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Music Gesture for Visual Sound Separation

Chuang Gan1,2, Deng Huang2, Hang Zhao1, Joshua B. Tenenbaum1, Antonio Torralba1
1 MIT, 2 MIT-IBM Watson AI Lab

Figure 1: We propose to leverage explicit body dynamics motion cues for visual sound separation in music performances.
We show that our new model can perform well on both heterogeneous and homogeneous music separation tasks.

Abstract

Recent deep learning approaches have achieved impres-
sive performance on visual sound separation tasks. How-
ever, these approaches are mostly built on appearance and
optical flow like motion feature representations, which ex-
hibit limited abilities to find the correlations between audio
signals and visual points, especially when separating mul-
tiple instruments of the same types, such as multiple violins
in a scene. To address this, we propose “Music Gesture,” a
keypoint-based structured representation to explicitly model
the body and finger movements of musicians when they per-
form music. We first adopt a context-aware graph network
to integrate visual semantic context with body dynamics,
and then apply an audio-visual fusion model to associate
body movements with the corresponding audio signals. Ex-
perimental results on three music performance datasets
show: 1) strong improvements upon benchmark metrics for
hetero-musical separation tasks (i.e. different instruments);

2) new ability for effective homo-musical separation for pi-
ano, flute, and trumpet duets, which to our best knowledge
has never been achieved with alternative methods. Project
page: http://music-gesture.csail.mit.edu.

1. Introduction

Music performance is a profoundly physical activity.
The interactions between body and the instrument in nu-
anced gestures produce unique sounds [21]. When per-
forming, pianists may strike the keys at a lower register or
“tickle the ivory” up high; Violin players may move vig-
orously through a progression while another player sways
gently with a melodic base; Flautists press a combination
of keys to produce a specific note. As humans, we have
the remarkable ability to distinguish different sounds from
one another, and associate the sound we hear with the corre-
sponding visual perception from the musician’s bodily ges-
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tures.
Inspired by this human ability, we propose “Music Ges-

ture” (shown in Figure 1), a structured keypoint-based
visual representations to makes use of the body motion
cues for sound source separation. Our model is built on
the mix-and-separate self-supervised training procedure ini-
tially proposed by Zhao et al. [57]. Instead of purely rely-
ing on visual semantic cues [57, 17, 19, 53] or low-level
optical-flow like motion representations [56], we consider
to exploit the explicit human body and hand movements in
the videos. To achieve this goal, we design a new frame-
work, which consists of a video analysis network and an
audio-visual separation network. The video analysis net-
work extracts body dynamics and semantic context of mu-
sical instruments from video frames. The audio-visual sepa-
ration network is then responsible for separating each sound
source based on the visual context. In order to better lever-
age the body dynamic motions for sound separations, we
further design a new audio-visual fusion module in the mid-
dle of the audio-visual separation network to adjust sound
features conditioned on visual features.

We demonstrate the effectiveness of our model on three
musical instrument datasets, URMP [31], MUSIC [57] and
AtinPiano [36]. Experimental results show that by ex-
plicitly modeling the body dynamics through the keypoint-
based structured visual representations, our approach per-
forms favorably against state-of-the-art methods on both
hetero-musical and homo-musical separation task. In sum-
mary, our work makes the following contributions:
• We pave a new research direction on exploiting body

dynamic motions with structured keypoint-based video
representations to guide the sound source separation.
• We propose a novel audio-visual fusion module to as-

sociate human body motion cues with the sound sig-
nals.
• Our system outperforms previous state-of-the-arts ap-

proaches on hetero-musical separation tasks by a large
margin.
• We show that the keypoint-based structured repre-

sentations open up new opportunities to solve harder
homo-musical separation problem for piano, flute, and
trumpet duets.

2. Related Work
Sound separation. Sound separation is a central problem
in the audio signal processing area [34, 22], while the clas-
sic solutions for it are based on Non-negative Matrix Fac-
torization (NMF) [52, 11, 48]. These are not very effective
as they rely on low-level correlations in the signals. Deep
learning based methods are taking over in the recent years.
Simpson et al. [47] and Chandna et al. [9] proposed CNN
models to predict time-frequency masks for music source
separation and enhancement. Another challenging problem

in speech separation is identity permutation: a spectrogram
classification model could not deal with the case with arbi-
trary number of speakers talking simultaneously. To solve
this problem, Hershey et al. [24] proposed Deep Clustering
and Yu et al. [55] proposed a speaker-independent training
framework.

Visual sound separation. Our work falls into the cate-
gory of visual sound separation. Early works [5] leveraged
the tight associations between audio and visual onset signal
to perform audio-visual sound attribution. Recently, Zhao et
al. [57] proposed a framework that learns from unlabeled
videos to separate and localize sounds with the help of vi-
sual semantics cues. Gao et al. [17] combined deep net-
works with NMF for sound separation. Ephrat et al. [12]
and Owens et al. [38] proposed to used vision to improve
the quality of speech separation. Xu et al. [53] and Gao et
al. [19] further improved the models with recursive mod-
els and co-separation loss. Those works all demonstrated
how semantic appearances could help with sound separa-
tion. However, these methods have limited capabilities to
capture the motion cues, thus restricts their applicability to
solve harder sound source separation problems.

Most recently, Zhao et al. [56] proposed to leverage tem-
poral motion information to improve the vision sound sep-
aration. However, this algorithm has not yet seen wide ap-
plicability to sound separation on real mixtures. This is pri-
marily due to the trajectory and optical flow like motion fea-
tures they used are still limited to model the human-object
interactions, thus can not provide strong visual conditions
for the sound separation. Our work overcomes these lim-
itations in that we study the explicit body movement cues
using structured keypoint-based structured representations
for audio-visual learning, which has never been explored in
the audio-visual sound separation tasks.

Audio-visual learning. With the emergence of deep neu-
ral networks, bridging signals of different modalities be-
comes easier. A series of works have been published in the
past few years on audio-visual learning. By learning audio
model and image model jointly or separately by distillation,
good audio/visual representations can be achieved [39, 4, 2,
33, 32, 14, 30]. Another interesting problem is sounding
object localization, where the goal is to associate sounds in
the visual input spatially [26, 25, 3, 44, 57]. Some other in-
teresting directions include biometric matching [37], sound
generation for videos [58], auditory vehicle tracking [16],
emotion recognition [1], audio-visual co-segmentation [43],
audio-visual navigation [15], and 360/stereo sound from
videos [18, 35].

Audio and body dynamics. There are numerous works to
explore the associations between speech and facial move-
ments [7, 6]. Multi-model signals extracted from face



Figure 2: An overview of our model architecture. It consists of two components: a video analysis network and a visual-
audio separation network. The video analysis network first takes video frames to extract global context and keypoint coor-
dinates; Then a GCN is applied to integrate the body dynamic with semantic context, and outputs a latent representation.
Finally, an audio-visual separation network separates sources form the mixture audio conditioned on the visual features.

and speech has been used to do facial animations using
speech [28, 50], generate high-quality talking face from
audio [49, 27] separate mixed speech signals of multiple
speakers [12], on/off screen audio source separation[38],
and lip reading from raw videos [10]. In contrast, the
correlations between body pose with sound were less ex-
plored. The most relevant to us are recent works on pre-
dicting body dynamics from music [45] and body rhythms
from speech [20]. This is the inverse of our goal to separate
sound sources using body dynamic cues.

3. Approach
We first formalize the visual sound separation task and

summarize our system pipeline in Section 3.1. Then we
present the video analysis network for learning structured
representation (Section 3.2) and audio-visual separation
model (Section 3.3). Finally, we introduce our training ob-
jective and inference procedures in Section 3.4.

3.1. Pipeline Overview

Our goal is to associate the body dynamics with the
audio signals for sound source separation. We adopt the
commonly used “mix-and-separate” self-supervised train-
ing procedure introduced in [57]. The main idea of this

training procedure is to create synthetic training data by
mixing arbitrary sound sources from different video clips.
Then the learning objective is to separate each sound from
mixtures conditioned on its associated visual context.

Concretely, our framework consists of two major com-
ponents: a video analysis network and a audio-visual sep-
aration network (see Figure 2). During training, we ran-
domly select N video clips with paired video frames and
audio signal {Vk, Sk}, and then mix their audios by linear
combinations of the audio inputs to form a synthetic mix-
ture Smix =

∑N
k=1 Sk. Given a video clip Vk, the video

analysis network extracts global context and body dynamic
features from videos. The audio-visual separation network
is then responsible for separating its audio signal Sk from
the mixture audio Smix conditioned on the corresponding
visual context Vk. To be noted, we trained the neural net-
work in a supervised fashion, but it learned from unlabeled
video data. Therefore, we consider the training pipeline as
self-supervised learning.

3.2. Video Analysis Network

Our proposed video analysis network integrates
keypoint-based structured visual representations, together
with global semantic context features.



Visual semantic and keypoint representations. To ex-
tract global semantic features from video frames, we use
ResNet-50 [23] to extract the features after the last spatial
average pooling layer from the first frame of each video
clip. Therefore, we obtain a 2048-dimensional context fea-
ture vector for each video clip. We also aim to capture the
explicit movement of the human body parts and hand fin-
gers through the keypoint representations. To achieve that,
we adopt the AlphaPose toolbox [13] to estimate the 2D
locations of human body joints. For estimation of hand
pose, we first apply a pre-trained hand detection model and
then use the OpenPose [8] hand API [46] to estimate the
coordinates of hand keypoints. As a result, we extract 18
keypoints for human body and 21 keypoints for each hand.
Since the keypoints estimation in videos in the wild is chal-
lenging and noisy, we maintain both 2D coordinates (X,Y )
and the confidence score of each estimated keypoint.

Context-Aware Graph CNN. Once the visual semantic
feature and keypoints are extracted from the raw video, we
adopt a context-aware Graph CNN (CT-GCN) to fuse the
semantic context of instruments and human body dynam-
ics. This architecture is designed for the non-grid data, suit-
able for explicitly modeling the spatial-temporal relation-
ships among different keypoints on the body and hands.

The network architecture design is inspired by previous
work on action recognition [54] and human shape recon-
struction [29]. Similar to [54], we start by constructing a
undirected spatial-temporal graph G = {V,E} on a human
skeleton sequence. In this graph, each node vi ∈ {V } cor-
responds to a keypoint of the human body; edges reflect the
natural connectivity of body keypoints.

The input features for each node is represented as 2D
coordinates and the confidence score of a detected keypoint
over time T . To model the spatial-temporal body dynamics,
we first apply a Graph Convolution Network to encode the
pose at each time step independently. Then, we perform
a standard temporal convolution on the resulting tensor to
fuse the temporal information. The encoded pose feature
fv is defined as follows:

fv = ÂXWsWt, (1)

where X ∈ RN×T×Dn is the input features, Ws and Wt

are the weight matrices of spatial graph convolution and 2D
convolution, and Â ∈ RN×N is the row-normalized adja-
cency matrix of the graph; N represents the number of key-
points; Dn represents the feature dimension for each input
node. Inspired by previous work [54], we define the adja-
cency matrix based on the joint connections of the body and
fingers. The output of the GCNs is updated features of each
keypoint node.

To further incorporate the visual semantic cues, we con-
catenated the visual appearance context features to each

node feature as the final output of the video analysis net-
work. The context-aware graph CNN is capable of mod-
eling both semantic context and body dynamics, thus pro-
viding strong visual cues to guide sound separations. There
could be other model designs options. We leave this to fu-
ture work.

3.3. Audio-Visual Separation Network

Finally, we have an audio-visual separation network,
which takes the spectrogram of mixture audio with visual
representation produced by the video analysis network as
input, to predict a spectrogram mask and generate the audio
signal for the selected video.

Audio Network. We adopt a U-Net style architec-
ture [42], namely an encoder-decoder network with skip
connections for the audio network. It consists of 4 dilated
convolution layers and 4 dilated up-convolution layers. All
dilated convolutions and up-convolutions use 3 × 3 spatial
filters with stride 2, dilation 1 and followed by a BatchNorm
layer and a Leaky ReLU. The input of the audio network
is a 2D time-frequency spectrogram of mixture sound and
the output is a same-size binary spectrogram mask. We in-
fuse the visual features into the middle part of the U-Net for
guiding the sound separation.

Audio-visual fusion. To better leverage body dynamic
cues to guide the sound separation, we adopt a self-
attention [51] based cross-modal early fusion module to
capture the correlations between body movement with the
sound signals. As shown in Figure 3 , the fused feature zt
at each time step t is defined as follows:

ht = Softmax(f t
s · f t

v
T
)f t

v + f t
s, (2)

zt = MLP (ht) + ht, (3)

where f t
s ∈ RF×Ds and f t

v ∈ RN×Dv represents visual and
sound features at time step t. F , Dv , and Ds denote the fre-
quency bases of the sound spectrogram, the dimensions of

Figure 3: Audio-visual fusion module of the model in Fig-
ure 2.



visual features, and the dimension of sound features, respec-
tively. The softmax computation is along the dimension of
visual feature channels. The visual feature is then weighted
by attention matrix and concatenated with the sound feature.
We further add a multi-layer perceptron (MPL) with resid-
ual connection to produce the output features. The MLP is
implemented with two fully-connected layers with a ReLU
activation function. This attention mechanism enforces the
model to focus more on the discriminative body keypoints,
and associate them with the corresponding sound compo-
nents on the spectrogram.

3.4. Training and Inferences

The learning objective of our model is to estimate a bi-
nary mask Mk. The ground truth mask of k-th video is
calculated whether the target sound is the dominant compo-
nent in the input mixed sound on magnitude spectrogram S,
i.e.,

Mk(t, f) = JSk(t, f) ≥ Smix(t, f)K, ∀k = (1, ..., N),
(4)

where (t, f) represents the time-frequency coordinates in
the sound spectrogram. The network is trained by minimiz-
ing the per-pixel sigmoid cross entropy loss between the es-
timated masks and the ground-truth binary masks. Then the
predicted mask is thresholded and multiplied with the input
complex STFT coefficients to get a predicted sound spectro-
gram. Finally, we apply an inverse short-time Fourier Tran-
form (iSTFT) with the same transformation parameters on
the predicted spectrogram to reconstruct the waveform of
separated sound.

During testing, our model takes a single realistic multi-
source video to perform sound source separation. We first
localize human in the video frames. For each detected per-
son, we use the video analysis network to extract visual fea-
ture to isolate the portion of the sound belonging to this
musician from the mixed audio.

4. Experiments
In this section, we discuss our experiments, implementa-

tion details, comparisons and evaluations.

4.1. Dataset

We perform experiments on three video music perfor-
mance datasets, namely MUSIC-21[56], URMP [31] and
AtinPiano [36]. MUSIC-21 is an untrimmed video dataset
crawled by keyword query from Youtube. It contains mu-
sic performances belonging to 21 categories. This dataset
is relatively clean and collected for the purpose of train-
ing and evaluating visual sound source separation models.
URMP [31] is a high quality multi-instrument video dataset
recorded in studio and provides ground truth labels for each
sound source. AtinPiano [36] is a dataset where the piano

video recordings are filmed in a way that camera is looking
down on the keyboard and hands.

4.2. Hetero-musical Separation

We first evaluate the model performance in the task of
separating sounds from different kinds of instruments on
the MUSIC dataset.

Baseline and evaluation metrics We consider 5 state-of-
the-art systems to compare against.
• NMF [52] is a well established pipeline for audio-only

source separation based on matrix factorization;
• Deep Separation [9] is a CNN-based audio-only

source separation approach;
• MIML [17] is a model that combines NMF decompo-

sition and multi-instance multi-label learning;
• Sound of Pixels [57] is a pioneering work that uses

vision for sound source separations;
• Co-separation [19] devices a new model that incor-

porates an object-level co-separation loss into the mix-
and-separate framework [57];
• Sound of Motions [56] is a recently proposed self-

supervised model which leverages trajectory motion
cues.

We adopt the blind separation metrics, including signal-
to-distortion ratio (SDR), and signal-to-interference ratio
(SIR) to quantitatively compare the quality of the sound
separation. The results reported in this paper were obtained
by using the open-source mir eval [41] library.

Experimental Setup Following the experiment protocol
in Zhao et al. [56], we split all videos on MUSCI dataset
into a training set and a test set. We train and evaluate our
model using mix-2 and mix-3 samples, which contain 2 and
3 sound sources of different instruments in mixtures. Since
the real mix video data with multiple sounds on the MUSIC
dataset do not have ground-truth labels for quantitative eval-
uation, we construct a synthetic testing set by mixing solo
videos. The result of model performances are reported on
a validation set with 256 pairs of sound mixtures, the same
as [56]. We also perform a human study on the real mix-
tures on MUSIC and URMP dataset to measure human’s
perceptual quality.

Implementation Details We implement our framework
using Pytorch. We first extract a global context feature
from a video clip using ResNet-50 [23] and the coordinates
of body and hand key points for each frame using Open-
Pose [8] and AlphaPose [13]. Our GCN model consists
of 11-layers with residual connections. When training the
graph CNN network, we first pass the keypoint coordinates
to a batch normalization layer to keep the scale of the input
same. During training, we also randomly move the coordi-
nates as data augmentation to avoid overfitting.



Methods 2-Mix 3-Mix

SDR SIR SDR SIR
NMF [52] 2.78 6.70 2.01 2.08
Deep Separation [9] 4.75 7.00 - -
MIML [17] 4.25 6.23 - -
Sound of Pixels [57] 7.52 13.01 3.65 8.77
Co-Separation [19] 7.64 13.8 3.94 8.93
Sound of Motion [56] 8.31 14.82 4.87 9.48
Our 10.12 15.81 5.41 11.47

Table 1: Sound source separation performance (N = 2, 3 mixture) on different instruments. Compared to previous ap-
proaches, our models with body dynamic motion information perform better in sound separation.

For the audio data pre-processing, we first re-sample the
audio to 11KHz. During training, we randomly take a 6-
second video clip from the dataset. The audio-visual sepa-
ration network takes a 6-second mixed audio clip as input,
and transforms it into spectrogram by Short Time Fourier
Transform (STFT). We set the frame size and hop size as
1022 and 256, respectively. The spectrogram is then fed
into a U-Net with 4 dilated convolution and 4 deconvolution
layers. The ouput of U-Net is an estimated binary mask.
We set a threshold of 0.7 to obtain a binary mask, and then
multiply it with the input mixture sound spectrogram. An
iSTFT with the same parameters as the STFT is applied to
obtain the final separated audio waveforms.

We train our model using SGD optimizer with 0.9 mo-
mentum. The audio separation Network and the fusion
module use a learning rate of 1e-2; the ST-GCN Network
and Appearance Network use a learning rate of 1e-3.

Quantitative Evaluation. Table 1 summarizes the com-
parison results against state-of-the-art methods on MUSIC.
We observe that our method consistently outperforms all
baselines in separation accuracy, as captured across metrics.
Remarkably, our system outperforms a previous state-of-
the-art algorithm [56] by 1.8dB on 2-mix and 0.6dB on 3-
mix source separation in term of SDR score. These quanti-
tative results suggest that our model can successfully exploit
the explicit body dynamic motions to improve the sound
separation quality.

Qualitative evaluation on real mixtures. Our quantita-
tive results demonstrate that our model achieves better re-
sults than baselines. However, these metrics are limited in
their ability to reflect the actual perceptual quality of the
sound separation result on real-world videos. Therefore, we
further conduct a subjective human study using real mixture
videos from MUSIC and URMP datasets on Amazon Me-
chanical Turk (AMT).

Specifically, we compare sound separation results of our

Method 2-Mix 3-Mix
Sound of Motions [56] 24% 16%

Ours 76% 84%

Table 2: Human evaluation results for the sound source sep-
aration on mixtures of the different instruments.

own model with best baseline system [56]1 The AMT work-
ers are required to compare these two systems and answer
the following question: “Which sound separation result is
better?.” We randomly shuffle the orders of two models to
avoid shortcut solutions. Each job is performed indepen-
dently by 3 AMT workers. Results are shown in Table 2
using majority voting. From this table, we find workers fa-
vor our system for both 2-mix and 3-mix sound separation.

4.3. Ablated study

In this section, we perform in-depth ablation studies to
evaluate the impact of each component of our model.

Keypoint-based representation. The main contribution
of our paper is to use explicit body motions through
keypoint-based structure representations for source separa-
tion. To further understand the ability of these representa-
tions, we conduct an ablated study using the keypoint-based
structure representation only, without the RGB context fea-
tures. Interestingly,we can observe that keypoint-based rep-
resentations alone could also achieve very strong results
(see Table 3). We hope our findings could inspire more
works using structured keypoint-based representations for
the audio-visual scene analysis tasks.

Visual-Audio Fusion Module. We propose a novel atten-
tion based audio-visual fusion model. To verify its efficacy,
we replace this module with Feature-wise Linear Modula-
tion (FiLM) [40] used in [56]. The comparison results are

1The results on real mixture are provided by their authors.



Method SDR
Ours w/o fusion 9.64
Ours w/o RGB 10.22
Our 10.12

Table 3: Ablated study on SDR metric for mixtures of 2
different instruments .

shown in Table 3. We can find that the proposed audio-
visual fusion module brings 0.5dB improvement in term of
SDR metric on 2-mix sound source separation.

4.4. Homo-musical Separation

In this section, we conduct experiments on a more chal-
lenging task, sound separation when sound is generated by
the same instruments.

Experiment Setup We select 5 kinds of musical instru-
ments whose sounds are closely related to body dynamic:
trumpet, flute, piano, violin, and cello for evaluation.

Inspired by previous work [56, 38], we also adopt a 2-
stage curriculum learning strategy to train the sound seper-
ation model of the same instruments. In particular, we first
pre-train the model on multiple instrument separation, then
learn to separate the same instrument. We compare our
model against SoM [56], since previous appearance based
models fail to produce meaningful results in this challeng-
ing setting. The results are measured by both automatic
SDR scores and human evaluations on AMT.

Results Analysis. Results are shown in Table 4 and Ta-
ble 5. From these tables, we have three key observations:
1) our proposed model consistently outperforms the SoM
system [56] for all five instruments measured by both au-
tomatic and human evaluation metrics; 2) The quantitative
results on separating violin and cello duets are close (See
Table 4). However, we find that the SoM system is quite
brittle when testing on the real mixtures. People tend to
vote our system more on real mixtures, as shown in Table 5;
3) The SoM provides much inferior results on trumpet, pi-
ano, and flute duets compared to our model, since the gap is
larger than 3 dB. This is not very surprising since separating
duet of these three instruments mainly relies on hand pose
movements. It is very hard for the trajectory and optical
flow features to capture such fine-grained hand movements.
Our approach can overcome this challenge in that we ex-
plicit model the body motions by tracking the coordinates
changes of hand keypoints. These results further validate
the efficacy of body dynamics motions on solving more and
harder visual sound separation problems.

Instrument SoM [56] Ours
trumpet 1.8 4.9
flute 1.5 5.3
piano 0.8 3.8
violin 6.3 6.7
cello 5.4 6.1

Table 4: Sound source separation performance on duets of
the same instruments under the SDR metric.

Instrument SoM [56] Ours
trumpet 18% 82%
flute 14% 86%
piano 30% 70%
violin 26% 74%
cello 28% 72%

Table 5: Human evaluation result for the sound source sep-
aration on mixture of the same instruments.

4.5. Visualizations

As a further analysis, we would like to understand how
body keypoints matters the sound source separation. Fig-
ure 4 visualize the learned attention map of keypoints in
the audio-visual fusion module. We observe that our model
tends to focus more on hand keypoints when separating gui-
tar and flute sounds, while pays more attention to elbows
when separating the cello and violin.

Fig 5 shows qualitative results comparison between our
model and the previous state-of-the-art SoM [56] on sepa-
rating 3 different instruments and 2 same instruments. The
first row shows the video frame example, the second row
shows the spectrogram of the audio mixture. The third to
fifth rows show ground truth masks, masks predicted by
SoM, and masks predicted by our method. The sixth to

Figure 4: The attention map of body keypoints. Brighter
color means higher attention score.



Figure 5: Qualitative results on visual sound separation compared with Sound of Motions (SoM) [56].

eighth rows show the ground truth spectrogram and com-
parisons of predicted spectrogram after applying masks on
the input spectrogram. We can observe that our system pro-
duces cleaner sound separation outputs.

Though the results are remarkable and constitute a no-
ticeable step towards more challenging visual sound sepa-
ration, our system is still far from perfect. We observed that
our method is not resilient against camera viewpoint change
and body part occlusions of the musician. We conjecture
that unsupervised learning of keypoints from raw images
for visual sound separation might be a promising direction
to explore for future work.

5. Conclusions and Future Work

In this paper, we show that keypoint-based structured vi-
sual representations are powerful for visual sound separa-
tion. Extensive evaluations show that, compared to previous
appearance and low-level motion-based models, we are able
to perform better on audio-visual source separation of dif-
ferent instruments; we can also achieve remarkable results
on separating sounds of same instruments (e.g. piano, flute,
and trumpet), which was impossible before. We hope our
work will open up avenues of using structured visual repre-
sentations for audio-visual scene analysis. In ther future, we
plan to extend our approach to more general audio-visual



data with more complex human-object interactions.
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