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Abstract. It has recently become possible to record detailed social interactions in large social systems
with high resolution. As we study these datasets, human social interactions display patterns that emerge
at multiple time scales, from minutes to months. On a fundamental level, understanding of the network
dynamics can be used to inform the process of measuring social networks. The details of measurement are of
particular importance when considering dynamic processes where minute-to-minute details are important,
because collection of physical proximity interactions with high temporal resolution is difficult and expensive.
Here, we consider the dynamic network of proximity-interactions between approximately 500 individuals
participating in the Copenhagen Networks Study. We show that in order to accurately model spreading
processes in the network, the dynamic processes that occur on the order of minutes are essential and must
be included in the analysis.

1 Introduction

Temporal networks provide an important framework for
modeling a variety of real systems [1]. Examples of com-
plex systems where dynamics can play a central role in-
clude social networks, energy grids, networks of sexual
contacts, and transportation systems [2–8].

Only recently, thanks to technical developments in
data collection, it has become possible to collect high-
resolution data about physical and virtual interactions
in complex social systems. Using sociometric badges
or smartphones, it is now possible to record interac-
tions happening on multiple channels and at multiple
timescales, measuring events with minute-by-minute res-
olution [6,9–12]. With access to such data, we can be-
gin to describe the complexity, structure, and dynam-
ics of such social systems [13]. Accurate measurements
and models of social systems are necessary in order
to understand how diseases spread [6,7], what makes
teams productive [14,15], or how friendships form and
disappear [11,13].

A fully-formed framework for incorporating network
dynamics has yet to be established [16–20]. We know,
however, that for many practical applications, it is im-
portant to get the details right, because variations in how
the time dimension is incorporated can lead to significant
differences in the modeling of dynamical processes unfold-
ing on the network. Understanding spreading in dynamic
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networks is of particular interest, as these may represent a
wide variety of processes in the system, including spread-
ing of biological pathogens, information, knowledge, or
behaviors.

Recently, there has been a growing interest in how to
correctly and efficiently incorporate time dimension in the
modeling of disease spread. Over the last few years, stud-
ies have focused on the mixing matrices capturing impor-
tant epidemiological features [20], efficient representation
of the spreading networks with coarser temporal represen-
tation [16,19], and the fundamental impact that temporal
features have on the spreading process [17,18]. Here we
study how the fidelity of representation of network behav-
ior at short timescales – on the order of minutes – influ-
ences simulated spreading in the network. These minute-
to-minute dynamics are particularly interesting because
data collection with high temporal resolution tends to
be challenging and costly. We consider the ramifications
of reducing temporal resolution and which biases such a
reduction introduces in terms of understanding spread-
ing process in the temporal network of close proximity
interactions.

The dataset

Here we analyze close proximity interactions network
of participants of the Copenhagen Networks Study
(CNS) [9]. This proximity dataset is based on Bluetooth
scans collected using state-of-the-art smartphones. We de-
fine an interaction between users i, j in 5-min time-bin t
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Fig. 1. Dynamics of network of close proximity in a complex
social system. (a) The network of proximity interactions dis-
plays distinct weekly and daily patterns. The number of active
links can change drastically even within minutes, as show in
the inset. (b) Mean overlap of active links between network
slices as a function of aggregation time window. The overlap
is high for short time windows but drops rapidly when longer
windows are considered. The violin plot shows the exact dis-
tributions for chosen time-bin sizes. The drop in the overlap
most significant in the initial part of the aggregation (inset).

as γijt = s, where the signal strength s is reported by the
handsets as received signal strength (RSSI). Since Blue-
tooth scans are unlikely to result in false positives, we use
a symmetrized observations matrix (and resulting undi-
rected network), assuming that γijt is present if γjit exists.
In this work we focus on how different sampling scenarios
influence the overall results of spreading simulations. Our
emphasis is not on investigating who would be infected
in a real epidemic outbreak. In order to be able to mea-
sure the impact of subsampling, we need high resolution
data as a reference. Therefore, we only use the data from
participants with high data quality: out of 696 freshmen
students active in February 2014, we select 476 partici-
pants with data quality of at least 60% (fraction of 5-min
bins in which the data is available). We understand that
removing participants from the analysis might affect the
network structure in a way that slows down the spreading
processes. The resulting dataset is nevertheless the largest
of its kind and, as we show in the following, represents a
dense network.

2 Results

2.1 Dynamics of a complex social system

The network of close proximity interactions in the CNS
dataset displays dynamics at multiple time scales. We can
observe distinct weekly and diurnal patterns (Fig. 1a).
Concurrently, at the minute-by-minute resolution, we

observe significant fluctuations in the number of links ac-
tive within 5-min windows (Fig. 1a inset).

We can quantify the magnitude of network changes by
considering the overlap between active links in consecutive
time slices as a function of the duration of the aggregation
time window. A link (i, j) is considered active if at least
one interaction happened on it within the aggregated time
window. We define the overlap as

J =
|L∆T

t ∩ L∆T
t+1|

|L∆T
t ∪ L∆T

t+1|
(1)

where L∆T
t is set of links present in time t, in a time win-

dow of size ∆T . The overlap, averaged over all time-bins
in the network, is large at shortest timescales (J(∆T =
5 min) = 0.71) but drops rapidly as the size of the window
increases (Fig. 1b). For example, J(∆T = 1 h) = 0.51, in-
dicating a substantial turnover even at short timescales.

Within the 5-min time-bins, the network is comprised
of disjoint cliques, each one corresponding to a gathering
of individuals. The changes of the network during short
time intervals can be attributed to people moving between
gatherings, as proposed by Sekara et al. [13]. As a sys-
tem, these are constantly evolving, with members chang-
ing associations, and gatherings dissolving and forming
(Fig. 2a). These changes lead to the network connectivity
that can be observed when aggregating the interactions
into time-bins of longer duration (Fig. 2b), even though
every single time slice still consists of disjoint cliques.

2.2 Temporal subsampling

To study the effect of temporal subsampling – reduction
of dynamical information in the network – on the spread-
ing processes, we consider two sampling schemes. These
schemes are motivated by data collection strategies em-
ployed in the real studies, and therefore not necessarily
an effort to devise the best possible temporal compression
strategy.

In the first approach, which we call snapshot sampling,
we choose a random 5-min bin from every N bins and con-
sider this to represent the state of the entire network for
these N bins (Fig. 3a). This way, we reduce the tempo-
ral resolution by a factor of N , but in a coherent fashion,
because the network slices we use contain actual observed
network states. The ‘snapshot sampling’ is typically the
result of data collection methods which use static snap-
shots of the full population measured simultaneously. This
is the case when physical proximity networks are inferred
based on photographs or synchronized sensors, for exam-
ple reports from a WiFi system (i.e. a list of devices con-
nected to a router at the time of taking the snapshot, as
in Ref. [15]), or results of Bluetooth scans performed by a
fixed location device (as in Refs. [21,22]). We use random
5-min bin from every N bins rather than first bin (or last
or middle) to remove the possible bias of choosing always
the same part of the large time-bin (for example, always
choosing beginning of the hour).
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Fig. 2. Dynamics of physical proximity networks in a complex social system. (a) Nodes are colored based on the component they
belong at (randomly chosen) t0 (5-min time-bin). While preserving the colors we plot the network in t2, t4, t6, t8, corresponding
to 10, 20, 30, 40 minutes later. Nodes that are not present at t0 are marked in black. We can see how nodes move between
gatherings. (b) The constant mixing of the nodes presented in (a) connects the initially separate components in to a well
connected network when aggregating the interactions – even at relatively short timescales. Largest connected component in the
network is highlighted.

In the second approach, which we refer to as link sam-
pling, we sample the state (interacting/not interacting) of
every link (i, j) in the network from a random 5-min bin
within the sampling interval (Fig. 3b). Thus, for every
dyad, we choose a random 5-min bin (out the N eligi-
ble bins) use the dyad’s state (on/off) as representative
for this link in the subsampled network. This sampling
strategy results in a network state which may have never
existed at any given point in time, but which also contains
a factor of N less temporal information compared to the
original network. The link sampling corresponds to sam-
pling occurring in multiple places in the population in an
asynchronous way, a situation which occurs when collect-
ing data using mobile phones or sociometric badges.

The temporal subsampling in both modes reduces the
information about dynamics and results in a lossy com-
pressed version of the temporal network. The information
about the exact dynamics is lost (Fig. 4a), replaced by
static representations, with a width corresponding to the
subsampling parameter N . In both subsampling scenarios
the probability that a link (i, j) is active is directly re-
lated to the number n of 5-min bins in the N -bin interval
in which the link is present and this probability is equal
to n/N . This implies that the average number of interac-
tions after subsampling is the same in both snapshot and
link sampling. However, due to the high temporal vari-
ability presented in the inset to Figure 1a, we expect that
the number of links in the snapshot sampling will have
a higher variation. This is, in fact, the case, as we show
in Figure 4b. As expected, snapshot sampling results in a
larger variability in the total number of interactions, be-
cause snapshots with very high or very low number of
links may end up being chosen; still, the variability is

within ±20% from the number of interactions for the full
network. Performing linear regression on the mean values
of total number of interactions we test for slope different
from 0 (H0 : b = 0). The test statistic is t = b/sb on
(N − 2) degrees of freedom, and for both snapshot and
link sampling we do not discover any significant trend in
the average number of total interactions (p = 0.60 and
p = 0.63, respectively). On average, when the number of
interactions is considered, the subsampled networks are
equal.

In spite of the fact that the total amount of tempo-
ral information and average number of total interactions
are equal, the structure of the snapshot and link networks
is quite different. Keeping track of the size of the largest
connected component (LCC) we notice that the coherent
network sampling results in disconnected neighborhoods
dominating the network (Fig. 4c). As expected, in link
sampling, the network is more connected, with LCC con-
taining up to 50% of the nodes in the network.

2.3 Spreading results

To quantify the effect of temporal subsampling on the
modeling of a dynamic process unfolding on the net-
work, we simulate spreading using a Susceptible-Infected-
Recovered (SIR) model. In the spreading, we explore a
variety of values for the transmission parameter β, in-
cluding very slow and very fast transmissions (ranging
between β = 0.002 and β = 0.05), and maintain a fixed
recovery parameter µ = 4 days. We randomly subsample
the network 10 times for every value of subsampling pa-
rameter N and run 100 simulations per condition, with
a random starting time-bin and index patient. We apply
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Fig. 3. Models for temporal subsampling. (a) Snapshot sam-
pling: when reducing the sampling resolution N times, for each
set of N consecutive 5-min bins we randomly select one and use
it to represent these N bins. (b) Link sampling: when reducing
the sampling resolution N times, for each dyad in the network
during N consecutive 5-min bins we choose its state (interact-
ing or not interacting) in a random bin among the N and use
the state to represent the dyad’s status across the N bins.

circular boundary condition to extend the network beyond
one month. For our purposes, the spreading simulation is
used to understand the impact of sampling on a dynamic
processes in the network. We do not attempt to model any
particular disease.

Temporal subsampling, both snapshot and link-based,
results in decreased spreading. The spreading process is
slower, with a smaller peak value, and reduced total
outbreak size (Fig. 5a). This effect is more pronounced
for rapid spreading (large β) and the effect is markedly
stronger for snapshot sampling.

In Figure 5b, we quantify the effect of temporal sub-
sampling on outbreak size. The drop of the outbreak size
with the subsampling parameter N is well explained by
linear model (ordinary least squares regression), with a
sub-linear effect for low values of β. Again, the effect is
dramatically more pronounced for the snapshot subsam-
pling. Similarly, probability of small outbreaks (reaching
only a small fraction of the network) grows as a function of
subsampling (Fig. 5d), with effects much more pronounced
for the snapshot sampling. Finally, a reduction of tempo-
ral fidelity drastically increases the time it takes for the
spreading process to reach 50% of the network (Fig. 5e).

a

b
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Fig. 4. Temporal subsampling of the network. (a) The full
dynamics are replaced by static representation, with the width
depending on the subsampling parameter N . Here shown for
N = 72, i.e. one sample per 6 h. (b) Average number of total
interactions in the network depending on the sampling param-
eter. Shaded areas indicate 10th to 90th percentiles across 100
simulations per time value. (c) Fraction of nodes contained
in the largest connected component for one realization of the
network subsampling (N = 72). Link sampling results in much
more connected network.

2.4 Link-subsampling vs. full resolution

It is interesting to consider why spreading in the link-
subsampled network is not faster than spreading in the
full network: the number of connections in the link-
subsampled network is typically higher than in single time
slices of the full-resolution network. To understand why,
we consider the structure of the link-subsampled network
compared to the full-resolution network aggregated over
the same time window. The difference arises from the fact
that that although the subsampling is performed so that
the subsampled and full network have the same number
of interactions (i, j, t) in any given time window (Fig. 6a),
the way these interactions are distributed on links (i, j) is
very different.

To help guide our thinking about the differences, con-
sider the full-resolution network aggregated over a certain
time window. Here, the distribution of the link weights is
broad, with many weak links and a few very strong con-
nections. By contrast, link-subsampling creates a network
where all links have the same weight – because all links
are active through the entire window (Fig. 6b). The full-
resolution network has many more – but weaker – links
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Fig. 5. Results of SIR spreading process. (a) The shape of the
spreading curve is less affected when each dyad is sampled in-
dependently, but network sampling leads to a significant under-
estimation of the outbreak size. The effect is less pronounced
for slow spread (see the inset). Solid lines in (b)–(e) represent
snapshot sampling, dashed lines represent link sampling. (b)
With fast spreading epidemics, snapshot sampling results in
a smaller expected size of the outbreak, but slow spreading
epidemics are less affected. (c) Subsampling from 5-min bins
down to 120-min bins (increasing the sampling interval Ts)
does not significantly change the expected results of spreading
simulations. (d) The probability of a non-outbreak (outbreak
smaller than 20% of the network) grows with the temporal sub-
sampling. (e) For fast spreading epidemics, the time needed to
infect half of the population grows linearly with the increas-
ing subsampling rate in the network sampling scenario, but
stays relatively stable when we sample dyads. Difference for
low β is not statistically significant between snapshot and link
sampling.

active. This has strong implications for the connectedness
of the network. In the link-sampled network, the network
is split into a number of separate components, and an in-
fection is rarely able to infect the entire network within
a single frame. This is not the case in the full network,
which has an effectively much larger connected component

a b

c d

Fig. 6. Link weight heterogeneity in the full-resolution net-
work. (a) Links-subsampled and full-resolution network aggre-
gated over the same time window have the same number of
interactions (i, j, t). Here shown for N = 72 i.e. 6 h sampling.
(b) The link weights in these views are distributed very differ-
ently, the full-resolution network features a long-tailed distri-
bution with many weak links, whereas all links in the subsam-
pled network have the same weight equal to sampling window
size (72). (c) The higher number of links in the full-resolution
network leads to a greater connectivity, here illustrated by
the size of LCC. (d) The difference in the structure impacts
the spreading. For fixed starting conditions (time-bin and seed
node), it is possible to find regime of β where the spreading
on link-subsampled network is in fact faster (values above 1
on the plot). This is however not guaranteed for every start-
ing condition and on average the spreading is slower in the
link-subsampled network due to lower number of links.

within each frame (Fig. 6c). The way the full networks
grows connected across time-slices is shown in Figure 2b.

2.5 Slow versus fast spreading

These dynamics are sensitive to the speed of the disease
spread. When the disease spreading is slower (low β) than
the changes in the network, the gradual building of the
connectivity in the full-resolution network does not slow
down the spreading: from the slow disease perspective the
network looks well connected. In the case when the disease
spread is high (high β), the lower number of links (i, j) in
the link-subsampled network becomes the limiting factor.
When the transmission parameter is large, the number of
links, not the link weights, is important. The disease is un-
able to reach the full network, for example gettting ‘stuck’
in a disconnected component. In both of these cases the
full-resolution network facilities spreading, due to higher
number of links.

These findings imply there may exist a third regime
of β, where the transmission is faster than changes
in the full network, ‘waiting’ for connectivity in the
full-resolution network to build up, but slow enough that it

http://www.epj.org


Page 6 of 6 Eur. Phys. J. B (2015) 88: 249

does not run out of links in the subsampled network (never
fully filling up its network components). Such regimes can
be found in the network for fixed starting conditions (start
time and node). But these cases are rare, because each
instance depends on an interplay between the structure
of the network, size of the sampling window, and start-
ing conditions. Thus, when averaged over many different
starting conditions, the spreading is slower in the link-
subsampled network due to the lack of the high number
of weak links (Fig. 6d). In the following, we discuss find-
ings for the averaged case.

As expected, the impact of losing the temporal fidelity
is strongest for fast spreading processes. With the lack
of information about the detailed network dynamics, the
disjoint gatherings produced by snapshot sampling lead
to containment of the disease, resulting in smaller and
slower spreading. When the transmission parameter β is
high (fast spreading), the disease is more likely to infect all
nodes in the available neighborhoods, with no possibility
to propagate to new places. For slow processes, the loss of
temporal fidelity is less significant, as the spreading takes
more time to fill up the isolated gatherings. The contain-
ment effect is much smaller in the link subsampling, as the
network is more connected due to different (non-coherent)
configuration of the links.

3 Discussion

Above we have investigated how modeling of spreading
processes is impacted by reducing the temporal fidelity
of close proximity interaction networks. We found that
the network are highly dynamic, even at short timescales.
Within short time-bins, nodes gather in disjoint cliques,
but with changing affiliation across time. These dynam-
ics create significant interconnectedness when considering
network at longer timescales (hours). When these short
term dynamics are disregarded, either due to data col-
lection process or data compression, spreading processes
are strongly affected – as the temporal fidelity decreases,
outbreaks become less frequent and smaller.

Interestingly, subsampling the network in a synchro-
nized way (when the state of the entire network is sam-
pled at once and repeated) has a much greater impact on
the spreading results than when sampling is performed
independently across links. This is because the disjoint
gatherings that appear at shortest timescales inhibit the
spreading process, when the minute-to-minute dynamics
of nodes switching membership are lost. When we sample
every link from an independently chosen time-slice the im-
pact is much smaller, effectively approximating these short
timescale dynamics.

The results presented here highlight a fundamental
property of close proximity networks in social systems.

We show how the dynamics contained within hourly time-
bins can be instrumental for spreading process in the so-
ciety. Simultaneously, from a methodological perspective,
we illustrate how inclusion of these dynamics is crucial for
understanding of the network of close proximity interac-
tions and dynamical processes unfolding on them.
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