SOURCE CODING FOR CHANNELS WITH
FINITE-STATE LETTER COSTS

by
Serap Ayse Savari

S.B., Massachusetts Institute of Technology
(1990)

Submitted to the
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE
in partial fulfillment of the requirements for the degrees of

MASTER OF SCIENCE
and
MASTER OF SCIENCE IN OPERATIONS RESEARCH
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 1991
(© Massachusetts Institute of Technology 1991

Signature of Author..... ..ot
Department of Electrical Engineering and Computer Science

July 22, 1992

Certified Dy «vv vt i i e e e e
Robert G. Gallager

Professor of Electrical Engineering

Thesis Supervisor

Accepted by ..o e e

Campbell L. Searle

Chairman, Departmental Committee on Graduate Students

Accepted by ..o ovii e e
Thomas L. Magnanti
Co-Director, Operations Research Center

SOURCE CODING FOR CHANNELS WITH
FINITE-STATE LETTER COSTS
by
Serap Ayse Savari

Submitted to the Department of Electrical Engineering and Computer Science
on July 22, 1992, in partial fulfillment of the
requirements for the degrees of
Master of Science
and
Master of Science in Operations Research

Abstract

The goal of source coding is to encode the output of a discrete information source into a
sequence of letters from a given channel alphabet with the minimum expected cost required
per transmitted source symbol. Although much is known about good coding techniques when
all of the channel letters are equally costly, there are few results for more general channels. In
this thesis, we propose and examine various coding schemes, primarily for the case of noiseless,
memoryless cost channels. We first study Varn coding and demonstrate a duality between
Varn coding and Tunstall coding. We also establish new bounds on the performance of Varn
coding. We then turn to a heuristic to find good prefix condition codes when the channel
is binary with memoryless letter costs. The heuristic is based on Huffman’s algorithm; we
consider its strengths and weaknesses. Next, we describe a new mathematical formulation to
find optimal single letter prefix condition codes when the channel is either memoryless cost,
or has memory in the form of constraints on individual code words. The resulting formulation
is an integer bilinear programming problem. We mention some additional constraints to get
better solutions when we drop the integer constraints. Finally, we generalize arithmetic coding
to handle discrete, noiseless finite-state channels. We demonstrate that these codes are efficient,
have asymptotically optimal behavior, and can be used to encode sources with memory.

Thesis Supervisor: Robert G. Gallager
Title: Professor of Electrical Engineering

Acknowledgements

I would like to thank my parents, Mr. Aykut Savari and Mrs. Sirin Savari, for their continual
love and encouragement. I could have never come this far without them. I am also grateful to
my sister Phylis for her support and helpfulness. She assisted in the typing of this document.

I would like to thank my supervisor, Professor Robert G. Gallager, for his on-going guidance
and insights. His teachings inspired my interest in source coding and working with him has
been a very important and rewarding part of my educational experience.

I am grateful to Emre Telatar and David Tse for their encouragement and for their help with
my computer-related difficulties. I also wish to express my appreciation to Murat Azizoglu, Rick
Barry, Daniel Lee, Ying Li, Abhay Parekh, Rajesh Pankaj and Jane Simmons for providing a
very friendly environment at LIDS.

This work was supported by an AT&T Bell Laboratories Graduate Research Program for

Women fellowship and a Vinten Hayes fellowship.

Contents

1 Introduction 5
1.1 Definitions and Background o o oo 6
1.1.1 Discrete Memoryless Cost Channels 6

1.1.2 Finite-State Noiseless Channels 10

1.2 Goalsofthis Work 11

2 Some Notes on Varn Coding 13
3 A New Heuristic Based on Huffman’s Algorithm 23

4 A Multicommodity Network Flows Approach to the Problem of Finding Op-

timal Prefix Condition Codes 31
5 Arithmetic Coding for Finite-State Noiseless Channels 37
6 Conclusion : 57
Appendix 59
Bibliography 61

Chapter 1

Introduction

Source coding is a topic that is well understood for channels with equal cost symbols, but
is rather poorly understood for more general channels. In this thesis, we attempt to gather
additional insights about good encoding techniques when we work with one of these more
general channels. More specifically, we will be investigating the encoding of the output of a
discrete information source into a sequence of letters from a given channel alphabet. We assume
that there is a cost associated with transmitting a given channel letter which may depend on
the previous channel sequence transmitted. We wish to choose the encoding rules to minimize
the expected cost required per transmitted source symbol.

In one family of encoding rules, which we will call single letter codes, each source symbol
is represented by a code word, which is a sequence of letters from the channel alphabet. In
order for decoding to be unambiguous, we insist that no two distinct source sequences of finite
length correspond to the same sequence of channel letters. Codes with this property are said
to be uniquely decodable. A subset of the class of uniquely decodable codes is the set of prefiz
condition codes, in which no code word is the prefix of any other code word. Prefix condition
codes have the property that the end of each code word is immediately recognizable once the
starting point of a sequence of code words is known. In this thesis, all of the single letter codes
that we will study fall into the category of prefix condition codes.

The set of single letter codes is a subset of the family of fized to variable length codes in
which single letter encoding techniques are used on the product ensemble of L source letters.

There are two problems with using fixed to variable length codes. In the next section, we will

discuss the minimum expected cost of transmitting a source letter that can be achieved by any
source coding technique and we will demonstrate that it is not computationally attractive to
use a fixed to variable length code to get arbitrarily close to this ideal average cost. The other
problem is that often we are not given the source probabilities. Hence, we would like to have
source coding techniques that are “universal” in the sense that they work well independent
of the source probabilities, or “adaptive” in the sense that they adapt to the existing source
probabilities. We will classify any encoding rules which do not fall into the category of fixed to

variable length codes as non-block codes.

1.1 Definitions and Background

1.1.1 Discrete Memoryless Cost Channels

We assume that we are given a discrete memoryless source. This means that at each unit
of time, the source emits one of a finite ensemble U of source symbols, say u;,us,...,ug,
with associated probabilities p;, ps, ..., Pk, and successive letters are statistically independent.
In this subsection, we also assume that our channel has memoryless costs; i.e., the cost of
transmitting any code letter depends only on that letter. Therefore, our channel is a device
which accepts input from a specified set X of letters, say 21, 3,...,2n5 with (positive) letter
costs ¢q,Ca,...,CN, Tespectively.

Shannon (1948) demonstrated that under this assumption, the minimum expected cost per
source symbol that can be achieved by any source coding technique is greater than or equal to

ﬂcﬂ where H(U) , the entropy of the source ensemble, is defined by

K
H(U) = —ZPilogzPi

1=1

and C, the capacity of the channel, is the real root of the equation

N
> =1L (1.1)
=1

Definition: We say that a code 7y* is optimal within a class of codes T if there is no code

4 € T for which v has a smaller average cost of transmitting a source symbol than y*.

We begin our discussion of known coding techniques with some results on single letter codes.
Here we assume that N < K. McMillan (1956) showed that when all of the letters in the code
alphabet have the same transmission cost, any uniquely decodable code can be replaced by
a prefix condition code without changing any of the code word lengths. Karp (1961) studied
memoryless cost channels where the channel letters all have positive integer transmission costs
and conjectured that every uniquely decodable code can be replaced by a prefix code with the
same set of code word costs. Carter and Gill (1974) demonstrated that Karp’s hypothesis is
equivalent to the same statement under the more general premise of an arbitrary assignment
of positive channel letter costs. Therefore, in our study of single letter codes for memoryless
cost channels, it is likely that we do not lose anything by restricting our attention to prefix
condition codes.

Huffman (1952) used an elegant combinatorial-type argument to find the optimal prefix
condition code in the special case where the channel letters are of equal cost. Varn (1971) gave
an efficient algorithm to produce the optimal prefix condition code when the source symbols are
equally probable. Karp suggested an integer linear programming solution to obtain the optimal
prefix condition code for arbitrary rational channel costs and source probabilities.

Because most integer linear programming problems can not be solved efficiently, heuris-
tics have been developed to get “good,” but not necessarily optimal, prefix condition codes.
Shannon, in his aforementioned paper, describes a heuristic that he and Fano independently
discovered to get good prefix condition codes when all of the channel letters have the same
transmission cost. The Shannon-Fano algorithm can be described as follows: Suppose we la-
bel our source ensemble so that py > p; > --- > pg. Let P, = 0 and let Pryy = Pr + pp for
k=1,...,K —1. The code word for message k is obtained by expressing P} in base N and then

selecting the first my, places of the base IV representation, where m;, is the integer satisfying

log, pi
log, N

log, pr
—_ < —
Tog, N me < 1

Krause (1962) generalizes the Shannon-Fano algorithm to handle arbitrary memoryless cost
channels. The primary difference between the Krause and Shannon-Fano algorithms lies in

Krause’s use of a “generalized base N” representation of P,, k = 1,..., K. The unit in-
g b ?

7

terval and all subsequent intervals are now split into IV segments with lengths in the ratio
2-Ca ;2-Ce2 ;...:2-CcN_ The code word for p; is chosen to be the shortest initial segment
of the generalized base N representation of P, whose total cost dj is greater than or equal to
—l"—gg.ﬂ. Hence, for k =1,..., K,

log, pr
< d, i —
k< ieﬁl,.a.’.},(N}c (o

Mehlhorn (1980) essentially uses many of the same ideas as Krause to develop a different, but

similar, heuristic. Krause’s paper shows that an optimal prefix condition code satisfies

HU) - H(U)
L =/ .
e <d< C +i€{r{1’.=ﬁcmcz

where H(U) and C are defined as before and d is the average cost per source symbol. Mehlhorn
demonstrates a slightly weaker result. The heuristics of both Krause and Mehlhorn require the
execution of a number of steps on the order of the size of the source ensemble to be encoded.
To use these algorithms to obtain codes with expected cost per source symbol guaranteed to
be arbitrarily close to —Iﬂcy—), we can encode large blocks of source symbols instead of individual
source symbols. More specifically, if we use Krause’s encoding technique on the product ensem-
ble of sequences of L source letters, then an argument almost identical to the one in Section
3.3 of Gallager (1968) shows that
HU) - H(U 1
é’) - # + L ieglffxv}ci
where d and U refer to the original source ensemble. Note that the size of the product ensemble
of sequences of L source symbols is K© and as L increases, it rapidly becomes computationally
unattractive or infeasible to use Krause’s algorithm. This motivates a study of non-block codes.
However, before we turn to non-block codes, we will discuss two more results on prefix condi-
tion codes that are interesting and useful. Fori = 1,..., N, we define y; to be the code word for
source symbol u;, [; to be the number of code letters in y;, and d; to be the cost of transmitting
;. Then for any prefix condition code, Kraft (1949) showed that % N-% < 1 and Krause

demonstrated that 3%, 2-C4 < 1. Both of these inequalities are met with equality when the

prefix condition code is ezhaustive; i.e., any string of channel letters is the concatenation of a
string of code words possibly followed by a proper prefix of a code word. Alternatively, a prefix
condition code is exhaustive if, for any two channel letters z; and zx, az; is a prefix of a code
word if and only if azy is also a prefix of a code word, where a is a string of channel letters.

To begin our discussion of non-block codes, we consider a broader viewpoint of source coding
than the one we have been using until this point. We now decompose our encoder into two
parts, a parser and a string encoder. The parser segments the source output sequence into a
concatenation of strings from a dictionary. In the fixed to variable length codes we considered
earlier, the strings were of fixed length. For non-block codes, we are interested in the case where
the parser output is a set of variable length strings. The function of the string encoder is to
map the set of such strings into (uniquely decodable) code words.

In order to ensure that any source sequence can be encoded, we insist that every possible
source sequence has a prefix that is in the dictionary. Dictionaries with this property are said to
be valid. To avoid any ambiguity in the parsing process, we restrict our attention to dictionaries
in which no entry is the prefix of any other entry.

Non-block codes have been investigated primarily for the case where the channel letters are
equally costly. Tunstall (1968) found the dictionary that minimizes the average number of code
letters transmitted per source letter under the assumption that the code words all have the same
length. Ziv and Lempel (1978) studied the parsing of source strings where the source statistics
are unknown. Their coding strategy, like Tunstall’s, is essentially a variable-to-fixed length code
containing a parsing dictionary of source strings, but their dictionary changes dynamically while
the dictionary in Tunstall coding remains fixed. As the length of the encoded source string goes
to infinity, the Ziv-Lempel codes have the ideal of 1%}% code letters per source symbol. For
the more general memoryless cost channel, Lempel, Even, and Cohn (1973) found the optimal
dictionary with V > K entries for the special case where the source symbols are equiprobable.

For channels with equal cost letters, Rissanen and Langdon (1979) investigated another class
of codes called arithmetic codes. In arithmetic coding, there is no parsing done on the source
sequence; instead, an infinite source sequence is mapped into a point z in the unit interval on
the real line and then « is represented by a sequence of channel letters. As with the Ziv-Lempel

codes, the arithmetic codes asymptotically have an ideal number of code letters per source

symbol.

1.1.2 Finite-State Noiseless Channels

We now turn our attention to noiseless discrete finite-state channels, a class of channels which
includes the family of noiseless discrete memoryless cost channels as a special case. A finite-
state channel with finite alphabet X = {z;,..., 2y} and set of states § = {s1,..., 3.} is defined

by specifying
1. for each pair (s,z;) € § X X, the cost ¢, ;; € [0, 00] of transmitting z; when the state is s

2. the state s[z;, 1| after channel letter z; is transmitted, given that the state of the channel

is ¢ prior to transmission; when cy, ., = oo for z; € X, we assume that s[z;, ¢] = ¢.

The second rule inductively specifies the final state after an arbitrary channel string o is trans-
mitted from initial state 1, and we denote this state by s[c,1]. As before, we assume that we
are given a discrete memoryless source.

We let X* denote the set of all strings of letters of X. We say that ¢ € X* is an element of
X} if the cost of transmitting o is finite given that the channel is in (initial) state s; immediately
before the first letter of ¢ is transmitted.

We let ¢; = ming,cx ¢5,z;, 8 € 5. We allow the possibility of ¢;, = 0 for some i, but we
assume that for every 1 < i < r and every ¢ = zj,...2;, € X with n > r, the cost of
transmitting o is strictly positive.

We say that a finite-state channel is irreducible if for each pair of states s; and sy, there is
a string o € X} for which o drives the channel to state s, given that the channel was in state
s; prior to the transmission of the first letter of o; i.e., s{o, s;] = s;. All finite-state channels
that we will discuss are assumed to be irreducible.

We let Xi(s;) = {z; € X :s[xj,s;] = s} and for w > 1 we let .A(w) denote the r X r matrix
A(w) = [air(w)] where aj(w) = Yg cx,(s) @ 7. To include w = 1, we use the convention
that 1-°° = 0. Shannon (1948) and Csiszar (1969) showed that there is a unique positive (real)
number wg > 1 for which the greatest positive eigenvalue of A(wg) equals one; furthermore, if
C = log, wo and U is our source ensemble, then the minimum expected cost per source symbol

that can be achieved by any source coding technique is greater than or equal to ﬂoﬂ For this

10

reason, we again refer to C as the capacity of the channel.

Csiszar generalized Krause’s algorithm to handle finite-state channels with the previously
mentioned properties. The resulting Csiszar codes are prefix condition codes with average cost
per source symbol between E%H) and Eéﬂl +V, where V is a positive constant depending only
on the channel. Following the same argument as we used earlier for Krause codes, if we use
Csiszar’s encoding technique on the product ensemble of L source letters, then the expected
cost per source symbol is between _IﬂCH) and ﬂcﬂ + % Unfortunately, as L gets larger, this
scheme becomes increasingly unattractive from a computational point of view.

Besides the discrete memoryless cost channel, there are other special subclasses of finite-state
channels that are of interest. These are typically binary channels whose letters have the same
cost of transmission, but for which there are some constraints on the code words and perhaps
on the concatenation of code words. A runlength constraint is a constraint on the number of
times that the same symbol can be sequentially repeated. If {0,1} is our channel alphabet,
one typical constraint may require that there are no strings of length greater than A consisting
of all 0’s or all 1’s. Another constraint may necessitate a minimum of d and a maximum of k
0’s between consecutive 1’s in allowable code strings. There has been a considerable effort to
find good codes satisfying the (d, k) constraint. Siegal (1985) summarized many of the existing
techniques to construct so-called (d, k) codes.

1.2 Goals of this Work

The body of the thesis is comprised of four parts. The next chapter is devoted to Varn cod-
ing; a duality between Varn coding and Tunstall coding is demonstrated and bounds on the
performance of Varn codes is established.

Chapter 3 develops a heuristic to find good prefix condition codes when we are given a
binary, memoryless, noiseless channel and a memoryless source. The heuristic is based on
Huffman’s algorithm; its strengths and weaknesses are discussed.

The fourth chapter describes a new mathematical formulation to find optimal prefix condi-

tion codes when the channel is either

e memoryless cost, or

11

e with memory, but the memory is limited to individual code words, as opposed to the con-
catention of code words; e.g., constraints on the maximum code word cost are acceptable,

but runlength constraints are not.

The resulting formulation is an integer bilinear programming problem. Additional constraints
to provide a better solution if the integer constraints are ignored are mentioned.

The final chapter of the body generalizes arithmetic coding to deal with discrete, noiseless
finite-state channels. We demonstrate that these codes have asymptotically optimal behavior
and that they can be used to encode sources with memory. Examples of the new algorithm will

be provided.

12

Chapter 2

Some Notes on Varn Coding

Varn (1971) investigated the problem of constructing minimum-redundancy single letter prefix
condition codes given a discrete, noiseless, memoryless cost channel and a memoryless source
with equiprobable symbols. Each source symbol is to be encoded into a string of channel letters
so that the resulting code satisfies the prefix condition and has minimum average transmission
cost among all prefix condition codes. More specifically, we are given a source ensemble con-
sisting of equiprobable symbols uj,...,ux and a channel which has alphabet z,,...,zy with
respective letter costs ¢; > ¢z > ... > ¢y and capacity C, which Shannon (1948) defined to be

the real root of equation (1.1); we recall that this equation is

N
320 =1,

=1

For 1 < i < K, we denote the cost of transmitting source symbol u; by d; and we let d = Lﬁ‘-—di

represent the expected cost of transmitting a source symbol.

Varn first studied the problem of finding an optimal code among the class of exhaustive
prefix condition codes. We recall that a prefix condition code is exhaustive if, for any string of
channel letters z and any two channel letters z; and z,, zz; is a prefix of a code word if and
only if zzy, is also a prefix of a code word. We note that exhaustive prefix codes exist only for
those K for which K = (a + 1)N — « for some non-negative integer «; a is then the number

of non-root intermediate nodes in our code tree. Using induction on «, Varn demonstrated

13

that any exhaustive prefix condition code with K equiprobable source symbols and o non-root

intermediate nodes with costs Y7 < ... <Y, has average cost per source symbol equal to

(c+) St (N -)TE. Y

— (2.1)

Therefore, an optimal exhaustive prefix condition code will minimize) %, Y;. Hence, the fol-

lowing algorithm could be used to create an optimal exhaustive prefix condition code:

1. Start with each channel letter as a code word.
2. If the total number of words is less than K, then goto step 3, else stop.

3. Take the least costly code word Z; and replace it with the NV code words Z; oz, Z; o z,,
..., Zy0zxN, where a o b is defined as the concatenation of b to the right end of a. We do

not change the other code words. Goto step 2.

Varn then considered the problem of obtaining optimal prefix condition codes that are not
constrained to be exhaustive. He demonstrated that if the code tree of the optimal code has
a non-root intermediate nodes, then the exhaustive prefix condition code with those a non-
root intermediate nodes is optimal among all exhaustive prefix condition codes with a non-root
intermediate nodes; furthermore, the code tree of the optimal code consists of the K least costly
words of the exhaustive code tree with the same non-root intermediate nodes. Varn also showed

that for any optimal prefix condition code, each intermediate node has at least two immediate

descendant nodes. Therefore, any optimal prefix condition code satisfies [IJ{V‘_IY 1<a<K-2
where [z] is defined as the least integer greater than or equal to z. The upper bound is met when
each intermediate node has exactly two immediate descendant nodes and the lower bound is
met when each intermediate node has as many immediate descendant nodes as possible. When
N = 2, the upper and lower bounds on a are identical and the optimal prefix condition code
is exhaustive. When N > 2, we do not know a priori the value of a for the optimal prefix
condition code. For example, if we have a ternary channel with (c1,¢a,c3) = (101%9,1,1), we
expect that the first letter of the alphabet is not used in an optimal code and o = K — 2; on
the other hand, if (¢q,c¢2,¢3) = (1,1,1), we expect that every intermediate node in an optimal

code will have as many immediate descendant nodes as possible and hence a = [%1

14

Tunstall (1968) investigated a different problem. For his problem, we are given a discrete,
memoryless source emitting symbols u;, u,, ..., u, with respective probabilities
p1 > P2 > ...> pn and a channel with equally costly letters. We are interested in one-to-one
mappings of strings of source symbols, or dictionary entries, into the product ensemble of
sequences of £ channel letters. We restrict our attention to valid dictionaries; in other words,
every possible source sequence has a prefix that is in the dictionary. Tunstall found a valid
dictionary of k = (& + 1)n — a entries that maximizes the expected number E[L] of source
symbols per dictionary entry; here a is the number of non-root intermediate nodes in the
dictionary tree. It is known that if the probabilities of the a non-root intermediate nodes
are ¥1,...,Ya, then E[L] = 1+ %, y;. Therefore, an optimal valid dictionary will maximize
%, vi. Hence, the following algorithm finds the optimal valid dictionary:

1. Start with each source symbol as a dictionary entry.
2. If the total number of entries is less than k, then goto step 3, else stop.

3. Take the most probable entry z; and replace it with the n strings z; o u'l, vv.y210 u; . Do

not alter the other entries. Goto step 2.

Varn’s algorithm for finding optimal exhaustive prefix condition codes and Tunstall’s method
of obtaining optimal valid dictionaries look very similar. In fact, they are identical because we
can always transform an instance of either problem to an instance of the other problem and use
the corresponding algorithin to get the right tree. For example, if we have channel letter costs
¢1 > ¢3 > ... > cy for Varn’s problem, the corresponding probabilities for Tunstall’s problem
are 2-0c1 < 2-Cez < | < 2-Ccn; likewise, given source probablilities p; > ... > pn, in an
instance of Tunstall’s problem, the associated costs that we input into Varn’s algorithm can
be chosen to be —log,py < ...< —log, p,. However, we note that the problem of finding an
optimal prefix condition code is generally a more difficult problem than the problem of finding
an optimal exhaustive prefix condition code, and hence it is a more difficult problem than the
problem that Tunstall solved.

We now consider some bouﬁds on the performance of Varn codes. Since the entropy of a
source ensemble consisting of K equiprobable symbols is log, K, Krause’s results indicate that

the average cost d of the optimal prefix condition code satisfies l"—gg,ﬁ <d< lﬂ‘éﬁ + ;.

15

We derive an upper bound on the performance of the optimal exhaustive prefix condition
code and use it to derive a different upper bound of the average cost of the optimal prefix
condition code without exhaustivity constraints. Suppose we have a modified channel whose
alphabet consists of the M least costly letters of the original channel’s alphabet. For our
modified channel, let F(a, M) denote the sum of the costs of the (a+1)M —a code words in an
exhaustive prefix condition code with a non-root intermediate nodes. Let g(M) = =M, eyq1-i

be the sum of the letter costs for our modified channel. From equation (2.1), we see that

Flay M) = (a+ 1)g(M) + (M~ 1) 3 ¥;. (22)
i=1

Hence, recursively we have the relation
F(a,M)=F(a—-1,M)+ g(M) + (M - 1)Y, (2.3)

where F(0,M) = g(M) and, since Y7 = ¢y, F(1,M) = 2g(M) + (M — 1)cy. In general, we
do not know the value of Y,,. However, we do know that the last intermediate node chosen by

the Varn algorithm was the least costly leaf prior to being converted to an intermediate node.

Hence,
Fla-1,M)
Yo ——————~. .
“aM - (a-1) (2:4)
Substituting (2.4) into equation (2.3) we find that
(a+1)M — a)
<|— - .
F(a, M) < (aM) Fla= L)+ g(a1) (2.5)
Dividing both sides of (2.5) by (a + 1)M — a gives
Fla,M) _ Fla—1,M) . g(M)
< .
(a-l-l)M—a"aM—(a—1)+(a+1)M—a (2-6)
By induction on a, we see that for a = 2,3,...
F(a,M) _ F(1,M) = 1
< - -
erM-a>amr-1 T)J.z::z(j+1)M—j (2.7)

16

We recall that F(1,M) = (M — 1)cny + 2g(M). Substituting this into (2.7), we have that for
a=23,...

F(o, M) < M-

2
(a+1) M -a — 2M-1 2M — +Z(]+1)M—])

7=2

IA

2, 1 o (etats
M1 M_1 " 1+M_1

_ M —Len +9(M) (ZMz_ T+ Ml_ T log, ((a;rﬂl(,)—{ll_a)) (2.8)

Since this expression grows with a, we see that our best upper bound for the performance of

Varn without exhaustivity constraints is

aul

S B (21‘1{4 e + () (2M2— it Ml— 7 log ([a(M) ;ﬁll]ﬁ—/!l_ a(M)>)>
(2.9)

where a(M) = [£=2]. Note that this has to be better than Krause’s bound when ¢, is large
enough. However, for fixed M, as K increases, we need to estimate the costs of a larger number
of intermediate nodes and our upper bound for ¥; becomes weaker as i increases.

We now discuss a better way to find the Y;. We begin by studying the Varn algorithm
more carefully for the special case where N = 2. Here the optimal prefix condition code is also
exhaustive. The algorithm produces K — 2 non-root intermediate nodes. For ¢t = 1,..., K, we
let v; represent a leaf node in the code tree and d; be its respective cost. For each i, d; > Yg_,
since Yi_, was the cost of the least costly leaf immediately before that leaf was turned into
an intermediate node. Similarly, each intermediate node has a cost of at most Yx_5. Since
any leaf v; can be reached by its immediate ancestral intermediate node with cost at most
c1, d; < Yg_o + c1. Also, there are two leaves, say vg_1 and vy, whose immediate ancestral

intermediate node was the last intermediate node chosen by the Varn algorithm. To summarize,

YK—Z S di S HK_g + C1, 1= 1, .. .,K -2 (210)

d}’{_l = YK_2+61 (211)

17

dx = Yg_2+ ¢ (2.12)

Multiplying the above inequalities by —C and using the fact that 2 is a monotonically increas-

ing function of z, we find that

2—CYK-—2 —Cey S 2—Od.‘ S 2—CYK—2, 1= 1, ey K — 2 (2.13)
9-Cdg_1 _ 2—CYK—2—CC1 (2.14)
9-Cdg _ 9-CYk_2-Cez (2.15)

Krause showed that for any prefix condition code, S-X , 2-Cdi < 1 with equality holding if and
only if the code is also exhaustive. Applying this fact to the sum of (2.13), (2.14), and (2.15),

we obtain

(K _ 1) 2—CYK_3—Cc1 + Z—CYK—Z—CCZ <1< (K _ 2) 2——CYK_2 + 2—CYK_2—C'C1 + 2—CYK_2—Cc2
(2.16)
Multiplying the inequalities in (2.16) by 2€Yx-2 and using the fact that 2-Ce1 4 2-Cez — 1 we
see that
(K—-2)27%1 41 < 29%-—2 < K1 (2.17)

Taking the logarithm of both sides of each inequality in (2.17) and dividing by C, we have

_ 061 —
log, (K —2+2)—61 < Yg_o < log,(K — 1) for K = 3,4,... (2.18)

C - C

Since ¢y < ¢1, we have that Y7 = ¢,. As we have seen before,

. F(K-22) K-1 1 =2
d = e = % (e1 4+ ¢2) + ¥id 2 Y; (2.19)
Combining (2.18) and (2.19), we find that
o m Cec
K—IEA(Cl +cz) + % (Cz + K2 (l—m# - Cl))
<T<ER(ate)+f (co+ TEGlmlpt)) | K =3,4,... (2.20)

18

If we let |z| denote the greatest integer less than or equal to z, then m + |29 | < m+ 2% for

all m. By observing that the “sum of the logarithms is equal to the logarithm of the product,”
we find that

K-2
D logy(m+1) = log, (M) (2.21)
m=2

K — 24 [20))!
log, ((1+ C-zcgqj)vj)) (2.22)

K2
> logy(m + |294])

m=2

Since f: log,z dz = b logy b— a log,a — (b— a)log, e = log, (#:_a) , we can also lowerbound

m=3 log(m +29°1) by

K-2 . Cer \(K—2421)
Ce (K — 2+ 2C)
m§=2 log,(m + 2°°1) > log, ((1 F 200 A+259) K3 (2.23)

Substituting (2.21), (2.22) and (2.23) into (2.20), we see that

2 1 (K —24200)E-242%) (K — 24 [209))!
gt oge (m"’“ ((14 200)@re k=3 * (14 [20%])
K -1 (K —1)!

<d<
sds K 2

1
c1+cz+CKlog2(),K=3,4,... (2.24)

We next demonstrate that when IV = 2, our upper bound is always tighter than Krause’s bound

of d < l°—55£ +ecr:
Theorem 2.1 For all positive integers K > 2,

et Lo ((K—l)!)
K 17T g %% 2

logz K 1 € 1 Ce -1 2K
< C +c — 6 (log2 (zc—cz) + Elogz (2 1 eT2K T

We note that ¢; > ¢, and 2-¢< 4 2-Ce2 = 1 imply that 261 > 2, 2022 < 2 < e. To prove

Theorem 2.1, we need the following lemma which appears in Feller (1950):

K
Lemma 2.2 For all positive integers K, K! < \/27!'[((%) eTIR.

19

Proof of Theorem 2.1: By Lemma 2.2, we have that

2KK 2K K+1 2K K+ 2K -1
®-0 ° K gx O =7 e e (2.25)
™ — €12

Rewriting (2.25), we have that

Cen K lzK e K = 20(:1 KK 1
(2 2) (T ZC_(:Z €e12K < m . @ (2-26)

K _
Dividing both sides of (2.26) by \/% (21%) eTE and taking the logarithm of both sides of

the resulting inequality gives

2 2K (e \¥
KCcy < Ccy + Klog, K —log, (K — 1)! — log, 5\ (2—0—5 eTZK (2.27)

Subtracting C'¢; from both sides of (2.27) and dividing by CK gives

1

-1
o e Ko RV (L) 1 1og, [25 2K
2= < C[logzK Klogz(K 1)!] o (log2 ¢ + Klogz 5 - (2.28)

Adding ¢; + é;logz (LK—EIX) to both sides of (2.28) completes the proof. O

We proceed to generalize some of the results to the case where NV > 2. An exhaustive code
with a non-root intermediate nodes has (a + 1)V — a code words, N of which have the most
costly intermediate node as the immediate ancestral intermediate node. Hence we can extend

(2.10)-(2.17) so that
a(N-1)27% 41 < 2% < o (N-1)+1 (2.29)

Taking the logarithm of both sides of each inequality in (2.29) and dividing by C, we have

loggler (IV 1) + 1]
-

log,[a (IV — 1) 4 2¢<1) B

C CISYaS

for a=1,2,... (2.30)

Since ¢y is the cost of the least costly channel letter, ¥; = cy. If we consider “modified” channels

20

of the kind we have defined before, and we let Cr) be defined by Zf‘il 2-C(yenv+1—i = 1, then

by substituting into (2.2) we see that

F(a,M) < (a+1)g(M)+(M—1)(+Zlogz[1 C(;)1)+1])

(o +1)g(M)+ (M —1) (CN + Z logy(M — 1) + logy(j + M—))

j=2 Con)
= (a+1)g(M)+(M—-1) (cN 4 oz Dloe(M - 13; L=2108(j + Hl——l))
(o)
(2.31)

By similar arguments to the ones we used earlier,

Zlogz(] + —) <) logy(i+1)

j=2 7j=2
-1)!
~ log, (("‘ -)) (2.32)
o at+1+ 5
Zlogz(j < / : " log, = dz
j=2 24w

IA

_ oyetltais

(2M — 1)2t 31 et) — (a = 1)log,(M — 1) (2.33)

Substituting (2.32) and (2.33) into (2.31), we have that

Fla,M) < (a+1)g(M)+ (M - 1) (cN + C’l logz(h(a,M))) (2.34)
M)
where
o (o = DM = 1)*1 (o + 1M — @)™+ wres
(U g

Note that (a—lj_(f)’—ﬁl—a increases as o increases. Therefore, our tightest upper bound for d is

F(a(M), M)
Me{z, ,N} [a(M)+ 1]M — a(M)

d< (2.36)

where a(M) =

21

For each M, m%%ﬂ% is an upper bound on the average cost, d('M)’ of the best

exhaustive code with at least ' code words when we use the M least expensive channel letters.
In turn, ?M) is an upper bound on the average cost of the code consisting of the K least costly
code words of the exhaustive code corresponding to dfM). We note that for K sufficiently large,
all code letters will be used and so our bound becomes d < W{f)(i_(l% Since this upper

bound is an upper bound on the cost of the best exhaustive code with at least K code words,

we expect that Krause’s bound is a better bound for very large K.

22

Chapter 3

A New Heuristic Based on

Huffman’s Algorithm

In this section, we consider a heuristic to find good prefix condition codes when our source
is memoryless and the channel is binary with memoryless letter costs. Qur source ensemble
consists of symbols uy,us,...,ux with probabilities py > p; > ... > px, respectively; our
channel alphabet has digits 0,1 with positive costs of transmission ¢o > ¢; respectively. As

before, H(U), the source entropy, is defined by

K 1
H(U) =) pilog, —
k=1 Pk
and C, the channel capacity, is defined by
2-Ceo 4 2-0cr =1, (3.1)
For:=1,...,K, the code word corresponding to u; is z;, the cost of transmitting z; is d; and

the average cost of transmitting a symbolis d = X | p;d;.

Krause (1962) and Mehlhorn (1980) have developed heuristics to obtain good prefix condi-
tion codes for the more general problem where the channel is discrete, memoryless and noiseless,
but not necessarily binary. Their algorithmms are generalizations of the Shannon-Fano heuris-

tic, which produces relatively good codes when all of the channel letters have the same cost

23

of transmission. The number of steps required to produce codes for all of these algorithms is
o(NK), where NN is the number of letters in the channel alphabet. Huffman (1952) found an
algorithm to produce optimal prefix condition codes when the channel letters are equally costly.
The heuristic we describe below was inspired by Huffman’s algorithm. The development of our
heuristic closely follows Sections 3.3 and 3.4 of Gallager (1968).

Krause demonstrated that

- H(U)
d>——. .
2 (3.2)
Any prefix condition code satisfies
K
2% < (3.3)
=1

with equality for the binary codes we consider. We use (3.3) to get an alternate proof of (3.2):

Lemma 3.1 d > ﬂcﬂl

Proof: We establish (3.2) by showing that H(U) — dC < 0.

_ K 1 K K 9-Cdy
H(U)-dC =) pilog, (—) — > " pkdrC = Y _ prlog, ()
k=1 Pk k=1 k=1 DPi

Since log, Z < (logy €)(Z — 1) for Z > 0, with strict inequality except when Z =1,
HU)-dC < (logze)(THK.,2-Y% — YK pr) < 0 because of (3.3). O
Notice that equality holds in (3.2) if and only if p, = 2794,k = 1,..., K so that the distances

satisfy
1
dkz—alogzpk, k=1,...,. K (3.4)

Lemma 3.2 For any given source with K > 2 letters, an optimum binary code exists in which
there is some L € {1,..., K — 1} for which zg and zp differ only in the last digit, g ending

in a0 and g, ending in a 1.

Proof: For at least one optimum code, dx is greater than or equal to each of the other code
word costs. To see this, suppose there is a code for which dx < d; for some i. If the code words
z; and zx are interchanged, then the change in d is

A = pidg + pxd; — pid; — prdx = (pi — pr)(dg — d;) < 0.

24

Next observe that any optimal prefix condition code is also exhaustive; in any non-exhaustive
code, one or more code letters in one or more code words could be dropped without violating
the prefix condition.

We let z denote the prefix of zx consisting of all but the last digit of 2zx. Clearly, there
are either one, two, or more than two code words which have z as a prefix. Since any optimal
code is exhaustive, zx can not be the only code word having = as a prefix. Now suppose that
there are at least two code words, other than zx, which have z as a prefix. The exhaustivity
of an optimal prefix condition code then implies that there exists at least one code word, other
than zx, which has = as a prefix and the last digit of zx among its two or more remaining
code letters. The cost of transmission of such a code word is greater than dg, a contradiction.
Hence, there are exactly two code words, zx and, say, r, which have z as a prefix. Let d* be
the cost of transmitting z. Then
dig = d*+ cost of transmitting the last digit of zg,
dp = d*+ cost of transmitting the last digit of z,
dg > dr, and cp > c; imply that the last digit of zx is 0 and the last digit of = is 1.

With this lemma, we have reduced the problem of constructing an optimal code to that of
picking L, and constructing z and z; for i # L, K. We now define the reduced ensemble U " to
be the ensemble U with the symbols uy, and ug replaced by a supersymbol a; the unchanged
source symbols have the same probabilities as before; i.e., p; =p;, i # K,L,and p‘; = pr+px-

We can transform any prefix condition code of U’ into a corresponding prefix condition code
for U by adding a terminal 0 to z, to generate zx and adding a terminal 1 to generate zr. If

we knew which value of L is optimal, we would have the following result.

Lemma 3.3 If we know the best value of L, then if a prefiz condition code is optimal for U '\

then the corresponding prefiz condition code for U is optimal.

Proof: The costs d; of the code words for U’ are related to the costs di of the corresponding
code for U by

25

d, k#K,L
dk—_—' d;-*—Co, kZK
d, +ci, k=1L

Thus the average costs d’ and d are related by

aul
1l

K
> pede

k=1

= Y prdr+px(d’ +co) + pr(d* + c1)
k£K,L

= Y prdk + (Pk + pr)de + copx + c1PL
k£K,L

= Y prdy + Pody + cork + 191
kK, L

= d +copx + c1pL

Since d and d’ differ by a fixed amount independent of the code for U', Lemma 2.2 implies that
we can minimize d by minimizing d'.0)

The problem of finding an optimal code has now been reduced to the problem of finding an
optimal code for an ensemble with one fewer message. Therefore, at each step, we need to find
L. The heurisitic we describe below is a procedure to select L at each step. The algorithm does
not always produce optimal codes, but it is intuitively appealing.

As we noted before

d = Y pede+pr(d* +co) + pr(d* +c1)
k#K,L
K
= Y prdi + pr(d* + co — di) + pr(d”® + ¢1 — di) (3.5)
k=1

We would like to pick the value of L that minimizes (3.5). Since we do not know the values
of d* and di, k = 1,..., K, we need to estimate them. We use (3.4) to obtain approximate
values for dj, k = 1,..., K. To estimate d*, we note that d* = d_, and so we will guess that

1

o loga(px + pr) (3.6)

. 1
& = dy ~ — = 10g po =

26

Equations (3.4), (3.5) and (3.6) imply that

K
~ C (Z —PK logsz) +PK(—51082(PK +pL) +co+ rol log, px)

aul

1=1
1 1
+ pL(—alogz(pK +pL)+ca+ el log, pr)

HU) 1 1 1
(3.7)

Intuitively, it seems plausible to pick L to minimize (3.7). Equivalently, we wish to pick 2
to minimize

1 1
fic(2) = g #1ogs 2 — 5 (bx + 2) loga(pic + 2) + a2 (38)

where z € {p1,p2,-- -y PK_1}-
We have that

df"z(z) = Liog, (202) (3.9)

= K (3.10)
Clearly, if there is some L € {1,..., K — 1} for which p;, = z}%, we will pick this value of L.
Otherwise, since fx(z) is a continuous function of z, there are three possibilities:
1. pg-1 > 2z} : In this case, we select L = K — 1.

2. p; > z} > pyy1 for some J € {1,...,K — 2} : If fx(ps) < frx(ps41), then we choose
L = J and otherwise we select L = J + 1.

3. p1 < z} : Here, L =1 is our best choice.

As with the Mehlhorn and Krause algorithms for the special case of a binary channel, this
heuristic requires o(K') steps to produce a code; however, this algorithm is simpler than either

of theirs.

27

We now make some comments on the performance of our heuristic. First, when ¢y = ¢3,
equation (3.1) implies that C = % and so 2¢¢1 — 1 = 1. Hence, 2y = px which implies that at
every step of the algorithm, we group together the two least probable symbols of the ensemble.
This procedure is better known as Huffman’s algorithm and it is well-known to produce optimal
codes when ¢p = c;.

We can make the following statement about the process of picking L :

Theorem 3.4 For J =2,...,K, 25 is among the set of J — 1 source probabilities from which

we make our selection if and only if d = igﬂ

The proof of Theorem 3.4 is based on the following definitions and lemmas: We let g;,
i=1,...,K — 1, be the probability associated with intermediate node ¢ and ¢; ;, 7 € {0,1},
be the probability of the node which is connected to its immediate ancestral node 7, by an arc

corresponding to digit j. Clearly,
gGio+di1=¢ t=1,..., k-1 (3.11)

In his previously mentioned paper, Mehlhorn proved the following two lemmas:

Lemma 3.5 H(U) = ff_-;l % (q_;:-g log, (E?"o') + q—;:%logz (3?'_1))

Lemma 3.6 d = 35X Ycogio + c1¢:,1]
We are now ready to prove Theorem 3.4.

Proof of Theorem 3.4: Because of the previous two lemmas, d = ﬂcﬂ is equivalent to

the following statement:

K-1 _Ce —C
.9—Ceo ;2-Ca
Z ('Ii,o log, (qlq.) + gi,110g, (q .)) =0 (3.12)

=1 7,0 gi1

Since log, Z < (logy e)(Z — 1) for Z > 0, with strict inequality except when Z =1,

5" (motoss (57°) + g logs (1372
K-1
< (1082 6) Z [qiz—CCo _ Qi,o] + [qiz—Ccl _ qi,]_]

=1

=0 (3.13)

28

because of equations (3.1) and (3.11). The condition for equality in (3.13) is

gio = ¢2°%°,i=1,...,K-1 (3.14)

and g;; = g2 %, i=1,....,K-1 (3.15)

Hence, by dividing each side of equation (3.15) by the corresponding side of equation (3.14),
we see that d = ﬂcﬂ if and only if

g1 _ 1 1 1

Gio 20a12-Ce T 90a[l —2-Ca] _ 20a _1 (3.16)

This is merely another way of stating the theorem. O

Above we have shown that our heuristic produces optimal codes for two important special
cases of the general problem. For these cases, neither the Mehlhorn nor the Krause algorithim
is guaranteed to produce optimal codes. Unfortunately, as we will demonstrate below, for any
M > 0, we can construct an instance of the problem for which the average cost of the code
produced by the algorithm exceeds the expected cost of the ideal prefix condition code for that
instance by at least M.

Suppose we have a source whose ensemble U consists of K equiprobable elements. In the
first step of our heuristic, we group together two symbols with the same source probability. The
reduced ensemble U’ has K — 2 symbols with probability % and one symbol with probability
#. Using the notation we introduced earlier in the section,. we have that we group together

two symbols of U’ with probability % when

fr1 (%) < fxk-1 (%) (3.17)

or, equivalently, when

1 1 2 2 c 2 (2) 3 (3) 2¢,
— =) -—=—=1 — = < —1 =] -—==1 — — .
CK °8 (K) CK %8 (K) txscr\x) o \x)T® (B
It is easy to show that the above inequality is valid when 2-¢c < ;—g, independent of the value

of K. Therefore, if 2-C¢c1 < % and K = 2* for some positive integer k, the above analysis

can be extended to subsequent reduced ensembles to demonstrate that the code produced by

29

the algorithm is the set of K channel sequences of length k. When 2-Cc1 = 1, the algorithm
produces optimal codes for all k. For 2-9¢t > 1, there is some positive integer ! for which the
heuristic produces codes that are not optimal for all integers k£ > [. To see this, we note that

the average cost of transmitting a code word for the code produced by the algorithm is
k
E(CO + Cl)

while the expected code word cost of the optimal prefix condition code is upperbounded by

H(U log, K k
L+co: L + ¢o = = + co.

C C C

Hence the difference in the expected costs is at least

k (Cco+Cc
el (—% - 1) — co. (3.19)

Since cop > c1, equation (3.1) implies that Cco + Cc; > 2. Therefore, we can make (3.19)
arbitrarily large by selecting large enough k.

The fact that our heuristic may produce codes with expected code word cost arbitrarily
larger than that of the corresponding optimal prefix condition code is a serious weakness indeed.
We note that the Krause and the Mehlhorn algorithms do not share this deficiency. However,
the example we discussed above may be a worst case because at each iteration of the algorithin
our set of source probabilities consists of repetitions of at most two distinct numbers.

More generally, we would suspect that as K shrinks, the smallest value of

1
—[px log, px + prlog, pr — (PK + pr)logy(px + pL)] + copx + e1pr, L € {1,...,K — 1}
C

increases since we have fewer source probabilities from which to make our selection. For small
enough K, we can deal with the problem by bypassing the algorithm and finding the optimal
code by means of exhaustive enumeration of the possible codes. We can use this idea to improve
the performance of our heuristic. By finding optimal codes for larger reduced ensembles, we
improve the performance of the code for the original ensemble at the expense of studying a

number of codes that is exponential in the size of the reduced ensemble.

30

Chapter 4

A Multicommodity Network Flows
Approach to the Problem of
Finding Optimal Prefix Condition
Codes

As usual, we assume that we have a memoryless K -ary source ensemble with source probabilities
P1,P2,- -y PK- Our N-ary channel with alphabet {z,z2,...,2n5} may have memory, but that
memory is limited to individual code words as opposed to the concatenation of code words. For
example, we allow constraints on the maximum code word costs and/or lengths, but we can not
accept the runlength constraints described in the introductory section. We also assume that
each channel letter always has a non-negative cost of transmission.

The last assumption ensures that each code word in an optimal prefix condition code has
at most K — 1 channel letters. Therefore, our optimal code can be visualized as a subtree
of the complete tree of K — 1 levels, where the nodes on these trees represent sequences of
channel letters. The root node represents the null sequence which is assumed to have zero
cost. The immediate descendants of the node representing channel sequence a are the N nodes
representing the channel sequences azy,...,azy. The branch joining the node corresponding

to channel sequence z with its immediate ancestral intermediate node has a cost representing

31

the incremental cost of transmitting the last letter of z. Hence, the cost of transmitting z is
the sum of the branch costs on the path from the root to the node corresponding to z.

We say that a node is a top level node if it is not an intermediate node in the complete tree.
The top level nodes correspond to channel sequences of length K — 1. The branches which have
a top level node as an endpoint are called top level arcs.

We wish to send various flows from the root node to the set of top level nodes. We denote
one set of flows by (%), k = 1,..., K; b(*) represents the “flow” of probability ps from the
root node to the top level nodes. We let bz(-’kj) be the flow of the commodity corresponding to
pr through the arc connecting node i to node j. To formulate the supply of these flows at the
root node, we let 7 and 7y, ..., 7y represent the root node and its immediate descendant nodes,
respectively. Then N

Yo =pp, k=1,...,K. (4.1)
i=1
Also, for any non-root intermediate node j with immediate ancestral intermediate node a(j)
and immediate descendant nodes jq,...,jy, conservation of flow at node j implies that
N
Z plk) — (k)

Bai = “a(g)g?
=1

k=1,...,K. (4.2)
We insist that all arc flows are non-negative. For all branches (%, 7) in the tree,
k
6 >0, k=1,.,K. (4.3)

Finally, for each k € {1,..., K}, we would like bg,kj) to be positive for exactly one arc in each
level éf the tree. In other words, for each k € {1,..., K}, we wish to have a unique path from
the root node to a top level node on which b(¥) is positive. To obtain this result, we introduce
the indicator flows y(*¥), k = 1,..., K which are binary variables. For all arcs (¢,7) in the tree

we impose the restrictions,

yz(,,;) € {0,1},k=1,....K (4.4)
and bg,kj) = Pk yg;) yk=1,...,K. (4:5)

32

We note that equations (4.2) and (4.5) force conservation of flow for each y(*) at all non-root

intermediate nodes. In order to prevent the possibility of two of the b(k) paths from being

exactly identical, we constrain all top level arcs (i,7) in the tree to satisfy

K
Yoy <1 (4.6)

i=1
For each arc (i,7) in the tree, we introduce a new variable w;; = min{1, YK, y,;(”;)} which
indicates whether or not yg;-) is positive for any k € {1,..., K}.In order to use linear constraints
to define the w; j, we have that for all arcs (i, j) in the tree,

wi; 2 yz(,,;)’ k=1,...,K (4.7)

wi; < 1 (4.8)
ud k

wi; < Yy (4.9)
=1

For any y(*) path, a leaf node j is the node on the path which corresponds to the shortest

channel sequence and satisfies Y, yt(llg.)’j

arc. The expected cost of a code does not depend at all on the nodes or corresponding arcs of

= 1. For any leaf node j, (a(j),j) is called a leaf

any y(¥) path which have the leaf node of this path as an ancestor. Therefore, if we know the
leaf node corresponding to path y(¥), we can arbitrarily select the path from the leaf node to

the set of top level nodes.

For all arcs (i,k) in our code tree, we let ¢; be the cost associated with branch (i, k).
For all intermediate nodes j, we label j’s immediate descendant nodes ji,...,jn so that
Cijr = Cjjz =+ 2 Cjjin- We observe that if arc (j, 7i) is a branch in an optimal code tree,
then for all k € {i + 1,..., N}, arc (4, j«) is also a branch in that code tree. Therefore, for all

intermediate nodes j in our tree, we insist that
Wjgy < Whg, <00 < Wiy (4.10)

Note that (4.10) imposes a path from the leaf arcs to the top level arcs since for all non-root

33

intermediate nodes j, we have that

Wa(j),j = Wijn- (4.11)

For the purposes of calculating the expected cost of a code, we are interested in the arcs on
each y(*) path that are also on the subpath from the root node to the leaf node for that path.
The set of such arcs is exactly the same as the set of branches in our code tree. For each arc
(4,1) in the tree, we define the variable f;; to be 1if (j,/) is on a path between the root node
and a leaf node and 0 otherwise. In an optimal code, there is no string of channel letters which
is a proper prefix of exactly one code word. Therefore, because of equation (4.11), if I # ju,
then w;; = 1 if and only if f;; = 1. If [= jy, then f;; = 1 if and only if f;; = 1 for some
i # N. Hence the previous statement and (4.10) imnply that

Wiy gy Hl=jn

fin = (4.12)

Qur optimization problem is to

K
minimize Z Z ci,jfi,jmgs)
k=1 (1,7)€Etree
subject to constraints (4.1) through (4.12).

Since
e c;; is a constant for all arcs (%,7) in the tree and
e all of the above constraints, except for (4.4), are linear,

the minimization problem can be classified as an integer bilinear prograimnming problem. Un-
fortunately, very little is known about obtaining the solution to these problems.

This formulation of our optimization problem allows arbitrary non-negative branch costs c; ;.
This freedom in selecting branch costs can be used to provide memory within individual code
words. For example, it is easy to forbid certain nodes, their descendants and the corresponding
branches from appearing in the code tree by making the appropriate arc costs infinite. We can

also produce optimal exhaustive prefix condition codes by adding the constraint that for all

34

intermediate nodes j,

Fiis = Fiia =+ = Fivine (4.13)

In the remainder of this section, we discuss some of the additional constraints we can impose
to get approximate “solutions” if we drop the binary requirement on the y(*). We always have

that (r,7x) and (r,7ny_1) are branches in our code tree. Therefore, it is obvious that

o = oy = 1. (4.14)

The rest of the constraints we describe involve the leaf arcs, which we now discuss in more
detail. We let 2, be the variable indicating whether or not branch (i, k) is a leaf arc. If the
indicator flows y(™) are all binary variables and we know w; j for all arcs (i, k), then we know

the K arcs which are leaf arcs. There are four situations to consider:

1. (4, 7i) is not a top level arc and [# N : Then wj,;, is a leaf arc if and only if w; ; = 1 and
wj, i (N-1) = 0, where (M), M =1,...,N are the N descendants of j; and
Cinit(1) 2 Cinqr(2) 2 2 Cip,qy(v)- Therefore, it is not difficult to see that

zjijl = wjljl - wjl,jl(N—l)' (4.15)

2. (4,7n) is not a top level arc: Then (7, jn) is a leaf arc if and only if wj ;, =1, w;jy_, =1

and wj, iv(v-1) = 0. Hence,
Zjin = Wijin_1 ~ Win,in(N-1) (4.16)
3. (4,71) is a top level arc and [# N : Then
Zj = Wj - (4.17)
4. (j,jn) is a top level arc: z;;,, = 0 if and only if w;;, = 0 for alll € {1,..., N —1}. Hence,
Zjin = Wijin_1- (4.18)

35

When we drop the integer constraints on the indicator flows, a very simple result that we can

take advantage of is that any code tree must have K leaf arcs. Hence,

>, =z = K. (4.19)
(i,7)Etree
For all arcs (4, j) in the tree, we define (%, j) to be the number of letters in the channel sequence

corresponding to node j. Then by Kraft’s inequality, we have the constraint that

Z Zi NG < 1. (4.20)

(i,5)Etree
For the special case of a binary channel the above inequality is met with equality for all optimal
codes. Similarly, if we have a memoryless channel with capacity C' and we define d(z, j) to be

the cost associated with transmitting the channel sequence corresponding to node j, then

Yo oz 270) < (4.21)
(3,7)Etree
with equality in the case of a binary channel. Constraints (4.20) and (4.21) are also applicable
for channels which are memoryless except for restrictions on individual code words, such as an
upper bound on acceptable code word costs or code word lengths.
We can use the solution to the minimization problem without the binary constraints to find
a code by creating a code tree from those arcs (7, j) for which f; ; is judged to be sufficiently

close to 1.

36

Chapter 5

Arithmetic Coding for Finite-State

Noiseless Channels

In this chapter, we generalize the ideas of arithmetic coding to handle finite-state noiseless
channels. Our development closely follows the papers of Gallager (1990) and Csiszar (1969).

We begin by assuming that our K-ary source is memoryless; later, we will waive this assump-
tion. We first consider memoryless cost channels and we subsequently generalize our results to
finite-state channels.

We denote the random sequence produced by the source as y = {y1,¥2,¥s,...}. For all
i € {1,...,K} and all positive integers m, we have that p; = P(ym = u;). Let y(™) be the
initial string {y1,¥2,-..,¥m} of the source output for each positive integer m. Since the source
is memoryless, the probability and self-information of y(™) are then P[y(™)] = [T, P[y;] and
Iy™)] = ™ 1 I(y;), respectively. Wenote that for all source strings u, we have the relationship
I(u) = log, (ply) = — loga(Plu])-

The idea in arithmetic coding is to map the source sequence y into a point z in the unit
interval on the real line and then to represent ¢ by a channel sequence z = {z;, z,,...}. First,
we will discuss the mapping of source strings into subintervals of the unit interval. For any non-
negative integer m, we let Z(y(™)) denote the subinterval corresponding to source string y(m);
our convention at m = 0 is that y(%) is the null source string. In earlier work on arithmetic

coding, there were two important properties associated with the mapping of source strings

37

into subintervals of the unit interval. The first is that if we are given y(™), then the point
¢ corresponding to sequence y is uniformly distributed on 7 (y(™)) . The other characteristic
is that the length of Z(y(™)) gives some measure of the self-information of y(™m). As the self-
information of the initial source string increases, we should have a better idea of where the final
point z will lie on the unit interval. Hence, for all source strings u, the length of T(u) should
be a monotonically decreasing function of I(u). More precisely, the (left half-closed) intervals

have traditionally been selected to satisfy the following requirements:

o for all source strings u, the width of interval Z(u) is equal to the a priori probability that
the string is a prefix of the source sequence; our convention for the null string is that it

is considered to be a prefix of every source sequence and hence P[] = 1.

e for any source string u, we have that Z(uw,) , ..., I(uug) are disjoint intervals whose

union is Z(u) ; clearly, the previous constraint implies that Z(@) = [0,1).

One way to implement these requirements is as follows. We define

0, i=1

. (5.1)
Siipi, 1€42...,K}

flw) = fi(w) =

and for m > 1,

F™) = F3™) + filym) P D). (5.2)

We then let Z(y(™) be the interval [f(y(™), f(y(™)) + P(y(™)). Assuming that all of the letter

probabilities are strictly less than one, for all source sequences y, 7 (y("‘)) contracts to a point as

m goes to infinity. Therefore, we choose z to be the point on the unit interval which is the limit

of these intervals. We note that the mapping of source sequences to points has the following

lexicographic properties: Given arbitrary source sequences y; and yz, we let z(y1) and z(y2) be

the points on the unit interval to which y, and y; are mapped, respectively. If m is the largest
(m+1) (m+1)

integer for which ygm) = ygm) and the last symbols of strings y; and y; are u; and u;,

respectively, then
e z(y1) > z(y2) if and only if 7 > j,
o fori € {1,2}, :E(yi) € I(ygm)) and

38

o for i € {1,2}, =(%:) € Z(3™*"); we note that T(y{™*Y) and Z(y{™+") are disjoint.

As an example to illustrate the above procedure, we consider a ternary source with p; = 0.5,

pz = 0.3 and p3 = 0.2. Then

I(0)=[0,1) Z(uq)=1[0,0.5) I(uyuy) =[0,0.25)
T(uyuz) = [0.25,0.4)
Z(uqu3) = [0.4,0.5)

I(’u,z) = [05, 08) I(’U,zul) = [0.5, 065)
T(uzuz) = [0.65,0.74)
T(ugus) = [0.74,0.8)

I(u;;) = [08, 1) I(U3U1) = [08, 0.9)
I(usuz) = [09, 096)
I(U3U3) = [096,1)

We now turn our attention to mapping strings of channel letters into subintervals of the unit
interval. For any non-negative integer n, we let z2(") denote the initial string 2" = {z1,...,2,}
and J(2(™) denote the subinterval corresponding to this string; as before, z(%) represents the
null channel string. There are analogies that we can make between the important properties
of a mapping from source strings into intervals and the desirable characteristics of a map from
channel strings into subintervals. If we do not have any knowledge about the source sequence
y, and hence the corresponding code sequence z, then z is a uniformly distributed random
variable on [0,1). Therefore, if we are given the initial channel string z(n), then the point =
corresponding to source sequence y should be uniformly distributed on 7 (2(")) ; earlier, we saw
that if we are given y(™), then z is uniformly distributed on Z(y(™)) . Hence, corresponding to

our earlier constraint on the mapping from source strings into intervals, we require that

e for any channel string o, we have that J(oz1), ..., J(ozn) are disjoint intervals whose

union is [J (o) ; our convention for the null symbol is that 7(9) = [0, 1).
For any channel string o, we let ¢(o) and (o) denote the cost of transmitting channel string

39

o and the length of J(o) , respectively. Since we are trying to minimize the expected cost
transmitted per source symbol, we insist that [(c) be monotonically decreasing with c(o) .
One consequence of this constraint is that we can make more accurate statements about the
location of , and hence about the corresponding source sequence y, as the cost of the initial
code string increases; we note that we previously established that our knowledge about the
whereabouts of point # improves as the self-information of the initial source string increases.
The key question at this point is how to select [(o) . It is appropriate to utilize the same digital
expansion process that Krause used in his construction of relatively good prefix condition codes.
He split the unit interval and all subsequent intervals into IV segments with lengths in the ratio
2-Ce1 ; 2=Cez ;...:2-Ccn; je., for any channel string o, if [(0) is the length of the interval
corresponding to o, then [(oz;) = 2-C% . I(c) for i € {1,..., N}. This suggests that we should

impose the requirement

e for all channel strings o, the width of interval J(c) and the cost of transmitting o have

the relationship

(o) = wy.

where wg = 2€.
This implies that ¢(o) = —log,, ({(c)). Returning to our analogy with source string mapping,
we remember that for all source strings u, the length of Z(u) is P[u] and that I'(u) = — log,(P[u]).

We can create a mapping to satisfy these requirements that is very similar to the mapping

we used for source strings. We define

0, 1=1
g9(z:) = g1(=:) = o o (5.3)
Yisi (=) =252127C9, i€ {2,...,N}
and forn > 1,
9(27) = g(7D) + ga(za) - (=) = g(=0D) 4 ga(z) - 20 (5.a)
We then let
T (M) =[g(z™M), g(z) +1(V)) = [g(z™), g(2(M) + 270, (5.5)

40

The mapping of channel sequences to points has similar lexicographic properties to the mapping
of source sequences to points. More specifically, given arbitrary channel sequences z; and z3,
we let z(z;) and z(z3) be the points on the unit interval to which 2z; and 2; are mapped,

respectively. If n is the largest integer for which A" = 2™ and the last letters of strings A+

and zgnﬂ) are z; and z;, respectively, then

o z(z1) > z(2;) if and only if i > j,

o foric {1,2}, z(z) € J(z{™) and

o foric {1,2}, z(x) € T (™*Y); we note that T (™) and J(zgmﬂ)) are disjoint.

As an example, suppose we have a channel with alphabet of size four such that ¢; =¢; =3,

41

¢3 =2, and cg = 1. It is easy to verify that wg = 2 and C = 1. Qur mapping is then

J@)=10,1) J(z1)=[0,3) JT(zz1)=1[0,5
J(z122) = [64’ 32)
J(z123) = (35, 75)
J(z124) = [15,3)

J(22) =37 T(z221) =[5, 53)
J(z222) = (g1 33)

T (z223) = (33, 76)

T (2224) = (55, 3)

J(z3)=[L,1) T(zszy) = [-1-,%

j(w3z3) 16’ 8)
J(eseq) = [%,3)

J(za) =[3,1) T(eaz1) = [3:15)
J(z4z2) = ['1% %)
J(z4z3) = [3,3)
J(zaz4) = [3,1)

We now have the tools to discuss the encoding of source sequence y. On observing y(™), the
encoder knows that the limit point z lies in the interval Z(y(™)) . Thus, if Z(y(™)) is contained
in J(z(™) for some channel string 2(), then the encoder can emit z(") as the first n letters
of z. Hence, as the source emits successive letters y,,, the interval I(y("‘)) shrinks and more
channel letters can be emitted. To illustrate this procedure, we will continue to use the source
and channel that we described in our earlier examples. If the source emits u; as its first output,
then x4 is the first letter of the corresponding channel sequence since Z(u3) is contained in
J(z4). Similarly, if y; = us, then we know that the first two letters of z are 2(2) = z424. Finally,

the information that y; = u; is not sufficient to to deduce any letters of the channel sequence

42

since J(z1), J(z2), and J(z3) are all contained in Z(u;). This simple example brings out the
point that the initial source string and the initial channel string do not necessarily grow at the
same pace.

To determine the efficiency of the above procedure, we are interested in how rapidly the cost
of our initial channel string builds up and how rapidly the source sequence can be reconstructed
from the encoded prefixes of the sequence. In particular, we would like to show that when
the source has emitted y(™), the encoder will have issued a channel string 2(") with cost of
transmission close to ﬂ%ﬂ) and that 2(") will be sufficient for the decoder to decode all but
the last few letters of y(™). We first consider the number of letters m(n) that the source must
emit in order for the encoder to issue the first n channel letters. Since P(y™(™)) is the length
of Z(y(™(™)) and 2-Cleost of 2™ js the length of J(2(™) , the fact that Z(y(™()) is contained
in J(2(")) implies that

P(y™M)) < g=Cleost of ™) (5.6)

Taking the logarithm of both sides of (5.6) and dividing the resulting inequality by —C gives
™ < L r(yme)
cost of 2™ < EI(y) (5.7)

This says that the source must produce a certain amount of information before the channel
produces a sequence of a certain cost. Since this inequality can be arbitrarily loose, we want to
show that for each n, F (L(v_(%("ll — [cost of z(")]) is bounded.

In order to accomplish this, let 2(") be fixed and let z be the final encoded point. The point
z, conditional on z(™), is a uniformly distributed random variable in the interval J (2(™) , but
we initially regard it as a fixed value. Define D(z) as the distance between z and the nearest
endpoint of J(z(™) . We note that the point z must be contained in Z(y(™)) for all m. Also,
since m(n), by definition, is the smallest m for which J (2(") contains Z(y(™)) , we see that
Z(y(™(™-1)) must contain one of the endpoints of J(z(")) as well as z and thus must have

width of at least D(z). Hence P(y(™™)-1) | z) > D(z), so

I(y™=1 | z) < ~log,(D(z)). (5.8)

43

Now consider z as a random variable uniformly distributed over J(z(*)) . D(z) is then uniformly

distributed between zero and half the length of J(2(™) . Using (5.8), we see that
E[I(y™™=1 | 2)] < ~E[logy(D(2))] (59)

Since D(z) is uniformly distributed, we have that

—Cc((™)
%.2 C e)

Bllog(D(2))] = [2. 20eost of #™)(1og, D) dDD

D=0
= —C -[cost of z(™] — log,(2e) (5.10)
Hence,
cost of 2" > %E[I(y(’“(")‘l) | 2m)] — élog2(2e) (5.11)

If ppnin is the probability of the least likely source symbol, then for all y(m),

I(yt™) = I(y™) + I(ym) < I(y™V) + log; (- —) (5.12)
Therefore, (5.11) and (5.12) imply that
cost of (" > %E[I(y(m(“)) | 2] — %log2 (2(:.) (5.13)

We note that the above inequality is uniformly true for all 2(*) and all n. (5.13) and (5.7) imply
that the encoder generates cost, on the average, with the ideal of %ﬂ per source symbol;
however, we note that there is a slight deficit in the cost of each code string that is produced
since the encoder is storing the most recent information about the source sequence in order
to correctly emit the next few channel letters. This deficiency in cost becomes increasingly
insignificant as we average over longer and longer source strings.

Next, we wish to investigate the delay between the generation of channel letters at the
decoder and the generation of decoded source symbols. We select an arbitrary source sequence
y(™) and observe the number, n(m), of code letters that must be received at the decoder in
order for the sequence y(™) to be decoded. When the decoder sees z("), the decoder knows that
z lies inside J(2(™)) , and can thus decode y(m) if T(y(™)) completely contains J (2(") . Note

44

that n(m) depends on y and z. Continuing our earlier example, we see that for i € {1,2,3},
I(wy) D J(z;), and so z; € {21, 23,23} implies that y; = wy; if z; = x4, then we need to know
a larger initial channel string to determine if y; = u; or y; = u3. As before, we define D*(z)
as the distance between z and the nearest endpoint of Z(y(™)) . Since n(m) is by definition the
number of channel letters required to decode y(™), we see that the interval 7 (2("(™)-1)) cannot
be contained inside Z(y(™)) . Hence J(2(™(™)-1)) contains one of the endpoints of T (y(™)) and

also contains z. Thus the length of J(2(™™)-1)) is at least D*(z); i.e.,
9-C - [cost of z(n(m)=1)] > D*(2) | (5.14)
Therefore, conditioned on z, we have
C - [cost of z(M(m)=1)] < _log,(D*(z)) (5.15)

For a given y(™), we now regard z as a random variable uniformly distributed over the interval

Z(y(™) . D*(z) is then uniformly distributed between 0 and ﬂyz(—m)). Therefore,

P(y(m))

2

(m)
Elog,(D*(2))] = /D o Py o8 D" dD" =log (P (ge)) (5.16)

Since ¢; > ¢z > -+ > ¢, (5.15) and (5.16) imply that

IA

Elcost of 2(n(m)) | y(™)] 1 - %logz (P(g:")))

1 1
_ (m) Ce1+1
= 5 I(y'™) + = log, (2 e) (5.17)

We now want to combine (5.13) and (5.17). Consider a given sequence y(™) out of the
decoder, and suppose that z("(™)) is the required code sequence to decode y(™). Conditional
on both y(™) and z("(m)), we see that z is uniformly distributed over J(z("(™))), and thus the

extended source sequence y(m') required to produce z("(™)) satisfies (from (5.13))

1

1 (n(m)) > —
cost of z 20

! 1 2
BU(™) |)] - 2 log, () (5.18)

min

45

Using (5.17) to take the expected value of this over 2(M(m)) we see that for any given y(™),
the expected self-information of the extended source sequence y(m‘) required from the source

to produce the n(m) channel letters needed to decode y(m) satisfies

' 2Cc1+262
E[I(y™) | y™)] - I(y*™) < log, | ——— (5.19)
Pmin
The expectation here is over the source letters ymi1, Ym+2, --. for the given sequence y(m),
It is important to note that the bound does not depend on m or y(™), The upper bound in
(5.19) states that on average there is very little delay from the encoder to the decoder. This
bound is stated in terms of the additional self-information needed in additional source letters
Ymt1, Ymt2y - until y(™) can be decoded. To convert this bound into a bound on the number
1

of letters m' — m, let Ppqc be the maximum source letter probability. Then log, (p—m:) is the

minimum possible self-information per source letter and
Cec1+2.2
]-ng (2 P:ru'ne)
lng (Pﬂtu:)

We now generalize the preceding analysis to handle finite-state channels. We recall the

E[m' —m | y™] < (5.20)

7 x r matrix A(w) = [aj(w)] where aik(w) = Xo;ex,()w ™. To include w = 1, we use the
convention that 1= = 0. Shannon and Csiszar independently demonstrated that there exists
a unique real number wo > 1 for which the greatest positive eigenvalue of .A(wp) is equal to one;

furthermore, C, the capacity of our channel, is related to wo by
C =log, wo (5.21)

We assume that both the encoder and decoder know the initial state of the channel. For any
channel string o and any ¥ € 5, we let c(o, a,l;), s[lo,¥], Jy(o) and l(o, 1)) denote the cost of
transmitting o, the state of the channel after transmitting o, the subinterval corresponding to
o, and the length of this subinterval, respectively, given the channel is in initial state v before
transmission begins.

In our previous analysis for memoryless channels, we demonstrated that if for any chan-

nel string o, we have I(c) = 2-C<(¢), then the resulting arithmetic codes have many pleas-

46

ing properties. Unfortunately, if I(o,9) = 2=¢<(*¥) for all channel strings ¢ and all chan-
nel states v, then we do not necessarily satisfy the requirement that for any channel string
oo, J(00z1),--.,T(c0zn) are disjoint intervals whose union is J(o0). However, as we will see
below, we can remedy this problem by introducing a function af(:,-) which is a mapping from
the Cartesian product of initial and final states to a finite set of positive real numbers; we then
select our interval lengths to satisfy I(,s0) = af(so, 8[7, s0]) - 27¢(?%) for all channel strings
o, and all initial channel states so. By choosing af-, -) appropriately, we will be able to satisfy
the requirement concerning the set of subintervals corresponding to the set of chanmel strings
which differ only in the last letter. The resulting arithmetic codes will have the same desirable
attributes that we found earlier for the special case of memoryless cost channels.

We let A = [a;x] = A(wp). Since A is a non-negative irreducible matrix with largest real

eigenvalue equal to one, the Frobenius theorem implies that there exists a positive vector

Vs,

for which
v = Av. (5.22)

In other words, for all ¢ € {1,...,7}, we have

r T

—Cs;uz; i

Za"’kv’k = Z Z Vs, Wo T =, (5-23)
k=1 k=1 ijXy.(s.')

The normalization of v is not important since we will be using the ratios of components of v.

We set up a mapping h from the Cartesian product of channel strings and channel states

to subintervals of the unit interval as follows: for any @; € X and ¢ € 5, we let

0 t=1
hi(ziy) = ’,-_1 el —eymr (5.24)
j:l#wo T, 1€{2,...,N}
h(:ci) = hl((ﬂi,SU) (5.25)

47

For m > 1, given 2(™), we define

R(2™) = R(20"D) 4 By (2, s[20™D), s0]) wy T e0), (5.26)
Letting
Too#™) = [A(z(™) | h(2(™) 4 DTl o el0)), (5.27)

we see that these intervals have the nesting property: J,,(2(™+1) is contained J,,(2(™)) , where

2(m) is the first m letters of z(m+1), Furthermore,

Lemma 6.1 For any finite (and possibly empty) channel sequence 2(m), we have that
Too(2™zy) o0y T (2(™z) are disjoint intervals whose union is Tso (2I™)) ; our convention

for the null sequence is that J,,(0) = [0,1).
Because the proof requires only simple algebraic manipulations of equations (5.23) to (5.27),
the details are left to the appendix.

We see that the length of the subinterval corresponding to channel string 2(™) is

vl|z("")l.n w(-’-C(z("'),so) — U:|x(""),'n| 2_0.‘:(;("')',0)

Vso Vsg

using equation (5.21). Hence, the function a(:,-) we mentioned earlier is a(so, 5¢) = %Eoi

The encoding of source sequence y follows the same procedure we used earlier for the special
case of a memoryless channel; namely, if Z(y(™)) is contained in J,,(2(™) for some channel string
z(n), then the encoder can emit 2(") as the first n letters of z. We extend the same techniques

and notation we used previously to analyze the performance of this scheme. Since the length

of Joy(2(M) is v’[’—:::)—'”l 2-C-e(2(™ %) we revise (5.6) and (5.7) to:

m(n) Yor=(m) 0 —Cec(2{™) s
Pr) < Tl 90) (5.28)
1 1 Vg[z(n)
() Lrymey o 1 ’lz_’ol)
c(2\™,5) < C,I(y)+ & log, (o (5.29)

(5.8) and (5.9) remain valid. Modifying equation (5.10) to use the length of J,,(z(™)), we see
that
Ellogy(D(2))] = —C - ¢(2™, 50) — log,(2e—2—) (5.30)

Ys[2(n) ,80]

48

and so
’U_,o

1 1
(n) = (m(n)-1) | ,(n)y] _ 2 -
C(Z ’ 30) 2 C E[I(y I z)] C IOSZ(ZevS[z(‘n),,o])' (5'31)
(5.31) and (5.12) imply that
1 1 2ev
(n) - (m(n)) | z(ny] = = 70
C(Z ’ ‘50) Z C‘E[I(y l z)] C 1052 (pmiﬂv’[z(n),.,o])
1 1 2ev*
> Lirme) | my ~ L () ,
> LBUGD | 20)] - Ziog, (22 (5.32)
where
v*= max -, _ (5.33)

2,5€{1,0.0r} Vy;

From (5.32) and (5.29), we have that the encoder generates cost, on the average, with the
ideal of %U—) per source symbol; as with the special case of memoryless cost channels, we
note that there is a slight deficit in the cost of each code string that is produced and that
this deficiency becomes increasingly insignificant as we average over longer and longer source
strings.

To analyze the delay between the generation of channel letters at the decoder and the
generation of decoded source symbols, we exploit the same ideas and notation that we used
earlier in studying memoryless cost channels. Using 7,,(2("(™)-1)), we change (5.14) and (5.15)

to

v n{m)— n(m)—
= (v—) Ditel | g-Ce(™m=100) 5 Do) (5.34)
80

C- c(z(n(m)—l), 50) < — logy(D*(2)) + log, ('v’[z(n(m)—-l),_’o])

90

(5.35)

Equation (5.16) requires no revision. Letting cmes = mMaXe, ,<oo Cs,zy (5.35) and (5.16) imply

that
1 P(y™) 1 U (m)=1) g
(n(m)) (m) - -\ 7) s[=z 100]
E[C(Z) 50) |)] < Cmaz C]-ng (% + _C]-ng (ag)
1 1 YL (n(m)—
= — (m) — "[‘_((M Cemaz+1
= SI(™) + 7 log, (Tl 2 ¢) (5.36)

Combining (5.36) and (5.32), we find that the extended source sequence y(m') required to

49

produce z(™(™)) satisfies (from (5.32))

c(z(n(m)), s0) > %E[I(y("") | z(n(m)))] — %log2 (261}*) (5.37)

min

Taking the expected value of both sides of (5.37) over z("(™)), we find that

' Ccmaz+2,2,,%
E[I(y™) | y™)] - I(y™) < log, (2—?—) (5.38)
Therefore, a bound on the number of letters m —mis
) log 2Ccma=-f-2ezun
Elm —m | y™] < — G) (5.39)

)

In actual implementation, it is not possible to calculate the intervals used in encoding and

log,

decoding exactly. We view the arithmetic as being performed using binary fixed point arithmetic
with M binary digits of accuracy. In order to mitigate the effects of round-off, we will use a
two-part arithmetic coder. The first arithmetic coder will map source sequences into sequences
from a binary channel with alphabet {0, 1}; this binary channel has memoryless digit costs and
each digit is assumed to have a unit cost of transmission. We let z; represent the point on the
unit interval corresponding to the source sequence y and b = {by,b;,...} be the corresponding
binary sequence. The capacity of this binary channel is easily seen to be equal to one; therefore,
our earlier results show that over the long term, the average number of binary digits per source
symbol is H(U). Furthermore, since the mapping from source sequences to points on the unit
interval is done so that the random variable z; is uniformly distributed on the real line, each
of the digits by, bz, ... in the binary expansion of z; is independent and equiprobably equal to
0 or 1. Our second arithmetic coder will map the binary sequence b into a sequence of letters
from the original channel alphabel. Since by, by, ... are independent and equiprobably equal to
0 or 1, the entropy of the incoming binary sequence is 1. As before, the capacity of the channel
is C. Hence, our earlier conclusions indicate that the second encoder generates cost, on the
average, with the ideal of —é- per binary digit. Combining these averages, we see that over a
large source sequence, this double encoding procedure generates cost, on the average, with the

ideal of ﬂcﬂ per binary digit. Therefore, in theory, we do not lose anything by splitting the

50

coder into these two parts.

We will first discuss the behavior of the arithmetic coder which maps source sequences into
sequences of binary digits. We view the arithmetic as being performed using binary fixed point
arithmetic with M binary digits of accuracy. There is some flexibility in how numbers are
rounded to M bits, but it is vital that the encoder and decoder use exactly the same rule and
the rounding is done at the appropriate time. It is also essential, since P(y("‘)) is approaching
0 with increasing m, that the intervals be renormalized as binary digits are emitted.

The encoder keeps in its memory a normalized interva] starting at f,,pm (y(™)) and of width
Prorm (y('")). Initially, m = 0, Prorm(0) = 1, frorm(9) = 0. In order to ensure that the intervals
corresponding to different m tuples y(™) are disjoint, the interval end points are calculated
directly and pporm (y(™)) is taken as the length of the resulting interval. For ¥ £ ugug .. .u K
we let Lm(y("‘)) be the m tuple of source symbols that is lexicographically next larger than y(™),
If y(m) = UKUEK ...ug, we define Lm(y(m)) = A. We use the convention that frorm(A) = 1.

The encoder employs the following algorithm.
1. Accept ym4; into the encoder

2. Calculate the new interval as follows:

fnorm (:‘/(m+1)) = fuorm(y(m)) + fl(ym+1)Pnorm(y(m)) (540)

o) = Loy (1) = {ur, ...y v} (5.41)

If o(m+1) £ A then
fnorm(v(m+1)) = fnorm(v(m)) + .fl(vm+1)Pnorm('v(m)) (542)

For all v(m+1),

pnorm(y(m+1)) = fnorm(v(m-,_l)) - fnorm(y(m+1)) (543)

3. Produce binary outputs and renormalize according to the rule:

I fuorm (y™+1) > 1, then
(a) emit 1 as an output

51

(b) renormalize by

fnorm(y(m+1)) =2 fnorm(y(m+1)) -1

pnorm(y(m+1)) =2- pnorm(y(m+1))

(¢) Goto step 3.
Else if frorm (¥(™ 1) 4+ Prorm (y(™+Y) < 3, then

(a) emit 0 as an output

(b) renormalize by

fno"m(y(m+1)) =2- fnorm(y(m+1))

Prorm (™) = 2+ Prorm (y™)

(c) Goto step 3.
4. Increment m and goto step 1.

The purpose of step 3 is to eliminate the more significant binary digits that are no longer
needed in the encoding and decoding and adding less significant digits that increase the precision
as the intervals shrink. Note that renormalization is achieved with no additional round-off
errors.

To obtain insights into the effect of the round-off errors, we consider the example of a ternary
equiprobable source. First we examine the behavior of the encoder when the input consists

12

of a long string of repetitions of the symbol u;. Without roundoff errors, Z(y(V)) = [}, 2),

I(y®) = [&,8), and in general, I(y(™) = [1=3-=,143%). Thus, for this string, Z(y(™)

continues to straddle the point % and no binary digits are emitted by the encoder. Because
arithmetic is performed with only M binary digits of accuracy, the left and right ends of these
intervals must each be multiples of 2~ and also must get close to ;. For example, if the
rounded off version of Z(y(™)) is [— 2=M 1 4 2-M), then no binary digit can be emitted, and
it is impossible to split the interval into three distinct intervals to account for all possibilities

of Ymt1. We will avoid this problem by rounding off to avoid such small intervals around the

52

point 1. In particular, we modify (5.43) to

% - fnorm(y(m+1)) , if fnorm(ym+1) < %,
fnorm{Lm+1(y(m+1))} > %, and

Prorm =) fnorm{Lm+1(y(m+l))} - fnorm(y(m+1))
9—M

Pmin

X fnorm{Lm+1(y(m+1))} - fnorm(y(m+1)) ’ otherwise.

(5.44)

The first part of (5.44) causes the right endpoint of Z(y(™+!)) to be at 1, which allows a
binary digit to be emitted. We choose z% to be the largest interval size that can straddle
to point % to ensure that the next source symbol to enter the encoder will receive a non-zero
interval size without any unusual round-off rules.

Besides (5.44), we impose a few other reasonable restrictions pertaining to the way numbers
are rounded off. First, we insist on preserving the nesting property; i.e., before renormaliza-
tion, frorm (¥m41) > Frorm (¥m) a0d Frorm {Lm+1(3™ N} < Frorm {Lm+1(y(™)}. Also, before
renormalization, the intervals corresponding to different values of y,,41 must be disjoint and
non-empty. These rules make sure that no two distinct source sequences give rise to the same
binary sequence.

We next consider the decoder. The decoder decodes one channel letter at a time and
maintains both a queue of incoming channel letters and a replica of the encoder. Initially,
m = 1 and the queue is empty. The decoder, in attempting to decode y,,, uses (5.40) to
(5.42) and (5.44) to calculate frorm (¥(™) and prorm(y(™) for all choices of y,, given y(™~1). As
new binary digits enter the queue, we can consider the queued letters as a normalized binary
fraction of j significant bits, where j is the queue length. When the interval corresponding to
this fraction lies within one of the K normalized intervals calculated above, the decoder decodes
Ym, Tenormalizes fr,rm and pporm by the encoder rules, and deletes the corresponding binary
digits from the front of the queue. It then increments m and repeats the above procedure.

We note that when v,,, enters the encoder, the interval end points are calculated to M binary
digits of accuracy. Therefore, after the encoder emits M binary digits, the resulting interval
must have size 2™ and thus y,, is decodable at this point, if not before. Hence, decoding

always occurs with at most M binary digits in the queue. Therefore, by increasing M, we

53

trade off smaller delays between encoding and decoding for additional efficiency. Also, for some
improbable set of source sequences, the encoder will produce binary digits considerably after
the corresponding source string contains enough self-information, although it is always true
that I(y(™(™)) — n < M. This increases the round-off error and causes the binary digits to
be not exactly equiprobable. However, we will still model the input into the second arithmetic
coder as a sequence of independent binary digits with each bit equiprobably equal to 0 or 1.

We now turn to the arithmetic coder which maps binary digits into channel letters. As
before, we assume that the arithmetic is being performed using binary fixed point arithmetic
with M binary digits of accuracy. As with the first coder, we are allowed some leeway in how
numbers are rounded to M bits, but it is essential that the encoder and decoder use the same
rule and rounding is done at the appropriate time. It is also necessary that the intervals be
renormalized as channel letters are emitted.

The encoder operates as follows: based on previous channel outputs, the encoder knows
that the point z corresponding to source sequence y lies within a certain subinterval of the unit
interval. The first step is to partition this subinterval into NV sub-subintervals corresponding to
the N possibilities for the next channel output. The encoder sees binary digits coming in one
at a time and each string of binary digits of length [corresponds to a subinterval of the unit
interval of length 2—!. As each binary digit enters the encoder, an interval corresponding to the
current binary string is calculated. If the interval is contained in one of the N channel letter
subintervals mentioned above, we emit the corresponding channel letter, eliminate the binary
digits that will not give us any further information about the point z from the front of the
binary string and renormalize the interval accordingly. Otherwise, we read in another binary
digit. Note that after M binary digits are held by the encoder, the resulting interval must have
size 2™ and thus the next channel letter is emitted at this point, if not earlier.

More specifically, the encoder keeps track of a normalized interval starting at hnorm and
of width l,rm. Initially, n = 0, hnorm = 0, lhorm = 1 and the channel string 2(n) is the null
string. We also set the counters ! and m to zero and %, the state of the channel, to so. !
and m represent the length of the binary string stored in the encoder and the total number
of binary digits that have been read in by the encoder, respectively. We let B be the binary
string stored by the encoder. Hence, BO = {B1,...,0} = {bm-it1,---,bm}. In order to ensure

54

that the intervals corresponding to different n tuples 2(") are disjoint, the interval endpoints
are calculated directly and l,orm is taken as the difference between the beginning and the end
of the interval. For b(™) # 1,1,...,1, we let L%,(b(™)) be the dyadic rational corresponding
to the m tuple of binary digits that is lexicographically next larger than b(m). To include
b(m) = 1,1,...,1, we use the convention that L% (1,1,...,1) = 1. The encoder operates in the

following way:

1. Calculate the new intervals by the equations

Prorm(€i) = Pnorm + h1(2i, %) - lnorm
Rrorm(Zit1) — Rnorm (i), ie{l,...,N -1}
Bnorm + lnorm — Rrorm(2N), i=N
T3(2:) = [Pnorm(@:i); hnorm(2:) + lnorm(2i))

lnorm(mi) =

2. Accept b4 into the encoder; G141 = bmya

3. Let g(+1) = Y41 g2,
If [3U+1), L;‘+1(ﬁ(‘+1))) C J;(z;) for some z; € X, then

(a) zn41 =24
(b) find the largest integer p such that there exists a dyadic rational g with y significant
bits for which
Ti(z:) Clg,q+27%).

Possibly, ¢ = 0.

(¢) Multiply Anorm(%i) and lnorm(2;) by 2# and keep the fractional part of each. These
are the new values of Aporm and ln,mm, Tespectively.

(d) Fori=1,...,1 — u, set B; = Biy,.

() I=l-p

(f) Increment [,m , and n.

(8) ¥ = slzi, ¥]

(h) Goto step 1.

55

Else goto step 2.

Next consider the decoder. We can visualize the decoder as decoding one binary digit at
a time and maintaining both a queue of incoming channel letters and a copy of the encoder.
Initially, m = 1 and the queue is empty. The decoder, in attempting to decode b, bisects
the unit interval. As new channel letters enter the queue, we can consider the queued letters
as a normalized interval corresponding to the string of channel letters held by the decoder.
‘When this interval lies within one of the bisected portions of the unit interval, the decoder
decodes b,,, renormalizes Anorm and ln,.m by the encoder rules, updates the state and deletes
the corresponding channel letters from the front of the queue. It then increments m and repeats
the above procedure.

As with the encoder for the first arithmetic coder, we may find that the intervals corre-
sponding to the strings of letters held by the decoder are straddling the point %, so that no
binary digits can be emitted. In this case, when the size of the current interval is sufficiently
small, we perform a linear transformation on the interval so that we can create all subintervals
corresponding to the next possible channel letter. It is important to keep track of where the
linear transformation maps the point 1.

There are no new complications in studying sources with memory. The encoder uses
P(Ym | Ym—1---v1) in place of p(ym). The replica of the encoder at the decoder makes this
substitution as well. The encoder can also be adaptive in that the probability assignment for
Ym+1 is based on the observed sequence y(™); again, the encoder’s replica at the decoder would

function in the same way.

56

Chapter 6

Conclusion

We have investigated four source coding techniques in this thesis. We first considered Varn
coding and showed that the construction of optimal single letter exhaustive prefix condition
codes when the source ensemble consists of equiprobable symbols is equivalent to Tunstall’s
algorithm for finding optimal valid dictionaries when the channel letters are assumed to have
the same cost. We subsequently obtained some upper bounds on the expected cost of codes
produced by Varn’s algorithm; we demonstrated that our bound is always tighter than Krause’s
bound whenever we have a binary memoryless cost channel.

We next developed a heuristic to construct reasonably good single letter prefix condition
codes when our channel is binary with memoryless letter costs. We proved that the algorithm
produces optimal codes in two important special cases. The first of these is when the letters
have the same cost of transmission, in which case the heuristic reduces to Huffman’s algorithm.
The other instance occurs when there exists a prefix condition encoding of the source ensemble
satisfying d = i‘%ﬂ We later noticed that we can construct examples for which the heuris-
tic produces codes with expected cost per source symbol arbitrarily larger than that of the
corresponding optimal prefix condition code.

In the following chapter, we transformed the problem of constructing optimal single let-
ter prefix condition codes into an integer bilinear programming problem. We found that our
formulation could be used to produce optimal prefix condition codes when the channel has
memoryless letter costs or when there are restrictions on individual code words. We stated

some extra linear constraints that could be used to find better solutions when we remove the

57

integer constraints.

Finally, we extended the ideas of arithmetic coding to operate on channels with finite-state
letter costs. We extablished that these codes have asymptotically optimal behavior and are
efficient. Furthermore, it was noted that this encoding technique could be applied to sources
with memory. We concluded the chapter by considering some implementation issues.

A number of open issues remain. The first is to find an efficient algorithm to generate
optimal single-letter prefix condition codes given arbitrary memoryless cost channels and source
ensembles. To gain further insights about this problem, it may be useful to look into the number
of intermediate nodes in an optimal code tree; we saw the importance of this question in the
chapter on Varn codes. It seems very likely that the current adaptive coding schemes for sources
with unknown statistics can be easily extended to handle channels that are more general than
those with equal letter costs. Lastly, we note that in our arithmetic coding scheme, if a single
channel letter is incorrectly transmitted, it would almost surely be impossible to correctly
decode the bulk of the remaining source sequence. All of the known adaptive coding techniques
share this problem. Hence, it would be of interest to find good encoding techniques that are

robust in the presence of a noisy channel.

58

Appendix

Proof of Lemma 5.1: From (5.24) and (5.26), it is apparent that for all 5o € §, we have that

all (non-empty) J,,(;) are disjoint and that

N Uslz;,30] —Cs9.2,
Um'ex J’O(xz) = [0’ E v]’ 0 wo 0 7).
1 s

[

Using (5.23), we have that

N Vsz;,90) —C-o =z Usi —Cr0.7;
Z ol Z Z — Wy =1.

j=1 Vao k=1z; €X1(90) Uso

Hence, Uy, ex Joo(2i) = [0,1).
For m > 1, if zmy1 = 1, then A(z(m+1)) = h(z(™)) . We would like to show that for

i=1,...,N -1,

h(2™zip) = h(z(Me;) + ”[z_(:':);h_ql wo—c(z(m)m,ao)]

We have that

h(z(m)azi) + __'_'[‘(m): 1%0] ;C(z('“)mi,so)
_"(z(m),-’o) + J[z(m)r! 59] O—C(Z(m)m,',SO)

Vsg

= h(z(™) + hy(i, s[2(™), 30]) w

= h(m) + (ha(oogs,ofs),ag]) — DL Dl) et

Vgo

+ va[z(m)zi,:g] wo—c(z("‘)z,‘,SQ)
'U‘o

= h(z(m)zi+1)

59

Hence, the collection of intervals J,,(2(™ ;) are disjoint and
V(™ py e (™) a0
Usnps Jea(2mH0) = [A(2) , R(2mayy) 4 Tl oeleMeme)

where

h(z™zy) + "-[z(':)m.-ol wo—c(z‘""mmso)
0

= h(z(m)) + hi(zn, 3[z("‘), o)) wo_c(z(’n)"“) + Date™)zy 00 w[,—c(z(m):"N”°)

Vs
N-1y e .
= h(Z(m)) + Z Mv’_ﬂ] wo '[1()"OI'Ej wo_c(z()7-70) + ‘ul[z(':')zh!.ao] w(-’-c(z(‘m)mN,_go)
]:1 v-’o 30
N Uy[2(m) —C,1z(m)
=h(z(m)) + Z s[z(m)z;,30] wo e[(m) a0),2; w;"(z("‘),-’o)
=1 Vgq
j=
—c
i n[z(m),uo],.;j
= h(z(™) + Lok=1 Dz € Xy(s[2™) 50]) Y21 Yo wo—c(z(‘m),ao)

Vs

= h(z(m)) + M wo—c(z("‘)--’o),

Vsq

using equation (5.23). Therefore,

U2m+1 J’o(z(m+1)) = JSO(Z(m)) -0

60

Bibliography

Carter, L. and J. Gill (1974) “Conjectures on uniquely decipherable codes,” I.E.E.E.
Trans. Inform. Theory IT-20, 394-396

Csiszar, I. (1969) “Simple proofs of some theorems on noiseless channels,” Inform. Control

14, 285-298

Feller, W. (1950) An Introduction to Probability Theory and its Applications, Vol. 1, Wiley,
New York (3rd ed., 1968)

Gallager, R. G. (1968) Information Theory and Reliable Communication, John Wiley &
Sons, Inc. New York

Gallager, R. G. (1990) Class Notes for 6.441

Huffman, D. A. (1952) “A method for the construction of minimum-redundancy codes,”

Proc. I.R.E. 40, 1098-1101

Karp, R. S. (1961) “Minimum-redundancy coding for the discrete noiseless channel,” I.E.E.
Trans. Inform. Theory IT-7, 27-38

Kraft, L. G. (1949) “A device for quantizing, grouping, and coding amplitude modulated
pulses,” M.S. thesis, Dept. of E.E., M.I.T., Cambridge, MA

Krause, R. M. (1962) “Channels which transmit letters of unequal duration,” Inform. Con-
trol 5, 13-24

Lempel, A., S. Even and M. Cohn (1973) “An algorithm for optimal prefix parsing of a
noiseless and memoryless channel,” .LE.E.E. Trans. Inform. Theory IT-19, 208-214

61

McMillan, B. (1956) “Two inequalities implied by unique decipherability,” I.R.E. Trans.
Inform. Theory IT-2, 115-116

Mehlhorn, K. (1980) “An efficient algorithm for constructing nearly optimal prefix codes,”
LE.E.E. Trans. Inform. Theory IT-26, 513-517

Rissanen, J. and G. G. Langdon, Jr. (1979) “Arithmetic coding,” I.B.M. J. Res. De-
velop. 23, 149-162

Shannon, C. E. (1948) “A mathematical theory of communication,” Bell System Tech. J.
27, 379-423, 623-656

Siegal, P. H. (1985) “Recording codes for magnetic storage,” I.E.E.E. Trans. Magnetics
MAG-21, 1344-1349

Tunstall, B. P. (1968) “Synthesis of noiseless compression codes,” Ph.D. dissertation, Geor-
gia Inst. Technol., Atlanta, GA

Varn, B. F. (1971) “Optimal variable length codes (arbitrary symbol cost and equal code
word probabilities),” Inform. Control 19, 289-301

Ziv, J. and A. Lempel (1978) “Compression of individual sequences via variable-rate cod-

ing,” L.E.E.E. Trans. Inform. Theory IT-24, 530-536

62

