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Abstract

The Orthogonal Vectors problem (OV) asks: given n vectors

in {0, 1}O(logn), are two of them orthogonal? OV is easily
solved in O(n2 logn) time, and it is a central problem in fine-
grained complexity: dozens of conditional lower bounds are
based on the popular hypothesis that OV cannot be solved
in (say) n1.99 time. However, unlike the APSP problem, few
other problems are known to be non-trivially equivalent to
OV.

We show OV is truly-subquadratic equivalent to several
fundamental problems, all of which (a priori) look harder
than OV. A partial list is given below:

1. (Min-IP/Max-IP) Find a red-blue pair of vectors with
minimum (respectively, maximum) inner product,

among n vectors in {0, 1}O(logn).

2. (Exact-IP) Find a red-blue pair of vectors with inner
product equal to a given target integer, among n vectors
in {0, 1}O(logn).

3. (Apx-Min-IP/Apx-Max-IP) Find a red-blue pair of vec-
tors that is a 100-approximation to the minimum
(resp. maximum) inner product, among n vectors in

{0, 1}O(logn).

4. (Approximate Bichrom.-`p-Closest-Pair) Compute a (1+
Ω(1))-approximation to the `p-closest red-blue pair (for

a constant p ∈ [1, 2]), among n points in Rd, d ≤ no(1).

5. (Approximate `p-Furthest-Pair) Compute a (1 + Ω(1))-
approximation to the `p-furthest pair (for a constant

p ∈ [1, 2]), among n points in Rd, d ≤ no(1).

Therefore, quick constant-factor approximations to maxi-
mum inner product imply quick exact solutions to maximum
inner product, in the O(logn)-dimensional setting. Another
consequence is that the ability to find vectors with zero in-
ner product suffices for finding vectors with maximum inner
product.

Our equivalence results are robust enough that they
continue to hold in the data structure setting. In particular,
we show that there is a poly(n) space, n1−ε query time data

structure for Partial Match with vectors from {0, 1}O(logn)

if and only if such a data structure exists for 1 + Ω(1)
Approximate Nearest Neighbor Search in Euclidean space.

To establish the equivalences, we introduce two general
frameworks for reductions to OV: one based on Σ2 commu-
nication protocols, and another based on locality-sensitive
hashing families.

In addition, we obtain an n2−1/O(log c) time algorithm

for Apx-Min-IP with n vectors from {0, 1}c logn, matching

∗Supported by NSF CAREER award CCF-1552651.

state-of-the-art algorithms for OV and Apx-Max-IP. As an

application, we obtain a faster algorithm for approximating

“almost solvable” MAX-SAT instances.

1 Introduction

Fine-grained complexity asks: what is the “correct” ex-
ponent in the running time of a given problem? For a
problem known to be solvable in time t(n), can it be
solved in time t(n)1−ε, for a constant ε > 0? If not,
can we give evidence that such an improvement is im-
possible? In recent years, based on several conjectures
such as the Orthogonal Vectors Conjecture (OVC) (im-
plied by the Strong Exponential Time Hypothesis, a.k.a.
SETH1), the APSP Conjecture and the k-Sum Con-
jecture, tight conditional polynomial-time lower bounds
have been established for problems in P from many ar-
eas of computer science.

In a nutshell, results in the Fine-Grained Complex-
ity program begin with the conjecture that it is hard to
improve the runtime exponent of some problem Πhard,
and show it is also hard to improve the exponent of an-
other problem Π, by constructing a “fine-grained” re-
duction from Πhard to Π. This is similar to the situation
with NP-completeness, where one shows a problem Π
is “hard” by giving a polynomial-time reduction from
another NP-complete problem to Π.

A crucial conceptual difference between the Fine-
Grained Complexity program and NP-hardness is that
all of the thousands of known NP-complete problems
form an equivalence class: there is either a polynomial-
time algorithm for all of them, or no polynomial-
time algorithm for any of them. In contrast, with
Fine-Grained Complexity, few equivalence classes are
known, especially for those numerous problems whose
hardnesses are based on the SETH/OVC (a notable
exception is the equivalence class for APSP [47, 46]; see
the related works section for more details).

To give three (out of many examples), it is known
that Edit Distance [15], Frechet Distance [18], and
computing the diameter of a sparse graph [44] cannot be

1The Strong Exponential Time Hypothesis (SETH) states that
for every ε > 0 there is a k such that k-SAT cannot be solved in
O((2− ε)n) time [32].
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done in n2−δ time for any δ > 0, assuming the following
problem is not in n2−ε time for a universal ε > 0:

Orthogonal Vectors (OV): Given n vectors
in {0, 1}d where d = O(log n), are there two vectors
with inner product zero?

However, it is not known if Edit Distance, Frechet
Distance, or Diameter are equivalent to OV, in any
interesting sense.

Prior work has established an equivalence class for
“moderate-dimensional OV”, where the vector dimen-
sion d = nδ for a constant δ > 0 [29]. In particu-
lar, this version of OV is equivalent to various sparse
graph and hypergraph problems. It seems likely that
“moderate-dimensional OV” is much more difficult to
solve than the “low-dimensional” setting of d = O(log n)
as defined above, and the SETH already implies that
the low-dimensional case is difficult [50, 49]. Thus the
problem of establishing an equivalence class for “low-
dimensional” OV is an interesting one.

1.1 An Equivalence Class for Sparse Orthogo-
nal Vectors Our first result is an interesting equiv-
alence class for Orthogonal Vectors in the O(log n)-
dimensional setting. To formally state our results, we
begin with some notation.

• For a problem Π on Boolean vectors, we say Π is in
truly subquadratic time if there is an ε > 0 such that
for all constant c, Π is solvable inO(n2−ε) time on n
vectors in c log n dimensions. Note the Orthogonal
Vectors Conjecture (OVC) is equivalent to saying
“OV is not in truly subquadratic time.”

• For a problem Π on real-valued points, we say Π
can be approximated in truly subquadratic time, if
there is a δ > 0 such that for all ε > 0, a (1 + ε)
approximation to Π is computable in O(n2−δ) time.

• For a problem Π with output in [0, L] (for a param-
eter L), we say Π can be additively approximated in
truly subquadratic time, if there is a δ > 0 such that
for all ε > 0, an ε · L additive approximation to Π
is computable in O(n2−δ) time.

Theorem 1.1. The following problems are either all in
(or can be approximated in) truly subquadratic time, or
none of them are:2

1. (OV) Finding an orthogonal pair among n vectors.

2A list of formal definitions of the these problems can be found
in Definition 2.1.

2. (Min-IP/Max-IP) Finding a red-blue pair of vectors
with minimum (respectively, maximum) inner prod-
uct, among n vectors.

3. (Exact-IP) Finding a red-blue pair of vectors with
inner product exactly equal to a given integer,
among n vectors.

4. (Apx-Min-IP/Apx-Max-IP) Finding a red-blue pair
of vectors that is a 100-approximation to the min-
imum (resp. maximum) inner product, among n
vectors.3

5. (Approximate Bichrom. `p-Closest Pair) Approxi-
mating the `p-closest red-blue pair (for a constant
p ∈ [1, 2]), among n points.

6. (Approximate `p-Furthest Pair) Approximating the
`p-furthest pair (for a constant p ∈ [1, 2]), among
n points.

7. (Approximate Additive Max-IP) Additively approx-
imating the maximum inner product of all red-blue
pairs, among n vectors.

8. (Approximate Jaccard-Index-Pair) Additively ap-
proximating the maximum Jaccard index4 between
a ∈ A and b ∈ B, where A and B are two collec-
tions of n sets.

For approximate additive Max-IP, L (the additive
approximation parameter) is simply the dimensions of
the vectors, while for approximate Jaccard-Index-Pair,
L is 1. For Π among the first four problems listed
above, we use the notation Πn,d to denote Π with n
vectors from {0, 1}d. 5 For the last four problems, we
assume the dimensions (or the size of the sets) and the
bit complexity of the points are no(1) throughout the
paper.

Prior work showed OV is equivalent to Dominat-
ing Pair6 [21] and other simple set problems [16]; our
results add several interesting new members into the
equivalence class. All problems listed above were al-
ready known to be OV-hard [50, 10, 45]. Our main
contribution here is to show that they can all be re-
duced back to OV. For example, detecting an orthog-
onal Boolean pair (OV) is equivalent to approximat-

ing the distance between two sets of points in Rno(1)

(Bichrom.-Closest-Pair)!

3The constant 100 can be replaced by any fixed constant κ > 1.
4see Theorem 2.3 for a formal definition
5In the paper we will consider red-blue version for all the above

problems, and Πn,d denotes Π with two sets of n vectors from
{0, 1}d.

6Given two sets A,B of vectors from RO(logn), find (a, b) ∈
A×B such that b dominates a (that is, bi > ai for all i).
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In previous works [29, 2], several general techniques
are given for constructing reductions to OV. These
papers focus on the “moderate-dimensional” setting,
and their reductions can not be used directly in the
“sparse” O(log n) dimensional setting here.

Our Techniques: Two Reduction Frame-
works for OV. In order to construct reductions to
O(log n) dimensional OV, we propose the following two
general frameworks.

• Σcc
2 Protocols. Inspired by previous works on

the connections between communication complex-
ity and fine-grained complexity [6, 45, 34, 5, 24, 25],
we draw another connection along this line, show-
ing that an efficient Σcc

2 protocol7 for a function F
implies a reduction from a related problem to OV.
We use this technique to establish the equivalences
among the first four problems in Theorem 1.1.

• Locality-sensitive Hashing Families (LSH).
To show equivalences between OV and the last four
approximation problems, we apply known tools
from locality-sensitive hashing. In particular, we
show that for any metric admitting an efficient LSH
family, finding the closest bichromatic pair or the
furthest pair w.r.t. this metric can be reduced to
Apx-Max-IP, which can in turn be reduced to OV.

We remark that there are no non-trivial lower
bounds known against Σcc

2 protocols [31], which suggests
that Σcc

2 protocols could be very powerful, and the
first approach (Theorem 1.14) may be applicable to
many other problems. This is not the case for MAcc

protocols which were used in several previous works [6,
45, 34, 24]: for example, there is an essentially tight
Ω(
√
n) MAcc lower bound for Set-Disjointness [35, 1, 24].

These two frameworks are discussed in Section 1.3 in
detail.

Equivalence Between Partial Match and Ap-
proximate Nearest Neighbor Search. Our reduc-
tions are robust enough that they also hold in the data
structure setting. In particular, consider the following
two fundamental data structure problems:

• Partial Match: Preprocess a database D of n
points in {0, 1}d such that, for all query of the form
q ∈ {0, 1, ?}d, either report a point x ∈ D matching
all non-? characters in q or report that no x exists.

• Approximate Nearest Neighbor Search
(NNS) in `p space: Preprocess a database D of
n points from Rm such that, for all query point
x ∈ Rm, one can find a point y ∈ D such that
‖x− y‖p ≤ (1 + ε) ·minz∈D ‖x− z‖p.

7see Definition 1.13 for a formal definition

Remark 1.2. We remark that Partial Match is known
to be equivalent to an online version of OV [7] (see also
Section 7), and NNS in `p space is simply the online
version of Bichrom.-`p-Closest-Pair.

Partial Match has been studied extensively for
decades (see e.g. Rivest’s PhD thesis [43]). However,
the algorithmic progress beyond trivial solutions (build-
ing a look-up table of size 2Ω(d), or trying all n points
on each single query) have been quite limited. It is
generally believed that it is intractable when d is large
enough. Many unconditional lower bounds are known
in the cell-probe model [37, 17, 33, 39, 40], but the gap
between the best data structures [23, 26] and known
lower bounds remains very large.

Approximate Nearest Neighbor Search has a wide
range of applications in computing, including machine
learning, computer vision, databases and others (see [11,
38] for an overview). Tremendous research effort has
been devoted to this problem (see e.g. the recent
survey of [12] and Razenshteyn’s PhD thesis [42]).
Yet all known algorithms exhibit a query time of at
least n1−O(ε) when the approximation ratio is 1 + ε,
approaching the brute-force query time n when ε goes
to 0.

In general, whether there is a polynomial space,
n1−δ query time data structure for Partial Match for all
d = O(log n), or Approximate NNS for all constant ap-
proximation ratio > 1 are two long-standing open ques-
tions.8 We show these two questions are equivalent .

Theorem 1.3. The following are equivalent:

• There is a δ > 0 such that for all constant c,
there is a data structure for Partial Match with
string length d = c log n that uses poly(n) space
and allows n1−δ query time.

• There is a δ > 0 such that for all ε > 0, there is
an data structure for Approximate NNS in `p with
approximation ratio (1 + ε) that uses poly(n) space
and allows n1−δ query time, for some constant
p ∈ [1, 2].

Tighter Connection Between Max-IP,
Bichrom. `p-Closest Pair and `p-Furthest
Pair. For a subset of problems in Theorem 1.1, we can
establish even tighter reductions.

The state-of-the-art algorithm for (1 + ε) approx-

imation to Bichrom.-`p-Closest-Pair runs in n2−Õ(ε1/3)

time, and for Max-IPn,c logn, the best running time

8Under SETH, it is shown that there is no such data structure
with polynomial pre-processing time [8, 50, 45].
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n2−Õ(1/
√
c). Both algorithms are presented in [9], and

relied on probabilistic threshold functions.
Comparing to the n2−1/O(log c) time algorithm for

OVn,c logn [7, 22], the dependence on c or ε in these two
algorithms are much worse, rendering them useless when
ε−1 or c are logω(1) n. So it is natural to ask whether the
dependence can be improved to at least sub-polynomial

in ε and c, i.e. n2−1/co(1) or n2−εo(1) .
We show that a modest improvement on the run-

ning time dependence on ε or c for any of the follow-
ing problems directly implies similar improvements for
other problems as well.

Theorem 1.4. The following are equivalent:

• An ε · d additive approximation to Max-IPn,d is

computable in n2−εo(1) time.

• Max-IPn,c logn is solvable in n2−1/co(1) time.

• Exact-IPn,c logn is solvable in n2−1/co(1) time.

• A (1+ε) approximation to Bichrom.-`p-Closest-Pair

is computable in n2−εo(1) time (for a constant p ∈
[1, 2]).

• A (1 + ε) approximation to `p-Furthest-Pair is com-

putable in n2−εo(1) time (for a constant p ∈ [1, 2]).

In [45] (Theorem 4.1), it is implicitly shown that
Exact-IPn,c logn can be reduced to (1 + 1/ exp(c)) ap-
proximating Bichrom.-`p-Closest-Pair. This suffices for
the case when c is a constant (which is needed for The-
orem 1.1), but falls short of proving the above tighter
connections.

In a nutshell, [45]’s reduction applies a very effi-
cient MA protocol for Set-Disjointness using AG-codes,
and it uses “brute-force” gadgets to simulate an inner
product between two short vectors in Fq2 . We im-
prove [45]’s reduction by carefully modifying its MA
protocol, and replacing its brute-force gadgets by a
more efficient one. Informally, our theorem shows
Exact-IPn,c logn can be reduced to (1 + 1/ poly(c)) ap-
proximating Bichrom.-Closest-Pair (see Lemma 6.4 and
Lemma 6.5), which is an exponential improvement over
the old reduction.

Equivalence Results in the Moderate Dimen-
sional Setting. Theorem 1.1 establishes an equiva-
lence class for the sparse O(log n) dimensional setting.
It is natural to ask whether the equivalence continues
to hold in the moderate dimensional case as well.

Unfortunately, an unusual (and interesting) prop-
erty of our reduction used in Theorem 1.1 is that it
blows up c (the constant before log n) exponentially,

and creates multiple instances. That is, an Exact-IP
instance with c log n dimensions is reduced to many OV
instances with exp(c) log n dimensions (see the proof of
Lemma 4.2). This renders the reduction useless in the
moderate-dimensional setting, where c could be as large
as nδ.

Still, using different techniques, we obtain some ad-
ditional equivalence results in the moderate dimensional
setting. For a problem Π on Boolean vectors, we say
that moderate dimensional Π is in truly subquadratic
time, if there are two constants ε, δ > 0 such that Π is
solvable in n2−ε time on n vectors with nδ dimensions.

Theorem 1.5. Moderate dimensional OV is in truly
subquadratic time if and only if moderate dimensional
Apx-Min-IP is.

Theorem 1.6. For moderate dimensional Max-IP,
Min-IP, and Exact-IP, either all of them are in truly sub-
quadratic time, or none of them are.

To show moderate dimensional OV and Apx-Min-IP
are equivalent, we use a sophisticated reduction which is
partially inspired by the classical Goldwasser-Sipser AM
protocol for approximate counting [30] (see the proof
of Lemma 5.1 for details). For Max-IP, Min-IP and
Exact-IP, we apply some folklore encoding tricks.

It is an interesting open question that whether these
two separate equivalence classes can be merged into one.
In particular, is moderate dimensional OV equivalent to
moderate dimensional Max-IP?

An immediate corollary of Theorem 1.5 is that it
adds Apx-Min-IP as a new member to the equivalence
class of moderate dimensional OV established in [29].

1.2 New Algorithms for Apx-Min-IP and
Apx-Max-IP It was recently shown in [24] that
Apx-Max-IP can be solved in n2−1/O(log c) time, while
the best known algorithm for solving Apx-Min-IP just

applies the n2−1/Õ(
√
c) time algorithm for Min-IP [9].

We show that in fact we can derive an algorithm with
similar running time for Apx-Min-IP as well.

Theorem 1.7. There are n2−1/O(log c) time ran-
domized algorithms for Apx-Min-IPn,c logn and
Apx-Max-IPn,c logn.

Remark 1.8. Our new algorithm works equally well for
Apx-Max-IP. Hence, we provide a different n2−1/O(log c)

time algorithm for Apx-Max-IP than [24]. One caveat
here is that our algorithms are randomized, while the
algorithms in [24] are deterministic.

The algorithms are based on the polynomial
method: we construct a low-degree probabilistic polyno-
mial over F2 for functions closely related to Apx-Min-IP

Copyright © 2019 by SIAM
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and Apx-Max-IP, and the rest follows from the frame-
work of [7].

Application: A Fast Algorithm for Approximat-
ing “Almost Solvable” MAX-SAT Instances. Here
we give an application of our Apx-Min-IP algorithm.
For a MAX-SAT instance ϕ with m clauses, we denote
OPT(ϕ) to be the maximum number of the clauses that
can be satisfied, and sat(ϕ) := OPT(ϕ)/m.

Theorem 1.9. Let ϕ be a MAX-SAT instance on n
variables with m clauses, and ε = 1− sat(ϕ). There is a

2n(1−1/O(log ε−1)) time algorithm to find an assignment
x satisfying at least (1− 2ε) ·m clauses9.

That is, when ϕ is “almost solvable” (sat(ϕ) is very
close to 1), we have a fast algorithm to compute an
approximate solution x, which is only a “little” worse
than the optimal solution. The following corollary is
immediate.

Corollary 1.10. Let ϕ be a MAX-SAT instance on n
variables and ε ∈ (0, 1/10). Given the promise that
either sat(ϕ) ≥ 1 − ε or sat(ϕ) < 1 − 2ε, there is a

2n(1−1/O(log ε−1)) time algorithm for deciding which is
the case.

The best known previous algorithm for the above

problem requires at least 2n(1−ε1/3) time [9], in which
case the dependence on ε is exponentially worse than
our new algorithm. In particular, it fails to give any
improvement when ε < 1/n3, while our algorithm is

faster than brute-force even if ε = 1/2n
0.99

.

1.3 Techniques: Two General Frameworks for
Establishing OV Equivalence In the following we
discuss two general frameworks for reductions to OV.
To state our results formally, we first define the
F -Satisfying-Pair problem for a problem F .10

Definition 1.11. ([4]) Let F : {0, 1}d × {0, 1}d →
{0, 1}, F -Satisfying-Pairn is the problem: given two sets
A and B of n vectors from {0, 1}d, determine whether
there is a pair (a, b) ∈ A×B such that F (a, b) = 1.

Remark 1.12. For example, let FOV be the function
checking whether two vectors from {0, 1}d are orthog-
onal. Then, FOV-Satisfying-Pairn is simply OVn,d.

9(1− 2ε) can be replaced by (1− κε) for any constant κ > 1.
10This notation is borrowed from [4], which studied the Satis-

fying Pair problem for Branching Programs.

1.3.1 Σ2 Communication Protocols and Reduc-
tions to Orthogonal Vectors Our first framework is
based on Σ2 communication protocols (Σcc

2 protocols).
We begin with a formal definition of such protocols.

Definition 1.13. (Σcc
2 Protocol [13]) Let F : X ×

Y → {0, 1} be a function. A Σcc
2 protocol Π for F is

specified as follows:

• There are two players, Alice holds input x ∈ X and
Bob holds input y ∈ Y.

• There are two provers Merlin and Megan.

• Merlin sends a string a ∈ {0, 1}m1 and Megan
sends a string b ∈ {0, 1}m2 (which are functions
of both x and y) to both Alice and Bob. Then Alice
and Bob communicate ` bits with each other, and
Alice decides whether to accept or reject the pair
(a, b).

• F (x, y) = 1 if and only if there exists a string a
from Merlin, such that for all strings b from Megan,
Alice accepts (a, b) after communications with Bob.

We say the protocol Π is computationally-efficient,
if both Alice and Bob’s response functions can be com-
puted in polynomial time with respect to their input
length.

We show that for any function F , if F admits a
certain efficient Σcc

2 protocol, then F -Satisfying-Pair can
be efficiently reduced to OV. Formally, we have:

Theorem 1.14. Let F : {0, 1}d × {0, 1}d → {0, 1}
and n ∈ N, suppose F has a computationally-efficient
Σcc

2 protocol, in which Merlin sends m1 bits, Megan
sends m2 bits, and Alice and Bob communicate ` bits.
Then there is a reduction from every F -Satisfying-Pairn
instance I to OVn,2(m2+`) instances J1, J2, . . . , J2m1 ,
such that I is a yes instance if and only if there is a
j such that Jj is a yes instance. The reduction takes
n · 2O(m1+m2+`) · poly(d) time.

Applications. We use Theorem 1.14 to estab-
lish the equivalence between OV, Min-IP / Max-IP,
Apx-Max-IP / Apx-Min-IP and Exact-IP. Previous works
have established that OV can be reduced to all these
problems, and that these problems can be reduced to
Exact-IP. So it suffices for us to construct a reduction
from Exact-IP to OV. Let the IPd,m : {0, 1}d×{0, 1}d →
{0, 1} be the function that checks whether 〈x, y〉 = m,
Exact-IP is IPd,m-Satisfying-Pair, so we can apply Theo-
rem 1.14 with an efficient Σcc

2 protocol for IPd,m. More
applications can be found in the full version of the pa-
per.

Copyright © 2019 by SIAM
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1.3.2 Locality-sensitive Hashing (LSH) Fami-
lies and Reductions to Additive Approximation
to Max-IP To establish equivalence between OV and
other approximation problems, we make use of a con-
nection with LSH families. We begin with a generalized
definition of an LSH family for a partial function. In
the following, let X be an arbitrary set.

Definition 1.15. Let f : X × X → {0, 1,⊥}11. We
say f admits a (p1, p2)-sensitive LSH family, if there is
a family F of functions h : X → S, such that for any
x, y ∈ X , a uniformly random function h ∈ F satisfies:

• If f(x, y) = 1, then h(x) = h(y) with probability at
least p1.

• If f(x, y) = 0, then h(x) = h(y) with probability at
most p2.

In addition, we require that h can be efficiently
drawn from F , and h(p) can be efficiently computed.12

The usual LSH families for a metric space are
special cases of the above generalized definition.

Definition 1.16. For a function dist : X × X → R≥0,
we say dist admits an LSH family, if for all ε > 0 and
real R > 0, there are two reals p1 = p1(ε) and p2 = p2(ε)
such that the function fdistR,(1+ε)R : X × X → {0, 1,⊥}
defined as

fdistR,(1+ε)R(x, y) =


1 dist(x, y) ≤ R,

0 dist(x, y) ≥ (1 + ε) ·R,

⊥ otherwise,

admits a (p1, p2)-sensitive LSH family and p1 > p2.

In particular, we show that an LSH family for
a function implies a reduction to additively approxi-
mating Max-IP, which can in turn be reduced to OV.
To formally state our reduction, we need to define
F-Satisfying-Pair for a partial function F .

Definition 1.17. For a partial function F : X ×X →
{0, 1,⊥}, F-Satisfying-Pairn is the problem: given two
sets A,B ⊆ X of size n, distinguish between the two
cases:

• There is an (x, y) ∈ A×B such that F(x, y) = 1.

• For all (x, y) ∈ A×B, F(x, y) = 0.

11f(x, y) = ⊥ means f is “undefined” on (x, y).
12Being efficient here means the running time is polynomial in

the bit complexity of the input.

Remark 1.18. Let X be Rd, and set F(x, y) = 1 for
‖x−y‖ ≤ R, F(x, y) = 0 for ‖x−y‖ ≥ (1+ε)·R and un-
defined otherwise. Then F-Satisfying-Pair distinguishes
between the cases that the minimum distance between A
and B is ≤ R and ≥ (1+ε)·R, which is the decision ver-
sion of (1 + ε)-approximation to Bichrom.-Closest-Pair.

Now we are ready to state our general reduction.

Theorem 1.19. Suppose f : X ×X → {0, 1,⊥} admits
a (p1, p2)-sensitive LSH family. Let ε = p1 − p2.

Then there is a randomized reduction from
f -Satisfying-Pairn to computing an ε/8 · d additive ap-
proximation to Max-IPn,d with d = O(ε−2 log n), which
succeeds with probability at least 1− 1/n.

From Theorem 1.19, reductions from Bichrom.-`2-
Closest-Pair and Furthest-Pair to OV follows:

Corollary 1.20. For a distance function dist :
X × X → R≥0 which admits an LSH family,
Bichrom.-Closest-Pairn,dist and Furthest-Pairn,dist can be
approximated in truly subquadratic time if OV is in truly
subquadratic time.

Applications. We use Theorem 1.19 and Corol-
lary 1.20 to establish the equivalence between OV and
all approximation problems listed in Theorem 1.1. In
particular, the `p metric and Jaccard Index admit ef-
ficient LSH families via p-stable distributions and the
minHash method, which implies that they can be re-
duced to OV by Theorem 1.19.

1.4 Related Works
Equivalence Classes in Fine-Grained Com-

plexity. It is known that the All-Pairs Shortest Paths
problem is sub-cubic time equivalent to many other
problems [47, 14, 3, 36]. A partial list includes: Negative
Triangle, Triangle Listing, Shortest Cycle, 2nd Shortest
Path, Max Subarray, Graph Median, Graph Radius and
Wiener Index (see [46] for more details on the APSP
equivalence class).

In [29], it is shown that “moderate-dimensional” OV
(i.e., OV with nδ dimensions for some δ > 0) is equiv-
alent to High-dimension Sparse OV, High-dimension
2-Set Cover, and High-dimension Sperner Family. It
is also shown that for every (k + 1)-quantifier first-
order property, its model-checking problem can be re-
duced to Sparse k-OV. In [25], an equivalence class for
Closest-LCS-Pair13 is established, in particular, it shows
Closest-LCS-Pair and its (constant factor) approximate
version are equivalent. In [27], the authors present

13Closest-LCS-Pair is: given two sets A,B of strings, compute
max(a,b)∈A×B LCS(a, b).
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an equivalence class for (min,+)-convolution, includ-
ing some variants of the classical knapsack problem and
problems related to subadditive sequences.

Faster-Than-Brute-Force Algorithms for
Problems in the Equivalence Class. Most of the
problems listed in Theorem 1.1 have algorithms with
some non-trivial speed-up depending on c (when the
dimension is c log n) or ε (when the approximation ratio
is 1 + ε). Table 1 gives the state-of-the-art runtime
bounds for these problems.

Problem n2−δ time, δ = f(c) or f(ε)
OV 1/O(log c) [7, 22]

Min-IP & Max-IP 1/Õ(
√
c) [9]

Exact-IP 1/Õ(c) [10]
Apx-Max-IP 1/O(log c) [24] [This paper]
Apx-Min-IP 1/O(log c) [This paper]

B.-`2-Closest-Pair Õ(ε1/3) [9]

`p-Furthest-Pair Õ(ε1/3) [9]14

Table 1: The best known running-time exponents for
the problems shown (in this paper) to be equivalent to
OV.

Fine-Grained Complexity and Communica-
tion Complexity. The connection between communi-
cation complexity and Fine-Grained Complexity dates
back at least to [41], in which it is shown that a
sub-linear, computational efficient protocol for 3-party
Number-On-Forehead Set-Disjointness problem would
refute SETH. The work of [6] shows hardness for ap-
proximate version for a host of important problems in
P, using the Õ(

√
n) MA communication protocol for Set-

Disjointness [1].
Using Algebraic Geometry codes, [45] obtains a

better MA protocol, which in turn improves the effi-
ciency of the previous “distributed PCP” construction
of [6]. He then shows n2−o(1)-time hardness for 1+o(1)-
approximations to Bichromatic Closest Pair and o(d)-
additive approximations to Max-IPn,d with this new
technique. [34] use the Distributed PCP framework to
derive inapproximability results for k-Dominating Set
under various assumptions. In particular, building on
the techniques of [45], it is shown that under SETH, k-
Dominating Set has no (log n)1/ poly(k,e(ε)) approxima-
tion in nk−ε time15.

[5] make use of the Õ(log n) IP communication pro-
tocol for Set-Disjointness in [1], and shows a fast deter-

14[9] only discussed Bichrom.-`p-Closest-Pair when p ∈ {1, 2},
but one can observe that their algorithm in fact works equally well
with Bichrom.-`p-Closest-Pair and `p-Furthest-Pair for p ∈ [1, 2].

15where e is a certain function from R+ → N

ministic approximation algorithm to Longest Common
Subsequence has interesting circuit lower bound conse-
quences. Making use of the IP communication protocol
for low-space computation, [25] establish an equivalence
class for Closest-LCS-Pair.

[24] establishes a connection between hardness of
the furthest pair problem in low dimensional Euclidean
space and NP · UPP communication protocols for Set-
Disjointness. He also shows the BQP communication
protocol for Set-Disjointness [20] can be used to derive
an inapproximability result for {−1, 1}-Max-IP.16

2 Preliminaries

We use R+ to denote the positive reals, and 〈u, v〉 to
denote the inner product of vectors u and v.

2.1 Problem List We first give the formal defini-
tions of the problem we study in this paper.

Definition 2.1. (Boolean Vector Problem List)
For n, d ∈ N, we define several problems. For all of
them, the input is the same: we are given sets A and B
of n vectors from {0, 1}d.

1. OVn,d
17: Given A,B ⊆ {0, 1}d with |A| = |B| = n,

determine whether there exists (a, b) ∈ A×B such
that 〈a, b〉 = 0.

2. Exact-IPn,d: Given A,B as before, and a target
integer 0 ≤ m ≤ d, determine whether there exists
(a, b) ∈ A×B such that 〈a, b〉 = m.

3. Max-IPn,d: Given A,B as before, compute

Max(A,B) := max
a∈A,b∈B

〈a, b〉.

4. Min-IPn,d: Given A,B as before, compute

Min(A,B) := min
a∈A,b∈B

〈a, b〉.

5. Apx-Max-IPn,d: Given A,B as before, output a

number M̃ax(A,B) ∈ [Max(A,B)/2,Max(A,B)].

6. Apx-Min-IPn,d: Given A,B as before, output a

number M̃in(A,B) ∈ [Min(A,B), 2 ·Min(A,B)].

Remark 2.2. The constant factor 2 in the definitions
of Apx-Min-IP and Apx-Max-IP is only chosen for con-
venience; for other purposes, it can be replaced by any
constant κ > 1 (such as 1.001, or 100).

16the variant of Max-IP with vectors from {−1, 1}d instead of
{0, 1}d

17Note that we consider the red-blue version of OV in this paper
for convenience, and it is equivalent to the original monochromatic
version.
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Definition 2.3. (Other Problems) We define the
following problems.

1. Bichrom.-`p-Closest-Pairn: For a fixed real p ∈
[1, 2], given two sets A,B of n points in Rd where
d = no(1), compute min(a,b)∈A×B ‖a− b‖p.

2. `p-Furthest-Pairn: For a fixed real p ∈ [1, 2], given

a set A of n points in Rd where d = no(1), compute
max(a,b)∈A×A ‖a− b‖p.

3. Jaccard-Index-Pairn: Given A,B as two col-
lections of n sets of size no(1), compute

max(S,T )∈A×B J(S, T ), where J(S, T ) := |S∩T |
|S∪T | .

2.2 Locality-sensitive Hashing We apply some
well-known results from the theory of locality-sensitive
hashing (LSH). (See [48, 12] for excellent recent refer-
ences on LSH families and their applications.)

`p Norm. From the theory of p-stable distribu-
tions, LSH families for the `p norm have been con-
structed for all p ∈ [1, 2].

Lemma 2.1. ([28]) For a constant p ∈ [1, 2], the `p
distance distp(x, y) := ‖x − y‖p admits an LSH family.
Moreover, for all real ε ∈ (0, 1/10) and real R > 0,

f
distp
R,(1+ε)R admits a (p1, p2)-sensitive LSH family, such

that p1 − p2 ≥ Ω(ε).

Jaccard Index. For two sets A,B, recall that their

Jaccard index is defined as J(A,B) := |A∩B|
|A∪B| . It is well-

known that this measure also admits an LSH family, by
the MinHash method.

Lemma 2.2. ([19]) Let 0 ≤ p2 < p1 ≤ 1 be two reals,
and f be the function on pairs of sets (A,B), such that
f(A,B) = 1 when J(A,B) ≥ p1, f(A,B) = 0 when
J(A,B) ≤ p2, and undefined otherwise. This f admits
a (p1, p2)-sensitive LSH family.

3 General Reduction Frameworks with Σ2

Communication Protocols and LSH Families

In this section we present two general reduction frame-
works for showing equivalence to OV.

3.1 Σ2 Communication Protocols and Reduc-
tions to OV We first show that an efficient Σcc

2

protocol for a function f implies a reduction from
f -Satisfying-Pair to OV.

Reminder of Theorem 1.14 Let F : {0, 1}d ×
{0, 1}d → {0, 1} and n ∈ N, suppose F has a
computationally-efficient Σcc

2 protocol, in which Merlin
sends m1 bits, Megan sends m2 bits, and Alice and Bob

communicate ` bits. Then there is a reduction from
every F -Satisfying-Pairn instance I to OVn,2(m2+`) in-
stances J1, J2, . . . , J2m1 , such that I is a yes instance if
and only if there is a j such that Jj is a yes instance.
The reduction takes n · 2O(m1+m2+`) · poly(d) time.

Proof. [Proof of Theorem 1.14]
Let F and Π be the given function and Π be its

Σ2 protocol. Fix a ∈ {0, 1}m1 and b ∈ {0, 1}m2 as
the proofs from Merlin and Megan. Let w1, w2, . . . , w2`

be an enumeration of all possible communication tran-
scripts between Alice and Bob (note they communicate
` bits). We define two binary vectorsRx(a, b), Ry(a, b) ∈
{0, 1}2` as follows: for all a, b, Rx(a, b)i = 1 (Ry(a, b)i =
1) if and only if the transcript wi is consistent with
Alice’s input x (Bob’s input y), and wi makes Alice
reject. Note that since the transcript is uniquely de-
termined by x, y, a and b, only one wi is consistent
with both x and y given the pair (a, b). It follows that
〈Rx(a, b), Ry(a, b)〉 = 0 if and only if Alice accepts the
pair (a, b).

Now, suppose we are given an F -Satisfying-Pairn
instance I with sets A and B of n vectors from {0, 1}d.
We first enumerate Merlin’s possible string a ∈ {0, 1}m1 ,
and use Rx(a, ·) to denote the string obtained by
concatenating all Rx(a, b)’s for b ∈ {0, 1}m2 . Ry(a, ·)
is defined similarly. For each a, let Aa be the set of
Rx(a, ·) ∈ {0, 1}m2+` for all x ∈ A, and Ba be the set
of Ry(a, ·) ∈ {0, 1}m2+` for all y ∈ B.

We claim I is a yes instance if and only if some pair
(Aa, Ba) is a yes instance for OV.

• Suppose I is a yes instance. Then there is an
(x, y) ∈ A × B such that F (x, y) = 1. By the
definition of Σcc

2 protocols and our constructions,
there is an a ∈ {0, 1}m1 such that for all b ∈
{0, 1}m2 we have 〈Rx(a, b), Ry(a, b)〉 = 0. Hence,
for such an a, 〈Rx(a, ·), Ry(a, ·)〉 = 0, and therefore
(Aa, Ba) is a yes instance for OV.

• Suppose I is a no instance. Then for all (x, y) ∈
A×B, F (x, y) = 0. Hence, for all a ∈ {0, 1}m1 and
all (x, y) ∈ A× B, we have 〈Rx(a, ·), Ry(a, ·)〉 6= 0,
which means all (Aa, Ba)’s are no instances for OV.

Finally, since Π is computationally-efficient, the
above reduction takes O(n ·2O(m1+m2+`) ·poly(d)) time,
which completes the proof. �

3.2 LSH Families and Reductions to Additive
Approximate Max-IP Next, we show that an efficient
LSH family implies a reduction to additively approxi-
mating Max-IP.
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Reminder of Theorem 1.19 Suppose f : X × X →
{0, 1,⊥} admits a (p1, p2)-sensitive LSH family. Let
ε = p1 − p2.

Then there is a randomized reduction from
f -Satisfying-Pairn to computing an ε/8 · d additive ap-
proximation to Max-IPn,d with d = O(ε−2 log n), which
succeeds with probability at least 1− 1/n.

Proof. Let F be the corresponding (p1, p2)-sensitive
LSH family, and S be the co-domain for hash functions
from F . Consider the following process: draw h from
F uniformly at random, then map each item in S
independently to the string (0, 1) or (1, 0), each with
probability 0.5. Let this map be ϕ. Composing h and
ϕ, we obtain a function g(x) = ϕ(h(x)) such that:

• If f(x, y) = 1, then 〈g(x), g(y)〉 = 1 with probabil-
ity at least p1 + (1− p1)/2 ≥ 1

2 + 1
2 · p1.

• If f(x, y) = 0, then 〈g(x), g(y)〉 = 1 with probabil-
ity at most p2 + (1− p2)/2 ≤ 1

2 + 1
2 · p2.

Repeat the above process for N = c log n times,
independently drawing functions g1, g2, . . . , gN , where
c is a parameter to be specified later. We set our
reduction w(x) to be the concatenation of all gi(x)’s.
Let τ1 = 1

2 + 1
2 · (p1 − ε/4) and τ2 = 1

2 + 1
2 · (p2 + ε/4).

By a simple Chernoff bound, there is a real c1 = Θ(ε2)
such that

• If f(x, y) = 1, then 〈w(x), w(y)〉 > τ1 · N with
probability at least 1− 2c1·N .

• If f(x, y) = 0, then 〈w(x), w(y)〉 < τ2 · N with
probability at least 1− 2c1·N .

Set c := 3/c1, and let Anew (respectively, Bnew) be
the set of w(a)’s for all a ∈ A (the set of w(b)’s for
all b ∈ B). It follows that with probability at least
1 − 1/n, if there is an (x, y) ∈ A × B with f(x, y) =
1 then Max(Anew, Bnew) > τ1 · N , and if f(x, y) =
0 for all (x, y) ∈ A × B, then Max(Anew, Bnew) <
τ2 · N . Observe this reduction satisfies the desired
approximation property. �

4 An Equivalence Class for Orthogonal Vectors

In this section we apply our two general frameworks to
prove Theorem 1.1.

4.1 Equivalence Between Boolean Vectors
Problem We first show that all Boolean vectors prob-
lems listed in Theorem 1.1 can be trivially reduced to
Exact-IP, and OV can be reduced to all of them.

Lemma 4.1. The following holds:

• If Exact-IP is in truly subquadratic time, then
so are OV, Apx-Min-IP (Apx-Max-IP) and Max-IP
(Min-IP).

• If any of Apx-Min-IP (Apx-Max-IP), Max-IP
(Min-IP) and Exact-IP is in truly subquadratic time,
then so is OV.

Proof. For the first item, Apx-Min-IP (Apx-Max-IP) and
Max-IP (Min-IP) can all be trivially reduced to Exact-IP,
and OV can be reduced to Max-IP by [50].

For the second item, the case of Apx-Max-IP follows
from Theorem 4.1 in [45], and it is easy to see that
OV can be trivially reduced to Min-IP or Apx-Min-IP
(OV is equivalent to asking whether the minimum inner
product is zero). �

Therefore, all we need is a reduction from Exact-IP
to OV. We provide it by constructing a good Σ2

communication protocol, and applying Theorem 1.14.

Lemma 4.2. If OV is in truly subquadratic time, then
so is Exact-IP.

Proposition 4.1. Let IPn,k : {0, 1}n×{0, 1}n → {0, 1}
be the function that checks whether 〈x, y〉 = k. For all
n, k ∈ Z+, and a parameter 1 ≤ ` ≤ n, there is a
Σcc

2 computationally-efficient protocol for IPn,k in which
Merlin sends `·dlog(dn/`e+1)e bits, Megan sends dlog `e
bits and Alice and Bob communicate dn/`e bits.

Proof. We assume ` divides n for simplicity. Let x, y be
the inputs of Alice and Bob, respectively. We partition
x into ` equally-sized groups of length n/`, let them
be x1, x2, . . . , x`. Similarly, we partition y into groups
y1, y2, . . . , y`. Clearly, 〈x, y〉 =

∑`
i=1〈xi, yi〉.

Merlin’s message is a vector ψ ∈ {0, 1, . . . , n/`}`,
where ψi is intended to be 〈xi, yi〉.

Alice rejects immediately if
∑`
i=1 ψi 6= k, regardless

of Megan’s message. Otherwise, Megan’s message is an
index i in [`]. Bob sends yi to Alice, and Alice accepts
if and only if 〈xi, yi〉 = ψi.

We argue the protocol correctly decides IPn,k. If
〈x, y〉 = k, it is easy to see that for the correct ψ, Alice
accepts all messages from Megan (and Bob). When

〈x, y〉 6= k, for all ψ such that
∑`
i=1 ψi = k (otherwise

Alice always rejects), there must be an i such that
〈xi, yi〉 6= ψi, which means Alice rejects on the pair
ψ and i. Finally, it is easy to see that the protocol
satisfies the requirements of computational efficiency,
which completes the proof. �

Now we are ready to prove Lemma 4.2.

Proof. [Proof of Lemma 4.2]
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Suppose there is a universal constant δ > 0 such
that for all constants c′, OVn,c′ logn can be solved in
n2−δ time. Let c be an arbitrary constant.

Observe that an Exact-IPn,c logn instance with tar-
get integer m, is simply a IPc logn,m-Satisfying-Pairn in-
stance. Set ` := ε·log n for an ε > 0 to be specified later.
By Proposition 4.1, there is a Σcc

2 protocol for IPc logn,m

such that Merlin sends ε · log(c/ε) · log n bits, Megan
sends log(ε log n) bits and Alice and Bob communicate
c/ε bits.

By Theorem 1.14, there is a reduction from an
Exact-IPn,c logn instance to 2ε log(c/ε) logn = nε log(c/ε)

many OVn,O(2c/ε logn) instances. We can set ε so that
ε log(c/ε) < δ/2. Note that ε only depends on c
and δ, so it is still a fixed constant, which means (by
assumption) that OVn,O(2c/ε logn) can be solved in n2−δ

time. Applying the algorithm for OV, we get an n2−δ/2

time algorithm for Exact-IPn,c logn, which completes the
proof. �

4.2 Equivalences Between OV and Approxima-
tion Problems Now we deal with approximation prob-
lems in Theorem 1.1.

Bichrom.-`p-Closest-Pair and `p-Furthest-Pair
We first show OV is equivalent to approximate
Bichrom.-`p-Closest-Pair, `p-Furthest-Pair and addi-
tive approximate Max-IP. One direction is already
established in [45].

Lemma 4.3. (Theorem 4.1 of [45]) If Bichrom.-`p-
Closest-Pair or `p-Furthest-Pair can be approximated in
truly subquadratic time for any p ∈ [1, 2] or Max-IP can
be additively approximated in truly subquadratic time,
then OV is in truly subquadratic time.18

In the following we show the reverse also holds.

Lemma 4.4. If OV is in truly-subquadratic time,
then for all p ∈ [1, 2], Bichrom.-`p-Closest-Pair and
`p-Furthest-Pair can be approximated in truly sub-
quadratic time, and Max-IP can be additively approxi-
mated in truly subquadratic time.

We are going to apply Theorem 1.19 and will
actually prove a much stronger result. We show that
for any metric dist : X × X → R≥0 which admits
a Locality-sensitive hashing (LSH) family, approximate
Bichrom.-Closest-Pair and Furthest-Pair with respect to
dist can be efficiently reduced to OV.

18[45] only discussed Bichrom.-`p-Closest-Pair and additive ap-
proximation to Max-IP, but it is easy to see that the proof also
works for `p-Furthest-Pair.

In the following, we use Bichrom.-Closest-Pairn,dist
and Furthest-Pairn,dist to denote the corresponding prob-
lems with respect to the metric dist. Now we are ready
to give the reduction.

Reminder of Corollary 1.20 For a distance function
dist : X × X → R≥0 which admits an LSH family,
Bichrom.-Closest-Pairn,dist and Furthest-Pairn,dist can be
approximated in truly subquadratic time if OV is in truly
subquadratic time.

Proof. Suppose OV is in truly subquadratic time. By
Lemma 4.1 and Lemma 4.2, Max-IP and Min-IP are
also in truly-subquadratic time. In the following we
only discuss Bichrom.-Closest-Pairn,dist; the reduction for
Furthest-Pairn,dist is analogous (with Min-IP in place of
Max-IP).

Let ε > 0 be an arbitrary constant. We want
to approximate the minimum distance between two
sets A and B of n elements from X within a (1 + ε)
multiplicative factor. By a standard (simple) search to
decision reduction that incurs only a negligible factor
in the running time, we only have to consider the
decision version, in which you are given a real R,
and want to distinguish the following two cases: (1)
min(a,b)∈A×B d(a, b) ≤ R; (2) min(a,b)∈A×B d(a, b) ≥
(1 + ε) ·R.

By Theorem 1.19, this decision problem can be
reduced to additive approximation to Max-IPn,O(logn),
which is in truly-subquadratic time by Lemma 4.2. This
completes the proof. �

Now, from the LSH families for `p-metric,
Lemma 4.4 follows directly.

Proof. [Proof of Lemma 4.4] Assume OV is in truly-
subquadratic time. It follows directly from Corol-
lary 1.20 and Lemma 2.1 that for all p ∈ [1, 2],
Bichrom.-`p-Closest-Pair and `p-Furthest-Pair can be ap-
proximated in truly subquadratic time.

Also, by a simple random sampling method and a
Chernoff bound (see e.g. Lemma 3.6 of [24]), computing
an ε · d additive approximation to Max-IPn,d can be
reduced to Max-IPn,O(ε−2 logn), which can be solved in
truly-subquadratic time by Lemma 4.2 and Lemma 4.1.
�

Jaccard-Index-Pair Finally, we show the equivalence
between OV and approximate Jaccard-Index-Pair.

Lemma 4.5. OV is in truly-subquadratic time if and
only if Jaccard-Index-Pair can be additively approximated
in truly-subquadratic time.
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Proof. For one direction, suppose OV is in truly sub-
quadratic time. Using a similar argument as in Corol-
lary 1.20, from Lemma 2.2 and Theorem 1.19 it follows
that Jaccard-Index-Pair can be additively approximated
in truly-subquadratic time.

For the other direction, suppose Jaccard-Index-Pair
can be additively approximated in truly subquadratic
time. By Lemma 4.3, it suffices to show that Max-IP can
be additively approximated in truly-subquadratic time.
Given a Max-IPn,d instance with sets A,B consisting of
n vectors from {0, 1}d, suppose we want to compute an
ε · d approximation to it. In the following we show how
to reduce it to a Jaccard-Index-Pair instance.

We begin by setting up some notation. For t ∈ [d],
we use e[t] to denote the Boolean vector 1t0d−t from
{0, 1}d (that is, the first t coordinates are 1, and the
rest are 0). For two vectors a, b, we use a ◦ b to denote
their concatenation.

For each x ∈ A ⊆ {0, 1}d and y ∈ B ⊆ {0, 1}d, we
create two vectors x̂, ŷ ∈ {0, 1}3d, as follows:

x̂ = x ◦ e[d−‖x‖1] ◦ e[0], ŷ = y ◦ e[0] ◦ e[d−‖y‖1].

Interpreting x̂ and ŷ as indicator vectors, we create
their corresponding sets Sx, Ty ⊆ [3d]. That is, for
i ∈ [3d], x̂i = 1 if and only if i ∈ Sx (the same holds for
ŷ and Ty). Observe that

(4.1) J(Sx, Ty) =
|Sx ∩ Ty|
|Sx ∪ Ty|

=
〈x, y〉

2d− 〈x, y〉
.

Now we create Â and B̂ as the sets of all Sx for
x ∈ A and Ty for y ∈ B. Let t = max(S,T )∈Â×B̂ J(S, T )

and w = max(a,b)∈A×B〈a, b〉. From Equation (4.1), we
can see t = w

2d−w and w = d · 2 · t
t+1 . Therefore, an

ε/3 approximation to t is enough to obtain an ε · d
approximation to w, which completes the reduction. �

And Theorem 1.1 follows from Lemma 4.1,
Lemma 4.2, Lemma 4.3, Lemma 4.4 and Lemma 4.5.

5 Equivalences for Moderate Dimensional
Problems

In this section we prove our equivalence theorems for
moderate dimensional Boolean vectors problems.

5.1 OV and Apx-Min-IP We first show moderate
dimensional OV and Apx-Min-IP are equivalent.

Reminder of Theorem 1.5 Moderate dimensional
OV is in truly subquadratic time if and only if moderate
dimensional Apx-Min-IP is.

To prove Theorem 1.5, we construct the following
reduction.

Lemma 5.1. For all integers n, d and a parameter ε >
0, an Apx-Min-IPn,d instance can be reduced to nO(ε)

OVn,dO(1/ε) logn instances. The reduction is randomized
and succeeds with probability at least 2/3, and it takes
n1+O(ε) · dO(1/ε) time.

Before proving Lemma 5.1, we show it implies
Theorem 1.5.

Proof. [Proof of Theorem 1.5] Recall that Min(A,B) :=
min(a,b)∈A×B〈a, b〉. For the first direction, note that
OV with two sets A and B essentially asks whether
Min(A,B) = 0, and a 2-approximation to Min(A,B)
is already enough to answer that question. Therefore,
if moderate dimensional Apx-Min-IP is in truly sub-
quadratic time, then so is OV.

For the second direction, suppose there are con-
stants ε1, δ1 > 0 such that OVn,nδ1 can be solved in
n2−ε1 time. Let ε be a parameter to be set later,
by Lemma 5.1, there are constants c1, c2 such that all
Apx-Min-IPn,nδ instance can be efficiently reduced to
nc1ε OVn,nδc2/ε instances.

We set ε such that c1ε = ε1/2, and δ such that
δ · c2/ε < δ1. Then applying the algorithm for OV,
Apx-Min-IPn,nδ can be solved in n2−ε1/2 time, which
completes the proof. �

The following probability inequality will be useful
in the proof of Lemma 5.1.

Lemma 5.2. Letting ε ∈ (0, 0.1), and D be a distribu-
tion on {0, 1} such that EX∼D[X] = ε, there is a univer-
sal constant c such that for any integer m and any cm
independent random variables X1, X2, . . . , Xcm from D,
we have

Pr

[
cm∑
i=1

Xi ≥
1

2
· cm

]
≤ ε−m.

The proof of Lemma 5.2 can be found in the full version
of the paper.

Finally, we prove Lemma 5.1.

Proof. [Proof of Lemma 5.1]
Before presenting the reduction, we first introduce

some notation. For a vector x ∈ {0, 1}d, and a subset
S ⊂ [d], x|S ∈ {0, 1}|S| denotes the projection of x
onto the coordinates of S. Similarly, for a sequence
T of integers from [d], let x|T ∈ {0, 1}|T | denote the

projection of x on T , such that
(
x|T
)
i

:= xTi for each
i ∈ [|T |]. We also use the Iverson bracket notation: for
a predicate P , [P ] takes value 1 when P is true, and 0
otherwise.

Reduction to a Decision Problem. Our reduc-
tion will focus on a corresponding decision problem:
given two sets A,B of n vectors from {0, 1}d and an
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integer τ ≤ d/2, we want to distinguish the following
two cases: Min(A,B) ≥ 2τ or Min(A,B) ≤ τ (the algo-
rithm can output anything when τ < Min(A,B) < 2τ).
It is easy to see that via a binary search, log d calls to
this decision problem can be used to solve the original
Apx-Min-IP problem, and a factor of log d ≤ log n can
be ignored here.

One Step Reduction with DT . Now, suppose we
pick a sequence of d/τ uniform random numbers from [d]
and let DT be its distribution. Then for x, y ∈ {0, 1}d,
we have:

• If 〈x, y〉 ≤ τ :

Pr
T←DT

[〈x|T , y|T 〉 = 0] ≥ (1− τ/d)d/τ ≥
(

1− 1

2

)2

> 0.25.

• If 〈x, y〉 ≥ 2τ :

Pr
T←DT

[〈x|T , y|T 〉 = 0] ≤ (1−2τ/d)d/τ ≤ e−2 < 0.14.

The important observation is that there is a con-
stant probability gap between the above two cases.

A Micro Reduction to OV. Now, let N be
an integer and D⊗NT be the joint distribution of N
independent samples from DT . We write {Ti} ← D⊗NT
to denote that (T1, T2, . . . , TN ) is a random sample from
D⊗NT . By a standard Chernoff bound, when {Ti} ←
D⊗NT , there is a constant c1 such that:

• If 〈x, y〉 ≤ τ :

Pr

[
N∑
i=1

[
〈x|Ti , y|Ti〉 = 0

]
> 0.2N

]
≥ 1− 2−c1N .

• If 〈x, y〉 ≥ 2τ :

Pr

[
N∑
i=1

[
〈x|Ti , y|Ti〉 = 0

]
< 0.2N

]
≥ 1− 2−c1N .

Now, for a fixed {Ti}, we can distinguish the above
two cases via a reduction to a “micro” OV instance.

Note that
∑N
i=1

[
〈x|Ti , y|Ti〉 = 0

]
> 0.2N is equiv-

alent to the condition that there is are t = 0.8N pairs
(i1, j1), (i2, j2), . . . , (it, jt) ∈ [N ]×[d/τ ] such that all ik’s

are distinct, and for all k ∈ [t],
(
x|Tik

)
jk
·
(
y|Tik

)
jk

= 1.

With this observation, we can construct our reduc-
tion. There are

L =

(
N

t

)
· (d/τ)t = (d/τ)O(N)

possible t-tuples of pairs. We sort them in an arbitrary
but consistent order. Now we construct a mapping
φ{Ti} : {0, 1}d → {0, 1}L as follows:

For each ` ∈ [L], let (i1, j1), (i2, j2), . . . , (it, jt) be
the `-th t-tuple of pairs. For a vector z ∈ {0, 1}d, we set

φ{Ti}(z)` = 1, iff
(
z|Tik

)
jk

= 1 for all k ∈ [t].

Then for all x, y ∈ {0, 1}d, we have∑N
i=1

[
〈x|Ti , y|Ti〉 = 0

]
> 0.2N is further equiva-

lent to 〈φ{Ti}(x), φ{Ti}(y)〉 = 0. For convenience, we let
Dφ denote the distribution of φ{Ti} when {Ti} is drawn

from D⊗NT and we set N = ε−1/c1.
To summarize, we have:

• If 〈x, y〉 ≤ τ :

Pr
φ←Dφ

[〈φ(x), φ(y)〉 = 0] ≥ 1− 2−ε
−1

.

• If 〈x, y〉 ≥ 2τ :

Pr
φ←Dφ

[〈φ(x), φ(y)〉 > 0] ≥ 1− 2−ε
−1

.

The Final Reduction. Finally, letting c2 be the
universal constant in Lemma 5.2, we pick m = 3c2 ·
ε log n i.i.d. mappings φ1, φ2, . . . , φm from Dφ. Apply-
ing Lemma 5.2, we have:

• If 〈x, y〉 ≤ τ :

Pr
{φi}←D⊗mφ

[
m∑
i=1

[〈φi(x), φi(y)〉 = 0] >
1

2
·m

]
≥ 1−n−3.

• If 〈x, y〉 ≥ 2τ :

Pr
{φi}←D⊗mφ

[
m∑
i=1

[〈φi(x), φi(y)〉 = 0] <
1

2
·m

]
≥ 1−n−3.

Now, we use our final reduction to distinguish the
above two cases. Note that

∑m
i=1 [〈φi(x), φi(y)〉 = 0] >

1
2 ·m is equivalent to the condition that there is a subset
S ⊆ [m] with |S| > 1

2 ·m such that 〈φi(x), φi(y)〉 = 0
for all i ∈ S.

We enumerate all possible such subsets S. For a
vector z ∈ {0, 1}d, we define φS(z) to be the concatena-
tion of φi(z)’s for all i ∈ S. We set AS as the set of all
φS(x)’s for x ∈ A, and BS as the set of all φS(y)’s for
y ∈ B.

Then we can see that
∑m
i=1 [〈φi(x), φi(y)〉 = 0] >

1
2 ·m is further equivalent to whether there is a subset
S with |S| > 1

2 · m and (AS , BS) is a yes instance for
OV.
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Summary. Putting everything together, we have
a randomized reduction to T = 2O(ε logn) =
nO(ε) OVn,(d/τ)O(1/ε) logn instances with set-pairs
(A1, B1), (A2, B2), . . . , (AT , BT ) such that, with prob-
ability at least 1− 1/n:

• If Min(A,B) ≤ τ , then one of the (Ai, Bi) is a yes
instance for OV.

• If Min(A,B) ≥ 2τ , all (Ai, Bi)’s are no instance for
OV.

The above completes the proof. �

5.2 Exact-IP, Max-IP and Min-IP Now we proceed
to show moderate dimensional Exact-IP, Max-IP and
Min-IP are equivalent.

Reminder of Theorem 1.6 For moderate dimen-
sional Max-IP, Min-IP and Exact-IP, either all of them
are in truly subquadratic time, or none of them are.

To prove the above theorem, we need the following
two simple reductions, whose proofs can be found in the
full version of the paper.

Lemma 5.3. There are functions ψxrev, ψ
y
rev : {0, 1}∗ →

{0, 1}∗ such that for all integer d and x, y ∈ {0, 1}d, we
have ψxrev(x), ψyrev(y) ∈ {0, 1}2d and 〈ψxrev(x), ψyrev(y)〉 =
d− 〈x, y〉.

Lemma 5.4. For all integers d and 0 ≤ m ≤ d, there
are mappings ϕxd,m, ϕ

y
d,m : {0, 1}d → {0, 1}O(d2) and an

integer Md, such that for all x, y ∈ {0, 1}d:

• If 〈x, y〉 = m, then 〈ϕxd,m(x), ϕyd,m(y)〉 = Md.

• Otherwise, 〈ϕxd,m(x), ϕyd,m(y)〉 > Md.

Proof. [Proof of Theorem 1.6] By Lemma 5.3, one can
easily reduce a Max-IPn,d instance to a Min-IPn,2d and
vice versa. Therefore, moderate dimensional Max-IP
and Min-IP are truly-subquadratic equivalent. We only
need to show that moderate dimensional Min-IP and
Exact-IP are equivalent.

Assuming moderate dimensional Exact-IP is in truly
subquadratic time, so there are two constants ε and
δ such that Exact-IPn,nδ can be solved in n2−ε time.
Let δ′ = min(ε, δ)/2. Given a Min-IPn,nδ′ instance,
by enumerating all possible inner products between 0
and nδ

′
, we can reduce the instance to nδ

′
instances

of Exact-IPn,nδ′ . Applying the algorithm for Exact-IP,

we then have an n2−ε+δ′ ≤ n2−δ′ time algorithm for
Min-IPn,nδ′ . Hence, moderate dimensional Min-IP is also
in truly-subquadratic time.

Finally, assume moderate dimensional Min-IP is in
truly subquadratic time. Note that by Lemma 5.4, an
Exact-IPn,d instance can be reduced to a Min-IPn,O(d2)

instance, which immediately implies that moderate
dimensional Exact-IP is also in truly subquadratic time.
�

6 Tighter Connection Between Max-IP,
Bichrom.-`p-Closest-Pair and `p-Furthest-Pair

In this section we establish the tighter connec-
tions between Max-IP, Bichrom.-`p-Closest-Pair and
`p-Furthest-Pair.

In Section 6.1, we show tighter connections
for Max-IP, Exact-IP and additive approximation to
Max-IP. And in Section 6.2, we show similar
connections for additive approximation to Max-IP,
Bichrom.-`p-Closest-Pair and `p-Furthest-Pair.

6.1 Tighter Connection between Exact-IP,
Max-IP and Additive Approximation to Max-IP
The following lemma is implicit in [45], which is used to
show Bichrom.-`p-Closest-Pair can not be approximated
in truly-subquadratic time under SETH. [45] only states
a reduction from OV. However, the MA protocol in [45]
works equally well for the Inner Product problem, so it
actually gives a reduction from Exact-IP.

Lemma 6.1. (Implicit in Theorem 4.1 of [45])
For all sufficiently large integers n, c and a pa-
rameter ε > 0, an Exact-IPn,c logn instance can
be reduced to nO(ε log(c/ε)) instances of computing
Ω(1/ exp{Õ(c/ε)}) · d additive approximation to
Max-IPn,d for d = no(1).

In order to prove our tighter connection, our goal
here is to improve the additive approximation ratio from
Ω(1/ exp{Õ(c/ε)}) to Ω(1/ poly(c/ε)).

6.1.1 A New MA Protocol for Inner Product
For that purpose, we need to modify the MA protocol
from [45]. In the following, we first describe the MA
protocol for Inner Product in [45] based on AG codes.
Below we only summarize the relevant properties we
need; readers can refer to [45] for the details of the
protocol.

Lemma 6.2. (Theorem 3.1 [45]) For every T ∈
[2, N ], there is a computationally-efficient MA protocol
for Inner Product such that

1. Alice and Bob hold input x, y ∈ {0, 1}N respec-
tively, and want to decide whether 〈x, y〉 = m for a
target integer m.
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2. Set q to be the first prime larger than T and a
universal constant c1, and set R = log(N/T ) +
O(1).

3. Merlin sends Alice a vector z ∈ F2R

q2 , Alice rejects
z immediately if it doesn’t satisfy some conditions.

4. Alice and Bob then toss R coins to get r ∈ [2R].
Based on x (or y) and r, Alice and Bob generate

two vectors in FTq2 , ~a(x, r) and ~b(y, r) respectively,

5. Bob sends Alice ~b(y, r), and Alice calculates

u(x, y, r) = 〈~a(x, r),~b(y, r)〉. Alice accepts if and
only if u(x, y, r) = zr.

The protocol satisfies the following conditions:

• If 〈x, y〉 = m, then there is a proof (the vector z)
from Merlin such that Alice always accepts.

• If 〈x, y〉 6= m, then for all proofs from Merlin, Alice
accepts with probability at most 1/2.

Our Modified Protocol. We make some minor
modifications to the above protocol. First, note that
an element from Fq2 can be treated as an element in
Fq[x]/(Pirred(x)), where Pirred(x) ∈ Fq[x] is an irreducible
polynomial of degree 2. In this way, we can interpret all
elements in ~a(x, r) and ~b(y, r) as degree 1 polynomials
in Fq[x], which can in turn be interpreted as degree 1
polynomials in Z[x]. We denote these vectors of polyno-

mials by ~U(x, r), ~V (y, r) ∈ Z[x]T , with coefficients from
{0, 1, . . . , q − 1}.

Next, we set W (x, y, r) = 〈~U(x, r), ~V (y, r)〉, which
is a degree 2 polynomial in Z[x]. Note that the
coefficients of W (x, y, r) are between 0 and O(q2 · T ) =
O(T 3).

Now, in the message from Merlin, for all possible
r ∈ [2R], we also add a claimed description of W (x, y, r).

This takes O
(
N log T
T

)
bits, so it doesn’t affect the

message complexity from Merlin. Then, after Alice
receives ~b(y, r) from Bob (from which she can obtain
~V (y, r)), Alice computes W (x, y, r) instead of u(x, y, r),
and rejects immediately if this W (x, y, r) does not
match the one given by Merlin. After that, she knows
that u(x, y, r) = W (x, y, r)/(Pirred(x)), and proceeds as
in the original protocol.

It is easy to see that, when 〈x, y〉 = m, if Merlin
provides the correct W (x, y, r)’s, then Alice still always
accepts (regardless of r). And when 〈x, y〉 6= m, since
these W (x, y, r)’s only provide additional checks, Alice
still accepts with probability at most 1/2 for all proofs.

We use Πorig to denote the protocol from [45]
(Lemma 6.2), and Πnew to denote our new protocol.

In the following we utilize Πnew to give an improved
reduction from Exact-IP to additive approximation to
Max-IP.

Before that, we need the following encoding trick,
whose proof can be found in the full version of the paper.

Lemma 6.3. For all integers d, r and 0 ≤ m ≤
dr2, there are mappings ϕx, ϕy : {0, 1, . . . , r}d →
{0, 1}O(dr2)2 and an integer 0 ≤ M ≤ O(dr2)2, such
that for all x, y ∈ {0, 1, . . . , r}d:

• If 〈x, y〉 = m, then 〈ϕx(x), ϕy(y)〉 = M .

• Otherwise, 〈ϕx(x), ϕy(y)〉 < M .

• Moreover, M only depends on d and r.

Lemma 6.4. For all sufficiently large integers n, c and
a parameter ε > 0, every Exact-IPn,c logn instance can
be reduced to nO(ε log(c/ε)) instances of computing an
Ω((ε/c)6) · d additive approximation to Max-IPn,d for
d = no(1).

Proof. Consider an Exact-IPn,c logn instance with sets
A and B, and integer m. Using our protocol Πnew for
checking whether 〈x, y〉 = m, we only need to figure out
whether there is a pair (x, y) ∈ A×B and a proof from
Merlin such that Alice always accepts.

Let N = c log n, and set T = c/ε. Then the message
complexity from Merlin is O(ε log n log(c/ε)) and the
total number of random bits is R = log(N/T ) +O(1) ≤
log(ε log n) +O(1).

We first enumerate all valid proofs ψ, which is a pair

of z ∈ F2R

q2 and W ∈ Z[x]2
R

such that for all r ∈ [2R],

we have zr = Wr/Pirred(x).
Next, we want to determine whether there is a pair

(x, y) ∈ A×B, such that this proof ψ makes Alice always
accepts. Note we only need to distinguish the following
two cases:

• For all r ∈ [2R], 〈~U(x, r), ~V (y, r)〉 = Wr.

• For at most half of r ∈ [2R], 〈~U(x, r), ~V (y, r)〉 =
Wr.

Recall that ~U(x, r) and ~V (y, r) are vectors of T
degree 1 polynomials from Z[x], with coefficients in
{0, 1, . . . , q − 1}, and Wr is a degree 2 polynomial
in Z[x], with coefficients in {0, 1, . . . , O(q3)}. For a
polynomial P (x) in Z[x] and an integer t, let [t]P (x)
denote the coefficient of xt in P (x). Then we can see

〈~U(x, r), ~V (y, r)〉 = Wr is equivalent to the condition:
for all 0 ≤ t ≤ 2,

(6.2)

t∑
i=0

T∑
k=1

[i]~U(x, r)k · [t− i]~V (y, r)k = [t]Wr.
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Note that the left side of Equation (6.2) is an inner
product between two vectors from {0, 1, . . . , q − 1}3T .
By Lemma 6.3, we can construct three Boolean vectors
u0, u1, u2 ∈ {0, 1}O(q6) from ~U(x, r) and also v0, v1, v2 ∈
{0, 1}O(q6) from ~V (y, r) and an integer M (which only
depends on T ), such that:

• If Equation (6.2) holds for all t, then
∑2
i=0〈ui, vi〉 =

M .

• Otherwise,
∑2
i=0〈ui, vi〉 < M .

Now, we concatenate all these u0, u1, u2 for all
possibles r’s to form a single vector ux, and construct
vy similarly. We have:

• If for all r ∈ [2R], 〈~U(x, r), ~V (y, r)〉 = Wr, then
〈ux, vy〉 ≥ 2R ·M .

• If for at most half of r ∈ [2R], 〈~U(x, r), ~V (y, r)〉 =
Wr, then 〈ux, vy〉 ≤ 2R · (M − 1/2).

Now, let Aψ and Bψ be the collections of ux and
vy with the proof ψ respectively. Then we want to
distinguish between the following two cases:

• There is a ψ such that Max(Aψ, Bψ) ≥ 2R ·M .

• For all ψ, Max(Aψ, Bψ) ≤ 2R · (M − 1/2).

Note that vectors in Aψ and Bψ are of dimen-
sion d = O(q6 · 2R), so the above can be solved by
2O(ε logn log(c/ε)) = nO(ε log(c/ε)) calls to Ω(1/q6) · d =
Ω((ε/c)6)·d additive approximation to Max-IPn,d, which
completes the proof. �

Now we are ready to prove Theorem 6.1.

Theorem 6.1. The following are equivalent:

1. An ε · d additive approximation to Max-IPn,d is

computable in n2−εo(1) time.

2. Max-IPn,c logn is solvable in n2−1/co(1) time.

3. Exact-IPn,c logn is solvable in n2−1/co(1) time.

Proof. We only need to show that Item (1) implies Item
(3). By Lemma 6.4, there are constants c1, c2 such that
for any constant ε1 > 0, every Exact-IPn,c logn instance
can be reduced to nc1ε1 log(c/ε1) instances of c2 ·(ε1/c)

6 ·d
additive approximations to Max-IPn,d for d = no(1).

Suppose Item (1) holds, we set ε1 = 1/c, then
Exact-IPn,c logn can be solved in

nc1 log(c2)/c+2−(c2·c−12)o(1) = n2−1/co(1)

time, which completes the proof. �

6.2 Tighter Connection Between Additive Ap-
proximation to Max-IP and Some Geometric
Problems Now we are ready to establish a similar con-
nection between additive approximation to Max-IP and
some geometric problems.

Theorem 6.1. The following are equivalent:

1. An ε · d additive approximation to Max-IPn,d is

computable in n2−εo(1) time.

2. An ε · d additive approximation to Min-IPn,d is

computable in n2−εo(1) time.

3. A (1+ε) approximation to Bichrom.-`p-Closest-Pair

is computable in n2−εo(1) time (for a constant p ∈
[1, 2]).

4. A (1 + ε) approximation to `p-Furthest-Pair is com-

putable in n2−εo(1) time (for a constant p ∈ [1, 2]).

One direction is simple, and already implicit in
previous work.

Lemma 6.5. (Theorem 4.1 [45]) For any p ∈ [1, 2],
if Bichrom.-`p-Closest-Pair or `p-Furthest-Pair can be ap-

proximated in n2−εo(1) time, then there is an algorithm
computing ε · d additive approximation to Max-IP in

n2−εo(1) time.

So it suffices to prove the other direction, we are
going to apply Theorem 1.19.

Proof. [Proof of Theorem 6.1] The equivalence between
Item (1) and (2) follows directly from Lemma 5.3. By
Lemma 6.5, Item (3) and (4) both imply Item (1). So it
suffices to show Item (1) implies Item (3) and Item (4).

We only consider Bichrom.-`p-Closest-Pair here; the
case for `p-Furthest-Pair are symmetric. Note that by
a binary search (which incurs a negligible factor in the
running time), we only need to consider the decision
version, in which we are given a real R, and want to
distinguish the two cases: (1) min(a,b)∈A×B ‖a − b‖p ≤
R; (2) min(a,b)∈A×B ‖a− b‖p ≥ (1 + ε) ·R.

By Theorem 1.19 and Lemma 2.1, this decision
problem can be reduced to computing an Ω(ε · d) ap-
proximation to Max-IPn,O(ε−2 logn), which by assump-

tion can be solved in n2−εo(1) time. �

Finally, Theorem 1.4 is a simple corollary of Theo-
rem 6.1 and Theorem 6.1.

7 Equivalence in the Data Structure Setting

In this section, we generalize our equivalence results to
the data structure setting.
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We first introduce the data structure versions of OV
and Max-IP, which are used as intermediate problems
for the reductions.

• Online OV: Preprocess a database D of n points
in {0, 1}d such that, for all query of the form
q ∈ {0, 1}d, either report a point x ∈ D which is
orthogonal to q or report that no x exists.

• Online Max-IP: Preprocess a database D of n
points in {0, 1}d such that, for all query of the form
q ∈ {0, 1}d, find a point x ∈ D maximizing 〈x, q〉.

Theorem 7.1. The following are equivalent:

• There is a δ > 0 such that for all constant c, there
is a data structure for Online OV with d = c log n
uses poly(n) space and allows n1−δ query time.

• There is a δ > 0 such that for all constant c, there is
a data structure for Online Max-IP with d = c log n
uses poly(n) space and allows n1−δ query time.

• There is a δ > 0 such that for all ε > 0, there is
a data structure for approximate NNS in `p with
approximation ratio (1 + ε) uses poly(n) space and
allows n1−δ query time for a constant p ∈ [1, 2].

Note that by [7], Online OV is equivalent to Partial
Match, so the above theorem implies Theorem 1.3.

We also need the following two important observa-
tions from the proof of Lemma 4.2 and Lemma 6.4.

Lemma 7.1. (Implicit in Lemma 4.2) Let n be an
integer, c be a constant, ε > 0 and 0 ≤ k ≤ c log n.
There are two families of functions f1, f2, . . . , fm and

g1, g2, . . . , gm from {0, 1}c logn to {0, 1}2O(c/ε) logn where
m = nO(ε log(c/ε)), such that for all x, y ∈ {0, 1}c logn,
〈x, y〉 = k if and only if there is an i ∈ [m] such that
〈fi(x), gi(y)〉 = 0. Moreover, functions fi’s and gi’s can
be evaluated in polylog(n) time.

Lemma 7.2. (Implicit in Lemma 6.4 and 6.5) Let
p ∈ [1, 2], n be an integer, c be a constant, ε > 0 and
0 ≤ k ≤ c log n. There are two families of functions
f1, f2, . . . , fm and g1, g2, . . . , gm from {0, 1}c logn to

Rno(1) where m = nO(ε log(c/ε)), such that for all
x, y ∈ {0, 1}c logn,

• If 〈x, y〉 = k, then there is an i ∈ [m] such that
‖fi(x)− gi(y)‖p ≤ 1− Ω((ε/c)6).

• Otherwise, for all i ∈ [m], ‖fi(x)− gi(y)‖p ≥ 1.

Moreover, functions fi’s and gi’s can be evaluated in
no(1) time.

Proof. [Proof of Theorem 7.1]
In the below we first show the equivalence between

Online OV and Online Max-IP, the equivalence between
Online Max-IP and NNS is proved similarly, so we only
sketch the main ideas.

Online OV ⇔ Online Max-IP. The reduction
from Online OV to Online Max-IP is trivial. For the
other direction, suppose there is a δ > 0 such that for
all constant c, there is an algorithm for Online OV with
d = c log n such that it uses poly(n) space and allows
n1−δ query time.

Let d = c log n for a constant c, and c1 be the
constant hiding in the big-O of m = 2O(ε log(c/ε)) in
Lemma 7.1. Suppose we are given a set D of n points
from {0, 1}d.

We set ε such that c1 · ε log(c/ε) = δ/2 and apply
Lemma 7.1. Now, for each 0 ≤ k ≤ d, we build
nc1·ε log(c/ε) = nδ/2 data structures for Online OV, the
i-th data structure consists of the fi(x)’s for all x ∈ D.
Note that the fi(x)’s have length 2O(c/ε) · log n, which
is still O(log n) as ε is a constant.

For each query q ∈ {0, 1}d, note that there is an
x ∈ D such that 〈x, q〉 = k if and only if there is an
i such that the i-th Online OV structure contains an
orthogonal point to gi(q). Therefore, by enumerating
k from d down to 0, i from

[
nδ/2

]
, and making corre-

sponding queries to the Online OV data structures, one
can answer queries for Online Max-IP in n1−δ/2 ·d time.

Online Max-IP ⇔ Approximate NNS
(Sketch). Using Lemma 7.2, the reduction from
Online Max-IP to Approximate NNS can be proved
similarly as from Online Max-IP to Online OV.

For the direction from approximate NNS to Online
Max-IP: suppose the approximation ratio is (1 + ε). It
suffices, for all R of the form (1 + ε/3)k for an integer
k, to construct a data structure which finds a point
with distance smaller than R · (1 + ε/3) if the minimum
distance is smaller than R, and reports a failure if the
minimum distance is greater than R · (1 + ε/3) (its
behavior can be arbitrary if neither case holds). Using
the reduction implicit in proof of Theorem 1.19, this can
be reduced to Online Max-IP with d = O(log n). �

8 Algorithms for Apx-Min-IP and Apx-Max-IP

In this section we give fast algorithms for Apx-Min-IP
and Apx-Max-IP. Our algorithms make use of the
polynomial method [7]. For simplicity of exposition,
we set the approximation factors in Apx-Min-IP and
Apx-Max-IP to be 2, but our algorithms can be extended
to work for any constant approximation factor κ > 1
easily.
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8.1 Low Degree Probabilistic Polynomial Im-
plies Fast Algorithms Abboud, Williams, and Yu [7],
show that for a Boolean vector problem, a “sparse”
probabilistic polynomial for the problem implies a fast
algorithm. To state their result formally, we first intro-
duce some notations.

For our purposes, we will think of a probabilistic
polynomial P as a distribution over F2-polynomials
(polynomials over the field F2), and the degree of a
probabilistic polynomial is the maximum degree of all
polynomials in its support. For a function f : D →
{0, 1}, we say P is an ε-error probabilistic polynomial
for f , if for every x ∈ D, PrP∼P [P (x) 6= f(x)] ≤ ε.

Let us abstract out a key result from [7], for our use
here:

Theorem 8.1. ([7]) Let c be an integer and d =
c log n, let f : D → {0, 1} with D ⊆ {0, 1}d × {0, 1}d
be a function. Suppose that:

• For any ε > 0, there is an ε-error probabilistic
polynomial P for f with degree t = O(log ε−1).

• A polynomial from P can be sampled in poly(
(
d
≤t
)
)

time.19

Then there is an algorithm A such that:

• Given two sets A and B of n vectors from {0, 1}d,
A runs in n2−1/O(log c) time.

• If for every (a, b) ∈ A × B, f(a, b) = 0, then A
outputs 0 with probability at least 1− 1/n.

• If there is an (a, b) ∈ A × B, f(a, b) = 1, then A
outputs 1 with probability at least 1− 1/n.20

8.2 n2−1/O(log c) Time Algorithms for Apx-Min-IP
and Apx-Max-IP In order to apply the theorem above,
we need to switch from Apx-Min-IP and Apx-Max-IP to
their closely related decision problems Gap-Min-IP and
Gap-Max-IP.

Definition 8.2. For n, d ∈ N, we define the problems:

• Gap-Min-IPn,d : Given sets A and B of n vectors

from {0, 1}d and an integer τ , and the promise that
either Min(A,B) ≤ τ or Min(A,B) ≥ 2τ , the task
is to decide which.

• Gap-Max-IPn,d : Given sets A and B of n vectors

from {0, 1}d and an integer τ , and the promise that
either Max(A,B) ≤ τ or Max(A,B) ≥ 2τ , the task
is to decide which.

19
( n
≤m

)
denotes

∑m
i=0

(n
i

)
.

20If neither of the above two cases hold, the algorithm can
output anything.

Moreover, for two vectors x, y ∈ {0, 1}d and an
integer τ , we define the corresponding gap-deciding
function:

fgapd,τ (x, y) =


1 〈x, y〉 ≥ 2τ ,

0 〈x, y〉 ≤ τ ,

undefined otherwise.

When d and τ are clear from the context, we omit
them for simplicity.

Remark 8.3. Gap-Max-IPn,d (Gap-Min-IPn,d) is equiv-
alent to determine whether there is an (a, b) ∈ A × B
such that fgap(a, b) = 1 (fgap(a, b) = 0) or for all
(a, b) ∈ A×B we have fgap(a, b) = 0 (fgap(a, b) = 1).

The following lemma is the technical key ingredient
of this section, whose proof can be found in the full
version of this paper.

Lemma 8.1. For all d, t ∈ N and ε ∈ (0, 1/10), there is
an O(log ε−1)-error probabilistic polynomial for fgapd,t .

Now we show Lemma 8.1 implies Theorem 1.7
(restated below) together with Theorem 8.1.

Reminder of Theorem 1.7. There are n2−1/O(log c)

time randomized algorithms for Apx-Min-IPn,c logn and
Apx-Max-IPn,c logn.

Proof. [Proof of Theorem 1.7] We only consider
Apx-Min-IP here; the case for Apx-Max-IP is symmetric.
By Lemma 8.1, Theorem 8.1, and Remark 8.3, there
is a randomized algorithm A for Gap-Min-IPn,c logn in

n2−1/O(log c) time.
Now we turn A into an algorithm for Min-IP. We

say A outputs 1 if it decides Min(A,B) ≤ τ , and 0
otherwise. We enumerate τ from 0 to d, and let τmin be
the smallest τ such that A outputs 1. Note that such τ
exists, as A must output 1 when τ = d.

With probability at least 1 − (d + 1)/n ≥ 2/3, A
operates correctly on all enumerated τ ’s. We condition
on that event in the following. Since A outputs 1 with
τmin, we have Min(A,B) < 2τmin (otherwise it must
output 0). Similarly, as A outputs 0 with τmin − 1
(τmin is the smallest), we have Min(A,B) > τmin − 1
(otherwise it must output 1). Therefore, we can see
2τmin ∈ [Min(A,B), 2 · Min(A,B)] with probability at
least 2/3, and we obtain an n1−1/O(log c) algorithm for
Apx-Min-IP. �

8.3 A Fast Algorithm for Approximating “Al-
most Satisfiable” MAX-SAT Instances Finally, we
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give an application of the algorithm for Apx-Min-IP by
proving Theorem 1.9 (restated below).

Reminder of Theorem 1.9 Let ϕ be a MAX-SAT
instance on n variables with m clauses, and ε = 1 −
sat(ϕ). There is a 2n(1−1/O(log ε−1)) time algorithm to
find an assignment x satisfying at least (1 − 2ε) · m
clauses.

Proof. We use the reduction from CNF-SAT to OV,
from [50]. For simplicity, suppose 2 divides n. For
an assignment x to ϕ, we use val(ϕ, x) to denote the
number of satisfied clauses of ϕ by x, divided by m.

First, we do a “sparsification” step: we pick M =
c1 · ε−2 · n clauses from ϕ at uniformly random. Let ψ
be the MAX-SAT instance with these randomly chosen
clauses.

By a standard Chernoff bound, with a sufficiently
large universal constant c1, for every assignment x ∈
{0, 1}n, we have

Pr [|val(ϕ, x)− val(ψ, x)| ≤ ε/3] ≤ 1/22n.

Therefore, by a union bound, with probability at
least 1 − 1/2n, for all x ∈ {0, 1}n we have |val(ϕ, x) −
val(ψ, x)| ≤ ε/3, and it follows that |sat(ϕ)− sat(ψ)| ≤
ε/3. So it suffices to consider ψ now.

Next, we split these n variables into two groups

xL := {x1, . . . , xn/2} and xR := {xn/2+1, . . . , xn}.

Let C1, C2, . . . , CM be all clauses in ψ. For each a ∈
{0, 1}n/2, interpreted as an assignment to variables in
xL, we construct a vector ua ∈ {0, 1}M , such that
(ua)i = 1 iff Ci is not satisfied when setting variables
in xL according to a. Similarly, for each b ∈ {0, 1}n/2,
we interpret it as an assignment to variables in xR, and
construct a vector vb ∈ {0, 1}M in the same way.

Next, for a, b ∈ {0, 1}n/2, 〈(ua)i, (vb)i〉 = 1 if and
only if Ci is not satisfied by the joint assignment (a, b).
Therefore, 〈ua, vb〉 is the number of clauses that are not
satisfied by the joint assignment (a, b).

Let A be the set of all ua’s for a ∈ {0, 1}n/2, and B
be the set of all vb’s for b ∈ {0, 1}n/2. By Theorem 1.7,
there is an algorithm which finds a (ua, vb) ∈ A × B
such that 〈ua, vb〉 ∈ [Min(A,B), 1.1 ·Min(A,B)].

From the definition, we have Min(A,B) := (1 −
sat(ψ)) · M ≤ 4

3 · ε · M (recall that ε = 1 − sat(ϕ)).
Therefore, we have 〈ua, vb〉 ≤ 1.1 · 4

3 · ε ·M ≤ 1.5 · ε ·M .
Let x be the joint assignment (a, b). We have

val(ψ, x) ≥ (1−1.5ε). Since |val(ψ, x)−val(ϕ, x)| ≤ ε/3,
val(ϕ, x) ≥ (1− 2ε), which means x is a valid answer.

Finally, as M = O(ε−2) · n, the algorithm runs

in
(
2n/2

)2−1/O(log ε−1)
= 2n·(1−1/O(log ε−1)) time, which

completes the proof. �
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