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Abstract

Interactions between the prefrontal cortex (PFC) and mediodorsal thalamus (MD) are critical for 

cognitive flexibility, yet the underlying computations are unknown. To investigate fronto-thalamic 

substrates of cognitive flexibility, we developed a behavioral task, where mice switched between 

different sets of learned cues that guided attention towards either visual or auditory targets. We 

found that PFC responses reflected both the individual cues and their meaning as task rules, 

indicating a hierarchical cue-to-rule transformation. Conversely, MD responses reflected the 

statistical regularity of cue presentation, and were required for switching between such 

experimentally-specified cueing contexts. A subset of these thalamic responses sustained context-

relevant PFC representations, while another suppressed the context-irrelevant ones. Through 

modeling and experimental validation, we find that thalamic-mediated suppression may not only 

reduce PFC representational interference but could also preserve unused cortical traces for future 

use. Overall, our study provides a computational foundation for thalamic engagement in cognitive 

flexibility.
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Introduction

Cognitive flexibility, the ability to mentally switch between different thoughts and action 

plans, is critical for survival in a rapidly changing environment1–3. This important process 

allows us to flexibly switch attention among competing inputs4–7. A lack of cognitive 

flexibility is a hallmark of many mental illnesses such as schizophrenia8,9. Furthermore, a 

key limiting factor to artificial general intelligence (AI) is the inability of deep learning 

algorithms to perform multiple tasks without interference10,11. Therefore, elucidating the 

circuit and computational principles underlying cognitive flexibility will have a broad 

multidisciplinary impact.

The prefrontal cortex (PFC) plays a central role in cognitive flexibility5,12,13, including the 

differential allocation of attentional resources based on learned cues14–16. Multiple recent 

studies have also demonstrated that PFC function is highly dependent on its interactions 

with the mediodorsal thalamus (MD)17–22. In particular, the MD sustains task-relevant 

representations in the PFC by augmenting effective connectivity between cortical neurons17. 

However, because previous studies did not include a controllable switching component, the 

role of MD-PFC interactions in cognitive flexibility remain unclear.

In this study, we examined the substrates of cognitive flexibility through a series of 

behavioral manipulations, temporally-precise optogenetic perturbations and multi-site multi-

electrode recordings. We found that PFC responses reflected both the individual cues and 

their meaning as task rules, indicating a hierarchical cue-to-rule transformation in this 

cortical area. In contrast, MD responses reflected the statistical regularity of the cue 

presentation, which we refer to as the cueing context. Using causal perturbations, we found 

that in addition to stabilizing context-relevant representations, MD neurons also suppress 

context-irrelevant PFC representations. These processes impart on the PFC the flexibility to 

dynamically switch between different contexts with minimal interference. Altogether, our 

work clarifies how MD neurons regulate prefrontal representational switching and provides 

a computational foundation for thalamic engagement in cognitive flexibility.

Results

Prefrontal neurons display mixed selectivity during attentional switching

To examine how mouse prefrontal cortex (PFC) ensembles operate when cognitive 

flexibility is required, we expanded an attentional control task17,23 to incorporate a cue 

switching component (Fig. 1a). At the core of the task is sensory selection, where freely 

behaving mice select between spatially-conflicting visual and auditory targets. On each trial, 

a mouse selects between the two targets based on one of two 100 ms-long learned cues; a 

high-pass (HP) or a low-pass (LP) noise burst. These cues correspond to two rules – attend 
to audition and attend to vision respectively. Mice were required to hold a pseudo-randomly 

presented cue in mind for up to one second by maintaining snout fixation in the initiation 

port prior to the simultaneous presentation of the two targets. The targets corresponded to 

the spatial location of the reward being delivered through the right or left reward port (e.g. 

left LED flash on an attend to vision trial signaled a response on the left reward port). 

Correct performance was rewarded with 10 μL of condensed milk, while incorrect 
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performance was punished with a timeout. Logistic regression modeling of behavior across 

all mice used in this study revealed that they used the cue to guide their choices 

(Supplementary Fig. 1a–d, see Methods).

Once mice became proficient at using the auditory noise cues, we introduced two visual cues 

– an ultraviolet (UV) and green LED flash – which corresponded to the same rules (Fig. 1b). 

To assess how mice switched from using one cue set to another, we trained mice to perform 

this task in blocks (Fig. 1b). Mice had equivalent performance across both blocks regardless 

of their presentation order (Supplementary Fig. 1e, f), suggesting that they utilized different 

cue sets equivalently. Importantly, this demonstrates an ability to flexibly switch their 

attention when the cueing context changes.

Given the well-known role for the PFC in cognitive flexibility1,20,24,25, we asked how PFC 

neurons (prelimbic cortex; see Methods) engage in this task. Using unbiased trial-selection 

(Supplementary Fig. 1g) and spike waveform clustering analysis26–28, we classified recorded 

neurons into two categories: regular spiking (RS, putative excitatory) and fast spiking (FS, 

putative inhibitory, Supplementary Fig. 2a–d). As previously reported17, a subset of RS 

neurons showed a brief increase in spike-timing reliability during the delay period. We refer 

to these cells as transient (see Supplementary Fig. 2e–g for classification of cells). As a 

population, these transient cells tiled time in the delay period with distinct neurons 

responding at different time points (Supplementary Fig. 2h). Interestingly, these cells could 

be further categorized into two groups. One group responded selectively to one of the four 

learned cues (Fig. 1c, d, cue-selective, 233/1789, 5 mice), while another responded 

equivalently to two cues that had the same meaning, which may be interpreted as a single 

task rule (Fig. 1e, f and Supplementary Fig. 2i, cue-invariant 102/1789, 5 mice). For 

example, a cue-invariant PFC neuron selective to the attend-to-vision rule responds with 

transient elevation in spiking reliability at the same delay period time in both LP noise and 

Green LED trials. To our knowledge this type of cue-invariance, indicative of rule-

selectivity29,30, has not been previously reported in mouse PFC.

In stark contrast to the transient RS neural responses, putative inhibitory FS neurons showed 

broad changes in spike rate that distinguished between the two cueing contexts but not rule 

meaning (Fig. 1g, h and Supplementary Fig. 2j, 418 neurons 5 mice). In fact, RS and FS 

populations encode distinct cognitive variables, with the rule signal being more readily 

decodable from RS neurons while the context signal being more readily decodable from FS 

neurons (Fig. 1i, j). Further analysis confirmed that RS neurons encode cues and rules 

through changes in spiking reliability (Supplementary Fig. 3a, b). On the other hand, FS 

populations encode context through broader (persistent) changes in spike rates across both 

the inter-trial interval and the delay period. It is important to note that, in addition to 

transient PFC RS cells, we observed another RS group that showed persistent spike rate 

changes that also correlated with context (Supplementary Fig. 3c). However, it was much 

harder to decode context from these cells compared to PFC FS neurons (Supplementary Fig. 

3d, e).

To further test if transient PFC responses were indeed due to the sensory cue, we omitted the 

cue on 20% of the trials (Supplementary Fig. 4a). In addition to a decrease in behavioral 
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performance, we observed a significant decrease in tuning strength of both PFC cue-

selective and cue-invariant neurons (Supplementary Fig. 4b–d). Taken together, these results 

indicate that transient PFC responses are due to the learned cue, with cue-selective cells 

representing a physical cue and cue-invariant cells representing its meaning as a task rule.

Is it possible that the observed mixed selectivity among cue-invariant neurons reflects the 

differential sampling of local cue-selective neurons in a context-dependent manner? To 

address this question, we constructed a multi-neuronal generalized linear model (GLM, Fig. 

1k) to predict the spike rate of each PFC neuron31,32. In addition to external sensory 

variables, our GLM model also included coupling terms to capture the dependencies 

between neurons (see Methods). These coupling terms were in the form of a coupling filter 

that allowed us to explain the effect that spiking in other simultaneously recorded neurons 

had on the unit being modeled. Importantly, we used a rigorous cross-validation approach to 

statistically evaluate the predicted coupling and to constrain the parameters of the model (see 

Methods). On average, the GLM was able to explain close to 75% of the response variance 

of both cue-selective and cue-invariant PFC neurons on each trial (Supplementary Fig. 5a–

c).

By analyzing the strength of the coupling filters, we were able to make inferences about the 

functional connectivity between the different classes of PFC neurons. This analysis revealed 

that cue-selective neurons are strongly coupled among themselves only if they encode the 

same cue, and do not receive substantial reciprocal coupling from cue-invariant neurons 

(Fig. 1l). Additionally, cue-invariant neurons receive strong functional inputs from cue-

selective neurons across both contexts (Fig. 1m). As such, based on this pattern of functional 

connectivity, we reasoned that task-relevant PFC computations are hierarchically organized, 

with cue-invariant neurons gaining their rule selectivity from cue-selective neurons across 

contexts (Fig. 1n).

Mediodorsal thalamus encodes cueing context

The mediodorsal thalamus (MD) projects extensively to the PFC has a critical role in 

maintaining task-relevant activity in this cortical region18,20,22,33,34. Furthermore, a recent 

study found that the MD might play a role in cognitive flexibility by recruiting cortical 

inhibitory neurons35. Given our finding that FS neurons are contextually selective (Fig. 1h, 

i), we next asked how MD neurons responded in our context switching task (Fig. 2a). In 

agreement with our previously published results17, we found that a subset of MD neurons 

exhibited a transient increase in spiking reliability during the delay, and distinct MD neurons 

tiled the delay period (Fig. 2b). Unlike PFC RS neurons, these transient MD neurons did not 

display cue-selective responses but had equivalent responses to both cues within the same 

block. Additionally, another subset of MD neuron showed the same selectivity towards the 

cueing context but through persistent changes in spike rate over the delay period (Figs. 2c 

and 2d for classification of transient and persistent MD neurons). At the population level, the 

cueing context was much more decodable from both persistent and transient MD neurons 

compared to PFC RS neurons (Fig. 2e, f). Therefore, across the PFC-MD network, MD and 

PFC FS neurons were the most informative of the cueing context, whereas PFC transient 

neurons were most informative of the rule (Fig. 2f).
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Are these thalamic responses reflective of sensory input (i.e. the modality of the cues) or of 

something more cognitive? To answer this question, we required mice to perform the task 

using blocks with cues of different modalities. MD neuronal activity reflected these hetero-

modal cueing blocks (Supplementary Fig. S6a–d). Furthermore, when we presented all four 

cues in a randomized manner, we found MD neurons that responded to all four cues, 

suggesting that their combination was encoded as a single context (Supplementary Fig. 6e–

h). Altogether, MD activity reflects the statistical regularity of cue presentation over a multi-

trial timescale, which we refer to as the cueing context (Supplementary Fig. 6i, j).

What factors could explain this contextual selectivity in the MD? We had previously shown 

that transient responses in the MD are dependent on PFC inputs17. Therefore, one possibility 

is that the MD gains contextual selectivity from PFC inputs, either from persistent RS 

neurons or from cue-selective ones (Supplementary Fig. 7a, b). To test these two models, we 

fit GLMs to MD neurons and analyzed how different PFC cell types contributed to their 

selectivity (Fig. 2g). PFC RS persistent cells did not contribute to spiking of either MD 

transient or persistent cells (Supplementary Fig. 7c–f). In contrast, more than 75% of the 

variance in the delay period activity of both transient and persistent MD neurons could be 

explained by inputs from cue-selective PFC neurons, with MD neurons more likely to 

receive inputs from the context-congruent cortical cue set (Fig. 2h). Also, consistent with the 

fact that PFC FS neurons do not project to the MD, we found that they exerted no causal 

influence on MD spiking, further validating the power of the GLM to infer biologically 

plausible circuit models (Supplementary Fig. 7c, f). Therefore, these findings suggest that 

MD neurons gain their contextual selectivity, at least partly, by pooling context-specific cue 

inputs from the PFC. MD transient cells pool from PFC cells in temporally precise manner, 

while MD persistent cells pool from PFC cells over a broader temporal window 

(Supplementary Fig. 7g, h).

To further verify these model predictions, we expressed the inhibitory channelrhodopsin, iC

++, in PFC to directly inactivate its neurons or their terminals in MD [PFCMD] (Fig. 2i and 

Supplementary Fig. 8a–c) in a temporally precise manner. We reasoned that if MD neurons 

derive contextual selectivity from the PFC then suppressing PFCMD inputs should decrease 

its selectivity. To mitigate detrimental effect that bilateral PFC suppression as on behavior in 

this task 17, we suppressed the PFC unilaterally once the animal achieved stable performance 

in each block (Supplementary Fig. 8b, see Methods). This method allowed us to dissociate 

neural selectivity in the MD from changes in behavioral performance. Suppressing PFC 

neurons themselves or their terminals in MD diminished contextual signals in the MD (Fig. 

2j and Supplementary Fig. 8d, e). Notably, removing PFC input filters in the MD GLM had 

a similar effect on response predictability as suppressing PFCMD terminals, providing 

further experimental validation of our GLM (Fig. 2k). Finally, to test the idea that PFC 

inputs are causally involved in generating and not just modulating contextual selectivity in 

the MD, we suppressed PFCMD inputs on every trial during the cueing period 

(Supplementary Fig. 9a). When performed unilaterally, this manipulation significantly 

decreased MD contextual selectivity (Supplementary Fig. 9b, c), and when performed 

bilaterally, it significantly impaired behavioral performance (Supplementary Fig. 9d–f).
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Taken together, these results suggest that by pooling from cue-specific PFC neurons, the MD 

encodes the cueing context (Fig. 2l).

Encoding a cueing context is critical for behavioral performance and flexibility

Our results so far suggest that both MD and PFC FS explicitly encode cueing context, while 

PFC RS neurons encode other cognitive variables such as cue identity and rule. We 

wondered if behavioral performance benefitted from such a behavioral encoding scheme, 

and if so, how? We noticed that mice performed much better on sessions in which the four 

cues were separated into two cueing contexts compared to sessions in which the cues were 

equiprobable (Fig. 3a). This performance advantage occurred regardless of how cues in the 

block were grouped with respect to modality. Critically, although performance within either 

of the two blocks was higher than that when cues were fully randomized across the session, 

there was a clear and consistent behavioral detriment for 4–8 trials upon switching from one 

block to another (Fig. 3b). This decline in behavioral performance at the switch suggested 

that, despite previous learning, mice had to readjust to using cues in the new cueing set.

This behavioral switching dynamic was associated with several neural ones. We found that 

cue-selective PFC neurons showed reliable spiking earlier than cue-invariant ones upon first 

exposure to the new context (Supplementary Fig. 10a). This suggests that the decrease in 

behavioral performance at the point of context switch could be due to a remapping of inputs 

onto the shared cue-invariant cells. To test this hypothesis, we analyzed the temporal 

evolution of coupling filters from cue-selective to cue-invariant PFC cells on a trial on a trial 

by trial basis at the point of the switch (Supplementary Fig. 10b, see Methods). Intriguingly, 

the time taken for these coupling filters to stabilize followed broadly similar dynamics to 

that of the behavioral performance (Fig. 3c) and could explain close to 87% of the variance 

in the behavioral switch latency – sessions which took longer for the mouse to switch were 

also associated with a longer time to stabilize cue-selective inputs into cue-invariant neurons 

(Fig. 3d). This would be expected if PFC cue-invariance was the source of cognitive control 

signals (attend to vision vs. attend to audition). In contrast, although the coupling between 

cue-selective PFC neurons and context-selective MD neurons followed broadly similar 

dynamics, they were too fast to correlate with behavioral performance (Supplementary Fig. 

10 c–g). Therefore, the output of the PFC cue-invariant cells, and not the MD or PFC cue-

selective cells, are most likely utilized for controlling sensory selection and successful task 

performance.

These results also suggest that the contextual selectivity of the MD may be required for the 

generation of rule signals in the PFC by adjusting the functional connectivity between cue-

selective and cue-invariant PFC neurons in a context specific manner. To causally test this 

model, we designed and executed a series of optogenetic perturbation experiments. Our 

previous study demonstrated that bilateral suppression of MD neurons during the duration of 

the delay period diminished task-relevant activity in the PFC17. In addition, in tasks lacking 

a delay period, MD suppression, via halorhodopsin (see Methods) during the cueing period 

(100 ms) had minimal effect on behavioral performance17. As such, we first asked whether 

cue-specific, interleaved and bilateral MD suppression had a measurable impact on 

behavioral performance. Interestingly, once an animal achieved stable performance within a 
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block, such manipulation had no impact (Fig. 3e). Instead, the biggest behavioral deficit that 

we observed was the prolonged time taken to achieve stable performance in the new context 

(Fig. 3f and Supplementary Fig. 11). Consistent with the idea that MD contextual signals are 

relevant for establishing PFC task-relevant connectivity patterns, this MD manipulation also 

increased the number of trials taken to stabilize cue-invariant representations in the PFC 

(Fig. 3g). Notably, this laser manipulation had no unwanted effects on the MD as the same 

laser power and duration had no effect in mice that expressed GFP in the MD (data not 

shown).

MD neurons regulate PFC representational switching likely through cortical inhibition

In addition to the effects on behavioral performance and PFC representational stability, we 

also noted that temporally-precise MD suppression during the cueing period impacted cue-

selective PFC neural spiking. Specifically, although the increase in spiking of cells 

preferring the second context was unaffected (Fig. 3h), we observed that cells preferring the 

first context continued to fire even though their sensory cue was no longer present (Fig. 3i). 

Suppressing MD terminals in the PFC (MDPFC) resulted in a similar ‘out-of-context’ spike 

rate elevation (Supplementary Fig. 12). Critically, these MD-dependent changes in PFC RS 

spiking activity were contrasted by changes in PFC FS firing; MD suppression attenuated 

the normal elevation of FS neural spiking associated with the second context (Fig. 3i). 

Therefore, at least a subset of MD neurons may regulate representational switching by 

suppressing out-of-context activity in the PFC through cortical inhibitory mechanisms.

To more directly probe this process, we turned to our multineuronal GLM to assess the 

impact of MD neurons on PFC targets (Fig. 4a). We found that, in contrast to cue-invariant 

PFC neurons (Fig. 4b), cue-selective PFC neurons received substantial MD inputs, which 

varied according to context (Fig. 4c). These functional inputs could be broadly segregated 

into two types; one predominantly inhibitory and another predominantly excitatory (Fig. 4c 

inset). Notably, these functional inputs originated from the two distinct MD functional 

subgroups; persistent MD neurons were more likely to provide inhibitory functional inputs, 

while transient MD neurons predominantly provided excitatory ones (Fig. 4d).

Similar to MD neurons, PFC FS neurons also exerted a context-dependent inhibitory effect 

on cue-selective neurons, with FS neurons having a larger inhibitory effect on PFC neurons 

that prefer cues of the opposite context (Fig. 4e). Consistent with the idea that MD cell types 

may be exerting part of their effects on the PFC through local inhibitory circuits35,36, we 

found that MD inputs could explain more of the variance of PFC FS neuron firing than PFC 

cue-selective neurons (Supplementary Fig. 13a–c). MD persistent neurons were more 

coupled to PFC FS neurons than MD transient neurons were (Fig. 4f). Also, in contrast to FS 

neurons, PFC RS persistent neural responses were poorly explained by inputs from either 

the MD or cue-selective PFC neurons (Supplementary Fig. 13d), reinforcing the notion that 

they may be part of a distinct functional circuit than the one under study. Altogether, these 

results support a model in which the MD controls contextual switching by suppressing PFC 

neurons of the irrelevant context through mechanisms that involving cortical inhibition.

To further test this model causally, we needed to gain a degree of selectivity over the two 

identified functional MD subtypes (Fig. 4g). MD neurons in vitro have a bimodal resting 
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membrane potential distribution37, suggesting different degrees of excitability. Because our 

analysis suggested that two MD populations are driven by different degrees of cortical 

engagement (Supplementary Fig. 7), we reasoned that this might also be due to differential 

excitability which may impart differential susceptible to optogenetic inhibition. Specifically, 

the less excitable MD population (likely transient MD cells) would require stronger or more 

coincident PFC inputs to fire and hence would be more susceptible to weak suppression. 

Conversely, persistent MD neuron may be more excitable and would require weaker and less 

coincident PFC inputs to fire.

By parametrically controlling laser power on an animal-by-animal basis without influencing 

behavior (Supplementary Fig. 14 a, b), we found that MD transient cells were far more 

susceptible than MD persistent cells to low levels of yellow laser power (556 nm, power at 

fiber tip: 0.6-1.1 mW, Fig. 4h and Supplementary Fig. 14 c, d). These laser powers did not 

have an appreciable effect on the spiking properties of MD persistent cells (Supplementary 

Fig. 14 e–g). Higher laser powers (power at fiber tip: 2.1-3.5 mW) affected both transient 

and persistent MD neurons (Supplementary Fig. 14h). In support of the predictions made by 

our GLM, selectively suppressing MD transient cells with weak laser powers selectively 

eliminated excitatory functional inputs to the PFC but had no impact on the inhibitory 

functional inputs from transient MD neurons (Fig. 4i). Suppressing MDPFC terminals had a 

similar effect on the PFC without affecting the firing rates of these neurons (Supplementary 

Fig. 14i–k). This manipulation also revealed a selective effect on the response properties of 

both transient PFC RS neurons subtypes (Fig. 4j and Supplementary Fig. 15a), but not PFC 

FS neurons (Fig. 4k). In agreement with our earlier studies17, temporally-limited MD 

suppression had a stronger effect on the maintenance of these peaks rather than their 

initiation in the PFC, confirming that the MD is not the source of PFC cue information 

(Supplementary Fig. 15b). Although the congruence between terminal and somatic 

inactivation may be surprising, the relatively large volumes of MD terminals may have 

larger impact on somatic excitability than what would be expected otherwise.

Consistent with the idea that persistent MD neurons provide cross-contextual PFC 

suppression, strong laser suppression significantly increased “out-of-context” cue-selective 

PFC spiking (Fig. 4l) and concomitantly decreased PFC FS neural spiking (Fig. 4m). 

Because of this, inputs from cue-selective PFC neurons onto cue-invariant neurons took a 

longer time to stabilize (Fig. 4n). Weak laser suppression, which targeted only transient cell, 

did not have a similar effect. Taken together, our findings strongly suggest that the MD has 

two distinct computational functions: (1) Transient MD cells maintain the context-relevant 

representation in the PFC, permitting cue information to be held in working memory; (2) 

Persistent MD cells suppress context-irrelevant representations in the PFC by recruiting FS 

neurons in a context-dependent manner (Fig. 4o).

MD-dependent suppression of context-irrelevant representations protects them for future 
use

Our data thus far suggest a model in which persistent MD neurons suppress PFC 

representations when they are no longer relevant for the current context. What computational 

advantage could this architecture impart? Recent theoretical work 38 has shown that a 
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context-dependent gating mechanism, which suppresses task-irrelevant nodes in deep neural 

network, can increase flexibility by allowing the network to learn more tasks sequentially. 

We wondered whether MD-mediated inhibition could impart such a benefit onto PFC, 

allowing it to flexibly switch between the different cueing contexts.

To test this idea, we used a reservoir network of rate neurons as a model for PFC 

function39,40 and incorporated an MD-like node39 that suppressed context-irrelevant 

reservoir neurons (Fig. 5a). The network was trained to perform a classification task where it 

had to classify four cues into two rules, which was analogous to the task that mice were 

trained to do. Interestingly, the PFC-MD model outperformed a PFC-only model in being 

able to flexibly switch between cueing contexts (Fig. 5b). Without an MD, weights relevant 

to context 1 changed in the second context (Fig. 5c, d), which in turn increased errors when 

context 1 was required again. Incorporating the MD limited the spread of recurrent 

excitation to the context-relevant PFC neurons, making the two contextual representations 

practically disjoint, and disabling weight changes involving context-irrelevant neurons. 

Interestingly, this weight-protection benefit generalized to a much more computationally-

demanding exclusive-or (XOR) classification task which is by design not linearly 

separable41,42 (Supplementary Fig. 16). Overall, the computational benefits imparted by an 

MD-like node are even more relevant in the XOR task, suggesting broad benefits of cross-

contextual suppression in cognitive flexibility.

We reasoned that we could test these theoretical weight protection benefits experimentally if 

we employed a three-block switching paradigm (Fig. 5e, see Methods), where mice were re-

exposed to the first cueing context in the third block. In this paradigm, PFC neurons 

selective for the first cue-set should be suppressed in the second block, but perhaps 

reactivated again in the third as it would be computationally efficient to simply re-engage the 

same functional ensemble rather than generate a new one de novo. We found that mice 

performed this three-block switching paradigm well, with no significant difference in 

performance across blocks (Fig. 5f). Interestingly, suppressing the MD bilaterally during the 

cueing period once behavior stabilized in the second block significantly impaired 

performance when the animal was re-exposed to the first block (Fig. 5f). Although 

performance was close to chance (as if the mouse had forgotten the first context), bilateral 

MD manipulations did not have any long-lasting effects as performance returned to normal 

the following day (Fig. 5g). This reduction in behavioral performance on re-exposure to the 

first block parametrically varied with the number of trials suppressed in the second block; 

suppressing a larger number of trials in the second block resulted in a larger behavioral 

deficit (Fig. 5h, inflection point, 20 trials). Interestingly, although the switching latency was 

marginally shorter when the animal moved from the second back to the first cueing context, 

MD suppression in the second block prolonged this switch (Fig. 5i and Supplementary Fig. 

17). This effect is stronger than what we show in Fig. 3f, because unlike the two-block 

switching paradigm, mice must now reactivate representations for the first cueing context in 

the PFC.

To examine the neural substrates of this behavioral detriment, we again aimed at dissociating 

behavioral from neural manipulations and therefore employed a unilateral optogenetic 

suppression paradigm where we suppressed MD neurons during the cue once behavior 
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stabilized in the second block. In sessions where no such optical manipulation was deployed, 

both PFC cue-selective and cue-invariant neurons were largely shared between the first cue-

set and their repeat in the third block (Fig. 5j). As expected, unilateral cue-specific MD 

suppression resulted in out-of-context spiking of the first cue-set neurons during the second 

block (Fig. 5k and Supplementary Fig. 18). Although this was not associated with a delay in 

how these neurons were recruited in the third context, their functional inputs onto cue-

invariant neurons were much weaker upon the switch (Fig. 5l). Therefore, our data suggest 

that in addition to suppressing context-irrelevant cortical representations such that context-

relevant functional connections rapidly stabilize, such process may protect recently engaged 

but currently irrelevant connectivity patterns for near-future use (see Supplementary Fig. 19 

for summary model).

Discussion

In this study, we expanded on a behavioral paradigm we had previously developed17,23 by 

nesting it in a cognitive hierarchy. Specifically, while our previous studies have explored the 

neural correlates of cross-modal sensory selection based on two learned cues, the current 

design nested the selection process within multiple cueing contexts. Importantly, these 

contexts were under complete experimental control and could be arbitrarily constructed on a 

session-by-session basis.

This allowed us to make multiple observations. First, we identified a prefrontal neural 

hierarchy that matches the cognitive one; neurons that reflected the meaning of the cue (the 

rule) derived their representations from local cue-selective inputs. Similar hierarchies are 

seen in sensory areas43 potentially speaking to broadly similar cortical organization 

principles. Notably, we found only 5% of cells in the mouse PFC to be rule selective, a 

contrast to higher species which have significantly larger fractions of such cells29,44. This 

difference may explain why mice perform worse on randomized cueing compared to 

primates.

Second, unlike structures like the lateral geniculate nucleus (LGN), or thalamic circuits that 

primarily drive excitatory responses in the cortex45, we found that the MD exerts effects on 

cognitive switching through local inhibitory cortical interneurons. This builds on similar 

recent studies22,35,36, but also provides a computational framework linking thalamic output 

to cortical inhibitory microcircuits. For example, transient MD neurons could recruit dis-

inhibitory motifs46 to maintain activity in the PFC while persistent MD neurons could target 

soma-targeting interneurons36. Without further evidence however, we can only speculate that 

the diversity of thalamo-cortical computations may match the diversity of cortical 

interneurons47.

Third, the unique connectivity patterns of the lateral MD are consistent with our 

physiological results; convergence of individually small cortical terminal inputs onto single 

MD neurons20,48 may explain their lack of selectivity to categorical information that 

originates in cortex. Instead, our model shows that this convergence of PFC inputs may 

facilitate the emergence of contextual signals in the MD20. Additionally, the lack of thalamic 
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lateral connectivity may allow MD neurons to multiplex incoming signals, a process that 

would be harder for cortical circuits to implement given their extensive recurrence.

Fourth, the experiments regarding multiple switches point to a variety of plasticity rules 

governing cortical function, as had been recently shown through recurrent neural network 

simulations49. Within this framework, our data suggest a unique role for the thalamus in 

generating contextual representations that may regulate cortical plasticity. The exact nature 

of cortical inhibitory neurons involved in cross-contextual suppression are still unknown at 

this point, and our study provides a starting point for such detailed exploration.

Lastly, it is worth mentioning that recent progress in artificial intelligence (AI) research has 

shown a benefit for incorporating context-specific gating mechanisms in convolutional 

networks on the ability to perform multiple tasks and the mitigation of ‘catastrophic 

forgetting’10,38. The key idea in these studies is the generation of non-overlapping task-

specific representations in a context-specific manner50. We envision the MD thalamus to 

impart a similar computational benefit on task-specific PFC representations; rapid separation 

of potentially overlapping representations such that their decoding is performed more easily. 

Overall, our finding may not only be relevant to future research in neuroscience but may also 

lead to the generation of artificial networks that exhibit more stable learning and robust 

performance.

Methods

Mice.

All experiments were carried out under protocols approved by MIT’s Committee on Animal 

Care and conformed to NIH guidelines. With the exception of one mouse, who had the Sst-

IRES-Cre (Jax: 013044) genotype, all mice were C57/BL6 (Taconic Biosciences). Only 

male mice older than 8 weeks old were used in this study. Please refer to the Life Sciences 

Reporting Summary for further details. Mice were housed in the vivarium on a standard 12-

hour light/dark cycle and were singly housed throughout the experimental period. 

Experiments were performed during the light portion of the cycle.

Behavioral setup.

Behavioral training and testing took place in gridded floor-mounted, custom-built enclosures 

made of sheet metal covered with a thin layer of antistatic coating for electrical insulation 

(dimensions in cm: length, 15.2; width, 12.7; height, 24). All enclosures contained custom-

designed operant ports, each of which was equipped with an IR LED/IR phototransistor pair 

(Digikey) for nose-poke detection. Trial initiation was achieved through an ‘initiation port’ 

mounted on the grid floor 6 cm away from the ‘response ports’ located at the front of the 

chamber. Task rule cues and auditory sweeps were presented with millisecond precision 

through a ceiling-mounted speaker controlled by an RX8 Multi I/O processing system 

(Tucker-Davis Technologies). Visual stimuli were presented by two dimmable, white-light-

emitting diodes (Mouser) mounted on each side of the initiation port and controlled by an 

Arduino Mega microcontroller (Ivrea). Similarly, the visual cues were delivered through a 

pair of a wall-mounted 5 mm LEDs (UV: 320-380 nm, Green: 495-510 nm, 100 mW 25 
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degree viewing angle Mouser). These LEDs were bright enough to illuminate the whole 

arena. Two response ports were mounted at the angled front wall 7.5 cm apart, respectively. 

Milk reward (10 μL evaporated milk, Carnation) was delivered by a single syringe pump 

(New Era Pump Systems) when mice made a correct choice. Access to the response ports 

was restricted by vertical sliding gates which were controlled by a servo motor (Tower 

Hobbies). The TDT Rx8 sound production system (Tucker Davis Technologies) was 

triggered through MATLAB (MathWorks), interfacing with a custom-written software 

running on an Arduino Mega (Ivrea) for trial logic control.

Multi-electrode array construction and implantation.

Custom multi-electrode array scaffolds (drive bodies) were designed using 3D CAD 

software (SolidWorks) and printed in Accura 55 plastic (American Precision Prototyping) as 

described previously 17,23,51. Prior to implantation, each array scaffold was loaded with 12–

18 independently movable micro-drives carrying 12.5-μm nichrome (California Fine Wire 

Company) stereotrodes or tetrodes. Electrodes were pinned to custom-designed, 96-channel 

electrode interface boards (EIB, Sunstone Circuits) along with a common reference wire (A-

M systems). For combined optogenetic manipulations and electrophysiological recordings of 

the PFC, optic fibers delivering the light beam lateral (45° angled tips) were embedded 

adjacent to the electrodes. In the case of combined optogenetic PFC manipulations with 

mediodorsal recordings.

During implantation, mice were deeply anaesthetized with 1% isofluorane and mounted on a 

stereotaxic frame. A craniotomy was drilled centered at AP −2 mm, ML 0.6 mm for PFC 

recordings and at AP: 1 mm, ML 1.2 mm for mediodorsal recordings. The range of 

coordinates covered in our recordings for the lateral MD are: AP: −1 to −1.5 mm, ML: 0.3 to 

0.8 mm relative to bregma. Similarly, for the PFC, the range of coordinates covered in our 

recordings are: AP: 2.1 to 2.7 mm, ML: 0.25 to 0.6 mm relative to bregma.

The dura was carefully removed, and the drive implant was lowered into the craniotomy 

using a stereotaxic arm until stereotrode tips touched the cortical surface. Surgilube (Savage 

Laboratories) was applied around electrodes to guard against fixation through dental cement. 

Stainless-steel screws were implanted into the skull to provide electrical and mechanical 

stability and the entire array was secured to the skull using dental cement.

Optogenetic Manipulation.

We utilized a dual wavelength optical silencing method to independently suppress neurons 

in the PFC and MD. Specifically, we virally expressed the inhibitory channelrhodopsin iC++ 

in the PFC (AAV-CaMKIIA-iC++-eYFP) 52, which is selective to blue-shifted wavelengths 

(473 nm), and expressed halorhodopsin (AAV-CaMKIIA-eNpHR3.0-eYFP) in the MD 53. 

Since the peak spectrum of eNpHR is red-shifted (peak ~550 nm), we could independently 

suppress both populations without affecting their terminals in either structures. Light was 

delivered to these structures using optic fibers that were part of the micro-drive (as described 

above). We used a 473 nm laser and a 556 nm laser (OptoEngine) to activate iC++ and 

eNpHR respectively.
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Behavioral training.

Mice were trained to perform this task in subsequent stages. First, 10 μL of evaporated milk 

(reward) was delivered randomly to each reward port for shaping and reward habituation. 

Next, the location of the rewarded port was signaled by a white LED (same used as the 

visual target) in order to establish an association between the location of the visual target 

and the location of the reward port. Following this, mice learned the association between the 

auditory targets – up-sweep: 10-15 kHz and a down-sweep: 16-12 kHz – with the left and 

right ports respectively. An individual trial was terminated 20 s after reward collection, and a 

new trial became available 5 s later. As as soon as mice achieved criterion performance in 

this block (>60% correct), visual and auditory targets were randomly interleaved.

Second, mice learned to poke (i.e. break the IR barrier in each reward port) in order to 

receive reward. All other parameters remained constant. An incorrect poke had no negative 

consequence. By the end of this training phase, all mice collected at least 20 rewards per 30-

min session.

Third, mice were trained to initiate trials. Initially, mice had to briefly (50 ms) break the 

infrared beam in the initiation port to trigger target stimulus presentation and render reward 

ports accessible. Trial rule (attend to vision or attend to audition) was indicated by 10-kHz 

low-pass filtered white noise (vision) or 11 kHz high-pass filtered white noise (audition) 

sound cues. Stimuli were presented in blocks of six trials consisting of single-modality 

stimulus presentation (no conflict). An incorrect response immediately rendered the 

response port inaccessible. Rewards were available for 15 s following correct response, 

followed by a 5 s inter-trial interval (ITI). Incorrect responses was punished with a time-out, 

which consisted of a 30 s ITI. During an ITI, mice could not initiate new trials. During this 

stage, the duration of the initiation time was gradually increased from 50 ms to 800 ms. 

Mice progressed to the next stage only when they were able to maintain snout fixation for at 

least 800 ms.

Fourth, conflict trials were introduced, in which auditory and visual targets were co 

presented indicating reward at opposing locations. Four different trial types were presented 

in repeating blocks: (1) three auditory-only trials; (2) three visual-only trials; (3) six conflict 

trials with auditory target; and (4) six conflict trials with visual target. The time that mice 

had to break the IR barrier in the initiation port was continuously increased over the course 

of this training stage (1–2 weeks) until it reached 0.5 s. At the same time, duration of the 

target stimuli was successively shortened to a final duration of 0.1 s. Once mice performed 

successfully on conflict trials, single-modality trials were removed, and block length was 

reduced to three trials.

Fifth, during the final stage of training, trial availability and task rule were dissociated. 

Broadband white noise indicated trial availability, which prompted a mouse to initiate a trial. 

Upon successful initiation, the white noise was immediately replaced by either low-pass or 

high-pass filtered noise for 0.1 s to indicate the rule. This was followed by a delay period 

(variable, but for most experiments it was 0.4 s) before target stimuli presentation. All block 

structure was removed, and trial type was randomized. Particular steps were taken 
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throughout the training and testing periods to ensure that mice used the rules for sensory 

selection.

Once mice were fully familiarized with the main structure of the task and achieved 

consistent performance on the final stage of training, they were exposed to the visual cueing 

condition. After achieving 40 correct responses, mice were moved to an association block 

where the LEDs were paired with the congruent auditory cues (LP with Green LED and HP 

with UV LED). The volume of the sound decayed linearly over the course of trials, with full 

volume for the first 10 trials up to 1/5th of the volume for the last few trials. The sound 

volume was changed only after the mouse made two consecutive correct responses (an 

indication that the mouse understands the task). At the end of 70 trials, and depending on 

performance, mice were moved to the visual-only block, where no auditory cues were 

played. In the following session, the length of the association block was gradually reduced. 

Once mice were able to achieve a consistent performance of >60% on 3 consecutive sessions 

in the visual-only block, the association block was removed completely. At this point, mice 

were considered experts on the task.

Behavioral testing.

In the double block cueing paradigm, mice were required to complete 70 trials in each block. 

Blocks were constructed based on either cues of the same modality (HP-LP and UV-Green) 

or cues from both modalities (HP-Green and UV-LP). In each block, cues were drawn 

pseudo-randomly and the order of the blocks were randomized from session to session. 

Sessions in which mice did not perform >60% overall in each block were discarded and 

were not analyzed further.

In the randomized cueing paradigm, mice were required to complete a total of 200 trials per 

session. On each trial, one cue out of a possible four cues (HP, LP, UV and Green) were 

drawn at random. To further ensure that the cues appeared in random (i.e. without any 

regularity), we imposed the additional constrained that no more than three draws can be 

from the same modality. That is after three UV-Green draws, the next cue has to be either 

HP or LP. A new random seed was used each day. Mice that were previously trained on the 

block design took approximately a week to adjust to this new cueing condition. Although 

average performance was low, mice had brief periods in which their local performance was 

close to 80%.

In the three-block switching paradigm, mice were required to complete a total of 70 trials in 

the first two blocks and 90 trials in the third block. The identity of the first block (i.e. 

whether visual or auditory) was pseudorandomized from day-to-day. In total, we have 4 

sessions per mouse (2 Auditory-Visual-Auditory, 2 Visual-Auditory-Visual) on the standard 

version of the task, and 4 sessions per mouse with MD suppressed in the second block. We 

did not notice a difference in the effect of MD suppression in the visual block compared to 

the auditory cueing block, and hence have pooled these sessions for analysis.

Behavioral analysis.

To quantify the behavior, we carried out regression analysis to weigh the contributions of 

rule and history of choice and reward on the animal’s choice on the current trial 54. To do so, 
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we concatenated data from multiple sessions for each mouse and fit the animal’s choice with 

a logistic regression model of the form:

P (Vision) = lapse + 1 + 2lapse
1 + e−A

A = β0 + ∑
t = 1

T
βrule(t)R(t) + βsuccess(t)S(t) + βfailure(t)F (t)

Where T is the number of trials in the past. For this model, we calculated that the model 

explained behavioral variance best when we included up to 10 trials in the past. In this 

equation S(t), F(t) ∈ [+1, −1] if a trial is a success or a failure respectively. Similarly, R(t) ∈ 
[+1, −1] if the rule on that trial is ‘attend-to-vision’ or ‘attend-to-audition’ respectively. This 

model was fit using a custom written ridge regression routine in Matlab. The hyper-

parameter value for ridge regression was calculated using 5-fold cross validation.

To assess the effect that choice history had on the probability of success on the next trial, we 

developed a probabilistic model. Given the 2-AFC structure of our task, we assumed that on 

each trial, the mouse tosses a coin was a bias (q = Psuccess) that depends on the animal’s 

success on past trials. Therefore, the likelihood of a success given s successes and f failures 

in the past 10 trials is given by the binomial distribution:

p(s; q) = s + f
s qs(1 − q)f

Knowing that the conjugate prior of the binomial distribution is the beta distribution, we can 

calculate the posterior distribution using Bayes’ theorem

p(q) = qα − 1(1 − α)β − 1
B(α, β)

Posterior = p(q)p(s; q)
∫ p(q)p(s; q)dq~Beta (α + s), (β + f)

Using this the expected probability of success (E(q)) on the next trial is then:

E(q) = B(α + s + 1, β + f)
B(α + s, β + f)

All models were fit separately for each mouse (n = 5) using 1,000 runs of 5-fold cross 

validation. For each run, we computed the log-likelihood for the test data set for the mean 

value if P(Vision) or P(success). Model fit quality was assessed by computing the deviance 

statistic. We also used this model to assess overall behavioral performance. Trials in which 

behavior was close to the predicted chance levels were ignored and the overall fraction 
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correct was computed from trials in which actual behavior deviated significantly from the 

model (we define these periods as “stable” behavior). As such, changes in performance 

accuracy reported throughout are only calculated over the period of stable behavior, and do 

not include switch trials.

Trial selection.

By comparing the two models – a model that includes rule-dependent components and a 

reward-history model – we were able to determine trials over which the animal was making 

either an informed choice based on the current cue or a biased choice based on history of 

reward. We used this to select trials. Specifically, for each trial, we computed the deviance 

between the full model and the history model, and selected a trial if deviance was above a 

threshold value that was calculated using cross validation for each session. Surprisingly, 

tuning peaks (described in the following section) were much more apparent in the selected 

trials, than in the rejected trials. Please refer to the Life Sciences Reporting Summary for 

further details on data omission.

Electrophysiological recordings and spike sorting.

Signals were acquired using a Neuralynx multiplexing digital recording system (Neuralynx) 

through a combination of 32- and 64-channel digital multiplexing headstages plugged into 

the 96-channel EIB of the implant. Signals from each electrode were amplified, filtered 

between 0.1 Hz and 9 kHz and digitized at 30 kHz. For thalamic recordings, tetrodes were 

lowered from the cortex into the mediodorsal thalamus over the course of 1–2 weeks where 

recording depths ranged from − 2.8 to − 3.2 mm DV. For PFC recordings, adjustments 

accounted for the change of depth of PFC across the AP axis. Thus, in anterior regions, unit 

recordings were obtained −1.2 to − 1.7 mm DV, whereas for more posterior recordings 

electrodes were lowered − 2 to − 2.4 mm DV.

Spike sorting was done automatically using MountainSort 55. Following sorting each cluster 

was manually inspected for quality. Only well isolated clusters with biologically plausible 

waveforms were selected for further analysis.

Identification of FS and RS cells.—For each spike waveform, we extracted four 

metrics: (1) peak-to-trough time; (2) peak-to-trough ratio; (3) spike width; (4) spike 

amplitude. We combined this 4-dimensional feature vector with the overall firing rate of the 

neuron to form a 5-dimensional feature vector for each cell. We applied k-means clustering 

(k++ algorithm, 1,000 runs with randomly initialized seed), and determined the optimal 

number of clusters using the Calinski-Harabasz criterion 56. Cluster separability was 

assessed statistically by calculating the ratio of between-cluster variance to within-cluster 

variance. For most sessions, the waveforms clustered reliably into two clusters, 

corresponding to FS and RS waveforms. Approximately 10% of all recorded spike 

waveforms could not be reliably classified into either subtype (based on 1,000 runs), and 

were hence not included in further analysis.

Analysis of firing rate.—For all PFC and mediodorsal neurons, changes in firing rate 

associated task performance were assessed using peri-stimulus time histograms (PSTHs). 
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PSTHs were computed using a 10-ms bin width for individual neurons in each recording 

session4 convolved with a Gaussian kernel (25 ms full-width at half-maximum) to create a 

spike density function (SDF) which was then converted to a z score by subtracting the mean 

firing rate in the baseline (500 ms before event onset) and dividing by the variance over the 

same period. For comparison of overall firing rates across conditions, trial number and 

window size were matched between groups. Except for switching analysis, we analyzed 

firing rates only trials in which local performance deviated significantly from the 

probabilistic model (Supplementary Fig. 1).

Computing reliability and tuning strength—For each recorded neuron, we computed 

trial-to-trial reliability using a 150 ms sliding window. Reliability is simply the correlation in 

spike times between each pair-wise combination of trials, such that a neuron with perfect 

reliability has no spike time variation and a correlation coefficient of 1. Only neurons with 

responses on 15 trials or more were selected for this analysis.

To determine whether the observed level of reliability was significantly different from 

chance, we used a randomization test where the time period of analysis was randomly 

picked in the range [−2.5, 1.5], the trials randomly shuffled and the reliability score 

recalculated. By repeating this process 1,000 times, a null distribution of the reliability time 

series was constructed. A neuron was reliable if the unshuffled reliability time series 

exceeded the null distribution by 1.5 standard deviations (z-score > 1.5). Using this method, 

we were able to calculate a significant reliability trace for each neuron and for each stimulus 

condition.

Classification of cells into persistent and reliable.—The method described above 

allowed us to extract reliability scores (max in the delay period). In the PFC RS and MD 

populations, we noticed a bimodal distribution of reliability scores – with some neurons 

responding with high trial-to-trial spiking in the delay period (transient) and others 

responding with low reliability (persistent). To formally classify these cells, we used the 

expectation-maximization algorithm (python sklearn package) to fit a Gaussian mixture 

model to the reliability histogram. This procedure was run separately for PFC RS, FS and 

MD neurons. The goodness of fit of the Gaussian was assessed using the Bayes Information 

Criterion (BIC). Separability of the resulting gaussians was assessed by ROC analysis. PFC 

RS and MD populations had separable gaussians and passed the Hartigan’s dip-test for 

bimodality. In these populations, we classified cells as transient if they were within 95% CI 

of the mean of the high reliability Gaussian model. Cells were classified as persistent if they 

were within the 95% CI of the mean of the low reliability Gaussian model. This method 

allowed us to robustly classify neurons without the need to define an arbitrary threshold.

Classification of cells into cue-selective or cue-invariant.—Using the reliability 

time series across the delay period, we computed a cross-correlogram for all pairs of 

conditions (6-way comparison). Neurons with significant correlation with lags within +/− 50 

ms were scored. A neuron was classified as cue-selective if it had a significant reliability 

event for only one out of the four stimulus conditions. A neuron was classified as mixed-

selective if it had a significant reliability event for two out of the four stimulus conditions. 
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We never found neurons in either the MD or PFC with significant reliability in more than 

two conditions (except for randomized cueing experiments).

To further assess the tuning strength of PFC neurons, we first sampled trials with 

replacement to calculate an estimate of d-prime for either cues or rules for each cell. Second, 

we also computed a bootstrapped value of the reliability of that cell. We defined the tuning 

strength as the slope of the regression line between reliability and d-prime. As such, a 

neuron with high reliability and high d-prime had a higher tuning strength value, indicating 

that this neuron was strongly selective to a cue. We used this tuning strength metric to better 

define cue-invariant neurons. Cue-invariant, rule-selective neurons should respond to both 

cues that map onto the same rule. Hence, we calculated the selectivity angle for each pair of 

cues corresponding to the same rule using the formula 6:

θ = tan−1 Tuning strengtℎ to cue 1 of rule A
Tuning strengtℎ to cue 2 of rule A

Neurons with selectivity angle of 45 degrees had the same tuning strength for both cues in 

the same rule and were hence classified as cue-invariant. Therefore, we used a hierarchical 

selection process to classify cue-invariant cells: (1) the significant reliability time series for 

cues 1 and 2 of rule A must be correlated within a lag of 50 ms; (2) the selectivity angle 

must be close to 45 degrees. Since MD and PFC FS neurons were weakly reliable, we 

calculated their selectivity using trial-averaged firing rates instead. In this way, MD and FS 

neurons were classified as context selective if (1) they had correlated responses for both cues 

within a context and (2) they had a within context selectivity angle was also close to 45 

degrees. Each of these measures were tested for significance using a permutation test where 

hybrid data were created by shuffling trial labels.

Calculating contextual modulation index.—We assessed the contextual modulation 

index (CMI) of the trial-averaged firing rate of a neuron using the following formula:

CMI =
Ratecontext1 − Ratecontext2
Ratecontext1 + Ratecontext2

As such, because the firing rate is non-negative, CMI ∈ [+1, −1]. To determine significance, 

we calculated the CMI for two hybrid spike trains created by randomly shuffling trial labels 

from 1,000 iterations. This created a null distribution. A cell was considered significantly 

contextually modulated if the unshuffled CMI was outside the 95% confidence interval of 

the shuffled CMI (p < 0.05, two-tailed Student’s t-test).

Decoding analysis.

Trial-by-trial classification analysis was performed using a Support Vector Machine (SVM) 

implemented through LIBSVM and the Matlab Neural Decoding Toolbox 57. The firing 

rates of neurons on each trial from the entire population (pooled across sessions) was first 

smoothed using a 20 ms-wide gaussian filter. The SVM classifier with a Gaussian radial 

basis function kernel was then trained on 60% of the data (randomly selected) while 40% of 

the data was used for prediction. This classifier works by first constructing an optimal 
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hyperplane based on labelled training data and then generating predictions of the labels on 

testing data. Accuracy of the decoding was assessed by comparing the predicted labels to the 

actual labels. Classification accuracy was also quantified by computing the mutual 

information via the following equation:

MI = ∑
i = 1

S
∑j = 1

S pij log
pij
pipj

where pij is the probability of observing label i (cue, rule or context), given that the original 

label is j. This classification process was repeated 1,000 times to obtain and accurately 

estimate the error of the classification accuracy.

To test the dependence of the number of neurons on classification, we used a Monte Carlo 

sampling technique (repeated 500 times) to pick n neurons (range, 1 to population size) at 

random from the population with replacement. The single-trial responses from these n 
neurons were compared to the template as described above.

Generalized linear model (GLM).

We modelled the spike trains of neurons using a generalized linear model (GLM) 31,32,58. 

The spike trains were discretized (Δ) into 5 ms bins. As explained elsewhere 59, the log-

likelihood for a single neuron (up to an additive constant) is given by the formula:

log L(φ, r) = ∑
t

r(t)log( Δ φ(t)) − Δ φ(t)

Where φ(t) is the instantaneous spike rate (conditional intensity) of the fully coupled GLM:

φ(t) = exp(kx(t) + hr(t − 1) + cs(t) + b)

In this equation, k is the weights on the stimulus covariates (akin to a receptive field); h is 

the postsynaptic weights that integrate the neuron’s own spiking history; c is the coupling 

weights (filters) on other simultaneously recorded spikes (s). In the uncoupled model, we 

ignored this coupling term. To avoid overfitting, regression weights were fit with a 

maximum a posteriori estimate with an L2 penalty. Matlab scripts used to build the GLM 

can be found here: https://github.com/pillowlab/neuroGLM.

These coupling filters are analogous to the positive lag of a cross-correlogram with the 

additional benefit of accounting for the response variance that is not already explained by 

the cue and other task-relevant variables. In other words, each neuron produces a coupling 

filter, that when convolved with the spike train of that neuron, explains part of the variance 

of the neuron being modeled. Mathematically, this operation can be written as:

∑i = 1
m ∑j = 1

n cijfj(si(t − τ : t)
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Where m is the number of simultaneously recorded neurons and fj are temporal basis 

functions that we assumed to be nonlinearly time-scaled raised cosine functions 32. In each 

session, the GLM was constructed using a median of 25 PFC and 18 MD neurons with well 

isolated units.

To statistically validate these coupling filters, we randomized both neuronal labels and trial 

order, and used leave-one-neuron-out cross validation 60. This allowed us to determine the 

probability of a coupling being significant above chance levels. We also calculate the 

coupling strength as the integral (area under the curve) of each coupling filter. Because each 

neuron can receive many coupling filters, we used a dimensionality reduction (SVD) to 

determine the most common filter shapes (i.e. those that explained the largest fraction of 

variance). It is important to note here that we fit each GLM in an unbiased manner and 

determined the most significant couplings based on shuffling. In cases where we tested the 

effect of removing certain filters on predicting the firing rate of neurons, we first fit a model 

to 80% of the trials, set the necessary filter components to 0, and then used that model to 

predict the remaining 20% of the trials. We computed explained variance (EV) using the 

following formula: EV = 1 −
∑i (yi − Modeli)

2

∑i (yi − yl)
2 . We repeated this procedure 100 times. In this 

way, we do not bias the other terms of the model by removing terms before performing the 

regression.

We derived a Filter Similarity Index to determine how inputs to a neuron changed as the 

animal switched from one context to another. First, we used the behavioral model (see 

section on trial selection above) to determine trials in which choice behavior was stable in 

each context. Using these trials, we derived coupling filters: (1) between PFC cue selective 

cells, (2) from PFC cue-selective cells to MD cells, and (3) from PFC cue selective cells to 

PFC invariant cells. We refer to these filters as stable input filters. Next, we re-fit the GLM 

on a trial-to-trial basis from 10 trials before the switch to 10 trials after the switch and 

extracted single-trial input filters. The Filter Similarity Index is the Pearson’s correlation 

coefficient between the single trial coupling filter and the stable coupling filter in each 

context. In particular, for cells preferring the second context, we report the correlation 

coefficients between the single trial input filters and the stable filter in the second context. 

This analysis allowed us to visualize the remapping of intra-cortical and cortico-thalamic 

inputs as mice switched from one cueing context to another. We defined the filter 

stabilization latency as the trial number at which the correlation coefficient between the 

single trial coupling filter and the stable coupling filter in each context is significantly above 

chance levels.

For clustering analysis in Figure 4d, we quantified the shape of the filter using a filter score. 

For filters with a larger inhibitory magnitude, the filter score was the signed area under the 

curve of the inhibitory component. For filters with a larger excitatory magnitude, the filter 

score was the area under the curve of the positive component. In this way, negative filter 

scores correspond to MD neurons that exert an inhibitory effect on their targets, while 

positive filters scores correspond to MD neurons that exert an excitatory effect on their 

targets.
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Model to explain MD responses.

We constructed a simple model to determine if, and how, MD neurons derive their 

contextual selectivity from PFC cue-selective neurons (Supplementary Fig. 7). To do so, we 

first generated a population of 1,000 Poisson spiking units with transient elevations that 

spanned the duration of the delay period (50 ms peak spacing). These model neurons 

mimicked, for example HP and LP selective neurons in the PFC, with the aim of predicting 

the responses of the auditory cueing context selective MD cells. For each model PFC 

neuron, we computed a PSTH. Each PSTH was then convolved with the PFC-MD input 

kernel (described above). This convolved output was then weighted and summed. We then 

used a least squares method to determine the best fit model that could explain the trial-

averaged firing rate of either persistent or transient MD neurons. For persistent MD neurons, 

weights were almost uniformly distributed over all PFC inputs, suggesting that their inputs 

were not temporally selective. In contrast, transient MD neurons weighted inputs from co-

tuned PFC neurons more strongly, suggesting that they receive temporally-selective inputs 

from these co-tuned cue-selective neurons.

Computational Modeling.

We use a recurrently connected reservoir of 1000 rate neurons to model the PFC. The rate of 

each neuron indexed by i is given as a function of its input Ii as ri = tanh(Ii) if Ii > 0, and = 0 

otherwise. The input consists of cue input, recurrent input and MD gating together, filtered 

with a decaying exponential synapse with time constant τ = 20 ms, as

τ
dIi(t)

dt = − Ii + ∑
k

wik
in cuek (t) + ∑

j
(1 + μi(t))wijrj(t) + ∑

l
wil

MD + rl
MD (t)

cuek is a vector of length equal to the number of possible cues (corresponding to HP and LP 

noise, UV and green LED flash). It has entries 1 for cues that are on at the current time and 

0 for those off. The input weights wik
in are set such that each cue k stimulates a set of 200 

neurons, disjoint with the sets for other cues, with each weight chosen uniformly between 

0.75 and 1.5. wij is set as a Gaussian-distributed variable with mean zero and standard 

deviation 0.75/ 400, and then the mean is subtracted across each row of the matrix. rl
MD is a 

vector representing the activity of MD neurons with dimensionality equal to the number of 

contexts. We set the entry for the current context to 1 and the rest to 0. wil
MD +  is set to −10 

for those neurons that are not stimulated by cues belonging to context l, and to 0 for those 

that do, effectively suppressing activity of context-irrelevant neurons. μi mediates the 

multiplicative effect of the MD on the total recurrent input to neuron i, and is given by:

μi = ∑
m

wim
MD × rmMD

wim
MD ×  is set to 8 if neuron i is one of the neurons stimulated by cues belonging to context 

m, else it is set to 0, effectively enhancing the recurrent input for context-relevant neurons. 

Note that all sums run over all the full range of the summed indices.
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When simulating the PFC-only network, we set all wil
MD +  to zero and all wim

MD ×  to 2, 

effectively removing all context-specific suppression and enhancement. The model included 

two output neurons – the first corresponding to attend to audition and the second to attend to 

vision, receiving input from the PFC as

τ
dInout

dt = − Inout + ∑wnioutri

with output rnout = tanh (In
out) if In

out > 0, and = 0 otherwise. wniout is initialized to zero, and is 

plastic evolving as

τw
dwniout

dt = − ri rnout − rn
target ≡ ri∊n

where τw = 200 s, and the instantaneous error ϵn in output n is defined in terms of the target 

output rn
target which is cue-specific as below. Learning on the output weights is on 

throughout the simulations.

Each task was simulated as a run of 1000 cycles of context 1 (block 1), followed by 1000 

cycles of context 2 (block 2) and then again followed by 200 cycles of context 1 (block 3). 

Each cycle consists of 2 trials of cue = (1,0,0,0) and cue = (0,1,0,0) during context 1, and of 

2 trials of cue = (1,0,0,0) and cue = (0,1,0,0) during context 2, in random order within each 

cycle, for the experimental linearly separable task, representing high-pass and low-pass 

noise and UV and green LED flash respectively. The target output rn
target for these cues is 

(1,0), (0,1), (1,0), and (0,1) respectively. The two longer blocks allowed the network to learn 

the two contextual tasks sequentially, while the shorter third block served to test the ability 

of the network to recall the first context.

Similarly, for the XOR task, each cycle consists of equal to 4 trials of cue equal to (0,0,0,0), 

(0,1,0,0), (1,0,0,0) and (1,1,0,0) during context 1, and (0,0,0,0), (0,0,0,1), (0,0,1,0) and 

(0,0,1,1) during context 2, in random order. These must map to target output rn
target equal to 

(1,0) if only one of the cues in a context is active and to (0,1) if none or both are active.

Each trial consists of a 100 ms-long cue presentation followed by 100 ms of delay period 

when (0,0,0,0) is presented. The target output is maintained throughout the trial for plasticity 

of the output weights, and the mean squared error is computed over the full trial and across 

the two outputs.

Statistical Testing.

All data in this paper is pooled from 5 mice (optical perturbation 3 mice). No statistical tests 

were done to determine the sample size, but our sample sizes are similar to those reported in 

previous publications (ref 17, 23). Note, data collection and analysis were not performed 

blind to the conditions of the experiments.
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Data were first tested for normality using the Shapiro–Wilk test. All data presented in this 

paper are nonnormally distributed; thus, all statistical tests were conducted using 

nonparametric statistics. Our experiments involved testing the influence of different 

conditions (cues, optical manipulations, etc.) on the same population of neurons; thus, all 

comparisons were performed using nonparametric repeated-measures ANOVA (Friedman 

test) with Bonferroni’s correction for multiple comparisons. Comparisons between 

independent measures was performed using the nonparametric Kruskal-Wallis ANOVA. For 

Bonferroni corrections, the significance value was set to 0.05. Post hoc tests were performed 

using the two-tailed signed-rank test (for repeated measures) or the Wilcoxon rank-sum test 

for independent measures. All other statistical tests that were performed are described in the 

text. The 95% CIs were computed by bootstrapping.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Prefrontal neurons display selectivity indicative of a hierarchical cue to rule transformation 

during attentional switching.

(a) Schematic of task design. (b) Mice were trained to associate four cues with two rules. 

These cues were presented in two blocks, each containing two cues. An animal had to 

achieve at least 70 correct trials in a block before moving on to the next block. For details, 

see Methods. (c) Example peri-stimulus time histogram (PSTH) and raster plot (number of 

trials vs. time) for a regular-spiking (RS) PFC neuron that is selective to a LP noise. The 
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black bar above the raster marks the cueing period, and the red arrowhead indicates the 

transient increase in spiking reliability. (d) Transient responses tile the duration of the delay 

period. Each color is a different cue-selective neuron.(e-f) Same as (c-d) but for PFC cue-

invariant cells. (g-h) Same as (c-d) but for PFC fast spiking (FS) cells. Unlike RS cells, these 

neurons have persistent changes in firing rate over the delay period. Representative examples 

in d, f and h drawn from n = 5 mice (independent samples). (i) Classification accuracy over 

time relative to cue onset for a decoder trained to predict either rule (top) or cue context 

decoding (bottom) for PFC RS and FS neuronal populations. The asterisks denote the time 

point at which classification accuracy is significant (i.e. p < 0.05, permutation test from n = 

5 biologically-independent mice) above chance (50% classification accuracy). (j) 
Classification accuracy (within delay period) scales with the number of neurons. Similar to 

(i), the asterisk indicates the number of neurons at which classification accuracy is 

significantly above chance levels (p < 0.05, permutation test from n = 5 biologically-

independent mice). (k) Top: Schematic of Poisson generalized linear model (GLM). Bottom: 
Model prediction (grey) of the PSTH (black) for one example PFC neuron. EV, explained 

variance. (l) Left: Heatmap showing coupling probability between the four cue-selective cell 

PFC cell types. Right: Box-whisker plots comparing the coupling strengths of inputs to PFC 

cue-selective neurons from cue-selective neurons preferring the same or different cues (light 

gray, p = 1.23 x 10−4) or cue-invariant neurons (dark gray, p = 0.18 x 10−4). Bonferroni-

corrected Kruskal-Wallis ANOVA with post-hoc rank-sum test relative to neurons preferring 

the same cues (n = 5 biologically-independent mice). (m) Same as (l) but characterizing the 

inputs to cue-invariant PFC neurons from cue-selective neurons preferring the same or 

different rules (p = 1.89 x 10−6) or cue-invariant neurons (p = 1.42 x 10−6). Bonferroni-

corrected Kruskal-Wallis ANOVA with post-hoc rank-sum test relative to neurons preferring 

the same rules (n = 5 biologically-independent mice). (n) Cartoon schematic of how cue-

invariant neurons gain their selectivity by pooling from cue-selective neurons across both 

cueing contexts. Data is shown as mean +/− 95% confidence interval (shaded error bars). 

Box plots: median (line), box edges, 95% confidence interval, whiskers, range.
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Fig. 2. 
Mediodorsal thalamic responses reflect the cueing context.

(a) Schematic for MD recordings. (b-c) Example PSTHs of MD neurons with transient (b) 

and persistent (c) responses to both cues within the auditory cueing context. Each color 

indicates a distinct neuron. Representative examples drawn from n = 5 mice (independent 

samples). (d) Histogram of inter-trial spiking reliability scores from all task-modulated MD 

neurons. A gaussian mixture model (dashed lines) was used to classify cells into either 

persistent (low reliability) or transient (high reliability). Inset, pie chart quantifying the 

fraction of each MD neuron type. (e) Classification accuracy over time relative to cue onset 

for a decoder trained to predict either rule (top) or cue context decoding (bottom)trained to 

classify rule (left) and cue context (right) from PFC RS and MD populations (5 mice). The 

asterisks denote the time point at which classification accuracy is significant (i.e. p < 0.05, 

permutation test from n = 5 biologically-independent mice) above chance (50% 
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classification accuracy). (f) Comparison of rule decoding and cueing context decoding 

accuracy, measured as mutual information (see Methods), between all recorded cell types. 

***p < 0.001 Bonferroni-corrected Kruskal-Wallis ANOVA with post-hoc rank-sum test 

relative to MD neurons (n = 5 biologically-independent mice). (g) Generalized linear model 

(GLM) of MD neurons can accurately predict the responses of both transient (right) and 

persistent cells (left). EV, explained variance. Data: black, prediction: colored lines. (h) Left: 
Comparison of coupling probability between PFC cue-selective neurons and MD neurons 

within the same cue set and the opposite cue set. Right: Box-plot comparing coupling 

strength between MD and PFC cells selective to cues in the same cue context or the opposite 

context. *** p = 0.15 x 10−4 Bonferroni-corrected Kruskal-Wallis test (n = 345 MD neurons, 

5 mice). (i) Left: Schematic illustrating unilateral PFC suppression. Right: Example MD 

neuron with suppressed firing rate following PFC suppression. Shaded blue area marks time 

over which the laser was turned on. (j) Comparison of contextual modulation index on Laser 

ON and Laser OFF trials. (k) Change in GLM prediction, measured as Δ Explained 

Variance, when PFC filters are excluded from the model (“No PFC”) compared to a model 

fit to MD responses following PFC suppression. Non-significant (NS, p = 0.42), Bonferroni-

corrected Kruskal-Wallis test, n = 186 MD neurons, 3 mice. (l) Schematic of proposed PFC-

MD connectivity. Data in d-h is from 5 mice, data in j,k is from 3 mice. Data is shown as 

mean +/− 95% confidence interval (shaded error-bars). Box plots: median (line), box edges, 

95% confidence interval, whiskers, range.
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Fig. 3. 
Flexible switching between contexts is associated with MD-dependent changes in PFC 

activity

(a) Comparison of fraction correct trials between the different task conditions. Each data 

point is one session per mouse from 3 mice in total. *** p = 0.023 x 10−3, Bonferroni-

corrected Kruskal-Wallis ANOVA. Note, each session is treated as an independent sample. 

(b) Change in behavioral performance (fraction correct) relative to switch. **p < 0.01, *** p 

< 0.001. One-way Rank-sum test relative to 5 trials before the switch. n = 33 independent 

sessions from 3 mice. Data is shown as mean +/− SEM. (c) Change in filter similarity index 

of coupling filters from cue-selective to cue-invariant neurons in the PFC relative to switch. 

Insets show an example coupling filter changing between the point of switch (black) to its 
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final stable value (red). Red line marks the filter stabilization latency. Shaded area, 95% CI. 

For details, see Methods. (d) Scatter plot relating behavioral (behav.) switch latency with the 

filter stabilization latency for inputs to cue-invariant PFC neurons. Each data point is a 

session (p = 0.0068 x 10−6, two-way rank-sum test, n = 33 independent sessions from 3 

mice). (e) Left: Schematic illustrating bilateral MD suppression. Right: Change in 

behavioral performance (fraction correct) relative to switch for sessions with bilateral MD 

suppression. Statistics and plotting same as (b). (f-g) Box-plots comparing the effect that 

MD suppression has on behavioral switching latency (f, *** p = 0.78 x 10−4, Kruskal-Wallis 

ANOVA) and cue-invariant input filter stabilization latency (g, *** p = 0.19 x 10−4, Kruskal-

Wallis ANOVA). N = 33 sessions with no suppression, 31 sessions with MD suppression 

from 3 mice. (h) Top: Example PSTH of a PFC neuron selective to cues in the second 

cueing context. Left: Time course of the change in normalized maximum firing rate (relative 

to stable behavior) relative to the switch. No significant difference (p = 0.92 between 

suppressed and non-suppressed conditions). Right: Scatter plot comparing the maximum 

firing rate of PFC cue selective neurons (grey) and PFC FS neurons (purple) 10 trials after 

switch. (i) As in (h) but showing the effect that MD suppression has on PFC cells that are 

selective for cues in the first cueing context. Left: *** p < 0.001, one-way rank-sum test for 

each time point between suppressed and non-suppressed conditions, n = 3 mice. Data is 

shown as mean +/− SEM. Right, p < 0.001 one-way rank-sum test for each time point 

between suppressed and non-suppressed conditions, n = 3 mice.
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Fig. 4. 
Distinct MD neurons augment and suppress context-relevant PFC representations.

(a) Schematic of Poisson GLM used to model PFC neurons including MD interactions. (b) 
Box-plot comparing the coupling probability between MD and PFC cue-selective (n = 230 

neurons from 5 mice)) or cue-invariant neurons (n = 86 neurons from 5 mice). ***p = 0.58 x 

10−5 two-way rank-sum test relative to cue-selective neurons. (c) Left: Scatter plot relating 

the coupling strength between MD and PFC cue-selective cell with the difference in 

contextual selectivity for both cells that prefer the current context or the previous context. 
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Inset shows the two different coupling filters between MD and PFC cells. Each data point is 

one PFC cell from 5 mice. Right: Box-plot comparing the difference in coupling strength 

between MD and PFC neurons preferring the same context (n = 141 MD neurons from 5 

mice) or the opposite context (n = 211 MD neurons from 5 mice). ***p = 0.89 x 10−4, two-

way rank-sum test. (d) Clustering analysis relating MD-PFC coupling strength with MD 

spiking reliability. Each data point is one MD cell (n = 352 neurons from 5 mice). Shaded 

gray area is the 95% confidence interval ellipse of a Gaussian mixture model. Inset, median 

filter shape from each cluster. (e) Right: Scatter plot relating FS to PFC cue-selective 

coupling strength with difference in contextual modulation. Each data point is one PFC cell 

from 5 mice. Left: Box-plot comparing the difference in coupling strength between FS and 

PFC neurons preferring the same context (n = 141 neurons from 5 mice) or the opposite 

context (n = 211 neurons from 5 mice). **p = 0.31 x 10−2, two-way rank-sum test. (f) Box-

plot of coupling probabilities between MD and PFC FS cells. **p = 0.78 x 10−2, two-way 

rank-sum test relative to transient MD neurons (n = 410 PFC FS neurons, 5 mice). (g) Left: 
Method for unilaterally suppressing the MD. Right: PSTHs of two example MD neurons. 

Persistent MD cells (top) are less affected by weak MD suppression than transient MD cells 

(bottom). Shaded blue area marks the duration of the laser, while the black bar marks the 

cueing period. (h) Scatter plot comparing the effect of weak MD suppression on the firing 

rates of transient (n = 260 neurons from 3 mice, p = 0.89 x 10−3) and persistent MD cells (n 

= 247 neurons from 3 mice, non-significant, p = 0.22, Friedman test between laser on and 

laser off trials. (i) Left: Example MD-PFC coupling filters with (orange) and without (green) 

MD suppression. Right: Box-plot comparing the effect of MD suppression on the coupling 

strength between transient and persistent MD cells and PFC cue selective neurons (n = 177 

neurons, 3 mice). ***p = 1.02 x 10−4, NS = p = 0.12, two-way rank-sum text. (j) Scatter plot 

showing the change in tuning strength of cue selective (left, n = 177 neurons) and cue-

invariant (right, n = 127 neurons, 3 mice) neurons caused by weak MD suppression. 

Friedman test between laser on and laser off trials. (k) As (j) but showing no significant 

effect of weak MD suppression on PFC FS neurons (264 neurons, 3 mice, p = 0.81). (l) Time 

course of the change in normalized maximum firing rate relative to switch of PFC cells 

selective for cues in the first cue set. Colors indicate various levels of MD suppression. Data 

shown as mean +/− SEM. N = 3 biologically-independent mice. ***p < 0.0001 one-way 

rank-sum test relative to no laser condition. (m) Box-plot comparing the change in firing rate 

of PFC FS neurons with weak and strong MD suppression (n = 264 and 212 neurons from 3 

mice respectively). **p = 0.71 x 10−2 one-way Kruskal-Wallis ANOVA. (n) Box-plot 

comparing cue-selective to cue-invariant filter stabilization latency. No laser, n = 33 

sessions, Weak laser, n = 31 sessions, Strong laser = 18 sessions from 3 mice). ***p = 0.063 

x 10−4, one-way Kruskal-Wallis ANOVA with post-hoc rank-sum test. (o) Cartoon 

summarizing the distinct effect that MD transient and persistent cells exert on the PFC. All 

box plots: median (line), box edges, 95% confidence interval, whiskers, range.
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Fig 5. 
Benefit of PFC-MD over PFC-only architecture on switching contexts.

(a) Recurrent neural network (RNN) model of the PFC-MD network. The drawing depicts 

neural activation in a single context, with grey RNN neurons representing the currently-

irrelevant context (b) The mean squared error (MSE) in decoding the desired output from 

the PFC over two context switches (indicated by the arrows). For details, see Methods. (c) 
Trial-averaged responses of 1000 neurons in the PFC to low-pass noise (blue) and high-pass 

noise (red). Horizontal lines below the plots indicate the sets of neurons activated by the 
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input cues. Shaded area, SEM. (d) Trial averaged change (n = 200 trials) in connection 

weights per trial, from current-context neurons (black) and from other-context neurons 

(grey) to rule-selective output neurons during context 1 and context 2 presentation. Each box 

extends from lower to upper quartiles, the middle line marks the median, and the whiskers 

represent the range (from 10 network instances). (e) Schematic of the three-block switching 

paradigm that mice were required to complete. (f) Box-plots showing the effect of Bilateral 

(Bilat.) MD suppression in the second context on behavioral performance (fraction correct). 

Shaded area indicates the 95% confidence interval of chance behavioral performance derived 

from a probabilistic model. N = 12 independent sessions without MD suppression and 12 

sessions with MD suppression from 3 mice. *** p = 0.05 x 10−4 Bonferroni-corrected rank-

sum test. (g) Comparison of performance on the consecutive sessions (separated by one 

day). Statistical comparisons performed using one-way rank-sum test relative to chance 

levels. N = 10 independent sessions each. ***p = 0.08 x 10−4. (h) Relationship between the 

reduction in performance and the number of MD suppression trials. Data shown as mean +/− 

95% confidence interval (shaded error-bar). N = 3 biologically-independent mice. (i) 
Bilateral MD suppression significantly increases the latency of switch back to the first 

context. N = 12 indepenent sessions each from 3 mice. ***p = 0.09 x 10−4, Bonferroni-

corrected Kruskal-Wallis ANOVA with post-hoc rank-sum test. (j) Scatter plot relating the 

tuning strength of PFC cue-selective (left, n = 236 neurons) and cue-invariant (right, n = 158 

neurons from 3 mice) cells in the first block with their tuning strength in the third block. NS, 

non-significant Friedman Test. (k) Change in normalized maximum firing rate relative to the 

second switch of PFC cells selective for cues in the first cue set showing an increase in 

maximal spiking for ‘out-of-context’ neurons when the MD is ontogenetically suppressed. N 

= 3 biologically-independent mice. ***p < 0.0001 one-way rank-sum test relative to no MD 

suppression group. Data shown as mean +/− 95% confidence interval. (l) Scatter plot of the 

coupling strength between first context PFC cue-selective neurons and cue-invariant ones 

averaged over trials 10-20 following the switch (grey dots, n = 223 neurons). Unilateral 

optogenetic MD suppression substantially diminishes the size of these functional 

connections (yellow dots, n = 150 neurons from 3 mice). P-values calculated using Friedman 

test between first and third cueing contexts. All box plots: median (line), box edges, 95% 

confidence interval, whiskers, range.
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