro-
bots, this is not a major concern, since the United States accounts for
more than 90% of the North American market and our IV procedure
purges this type of measurement error from the US exposure to robots.11

We combine the IFR data with employment counts and output by coun-
try and industry from the European Union–level analysis of capital, labor,
energy, materials, and service inputs (EU KLEMS) Growth and Productivity
9 These countries have more robots than the United States at the beginning of the sam-
ple in 1993 and have invested more in robots since. They also have greater “robot exports”
(measured as exports of intermediates related to robotics from the Comtrade data set; for
details, see Acemoglu and Restrepo 2018a). For example, robot exports per worker are
three to four times as large in Italy, France, and Denmark as in the United States and more
than six times as large in Germany, Finland, and Sweden. Norway and the United Kingdom
are behind the United States in all of these metrics. Spain has adopted robots rapidly in the
automotive industry since 1993 but is behind or comparable to the United States in other
sectors, and its robot exports are at the same level as the United States.

10 Acemoglu and Restrepo (2018a) show that demographic factors account for a large
fraction of this cross-country variation and for why European countries are ahead of the
United States in robotics. The relative shortage of middle-aged (production) workers in
countries that are aging rapidly—e.g., Germany, France, Italy, Japan, and South Korea—en-
courages the development and adoption of robotics technology, which is then exported to
other countries, including the United States, experiencing less rapid demographic change.

11 Robots in different sectors have similar capabilities and prices. Industrial robots be-
long to one of a handful of standardized types—articulated robots, selective compliance as-
sembly robot arm (SCARA) robots, Cartesian robots, and parallel robots. Consistent with
this, robot prices are fairly similar across sectors (ranging from about $44,000 per robot
to about $88,000), and our results in table 5 suggest that the quantitative effects of robots
in different sectors are similar. We investigate the role of robot prices further in tables A24
and A25.
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Accounts (see Jägger 2016),12 which allows us to measure the adjusted pen-
etration of robots, APRi and APRi, for different time periods. Following
equation (12), our baseline measure of the adjusted penetration of robots
between two dates, t0 and t1, is given by

APRi,ðt0,t1Þ 5
1

5 o
j∈EURO5

M
j
i,t1 2 M

j
i,t0

Lj
i,1990

2 g
j

i,ðt0,t1Þ
Mi,t0

Lj
i,1990

� �
, (15)

where Mj
i,t represents the number of robots in industry i in country j at

time t (from the IFR data), g j

i,ðt0,t1Þ is the growth rate of output of industry i
in country j between t0 and t1 (from the EU KLEMS), and L

j
i,1990 represents

the baseline employment level in industry i and country j (also from the
EU KLEMS).13 In our long-differences models, we take t0 5 1993 and t1 5
2007, though we also present models where we focus on other periods.

For our baseline measure, we use the average penetration in EURO5,
comprising Denmark, Finland, France, Italy, and Sweden—that is, coun-
tries ahead of the United States in robotics, excluding Germany. Focus-
ing on countries that are ahead of the United States helps us isolate
the source of variation coming from global technological advances (rather
than idiosyncratic US factors). We exclude Germany from our baseline
measure because, as figure 1 shows, it is so far ahead of the other countries
that its adoption trends may be less relevant for US patterns than the
trends in EURO5. The appendix presents versions of our main results
for different constructions of the APRi measure, including a specification
where we use all European countries, one where we use both Germany
and the EURO5, one where we use the observed increase in robot density
without the g j

i,ðt0,t1ÞMi,t0=L
j
i,1990 term, and a complementary measure where
12 To obtain comparable data, we use information on hours worked to obtain a count of
US-equivalent workers by industry in 1990. We then compute the number of robots by in-
dustry, country, and year divided by US-equivalent workers in 1990. Because the data for
Norway are missing from the EU KLEMS, we use the distribution of employment in the
remaining Scandinavian countries in our sample (Denmark, Finland, and Sweden) to im-
pute the Norwegian distribution. In addition, we were able to match most of the industries
used in the EU KLEMS data set to the 19 IFR industries. One exception is wood and fur-
niture, since employment in furniture products is pooled with miscellaneous manufactur-
ing. To address this issue, we allocate 40% of the employment in miscellaneous manufac-
turing to the wood and furniture sector based on the proportions of employment in the
United States in these detailed industries (obtained from the National Bureau of Eco-
nomic Research–Center for Economic Studies [NBER-CES] data set described below). Fi-
nally, because the IFR data for Denmark are not classified by industry before 1996, we con-
struct estimates for 1993–95 by deflating the 1996 stocks by industry using the total growth
in its stock of robots.

13 Because there were few robots in 1993, the adjustment term g j

i,ðt0 ,t1ÞMi,t0=L
j
i,1990 is not

quantitatively important; 96% of the variation in the adjusted penetration of robots across
industries between 1993 and 2007 is driven by the increase in robot density—the term
ðMj

i,t1 2 M
j
i,t0Þ=Lj

i,1990 in eq. (15). The exception is the electronics industry, which had a high
stock of robots in 1993 and experienced rapid growth thereafter.
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we include an adjustment for variation in the average price of a robot across
industries.

We also measure the US adjusted penetration of robots as

APRUS
i,ðt0,t1Þ 5

MUS
i,t1 2 MUS

i,t0

LUS
i,1990

2 g US
i,ðt0,t1Þ

Mi,t0

LUS
i,1990

: (16)

Given the coverage of the IFR data for US industries, this variable goes
back only to t0 5 2004.
B. Industry Data
To explore the industry-level correlates of robot adoption, we use data on
US industry employment, wage bill, value added, and labor share. The
employment and wage bill data come from the County Business Patterns
(CBP). We supplement the CBP with the NBER-CES data set, which covers
the manufacturing sector and reports data on employment and wage bills
for all workers and for production workers (see Acemoglu et al. 2016). We
also use data on value added and labor shares from the Bureau of Economic
Analysis input-output (BEA-IO) tables and on IT capital and the overall
capital stock from the Bureau of Labor Statistics. These data are available
for a detailed set of industries, which we then aggregate to the 19 IFR in-
dustries. Industry-level imports from China and Mexico and exports from
Germany, Japan, and South Korea are computed from Comtrade data
(following Acemoglu et al. 2016). Finally, we use the share of tasks in an
industry that can be offshored (“task offshorability” from Autor and Dorn
2013) and the share of imported intermediates as a proxy for offshoring
(from Feenstra and Hanson 1999; Wright 2014).
C. Commuting Zone Data and Exposure to Robots
In our main analysis, we focus on the 722 commuting zones covering the
US continental territory (Tolbert and Sizer 1996). Following equations (11)
and (14), we measure US exposure to robots in a commuting zone as

US exposure to robotsc,ðt0,t1Þ 5 o
i ∈ I

‘1990
ci � APRi,ðt0,t1Þ, (17)

where ‘1990
ci represents industry i’s share in the total employment of com-

muting zone c and APRi is as defined in (16). Exposure to robots is de-
fined analogously, exploiting variation in industry-level adoption of ro-
bots in the EURO5 countries,

Exposure to robotsc,ðt0,t1Þ 5 o
i ∈ I

‘1970
ci � APRi,ðt0,t1Þ, (18)

whereAPRi,ðt0,t1Þ is given in (15). We now use the 1970 employment shares,
‘1970
ci , as the baseline to focus on historical, persistent differences in the
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industrial specialization of commuting zones that predate robotics tech-
nology. This choice avoids any mechanical correlation due to robot adop-
tion before the 1990s or mean reversion associated with temporary changes
in industry employment in the 1980s. It is also worth noting that even when
we consider changes in subperiods (e.g., in our models with stacked differ-
ences), we keep the baseline employment shares constant to avoid endog-
enous and serially correlated changes in our exposure variable.

We use the public use data from the 1970, 1990, and 2000 censuses and
the American Community Survey (ACS; see Ruggles et al. 2010) to con-
struct measures of population, employment, employment by industry and
occupation, and demographics for each commuting zone. To increase
sample size, we follow Autor, Dorn, and Hanson (2013) and measure the
2007 outcomes using the ACS for 2006–8. Similarly, we measure the 2014
outcomes from the ACS for 2012–16. We also use the census and ACS to
compute the average hourly and weekly wages within 250 demographic �
commuting zone cells, which corrects for changes in the observed charac-
teristics of employed workers. Our demographic cells are defined by gen-
der, education (less than high school, high school degree, some college,
college or professional degree, and masters or doctoral degree), 10-year
age bins (16–25, 25–35, 36–45, 46–55, 56–65, and >65), and race. All top-
coded wage income observations are set equal to 1.5 times the value of the
top code, and we also winsorized wages at $2 per hour as in Acemoglu and
Autor (2011). We additionally use county-level data (which we again aggre-
gate to the commuting zone level) on employment counts from the CBP
for 1990, 2000, and 2007; wage and nonwage income from the BEA; and
wage income and migration flows from the Internal Revenue Service (IRS).

To control for potentially confounding changes in trade patterns and
other technological changes, we rely on data on exposure to Chinese im-
ports from Autor, Dorn, and Hanson (2013) and data on the fraction of
employment in a commuting zone in routine occupations (as defined in
Autor and Dorn 2013). To distinguish the effects of robots from the ef-
fects of capital accumulation, investments in IT, and other technologies
raising productivity, we construct Bartik measures of increases in capital
stocks, IT capital, and value added across the 19 IFR industries.

Finally, we use data compiled by Leigh and Kraft (2018), who scraped
the web to obtain the location and employment of robot integrators—
companies that install, program, and maintain robots. Using these data,
we construct estimates of robot integrator activity in each commuting
zone.
IV. Industry Correlations
We start by documenting industry trends. Figure 2 depicts the relation-
ship between APRi,ð1993,2007Þ (computed from EURO5) and APRi,(2004,2007)
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(computed from the US data and scaled to a 14-year equivalent change).
Both variables are expressed in terms of robots per thousand workers.
Consistent with the notion that US industry trends in robotics are driven
by technological improvements, there is a positive correlation between
adoption of robots in the EURO5 countries and in the United States
(see also table A2). The figure also reveals significant heterogeneity across
industries. While some industries—such as automotive, plastics and chem-
icals, and metal products—exhibit increases in robot penetration of more
than 7.5 robots per thousand workers, others—such as paper and print-
ing, textiles and wood, and furniture—experienced modest increases in
both Europe and the United States.
FIG. 2.—Adjusted penetration of robots in the United States and EURO5 by industry.
Plot of the adjusted penetration of robots between 1993 and 2007 (APRi) and the adjusted
penetration of robots in the United States between 2004 and 2007 (APRi rescaled to a 14-year
equivalent change). Adjusted penetration of robots is given in number of robots per thou-
sand workers in the industry. The solid line corresponds to the 457 line. Circle size indicates
the baseline US employment in the industry.
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In the rest of this section, we focus on the variation in APRi , which we
interpret as a proxy for improvements in robotics technology available
to US firms. Table A3 documents that improvements in robotics do not
mimic other industry-level trends. Industries that are adopting more robots
are not those affected by Chinese or Mexican import competition or off-
shoring, nor those experiencing rapid growth in total capital or IT capital,
nor those with a large fraction of routine jobs. Within manufacturing, the
correlation between our measure of adjusted penetration of robots, APRi,
and the change in imports from China is 20.39 (the overall correlation
is 0.15). The correlation of APRi with the share of routine tasks is 20.24
within manufacturing and20.01 overall. The correlations with the change
in imports from Mexico, with task offshorability, and with offshoring of
intermediates are, respectively, 20.03, 20.41, and 20.17 within manufac-
turing (and 0.31, 20.26, and 0.19 overall). The correlation with the in-
crease in capital is 0.22 within manufacturing (and 20.37 overall), and
the correlation with the increase in ITcapital is 0.23 within manufacturing
(and 20.17 overall). These patterns strengthen our presumption that the
use of industrial robots is a technological phenomenon that is largely un-
related to other industry trends.14

Our model shows that under plausible conditions, industries that adopt
robots reduce their labor demand. Table 1 reports regressions of various
industry-level measures of labor demand on APRi for different time peri-
ods. Panel A focuses on the wage bill, and panel B looks at employment.
Columns 1–4 present long-differences specifications where we regress the
change in log wage bill from 1993 to 2007 on our baseline measure of ad-
justed robot penetration for the same period,APRi,ð1993,2007Þ. In column 1 of
panel A, we show the relationship betweenAPRi and log wage bill, which is
negative, indicating that industries experiencing greater penetration of
robots have also seen significant (relative) declines in labor demand. To
control for other industry trends over this time period, column 2 includes
the change in imports from China and dummies for manufacturing and
light manufacturing—the latter consists of the textile industry and the
paper, publishing, and printing industry. These two light manufacturing
industries have been on a steep downward trend for reasons unrelated to
robots (mostly because of offshoring and trade from China and the rise
of digital media). Controlling for the light manufacturing dummy ensures
that the estimates in column 2 are not driven by the comparison of these
declining industries to other manufacturing industries. Including these
three controls reduces the magnitude of the coefficient on APRi but also
14 This interpretation is also in line with the close association between APRi and Graetz
and Michaels’s (2018) replaceability index, which measures the fraction of occupations in
an industry involving tasks that can be automated using industrial robots. See fig. A1 (figs. A1–
A4 are available online).
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makes it more precisely estimated (20.923, standard errors 5 0:419). This
estimate implies that an increase of one robot per thousand workers in
our APRi measure is associated with a 0.92% relative decline in the wage
bill. Therefore, the average increase in the stock of robots in manufac-
turing—seven robots per thousand workers—is associated with a 6.3% de-
cline in the wage bill. Columns 3 and 4 show similar patterns for the wage
bill of all workers and production workers within manufacturing using
the NBER-CES data set.

Columns 5–9 present stacked-differences models for two subperiods of
7 years, 1993–2000 and 2000–2007, with analogues of ourAPRi variable com-
puted for each subperiod (in this case, we have two observations per indus-
try). These models are appealing because they focus on within-industry
changes and exploit the timing of robot adoption. For instance, robot pen-
etration in the automotive industry accelerated in the 2000s, whereas it de-
celerated in shipbuilding and aerospace during the 2000s. We now see a
more precisely estimated relationship than the one shown in columns 1–
4. For example, the equivalent of the estimate in column 2 is 21.096
(standard errors 5 0:235), which implies that one more robot per thou-
sand workers (in APRi) is associated with a 1.1% decline in labor demand.
Stacked-differences models also enable us to include industry trends, thus
more flexibly controlling for the possibility that industries have been on
differential trends for other reasons (and in particular controlling for de-
clining industries). Although specifications controlling for industry trends
are demanding, in column 7 we estimate a similar negative relationship be-
tween robot adoption and labor demand. Finally, columns 8 and 9 show
similar patterns for the wage bill of all workers and production workers
within manufacturing using the NBER-CES data set. Panel B shows analo-
gous results for employment, and figure 3 visually illustrates the relation-
ship between APRi and log wage bill and log employment from column 8.

In the appendix, we present a series of robustness checks for these indus-
try correlations. Figure A2 verifies that there are no significant pretrends
correlated with the adjusted penetration of robots for log wage bill and
log employment (for all workers and for production workers). Tables A4
and A5 confirm that the patterns shown in table 1 are similar when we
use different constructions for the APRi variable and when we focus on
more recent time periods. Finally, table A6 shows that the results are also
similar when, rather than including the light manufacturing dummy, we
directly control for industry value added or the factors affecting value added
trends. In particular, in panel A we control for the change in industry value
added between 1992 and 2007 (from the BEA-IO tables), and in panel B
we instrument for the change in value added using intermediate imports
in supplier industries. The estimates are broadly similar to but larger than
the estimates in table 1, presumably because controlling for value added
isolates the displacement effect. In panel C, we control for differences in
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FIG. 3.—Relationship between robots and labor demand across industries. This figure
presents residual plots of the relationship between adjusted penetration of robots (APRi)
and the change in log wage bill (A) and the change in log employment (B) from stacked-
differences models, with data for 1993–2000 (in light gray) and 2000–2007 (in dark gray).
The solid line shows the coefficient estimates from column 8 of panel A (A) and column 8
of panel B (B) of table 1. The covariates from these models are partialed out. The dashed line
is for a regression that additionally excludes the automotive industry. Circle size indicates the
baseline US employment in the industry.
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task offshorability, which is one of the factors leading to the rapid decline
in production and value added in the light manufacturing industries,
while in panel D we include a dummy for industries adopting robots.
The results are again similar.

We also use the BEA data to estimate the relationship between robots
and industry labor share and value added between 1992 and 2007. Col-
umn 10 in panel A of table 1 shows that, consistent with robots raising
productivity, value added is increasing in industries adopting more ro-
bots—even though employment is contracting.15 This result suggests
that, as in our theory, industries adopting robots are becoming not only
more productive but also less labor intensive. This is confirmed by our es-
timate in column 10 in panel B, which shows a large decline in the labor
share. This estimate implies that one more robot per thousand workers is
associated with a 0.8 percentage point decline in the labor share between
1992 and 2007.

Although we view the industry correlations mostly as descriptive, they
establish that industries where robotics technology has made greater ad-
vances have experienced expanding output and declining labor demand,
employment, and labor share. We next turn to the implications of robots
for employment and wages in local labor markets.
V. Effect of Robots across Commuting Zones
In this section, we describe our measure of exposure to robots and docu-
ment its variation. We then present reduced-form results for employment
and wages, investigate their robustness, and explore the heterogeneous
effects of robots across industries, occupations, gender, and skill groups.
We present IV estimates and discuss their quantitative implications in the
next section.
A. Exposure to Robots and Robot-Related Activities
We focus on the exposure measure defined in equation (18) and con-
structed from European data on robot penetration by industry. We use
this variable as an instrument to uncover the effects of the spread of ro-
bots on US labor markets.
15 Within manufacturing, the industries that adopted the greatest number of robots (in the
United States and in EURO5)—automotive, plastics and chemicals, and metal products—ex-
perienced the fastest growth in value added between 1992 and 2007, ranging between 2% and
4% per year. In contrast, light manufacturing industries—textiles and paper and printing—
did not adopt many robots and experienced absolute declines in value added. In table A7,
we also document the significant positive effect of robots on labor productivity, which con-
firms one of the main findings of Graetz and Michaels (2018) from cross-industry, cross-country
data. Because of data availability, we focus on long differences for value added, labor productiv-
ity, and labor share.
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Figure 4 depicts the geographic distribution of exposure to robots be-
tween 1993 and 2007. In many parts of the United States, there is only a
small increase of about 0.27–0.67 robots per thousand workers. In others,
including parts of Kentucky, Louisiana, Missouri, Tennessee, Texas, Vir-
ginia, and West Virginia, our measure of exposure ranges between two
and five robots per thousand workers. More strikingly, in some parts of
the rust belt and Texas, robot penetration increases by five to 10 per thou-
sand workers. Figure 2 highlighted that there is greater penetration of
FIG. 4.—Geographic distribution of exposure to robots, 1993–2007. A, Distribution of ex-
posure to robots. B, Distribution of exposure to robots outside of the automotive industry.
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robots in the automotive industry than in other sectors (in both the United
States and Europe). Figure 4B verifies that even after this industry is left
out, there is still considerable geographic variation in exposure to robots.

Are commuting zones with a high exposure to robots adopting more
industrial robots, as our model predicts? Though data on robot adoption
at the commuting zone level are not available, in figure 5 we provide ev-
idence of greater robot-related activities in exposed commuting zones
using the data on integrators from Leigh and Kraft (2018). The figure
shows the residual plot of a regression of log of one plus the number of
integrators in a commuting zone against exposure to robots (as in most
figures that follow, we partial out the covariates from our main specifica-
tion in col. 4 of table 2, which we describe below). The dashed line corre-
sponds to the regression relationship after the top 1% of commuting
zones with highest exposure to robots are excluded.16 In both cases, we
see a positive association between exposure to robots and the number
of integrators in a commuting zone. Table A8 shows that this relationship
FIG. 5.—Exposure to robots and the location of robot integrators. This figure presents the
relationship between exposure to robots for 1993–2007 and the log of one plus the number
of robot integrators in a commuting zone. The covariates from column 4 of table 2 are
partialed out. Data on the location of robot integrators are from Leigh and Kraft (2018).
The solid line corresponds to a regression with the commuting zone population in 1990
as weights. The dashed line is for a regression that additionally excludes the top 1% of com-
muting zones with the highest exposure to robots. Circle size indicates the 1990 population
in the commuting zone.
16 These are Alpena, Michigan; Defiance, Ohio; Detroit, Michigan; Houghton Lake,
Michigan; Lansing, Michigan; Lorain, Ohio; Mount Pleasant, Michigan; Saginaw, Michi-
gan; Sault Ste. Marie, Michigan; and Wilmington, Delaware.
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is robust to alternative specifications and to different ways of measuring
robot integrator activity.
B. Reduced-Form Results for Employment and Wages
Table A9 provides a first look at how commuting zones with high and low
exposure to robots differ in terms of their labor market characteristics.
TABLE 2
Effects of Robots on Employment and Wages: Long Differences

Long Differences, 1990–2007

Weighted by Population

Excludes
Zones with
the Highest
Exposure Unweighted

(1) (2) (3) (4) (5) (6)

A. Change in Employment-to-Population Ratio, 1990–2007

Exposure to
robots 2.445 2.414 2.434 2.448 2.572 2.516

(.094) (.076) (.057) (.059) (.138) (.118)
Observations 722 722 722 722 712 722
R 2 .27 .46 .66 .67 .66 .62

B. Change in Log Hourly Wages, 1990–2007

Exposure to
robots 21.220 21.017 2.874 2.884 2.779 2.932

(.163) (.126) (.134) (.132) (.274) (.205)
Observations 87,100 87,100 87,100 87,100 85,776 87,100
R 2 .32 .33 .33 .33 .33 .08

Covariates

Census divisions ✓ ✓ ✓ ✓ ✓ ✓
Demographics ✓ ✓ ✓ ✓ ✓
Industry shares ✓ ✓ ✓ ✓
Trade, routine

jobs ✓ ✓ ✓
Note.—This table presents estimates of the effects of exposure to robots on employment
and wages. Panel A presents long-differences estimates for changes in the employment-to-
population ratio for 1990–2007. Panel B presents long-differences estimates for changes in
log hourly wages for 1990–2007. The specifications in panel B are estimated at the demo-
graphic cell � commuting zone level, where demographic cells are defined by age, gender,
education, and race. Columns 1–5 present regressions weighted by population in 1990. Col-
umn 5 presents results excluding the top 1% of commuting zones with the highest exposure
to robots. Column 6 presents unweighted regressions. The covariates included in each
model are reported at the bottom of the table. Column 1 includes only census division dum-
mies. Column 2 adds demographic characteristics of commuting zones in 1990 (log popu-
lation; the share of females; the share of the population over 65 years old; the shares of the
population with no college, some college, college or professional degree, and masters or
doctoral degree; and the shares of whites, blacks, Hispanics, and Asians). Column 3 adds
the shares of employment in manufacturing and light manufacturing and the female share
of manufacturing employment in 1990. Columns 4–6 add exposure to Chinese imports and
the share of employment in routine jobs. Standard errors that are robust against heteroske-
dasticity and correlation within states are given in parentheses.
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Columns 2–5 present the mean for various outcomes and covariates by
quartiles of exposure to robots, while columns 6 and 7 show the correla-
tions between these variables and exposure to robots. Three patterns are
notable. First, only three covariates show significant differences between
high- and low-exposure commuting zones. These are the share of manufac-
turing employment, the share of light manufacturing employment, and
the female share of manufacturing employment, and we control for these
variables in our base specification. Second, across commuting zones at dif-
ferent quartiles of exposure to robots, there are only very small differences
in the baseline levels of our two main labor market variables: hourly wages
in 1990 and private employment-to-population ratio in 1990 (which fo-
cuses on salaried workers in the private sector and thus excludes public
employment and self-employment). Finally and most notably, from 1990
to 2007, more exposed commuting zones experienced more negative la-
bor market trends.

To explore these patterns in detail, we estimate reduced-form specifica-
tions similar to equation (13). We regress changes in our main labor mar-
ket outcomes on exposure to robots. Our identifying assumption is that
there are no differential shocks or trends affecting labor markets with
greater exposure to robots (on the basis of baseline industry composition
and European adoption trends) relative to those with less exposure. We
discuss threats to the validity of this identifying assumption in section V.D.

Table 2 presents results for a long-differences specification for 1990–
2007, where we regress changes in employment and wage measures be-
tween 1990 and 2007 on the variable for exposure to robots for the same
period. We end our sample in 2007 to avoid the potentially confounding
effects of the Great Recession and present results for a longer time window
as well as for more recent periods in the appendix.17 The table focuses on
our main outcome variables: the (private) employment-to-population ra-
tio in panel A and log hourly wages in panel B.18 Our baseline specifica-
tions are weighted by population in 1990 and report standard errors that
are robust against arbitrary heteroskedasticity and spatial correlation within
US states in parentheses.

Column 1 presents a parsimonious specification that includes only
census division dummies as covariates. In panel A, we see a strong nega-
tive relationship between exposure to robots and employment changes in
a commuting zone with a coefficient of 20.44 (standard errors 5 0:09).
This estimate implies that an increase of one robot per thousand workers
17 To match the time window over which we measure the adjusted penetration of robots,
we rescale the outcomes to a 14-year equivalent change. In particular, for each variable, we
define long differences as ðy2007 2 y2000Þ 1 0:7 � ðy2000 2 y1990Þ.

18 Equation (13) has change in log employment on the left-hand side. We estimate this
relationship in table A15 but opt for the employment-to-population ratio as our baseline
because it is the standard specification in the literature.
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in exposure to robots is associated with a relative decline in the (private)
employment-to-population ratio of 0.44 percentage points.19

In column 2, we control for demographic characteristics in 1990—spe-
cifically, log population; share of females in the population; share of the
population over 65 years old; shares of the population with no college,
some college, college or professional degree, and masters or doctoral de-
gree; and shares of whites, blacks, Hispanics, and Asians in the popula-
tion. Since our regression specification is in changes, these controls allow
for differential trends by baseline demographic characteristics. Their in-
clusion slightly reduces our estimate of the impact of exposure to robots
on the employment-to-population ratio to 20.41.

In column 3, we control for the baseline shares of employment in man-
ufacturing and light manufacturing and the female share of manufacturing
employment. These controls allow for differential trends by the baseline in-
dustrial structure of a commuting zone and ensure that our exposure var-
iable does not proxy for other trends affecting manufacturing employ-
ment. These controls have a minor effect on our coefficient of interest,
which now stands at 20.43, and is more precisely estimated with a stan-
dard error of 0.06.

In column 4, we control for other changes that have affected labor mar-
ket outcomes during our period of analysis: imports from China between
1990 and 2007 and the decline of routine occupations proxied by their
baseline shares in employment (the coefficient estimates for these con-
trols are shown in table A12). Consistent with the lack of correlation be-
tween these measures and exposure to robots, shown in table A9, these
controls have no impact on our estimates. The point estimate remains
at 20.45 (standard errors 5 0:06).20

Figure 6 provides a residual regression plot for our specification from
column 4 in panel A, with the regression estimate shown with the solid
line. The figure highlights that there are several commuting zones with
19 A difference in exposure of one robot per thousand workers between 1993 and 2007
(from EURO5) is approximately the increase in US exposure to robots over the same time
period. It also corresponds to the interquartile range of this variable (between Pittsburgh,
PA, at the 75th percentile and Omaha, NE, at the 25th percentile). The difference in ex-
posure between the 1st percentile (West Palm Beach, FL) and the 99th percentile (Detroit,
MI) is much larger—about nine robots per thousand workers.

20 As shown in table A9 and discussed above, the shares of employment in manufactur-
ing and light manufacturing and the female share of manufacturing employment differ
between high- and low-exposure commuting zones. Table A10 shows that these variables
are significant predictors of exposure to robots, exposure to robots in the automotive in-
dustry (which we use in table 5), and exposure to robots when we simultaneously control
for all covariates on the right-hand side. We continue to estimate negative and significant
effects on employment and wages when we do not control for light manufacturing and/or
the female share of manufacturing employment, though the estimates for employment are
about 30% smaller in specifications that do not control for light manufacturing (see table A11).
This is because, as discussed above, the decline in employment in light manufacturing indus-
tries is negatively correlated with exposure to robots.
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very large exposure to robots. Column 5 estimates the specification in col-
umn 4 after excluding the top 1% of commuting zones with the highest
exposure (which are the ones listed in n. 16) and demonstrates that these
high-exposure commuting zones are not driving our negative estimates.
The coefficient estimate in panel A increases to20.57 (standard errors 5
0:14) and is shown with the dashed line in figure 6.

Finally, column 6 shows that the results are similar in unweighted re-
gressions. In the same specification as in column 4, we now estimate a co-
efficient of 20.51 (standard errors 5 0:12).

Panel B presents results for log hourly wages. Because wages are avail-
able only for employed workers and our evidence in panel A suggests that
employment declines in more exposed commuting zones, we present es-
timates adjusted for changes in the composition of wage earners. Specif-
ically, we use the change in the average log wage between 1990 and 2007
for each of the 250 demographic cells in a commuting zone as our left-
hand-side variable.21 Because we now have multiple observations for each
commuting zone—one for each demographic group—we weight each ob-
servation by the size of the demographic group in the commuting zone in
1990. The estimates show that greater exposure to robots reduces wages.
In column 4, when we control for our baseline covariates, the coefficient
estimate is 20.88 (standard errors 5 0:13). This implies that a one-robot
increase in our exposure measure (per thousand workers) leads to 0.87%
lower hourly wages. Figure 6 provides a residual regression plot for this
specification as well.

We next turn to stacked-differences models, where we exploit variation
over two periods: 1990–2000 and 2000–2007 (the former converted to a
7-year equivalent change for consistency). In this case, our standard er-
rors are robust against heteroskedasticity and within-state serial and spa-
tial correlation. Table 3 presents our findings; panel A is for employment
and panel B for log hourly wages. Columns 1–6 have the same structure as
table 2. In both panels, the estimates are more negative than before and
remain precisely estimated. For example, in column 4 of panel A the co-
efficient of interest is 20.55 (standard errors 5 0:05), while in panel B
the estimate for log hourly wages increases to 21.4 (standard errors 5
0:18). Figures 6C and 6D illustrate these stacked-differences estimates, sep-
arately marking observations from the two periods and showing that the
negative relationship is present in both periods.

The stacked-differences model focuses on the differential changes in ex-
posure to robots between these two time periods and enables us to control
for linear commuting zone trends. Although this specification is demand-
ing and exploits a different source of variation than long differences, we
21 For each demographic group g in commuting zone c, we compute the long difference
of average log hourly wages Dln Wcg, as explained in n. 17. We then regress Dln Wcg on the
exposure measure for commuting zone c and control for a full set of cell fixed effects.
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estimate a similar negative impact of exposure to robots on both employ-
ment and wages. In column 7, for example, the estimates for employ-
ment and wages are, respectively, 20.5 (standard errors 5 0:08) and 21.6
(standard errors 5 0:27). These findings bolster our confidence that ex-
posed commuting zones are not simply on a differential trend unrelated
to advances in robotics technology. We also estimate negative employment
and wage effects of robot exposure for the entire period 1990–2014 as well
as for 2000–2007 and 2000–2014 (see table A13).
C. Other Labor Market Outcomes
In the appendix, we investigate the effects of exposure to robots on a
range of other labor market outcomes. Table A14 shows robust negative
effects on employment in manufacturing, which is relevant since robots
are mostly adopted in manufacturing and substitute directly for produc-
tion workers in this industry.

Tables A15 and A16 look at alternative measures of employment and
wages. These include the (private) employment-to-population ratio, in-
cluding self-employment; the total employment-to-population ratio, in-
cluding public employment and self-employment; employment counts
from the CBP divided by population; log employment; log weekly wages;
log yearly wages; and log wage bill from the CBP. The results are broadly
similar to our baseline estimates in both long-differences and stacked-
differences specifications for all of these measures.

Table A15 also explores the implications for nonemployment by looking
at the participation and unemployment margins. We estimate a positive
impact of exposure to robots on the nonparticipation and unemployment
rates. Quantitatively, our estimates imply that about three-quarters of the
additional nonemployed drop out of the labor force, while one-quarter re-
main unemployed. In line with the rise in nonparticipation, in table A17
we also estimate increased use of Social Security Administration retirement
and disability benefits and other government transfers.

Table A18 turns to the response of migration. Some of our estimates
show a negative impact on population and net migration (computed from
the IRS data), though these effects are neither consistent across specifica-
tions nor precisely estimated. Quantitatively, the migration responses are
about one-quarter of the size of the employment responses.22 Consistent
with the spillovers on the nontradable sector that we report in section V.G,
22 For example, using our stacked-differences specification from col. 4 of table 3 and
comparing this to the equivalent specification in col. 4 of table A18 (panel D), we see that
an increase of one robot per thousand workers in our exposure measure reduces total em-
ployment by 2%, of which 0.5% is explained by the decline in population and 1.5% is ex-
plained by the decline in the employment-to-population ratio.
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table A18 also documents a decline in house prices and rents in exposed
commuting zones.

Finally, we use data from the BEA and the IRS to estimate the effects of
robots on wage and nonwage income separately. Our estimates in table A19
show precise and large negative effects on wage income and no significant
impact on nonwage income. This last result is consistent with the notion
that owners of robot integrators and firms introducing robotics technology
are not necessarily located in exposed commuting zones.
D. Threats to Validity
There are two main threats to the identifying assumption behind our esti-
mates. First, the industries that have been adopting more robots over the
last two decades (in the United States and Europe) could have been on a
downward trend because of declining demand, international competition,
other technological changes, or worsening labor relations. Second, the com-
muting zones that house the industries adopting more robots may be af-
fected by other negative shocks. In either case, our estimates might con-
found the impact of robots with these preexisting industry and commuting
zone trends. (A third possible threat, that robot adoption is correlated
with other concurrent technological changes, is discussed in the next
subsection).

Our analysis in section IV, which demonstrates that the penetration of
robots in EURO5 is not correlated with industry pretrends or with other
major sources of changes in labor demand, is reassuring for the first threat.
Moreover, the fact that value added has expanded in industries with the
greatest penetration of robots suggests that our measure is not correlated
with negative demand shocks to industries. Regarding the second threat,
our stacked-differences analysis, which controlled for commuting zone
trends, already established that linear commuting zone trends do not ex-
plain our estimates. These results notwithstanding, we next investigate
these issues directly by checking for pretrends (which could result from ei-
ther concern) and by controlling for other industry and commuting zone
trends.

Panel A of table 4 shows that there are no significant pretrends. Specifi-
cally, we estimate the relationship between exposure to robots and changes
in the employment-to-population ratio (cols. 1–4) and in log hourly wages
(cols. 5–8) between 1970 and 1990. Our base specification, in columns 2
and 6, shows that there is no quantitatively or statistically significant associ-
ation between exposure to robots and pre-1990 changes in employment or
wages. The picture is similar when we exclude highly exposed commuting
zones in columns 3 and 7 and when we report unweighted specifications in
columns 4 and 8. These results are summarized in figure 7, which pre-
sents residual plots for employment and wages from the specifications
in columns 2, 3, 6, and 7. In table A20, we confirm that there are also
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no pretrends in other key labor market variables for which we have pre-
1990 data—in particular, manufacturing employment; the employment
rate, including self-employment and the public sector; the nonparticipa-
tion rate; the unemployment rate; and log weekly wages.
FIG. 7.—Pretrends in employment and wages. This figure presents the relationship be-
tween exposure to robots for 1993–2007 and the change in the employment-to-population
ratio for 1970–1990 (A) and the change in log hourly wages for 1970–1990 (B). The covar-
iates from column 2 of table 4 are partialed out. The solid line shows the coefficient estimate
from a regression with the commuting zone population in 1990 as weights. The dashed line
is for a regression that additionally excludes the top 1% of commuting zones with highest
exposure to robots. Circle size indicates the 1970 population in the commuting zone.
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Panel B of table 4 investigates potentially confounding industry trends.
Specifically, we present estimates that control for predicted employment
declines based on a Bartik measure of exposure to industry trends in 1970–
90. To construct this measure, we use the 19 IFR industries and interact
their national log employment decline between 1970 and 1990 with their
baseline employment share in 1970 in each commuting zone. Though
the coefficient of the Bartik measure for exposure to declining industry
trends is negative and significant in a few specifications, the point estimates
for exposure to robots are unaffected. These results support our interpre-
tation that the variable for exposure to robots is not proxying for declining
industries.

Finally, panel C goes one step further and directly controls for the
1970–90 change in the employment-to-population ratio or hourly wages
on the right-hand side of our baseline specifications. This control has no
effect on our parameter estimates from table 2.

A related concern is that our estimates may have been driven or unduly
influenced by the automotive industry, which adopted more robots than
any other sector between 1993 and 2007 and may be impacted by other
economic trends.23

To address this concern, in table 5 we decompose our measure of expo-
sure to robots into two parts, one exploiting the penetration of robots in
the automotive industry and the other exploiting the penetration of ro-
bots in all other industries. We include both of these measures on the
right-hand side of our employment and wage regressions. The table pre-
sents both long-differences (cols. 1–3) and stacked-differences (cols. 4–6)
specifications. Panel A is for employment, while panel B is for wages. In
both panels, we find that the effects of exposure to robots in the automo-
tive industry are similar to the effects of exposure to robots in other sec-
tors. In none of these models do we reject the hypothesis that the coeffi-
cients of these two variables are equal. These results are reassuring for
two distinct reasons. First, they indicate that our results are not driven solely
by the automotive industry. Second, they also suggest that the effects of ro-
bots in different sectors are broadly similar.
E. Robots, Capital, and Other Technologies
Our model demonstrates that capital deepening and technological changes
that do not automate tasks previously performed by labor do not generate a
23 Indeed, the share of employment in the automotive industry explains 67% of the cross-
commuting zone variation in exposure to robots, and table A21 shows that the automotive
industry has the highest Rotemberg weight, which ranges from 50% to 90% in the specifica-
tions presented in table 2 (see Goldsmith-Pinkham, Sorkin, and Swift 2018). In our stacked-
differences specifications in table 3, this industry also receives a large weight but only during
the 2000–2007 period, when its robot penetration accelerated. These large Rotemberg
weights indicate that our reduced-form estimates may be sensitive to other shocks affecting
local labor markets specializing in the automotive industry during this period.



TABLE 5
Effects of Robots on Employment and Wages:

The Role of the Automotive Industry

Long Differences,
1990–2007

Stacked Differences,
1990–2000 and 2000–2007

Weighted by
Population Un-

weighted
(3)

Weighted by
Population Un-

weighted
(6)(1) (2) (4) (5)

A. Change in Employment-to-Population Ratio

Exposure to robots in
automotive industry 2.429 2.459 2.571 2.620 2.566 2.771

(.078) (.065) (.153) (.088) (.054) (.127)
Exposure to robots in

other industries 2.505 2.370 2.451 2.654 2.449 2.695
(.210) (.117) (.133) (.212) (.181) (.161)

Test for equality of co-
efficients (p -value) .69 .42 .47 .87 .54 .72

Observations 722 722 722 1,444 1,444 1,444
R 2 .27 .67 .62 .24 .41 .39

B. Change in Log Hourly Wages

Exposure to robots in
automotive industry 21.196 2.907 2.914 21.507 21.486 21.740

(.105) (.118) (.225) (.162) (.144) (.282)
Exposure to robots in

other industries 21.314 2.715 2.955 21.740 21.144 21.588
(.515) (.331) (.377) (.710) (.741) (.595)

Test for equality of co-
efficients (p -value) .80 .52 .93 .73 .63 .81

Observations 87,100 87,100 87,100 183,606 183,606 183,606
R 2 .32 .33 .08 .28 .29 .09

Covariates

Time period dummies ✓ ✓ ✓
Census divisions ✓ ✓ ✓ ✓ ✓ ✓
Baseline covariates ✓ ✓ ✓ ✓
Note.—This table presents estimates of the effects of exposure to robots separately for
the automotive industry and other industries. The p -value for a test of equality between the
coefficients of exposure to robots in the automotive industry and in other industries is re-
ported below the estimates. Columns 1–3 present long-differences estimates for the 1990–
2007 period. Columns 4–6 present stacked-differences estimates for the 1990–2000 and
2000–2007 periods. Panel A presents results for the employment-to-population ratio. Panel B
presents results for log hourly wages. The specifications in panel B are estimated at the de-
mographic cell � commuting zone level, where demographic cells are defined by age, gen-
der, education, and race. Columns 1, 2, 4, and 5 present regressions weighted by population
in 1990. Columns 3 and 6 present unweighted regressions. The covariates in each model are
reported at the bottom of the table. Columns 1 and 4 include only census division dummies
(and time period dummies in the stacked-differences specifications). Columns 2, 3, 5, and 6
add demographic characteristics of commuting zones (log population; the share of females;
the share of the population over 65 years old; the shares of the population with no college,
some college, college or professional degree, and masters or doctoral degree; and the
shares of whites, blacks, Hispanics, and Asians), the shares of employment in manufacturing
and light manufacturing, the female share of manufacturing employment, exposure to Chi-
nese imports, and the share of employment in routine jobs. Standard errors that are robust
against heteroskedasticity and correlation within states are given in parentheses.
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displacement effect and should thus have very different impacts on labor
demand. We now investigate the effects of capital deepening, increases in
ITcapital, and growth in value added on employment and wages. We want
to understand whether the effects of these variables differ from the effects
of robots and also verify that controlling for these trends does not change
our main estimates.

Table 6 presents the results from this exercise. We again report both
long-differences and stacked-differences specifications. Columns 1–4
are for employment, while columns 5–8 are for wages. In panel A, we con-
trol for exposure to capital, which is a Bartik measure of the increase in
(log) industry capital stocks. In panels B and C, we control for exposure
to ITcapital and exposure to industry value added (which are Bartik mea-
sures of increases in log industry ITcapital and in log industry value added,
respectively).

Including these variables has little effect on our estimates of the impact
of robots. Moreover, and in line with our theoretical emphasis that auto-
mation is conceptually different from capital deepening and other types
of technological changes that increase value added, these variables are, if
anything, positively correlated with changes in employment and wages
(see table A23 for broadly similar results with other measures of computer
technology). These results confirm our expectation that, due to the dis-
placement effect, industrial robots should have a very different impact
on labor demand than other (nonautomation) technologies. They also
bolster the case that our estimates are not capturing the effects of other
concurrent technological changes (since these tend to have different im-
pacts from robots and, as already shown in table A3, are uncorrelated with
exposure to robots).24
F. Other Robustness Checks
The appendix reports a range of additional robustness checks. First, ta-
bles A24 and A25 show that the exact construction of exposure to robots
does not affect our results. We report estimates where this measure is
computed from the average of all European countries and from the aver-
age of EURO5 plus Germany, as well as a specification where we use the
1990 (rather than the 1970) employment distribution. In addition, we
24 Another related threat to our IV strategy is that, as noted in n. 3, international compe-
tition may affect robot adoption decisions in both the United States and Europe. Relatedly,
investments in robots in the countries that are most advanced in robotics technology—Ger-
many, Japan, and South Korea—may increase international competition for US industries.
Table A22 investigates these issues and shows that our estimates of the effects of robots are
similar when we control for exposure to imports from Mexico, task offshoring, and exports
from Germany, Japan, and South Korea.
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present estimates for an exposure measure based on the raw penetration
of robots (rather than our theoretically grounded measure based on ad-
justed penetration of robots) and from a specification where we weight
each industry’s adjusted penetration of robots by the average cost of ro-
bots in that industry. In all cases, the reduced-form estimates using these
alternative measures of exposure are negative and significant (and the IV
estimates reported in col. 7 of tables A24 and A25 are also similar to the
estimates in table 7 presented in the next section).

Table A26 explores the role of outliers. Our results are robust when we
exclude Detroit (the commuting zone with the highest exposure to ro-
bots); when we exclude observations with residuals above or below 1.95
standard deviations; when we estimate Li’s (1985) robust regression,
which downweights influential observations; and when we estimate me-
dian regressions.

Table A27 shows that our results are also robust to controlling for a full
set of state fixed effects, to allowing for mean-reverting dynamics in em-
ployment and wages by including the baseline value of the dependent var-
iable, and to controlling for contemporaneous changes in all of our base-
line demographic variables. Table A28 reports the results from a two-step
least absolute shrinkage and selection operator (LASSO) specification with
a large number of covariates (following Belloni, Chernozhukov, and Han-
sen 2014) and establishes that those included in our main specifications
are very similar to those identified by the LASSO procedure, and the two-
step estimates are close to our baseline estimates.
G. Effects by Industry, Occupation, Gender, and Skill
This subsection investigates how exposure to robots has affected employ-
ment in different industries and occupations as well as the employment
and wages of different workers.

Figure 8A presents estimates of the effects of exposure to robots on
employment in different industries. We present point estimates and con-
fidence intervals for two long-differences specifications analogous to col-
umns 4 and 5 of table 2 and one stacked-differences specification corre-
sponding to column 4 of table 3 (fig. A4 presents estimates from analogous
unweighted specifications). Figure 8 shows that the effects of robots con-
centrate in manufacturing (also shown in table A14) and especially in heav-
ily robotized industries, which include automotive, plastics and chemicals,
metal products, basic metals, electronics, and food and beverages. There
are no significant effects on the remaining manufacturing industries. Con-
sistent with the indirect effects on nontradables discussed in section II.B,
we find negative impacts on construction and retail and personal services.
The only two sectors that show positive effects in some specifications are
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TABLE 7
Effects of Robots on Employment and Wages: IV Estimates

Change inEmployment-to-

Population Ratio Change in LogHourlyWages

(1) (2) (3) (4) (5) (6)

A. Long Differences, 1990–2007

US exposure to robots 2.375 2.377 2.388 21.022 2.762 2.768
(.119) (.088) (.091) (.225) (.147) (.148)

Observations 722 722 722 87,100 87,100 87,100
First-stage coefficient 1.19 1.15 1.15 1.19 1.15 1.15
First-stage F-statistic 38.16 32.19 33.62 39.81 33.17 34.35

B. Alternative Imputation of US Data, 1990–2007

US exposure to robots 2.388 2.391 2.402 21.060 2.790 2.796
(.123) (.092) (.094) (.234) (.153) (.153)

Observations 722 722 722 87,100 87,100 87,100
First-stage coefficient 1.15 1.11 1.11 1.15 1.11 1.11
First-stage F -statistic 38.16 32.19 33.62 39.81 33.17 34.35

C. Long Differences, 1990–2014

US exposure to robots 2.303 2.241 2.250 21.268 21.103 21.128
(.126) (.077) (.080) (.169) (.165) (.170)

Observations 722 722 722 90,341 90,341 90,341
First-stage coefficient 1.20 1.14 1.15 1.21 1.14 1.15
First-stage F -statistic 105.01 68.75 73.34 110.32 70.35 74.86

D. Long Differences, 2000–2007

US exposure to robots 2.623 2.574 2.585 21.376 21.147 21.191
(.137) (.067) (.067) (.227) (.172) (.176)

Observations 722 722 722 99,319 99,319 99,319
First-stage coefficient .79 .76 .75 .79 .76 .75
First-stage F -statistic 211.46 123.73 124.32 223.26 131.40 131.83

E. Long Differences, 2000–2014

US exposure to robots 2.451 2.327 2.339 21.590 21.566 21.601
(.190) (.065) (.067) (.156) (.183) (.191)

Observations 722 722 722 106,375 106,375 106,375
First-stage coefficient 1.00 .92 .93 1.00 .92 .93
First-stage F -statistic 1,195.67 305.25 298.98 1,296.85 324.38 316.40

Covariates

Division dummies ✓ ✓ ✓ ✓ ✓ ✓
Demographics and industry shares ✓ ✓ ✓ ✓
Trade, routine jobs ✓ ✓
Note.—This table presents IV estimates of the effects of exposure to robots on employ
ment and wages for different time periods. Panels A and B present results for 1990–2007
Panel C presents results for 1990–2014. Panel D presents results for 2000–2007. Panel E
presents results for 2000–2014. In all models, we instrument the US exposure to robots us
ing exposure to robots from EURO5. In panels A and C–E, we rescale the US exposure to
robots to match the time period used. In panel B, we use an alternative imputation strategy
for US exposure to robots described in the main text. Columns 1–3 present results for the
employment-to-population ratio. Columns 4–6 present results for log hourly wages. The
specifications for log hourly wages are estimated at the demographic cell � commuting
zone level, where demographic cells are defined by age, gender, education, and race. Al
IV estimates are from regressions weighted by population in 1990. The covariates included
in each model are reported at the bottom of the table. Columns 1 and 4 include only census
division dummies. Columns 2 and 5 add demographic characteristics of commuting zones
(log population; the share of females; the share of the population over 65 years old; the
shares of the population with no college, some college, college or professional degree
and masters or doctoral degree; and the shares of whites, blacks, Hispanics, and Asians)
the shares of employment in manufacturing and light manufacturing, and the female share
of manufacturing employment. Columns 3 and 6 add exposure to Chinese imports and the
share of employment in routine jobs. We also report the first-stage coefficients and their F-
statistics in all models. Standard errors that are robust against heteroskedasticity and corre-
lation within states are given in parentheses.
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(1) agriculture and education and (2) health care and the public sector (al-
though these estimates are neither precise nor robust).

Figure 8B presents analogous results for employment by occupation.
In line with our expectations, the negative employment effects of robots
are mostly in routine manual occupations and particularly in blue-collar
occupations, such as machinists, assemblers, material handlers, and
welders. Workers in these occupations engage in tasks that are being au-
tomated by industrial robots, so it is natural for them to experience the
bulk of the displacement effect created by robots. We do not estimate pos-
itive employment effects in other occupations, suggesting that, at least lo-
cally, the productivity gains from using industrial robots have not resulted
in an expansion of employment in nonautomated tasks.

Figure 9 and table A29 investigate the employment and wage effects by
gender. We estimate negative impacts for both men and women. The ef-
fects are larger for men. For example, with our baseline specification in
long differences, reported in figure 9 and in column 1 of table A29, the im-
pact of exposure to robots on the employment-to-population ratio of men
is 20.57, while for women it is 20.34. Table A29 further shows that the de-
cline for male employment is concentrated in manufacturing, while the
decline in female employment is more pronounced in nonmanufacturing.

Figure 9 summarizes the effects of robots on employment and wages
for workers in different education groups. We present estimates for all
workers and estimates for men and for women separately. We see negative
employment and wage effects for both men and women with less than
high school, high school degree, some college, and college or professional
degree. We find it surprising that there is no positive effect on workers
with a masters or doctoral degree. One interpretation is that this result re-
flects reduced demand for these workers from the nontradable sector. A
complementary explanation is that, in contrast to other computer-assisted
technologies, industrial robots are not directly complementing high-skill
workers. Figure 10 investigates the impact of exposure to robots on the
wage distribution by estimating quantile regressions (using our baseline
specification from col. 4 of table 2). For all workers, we estimate negative
and significant effects below the 35th percentile of the wage distribution.
When we focus on workers with no college degree, the negative and sig-
nificant effects extend all the way to the 85th percentile, while for workers
with a college degree or more, the negative effects concentrate below the
15th percentile. These results confirm that the negative wage effects of
robots are mostly at the bottom and the middle of the distribution.
VI. IV Estimates and Local and Aggregate
Implications
In this section, we report our IV estimates and explore their quantitative
implications for local and aggregate changes in employment and wages.
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A. IV Estimates
We use the US exposure to robots to compute two-stage least squares
(2SLS) estimates of bL and bW in equation (13). Figure 2 already showed
the close association between the industry-level spread of robots in the
United States (APRi,(2004,2007)) and in Europe (APRi,ð1993,2007Þ). Figure A3 de-
picts our first-stage relationship by plotting the US exposure to robots at
the commuting zone level computed usingAPRi,(2004,2007) against exposure
to robots computed using APRi,ð1993,2007Þ.

Table 7 reports our IV estimates for the long-differences specifications
analogous to those in table 2 and also reports the corresponding first-
stage coefficients and F -statistics (table A33 reports the corresponding
FIG. 10.—Effects of robots on the wage distribution. This figure presents estimates of the
effects of exposure to robots on quantiles of the wage distribution for a specification equiv-
alent to column 4 in table 2, following the methodology of Chetverikov, Larsen, and Palmer
(2016). Estimates for the 5th, 10th, . . . , and 95th quantiles together with their 95% confi-
dence intervals are shown. The different panels are for all workers (A), for workers with no
college degree (B), and for workers with a college degree or more (C) separately and for
men (D) and women (E) separately.
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OLS estimates). Because we use the IVestimates to quantify the aggregate
implications of robot adoption, we focus on the population-weighted
specifications. Columns 1–3 are for the (private) employment-to-population
ratio, and columns 4–6 are for log hourly wages. Column 1 in each panel
presents a parsimonious specification that controls only for census divi-
sion dummies. Column 2 in each panel additionally controls for demo-
graphic characteristics and industry composition of commuting zones. Fi-
nally, column 3 in each panel adds controls for imports from China and
the decline of routine jobs.

Panel A covers our baseline period, 1990–2007, where the 2004–7 US
data are rescaled to a 14-year equivalent change. Panel B also focuses on
1990–2007 but constructs the US exposure to robots by imputing US in-
dustry data using the aggregate US change between 1993 and 2004 rather
than rescaling the 2004–7 industry data. Panel C is for 1990–2014, while
panels D and E focus on 2000–2007 and 2000–2014, respectively, time
windows that closely overlap with US robots data. In all cases, the 2SLS es-
timates are negative and precise for both employment and wages. Our base
estimates in columns 3 and 6 in panel A, which we use in our quantitative
evaluation in the next subsection, are 20.39 (standard errors 5 0:09) for
employment and 20.77 (standard errors 5 0:15) for log hourly wages.25

The estimates in table 7 present standard errors that are robust against
heteroskedasticity and within-state spatial correlation. As pointed out by
Borusyak, Hull, and Jaravel (2018), these standard errors do not take into
account potential correlations across commuting zones resulting from
other industry shocks. Table A20 reproduces our IV estimates with stan-
dard errors computed following Borusyak et al.’s (2018) procedure to ac-
count for such correlation (tables A31 and A32 present these adjusted
standard errors for our main long- and stacked-differences reduced-form
models). We do not find systematic differences between our baseline stan-
dard errors and these potentially more conservative standard errors, pre-
sumably because our specifications already control for the most important
industry shocks affecting US labor markets, such as import competition
from China, trends in overall manufacturing, light manufacturing, and the
decline of routine jobs.
B. Magnitudes
The IV estimates in the previous subsection quantify the impact of im-
provements in automation technologies that lead to the adoption of one
additional robot per thousand workers on employment and wages in a
25 For 1990–2014 in panel C, the IV estimate for employment is 40% smaller and the es-
timate for wages is 40% larger. This might reflect the fact that as wages have continued to
adjust in the affected commuting zones, some of the initial employment response may have
been reversed.
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commuting zone relative to other areas. Our estimates in columns 3 and
6 in panel A, for example, imply that the adoption of one additional ro-
bot per thousand workers in a commuting zone reduces its employment-
to-population ratio by 0.39 percentage points (roughly a 1% decline) and
hourly wages by 0.77% relative to other commuting zones. These num-
bers suggest that one more robot reduces employment by about six work-
ers in the affected commuting zone relative to others.26 These are sizable
magnitudes but are not implausible since they include both the direct ef-
fects of robots on employment and wages and the spillover effects on non-
tradables resulting from the decline in local demand following the loss of
employment and wage income in the area we saw in section V.G.27

The more challenging question is how much (and whether) employ-
ment and wages in the aggregate decline in response to the adoption
of industrial robots. As emphasized in proposition 3, when commuting
zones interact through trade and capital markets, our local IV estimates
do not directly translate into aggregate effects because robot adoption in
one commuting zone reduces the costs of goods consumed in other areas
and generates capital income gains shared by households across the United
States. To explore these aggregate implications, we need to make further
assumptions on cross-commuting zone spillovers (and this suggests greater
caution in interpreting these aggregate estimates than the local effects dis-
cussed in the previous paragraph).

We first assume that proposition 3 provides a reliable approximation to
these cross-commuting zone interactions and use our regression evidence
and external information to discipline the key parameters of the model.
Specifically, we use equations (9) and (10) in proposition 3, which provide
expressions for bL and bW in terms of the underlying parameters of the
model as well as the factor shares. We then use information on factor
shares and j, l, a, p0, and gM=gL to solve for the values of the inverse of
the wage elasticity of labor supply, ε, and the inverse of the elasticity of the
robot supply, h, that are consistent with our IV estimates, b̂L and b̂W . With
26 The increase of one more robot per thousand workers between 1993 and 2007 is
equivalent to an increase of 0.6 robots per thousand people or a total increase of
120,000 robots. Our estimates imply that these additional robots led to a 0.39 percentage
points lower (private) employment-to-population ratio, which is equivalent to one robot
reducing employment by six (≈0:0039=ð0:6=1,000Þ) workers. Equivalently, the increase
of 120,000 in the stock of robots during this period is predicted to have reduced employ-
ment by 756,000 jobs. We obtain a reduction in employment of 720,000 jobs (or about four
jobs per robot) if we use the estimate for 1990–2014 from panel C together with the larger
increase of 180,000 in the stock of robots over this longer time period.

27 These magnitudes can be compared to the local effects from exposure to imports
from China. Using the stacked-differences estimates from table A12, which correspond
to the specification used in Autor, Dorn, and Hanson (2013), the implied magnitude from
the rise in Chinese imports is a decline of about 1 percentage point in the employment-to-
population ratio—2.5 times the 0.39 percentage points decline due to the rising use of in-
dustrial robots.
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these parameter estimates, we compute the aggregate implications of ro-
bots from our model. Proposition A7 in the appendix provides formulas
linking the aggregate effects of robots on employment and wages to the
parameters h and ε.

Our parameter choices are as follows: (1) j 5 1 as the elasticity of sub-
stitution between different industries (see Oberfield and Raval 2014);
(2) l 5 5 for the elasticity of substitution between traded varieties, which
follows the trade literature (e.g., Head and Meyer 2014; Simonovska and
Waugh 2014); (3) sL 5 0:9916 as the baseline share of labor in task pro-
duction, which is implied by the number of robots in US industries in
1993;28 (4) a 5 0:67, which together with the estimate for sL yields an ini-
tial labor share of approximately two-thirds in all commuting zones;
(5) f 5 0:25, which matches the 18% share of employment in the trad-
able or manufacturing sector; (6) p0 5 0:3, which, in line with the evi-
dence surveyed in BCG (2015), implies that robot adoption reduces costs
by about 30%; (7) gM=gL 5 3, which implies that in automated tasks a ro-
bot performs on average the work of three workers;29 and (8) w 5 0:02,
which is consistent with a marginal propensity to consume leisure of
10% (see Imbens, Rubin, and Sacerdote 2001).

Given these parameter values, equations (9) and (10) yield h 5 0:79
and ε 5 0:17. The estimate for h implies a fairly inelastic supply of robots
to the local economy, which limits the productivity gains from robot adop-
tion and instead generates greater rents for robot integrators and produc-
ers. If we suppose that local robot services are provided by combining
(elastically supplied) robotics equipment and (mostly inelastically) sup-
plied services of robot integrators, this estimate is equivalent to the share
of the inelastic component of integrators’ services, h=ð1 1 hÞ, being ap-
proximately 0.44. Since the share of local robot integrators in total costs
is about 0.75 (Leigh and Kraft 2018), this number implies that about
two-thirds of their services are inelastically supplied to the local economy.
The estimate for ε, on the other hand, implies an elastic response of labor
supply. This estimate is in line with the “macro” Frisch elasticities that are
28 In propositions 2 and 3, we simplified the exposition by focusing on the case where
v0 5 0, which implied a share of labor in task production equal to sL 5 1. Our more gen-
eral expressions in propositions A2 and A6 clarify the role of sL.

29 This number is consistent with both the conclusions of the early engineering studies
on the capabilities of industrial robots (see Groover et al. 1986) and more recent estimates.
For example, Ford (2015, 2) reports that robots can move six times as many boxes as hu-
mans in the same time period. Robots also appear to be three times as productive in weld-
ing as humans (see https://www.sciencechannel.com/tv-shows/worlds-biggest-shipbuilders),
six times as productive in placing bricks (see https://www.cnbc.com/2018/02/17/construction
-robotics-bricklaying-robot-five-times-faster-than-human.html), and nine times as productive
in smartphone assembly (see https://futurism.com/2-production-soars-for-chinese-factory-who
-replaced-90-of-employees-with-robots).
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consistent with the observed short-run movements in wages and employ-
ment (see table 1 in Chetty et al. 2011).

Using these parameter estimates, we compute the aggregate effects of
improvements in robotics technology. One more robot per thousand work-
ers is predicted to reduce aggregate wages by 0.42% and the aggregate
employment-to-population ratio by 0.2 percentage points (or 400,000
jobs); equivalently, one more robot reduces employment by 3.3 work-
ers.30 With these parameter values, about two-thirds of the decline in
the demand for labor in an exposed commuting zone is driven by the
contraction of the nontradable sector. This estimate is consistent with
the magnitudes of the decline in employment in nontradables, such as con-
struction, retail, and personal services, documented in section V.G (where
manufacturing accounts for 0.16 of the 0.45 decline in the employment-
to-population ratio in response to one more robot per thousand workers,
with the rest of the decline accounted for by nontradables). Our model also
implies a 0.33% increase in the productivity of the tradable sector, a sizable
capital income gain of 1.87%, and a 136% increase in industrial robot uti-
lization. This last estimate closely matches the 139% increase in the stock of
robots observed during this period.

Table A34 considers variations in the values of the key parameters, j, l,
p0, gM=gL, and w, and shows that both the implied values of h and ε and the
resulting aggregate effects are not very sensitive to reasonable variations.
VII. Concluding Remarks
The spread of robots, artificial intelligence, and other automation tech-
nologies has raised concerns about the future of jobs and wages. Never-
theless, there has been relatively little work on the equilibrium effects
of new automation technologies and particularly of robots. In this paper,
we investigate the effects of industrial robots on US local labor markets.
Robots—and automation technologies more generally—displace work-
ers from tasks that they were previously performing and should thus have
very different labor market effects than overall capital deepening and
other types of technological changes (such as factor-augmenting ones).
This is what we find in our empirical work.

We focus on the variation in robot adoption originating from the tech-
nological frontier, proxied by trends in other economies that are more ad-
vanced than the United States in robotics technology (which are ahead of
30 The aggregate effects are broadly similar if we use the IV estimate for 1990–2014 from
panel C of table 7. In this case, the same procedure leads to h 5 1 and ε 5 0:39, which im-
ply that one additional robot per thousand workers reduces employment by 0.15 percent-
age points and hourly wages by 0.67%. Then the increase of 180,000 robots during this pe-
riod is estimated to reduce aggregate employment by 420,000 jobs and hourly wages by 1%.
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the United States partly because their demographic trajectories have gen-
erated greater demand for automation technologies; see Acemoglu and
Restrepo 2018a). This strategy enables us to purge confounding changes
across US industries from advances in robotics technologies coming from
abroad. Using this methodology and approximating local labor markets
with commuting zones, we estimate robust negative effects of robots on
employment and wages. We show that commuting zones most exposed to
robots in the post-1990 era were on trends similar to other labor markets
before 1990 and that the impact of robots is distinct from and uncorrelated
with the prevalence of routine jobs, the effects of imports from China, im-
ports from Mexico, offshoring, IT capital, and capital deepening. More-
over, consistent with our theoretical emphasis, advances in robotics tech-
nology are estimated to have very different effects from IT technologies
and overall capital deepening. Our estimates imply that each additional
robot per thousand workers reduces the local employment-to-population
ratio by 0.39 percentage points and wages by about 0.77%. Because adopt-
ing robots creates benefits for other commuting zones via trade linkages, the
implied aggregate effects are smaller—one additional robot per thousand
workers reduces the aggregate employment-to-population ratio by 0.2 per-
centage points and aggregate wages by 0.42%.

There are relatively few robots in the US economy, so the number of
jobs lost due to robots has been limited thus far (a 0.2 percentage point de-
cline in the aggregate employment-to-population ratio, or about 400,000
jobs). However, if robotics technology proceeds as expected by experts
over the next two decades (e.g., Brynjolfsson and McAfee 2014, 27–32;
Ford 2015), the future aggregate implications of robots could be larger.
For example, BCG (2015) offers two scenarios for the next decade. In their
aggressive scenario, the world stock of robots will quadruple by 2025. This
corresponds to 5.25 more robots per thousand workers in the United
States and with our estimates would lead to a 1 percentage point lower
employment-to-population ratio and 2 percentage points lower wage
growth between 2015 and 2025. Their more conservative scenario involves
a less than threefold increase in the stock of robots and would have a more
modest impact (a 0.6 percentage point decline in the employment-to-
population ratio and 1% lower wage growth). Crucially, however, any ex-
trapolation about the future effects of robots should acknowledge not
only the usual uncertainty associated with such exercises but also the
possibility that some of the general equilibrium effects working through
technology might emerge only slowly (Acemoglu and Restrepo 2018c)
and that the response of employment and wages may be different once ro-
bots become sufficiently widespread.

We view our paper as a first step in exploring the labor market impli-
cations of different types of technologies. Our conceptual framework
highlights that, in contrast to the prevailing presumption in economic
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discussions, automation and nonautomation technologies have distinct
impacts, and different waves of automation technologies may have differ-
ent consequences depending on the balance between displacement and
productivity effects (Acemoglu and Restrepo 2019a, 2019b). The next de-
cade is likely to witness major advances in artificial intelligence, machine
learning, communication technologies, and new manufacturing technol-
ogies, including augmented reality and modular design. Whether these
technologies will increase labor demand, employment, and wages is an
open and important question that needs to be investigated using a num-
ber of approaches.
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