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Abstract

Instantaneous speed estimation has become a key part of many condition monitoring procedures
for rotating machinery. The ability to track the rotational speed of a system is a critical require-
ment for the majority of vibration-based condition monitoring methods. Information about the
speed enables compensating for potential speed variations that would otherwise impair conven-
tional frequency-based methods. The problem of instantaneous speed estimation based on the
vibration signals themselves is one that has received a significant amount of attention in recent
years. Installing encoders or tachometers has become a lot less attractive due to the potential
cost savings that can be obtained by simply utilizing an accelerometer instead. However, trying to
find a speed estimation method that fits a certain application “best” is not so straightforward if
one inspects the available literature. It turns out that there are many articles that present slight
variations or extensions to already existing techniques. This paper targets a general overview of
the available knowledge regarding vibration-based speed estimation techniques. It also aims to
review some of the most commonly used techniques by means of a performance comparison of
seven speed estimation methods on three different experimental data sets. The resulting speed
estimation data of all tested methods is made publicly available such that it can help in forming
a benchmark for future speed estimation methods.

Keywords: Tacholess, Speed estimation, Phase demodulation, Multi-order probabilistic
approach, Teager-Kaiser Energy Operator, Maximum tracking, Vold-Kalman filter

1. Introduction

Nowadays, vibration analysis has become one of the primary tools in condition monitoring of
rotating machinery. While the implementation of monitoring and diagnosis schemes is advancing[1,
2], there are still major scientific improvements to be made for it to evolve into a fully mature

∗Corresponding author
Email addresses: cedric.peeters@vub.be (Cédric Peeters ), quentin.leclere@insa-lyon.fr (Quentin
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technology. Many analyses are currently still being done manually by a domain expert and often5

the available knowledge with which decisions regarding maintenance are made, is far from complete.
Therefore, understanding the machine and component behavior is essential to advance the signal
processing and data analysis methodologies used in condition monitoring.

One of the problems that has received a lot of attention over the past two decades is the
presence of speed variation in measured vibration signals. The importance of an accurate speed10

estimation scheme is underlined by the existence of a special issue on Instantaneous Angular Speed
processing and angular applications in the Journal of Mechanical Systems & Signal Processing [3]
and of a conference dedicated solely to condition monitoring in non-stationary operations. There
is also quite a large body of literature on instantaneous frequency estimation in the field of signal
processing. However, the estimation of instantaneous speed from vibration signals addresses a15

more difficult problem, which often jeopardizes the use of these techniques. Typical problems that
can occur for the case of instantaneous frequency estimation from vibration signals are:

� Extremely low signal-to-noise ratio
� Strongly colored noise
� Harmonic interference (a special case of the former point)20

� Amplification by resonances (e.g. band-pass filtering in signal processing terms)
� Non-persistent and fading harmonics
� Presence of multiple harmonics
� ...

Accurate knowledge of the rotation speed of a machine is necessary to gain insight in the mechanical25

signatures of the machine components and it is of vital importance to the majority of leading-
edge vibration-based condition monitoring techniques. Many rotating machines indeed do not
operate at a constant speed but operates at varying speed regimes. Such non-stationary conditions
require an efficient and robust way of estimating the instantaneous angular speed (IAS) in order
to not invalidate techniques such as order analysis and angular resampling. While in the past30

this information would typically be measured using an angle encoder on one of the rotating shafts
[4, 5, 6], recent research efforts concentrate primarily on extracting the IAS directly from the
vibration signal due to the potential cost savings or installation problems. In industry however it
is still common practice to use rotary encoders to estimate the speed due to the reliability and the
accuracy. A whole range of rotary encoder types exists. Incremental encoders are rotary feedback35

speed and position transducers that produce coded output, typically in the form of a pulse train
with a frequency proportional to the rotation speed. Absolute encoders do not produce pulse
trains, but generate binary code that allow estimating the shaft position accurately. Typically,
absolute encoders operate using an optical method, such as light sources and photo-sensors in
combination with a disk made of regions with different transparency. A downside of this approach40

is that the photosensors must be mounted close to the rotor disc, and a small tolerance is required
at the relative sensor positions [7]. If the working distance of the photosensors can be increased
from the actuators, it leads to more flexible applications and this is where vision-based solutions
come in.

Computer-vision algorithms have been used in the past for visual tracking of an object [8],45

examples are techniques such as SIFT [9] and SURF [10]. Vision-based methods are applicable
for objects positioned relatively far from the observer and thus do not have the same structural
limitation as standard optical encoders. Nowadays, there are quite a few publications available
that investigate rotation speed measurement using vision-based methods [11, 12, 13, 14, 15]. Each
paper suggests different approaches in tracking the rotation speed and angle, but most of them50

are based on tracking high-contrast markers or speckle patterns. Typically this involves using ex-
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pensive camera equipment capable of filming at very high frame rates. Recently, Zhong et al. [16]
showed that artificial fringe patterns and linear array sensors can be employed to estimate with
high precision the instantaneous rotational speed. Following the Industry 4.0 trend, there is an
increasing focus on cost efficiency also in this research field. Wang et al. [17, 18] show that vision-55

based rotation speed estimation is feasible using a low-cost imaging device. Their methodology is
based on tracking the degree of similarity, quantified by a two-dimensional correlation, between
consecutive images. The periodicity of the low-resolution similarity can then be exploited using the
Chirp-Z Transform. While these low-cost, vision-based encoders do not achieve the same accuracy
yet as the standard optical encoders, this deficit will certainly decrease in the future when imaging60

sensors become even cheaper and algorithms more optimized.

Currently, the main benefit of using a direct speed measurement approach, i.e. an angle encoder,
as compared to an indirect approach, i.e. vibration-based speed estimation, is still the accuracy.
When using an indirect method such as vibration-based speed estimation, the analysis is often65

confronted with several interfering sources due to the nature of the vibration measurements, e.g.
resonances, non-speed related harmonics, noise, etc. These effects can have a detrimental effect
on the accuracy as compared to angle encoders. On the other hand, vibration sensors are often
cheaper and easier to install than angle encoders. Sometimes it can be unfeasible to instrument
the shaft of interest with a standard encoder when the shaft is too large or not accessible. Also the70

data acquisition system needs to be capable of reading in and processing the encoder data stream
and often requires dedicated measurement hardware. The capability to simultaneously measure
the vibrations for condition monitoring purposes and estimate the speed based on those vibrations
allows to circumvent the encoder-related practical inconveniences and costs.

75

This paper focuses on estimating the IAS based on the information contained within the vi-
bration signal. While it is possible to utilize the IAS itself as a form of indicator for the condition
of the machine, this typically involves installing a high-resolution encoder [19, 20, 21] in order to
reach the required accuracy of the IAS to be able to detect small faults. Analyzing signals in
the angular domain is one of the main reasons why most condition monitoring procedures include80

speed estimation. Even though there have been many publications in the past decade detailing
various “encoder-less” or “tacholess” speed estimation methods, most of them can be categorized
into a limited amount of groups.

A large number of contributions focuses on extracting speed information by tracking harmonics85

in a time-frequency representation (TFR) of the vibration signal with varying degrees of complex-
ity. Typical examples of such TF representations are the short-time Fourier transform (STFT), the
wavelet transform, or a Wigner-Ville distribution. Urbanek et al use a simple maximum tracking in
the spectrogram in a comparison with phase-based demodulation methods [22]. Furthermore, mul-
tiple research papers investigate the possibility to improve the STFT for instantaneous frequency90

tracking by increasing the resolution when necessary. Kwok et al. [23] implement an adaptive
short-time Fourier transform that chooses the optimal window parameters based on an entropy
concentration measure of the STFT. Cheung et al. [24] use two kernel functions of different supports
to obtain a wideband and a narrowband spectrogram. To preserve the localization characteristics,
they implement a combined spectrogram using the geometric mean of the corresponding STFT95

amplitudes. Peng et al. [25] use a chirplet transform with a polynomial kernel to extend the stan-
dard chirplet transform to non-linear IAS estimation with improved frequency resolution. Sekhar
et al. [26] investigate the effect of interpolation on the polynomial Wigner-Ville distribution and
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IAS estimation. An alternative to the STFT that is often used when more flexibility regarding
frequency and time resolution is required, is the wavelet transform. Gryllias et al. [27] use com-100

plex shifted Morlet wavelets to find the optimal shift and bandwidth from which to determine the
instantaneous speed. Current signals can also use this type of techniques to determine the speed
since they are very similar to vibration signals. Aller et al [28] use an analytic wavelet transform
on the stator current signal of an AC machine combined with a simple ridge tracking algorithm.

A fairly recent development is the synchrosqueezing transform. In 2009, Daubechies et al. [29]105

proposed this new technique in the context of audio analysis. Generally, it can be considered as a
special type of reassignment method, similar to what had been done before for the STFT and other
conventional TFRs [30, 31]. The purpose of this type of reassignment techniques is to improve the
concentration of signal components in the time-frequency plane making them more suitable for
visual analysis and for methods such as ridge extraction. Correspondingly, there has been a surge110

in papers making use of the advantages of this new technique [32, 33, 34]. Xi et al. [34] propose a
frequency-shift synchrosqueezing algorithm to generate the TFR that afterward gets used as input
for the Viterbi algorithm to find the IAS. Shi et al. [32] employ a step-wise demodulation transform
in combination with STFT-based synchrosqueezing to determine the IAS. However, there is still
strong concern about whether or not synchrosqueezing actually increases the reliability of speed115

tracking on noisy multi-component vibration signals [35, 36, 37] compared to an STFT or Wavelet
transform. Considering this concern and to keep the length of the paper limited, synchrosqueezing
is not investigated in this paper.

Other papers focus more on improving the tracking in a TFR rather than improving the TFR120

itself. Barrett et al.[38] use Hidden Markov Models to incorporate probability in the evolution of
the instantaneous frequency. Schmidt et al. [39] incorporate a priori probabilistic knowledge about
the instantaneous frequency of the system to increase the robustness of the maxima tracking in
the STFT. Quite a few papers focus on implementing a robust ridge detection scheme to track the
IAS [40, 41]. The TFR used for ridge detection varies based on the application and sometimes also125

based on the preference of the authors, but most of them take into account some a priori knowledge
about the physical system under investigation. Wang et al. [41] propose the non-linear squeezing
time-frequency transform in combination with ridge detection to estimate the IF. Iatsenko et
al. [42] use an improved dynamic path optimization method to efficiently estimate the candidate
path that best represents the IAS. They also investigate the applicability and performance of their130

method on different TFRs such as the STFT, the Wavelet transform, and their synchrosqueezed
variants.

Some techniques try to utilize more than just one single harmonic present in the signal and
its TFR. These methods try to make full use of all the mechanical events linked to the speed,
e.g. all synchronous gear and shaft harmonics in a gearbox. Often in complex rotating machinery,135

there are different operating regimes, potentially leading to other harmonics to be excited or to
significant amplitude differences of the tracked harmonics. Therefore, the idea of using multiple
harmonics makes sense for the purpose of increasing robustness. For example Zimroz et al [43]
divide the STFT into different frequency sub-bands belonging to different harmonic orders and
detect the instantaneous meshing frequency for each of the orders by modeling the noise levels140

and using a threshold based on the spectral kurtosis. Afterward they perform an averaging of the
different normalized instantaneous meshing frequencies to obtain a mean estimate of the speed. A
fairly recent development is the multi-order probabilistic approach [44, 45]. This approach does
not require a priori knowledge about the exact harmonic related to a certain periodic mechanical
event but views the STFT as a probability density function (pdf) map of the speed. These multi-145

4



harmonic methods perform particularly well when the harmonic structure of the signal is well
known and excited.

Another major group of speed estimation methods makes use of band-pass filtering and phase
demodulation based on the analytic signal. Usually one speed-related harmonic is selected based
on its signal-to-noise ratio (SNR) and then used for phase demodulation after band-pass filtering150

around that harmonic [22, 46, 47, 48]. There are also multiple different ways to obtain the demod-
ulated phase. Bonnardot et al. [46] introduced the standard demodulation approach as described
above in order to angularly resample the vibration signal and they indicate some considerations
and limitations about the technique. Boudraa et al. [49] use the Teager Energy Operator in com-
bination with Empirical Mode Decomposition to obtain instantaneous frequency (IF) estimates155

for every Intrinsic Mode Function (IMF). This approach does rely on the assumption that each
IMF corresponds to a band-pass filtered, IF-related harmonic. A unique approach related to de-
modulation was proposed by Randall et al. [50] based on a new interpretation of the Teager Kaiser
Energy Operator (TKEO). It avoids issues one might get with unwrapping the phase in the stan-
dard phase demodulation approach and is based on utilizing amplitude demodulation in the form160

of the squared envelope of the band-pass filtered signal.
Lastly, there are a number of lesser used approaches for speed estimation. Cardona et al. [51]

use a square-root cubature Kalman filter to estimate the speed and for order tracking of the
signal. They estimate the number of orders necessary for the Kalman filter based on the number
of high amplitude harmonics. Scala et al. [52] use an extended Kalman filter non-stationary165

sinusoid tracker (EKF-NST) that also allows for both frequency estimation and order tracking. The
downside of most model-based approaches is that they require a lot of input parameter tweaking
which is often difficult to automate. Another unique approach is based on the scale transform.
Combet et al. [53] use a short-time scale transform to estimate the instantaneous speed relative
fluctuation based on the varying time-scale factor along the vibration signal.170

The idea behind this paper is to assess the advantages, disadvantages, and performance of these
different types of techniques. Based on the available literature, it is clear that there are a lot of
possible variations on the same methods out there, resulting in often very similar speed estimation
techniques. Since it is impossible to implement and test all of these variations, a selection is made
from the different groups mentioned earlier to provide a qualitative comparison. The techniques175

are examined for their performance on three experimental data sets originating from three different
machines, namely a wind turbine gearbox, an aircraft engine and the generator of a ship.
The authors hope that for people interested in instantaneous speed estimation, this paper will
provide a clear overview of the (dis)advantages of each approach such that they do not have to
guess which approach fits their application or needs the best, which is often the case for newcomers180

to this field. The performance comparison on the three data sets is meant to corroborate the
findings. Not only the accuracy of the end result is taken into account, but also things that are
more related to the ease of use of the method, like the ease of implementation, the computation
time, the number of input parameters and the sensitivity to those input parameters.

2. Methodology185

The methods compared in this paper are in essence either based on demodulation or on a
time-frequency representation of the signal, since these represent the majority of the techniques
out there. This means that no purely model-based or scale transform approaches are investigated.
In total seven methods are assessed:

1. Phase demodulation190
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Signal Band-pass filter Hilbert transform xanalytic(t)

φ(t) = =(log(xanalytic(t))) Unwrap φ(t) finst = 1
2π

dφ(t)
dt

Figure 1: Overview of a standard phase demodulation approach.

2. Iterative phase demodulation
3. Demodulation based on the Teager-Kaiser Energy Operator
4. Multi-order probabilistic approach
5. ViBES method
6. Cepstrum-based multi-order approach195

7. Maximum tracking in combination with a Vold-Kalman filter
A short background summary of every method is provided to explain some of the key details
concerning the methods. For more detailed information, interested readers are referred to the
origin articles of each method, with the exception of the ViBES method which has not been
published before. Keep in mind that some of the techniques presented here can also be used in200

different combinations with other techniques, but investigating all possible combinations would be
unfeasible.

2.1. Phase demodulation based on analytic signal

Perhaps the most used approach for vibration-based instantaneous angular speed estimation is
based on phase demodulation of a shaft-speed related harmonic that exhibits a high signal-to-noise
ratio. This method is fairly straightforward and is mainly based on using an (ideal) band-pass filter
around a well-separated, high SNR harmonic of the rotation speed. After defining the optimal lower
and upper cutoff frequencies for the band-pass filter, the harmonic is isolated from the complex
spectrum. Next, the analytic signal xanalytic(t) can be obtained by inverse Fourier transforming the
complex band-pass filtered spectrum to the time domain without its negative frequencies. This
xanalytic(t) is then ideally a mono-component signal with a high SNR and can be written in its
exponential form:

xanalytic(t) = A(t)ejφ(t) with A(t) ≥ 0 (1)

Thus, the instantaneous phase is given by the imaginary part of the logarithm of the analytic
signal:

φ(t) = =(log(xanalytic(t))) (2)

Finally, the instantaneous frequency is estimated based on the variation of the unwrapped phase:

finst(t) =
1

2π

dφ(t)

dt
(3)

The instantaneous angular speed can then be obtained by multiplying finst(t) with the correct
kinematic ratio.205

Figure 1 shows a flowchart of the full approach that clearly does not require a lot of steps and
is easy to implement.

While this approach can deliver very accurate IAS estimations in cases where such a single, con-
stantly present, and dominant harmonic is existing, there are ample cases where this approach has
its limitations regarding applicability. In complex rotating systems, the deterministic components
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Signal x(t) Band-pass filter Phase demodulation

Angular resampled signal

Instantaneous Speed

Angular resampling of x(t)

Figure 2: Overview of the iterative demodulation approach.

are not necessarily all harmonically related, causing crossing orders and skewing the extracted in-
stantaneous phase. Additionally, such systems often operate in strongly varying conditions which
can cause harmonics to fade into the noise. Another limitation of this technique is the boundaries
for the possible speed fluctuation. When a harmonic at a higher frequency is chosen, this often
accompanies a reduced possible relative bandwidth size for the band-pass filter due to overlapping
of lower and higher order harmonics. Take for example the straightforward case where there are
only harmonics of the shaft speed present in the signal at frequency fshaft, so no sidebands related
to the meshing of gears. The maximum speed fluctuation ∆θ̇max that can be present in the signal
to allow for band-pass filtering the nth harmonic so that it does not overlap with its lower order
harmonic at (n− 1) and higher order harmonic at (n+ 1) is:

∆θ̇max =
fshaft
2n+ 1

(4)

with fshaft being the average of the minimum and maximum shaft speed. This means that in order
to define a band-pass filter on the second harmonic n = 2 so that it does not overlap with the
third harmonic, the speed fluctuation of the signal cannot be greater than

fshaft
5

.210

This simple example shows that the possible speed fluctuation quickly gets limited by the
maximum bandwidth that does not cause overlap with other harmonics. A small adaptation of
the method is therefore made for long signals with strong speed fluctuations. For such signals,
it is impossible to incorporate the full signal in one demodulation step since the required filter
bandwidth would be too large and encompass multiple harmonic orders. Thus the demodulation215

is done consecutively on windowed sections of the signal. In this paper a rectangular window with
a standard overlap of 50% is chosen for all phase demodulation methods. The obtained speed
profiles of overlapping sections are averaged together using a weighted average based on a Hanning
window with its center in the middle of the window. This is done to reduce the influence of the
end effects associated with using an ideal FFT band-pass filter.220

2.2. Iterative phase demodulation

The previous paragraph touches upon the fact that it is not always possible to define a band-pass
filter on the full signal when the speed fluctuation is too high. Therefore, a possible remedy [54]
is to use a lower order harmonic first. This way an initial speed estimate can be obtained which
can afterward be used for angular resampling of the signal. After angular resampling, the speed225

fluctuation still present in the signal is due to the estimation error in the initial speed estimate, but
it should have greatly decreased. Thus, another phase demodulation step can be performed using
a higher order harmonic now with a band-pass filter that has a smaller bandwidth thanks to the
decreased speed fluctuation. Figure 2 shows a simplified diagram of this iterative demodulation
approach.230
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2.3. Teager-Kaiser Energy Operator

An interesting new way of looking at the Teager Kaiser Energy Operator (TKEO) was found
by Randall et al. [50]. Instead of using the TKEO for tracking the energy in speech signals, they
show that it is possible to estimate the speed directly from the TKEO formulation.

The TKEO is defined in continuous form as follows:

Ψc(x(t)) = [ẋ(t)]2 − x(t)ẍ(t) (5)

If the TKEO is applied to a monocomponent signal such as an amplitude and frequency modulated
sine (which in practice can be achieved through band-pass filtering), then the signal x(t) can be
written as:

x(t) = A(t)sin(φ(t)) with φ(t) =

∫
t

ω(t)dt (6)

with A(t) and ω(t) = the time-dependent amplitude and frequency respectively. If the variation
of these two quantities is slow, then:

ẋ(t) ≈ ω(t)A(t)cos(φ(t)) (7)

ẍ(t) ≈ −[ω(t)]2A(t)sin(φ(t)) (8)

The TKEO then becomes:

Ψc(x(t)) = [ẋ(t)]2 − x(t)ẍ(t) (9)

≈ [ω(t)]2[A(t)]2(cos2φ(t) + sin2φ(t)) (10)

≈ [ω(t)]2[A(t)]2 (11)

The squared envelope sex(t) of x(t) is defined as:

sex(t) = x2(t) + x̂2(t) (12)

with x̂(t) the hilbert transform of x(t). It then follows that:

Ψc(x(t)) = [ω(t)]2[A(t)]2 = [ω(t)]2sex(t) = seẋ(t) (13)

ω(t) =

√
seẋ(t)

sex(t)
(14)

As Randall et al. point out in their paper [50], it is quite straightforward to implement this tech-235

nique. A zero phase-shift ideal FFT filter can be used to band-pass filter the signal. The squared
envelope sex(t) is obtained by simply inverse Fourier transforming the filtered band back to the
time domain without the negative frequencies and squaring the amplitude. The squared envelope
of the derivative seẋ(t) is obtained in exactly the same way but an additional multiplication with
jω is done in the spectral domain concurrently with the band-pass filtering. Multiplying with jω240

is equivalent to applying an ideal differentiation filter on the signal. It avoids partially the typical
differentiation issue related to noise amplification of higher frequencies (due to the differentiation
filter gain that increases linearly with frequency) thanks to the limited bandwidth of the band-
pass filter. The use of ideal Fourier filtering does create some end effects related to the Gibbs
phenomenon, but these can be alleviated if one can transform a slightly larger signal part. The245

start and the end of the signal can then simply be discarded in further analysis.
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2.4. Multi-order Probabilistic approach

The multi-order probabilistic approach (MOPA) belongs to the group of techniques that try
to utilize more than just one harmonic order in the signal for the speed estimation. The general
idea behind MOPA as proposed by Leclère et al. [44] is based on regarding the instantaneous
spectrum, which can be obtained through a short time Fourier transform (STFT), of the vibration
signal as a probability density function (pdf) of the IAS Ω. Consequently, if the spectrum has
a high amplitude at frequency f , there is a high probability that the shaft frequency is equal to
f/Hi with Hi being the excitation order or, for the cases described below, the gear ratios. The
STFT can be calculated for a signal x(n) as follows:

STFTx(m, k) =
N−1∑
n=0

x(n)w(n−m)e−2πjk n
N (15)

with N the window length, n the sample index, m the window index, and k the frequency index. It
is important to define a range for the IAS in which the user expects the IAS to reside. This range
has a lower bound Ωmin and an upper bound Ωmax. The following pdf can then be constructed:{

p(Ω|Hi) = 1
ξi
A(Hiω) for Ωmin < ω < Ωmax

p(Ω|Hi) = 0 for ω < Ωmin — ω > Ωmax

(16)

with A(f) a whitened version of the vibration signal’s spectrum and ξi a normalization factor to
make sure the pdf has unit area:

ξi =

∫ Ωmax

Ωmin

A(Hiω)dω. (17)

The purpose of the whitening is essentially to reduce the influence of resonances on the generated
pdf, since it is undesirable to give a too high probability to a certain part of the spectrum only
due to the increased amplitudes because of a resonance. The used whitening technique should be250

chosen based on the application.
To improve the IAS estimation and utilize more of the information potential of the spectrum,

one has to include more than just one pdf based on one gear ratio or meshing order. Afterwards
these different pdfs can be combined together in one pdf by multiplication. Equation 16 does not
take into account the possibility that a part of the spectrum for a certain harmonic Hi can exceed
the Nyquist frequency. In this case the pdf is made uniform above fmax/Hi:{

p(Ω|Hi) = 1
ξi
A(Hiω) for Ωmin < ω < fmax/Hi

p(Ω|Hi) = 1
Ωmax−Ωmin

p(Ω|Hi) = 0 for ω < Ωmin or ω > Ωmax

(18)

with ξi now:

ξi =
Ωmax − Ωmin

fmax/Hi − Ωmin

∫ fmax/Hi

Ωmin

A(Hiω)dω. (19)

The inputs of the method are thus an approximate range for the IAS, the meshing orders and the
vibration signal. For every order a pdf is then constructed based on the signal’s instantaneous
spectrum and rescaled to the given range for the IAS. Next, the pdfs are multiplied to combine
the information of all the orders so that the main corresponding estimate for the IAS becomes the255

most dominant peak in the pdf.
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Currently, the pdfs are still independently generated for each time step and thus do not guar-
antee any continuity of the IAS, which is a logical assumption for any mechanical system. Due to
the inertia of the rotating shafts, strong acceleration or deceleration is improbable. As such, to
improve the results further, an a priori of continuity is introduced for the IAS. The concept relies
on generating for each time step a pdf that is based on the pdfs of several time steps before and
after the central pdf. Appropriate weighting of these pdfs is done by convolving the pdf with a
centered Gaussian and the time relationship is introduced by letting the variance depend on the
time between the considered pdf and the central pdf. The pdf at time step j generated by the pdf
at time step j + k is defined as:

p(Ωj)j+k =

∫ Ωmax

Ωmin

p(Ωj|Ωj+k)dω ∝ exp(
ω2

2σ2
k

) ∗ p(Ωj+k) (20)

with p(Ωj)j+k the pdf at time j that can be obtained by convolution of the pdf at time j + k,
p(Ωj+k) with a centered Gaussian, and σk = |γk∆t| with ∆t being the time step, γ the standard
acceleration of the IAS. Similar to the previous step in which the pdfs corresponding to the different
orders have to be multiplied for each time step to obtain a single combined pdf, there are now
again multiple pdfs for every time step j + k belonging to time steps before and after time step j.
Thus the final step is to multiply again all the pdfs for every time step:

p(Ωj)s ∝
K∏

k=−K

[Ωj]j+k. (21)

The instantaneous angular speed can then simply be obtained by calculating the expected value
of every pdf.

2.5. ViBES method

The ViBES method is an STFT-based algorithm recently developed at MIT’s Research Labo-
ratory of Electronics and similar in approach to the MOPA method. It also views the STFT as
a combination of probability density functions but has the user define ranges of the STFT that
represent these pdfs. These ranges also track the instantaneous frequency estimates. For this
method, the user defines an initial estimate of the vibration frequency, f̂0, and defines a set of
vibration mesh ranges of interest,

R = {r1, r2, . . . , rM} , (22)

where ri = [ri,min, ri,max], i.e., all real values in the range ri,min to ri,max.260

The set of mean values of these ranges,

R̄ = {r̄1, r̄2, . . . , r̄M} (23)

should correspond to strong (in the signal-to-localized-noise ratio sense) individual vibration spec-
tral components correlated to the frequency profile of interest (e.g. the frequency of a particular
shaft’s rotation). For convenience, these mesh ranges should be ordered from low to high and
related such that,

r1

r̄1

=
ri
r̄i
. (24)

In this way, the user can define R̄ based on the expected locations of strong vibrational mesh
content, and set the width of all the corresponding ranges based on the width of a single range.
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This defining range should be set wide enough so that all ranges sufficiently encompass their
corresponding vibrational spectrum component but not too wide that any range also encompasses
adjacent correlated vibrational spectrum content. For example, for harmonically related vibration265

meshes, each range should only encompass one harmonic.
The method operates by calculating the STFT as defined in Eq. 15 and obtaining At[k] of the

vibration measurement, with t being the time at the center of the window.
At each time instance, t, the algorithm converts the M vibration mesh ranges of interest, R,

into frequency ranges as,
F = f̂t−∆tR, (25)

where f̂t−∆t is the previous time instance frequency estimate. The corresponding M sections of
At[k] are At[K] where K 3 ki, and,

ki = N
f̂t−∆t

Fs
ri. (26)

with Fs being the sample rate of the measurement.
The algorithm treats the magnitude profiles of theseM ranges as scaled and sampled probability

density function estimates of the location of the vibration frequency profile of interest at time t,
i.e.,

p̂t,i (fi) = αi|At[ki]|, (27)

where,

fi =
f [ki]

r̄i
. (28)

Here, αi is the scaling factor to ensure
∑
p̂t,i(fi) = 1.270

If the mesh ranges, R, are ordered from low to high and related according to (24), then each fi
will cover a similar range, though fM will have the highest frequency resolution. Each probability
density function, p̂t,i(fi) can then be interpolated to match the sample points, fM , so that the
M resulting probability density function estimates p̂t,i(fM) have the same length and thus can be
arithmetically combined to form a single composite probability density function,

p̂t(fM) = g (p̂t,i, fM) . (29)

For the results presented in this paper, the function g() calculates the joint probability density
function assuming each pt,i as independent, i.e.,

g(p̂t,i, fM) =
M∏
i=1

p̂t,i(fM). (30)

Finally, the frequency estimate for time, t, is calculated as the expected value of the composite
probability density function,

f̂t =
∑
fi∈fM

fip̂t(fi). (31)

This process is repeated for the length of the vibration signal x(n) to form the full estimated
frequency profile, f̂ .
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2.5.1. Adaptation 1: Illegal Regions

To improve robustness, the ViBES method allows defining “illegal” frequency regions unavail-
able for the analysis. This helps protect against the amplifying influences of resonances as well as
vibration disturbances from extraneous sources, e.g., 50 Hz or 60 Hz “hum” corresponding to the
electrical line frequency. These regions can be defined as,

Z = {z1, z2, . . . , zL} . (32)

At each time instance, t, if any of the frequency regions of F (calculated in (25)) overlap with any
regions of Z, the algorithm removes the overlapping regions from F and removes the corresponding
mesh range from R. That is, (25) becomes,

F =
{
f̂t−∆tri | f̂t−∆tri ∩ zj = ∅ ∀ zj ∈ Z

}
, (33)

and R is updated as,

R =
F

f̂t−∆t

. (34)

The analysis then continues through (26) - (31).

2.5.2. Adaptation 2: Variance-Based Lock-in Tracking275

The ViBES method also allows the automated toggling between two modes, wait and track,
in response to a criteria metric. For example, the variance in the composite probability density
function,

σ2 =
∑
fi∈fM

(
fi − f̂t

)2

p̂t(fi), (35)

can be thought of as a confidence metric of the estimate, f̂t. A low value corresponds to when the
individual probability density functions, p̂t,i (fM), have high signal-local-noise ratios with content
co-aligned in fM . A high value occurs when the signal-local-noise ratio is low and/or when their
vibration content is not well co-aligned. If the previous time-instance estimate of frequency, f̂t−∆t,
is good at time instance t, then σ2 will be small and the analysis should save the updated estimate.
However, if the estimate is poor, then the content will not align well and σ2 will be high. Thus,
maintaining a binary state variable St and setting it conditional to σ2 incorporates an algorithmic
decision to start, keep, or stop tracking frequency. That is,

St =


0, if St−∆t = 0 and σ2 > σ2

l

0, if St−∆t = 1 and σ2 > σ2
h

1, if St−∆t = 0 and σ2 ≤ σ2
l

1, if St−∆t = 1 and σ2 ≤ σ2
h

, (36)

where σ2
l and σ2

h are empirical threshold values with σ2
h > σ2

l . In (36), St = 0 indicates wait-mode
and St = 1 indicates track-mode. (31) can then be altered to depend on St,

f̂t =

{∑
fi∈fM fip̂t(fi), if St = 1

∅ if St = 0
, (37)

so that the profile f̂t only contains estimates when in track mode.
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Under this operation, (25) and (26) need to be adapted by replacing f̂t−∆t with ft,0 as f̂t−∆t

can take on the null set. By setting ft,0 as,

ft,0 =

{
f̂t−∆t, if St = 1

fw, if St = 0
. (38)

where fw is the initial frequency guess when in wait mode and defined by the user.

2.6. Cepstrum-based multi-order approach

This paper investigates the performance of combining the cepstrum transformation with the
multi-order probabilistic approach. This technique is inspired by the approach proposed by F.280

Bonnardot at the data contest [55] of the Surveillance 8 conference which was held at the Roanne
Institute of Technology in France. In this contest Bonnardot uses the cepstrum to find an initial
estimate for the speed. Instead of a Time-Frequency Representation (TFR), a Time-Quefrency
Representation (TQR) is generated based on a short-time cepstrum transform. The technique
then makes use of a tracking algorithm based on the maxima of the first five rhamonics in the285

TQR and based on using linear prediction to find the expected quefrencies.

Background about cepstrum

The complex cepstrum is defined as the inverse Fourier transform of the log spectrum. It can
be expressed in terms of the amplitude and the phase of the spectrum:

Cc(τ) = F−1{ln(X(f))} = F−1{ln(A(f)) + jφ(f)} (39)

where X(f) is the frequency spectrum of the signal x(t):

X(f) = F{x(t)} = A(f)ejφ(f) (40)

By setting the phase to zero in Eq.(39), the real cepstrum can be obtained:

Cr(τ) = F−1{ln(A(f))} (41)

Here, τ is a measure of time, referred to as “quefrency”, however it is not defined in the same sense
as a signal in the time domain. A peak at a certain quefrency corresponds to the inverse period of290

a series of periodic harmonics in the spectrum. For example, if the sampling rate of a signal is 20
kHz and the cepstrum displays a quefrency peak at 1000 samples, the peak indicates that there is
a family of harmonics present in the spectrum with a spacing of 20 Hz (20 kHz/1000 samples).

An important property of the cepstral domain is that the convolution of two time domain
signals can be expressed as an addition of their cepstra. Consider the output signal y(t) of a
physical system represented by the convolution of an input signal x(t) and an impulse response
h(t) of the system:

y(t) = x(t) ∗ h(t) (42)

Because of the convolution theorem, this time domain expression transforms into a multiplication
in the frequency domain:

Y (f) = X(f)H(f) (43)

In turn, taking the logarithm of Eq.(43) transforms the multiplication into a sum:

ln(Y (f)) = ln(X(f)) + ln(H(f)) (44)
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Since the Fourier transform is linear, the addition remains valid in the cepstral domain.

C(τ) = F−1{ln(Y (f))} = F−1{ln(X(f))}+ F−1{ln(H(f))} (45)

This property indicates the possibility to deconvolve a signal if one of the factors is known. As such
the logarithmic transformation allows the separation of the influence of the excitation source and295

the transmission path of the system in the cepstral domain. This property opens up possibilities
for modal analysis in the cepstral domain [56], but this is not the focus of this paper.

TQR-based speed estimation

The usage of the cepstrum for speed estimation is slightly different in this paper compared to
Bonnardot’s approach. Instead of using a tracking approach based on the first five harmonics, the300

TQR is regarded as a probability density function map of the rhamonic orders similar to MOPA.
The TQR of a signal or Short-Time Cepstrum Transform (STCT) is essentially based on the

STFT. The STCT is then simply the inverse Fourier transform of the natural logarithm of the
absolute values of every spectrum in the STFT. The amount of windows remains the same:

STCTx(m, τ) =
1

N

N−1∑
k=0

ln(|STFT (m, k)|e−2πjτ k
N ) (46)

with τ the quefrency index. This STCT or “cepstrogram” is then used as input for the same
formalism as defined in Section 2.4 for MOPA. The key difference between MOPA on the STFT
and STCT is based on the fact that a decrease in rotation speed will actually lead to an increase
in the quefrency peak related to that rhamonic order. This means that the STCT looks like it is305

inverted compared to the STFT. All the frequency intervals defined for the spectra are also inverted
since the minimum and maximum expected rotation frequency correspond to the maximum and
minimum rotation quefrency respectively.

2.7. Maximum tracking combined with Vold-Kalman filter

The final technique to be investigated is a combination of two commonly employed techniques310

and is based on the three-step procedure described in [39]. First, the spectrogram of the signal is
calculated and used for a maximum tracking procedure. There exist quite a few maximum tracking
algorithms, but the one showcased in this paper is the one described in [39]. Second, this initial
speed estimate based on the maxima serves as input for the Vold-Kalman filter, which is regarded
as a time-varying band-pass filter in this context with the center frequency being the initial speed315

estimate. Third, the resulting, filtered signal should then be a mono-component signal and thus
suitable for phase estimation through its analytic signal.

Maximum tracking

The idea behind maximum tracking is very straightforward: the amplitudes of a speed-related
harmonic (or set of harmonics) are tracked over time in the spectrogram in an automated way by
simply looking at the peaks (maxima) near the expected frequency and assuming that the found
peaks are related to the harmonic to track. The manner in which this automated search and
tracking is implemented varies greatly within literature [57] and there still does not seem to be a
consensus as to what the optimal approach consists of. Regardless, the approach in this paper (as
proposed in [39]) is based on solving a constrained optimisation problem in the form of:

minimize
k

= −|STFT (n, k)|2 (47)

subject to (k∆f − fc(n))2 ≤ ∆f 2
c (48)
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with fc the center of the constraint, n the time index, ∆fc the bandwidth of the constraint, k the
frequency index, and ∆f the frequency resolution. It is assumed that:

fIF (n∆t) ≈ fmax(n) (49)

with fIF the actual instantaneous frequency of the harmonic to track, ∆t the time resolution of
the spectrogram, and fmax the frequency that corresponds to the maximum amplitude. In order
to make the tracking process more robust, the acceleration of the instantaneous frequency (IF)
can be taken into account. The Taylor series expansion of the IF gives:

fIF (t) = fIF (t−∆t) + ∆t
d

dt
fIF (t−∆t) +

1

2
∆t2

d2

dt2
fIF (t−∆t) + ... (50)

The gradients of the IF are of course unknown (and assumed to be continuous) and the actual fIF
is also unknown. Therefore, the gradients are estimated using a simple finite difference scheme
based on the previous IF estimates fmax(n− 1), fmax(n− 2), etc. Next, it is assumed that:

fmax(n) = fIF (n) + ν(n) (51)

with ν representing the deviation due to smearing of the STFT and noise in the signal. It is
assumed that this deviation has a Gaussian distribution ν ∼ N(0, σ2) so that the estimated IF,
fmax, can be related to the true IF, fIF , as follows:

p(fmax(n)|fIF (n), σ2) =
1√

2σ2π
e−

(fmax(n)−fIF (n))2

2σ2 (52)

A model of the true IF fIF,w is used since fIF is unknown. An N th-order polynomial is used for
fIF,w:

fIF,w = w0 + w1t
1 + w2t

2 + ...+ wN t
N (53)

The polynomial weights w = [w0, w1, w2, ..., wN ]T are estimated through a maximum likelihood
procedure:

ŵ = argmax
w

n−1∏
i=n−Nm

p(fmax(i)|fIF,w(i), σ2) (54)

with Nm the number of previous time steps taken into account. The maximization of the like-
lihood function under a conditional Gaussian noise distribution for a linear model is equivalent
to minimizing a sum-of-squares error function [58]. This boils down to solving a least squares
problem which uses a Moore-Penrose pseudo-inverse. The resulting weights can then be found
using following matrix expression:

ŵ = (QTQ)−1QT fmax (55)

with fmax the (Nm × 1) vector containing the previous Nm IF estimates, and Q the design matrix
of the polynomial:

Q =


1 (n− 1)∆t . . . ((n− 1)∆t)N

1 (n− 2)∆t . . . ((n− 2)∆t)N

...
...

. . .
...

1 (n−Nm)∆t . . . ((n−Nm)∆t)N

 (56)
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In this paper a first order polynomial is used to minimize potential errors in the extrapolation.
Also a limited number of previous points Nm is taken into account, namely five, for the cases320

described in this paper to make sure that the computation time remains acceptable. The method
does require estimates at the first time index for the IF and its gradient. The initial gradient is
assumed zero and the initial IF estimate is obtained by visual inspection of the spectrogram.

The constrained minimization problem is reformulated using a penalised unconstrained cost
function (see [39] for more details):

κ(ρ, n, k) = −|STFT (n, k)|2 + ρ1 ·max[0, (k∆f − fmax(n− 1))2 −∆f 2
c1]

+ ρ2 ·max[0, (k∆f − fIF,w(n))2 −∆f 2
c2]

(57)

This cost function is minimized using a brute force approach which is computationally feasible as
long as the number of points Nm is not too high. The bandwidth for the tracker is denoted by ∆fc1
and ∆fc2. The parameters ρ1 and ρ2 are chosen in such a way that the cost function is dominated
by the constraint terms in case the constraints get violated. The estimated IF is then given by:

fmax(n) = ∆f argmin
k

κ(ρ, n, k) (58)

Vold-Kalman filter325

The IF estimate returned by the maximum tracking is still quite rough due to the resolution
limitations of the spectrogram. Therefore the Vold-Kalman filter (VKF) is employed as a time-
varying band-pass filter with a center frequency based on the IF estimate returned by the maximum
tracking. The VKF allows for defining a bandwidth of the band-pass filter such that the provided
rough speed does not have to be perfect. The larger the bandwidth however, the more noise and330

extraneous components are included. The implementation used in this paper is based on the one-
pole angular-displacement filter as recommended by [39]. The angular-displacement VKF tries
to estimate the envelope of the mono-component signal and should be fairly robust to crossing
orders compared to the angular-velocity VKF. To keep the length of this paper limited, the full
background of the VKF is not provided here, but interested readers are referred to [39, 59, 60, 61]335

for more details. Finally, after the VKF, the instantaneous speed estimate is found by using the
analytic signal as described in Section 2.1.

3. Experimental applications

The seven methods highlighted in Section 2 are examined for their accuracy and ease of use
on three different experimental data sets. One data set originates from a wind turbine gearbox,340

one from an aircraft engine, and one from a ship generator. Each data set has very different
characteristics and thus their analysis can provide some interesting insights into the subtleties of
each method. Since each method and data set require new input parameter settings, describing
all of them each time would be quite cumbersome. Therefore only the most important settings
that change between the different cases are reported and the remaining parameters are displayed345

in tables. A general overview of all the input parameters per method is provided in Table 1. The
list of input parameters per implemented method is undoubtedly subjective since another user
might want to add or reduce certain inputs as to increase the flexibility for their particular case.
However, the input parameters here are defined from a perspective that each method should be
easy to use in an automated manner, thus with the least amount of manual effort possible. By350
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Table 1: Overview of the input parameters of each method.

Method name
Input# Phase de-

modulation
Iterative
demodulation

TKEO MOPA ViBES Cepstrum-
based MOPA

maximum
tracking+VKF

1 Fs Fs Fs Fs Fs Fs Fs
2 ωinit ωinit ωinit ωmin Nw ωmin ωinit
3 Bw Bw Bw ωmax NFFT ωmax Bwmax
4 Nw Nw Nw {Hi} Noverlap {Hi} Nw

5 {Hi} Nw {R} Nw NFFT

6 NFFT {Z} NFFT Noverlap

7 Noverlap σ2
l Noverlap Np

8 Kw σ2
h Kw Nm

9 γ γ BwV KF
10 NV KF

with Fs the sampling rate in Hz, ωinit the IF at the first time index, Bw the bandwidth of the band-pass filter, Nw the window
size used, {Hi} the list of harmonic orders, NFFT the size of the FFT in samples, Noverlap the amount of overlap between windows
in samples, Kw is the number of windows used for the continuity smoothing in MOPA, γ is the expected acceleration of the IAS in
MOPA, {R} the set of mesh ranges of interest with each range defined by a minimum and maximum value, {Z} the set of illegal
frequency regions, σ2

l & σ2
h the variance threshold values for beginning and stopping track- and wait-mode of ViBES, Np the order

of the polynomial used for maximum tracking, Nm the number of previous time steps taken into account, ρ1 & ρ2 are the weights for
the penalised unconstrained cost function, Bwmax & BwVKF are the bandwidths for the maximum tracking and the vold-kalman
filter respectively, and finally NVKF the order of the vold-kalman filter.

looking at Table 1, it can be noticed immediately that the methods based on the STFT need at
least three additional parameters just for the calculation of the STFT. The method with the most
required inputs is the combination of maximum tracking with the Vold-Kalman filter since this
method is probably also the most complex method to implement out of the seven methods tested.

3.1. Wind turbine gearbox data set355

This well-documented data set originated from a diagnosis contest held at the International
Conference on Condition Monitoring of Machinery in Non-Stationary Operations (CMMNO) in
2014 [44]. The provided vibration signal was measured on the gearbox housing of a wind turbine
near the epicyclic gear train and sampled at 20 kHz. The goal was to estimate the IAS of the
high-speed shaft (carrying gear #7 in Fig.3). This estimate was then compared with a reference360

speed signal measured by an angle encoder. The length of the measurement was approximately
550 seconds. The spectrogram of the full signal can be seen in Fig.4 and is generated using a
Hanning window of 1 second with 50% overlap.

3.1.1. Parameter settings

The methods based on phase demodulation mainly need one high SNR, speed-related harmonic365

as their most important input. In this case, the second harmonic of the planet gearmesh frequency
around 55 Hz is chosen due to the good results obtained using it, which is also corroborated by
the report in [44]. The bandwidth and window size for this case are set at 8 Hz and 10 seconds
respectively. The methods based on the STFT all use the same settings for the STFT:

� uniform weighting window370

� Window length of 1 second
� FFT size of 2 seconds (thus 1 second of zero padding)
� Overlap of 95% of the short time window length
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Figure 3: Visualization of the wind turbine gearbox used in the CMMNO 2014 diagnosis contest.

Figure 4: Spectrogram of the CMMNO 2014 diagnosis contest data.

The fundamental harmonic orders taken into account for the multi-order probabilistic approach
are displayed in Table 2. The first ten harmonics of every fundamental order are considered for375

MOPA. The number of windows Kw used for the a priori continuity introduction is set to 20
and the acceleration tolerance of the speed γ is set to 0.4 Hz⁄s. The benefit of using MOPA is
that it allows the estimation of the speed of the full signal at once. The base frequency interval
{ωmin, ωmax} used here is chosen to be {15, 35}. The mesh ranges for the ViBES method are set
to R = {[0.9290, 1.1219], [1.8580, 2.2438], [2.7871, 3.3657], [4.8167, 5.8167]} and no illegal frequency380

ranges are defined. The first three of these ranges correspond to the fundamental, and 2nd and
3rd harmonics of the vibration content created by gear pairs 1/2 and 2/3 (Table 2), respectively,
while the fourth range corresponds to the fundamental vibration content created by gear pair 4/5
(Table 2).

Finally, for the maximum tracking, the third harmonic of the planet gearmesh frequency which385

starts at about 75 Hz is chosen for ωinit. The bandwidth Bwmax is set to 2 Hz, the polynomial
order Np to 1, and the number of previous estimates to take into account Nm to 5. Lastly, the
chosen bandwidth BwV KF is 4 Hz and the VKF order NV KF is 2. An overview of every single
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Table 2: Fundamental orders related to high-speed shaft.

Gear pair Order value

1 1
2/3,1/2 1.025459229
4/5 5.316666667
6/7 29
8/9 15.225
10/11 6.619565217

Table 3: Overview of the input parameters for the CMMNO data set

Method name
Phase de-

modulation
Iterative de-
modulation

TKEO MOPA ViBES Cepstrum-
based MOPA

maximum
tracking+VKF

ωinit = 53 Hz ωinit = 53 Hz ωinit = 53 Hz ωmin = 15 Hz ωinit = 25 Hz ωmin = 15 Hz ωinit = 75 Hz

Bw = 8 Hz Bw = 8 Hz Bw = 8 Hz ωmax = 35 Hz NFFT = 214 ωmax = 35 Hz Bwmax=2Hz
Nw = 50000 Nw = 50000 Nw = 50000 {Hi} =Table 2 Noverlap=90% {Hi}=Table 2 Nw = 5000

{Hi} =
{2, 10.62}

Nw=5000 Nw=10000 Nw=5000 NFFT = 10000

NFFT = 10000 {R} =
{[0.9290, 1.1219],
[1.8580, 2.2438],
[2.7871, 3.3657],
[4.8167, 5.8167]}

NFFT = 10000 Noverlap=95%

Noverlap=95% {Z} = {} Noverlap=95% Np=1

Kw = 20 σ2
h=[ ] Kw= 20 Nm=5

γ = 0.4Hz
s

σ2
l =[ ] γ = 0.4Hz

s
BwV KF=4 Hz
NV KF=2

input parameter is shown in Table 3.

3.1.2. Results390

Some intermediary results are shown first in order to illustrate better the internal workings of
the different methods. As described in Section 2.4, MOPA views the spectrogram as a probability
density function (pdf) map and relates all of the pdf intervals belonging to different harmonic
orders back to the fundamental speed interval, in this case {15, 35}. Figure 5 shows the obtained
pdf map after summation and continuity introduction for the fundamental speed interval on the395

CMMNO data. The instantaneous speed profile can then be obtained by taking the expected value
of every pdf at every time step.

The same approach is employed for the cepstrum-based MOPA, but the STCT or cepstrogram
is used instead of the spectrogram. Figure 6 displays the used cepstrogram with quefrency on
the y-axis. The structure of the rhamonics clearly corresponds to the inverse of the instantaneous400

speed profile. Therefore the obtained pdf map, as shown in Fig. 7, also returns an inverted speed
estimate. By taking the expected quefrency values of the pdf map and simply inverting them, the
instantaneous frequency values are recovered.

The maximum tracking method basically calculates a 2D cost map based on a penalized uncon-
strained cost function and the spectrogram. Figure 8 shows the cost map as an overlay in red over405

the spectrogram in the background. The cost map is red where the cost is very high and becomes
more transparent where the cost is low. Clearly, the cost is lowest around the third harmonic of the
planet gearmesh frequency since this harmonic lights up through the cost map layer. The input
rough speed estimate for the VKF is then acquired by taking the frequency that corresponds to
the minimum cost at every time step.410

The extracted speed profiles of the seven different methods are then compared to the reference
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Figure 5: pdf map of the speed profile based on the CMMNO spectrogram after continuity introduction.

Figure 6: Cepstrogram of the CMMNO data.

Figure 7: pdf map of the speed profile based on the
CMMNO cepstrogram after continuity introduction.

Figure 8: Cost map of the CMMNO data as calculated by the maximum tracking algorithm using a penalized
unconstrained cost function.

speed signal measured by the angle encoder in Fig. 9. It can be seen that most methods per-
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form quite well in tracking the overall profile of the speed. The cepstrum-based approach shows
the largest discrepancies to the encoder speed. This is mainly attributable to the poor quefrency
resolution and the fact that not all rhamonics are as well-pronounced as their harmonic spectral415

counterparts since the cepstrum is strongly influenced by noise. The maximum tracking and VKF
approach exhibits one major deviation of the encoder speed around 217 seconds. This deviation is
primarily due to the maximum tracking being influenced by a very short, sudden drop in energy
of the tracked harmonic. This is also the main problem of this method. If the noise is too high, if
there are crossing orders, or if there is a short drop in the amplitude of the tracked harmonic, the420

maximum tracking can jump quickly to the wrong frequency bins and this is not always straight-
forward to control in an automated manner.

Figure 9: Estimated instantaneous speed profiles of every method on the CMMNO data.

Since it is fairly difficult to assess the accuracy of each method visually in this manner, the
mean and median absolute errors are calculated and displayed in Fig. 10. In general, the errors425

are quite low apart from the one of the cepstrum-based MOPA as is explained earlier. The best
result is obtained by the standard MOPA, closely followed by iterative phase demodulation and the
maximum tracking with Vold-Kalman filtering. The main reason why the spectrum-based MOPA
works so well is thanks to the well-defined harmonic structure in the spectrogram and the large
number of different harmonic orders that do not overlap excessively. Averaging the resulting pdfs430

together of over 60 harmonics produces a very accurate and smooth result. The ViBES method only
performs a tiny bit worse than MOPA which is probably due to the difference in implementation and
the different harmonic orders chosen. It comes as no surprise that the iterative phase demodulation
performs better than the single step phase demodulation and TKEO. The latter mainly suffers
from the fact that a fixed window size was chosen for the entire signal. These methods would get435

closer to the result of the iterative demodulation if custom window sizes and filter bandwidths were
defined for every signal part depending on the speed fluctuation. The iterative phase demodulation
does not suffer from this drawback since after the first angular resampling it is possible to define
a filter bandwidth for the entire signal at once. A similar reasoning can be followed for the VKF
approach since after the VKF the signal is essentially a mono-component signal, meaning that440

phase demodulation of the full-bandwidth signal is possible.

21



Figure 10: Mean and median absolute errors for every method on the CMMNO data using the encoder as reference.

To provide some insight into the computational effort required by the seven methods, the
execution time of every method is returned in Fig. 11. All the computations were done on the
same computer using single threaded computation on one CPU core of an i5-5300U processor with
16GB of RAM. Deriving all the computational complexities of every single method is not the main445

focus of this paper, but Fig. 11 aims to present a ballpark indication of the computation time
such that individuals who are interested in implementing a fast speed estimation method have
something to judge from.

Figure 11: Computation time for every algorithm on the CMMNO data.

3.2. Aircraft engine data

The second data set to be analyzed originates from the Safran contest at the Surveillance 8450

conference, held in Roanne, France [55]. The provided data consists of vibration and tachometer
signals acquired during a ground test campaign on a civil aircraft engine with two damaged bear-
ings.
A general overview of the engine with the damaged bearings and the sensors locations is displayed
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in Fig. 12. The engine has two main shafts and an accessory gearbox with equipment such as455

pumps, filters, alternators, and starter. The accessory gearbox is linked to the high-pressure shaft
HP by a radial drive shaft RDS and a horizontal drive shaft HDS. The kinematics of the gearbox
and the rotating speeds of its shafts are described in Fig. 12. A spectrogram of the analyzed signal
of accelerometer 2 can be seen in Fig. 14. It is generated using a Hanning window with a length
of 211 samples with an overlap of 95%.460

Figure 12: General overview of the engine and the
accessory gearbox. Shafts are identified by labels in
amber color.

Figure 13: Diagram of the kinematics of the gear-
box.

Figure 14: Spectrogram of the analyzed Surveillance 8 aircraft engine vibration data.

3.2.1. Parameter settings

The main harmonic used for the phase demodulation techniques is the 38th harmonic of the
high-pressure shaft. The chosen window size is only 1 second due to the very rapid speed increase.
The bandwidth is therefore also quite large at 100 Hz. The parameters for MOPA are as follows:

� harmonics orders used: first 60 harmonics of the HP shaft & L1 shaft465

� {ωmin, ωmax} = {175 Hz, 230 Hz}
� Nw = NFFT = 214

� Noverlap = 0.9Nw

� Kw = 20
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Table 4: Overview of the input parameters for the Surveillance 8 aircraft engine data set

Method name
Phase de-

modulation
Iterative de-
modulation

TKEO MOPA ViBES Cepstrum-
based MOPA

maximum
tracking+VKF

ωinit = 6960 Hz ωinit = 6960 Hz ωinit = 6960 Hz ωmin = 175 Hz ωinit = 178 Hz ωmin = 175 Hz ωinit = 6960 Hz

Bw = 100 Hz Bw = 100 Hz Bw = 100 Hz ωmax = 230 Hz NFFT = 215 ωmax = 230 Hz Bwmax=50Hz

Nw = 214 Nw = 214 Nw = 214 {Hi} = {1, 1.342} Noverlap=90% {Hi} = {1, 1.342} Nw = 214

{Hi} = {38, 75} Nw=214 Nw=31200 Nw=214 NFFT = 214

NFFT = 214 {R} =
{[0.9375, 1.0625],
[1.8750, 2.1250],
[2.8125, 3.1875],
[3.7500, 4.2500],
[4.6875, 5.3125],
[5.6250, 6.3750],
[6.5625, 7.4375],
[7.5000, 8.5000]}

NFFT = 214 Noverlap=90%

Noverlap=90% {Z} = {} Noverlap=90% Np=1

Kw = 20 σ2
h=[ ] Kw= 20 Nm=5

γ = 0.4Hz
s

σ2
l =[ ] γ = 0.4Hz

s
BwV KF=4Hz
NV KF=2

� γ = 0.4470

The mesh ranges for the ViBES method were set to correspond to the fundamental through 8th
harmonic of the vibration created by the HP shaft. Table 4 displays all of the input parameter
settings for this case. The main differences are the different harmonic orders and the adjustments
necessary to deal with the very rapid speed increase.

3.2.2. Results475

Figure 15 shows the obtained pdf map after summation and continuity introduction for the
fundamental speed interval on the Surveillance 8 aircraft engine data. The instantaneous speed
profile is again obtained by taking the expected value of every pdf at every time step. It can be
seen from the continuity map that the very sudden increase in rotation speed around 50 seconds
causes the certainty of the extracted expected value to decrease due to the smearing of all the480

harmonics, illustrated by the vertical red line.

Figure 15: pdf map of the speed profile based on the Surveillance 8 spectrogram after continuity introduction.

Figure 16 displays the cepstrogram. The obtained pdf map after continuity introduction, as
shown in Fig. 7, portrays quite clearly the instantaneous speed profile, but suffers from the same
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problems as the spectrum-based MOPA around 50 seconds.

Figure 16: Cepstrogram of the Surveillance 8 aircraft en-
gine data.

Figure 17: pdf map of the speed profile based on the
Surveillance 8 cepstrogram after continuity introduction.

Figure 18 shows the cost map for the Surveillance 8 data as an overlay in red over the spec-485

trogram in the background. The cost map is red where the cost is very high and becomes more
transparent where the cost is low. The cost is lowest around the 38th harmonic of the HP shaft
frequency illustrated by the visibility of the spectrogram coloring from 6.9 kHz to 9.3kHz.

Figure 18: Cost map of the Surveillance 8 data as calculated by the maximum tracking algorithm using a penalized
unconstrained cost function.

A comparison of the estimated speed profiles is provided in Fig. 19. All methods are again
successful in estimating the general outline of the speed, albeit with varying degree of accuracy.490

The cepstrum-based MOPA again suffers from resolution issues causing the estimated speed to
be quite choppy. The TKEO method manages to track the speed very well visually but suffers
from a temporary drop in amplitude and thus signal-to-noise ratio of the 38th harmonic around
105 seconds.

Again the mean and median absolute errors are calculated and shown in Fig. 20 to assess the495

performance more objectively. The cepstrum-based MOPA performs the worse, which is expected
when looking at the speed profiles. Interestingly, the phase demodulation methods perform the
best. This can probably be explained by the fact that the 38th & 75th harmonic have a very high
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Figure 19: Estimated instantaneous speed profiles of every method on the Surveillance 8 aircraft engine data.

signal-to-noise ratio overall and do not have any significant crossing orders, leading to very clean
demodulation results. The TKEO method also has a very low median absolute error but has a large500

mean error due to the erroneous tracking around 105 seconds. This is most likely attributable to
the required differentiation in the method. This is done by a multiplication of the filter band with
jω at quite high frequencies of around 8 kHz in this case, which means that it increases the noise
too. Another observation experienced during the testing of the methods based on the spectrogram
is that the resulting errors were quite sensitive to the choice of the set of harmonic orders, more505

so than for the CMMNO case. Increasing the set of harmonic orders did not always yield a better
result than simply choosing the highest amplitude orders, suggesting order set optimization.

Figure 20: Mean and median absolute errors for every method on the Surveillance 8 data using the encoder as
reference.

Lastly, the computation times are displayed in Fig. 21. The calculation of the cost map for the
maximum tracking is the main contributor for the maximum tracking with VKF combination, due
to the large size of the spectrogram.510
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Figure 21: Computation time for every algorithm on the Surveillance 8 data.

3.3. Ship generator data

The third and last data set to be examined is measured on one of the main generators of a
YP-700 US navy ship as seen in Fig. 22. Each Yard patrol craft has two generators but only
one runs at a time. The generator, shown in Fig. 23, is a Detroit Diesel 3-71 and has a power
output of 50 kW at 450 VAC . The electrical system is a three-phase system at 60 Hz. The515

cause for the excessive speed fluctuation of the generator is a bad governor, displayed in Fig. 24.
An accelerometer was placed close to the base of the generator as shown in Fig. 25. The used
measurement is approximately 200 seconds in duration at a sample rate of 5 kHz. Interestingly,
it contains two fast run-downs and one very fast run-up. These extreme speed fluctuations form
quite a significant hurdle to overcome for most of the speed estimation methods as there is also a520

complete standstill part in-between the first run-down and run-up. The spectrogram of the signal
is shown in Fig. 26 and exhibits a large amount of speed-related harmonics. Regrettably, there is
no angle encoder or speed reference available for this data set. Therefore a quantitative assessment
of estimation errors is not possible, but the authors do believe that highlighting the potential issues
that come into play when analyzing this type of data is of some importance to investigate.525

3.3.1. Parameter settings

Since there is no reference speed, only the single stage phase demodulation is performed. The
input parameters are shown in Table. 5. For the demodulation the first harmonic of the generator
shaft is tracked which stays always just below the electrical line frequency of 60 Hz. The MOPA
method takes into account the sub-harmonics of the fundamental frequency at multiples of one530

third its frequency. The mesh ranges for the ViBES method were set to correspond to the first
seven components of the vibration spectrum that are correlated to the generator shaft speed. The
ViBES method applies the additional adaptations explained in Section 2.5 in the analysis of the
ship generator data. The first adaptation, related to the “illegal” frequency regions, is applied by
defining Z. Z contains two regions, z1 = [58.5, 61.5] Hz and z2 = [178.5, 181.5] Hz. These “illegal”535

regions of the vibration spectrum contain disturbances corresponding to the fundamental and third
harmonic of the electrical line frequency, respectively. Also the second adaptation, related to the
wait-and track-mode, is employed. The thresholds are set to σ2

l = 0.2 Hz2 and σ2
h = 0.4 Hz2.
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Figure 22: Navy ship on which the generator is in-
stalled.

Figure 23: Generator.

Figure 24: Faulty governor. Figure 25: Accelerometer placement.

Figure 26: Spectrogram of the analyzed ship generator vibration data.
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Table 5: Overview of the input parameters for the ship generator data set

Method name
Phase de-

modulation
TKEO MOPA ViBES Cepstrum-

based MOPA
maximum
tracking+VKF

ωinit = 53 Hz ωinit = 53 Hz ωmin = 12 Hz ωinit = 53 Hz ωmin = 12 Hz ωinit = 53 Hz

Bw = 10 Hz Bw = 10 Hz ωmax = 60 Hz NFFT = 213 ωmax = 60 Hz Bwmax = 3 Hz
Nw = 5000 Nw = 5000 {Hi} = {0.333} Noverlap=96% {Hi} = {0.333} Nw = 5000

Nw=5000 Nw=5000 Nw=214 NFFT = 5000

NFFT = 5000 {R}=
{[0.9444, 1.0556],
[1.2593, 1.4074],
[1.5741, 1.7593],
[1.8889, 2.1111],
[2.2037, 2.4630],
[2.5185, 2.8148],
[2.8333, 3.1667]}

NFFT = 214 Noverlap=99%

Noverlap=98% {Z}={[58.5, 61.5],
[178.5, 181.5]}

Noverlap=90% Np=1

Kw = 20 σ2
h=0.4Hz2 Kw= 20 Nm=5

γ = 0.4Hz
s

σ2
l =0.2Hz2 γ = 0.4Hz

s
BwV KF=3Hz
NV KF=2

3.3.2. Results

The run-down and run-up approximately in the middle of the data record make it difficult540

for some of the techniques to track the speed of the signal in one go, at least not without some
additional measures like for example the second adaptation of the ViBES method in Section 2.5.
The second adaptation of the ViBES method allows the algorithm to track the second region
of operation starting at the 123 second mark after losing tracking of the first operation after 82
seconds. Since the demodulation methods require an initial speed estimate to start tracking a545

harmonic, this leads to erroneous results when these methods try to track the run-up again due
to the standstill in-between causing the tracking to go haywire. Therefore, the data is processed
in two separate parts for the phase demodulation, TKEO and maximum tracking method. The
MOPA method does not have this drawback because only a speed interval needs to be defined
and it automatically gets back “on track” the moment the most likely speed estimate emerges550

within that speed interval again. This property is usually sufficient for most cases since the focus
is mostly on the operating regimes at higher rotation speeds as there is often little to learn from
near standstill data from a fault monitoring perspective.
The cepstrogram is shown in Fig. 27 together with the generated pdf map after continuity intro-
duction in Fig. 28. As expected, the probability density functions jump around in frequency due555

to smearing during the standstill part around 100 seconds and at the end of the record after the
run-down. The maximum tracking is done in two separate parts due to the necessity for an initial
frequency estimate and the inability of the method to track the very fast run-up at 120 seconds.
This run-up goes from 0 Hz to 55 Hz in approximately 4 seconds which causes all the harmonics to
smear together in the spectrogram, making maximum tracking practically impossible. The same560

issue occurs for the phase demodulation methods since the signal has a low SNR in the beginning
of the run-up and due to the difficulty in defining a proper band-pass filter. Figure 29 & 30
display the cost maps for the first and second part of the signal on the fundamental harmonic
order. This order is chosen because it is reasonably well separated from the other harmonics and
the deceleration of the run-down is not too extreme as compared to higher harmonics.565

Unfortunately, there was no reference speed provided with these measurements, so only a
qualitative visual assessment of the speed profiles can be made. Figure 31 shows the estimated
speed profiles and it distinctly showcases the issues that arise when a fast run-down or run-up
occurs. The MOPA method is able to continuously track the speed but produces meaningless
results during the standstill. The phase demodulation method, maximum tracking with VKF,570
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Figure 27: Cepstrogram of the ship generator data.

Figure 28: pdf map of the speed profile based on the ship
generator cepstrogram after continuity introduction.

Figure 29: Cost map of the first part of the ship
generator data as calculated by the maximum track-
ing algorithm using a penalized unconstrained cost
function.

Figure 30: Cost map of the second part of the ship
generator data as calculated by the maximum track-
ing algorithm using a penalized unconstrained cost
function.

and TKEO method are unable to track the speed in one go, but perform better in tracking the
run-down than MOPA as they produce a sensible result down to 18 Hz approximately. Clearly, the
methods based on tracking a specific harmonic within a frequency band need additional built-in
intelligence in order to make them cope with sudden run-downs and run-ups as this would make
them more flexible to use in an industrial setting.575

4. Discussion

There is no absolute outcome as in which method is the most accurate for every case and which
method is always the easiest to use. Nevertheless, some general comments can be made.

The signal-to-noise ratio, with the harmonics being the signal and all the other signal content
being the noise, logically influences all the speed estimation methods mentioned in this paper.580

The methods that are based on a single harmonic are more dependent on the signal having a high
SNR and well-separated harmonic as compared to the multi-harmonic methods. Therefore, in
situations where there is not a single harmonic that is well excited, the multi-harmonic methods
should outperform the single harmonic methods due to a reduction in variance by taking into
account multiple harmonics.585

The phase demodulation method produces very satisfactory results as long as there is a high
SNR harmonic present in the signal without any significant crossing orders and well separated
from nearby harmonics. Doing an additional step of angular resampling and phase demodulation
of a higher harmonic order can improve the result even further but the limit of the accuracy gain
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Figure 31: Estimated instantaneous speed profiles on the ship generator data.

is usually reached after one to two iterations. The downside to these methods is the need for an590

initial speed estimate. This means that when there is a total standstill such as in the third data
set, the phase demodulation methods fail to start tracking the right harmonic again by themselves
since they have been demodulating noise during the standstill. This could be improved by adding
some intelligence to the tracking such as described by the variance-based lock-in tracking adapta-
tion in Section 2.5. The same remarks are valid for the TKEO method. This method also seems595

to suffer slightly from noise amplification at high frequencies due to the differentiation involved.

The methods based on a TFR or TQR of the signal are able to continuously track the speed
since they estimate the most likely speed at every time index. The performance of the cepstrum-
based MOPA is consistently the worst due to the poor resolution and sensitivity to noise, but it600

is easy to use since the harmonic orders are usually known a priori from the kinematics of the
investigated system. The spectrum-based MOPA and ViBES method are two similar takes on
perceiving the spectrogram as a probability density function map, but with different implementa-
tions and adaptations. The accuracy is very similar for both methods and depends mostly on the
chosen inputs. The main drawback of this type of techniques is the dependency on the frequency605

and time resolution of the TFR or TQR. If the speed fluctuates very strongly, the harmonics tend
to smear together in the short-time spectrum making it difficult to distinguish them and caus-
ing the obtained pdfs to be smeared as well. It is also difficult to capture small, but fast speed
fluctuations since the time resolution is often too coarse to identify such variations. In the future
a possibility to automate this search for the optimal window length choice will be investigated.610

An optimization procedure could be implemented that can for example be based on the maximum
acceleration of the speed or be based on a statistical quantity of the time-frequency representation.
Another potential improvement would be to remove the a-priori assumption about the maximum
physically possible speed acceleration. Instead, the maximum acceleration could be tracked and
updated over time based on the previous time windows. The idea here is to make the Gaussian615

pdfs as narrow as possible for each time step.

The combination of the maximum tracking and the Vold-Kalman filter tries to circumvent this
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issue by using the VKF as a time-varying band-pass filter such that the phase can be obtained from
the resulting analytic signal. The main issue however in utilizing the VKF is the large number620

of adjustable parameters that can impact significantly the performance of the method. This
encumbers somewhat the practicality of the approach and makes it probably the most complex
technique out of the seven tested. Also the maximum tracking used in this paper is based on
calculating a cost map of the spectrogram which can take quite a while to calculate and needs an
initial speed estimate. A potential improvement can probably be made by combining a technique625

such as MOPA with a time-varying band-pass filter such as the VKF.
Finally, if there is no tacho or angle encoder available to compare the estimated speed to, then

the only sources of information available are the estimated speed signal itself and the vibration
signal. It is reasonable to assume that the speed profile needs to be continuous and cannot be
jumping around like e.g. in Fig.31. A possible way to grade the estimation therefore could be630

based on the acceleration of the speed signal. The vibration signal can also be employed: if for
example the RMS of the signal drops below a certain threshold, you can assume the machine is in
standstill condition and thus the estimated speed can be ignored. Such approaches offer a more
automated way of assessing the quality of the estimated speed compared to visually inspecting it.

5. Conclusion635

This paper investigates seven different instantaneous angular speed estimation methods based
on the most commonly used principles, namely signal demodulation and tracking in a time-
frequency representation of the vibration signal. It is clear from Section 1 that there exists a
large number of possible variations and extensions to these two basic techniques. While it is im-
possible to investigate all of these variations, this paper aims to shed some light on the strengths640

and drawbacks of different method implementations by assessing their performance on experimen-
tal data. A short overview of the different theoretical backgrounds of each method is provided
in Section 2. Three experimental vibration data sets are investigated: one was measured on a
wind turbine gearbox, one on an aircraft engine, and one on the generator of a ship. Section 3
discusses the results obtained by applying the seven methods on these three data sets. While every645

method is able to track the general speed profile for each case, the level of manual involvement
in tweaking the input parameters for every method differs greatly, as does the resulting accuracy.
The performance of every method is discussed in Section 4. Based on the assessment provided in
this paper, it is evident that effective speed estimation methods already exist, but that there are
still improvements to be made. The main challenges for speed estimation methods continue to be650

sudden fast speed fluctuations, operating regime changes that influence the harmonic structure,
and accurate continuous tracking, even at low speeds.
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