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mapping: condition 1: shape, color, and size of
each element; condition 2: overall area (summa-
tion of the areas of all elements depicted in each
stimulus); condition 3: overall perimeter (sum-
mation of the perimeters of all elements depicted
in each stimulus) and density (the mean distance
among the elements). Moreover, in condition 3,
there was a negative correlation between overall
area and number: The overall area of the 8
elements was larger than that of the 32 elements.
Furthermore, the elements of each stimulus
occupied the same overall spatial frame in
conditions 2 and 3. If the overall area, in the
presence of the same perimeter, was the crucial
factor underlying number-space mapping, chicks
would have chosen the right panel in the small
number test and the left panel in the large
number test. The results showed that in the
small number test (8 versus 8), chicks chose
the left panel 69.46% and the right panel
30.54% of the times. In the large number test
(32 versus 32), chicks chose the left panel
25.27% and the right panel 74.73% of the times
(Fig. 3). Therefore, the results of experiment 3
demonstrate that spatial mapping relates to
the abstract numerical magnitude, indepen-
dently of non-numerical cues.

Our results indicate that a disposition to
map numerical magnitudes onto a left-to-right-
oriented MNL exists independently of cultural
factors and can be observed in animals with very
little nonsymbolic numerical experience, sup-
porting a nativistic foundation of such orien-
tation. Spatial mapping of numbers from left to
right may be a universal cognitive strategy avail-
able soon after birth. Experience and, in hu-
mans, culture and education (e.g., reading habits
and formal mathematics education) may mod-
ulate or even be modulated by this innate num-
ber sense.

During evolution, the direction of mapping
from left to right rather than vice versa, al-
though in principle arbitrary, may have been
imposed by brain asymmetry, a common and
ancient trait in vertebrates (22), prompted by a
right hemisphere dominance in attending vis-
uospatial and/or numerical information. Recent
studies have suggested that numerical knowl-
edge constitutes a domain-specific cognitive abil-
ity, with a dedicated neural substrate located
in the inferior parietal cortices (7, 23). Moreover,
number-space mapping is implemented in hu-
mans through a topographical representation
in the right posterior parietal cortex (24). Such
topography has not yet been found in neurons
responding to number in animals (25, 26).

Because nonverbal numerical cognition is
shared by many animal classes (1, 27, 28), we
suggest that a similar predisposition to map
numbers onto space is embodied in the archi-
tecture of the animal neural systems.
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IDENTITY AND PRIVACY

Unique in the shopping mall:
On the reidentifiability of
credit card metadata

Yves-Alexandre de Montjoye,™* Laura Radaelli,” Vivek Kumar Singh, Alex “Sandy” Pentland

Large-scale data sets of human behavior have the potential to fundamentally transform
the way we fight diseases, design cities, or perform research. Metadata, however, contain
sensitive information. Understanding the privacy of these data sets is key to their broad
use and, ultimately, their impact. We study 3 months of credit card records for 1.1 million
people and show that four spatiotemporal points are enough to uniquely reidentify 90%
of individuals. We show that knowing the price of a transaction increases the risk of
reidentification by 22%, on average. Finally, we show that even data sets that provide
coarse information at any or all of the dimensions provide little anonymity and that
women are more reidentifiable than men in credit card metadata.

arge-scale data sets of human behavior have
the potential to fundamentally transform
the way we fight diseases, design cities, or
perform research. Ubiquitous technologies
create personal metadata on a very large
scale. Our smartphones, browsers, cars, or credit
cards generate information about where we are,
whom we call, or how much we spend. Scientists
have compared this recent availability of large-
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scale behavioral data sets to the invention of the
microscope (I). New fields such as computational
social science (2-4) rely on metadata to address
crucial questions such as fighting malaria, study-
ing the spread of information, or monitoring pov-
erty (56-7). The same metadata data sets are also
used by organizations and governments. For ex-
ample, Netflix uses viewing patterns to recom-
mend movies, whereas Google uses location data
to provide real-time traffic information, allowing
drivers to reduce fuel consumption and time spent
traveling (8).

The transformational potential of metadata data
sets is, however, conditional on their wide avail-
ability. In science, it is essential for the data to
be available and shareable. Sharing data allows
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Fig. 1. Financial traces in a simply anonymized
shop user_id time price price_bin data set such as the one we use for this work.
@ Arrows represent the temporal sequence of transac-
_ tions for user 7abcla23 and the prices are grouped in
@ 7abcla23 09/23 $97.30 $49-$146 bins of increasing size (29).
7abc1a23 09/23 $15.13 $5- %16
22 P AW 3092fc10  09/23 $43.78 $16 —$49
@ @ 7abc1a23 09/23 $4.33 $2 -85
@ 4c7af72a  09/23 $12.29  $5-$16
O @ 89c0829¢c 09/24 $3.66 $2 - %5
O 7abc1a23 09/24 $35.81 $16 —$49
scientists to build on previous work, replicate re- | Fig. 2. The unicity £ of the credit card 14
sults, or propose alternative hypotheses and | data set given p points. The green bars . =
models. Several publishers and funding agencies represent unicity when spatiotemporal 08 .
now require experimental data to be publicly avail- | tuples are known. This shows that four —_
able (9-1I). Governments and businesses are sim- spatiotemporal points taken at random o>
ilarly realizing the benefits of open data (12). For | (p = 4) are enough to uniquely charac- § 0.6
example, Boston’s transportation authority makes | terize 90% of individuals. The blue bars B
the real-time position of all public rail vehicles | represent unicity when using spatial- s o B
available through a public interface (13), whereas | temporal-price triples (a = 0.50) and 1_2; ?
Orange Group and its subsidiaries make large | show that adding the approximate price g
samples of mobile phone data from Cote d’Ivoire of a transaction significantly increases 0.2
and Senegal available to selected researchers | the likelihood of reidentification. Error
through their Data for Development challenges | bars denote the 95% confidence interval
(14, 15). on the mean. 0.0 2 3 4 5

These metadata are generated by our use of
technology and, hence, may reveal a lot about
an individual (76, 17). Making these data sets
broadly available, therefore, requires solid quan-
titative guarantees on the risk of reidentification.
A data set’s lack of names, home addresses, phone
numbers, or other obvious identifiers [such as
required, for instance, under the U.S. personally
identifiable information (PII) “specific-types” ap-
proach (78)], does not make it anonymous nor
safe to release to the public and to third parties.
The privacy of such simply anonymized data sets
has been compromised before (19-22).

Unicity quantifies the intrinsic reidentification
risk of a data set (19). It was recently used to
show that individuals in a simply anonymized
mobile phone data set are reidentifiable from
only four pieces of outside information. Outside
information could be a tweet that positions a user
at an approximate time for a mobility data set or
a publicly available movie review for the Netflix
data set (20). Unicity quantifies how much out-
side information one would need, on average, to
reidentify a specific and known user in a simply
anonymized data set. The higher a data set’s unic-
ity is, the more reidentifiable it is. It consequent-
ly also quantifies the ease with which a simply
anonymized data set could be merged with
another.

Financial data that include noncash and digi-
tal payments contain rich metadata on individ-
uals’ behavior. About 60% of payments in the
United States are made using credit cards (23),
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and mobile payments are estimated to soon top
$1 billion in the United States (24). A recent sur-
vey shows that financial and credit card data sets
are considered the most sensitive personal data
worldwide (25). Among Americans, 87% consider
credit card data as moderately or extremely pri-
vate, whereas only 68% consider health and ge-
netic information private, and 62% consider
location data private. At the same time, financial
data sets have been used extensively for credit
scoring (26), fraud detection (27), and understand-
ing the predictability of shopping patterns (28).
Financial metadata have great potential, but they
are also personal and highly sensitive. There are
obvious benefits to having metadata data sets
broadly available, but this first requires a solid
understanding of their privacy.

To provide a quantitative assessment of the
likelihood of identification from financial data,
we used a data set D of 3 months of credit card
transactions for 1.1 million users in 10,000 shops
in an Organisation for Economic Co-operation and
Development country (Fig. 1). The data set was
simply anonymized, which means that it did not
contain any names, account numbers, or obvious
identifiers. Each transaction was time-stamped
with a resolution of 1 day and associated with one
shop. Shops are distributed throughout the country,
and the number of shops in a district scales with
population density (+* = 0.51, P < 0.001) (fig. S1).

Number of points [p]

We quantified the risk of reidentification of D
by means of unicity € (19). Unicity is the risk of
reidentification knowing p pieces of outside in-
formation about a user (29). We evaluate €, of D
as the percentage of its users who are reidenti-
fied with p randomly selected points from their
financial trace. For each user, we extracted the
subset S(,) of traces that match the p known
points (I,,). A user was considered reidentified in
this correlation attack if [S(Z,,)| = 1.

For example, let’s say that we are searching for
Scott in a simply anonymized credit card data set
(Fig. 1). We know two points about Scott: he
went to the bakery on 23 September and to the
restaurant on 24 September. Searching through
the data set reveals that there is one and only one
person in the entire data set who went to these
two places on these two days. |S(Z,))| is thus equal
to 1, Scott is reidentified, and we now know all
of his other transactions, such as the fact that
he went shopping for shoes and groceries on
23 September, and how much he spent.

Figure 2 shows that the unicity of financial
traces is high (g4 > 0.9, green bars). This means
that knowing four random spatiotemporal points
or tuples is enough to uniquely reidentify 90%
of the individuals and to uncover all of their
records. Simply anonymized large-scale financial
metadata can be easily reidentified via spatio-
temporal information.
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Fig. 3. Unicity (¢4) when we lower the resolution of the data set on any or all of the three dimensions; with four spatiotemporal tuples [(A), no price]
and with four spatiotemporal-price triples [(B), a = 0.75; (C), a = 0.50]. Although unicity decreases with the resolution of the data, the decrease is easily
overcome by collecting a few more points. Even at very low resolution (h = 15 days, v = 350 shops, price a = 0.50), we have more than an 80% chance of
reidentifying an individual with 10 points (g0 > 0.8) (table S1).

Fig. 4. Unicity for different categories of users (v =1, h = 1).
(A) ltis significantly easier to reidentify women (g4 = 0.93) than men
(g4 =0.89). (B) The higher a person’s income is, the easier he or she
is to reidentify. High-income people (g4 = 0.93) are significantly
easier to reidentify than medium-income people (¢4 = 0.91), and
medium-income people are themselves significantly easier to re-
identify than low-income people (g4 = 0.88). Significance levels were
tested with a one-tailed t test (P < 0.05). Error bars denote the 95%

confidence interval on the mean.

Furthermore, financial traces contain one addi-
tional column that can be used to reidentify an
individual: the price of a transaction. A piece of
outside information, a spatiotemporal tuple can
become a triple: space, time, and the approximate
price of the transaction. The data set contains the
exact price of each transaction, but we assume
that we only observe an approximation of this
price with a precision @ we call price resolution.
Prices are approximated by bins whose size is
increasing; that is, the size of a bin containing
low prices is smaller than the size of a bin con-
taining high prices. The size of a bin is a function
of the price resolution @ and of the median price
m of the bin (29). Although knowing the location
of my local coffee shop and the approximate time
I was there this morning helps to reidentify me,
Fig. 2 (blue bars) shows that also knowing the
approximate price of my coffee significantly in-
creases the chances of reidentifying me. In fact,
adding the approximate price of the transaction
increases, on average, the unicity of the data set
by 22% (fig. S2, when a =0.50, (Ae) = 0.22).

The unicity € of the data set naturally decreases
with its resolution. Coarsening the data along any
or all of the three dimensions makes reidentifi-
cation harder. We artificially lower the spatial reso-
lution of our data by aggregating shops in clusters
of increasing size v based on their spatial prox-
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imity (29). This means that we do not know the
exact shop in which the transaction happened, but
only that it happened in this geographical area.
We also artificially lower the temporal resolution
of the data by increasing the time window 4 of a
transaction from 1 day to up to 15 days. Finally, we
increase the size of the bins for price a from 50 to
'75%. In practice, this means that the bin in which a
$15.13 transaction falls into will go from $5 to $16
(a = 0.50) to $5 to $34 (a = 0.75) (table S2).
Figure 3 shows that coarsening the data is not
enough to protect the privacy of individuals in
financial metadata data sets. Although unicity
decreases with the resolution of the data, it only
decreases slowly along the spatial (v), temporal
(h), and price (a) axes. Furthermore, this decrease
is easily overcome by collecting a few more points
(table S1). For instance, at a very low resolution
of h =15 days, v = 350 shops, and an approximate
price a = 0.50, we have less than a 15% chance of
reidentifying an individual knowing four points
(g4 < 0.15). However, if we know 10 points, we
now have more than an 80% chance of reiden-
tifying this person (g,o > 0.8). This means that
even noisy and/or coarse financial data sets along
all of the dimensions provide little anonymity.
We also studied the effects of gender and
income on the likelihood of reidentification.
Figure 4A shows that women are easier to reiden-

Female

Low Medium

High

tify than men, whereas Fig. 4B shows that the
higher somebody’s income is, the easier it is to
reidentify him or her. In fact, in a generalized
linear model (GLM), the odds of women being
reidentified are 1.214 times greater than for men.
Similarly, the odds of high-income people (and,
respectively, medium-income people) to be reiden-
tified are 1.746 times (and 1.172 times) greater
than for low-income people (29). Although a full
causal analysis or investigation of the determi-
nants of reidentification of individuals is beyond
the scope of this paper, we investigate a couple
of variables through which gender or income
could influence unicity. A linear discriminant
analysis shows that the entropy of shops, how
one shares his or her time between the shops he
or she visits, is the most discriminative factor for
both gender and income (29).

Our estimation of unicity picks the points at
random from an individual’s financial trace. These
points thus follow the financial trace’s non-
uniform distributions (Fig. 5A and fig. S3A). We
are thus more likely to pick a point where most
of the points are concentrated, which makes them
less useful on average. However, even in this case,
seven points were enough to reidentify all of the
traces considered (fig. S4). More sophisticated re-
identification strategies could collect points that
would maximize the decrease in unicity.

sciencemag.org SCIENCE

1202 ‘| |udy uo /B0 Bewaousios aouslos//:diy woly papeojumoq


http://science.sciencemag.org/

RESEARCH | REPORTS

° ° °
N w o
T T T
1 1 1

Probability density function

o
=
T
1

| |
00 10" 107 10° 10" 10
Price [$ equivalent]

Probability density function
= S
L | T
| |

N

o
[

T

10°

| |
10° 107 107 10°
Inter-transaction distance [km]

Fig. 5. Distributions of the financial records. (A) Probability density function of the price of a tran-
saction in dollars equivalent. (B) Probability density function of spatial distance between two consecutive
transactions of the same user. The best fit of a power law (dotted line) and an exponential distribution
(dot-dashed line) are given as a reference. The dashed lines are the diameter of the first and second
largest cities in the country. Thirty percent of the successive transactions of a user are less than 1 km
apart (the shaded area), followed by, an order of magnitude lower, a plateau between 2 and 20 km,
roughly the radius of the two largest cities in the country. This shows that financial metadata are different
from mobility data: The likelihood of short travel distance is very high and then plateaus, and the overall
distribution does not follow a power-law or exponential distribution.

Although future work is needed, it seems likely
that most large-scale metadata data sets—for ex-
ample, browsing history, financial records, and
transportation and mobility data—will have a high
unicity. Despite technological and behavioral dif-
ferences (Fig. 5B and fig. S3), we showed credit
card records to be as reidentifiable as mobile
phone data and their unicity to be robust to
coarsening or noise. Like credit card and mobile
phone metadata, Web browsing or transporta-
tion data sets are generated as side effects of hu-
man interaction with technology, are subjected
to the same idiosyncrasies of human behavior,
and are also sparse and high-dimensional (for ex-
ample, in the number of Web sites one can visit or
the number of possible entry-exit combinations of
metro stations). This means that these data can
probably be relatively easily reidentified if re-
leased in a simply anonymized form and that
they can probably not be anonymized by simply
coarsening of the data.

Our results render the concept of PIL, on which
the applicability of U.S. and European Union (EU)
privacy laws depend, inadequate for metadata
data sets (I8). On the one hand, the U.S. specific-
types approach—for which the lack of names,
home addresses, phone numbers, or other listed
PII is enough to not be subject to privacy laws—
is obviously not sufficient to protect the privacy
of individuals in high-unicity metadata data sets.
On the other hand, open-ended definitions ex-
panding privacy laws to “any information con-
cerning an identified or identifiable person” (30)
in the EU proposed data regulation or “[when the]
re-identification to a particular person is not pos-
sible” (31) for Deutsche Telekom are probably
impossible to prove and could very strongly limit
any sharing of the data (32).

From a technical perspective, our results em-
phasize the need to move, when possible, to more
advanced and probably interactive individual (33)

SCIENCE sciencemag.org

or group (34) privacy-conscientious technologies,
as well as the need for more research in com-
putational privacy. From a policy perspective, our
findings highlight the need to reform our data
protection mechanisms beyond PII and anonym-
ity and toward a more quantitative assessment
of the likelihood of reidentification. Finding the
right balance between privacy and utility is abso-
lutely crucial to realizing the great potential of
metadata.
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