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Abstract

A process control algorithm, referred to as the Run by Run (RbR) Controller, is
developed and its performance is analyzed in this thesis. The RbR controller is
designed to maintain the performance of a production process that is subject to
unpredictable disturbances. This is done by regulating the process using feedback
control and at the same time continuously diagnosing the state of the process using
a generalized version of Statistical Process Control (SPC).

The three major components of the RbR controller are the gradual, rapid, and
diagnostic modes. The gradual mode is the default mode, in which a feedback control
law based on the EWMA statistic compensates for slow but steady drift in the process
mean. The diagnostic mode employs Generalized SPC to monitor the process for the
presence of large shifts in the process mean. When the diagnostic mode signals an
alarm, rapid mode is entered, wherein an attempt is made to recover the performance
of the process before the shift as quickly as possible. In both gradual and rapid modes,
the control strategy consists of using measurement data to continuously update a
first-order process model, and then selecting a process recipe for which the output is
expected to be on target. The first-order coefficients of the model are fixed, whereas
the intercept term is updated. Extensions to second-order models are discussed.

The stability and robustness of the gradual mode is analyzed under various as-
sumptions about the behavior of the process to be controlled. Simple conditions that
guarantee stability are derived. These conditions relate the estimated process gain
to the true process gain, and the EWMA weighing scheme. An expression for the
expected variation of the process output as a function of the true process parame-
ters, the estimates of these parameters, and the EWMA weighing scheme are derived.
Also, the performance of a complete implementation of the RbR controller in con-
trolling a simulated second-order process was evaluated using a designed experiment.
The results show that the RbR controller is robust against modest departures of the
process behavior from the idealized first-order model used by the algorithm.

Thesis Supervisor: Emanuel Sachs
Title: Associate Professor of Mechanical Engineering
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Chapter 1
Introduction

Process control is an important part of the operation of any manufacturing process.
The goal of process control may be broadly stated as maintaining the performance of
a process at the best possible level over time.

To formalize this notion, suppose that x is a vector of input variables to the
process, that can be observed and possibly adjusted, and y is a vector of response
variables. The input variables could be dial settings, which can be adjusted, or
environmental conditions, such as temperature, which can be monitored but not
adjusted. The response variables could be a dimension, resistivity, a growth rate, or
any other measure used to judge the quality of the product and, by inference, the
performance of the process. Mathematically, the process can be represented as a time
dependent function f; which maps a given value of x into y:

Y = fi(x:)

Even though it is not shown explicitly, y; is a function not only of the input variables
X¢, but also of some sample space. In other words, y, is a random variable. The
uncertainty stems from such sources 2s measurement errors, inaccurate dial settings,
or the effects of unkown or ignored input variables.

The performance criteria, z;, is some function of the response vector, i.e. 2z =
9(y:)- It is useful to distinguish between the activities of optimization and control,
both of which will be considered process control activities. A set of values of the input
variables is referred to as the current recipe. Optimization consists of finding the recipe

6
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Figure 1-1: The concepts of optimization and control illustrated

X; that result in the best value of z,. This activity may be repeated periodically, if
it is thought that additional possibilities for improvement exist, or if the function f,
has changed drastically. Control is concerned with keeping the performance of the
process at the optimal level. Figure 1-1 illustrates these concepts. With reference to
this figure, the goal of process control can be restated as maximizing the area under
the performance criteria curve (if the criteria is to be maximized). In this thesis,
performance will be measured primarily by the mean squared deviation of the output
from target.

A primary concern when performing process control activities is striking the proper
balance between exploring different recipes in the search for better performance, and
the cost of making product that does not meet specifications (scrap). Approaches to
process control can be conveniently classified as follows according to how this trade-off

is made:

On-line process control methods are used during regular production, i.e. the
amount of scrap is kept to a minimum.

Off-line process control is at the other extreme, where the cost of scrap is ignored.

The algorithm presented in this thesis is an on-line process control procedure, whose
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function is to maintain the performance of a process, as opposed to improving it.

1.1 Goal of the Thesis

With this broad framework in mind, the goal and scope of this thesis can be described.
One step of a batch manufacturing process will be considered (this step will be referred
to as the process). A run will refer to the processing of one batch. The runs will
be identified with a discrete time index ¢t = 1,2.... Before run ¢, values for the
controllable input variables x, are selected, and during or after run ¢ the values of the
output variables y, are measured.

The goal is to develop an on-line process control strategy that reduces the variabil-
ity of the output by effective regulation, while at the same time allowing the process
to be continuously monitored to search for assignable causes of variation. The regula-
tion procedure will ai any given time be in one of two modes: gradual mode or rapid
mode. Gradual mode is the default mode and its purpose is to compensate for drift
in the process. Rapid mode is entered when there is significant evidence that a shift
has occurred. A high-level flowchart of the proposed algorithm is shown in figure 1-2.
It is evident from the fiowchart that the algorithm has three major components:

A diagnostic mode , which decides whether the process is behaving in accordance
with the current process model. This mode may be thought of as a generalized
version of Statistical Process Control.

A gradual mode , that gradually modifies the process model.
A rapid mode , which quickly updates the process model.

Most of this thesis will be devoted to presenting the steps of the diagnostic, grad-
ual, and rapid modes of the RbR controller, and to evaluate its performance, both
analytically and by simulation.

Justification for Gradual and Rapid Modes

The control mode of the RbR controller is designed to accommodate the types of
situations that we expect will be most commonly encountered. Two generic situations
are:
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+1 Select recipe

Y
Run process

y

Measure output
Yes
Alarm ?
No
Gradually update Rapidly update
model model

Figure 1-2: A flowchart showing the major components of the RbR controller algo-
rithm.

o The process is drifting slowly but steadily, say on the order of 1 o (the standard
deviation of the process noise, to be defined precisely later) over a period of 100
runs.

o The process is subject to occasional, large shifts, say on the order of 3 o.

"These two situations are sufficiently different in character that the appropriate control
strategies are different. For a slowly drifting process, the drift between successive runs
may be one or two orders of magnitude smaller than the effect of noise for that run.
Drift may caused by a variety of forces acting on the process, notably the aging of
components, all of which act to direct the process away from target, but none of
which is significantly greater than the others. Since the forces act at every run, and
their effects tend to cancel each other at successive runs, the appropriate strategy
for compensating for drift is to filter the output sequence, putting a relatively small
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weight on the most recent data. to get an estimate of the current level of the process.
In other words, control should be gradual, and care should be taken to avoid over-
control.

In contrast, for a process that is subject to occasional large shifts, that are an
order of magnitude larger than the process noise, the appropriate controller would be
to take no action unless the process was far from target, in which case the control
action should be decisive. If a shift has occurred, the process will remain far from
target until aggressive action is taken. Therefore, when significant evidence exists
that a shift has occured, a more responsive control strategy is appropriate. This
categorization of disturbances to a process is the basis for the two modes of the RbR
controller: the gradual and rapid modes.

In the above discussion we have used the quantity o without defining it precisely.
In the traditional SPC paradigm, o is the standard deviation of the output of a process
in statistical control. But what if the process is never in perfect statistical control, i.e.
what if there is always some drift present, as will usually be assumed in this thesis?
The definition we will use is that o is the standard deviation which the output would
have if all disturbances that act to change the level of the process were compensated
for exactly, before they had a chance to push the process off target. This, of course,
is impossible (it requires looking into the future), so the actual standard deviation of
the output will always be larger than o.

The control strategy which has been described has broad applicability. However,
the analyses performed in this thesis will be confined to the special case where all input
variables are controllable and there is only one output variable, y;. The performance
criteria for run ¢ will be the squared deviation of y; from a target value T, i.e. 2z, =
(y: — T)?. Hopefully, the algorithms developed can serve as a foundation to build a
strategy on for the general case of controlling multiple outputs of a process, whose
dependency on the inputs may be non-linear, and where the performance criteria may
include items such as the cost of adjusting the process and the cost of measuring the
output variables.

For a batch manufacturing process, the values of the input variables might be
changed during a run, in response to measurements made while the process is running,
but it is not the purpose of the control algorithm described in this thesis to prescribe
how such changes should be made. Rather, the algorithm suggests a recipe for each
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run, that may be then be modified during the run, as new information becomes
available. This is why the algorithm will be referred to as the Run by Run (RbR)
Controller. The activity of controlling the process during a run, in response to real-
time measurements will be referred to as real-time process control.

The RbR controller will use the measured values of the input and output variables
to continually refine a predictive model of the process. In postulating the predictive
model, it will usually be assumed that the process function f; is the sum of a linear

function of the input variables and an error term ¢,:
Yo = o+ B'%, + €

The parameters a, and B will be considered to be random variables. The inter-
cept term a, may change with time, but the vector 8 is assumed not to have time-
dependent values. The assumptions made about the probability distribution of those

parameters will then be used to obtain an appropriate prediction equation,
Jr = ai-1 + b'x,

which is used to select a recipe for the next run where the process output is likely to
be close to target, i.e. a recipe x, satisfying a,_; + b’x, = T. The values a,_; and b
in the prediction equation are estimates of the parameters a, and 2.

The vector of estimated process sensitivities b will be assumed to be available, for
example from an off-line designed experiment. But the estimated intercept term a,_;
will be updated each time an output measurement y, becomes available.

The output measurements y, will also be monitored to decide whether the process
is behaving in accordance with the current version of the predictive model of process
behavior. As long as no radical departure from the predicted process behavior is
signalled, the process model is updated gradually. But if the last few output mea-
surements are in serious enough disagreement with their predicted values to signal an
alarm, then this is taken as evidence that a significant disturbance to the process has
occurred. In response to this evidence, the process model is updated rapidly, to allow
the process to quickly adapt to the disturbance, and return the output to target.
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1.2 Literature Review

Traditionally, there have been two main approaches to the type of process control
which this thesis is concerned with: the Statistical Process Control (SPC) approach,
and the Automatic Process Control (APC) approach. In recent years, the similarities
and differences between these two approaches have been explored by various authors.
In this section, some basic concepts underlying the application of SPC and APC will
be described, and then papers by MacGregor ([Mac87]), Box and Kramer ([BK90)),
a series of papers by Faltin and others ([WTFD90], [TFW90], [FHTW90], [Tuc90)),
Baxley ([Bax91], (Bax90}), and Taguchi ([TEH89], [Tag87]) will be reviewed. All
discuss issues pertinent to the interface between APC and SPC.

1.2.1 Statistical Process Control

Statistical Process Control is sometimes taken to include the use of any one of a variety
of statistical methods to improve the performance of a manufacturing process. The
SPC methodology considered here is more narrowly defined. The assumptions on
which it is based are that the sequence of observations of a product characteristic,
sy {y:}, is 2 random sample from a stable probability distribution. As long as the
process behaves in this manner (i.e. as long as the process is in control), changing the
inputs to the process will only increase the variability of the sequence {y,}. However,
if the values of the output sequence are not consistent with the postulated stable
behavior, then one should look for special causes of change. If a cause of unstable
behavior is found which increases the variability of the process. then it should be
removed. If it decreases the variability, it should be made permanent. In statistical
terms, each time a new value y, becomes available, one tests the hypothesis that the
process is operating in control.

The most common assumption is that the output sequence is a random sample
from a normai distribution, centered on the target value T', with standard deviation
o. The values of the output sequence are plotted sequentially on a control chart, and
the hypothesis of control is rejected whenever certain rules are satisfied, the most
common one being that the current value y, falls outside the interval T 4+ 30. This
type of control chart is known as a Shewhart chart ([Mon85)). Figure 1-3 shows an
example of Shewhart control chart. The “three sigma” rule is designed to test the
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Output measurement

'}
T + 3 sigma Alarm o Upper control limit
T ‘...' k.'..' ’0.... - K4 ., :-. "“ I e, . .»’
'..'...,--""‘ ...‘.‘ ..". :.. v ."., .0'..
.‘0 o.....

T -3 sigma Lower control limit
1 | 1 o | 1 i 1 L ] I} l o
) 1 I I I T 1 1 ) 1 i 1

run number

Figure 1-3: Control chart example

specific alternative hypothesis that the mean of the underlying distribution is the
only parameter that has changed, i.e. the shape of the distribution has not changed
and the independeiice between observations still holds. More powerful tests can be
designed to test this limited alternative hypothesis, for example the CUSUM chart,
which is a form of a sequential probability ratio test. But the advantage of using a
Shewhart chart, whick displays the data in its original form, is that an alert operator
may be able to detect unexpected departures from the in-control state, for example
a periodic pattern.

When it is possible with reasonuble effort to find and eliminate assignable causes
of disturbances, this is the preferre: response. However, many commonly encountered
circumstances are not amenable to the SPC paradigm. Examples include:

o The assignable causes are known, but it is either impossible or very expensive
to remove them. For example, raw material variability may be very difficult to
reduce. A different example is a maintenance operation, which can change the
process behavior. If the change is predictable, feed-forward control could be
used to compensate for it, but often this will not be the case.

¢ A process is undergoing slow drift. The drift might be due to known causes
such as build up of deposition on the inside of a reactor, or it may be due
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to causes which are not precisely identified, such as the aging of components.
SPC is not well suited to controlling a slowly drifting process for the following
reason: under a2 no tweaking policy, the process must drift a certain distance
before control action is taken, in response to an alarm. But if an inexpensive
control action is available, then there is no reason to wait until the process has
drifted " far enough”. In addition, SPC does not specify what the control action
ehould be.

In cases such as these, feedback control of the process has the potential to dramat-
icaily reduce the process variability. This is the motivation for developing the Run
by Run controller: to efficiently regulate a process using feedback control, while us-
ing the diagnostic capability of a generalized version of SPC to detect sudden shift
disturbances to the process. In addition, the RbR controiler has the capability to
quickly bring the process back on target afier a shift disturbance.

Often, an automatic mechanism for changing the input variable is already in place,
causing the marginal cost of adjustment to be low. Supposing that the standard
response to an alarm is simply to adjust the input variable, one may wonder whether
the hypothesis testing paradigm is appropriate, i.e. whether significant evidence of a
process disturbance is necessary before a process adjustment can be justified.

To explore this issue, let us assume that a process is in control for extended
periods of time, but occasionally, the mean of the process shifts. Let us also make

the following critical assumption:

Assumption: When shifts occur, they are detected quickly by the control chart, and
the resulting process adjustment successfully brings the process back on target.

If this assumption were true, and the shifts were infrequent, then the contribution of
the shifts to the long term variation of the output would be small. Now suppose that
the choice is between two control strategies: To adjust after every run on the one
hand and adjusting only when the output falls outside the 3 & control limits on the
other hand, and suppose that our assumption holds for both strategies. The question
is, which of the two strategies would result in smaller output variance? In a recent
paper, Fellner [Fel91] argues that when an EWMA (Exponentially Weighted Moving
Average) control rule decides on the size of adjustments, the asymptotic variance of
the output is approximately the same whether small adjustments are made at every
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run of the process or adjustments are made only when significant evidence has been
accumulated indicating that the process is off aim.

This result would seem to refute the argument that making small adjustments
after each measurement inflates the variation of the output, compared to responding
only when the output is outside the control limits. Indeed, it appears that if the
size of the adjustment is determined appropriately, it does not matter how frequently
adjustments are made.

But this conclusion depends on the assumption that the process is in statistical
control for extended periods, and on the assumption we made about how the control
strategy responds to shifts and this assumption is questionable. Indeed, if the shift is
detected quickly, that implies that only a few measurements of the process after the
shift are available. In turn, this implies that any estimate of the magnitude of the
shift will be imprecise, and as a result the control action taken is unlikely to bring
the process exactly on target.

If we decide that the assumption we made is unreasonable, then the question
becomes: which control strategy minimizes the contribution of shifts to the output
variation?

1.2.2 Automatic Process Control

In contrast to SPC, Automatic Process Control focuses on explicitly modeling the
process dynamics and the disturbances to the process. Based on these models, a
sequence of values for the input variables, say {x;}, are selected so as to satisfy
specific design requirements. The control procedure is completely specified, hence
the term Automatic Process Control.

The most important design requirements for an automatic control system are that
the controlled process be stable and that it be sufficiently responsive. The stability
requirement ensures that if the process is disturbed, it will eventualiy get back to
target. The responsiveness requirement specifies how quickly the process should get
back to target.

In this thesis, we will primarily be concerned with a pariicular form of APC,
namely feed-back control. A feed-back controller tries to keep a process on target by
acting on the error signal: the difference between the output and target. It selects the
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recipe X; as some function of the error sequence ey, €3, ...,€;—1, where ¢; = y; — T. A
commonly used feed-back controller is the PID (Proportional - Integral - Derivative)
controller. For the continuous time case, the PID controller (for a single input) takes
the form of a linear combination of the instantaneous value e(t) of the error, its
derivative %e(s)|8=t, and the integral of the error [; e(s)ds. Symbolically,

t
z(t) = kye(t) + kq —d—e(s) + k,-/ e(s)ds
dS s=t 0
The discrete time analogue of a PID controller is one where the derivative is replaced
by the first difference e;~1 — ;-2 and the integral is replaced by the sum Yile:

t—1

Ty = kper1 + ka(es-1 — ea) + ki D _ e (1.1)

=1
Optimal Control

In certain idealized cases, one may be able to design a control system that is optimal,
with respect to some criteria. An example of this is if the process dynamics and
disturbances can be described using linear, constant coefficient difference equations.
In particular, for the single-input-single-output case, the value of the output at time
¢ is assumed to be a linear function of past values of the input variable sequence and
a sequence of iid random variables, {v,}.

To simplify notation in this subsection, instead of considering the relationship
between the input z, and output y,, we will look at the relationship between the
deviation of y; from target, i.e. the error e;, and the difference between the last two
input settings x, and z,_;, which will be called u, = z, — z;,_;. It should also be
mentioned that the time index ¢ is used differently in this subsection than it is in the
rest of the thesis: Here, z; can be a function of y;, whereas later it will be assumed
that y; is not measured until after z, has been set, and the batch has been processed at
that setting. In other words, in this subsection, a run starts with y, being measured,
and ends with z, being set, but in the rest of the thesis, a run starts with z, being
set, and ends with the measurement of y,. This discussion is based on [Ber87]. This
material is also treated in [BJ76], for example.

The system can be economically represented using the backwards operator B,
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defined by B*u; = u;_j. Define the following polynomials in B:

Y(B) = 1+ B+- -+, B™
wB) = B+ - 4+wa,B™ 1<b<m
6B) = 1+6,B+---+0,B™

In terms of these polynomials, the system can be represented by
¢(B)et = w(B)u, + o(B)‘Ug (1.2)
or, when written out in full:

et = —Y1€q— - — Ppeiom
Fwpttsp + 00+ WnUt—m

tvy+ v+ -+ 00

From this, b is seen to be the delay with which a change in z affects y. The noise
sequence {v;} is assumed to be a white noise sequence, i.e. the v; are un-correlated
random variables with E[v;] = 0 and E[v?] = 02 < oo.

If the costs of adjustment and measurement are insignificant, then a reasonable
control ebjective is to minimize the mean squared deviation of the output from tar-
get E [Ef;,(yt — T)z] = B [Efil e;"] over some time horizon N. By the certainty
equivalence principle [Ber87] an optimal control law with respect to this objective
for the system described by 1.2 can be obtained by setting all random variables
that have not yet been realized equal to their expected values, conditional on the
currently available data. Let D, = (y, Y41, - - -, Ty=1, T2, . . .) denote the data avail-
able at time ¢. Then the optimal controller is the solution to the set of equations
{E[e:|D;} =0,t =1,...,N} for u,. But to take the expectation, one would need to
know the distribution of {v,}. However, even if this distribution is unknown, an
estimator €, can be derived [Ber87], satisfying

é& — Ele|Dy) as t = o0

To this end, define polynomials F(B) =1+ fiB+---+ f,1 B>, and G(B) =
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do+nB+--+gm1B™ !, by
0(B) = ¥(B)F(B) + B*G(B) (1.3)

Define @(B) by w(B) = B*@(B), so the system evolution equation 1.2 can be written
as

$(B)ewrs = H(B)u; + 0(B)vis (1.4)

Next, multiply 1.4 with F(B) and use 1.3 to get (after some manipulation)
O(B) [CH..b - F(B)'UH.{;] = (:)(B)F(B)Ut + G(B)Ct

Since F(B) has degree b — 1, the expected value of e;4y — F(B)vy4s, conditional on
Dy, is e;4s. Therefore, a reasonable estimator is defined by

0(B)éess = &(B)F(B)us + G(B)e (1.5)

and the corresponding controller is obtained by setting é;44 = 0:

~G(B)
= —— 1.6
“ = SBFB)* (1.6)
= Tt =~ Mm-1dt—(m-1)
—go€: — G1€t-1 = *** = Gm-1€1—(m—1)

where m B + -+« §n1B™"! = @&(B)F(B). The resulting closed loop system is illus-
trated in figure 1-4. In terms of the input and output sequences, the controller can
be represented as

T, = " =Ty — Tyg) =+ — nm-l(xt—(m—l) - T4m)

‘90(?/: - T) - gl(yt-l - T) —cer = gm-l(yt—(m-l) - T)

Two comments about the controller defined by 1.6 are in order. First, it is im-
plicitly assumed that the dynamics of the process and the disturbances, as defined by
the polynomials 9, w, and 6, are known exactly. For a real manufacturing process,
this is unlikely to be true. In chapter 6 of this thesis, the effect on stability of not
knowing the process parameters exactly is analyzed for certain processes.
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8(B)
y(B)
ug - w(B) i -
y(B)
Ut - G(B) €t
®B) FB) |

Figure 1-4: Block diagram of the closed loop system.

The second comment concerns the use of on-line SPC to complement the feed-
back controller 1.6. By substituting the controller in 1.2, which defines the behavior
of the process, the closed loop process can be shown to be described by e, = F(B)v,.
In the special case when the effect on the output of a change in the input is realized
in the next interval (i.e. & = 1), the polynomial F(B) equals 1. Then the closed
loop process reduces to e; = v,. This means that as long as the process behaves
as postulated, the control error sequence {e;} will be a random sample from some
distribution. Therefore, on-line SPC can be applied to the control error sequence, to
detect departures from the postulated process behavior.

Example

As an example of the application of the optimal controller 1.6, consider the deposition
of silicon vapor (CVD) on silicon wafers. This process is |7.. of the manufacture of
Very Large Scale Integrated (VLSI) circuits. Figure 1-5 shows a reactor in which this
process might be performed. The wafers are placed in a tray which is pushed into the
reactor tube. A gas, such as silane (SiHy) is pumped into the reactor chamber, that
has been heated to around 1000° C. The gas reacts at the surface of a wafer and the

result of the reaction is a deposited layer of polycrystalline silicon. It is important to
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Figure 1-5: A diagram of a Low Pressure Chemical Vapor Deposition (LPCVD)
reactor.

control the rate at which this layer is grown. Call the deviation of the growth rate
from its target value e;. An obvious way to control the growth rate is by varying the
gas flow rate, which will be called z,. One would expect that the larger the flow rate,
the faster would the layer grow. Over a small range of z,, it might be reasonable to
model this relationship as a linear function:

Yt = o + Pz,

Since the reaction chamber is allowed to cool down before the next batch of wafers
is loaded in, there is no reason to believe that 7, should depend on values of = before
time ¢ — 1.

But this process is subject to disturbances, which corrupt the simple relationship
Just given. The disturbances are of three major types:

1. Measurement error arising from the thickness measurement.

2. A gradual drift in the average level of y for a given z, caused, for example, by
deposition on the walls of the reactor.

3. Sudden, large changes in the average level of y, given z. These step changes
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could be caused by a maintenance operation, that might include cleaning the
deposited layer from the reactor walls.

It might be reasonable to model the effect of the first two types of disturbances by
the following process model:

Y = g+ BTy + €
ey + 6

]

Qg

where ¢; represents noise, assumed to have mean zero and variance o2, and §, repre-
sents drift, assumed to have mean zero and variance (ro)?. By differencing, and using
the identity (1 — B)y; = (1 — B)eq, the following difference equation is obtained:

(1 - B)es= Pusy + b+ € — €41

Now assume that 6, and ¢, are related via v; = 6; + ¢, and (1 =A)ve—; = €y, for some
0 < XA < 1. On taking the variances of both sides of these two equations, one obtains
03 = (1+r%)o? and (1 — A\)2 = 1/(1 + r?). But with these substitutions, the process
model is of the same form as the system equation 1.2, i.e.

(1 - B)et = ﬂu¢_1 + (1 - (1 - A)B)Ug

This special case of 1.2 is important not only because it represents a drifting process
observed with noise, but MacGregor ([Mac76)) also shows that it. is the limiting case
of sampling the more general process with a longer and longer sampling interval. The
estimator, &4, for this system is

€1 = (1 = X)é + et + Bu,

and the controller is obtained by setting the value of the estimator to zero:

U = —l/\e,

B

The resulting closed loop system is simply e, = v,.
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In terms of the actual outputs and inputs, the controller is
1
Ty = —EA(yt - T) + z: (17)

which can also be written as the integral controller z, = —-% ‘.1 &, and the closed
loop system is y; = T + v,. This output sequence satisfies the assumptions necessary
for the application of on-line SPC, as long as no disturbances of the third type de-
scribed above occur. Therefore, a good way to detect such disturbances would be to
plot the sequence {y;} and interpret it as a Shewhart control chart. ]

Three comments will be made about this example:

1. The predictor &, has the form of an Exponentially Weighted Moving Average
(EWMA) of the previous values of the control error.

2. If control action is not taken at every run, then the predictor & should be
updated at every run, and when control action is taken, its magnitude should
be —é;/B. In this case, the closed loop system will not be e, = v, so applying
control charting techniques to the output directly would not be valid. But
the one step ahead prediction error é; — e; can be shown to be equal to v, in
this case. Therefore, the sequence of prediction errors could be plotted on a
Shewhart chart to monitor the state of the process.

3. This controller is only optimal over the class of linear controllers of the form
u, = -—%ce,, where c is some constant. In particular, if the disturbances to the
process are not normally distributed, the globally optimal controller may not
have this form. The meaning of the word “optimal” here should be clarified:
One might argue that the optimal controller was the one that caused the output
to be on target at every run. But this would require knowing the magnitude
of random disturbances before they occur, which is impossible. Therefore, any
reference to an optimal controller should be understood as a control law that
specifies the input at time ¢ as a function of the information availaktle at that
time.
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1.2.3 Paper by MacGregor ([Mac87])

This paper describes typical applications of both SPC and APC. The paper is aimed
at readers that are knowledgeable about process dynamics and automatic control,
but have had little exposure to statistical methodology. MacGregor attempts to put
the relative merits of the two approaches in perspective using the theory of optimal
control of linear processes, as presented in the preceding subsection. He considers the
case when there are costs associated with adjusting the input, and it is desired to
minimize the sum of these costs and the cost of the output variance. It turns out that
here, the optimal control strategy is to take control action only when the predicted
deviation (using the predictor 1.5) of the output from target becomes larger than
some threshold (i.e. goes outside a “deadband”), and then adjust the process so that
the predicted deviation for the next run will be zero.

In the case where the output depends only on the last input setting (i.e. wyy =
*++ = wy, = 0), this control law reduces to monitoring a filtered version of the output
sequence, and taking control action whenever the filtered sequence goes outside a set of
limits. While this scheme appears similar to on-line SPC control, the interpretation of
an “alarm” is different. An SPC alarm is interpreted as evidence that an unanticipated
external disturbance to the process which has changed the behavior of the process
has occurred. In contrast, when the predicted output deviation from target reaches
its deadband limit, this is not taken as evidence of any change in process behavior. It
simply means that the process has drifted far enough from target that it is now cost
efficient to take a control action.

1.2.4 Paper by Box and Kramer ([BK90])
In contrasting SPC with APC, Box and Kramer argue that
® The users of SPC and APC usually have different backgrounds.

o The two methodologies developed under different circumstances, with SPC orig-
inating in the discrete parts industries abut APC in the continuous process
industries.

® As a result, the control objectives and the (sometimes tacit) assumptions on
which the two methodologies are based are different.
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However, new industries, such as the semiconductor industry, have attributes of both
the parts and process industries. Therefore, the choice of methodology for effectively
controlling a process in these industries is not always obvious.

For any process, the three major issues that determine the appropriateness of a
control strategy are the disturbances to the process, the dynamic (or inertial) char-
acteristics of the process, and the costs of operating the process. Box and Kramer
present the following special case of the linear process model that has been discussed
already, which they argue can capture the behavior of a variety of processes:

t—1

Yyr=c+ 0y, +B(1 -6z g + v+ AZU:‘
i=1
where 0 < A < 1and 0 < § < 1. In fact, the model presented in the LPCVD example
15 a special case of this model, with § = 0, corresponding to no process dynamics.
Here A is a 1neasure of how quickly the process is drifting, & is a measure of the process
inertia, and f is the process gain. For this model, the optimal control law turns out
to be a PI (Proportional - Integral) controller, with the coefficients (cf. equation 1.1)

Ad A
k,:m-l—_é)a.ndk.-=—ﬂ-

If the process were in statistical control, the non-stationarity parameter v would equal
zero, and both of the above coefficients would be zero, implying that taking no control
action is optimal. The authors then consider the case when there is a significant cost
associated with making adjustments (as MacGregor did) and also with measuring the
process output. As in the case considered by MacGregor, the optimal controller turns
out to be a deadband controller.

Box and Kramer also address some criticisms that have been directed at SPC and
APC, respectively. For example, it sometimes claimed that APC over-compensates,
as compared to SPC. This is of course true if the process is really stationary, in
which case no control is optimal. But if the optimal controller is used, based on
reliable data about the characteristics of the process, then by definition it will not
over-compensate.
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1.2.5 Algorithmic Statistical Process Control
The series of papers ((WTFD90], [TFW90], [FHTW90], [Tuc90]) describe an ap-

proach to process control which the authors c.." Algorithmic Statistical Process Con-
trol (ASPC). ASPC represents an integrated approach to quality improvement, which
is based on regulating the process using APC and at the same time using the diagnos-
tic capability of SPC to find and eliminate root causes of variability. In this context,
SPC w»uld serve the strategic purpose of improving the process, while APC would
be in the tactical role of effective adjustment. The authors use as an analogy the pro-
cess of driving a car: The driver needs to constantly adjust the direction and speed
of the car (the role of APC) and at the same time be alert to signals of an engine
malfunction or a flat tire (the province of SPC). As summarized in [WTFD90], “You
can’t drive a car with SPC and you can’t ‘fix’ it with automatic control.”
The following general guidelines are given for implementing ASPC:

1. Identify and estimate the characteristics of the process and disturbances.

2. Design an APC control law, based on a model of the process and pertinent
costs.

3. Design an SPC monitoring scheme to monitor the closed loop system.

4. When an alarm occurs, search for assignable causes, or repeat the process iden-
tification and estimation stage, if necessary.

1.2.6 Papers by Baxley ([Bax91], [Bax90])

In these two papers, Baxley presents an EWMA control algorithm that has both a
deadband and control limits. When the EWMA predictor goes outside the deadband,
control action is taken to bring it back to zero, and when the predictor goes outside the
control limits, a search for assignable causes is started. The algorithm is as follows:

1. After each run, measure the devation from target e;. The EWMA statistic é;_;
is a predictor of this deviation, so the forecast error is e; — &._;. If the forecast
error is inside the control limits, i.e. if |e; — é.,] < Ko., then update the
EWMA predictor using

€ = Aeg+ (1 — A)é
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Otherwise, if the forecast error is outside the control limits, the EWMA predic-
tor is not updated, but a search for assignable causes of variation is started.

2. If the EWMA predictor is outside the deadband limits, i.e. |é| > Lo, then
adjust the process to target by setting z; = 2,1 — é;/8, (where S is the process
gain), and reset the predictor & to zero. Otherwise, do not take any control
action.

Note that when there is no deadband (L = 0), then this controller is identical to the
one given by 1.7 in the LPCVD example. Except for the control limits, this algorithm
would be the same as the one advocated by MacGregor, and Box and Kramer for the
case when the cost of adjustment is taken into account, if the deadband limits were
chosen appropriately.

But Baxley does not dwell on whether this algorithm is optimal or not. In contrast
to the papers menitoned so far, he does not assume that the parameters of the process
(e.g. the process gain B and the EWMA parameter \) are known exactly. Using
simulation, he explores the effect of using suboptimal values for these parameters and
concludes that the controller is robust to minor variations in these parameters.

1.2.7 Taguchi’s “Beta coefficient” Method

Genichi Taguchi describes his “beta coefficient method of on-line process control
in [Tag87, chapter 19] and [TEH89, appendix B] (Since we have already used the
symbol S for the process sensititivy, we will use the symbol ¢ for the quantity Taguchi
calls beta). He starts his development by assuming that the process behavior is such
that the process level drifts randomly between two successive runs, and that the mea-
sured output is the process level, corrupted by random noise. These assumptions
are identical to the ones made in the LPCVD example. Taguchi presents his control
strategy as an alternative to a “deadbeat” controller, which in the notation of the
LPCVD example would be defined by u; = —'"la'eg. In other words, the deadbeat con-
troller compensates for the total deviation e,, rather than scaling it down to Ae;. The
closed loop system under deadbeat control is e; = (1 — (1 — A)B)v,, and the variance
of the deviation e, can be shown to be 100(1 — )\)? percent larger than it would be
with the optimal coutroller u; = —%\e,.
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Taguchi suggests using the following control law:

2 2
1 0. 6=
u,——zmax y T €t

€

In deriving this control law, Taguchi’s objective is not to minimize the variance of
the deviation e; of the output y; from target, but to minimize the deviation of the
underlying level from the target T. By the “underlying level” is meant the output
uncorrupted by the noise term ¢, i.e. y;—e¢,. Unfortunately, the underlying level is not
observed directly, so Taguchi is forced to approximate. In particular, he approximates
the squared devation of the underlying level (y, —e;— T')? by iis expected value, which
is (ye — T)* — o2.

It might be argued that Taguchi’s objective of keeping the underlying level, rather
than the observed output, on target is more appropriate, since the quality of the prod-
uct depends on its true characteristics, rather than the measured characteristics. But
there are some questions and concerns that can be raised about the appropriateness
of Taguchi’s method, for example:

1. What is the effect of approximating (y; — ¢ — T')? by (y. — T)? — 02 ?

2. The term ¢, might represent not only measurement error, but also errors in
modelling. For instance the dependency of the output on the input might be
quadratic rather than linear, in which case it is not clear which of the “underly-
ing level” and the measured output is a better measure of the irue characteristics
of the product.

A simulation study performed by Mittmann [Mit91] suggests that for slowly drifting
processes, the EWMA algoritbm of the gradual mode of the RbR controller consis-
tently outperforms the beta coefficient method.

1.3 Remainder of the Thesis

The Run by Run Controller was developed as part of a modular system for process
control in VLSI (Very Large Scale Integrated) circuit fabrication. Some of the relevant
characteristics of VLSI manufacturing processes, and the process control system will
be described in chapter two.
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The third chapter presents an overview of the algorithm. The details of the
gradual and rapid modes are described in chapters 4 and 5, respectively. In chapter
6, the stability and robustness of the algorithm will be analyzed, and in chapter
7 a simulation experiment, whose purpose was to evaluate the performance of the
algorithm, is reported on. In chapter 8 conclusions are made and future extensions

are suggested.



Chapter 2
Setting

The RbR controller was designed as part of an overall process control system. The
proposed process control system is designed with VLSI fabrication in mind, but the
methods developed are general enough that they may be applicable to other kinds of
batch processes.

VLSI circuits are usually made on silicon wafers. Thesilicon wafers will go through
several processing steps before becoming a finished product. In this system, each pro-
cess in the sequence is to be controlled separately. To accomplish this, measurement
data from the current process and the process immediately preceding it are used.

The system consists of three main modules. The Flexible Recipe Generator de-
termines the best initial operating conditions, given the product specifications and
the available knowledge about the production process. The Run by Run Controller
modifies the operating conditions for each new run, based on measurements of the
current state of the process and more refined knowledge about its operation. The
Real Time Controller makes adjustments during a production run.

A block diagram of this system is shown in figure 2-1. The system is described in
detail in [SGHHO1].

This chapter has twe sections. The first describes the role of the RbR controller
in the overall process control system. The second gives a very brief overview of the
manufacture of VLSI circuits, with attention focussed on those processing steps where
applying the RbR controller might yield the greatest benefits, and on justifying some
of the assumptions made in modeling the system.

29
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2.1 Role of the RbR Controller

The purpose of the RbR controller is to update the current recipe, based on current
measurements of the process and of the preceding process. This is done using local
on-line optimization, feed-back control, and feed-forward control.

Local on-line optimization refers to systematic exploration of operating conditions
in the hope of achieving better performance. This exploration is constrained to a
small region around the current recipe to ensure that the percentage of scrap is not
increased.

Feed-back control is concerned with identifying disturbances to a process and ad-
Justing the recipe such that the performance of the process is as good as before.
Sometimes, the cause of the disturbance is known, a typical example being a main-
tenance operation. In other cases, a disturbance occurs for unknown reasons, but
its existence can be inferred from the effect on the output y,. Two useful categories
of disturbances are shifts and drifts, referring to an abrupt change and a gradual
change over a period of time, respectively. The RbR Controller algorithm attempts
to compensate for drifts and identify shifts in a process and respond appropriately.

Feed-forward control is the activity of adjusting the recipe for the process based
on measurements made on the output from the preceding process, to compensate for
maladjustment in that process. Note that in order for feed-forward control to be
useful, one must have a good understanding of the physics of the process (i.e. be able
to predict its performance over a wide range of operating conditions).

The overall architecture of the RbR controller is illustrated in figure 2-2. The RbR
controller respends to in situ and post-process measurements from a process with
two modes of operation: optimization and control. Optimization may be repeated
periodically, if it is thought that additional possibilities for improvement exist, or if
the process behavior is thought to have changed drasticaily. Once the process has
been optimized, the control mode is engaged in order to maintain the process at the
optimum level. The control mode is the subject of this thesis.

The distinction between the two modes is that in the optimization mode, it is
expected that the process can be significantly improved, while in the control mode,
the concern is ‘o maintain the performance of the process in the face of disturbances.
Thus, in the optimization mode, improvement can be sought by aggressively exploring
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Figure 2-2: A flowchart showing the overall architecture of the Run by Run controller.

the process space even though doing so will temporarily increase the variability of the
process output. In the control mode, on the other hand, the emphasis is on contrclling
to target. The optimization aspect of the RbR controller is described in [GSHH90]
and [SGHH90].

The feed-back control module of the RbR controller (as opposed to the optimiza-
tion module) interacts with the other modules in the process control system in the

following ways (refer to figure 2-1):

¢ An initial recipe along with a predictive model of the process is obtained either
from the flexible recipe generator. or from the optimization module of the RbR

controller.
o A suggested recipe for each run is given to the real time controller.

e Summarized in-situ measurements are obtained after each run from the real
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time controller.

e Post process measurements are obtained after each run from a measurement
station.

2.2 VLSI Fabrication

A Very Large Scale Integrated (VLSI) circuit. or a chip, consists of a network of
electrical devices, such as transistors. which is constructed on a silicon substrate.
The common definition of VLSI is a circuit with more than 100,000 devices per chip
( [WT86]).

The manufacture of chips starts with the growing of a single crystal cylinder-
shaped ingot of silicon. The ingot is sliced into thin wafers (675 pm is a typical
thickness for a wafer which is 150 mm in diameter), on the surface of which the
circuits are constructed. We will be concerned with the processing steps which occur
after the silicon wafers have been polished and prepared, and before the individual
chips are separated and packaged.

The circuit construction consists of growing several thin films (on the order of 1000
A) of material on the surface of a wafer. The film material can be, for example, silicon
oxide {Si02, an insulator), polycrystalline silicon (a semiconductor), or aluminum, for
making contacts and wiring.

The patterning of each film follows a cycle. which usually consists of the following
steps: First, the film is grown or deposited on the silicon substrate, by means of
c-emical vapor deposition (CVD) or thermal growth. Second, photolithography is
used to create protective layers of photoresist over those areas of the film that should
remain. Finally, the film material which is not protected by photoresist is etched
away, leaving the desired film patteru.

In order to provide a context for the analysis performed in this thesis, one chip
production step will now be described. For further detail, see [WT86).

Epitaxial Growth Process

The epitaxial growth process is a means of depositing a thin layer of single crystal
silicon on the surface of a silicon wafer. The wafers are typically located on a hexago-
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nally shaped susceptor inside a bell jar shaped reactor chamber (see figure 2-3). Gas
(a mixture of trichlorosilane (SiHCl3) and hydrogen) flows in through two nozzles at
the top of the reactor and reacts at the surface of the wafers to form the deposited
layer of silicon. It is critical for the proper functioning of the electronic devices on the
wafer that the epitaxial layer be of uniform thickness. Suppose that for each batch of
wafers loaded into the reactor, the layer thickness is measured on a monitor wafer at
the five locations indicated in figure 2-3. A possible output measure of thickness uni-
formity is the difference between thickness measurements on the left and right sides
of a wafer, which ideally should be zero. Another possible uniformity measure would
be the sample variance of the thickness measurements. Factors which are known to
have a major effect on the thickness uniformity are the balance of flow between the
two nozzles, assuming a constant total flow rate and the horizontal angle at which
the nozzles point into the reactor chamber.

2.2.1 Modeling Assumptions

Each step in the chip manufacturing process has an associated set of inputs and
outputs. The purpose of process control is to manipulate the process inputs so as to
cause the process outputs to have desirable values. In order to analyze the behavior
of a control strategy, a model of the causal relation between inputs and outputs is
needed. A model used in this thesis is based on the following assumptions:

® The process has no dynamics, in the sense that the outputs depend only on the
input settings for the current run, not on settings at previous runs.

o The output for a giver run is a linear (first order) function of the inputs for
that run.

o The process sensitivities can be considered constant for extended periods of
time.

¢ Disturbances to the process can be classified as either a drift or a shift in the
process level.

¢ The variance of the inherent process noise (caused, for example, by measurement
error) remains constant for extended periods.
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Figure 2-3: A schematic representation of a radially heated epitaxial reactor. Two
control variables which can be used to control the thickness uniformity of the epitaxial
layer are the balance of gas flow between the two nozzles shown at the top of the
reactor and the angle between each of the nozzles and a line to the center of the
barrel. Six silicon wafers are shown on the hexagonal susceptor. On three of them,
five thickness measurement sites are indicated.

This model will be formalized in the next chapter. In the remainder of this section,
the validity of these assumptions will be discussed.

Lack of Dynamics

In the CVD process described in the exmaple in section 1.2.2, a batch of wafers is
loaded into a reactor, which is then heated up to the desired temperature. Gas is then
pumped in, which reacts at the surface of a wafer, to form the deposited film. After
the reaction is completed, the reactor is cooled down, and the wafers are removed
before the next batch is loaded in. Since the recactor chamber is allowed to return
to atmospheric conditions between batches, there is no reason to expect any carry-
over effects. In other words, process outputs such as film thickness and thickness

uniformity are a function of inputs such as temperature, pressure, and flow rates for
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the current run only, and is independent of previous runs.

Linearity

In reality, no manufacturing process is perfectly linear. But since a linear process is
much easier to analyze and interpret than a nonlinear one, one hopes that within the
region of operation, the process can be approximated by a linear function. In the next
chapter, the stability of a process controlled by the RbR. controller is analyzed, under
the assumption that the process is quadratic rather than linear. It is shown that the
condition which guarantees stability is similar to the linear stability condition.

The validity of assuming that a process is linear can also depend on which output
variables are used. For example, in the epitaxial growth process, the left to right
thickness difference can reasonably be expected to depend linearly on the balance
of flow between the two nozzles, at least within some narrow operating range. For
the sample variance, on the other hand, this claim is harder to make. In fact, the
relationship between sample variance and balance of flow may not even be monotonic
within the region of operation.

In [SPGY1], a computer simulation based on physical models of a Low Pressure
CVD (LPCVD) process is described. Figure 2-4 shows how the average layer thickness
depends on the total gas flow rate for the simulated LPCVD process. The figure shows
that wher the flow rate ranges from 130 to 150 sccm, there is hardly any curvature
in the relationship between thickness and flow rate.

Constancy of Process Sensitivities

This assumption is a critical one, and is not always warranted. A disturbance, such as
a maintenance operation, which changes the behavior of the process, can change not
only the level but also the sensitivities of the process. As shown in the next chapter,
the process stability depends on the reliability of the estimated process sensitivities.
Therefore, an important enhancement of the algorithm would be to allow for re-
estimation of the process sensitivities. During normal operation (i.e. in the absence
of shifts) the input settings are not likely to change very much, making estimation
of the process sensitivities difficult. But when shifts occur, a larger change is made
in the input settings, to compensate for the shift. Therefore, it might be possible to
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Figure 2-4: Data from an LPCVD simulator. The simulator was run with the total
gas flow rate taking values betwen 130 and 150 sccm. The resulting average growth
rates in A/min. are shown. Observe that the relationship is very close to being linear.

get reliable information about changes in the process sensitivities frora the runs just
before and after compensation for a shift.

In [SHIL91], an experiment performed on the epitaxial growth process described
previously is reported on. The results show that the process sensitivities did change
significantly after a maintenance operation, and an algorithm which updates the sensi-
tivities is shown to enhance convergence of the process to target after the maintenance
operation.
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Nature of Disturbances

Disturbances to a manufacturing process could have any number of different forms.
However, many commonly encountered disturbances may be classified as contributing
to either drift or shift in the process level. By drift we mean a slow but steady change,
on the order of 1 o over a period of 100 runs. By shift we mean occasional, large (on
the order of 3 o) changes in level.

Drift may be caused by slow changes in environmental conditions, such as tem-
perature and humidity, deposition inside a reactor, the aging of components, drift
in the mass flow controllers which maintain setpoints for gas flow, and a number of
other causes. Shifts often have well known causes, such as a maintenance operation
or the beginning of a new shift, but sometimes the time at which the shift will occur
will be unpredictable. For example it may be known that for an etching operation,
the etching through a certain layer inside the vessel in which the etching takes place
will cause a shift, but it may be difficult to predict precisely when this will happen.

The choice of those two categories of disturbances is motivated also by the fact
that they are sufficiently different in character that different control strategies are
appropriate for each.



Chapter 3

Overview of the Algorithm

This chapter will give an overview of the Run by Run Controller algorithm. The
generalized version of SPC used to detect major disturbances will be described. Also,
the process model used to evaluate the performance of the algorithm analytically will
be presented.

The goal of the algorithm is to maintain the performance of a manufacturing pro-
cess in the face of unpredictable disturbances. This is done by continuously updating
a model of the process, using input settings and process measurements. A high level
summary of the algorithm is shown in figure 3-1. Before each run of the process, the
algorithm selects a recipe x, of input settings to be used. This recipe is chosen so
that the predicted output §, equals the target T, using the latest available model of
the process, which is §; = a,—; + b’x. The process operator may choose not to take
the advice of the algorithm, in which case the predicted output may be different from
T. Then, the process is run at the recipe chosen by the operator, and an cutput
measurement y; is obtained. The prediction error § — y; is computed and plotted
on a Shewhart control chart. If the control chart generates an alarm, this is inter-
preted as evidence that a step disturbance to the process has occurred. As a result,
the algorithm enters the rapid model modification mode (rapid mode), wherein the
predictive model of the process is updated quickly to allow rapid compensation for
the step disturbance. On the other hand, if the measurements from the current run
did not cause an alarm, and an alarm has not occurred in the immediate past, then
the algorithm will operate in the gradual model modification mode (gradual mode),
In gradual mode, the intercept term of the predictive model of the process is updated
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Initiaiize process model, § = ao + b’x.
te1.
while control is needed do

Select next recipe, x,.

Predict response, i = a,_; + b'x;,.

Operate process, measure actual response, y;.

Compute prediction error, e, = §j; — y,.

Decide whether a shift has occurred (based on e;, i = 1,2,...,1).
if a shift has occurred, then

Estimate magnitude and location of shift disturbance.
Adjust the process model.

end if
Update the process model.
lett«—t+1.

end while

Figure 3-1: The Run by Run Controller algorithm

as an Exponentially Weighted Moving Average (EWMA) of the evidence supplied by
previous runs of the process.

This algorithm can be interpreted as a generalized version of Statistical Process
Control (SPC), as will now be described.

3.1 Generalized SPC

A basic assumption often made when SPC is applied is that the equipment settings
must remain stable, that is they cannot be tweaked, because otherwise the control
charts cannot be properly interpreted. However, equipment settings must often be
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tweaked to optimize the operation of equipment, and to respond to process shifts and
drifts. In this section, a generalized version of SPC, which allows the process to be
tuned and monitored at the same time will be described. Since the RbR controller
changes the process recipe between runs, the generalized version of SPC is critical to
its operation.

The traditional tool of SPC is the control chart, on which the process output y;
is plotted over time ([Mon85]). The statistical techniques used to diagnose control
charts are based on the assumption that the values which are plotted are independent
samples from a common probability distribution. Because of this assumption, it
is generally thought that the inputs z,, must be held constant in order for valid
conclusions to be drawn from an analysis of a control chart, since otherwise the
probability distribution from which y, will change over time. The result is that no
tweaking is permitted during the use of a control chart. This constitutes a serious
restriction on the operation of a process.

Underlying SPC is a binary view of the condition of a process, i.e. either it
is running satisfactorily or not. In reality, there is an opportunity for improving
the process by optimizing it and by re-tuning it more frequently than does SPC
to compensate for small shifts and drifts. The RbR controller can accomplish such
optimization and re-tuning because it continually updates a model for the process as
production continues.

Since the RbR controller must tweak the process as part of its operation, clearly
the traditional approach to SPC cannot be used. To retain the benefits of SPC (the
ability to diagnose a process) while tweaking a process, generalized SPC is being de-
veloped. In generalized SPC, the measured output value is compared with a predicted
output value and the difference is plotted on an SPC chart which is normally used
to plot the measured value itself. Generalized SPC is contrasted with the traditional
version in figures 3-2 and 3-3. In traditional SPC, the measurements (or the average
of a sample of measurements) obtained by running the process at a fixed recipe are
plotted on a control chart, as shown in figure 3-2. When generalized SPC is ap-
plied, the recipe may be changed, in order to search for better performance, or to
compensate for disturbances. If the process was originally in statistical control, then
changing the recipe will in fact increase the scatter of the output measurements as
shown in figure 3-3. Therefore, if the measurements were plotted directly on a control
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Figure 3-2: In the traditional application of SPC, the setpoint is fixed (the process is
not tweaked). The output measurements (or the average of samples of measurements)
are plotted on an X control chart. Assuming that the process is in statistical control,
most of the measurements will fall between the upper and lower control limits, which
are usually set at T 4+ 30, where o is the standard deviation of uncorrelated noise in
the process.

chart (the black squares in figure 3-3), a large number of alarms would occur. But
these alarms are caused not by a lack of statistical control, but because the recipe
is not constant. To avoid this problem, instead of plotting the measurements, we
plot the one step ahead prediction error for the process output. That is, we plot the
difference between the measured value and the prediction of the process output based
a model developed from the preceding data. The model used is the statistical model
created and updated by the RbR controller. An early paper suggesting this strategy
is ([Man69]).

Shewhart control charts are efficient at detecting large changes in the process
mean, say on the order of 3 o, but they are less efficient for detecting small changes.
For this reason, different control charts, such as the CUSUM and EWMA control
charts ([Mon85]) have been developed, to detect minor changes more quickly. How-
ever, the gradual mode of the RbR controller is designed to compensate for slow

changes in the process mean. Therefore, detection of such changes is not particularly
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Figure 3-3: If a process is in statistical control. but a control variable which affects the
output is being tweaked, then the output measurements will not be a random sample.
This is illustrated by plotting the measured values (the black squares) on a control
chart. Although the process is in control, several of the measurements are outside
the control limits, because the value of the control variable is being increased with
time. In generalized SPC, instead of plotting the measured values, the one step ahead
prediction errors (difference between measured output value and the value predicted
by a process model) are plotted. These values are shown as white squares on the
control chart, and they are all inside the control limits.
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important when the RbR controller is applied.

3.2 Process Model

In analyzing the behavior of the RbR controller algorithm, attention will be restricted
to a model where the output at time t is <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>