
MIT Open Access Articles

Improved parallel construction of
wavelet trees and rank/select structures

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Shun, Julian. “Improved parallel construction of wavelet trees and rank/select
structures.” Information and Computation, 273 (August 2020): 104516 © 2020 The Author

As Published: 10.1016/J.IC.2020.104516

Publisher: Elsevier BV

Persistent URL: https://hdl.handle.net/1721.1/130424

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-NonCommercial-NoDerivs License

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/130424
http://creativecommons.org/licenses/by-nc-nd/4.0/

Improved Parallel Construction of Wavelet Trees
and Rank/Select Structures

Julian Shun
MIT CSAIL

jshun@mit.edu

Abstract

Existing parallel algorithms for wavelet tree construction have a work com-
plexity of O(n log σ). This paper presents parallel algorithms for the problem
with improved work complexity. Our first algorithm is based on parallel integer
sorting and has either O(n log logndlog σ/

√
log n log log ne) work and polylog-

arithmic depth, or O(ndlog σ/
√
log ne) work and sub-linear depth. We also

describe another algorithm that has O(ndlog σ/
√
log ne) work and O(σ+log n)

depth. We then show how to use similar ideas to construct variants of wavelet
trees (arbitrary-shaped binary trees and multiary trees) as well as wavelet ma-
trices in parallel with lower work complexity than prior algorithms. Finally,
we show that the rank and select structures on binary sequences and multiary
sequences, which are stored on wavelet tree nodes, can be constructed in paral-
lel with improved work bounds, matching those of the best existing sequential
algorithms for constructing rank and select structures.

1 Introduction
The wavelet tree is a space-efficient data structure that supports access, rank, and
select queries on a sequence in time logarithmic in the alphabet size. It was introduced
by Grossi et al. [13], who used it to design a compressed suffix array. Wavelet trees
have many other applications [22, 20, 23, 18]—for example, they can be used to obtain
compressed representations of sequences, permutations, grids, graphs, and self-indexes
based on the Burrows-Wheeler transform, and can also be used for two-dimensional
range queries [19].

The standard sequential method for constructing a wavelet tree on a sequence
of length n with alphabet size σ takes O(n log σ) work.1 Recently, faster sequential
algorithms with O(ndlog σ/

√
log ne) work have been described [21, 1] and imple-

mented by Kaneta [15]. As for prior parallel algorithms, Fuentes-Sepulveda et al. [11]
presented algorithms that require O(n log σ) work and O(n) depth (parallel time).

1We use log x to mean the base 2 logarithm of x unless specified otherwise.

ar
X

iv
:1

61
0.

03
52

4v
3

 [
cs

.D
C

]
 1

6
Ja

n
20

20

Shun [26] improved the result by developing faster parallel algorithms, including one
with O(n log σ) work and O(log n log σ) depth. Labeit et al. [17] presented a more
space-efficient version of the algorithm from [26] that achieves the same bounds, as
well as a modification of the algorithm from [11] that has more parallelism. Later,
Fuentes-Sepulveda et al. [12] presented a similar modification to their previous algo-
rithm [11]. Recently, Fischer et al. [9] presented parallel wavelet tree construction
algorithms that are fast in practice.

While parallel algorithms exist for wavelet tree construction, their work complexi-
ties are higher than those of the best sequential algorithms, which takeO(ndlog σ/

√
log ne)

work [21, 1]. This paper presents parallel algorithms for wavelet tree construction with
improved work complexities. Our first algorithm is a parallelization of the algorithm
in [1] and uses parallel integer sorting. Depending on the parallel integer sorting sub-
routine used, our algorithm takes either O(n log log ndlog σ/

√
log n log log ne) work

andO(log n log σ) depth orO((n/ε)dlog σ/
√

log ne)) work andO((nε/ε)dlog σ/
√

log ne)
depth for a constant 0 < ε < 1. This results in either a polylogarithmic-depth algo-
rithm with improved work complexity, or a sub-linear depth algorithm whose work
matches that of the best sequential algorithm. Our second algorithm is based on
a simple domain-decomposition approach as used in [12, 17], and takes O(σK +
ndlog σ/

√
log ne) work and O((n/K)dlog σ/

√
log ne + logK) depth for any integer

K ≥ 1. SettingK = Θ((n/σ)dlog σ/
√

log ne) gives an algorithm withO(ndlog σ/
√

log ne)
work and O(σ+ log n) depth. This algorithm therefore has high parallelism for small
alphabet sizes. We can improve the depth by combining the domain-decomposition
approach with our algorithm based on integer sorting, which gives us an algorithm
with O((n/ε)dlog σ/

√
log ne) work and O((σε/ε)dlog σ/

√
log ne+ log n) depth.

Using similar ideas we also obtain improved algorithms for constructing variants of
the standard wavelet tree, such as arbitrary-shaped binary wavelet trees [10], multiary
trees [8], and wavelet matrices [6]. Wavelet tree nodes store rank and select structures,
and so to achieve the improved work bounds, we show how to construct in parallel
the rank and select structures of binary and multiary sequences work-efficiently. For
binary sequences of length n we show how to construct the structures in O(n/ log n)
work and O(log n) depth (the sequence lengths across all wavelet tree nodes sum
to O(n log σ), so this contributes a total of O(n log σ/ log n) work, which is within
the desired bound). For sequences of length n containing characters in [0, . . . , σ − 1]
for σ = O(log1/3−δ n) where δ > 0, we show how to construct the structures in
O(n log σ/ log n) work and O(log n) depth. The work bounds match those of the
sequential algorithms described in [1]. This is the most technically involved part of
the paper and obtaining these bounds in parallel requires carefully packing values
into words, working on the compact representations, constructing appropriate lookup
tables, and defining appropriate operators for prefix sum computations. Existing and
new bounds for the problems studied in this paper are shown in Table 1.

Data Structure Algorithm Work Depth

Binary Wavelet Tree

Sequential [1, 21] O(nd log σ√
logn
e) –

[26, 17] O(n log σ) O(log n log σ)

[17, 12]† O(n log σ) O(σ + log n)

This paper O(n log log nd log σ√
logn log logn

e) O(log n log σ)

This paper O((n/ε)d log σ√
logn
e) O((nε/ε)d log σ√

logn
e)

This paper O(nd log σ√
logn
e) O(σ + log n)

This paper O((n/ε)d log σ√
logn
e) O((σε/ε)d log σ√

logn
e+ log n)

Sequential [1, 21] O(nd h√
logn
e) –

Arbitrary-shaped Binary [26] O(nh) O(h log n)

Wavelet Tree (height h) This paper O(n log log nd h√
logn log logn

e) O(h log n)

This paper O((n/ε)d h√
logn
e) O((nε/ε)d h√

logn
e)

Multiary Wavelet Tree
(degree d = O(log1/3−δ n)

for δ > 0)

Sequential [1, 21] O(nd log σ√
logn
e) –

[26] O(n log σ) O(log n log σ)

This paper O(n log log nd log σ√
logn log logn

e) O(log n log σ)

This paper O((n/ε)dlog σ/
√
log ne) O((nε/ε)d log σ√

logn
e)

Wavelet Matrix
[26] O(n log σ) O(log n log σ)

This paper O(n log log nd log σ√
logn log logn

e) O(log n log σ)

This paper O((n/ε)d log σ√
logn
e) O((nε/ε)d log σ√

logn
e)

Binary Rank and Select
Sequential [1, 21] O(n

logn) –
[26] O(n) O(log n)

This paper O(n
logn) O(log n)

Generalized Rank and Select
(degree d = O(log1/3−δ n)

for δ > 0)

Sequential [1] O(n log σ
logn) –

[26] O(n) O(log n)

This paper O(n log σ
logn) O(log n)

Table 1: New and existing work and depth bounds for constructing data structures.
We omit the depth term for the sequential algorithms. †A parameter in the algorithm
was chosen to give the minumum depth while maintaining O(n log σ) work for any σ.

2 Preliminaries
We analyze algorithms in the work-depth model, where the work W is the number
of operations required (equivalent to the standard sequential time complexity) and
the depth (parallel time) D is the length of the longest critical path in the computa-
tion [27]. The parallelism (maximum possible speedup) of an algorithm is equal to
W/D. With p available processors, using Brent’s scheduling theorem [3] we can bound
the running time by W/p+D. We say that a parallel algorithm is work-efficient if its
asymptotic work complexity matches that of the best sequential algorithm. As in the
standard word RAM model, we assume that Θ(log n) bits fit in a word, and reading
or writing a word requires unit work.

A sequence of symbols will be denoted by S, its length by n, and its alphabet size

by σ. For a sequence S, access(S, i) returns the symbol at position i of S, rankc(S, i)
returns the number of times c appears in S from positions 0 to i, and selectc(S, i)
returns the position of the i’th occurrence of c in S. A wavelet tree is a data structure
supporting access, rank, and select operations on a sequence in O(log σ) work [13]. A
standard wavelet tree is a balanced binary tree where each node represents a range
of the symbols in the alphabet using a bitstring (binary sequence). We assume that
σ ≤ n, and that the alphabet is [0, . . . , σ − 1], as the symbols can be mapped to a
contiguous range otherwise. The structure of the wavelet tree is defined recursively as
follows: The root represents the symbols [0, . . . , 2dlog σe−1]. A node v which represents
the symbols [a, . . . , b] stores a bitstring which has a 0 in position i if the i’th symbol
in the range [a, . . . , b] is in [a, . . . , (a + b + 1)/2 − 1] and 1 otherwise. It will have a
left child that represents the symbols [a, . . . , (a+ b+ 1)/2− 1] and a right child that
represents the symbols [(a+ b+ 1)/2, . . . , b]. The recursion stops when the range is of
size 2 or less or if a node has no symbols to represent. An example of a wavelet tree is
shown in Figure 1. We point out that the original wavelet tree description in [13] uses
a root whose range is not necessarily a power of 2, but the definition here gives the
same asymptotic query times and leads to a simpler description of our construction
algorithms.

Each node in the wavelet tree stores a succinct rank/select structure on its bit-
string (whose size is sub-linear in the bitstring length) to allow for constant-work
rank and select queries. The bitstrings and the rank/select structures together take
ndlog σe + o(n log σ) bits of space. The wavelet tree topology requires O(σ log n)
bits to store pointers, but this can be removed by modifying how the queries are
performed [19, 5].

Our algorithms use prefix sum as a parallel primitive [27]. Prefix sum takes as
input an array X of length n, an associative binary operator ⊕, and an identity
element ⊥ such that ⊥ ⊕ x = x for any x, and returns the array (⊥,⊥ ⊕X[0],⊥ ⊕
X[0] ⊕X[1], . . . ,⊥ ⊕X[0] ⊕X[1] ⊕ . . . ⊕X[n − 2]), as well as the overall sum ⊥ ⊕
X[0]⊕X[1]⊕ . . .⊕X[n− 1]. Assuming that ⊕ takes constant work, prefix sum can
be implemented in O(n) work and O(log n) depth [27]. Unless specified otherwise, we
will use ⊕ to be the addition operator on integers.

3 Review of the O(ndlog σ/
√
log ne) Work Sequential

Algorithm
We first review how the O(ndlog σ/

√
log ne) work sequential wavelet tree construc-

tion algorithm from [1] works, as we will be parallelizing this algorithm. A similar
sequential algorithm was independently described in [21]. Figure 2 illustrates the two
types of nodes in the algorithm. The basic data structure used is a packed list, which
stores N b-bit integers using dNb/ log ne words. It supports appending a length N
list in O(dNb/ log ne) work and splitting a list into smaller lists of at most length k
in O(dNb/ log ne+N/k) work. These operations can be implemented using bit-shifts
and copying. In this wavelet tree algorithm, a big node is defined to be a node at
a level that is a multiple of τ , where τ is a parameter to be chosen. A big node

c a f g a e h b h f d

Σ = {a, b, c, d, e, f, g, h}

0 1

00 1 1 0 1 1 0 1 1 0

S =

c a a b d f g e h h f

ΣL = {a, b, c, d} ΣR = {e, f, g, h}

a a b c d

0 1 0 1

01 0 0 1 0 1 0 1 1 0

ΣLL = {a, b} ΣLR = {c, d}
0 1 0 1

ΣRL = {e, f} ΣRR = {g, h}
0 1 0 1

f e f g h h

00 1 0 1 1 0 1 0 1 1

BL = BR =

B =

BLL = BLR = BRL = BRR =

Figure 1: Example of a wavelet tree on the sequence S = cafgaehbhfd and where
σ = 8 and the alphabet is Σ = {a, b, c, d, e, f, g, h}. The root contains the entire
sequence as well as a bitstring indicating whether the symbol comes from the left or
the right half of Σ. The two children L and R of the root contain the characters in
the left and right half of Σ, respectively. The bitstring for the left (right) child BL

(BR) is constructed by checking if the character comes from the left half or the right
half of ΣL (ΣR). The leaves each represent an alphabet of size 2.

stores the symbols that it represents in S, using dlog σe bits per symbol as in the
standard representation. Big nodes can be computed recursively as follows. The root
is a big node storing S. Assume that the sub-sequences for the big nodes at level
ατ are already computed. Then to compute the symbols in the big nodes at level
(α + 1)τ , the big nodes at level ατ look at the τ bits starting at position ατ in the
binary representation of each symbol to determine which of its descendant big nodes
at level (α + 1)τ to place the symbol at (there are 2τ such descendants). Therefore,
computation for big nodes requires O(ndlog σ/τe) work overall.

Nodes at all other levels of the tree only need to store at most τ bits per symbol
(the τ bits starting at position ατ + 1, where ατ is the level of its nearest big node
ancestor) because there are only τ levels between two big node levels. These nodes
use short lists to store τ -bit integers containing the τ relevant bits of the symbols they

: stores ⌈log σ⌉ bits per symbol (big nodes)

: stores up to # bits per symbol starting at position α#+1
where α# is the level of the closest ancestor big node

σ=16
#=2

abcdefghijklmnop

abcd efgh ijkl mnop

00 00 01 01 10 10 11 11(abcdefgh) 00 00 01 01 10 10 11 11 (ijklmnop)

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
(ab) (cd) (ef) (gh) (ij) (kl) (mn) (op)

Figure 2: Example of the two types of nodes in the algorithm of Babenko et al. [1]
for τ = 2 and σ = 16. The alphabet is Σ = {a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p} and
sequence is S = abcdefghijklmnop. The ovals correspond to big nodes, which store
dlog σe = 4 bits per symbol. The rectangles correspond to the other nodes, which
store up to τ = 2 bits per symbol in short lists (the symbols they represent are shown
in parentheses next to the node). The bitstrings per node are not shown.

represent. These are stored as packed lists. Computing the bitstring values and short
lists is done recursively. The short lists of the children of a big node can be computed
by extracting the relevant bits from the symbols of the big nodes in O(ndlog σ/τe)
work across all big nodes. Given a short list of a node, computing its own bitstring
values and the short lists of its children is done via table lookup. For all packed
lists L of at most log n/(2τ) τ -bit integers, the bitstring value, and the packed lists
L0 and L1 consisting of the symbols of L whose t’th most significant bit is 0 or 1,
respectively, are pre-computed for all t ∈ [0, τ − 1]. Pre-computing this table involves
evaluating all O(2logn/2) τ -bit integer sequences of length at most log n/(2τ) for each
value of t. This can be done in O(n) work. Each node splits its short list into blocks
of length at most log n/(2τ), performs table lookups for each block, and then appends
the resulting bitstring values together, L0’s together, and L1’s together. The bitstring
values are stored in the bitstring associated with the current node, and L0 and L1

are passed to its children. For a node with a short list of length N , the total work
required is O(Nτ/ log n) as the splitting and merging can be done in O(Nτ/ log n)
work overall and table lookups in constant work per block. The sum of the lengths
of all short lists is O(n log σ), and so the total work required for this computation is
O(ndlog σ(τ/ log n)e).

The overall work is O(ndlog σ/τe + ndlog σ(τ/ log n)e) and choosing τ =
√

log n
minimizes the work, giving a bound of O(ndlog σ/

√
log ne). By constructing the

tree level-by-level (i.e., interleaving big node computation with levels in between big
nodes), at any time the algorithm only has to store the symbols for the big nodes at
one level and short lists at one level, and so the peak space usage of the algorithm is
O(n log σ) bits.

4 Parallel Wavelet Tree Algorithms
This section first describes how to parallelize the algorithm of Babenko et al. [1],
which we reviewed in Section 3. Then we present a simple domain-decomposition
based parallel construction algorithm that is work-efficient and whose parallelism
depends linearly on σ, and so has low depth for small alphabets.

4.1 Parallelizing the algorithm of Babenko et al. [1]

The nodes in our parallel algorithm are classified the same way as in the sequential
algorithm (see Figure 2). The sub-sequences for the big nodes can be computed level-
by-level using parallel integer sorting. In particular, given the correct sub-sequence S′

for a big node at level ατ , we compute the sub-sequences for its big node descendants
at level (α+ 1)τ by performing an integer sort on S′, where the key for the sort is the
value of the (up to) τ bits starting from the ατ ’th highest bit of the symbol.

The parallel integer sort that we use is required to be stable since we need to keep
the relative ordering among the characters in each descendant node. Unfortunately
the only known method for stable parallel integer sorting in linear work and polylog-
arithmic depth [24] requires the range of the keys of the values being sorted to be
polylogarithmic, which does not hold for the value of τ that we will choose. Instead
we can either use an algorithm that is not work-efficient, requiring O(n log log n) work
and O(log n) depth [25, 2],2 or use a work-efficient algorithm with O(n/ε) work and
O(nε/ε) depth for a constant 0 < ε < 1 [27]. This gives an overall complexity for con-
structing big nodes of either (a) O(n log log ndlog σ/τe) work and O(log ndlog σ/τe)
depth or (b) O((n/ε)dlog σ/τe) work and O((nε/ε)dlog σ/τe) depth for constructing
the big nodes.

The lookup table for computing short lists can be pre-computed by evaluating all
O(2logn/2) τ -bit integer sequences of length at most log n/(2τ) for each t ∈ [0, τ − 1]
in parallel, and storing the answer for each in a unique location. For example, this
can be done using a three-level table, with the first level indexed by sequence length,
second level by t, and third level by the value of the sequence as an integer. The

2These algorithms either use randomization [25] or require super-linear space [2].

result for each sequence and value of t is evaluated sequentially. Overall, this requires
O(log n) depth and o(n) work.

Computing short lists for children of a big node can be done in linear work and
O(log n) depth by extracting the relevant bits from the symbols in the big node,
performing prefix sums to get the appropriate offsets, and copying the τ bits of a
symbol into the appropriate location in an array of the appropriate child in parallel.
Groups of τ -bit integers that together form a word are then packed together and
copied into one entry of the short list for the corresponding child in parallel. The
bitstrings of the children of a big node can be computed in linear work and O(log n)
depth simply by extracting the relevant bit from the symbols and packing them
together. Computing short lists of other nodes requires merging and splitting packed
lists. For each short list, we split it into chunks containing at most log n/(2τ) τ -bit
integers by copying the relevant bits of each chunk into its own word in constant
depth. The algorithm performs a table lookup for each chunk to obtain the parts
of the packed lists L0 and L1 that the chunk contributes to as well as the part of
the bitstring associated with the chunk. All table lookups are done in parallel in
constant depth. We then merge together the results to form each of L0, L1, and the
bitstring for the node. To merge the results of one of the lists together, we compute
the length (in bits) of the result associated with each chunk, perform a prefix sum
to determine the total length (in bits) and also the offset for each result in a new
array, and allocate a new array of the desired length. We then identify the groups of
chunks that will copy into the same word, again using prefix sums (some chunks will
copy into two words, but this only increases the work by a constant factor). Then, in
parallel, all groups merge their chunks sequentially using the packed list operations
described in Section 3 and then copy their word into the new array at the appropriate
offset. There are a total of d2Nτ/ log ne chunks if the short list contains N integers,
each of which generates a partial result for L0, L1, and the bitstring, and so the prefix
sum and copying takes O(Nτ/ log n) work and O(log n) depth (there is a constant-
factor overhead due to some chunks not being full, however the complexity is not
affected). The overall work for computing the short lists is O(ndlog σ(τ/ log n)e) as
in the sequential algorithm. The depth is O(log n log σ) as there are log σ levels, each
requiring O(log n) depth.

To minimize the overall work we set τ =
√

log n log log n when using theO(n log log n)
work integer sort and τ =

√
log n when using the O(n/ε) work integer sort. Assuming

that constructing the rank and select data structures per node can be done in the
same bounds, which we describe in Section 5, we obtain the following theorem:

Theorem 4.1. Wavelet tree construction can be performed in O(n log log ndlog σ/√
log n log log ne) work and O(log n log σ) depth (using randomization or super-linear

space) or O((n/ε)dlog σ/
√

log ne) work and O((nε/ε)dlog σ/
√

log ne) depth for a con-
stant 0 < ε < 1.

Note that both parallel algorithms described above improve upon the O(n log σ)
work complexity of the algorithms described in [26, 17]. Our algorithm either has
polylogarithmic depth but does not achieve the O(ndlog σ/

√
log ne) work bound of

the best sequential algorithm, or is work-efficient with sub-linear (but not polyloga-
rithmic) depth. However, as long as the number of processors is sub-linear, the second
algorithm can make full use of all of the available processors (recall Brent’s scheduling
theorem and the definition of parallelism from Section 2). Improving parallel inte-
ger sorting algorithms would immediately improve the complexity of the wavelet tree
algorithms.

We now analyze the working space of the algorithm. We also compute the tree
level-by-level as in the sequential algorithm. We require O(n log n) bits of working
space for the integer sort (assuming that we use [27] or [25]). The prefix sums and
packing operations also require O(n log n) bits of working space. Finally, the lookup
table contains o(n) entries and therefore uses o(n log n) bits. Overall, our algorithm
requires O(n log n) bits of working space.

4.2 Domain-decomposition approach

Another way to construct the wavelet tree in parallel is to use a domain-decomposition
approach as done in [12, 17]. For a parameter K, this approach first splits the in-
put sequence into K equal-sized sub-sequences, constructs the wavelet tree (without
rank/select structures) across all sub-sequences in parallel using a sequential algo-
rithm for each, and then merges the bitstrings on the nodes of the K trees together.
An illustration of the domain-decomposition approach is shown in Figure 3. Con-
structing the tree for each sub-sequence can be done by using an O(ndlog σ/

√
log ne)

work sequential algorithm [21, 1] in a black-box fashion (where the alphabet size
for each sub-sequence is treated as the same as the alphabet size of the entire se-
quence). The overall work for this step is O(ndlog σ/

√
log ne) and the depth is

O((n/K)dlog σ/
√

log ne).
To merge together the bitstrings, we first form the wavelet tree structure (without

bitstrings on nodes), which takes O(σ) work and O(1) depth. Following the idea
described in [12, 17], for each node in the final tree structure, we then perform a
prefix sum across the lengths of the bitstrings on the corresponding nodes in the
K sub-problems (the length is 0 if the node does not exist) taking O(K) work and
O(logK) depth. This gives the length of the bitstring on the node in the final tree
as well as an appropriate offset into the bitstring for each sub-problem. Then each
sub-sequence copies its bitstring into the bitstring of the node in the final tree in
parallel at word granularity. The words where multiple sub-sequences can copy into
in parallel are marked beforehand to avoid conflicts and handled specially (these
“boundary” words can be identified by looking at the offsets of the O(σK) nodes, and
there can be at most O(σK) of them). Summed over all nodes in the final tree, the
prefix sums take O(σK) work and O(logK) depth (the σ different prefix sums can
be done independently in parallel). Excluding the special words, the copying takes
O(n log σ/ log n) work and O(1) depth in total (the log n in the denominator of the
work is because we are copying at word granularity). The special words can all be
computed in parallel, taking O(σK) work and O(logK) depth by concatenating the
up to K bitstrings for each special word in a binary fashion. This gives the following
theorem:

1010001 1000101

01 11 101 00 0111 0

0100 100 10 11100

10100011000101

0100 11 1010

010010 10011100

0111

Figure 3: An illustration of the domain-decomposition approach where K = 2. The
sequence is split in half, and the wavelet trees, including bitstrings per node, are
generated independently for each half (top). The bitstrings are then merged together
for each node to obtain the final wavelet tree (bottom).

Theorem 4.2. A wavelet tree can be constructed in O(σK + ndlog σ/
√

log ne) work
and O((n/K)dlog σ/

√
log ne+ logK) depth for any integer K ≥ 1.

The domain-decomposition algorithm is work-efficient ifK = O((n/σ)dlog σ/
√

log ne).
Setting K = Θ((n/σ)dlog σ/

√
log ne) gives the maximum parallelism while achieving

work-efficiency, and gives a depth of O(σ+log n). Thus this algorithm has good paral-
lelism for small σ, and achieves lower work than the domain-decomposition algorithm
in [12, 16, 17].

The space required by the sequential algorithm across all sub-sequences isO(n log σ)
bits. The domain-decomposition algorithm also requires O(σK log n) bits of working
space to represent the nodes of the trees of the sub-sequences and for the prefix sums.
By setting K = Θ((n/σ) log σ/ log n), the space usage does not asymptotically exceed
the size of the final output of O(n log σ) bits, the work is O(ndlog σ/

√
log ne) and the

depth is O(σ log n).
We can use a parallel algorithm to solve each of the K sub-problems to im-

prove the depth. In particular, if we plug in the O((n/ε)dlog σ/
√

log ne) work and

O((nε/ε)dlog σ/
√

log ne) depth algorithm from Section 4.1 into our domain-decomposition
algorithm, we obtain the following theorem.

Theorem 4.3. A wavelet tree can be constructed in O(σK + (n/ε)dlog σ/
√

log ne)
work and O(((n/K)ε/ε)dlog σ/

√
log ne + logK) depth for any integer 1 ≤ K ≤ n/σ

and a constant 0 < ε < 1.

The upper bound on K is due to the fact that integer sort takes linear work in
both the sub-problem size as well as the range of keys being sorted. The range of keys
being sorted is O(σ), and so we need each sub-problem size to be Ω(σ) to amortize the
work to the subproblem size and maintain work-efficiency. By settingK = Θ(n/σ), we
obtain an algorithm with O((n/ε)dlog σ/

√
log ne) work and O((σε/ε)dlog σ/

√
log ne+

log n) depth. The working space is O(n log n) bits, due to the use of parallel integer
sort.

4.3 Variants

This section describes how ideas from our binary wavelet tree construction algorithm
from Section 4.1 can be used to construct variants of wavelet trees.
Arbitrarily-shaped binary trees. Our algorithm from Section 4.1 can be extended
to binary trees of other shapes (e.g., Huffman-shaped wavelet trees [10]) if the tree
structure can be computed efficiently and is of height O(log n). In particular, the
algorithm needs a codeword for each symbol determined by the path from the root
to the node representing the symbol in the tree. The codeword is a bitstring, where
the i’th most significant bit is 0 if the (i + 1)’st node in the path is a left child of
the i’th node in the path, and is 1 otherwise. We define h to be the height of the
tree. We assume a lookup table storing a mapping from codeword to symbol. Since
the codewords are of length O(log n), we can access the codeword in constant-work,
and construct the lookup table in O(σ) work and O(log n) depth. (We note that
codewords for a Huffman-shaped wavelet tree can be generated in O(n) work and
O(σ + log n) depth [7, 26].)

To construct the tree, we first convert the symbols to their codewords. The
algorithm proceeds as before, where big nodes are constructed every τ ’th level in
the tree by using integer sorting on τ bits. Some of the combinations of the bits
may not correspond to a symbol (which can be determined using the lookup ta-
ble), and no big nodes are generated for those combinations. The complexity per
level is equal to the complexity of integer sorting, and summing across all h/τ levels
gives the following bounds for constructing big nodes: (a) O(n

√
log log ndh/

√
log ne)

work and O(log ndh/
√

log n log log ne) depth (by setting τ =
√

log n log log n) or (b)
O((n/ε)dh/

√
log ne) work and O((nε/ε)dh/

√
log ne) depth for 0 < ε < 1 (by setting

τ =
√

log n). The remaining nodes that exist (which again can be checked using the
lookup table) are computed using short lists as before, and the overall work for these
nodes is O(ndh(τ/ log n)e) and depth is O(h log n). This gives the following theorem,
whose work bound improves upon the parallel construction described in [26]:

Theorem 4.4. Given codewords for the symbols, a binary wavelet tree of height h =
O(log n) can be constructed in O(n log log ndh/

√
log n log log ne) work and O(h log n)

depth or O((n/ε)dh/
√

log ne) work and O((nε/ε)dh/
√

log ne) depth for a constant
0 < ε < 1.

The working space of the algorithm can be bounded by O(n log n) bits, as in
Section 4.1.
Multiary wavelet trees. We now describe how to extend the algorithm to construct
multiary wavelet trees [8] of degree d = O(log1/3−δ n), where δ > 0 and d is a power
of two.3 Each node now has d children and the sequence that a node stores contains
values in [0, . . . , d − 1] instead of being binary as in the standard wavelet tree. We
describe the algorithm for balanced trees but the ideas also apply to trees of arbitrary
shapes as long as the codewords are provided as input. Similar to the approach of [21]
we generate the full binary tree, but only keep sequences for the nodes at levels β log d
in the full binary tree for β = [0, . . . , log σ/ log d). Each node with a sequence that
is kept belongs to the multiary wavelet tree, and if it is at level β log d in the binary
tree, its d children are at level (β + 1) log d in the binary tree. With an appropriate
numbering scheme (i.e., the children of node i are stored at locations 2i+1 and 2i+2),
the d children of a node can be identified in O(d) work and O(1) depth, contributing
O(σ) work and O(1) depth overall. Each node belonging to the multiary wavelet
tree stores a sequence of log d-bit integers, which can be computed by extracting the
appropriate log d bits from its sequence of symbols. The bounds from Theorem 4.1
then apply, giving the following theorem which improves upon the work of the parallel
algorithm for multiary wavelet trees from [26].

Theorem 4.5. A multiary wavelet tree of degree d = O(log1/3−δ n) where δ > 0 and d
is a power of two can be constructed in O(n log log ndlog σ/

√
log n log log ne) work and

O(log n log σ) depth or O((n/ε)dlog σ/
√

log ne) work and O((nε/ε) dlog σ/
√

log ne)
depth for 0 < ε < 1.

As in Section 4.1, the working space of the algorithm can be bounded by O(n log n)
bits. We note that each node of a multiary wavelet tree requires storing a generalized
rank and select structure on its sequence of log d-bit integers, and we describe how
to construct the structures within the bounds of Theorem 4.5 in Section 5.2.
Wavelet matrix. The wavelet matrix [6] is a variant of the wavelet tree where for
level l, all symbols with a 0 as their l’th highest bit are represented on the left side of
the level’s sequence and all symbols with a 1 as their l’th highest bit are represented
on the right side. The relative ordering among the symbols from the previous level
is preserved. Each level also contains an integer indicating the number of 0’s per
level. The wavelet matrix has O(log σ) levels. An O(n log σ) work, polylogarithmic
depth parallel algorithm for constructing the wavelet matrix was described in [26].
In this section, we describe how to reduce the work complexity using similar ideas as
described in Section 4.1.

3The restriction d = O(log1/3−δ n) for δ > 0 is due to the rank and select structures from [1] that
we parallelize.

We will process the bits of the symbols in chunks of τ bits and construct the
matrix level-by-level. Every τ ’th level is treated specially, similar to the big nodes
in Section 4.1. For an integer α, to construct the sequence at level (α + 1)τ from
level ατ we perform an integer sort on the sequence at level ατ using the reverse
of the τ bits starting at the ατ ’th position of the symbols. Constructing all special
levels takes either (a) O(n log log ndlog σ/τe) work and O(log ndlog σ/τe) depth or
(b) O((n/ε)dlog σ/τe) work and O((nε/ε)dlog σ/τe) depth.

Constructing levels ατ + 1 to (α+ 1)τ − 1 of the wavelet matrix will require only
the (at most) τ bits starting at the (ατ+1)’th position of the symbols. We will create
chunks of log n/(2τ) τ -bit integers, and use the packed list representation as in the
wavelet tree algorithm. We use a lookup table storing all possible bitstrings of up to
length log n/2, which for each chunk and each bit position determines which symbols
go to the left and which go to the right, as well as the bitstring, in O(1) work. The
lookup table can be computed in O(log n) depth and o(n) work. Similar to the wavelet
tree algorithm, each chunk can be split into two parts, the first that goes to the left
side of the sequence and the second that goes to the right. Prefix sums and grouping
of chunks are then used on the packed lists to create the bitstring for the current level
as well as the sequence at the next level. On each level, this takes O(ndτ/ log ne)
work and O(log n) depth. Summing over all levels gives O(ndlog σ(τ/ log n)e) work
and O(log n log σ) depth.

To compute the number of 0’s in the bitstring for each level, we create a lookup
table mapping all possible bitstrings of up to length log n/2 to the number of 0’s in
the bitstring. This can be constructed in O(log n) depth and o(n) work. Then we split
each bitstring into chunks of length log n/2, perform table lookup for each chunk, and
perform a prefix sum on the O(n/ log n) results. We do this level-by-level so the total
work for prefix sums across all levels is O(n log σ/ log n) and span is O(log n log σ).

Setting τ to either
√

log n log log n or
√

log n to minimize the total work gives the
following theorem:

Theorem 4.6. Wavelet matrix construction can be performed in O(n log log ndlog σ/√
log n log log ne) work and O(log n log σ) depth or O((n/ε)dlog σ/

√
log ne) work and

O((nε/ε)dlog σ/
√

log ne) depth for a constant 0 < ε < 1.

By constructing the matrix level-by-level, we can bound the working space by
O(n log n) bits.

Similar to binary wavelet tree construction, we believe that a domain-decomposition
approach can be used to improve the depth of the work-efficient algorithms for the
variants described in this sub-section.

5 Improved Parallel Construction of Rank/Select Struc-
tures

Wavelet trees and matrices require each node to store a succinct rank and select
structure on its bitstrings or sequences of (log d)-bit values. We show how to construct

these structures in parallel within the bounds of the construction algorithms described
in Section 4.

5.1 Binary Sequences

We first describe the binary sequence case. The goal is to construct the rank/select
structures on n bits in O(n/ log n) work to match the work bound of the sequential
construction algorithms in [1]. The overall work for rank/select construction in a
wavelet tree will therefore be O(n log σ/ log n), which is within the work bound of
our parallel wavelet tree algorithms. We assume that the bit sequence is packed into
n/ log n words, which is provided by our wavelet tree algorithms from Section 4.
Rank. For rank queries, we use the structure of Jacobson [14]. We only store the
rank of 0 since the rank of 1 can be derived from the rank of the 0. The data structure
divides the bit sequence into ranges of size log2 n. It computes the rank for the last
bit in each range. The ranges are further divided into sub-ranges of size log n, where
the rank of every log n’th bit relative to the beginning of the range is stored. Inside
a sub-range, the rank of a position relative to the beginning of the sub-range can be
answered with at most two table lookups, where the table stores the answers to all
queries of sequences of up to length log n/2.

We initialize an array, A0, of length n/ log n, and for each of the n/ log n words, we
count the number of 0’s in the word and store them into its position in the appropriate
array. Counting the number of 0’s in a word can be done in O(1) work using the same
lookup table as for answering rank queries. Then we compute the prefix sum over A0.
Then, every log n’th entry in A0 gives the rank for the last position in each range.
The results for the sub-ranges are computed by taking each remaining entries in A0,
and subtracting the rank stored for the closest range to the left. The prefix sums
require O(n/ log n) work and O(log n) depth. The lookup tables can be generated in
parallel in o(n/ log n) work and O(log n) depth. The results for the sub-ranges should
be represented using O(log log n) bits each, and groups of O(log n/ log log n) entries
can be packed into a word as a post-processing step in O(n/ log n) work and O(log n)
depth.
Select. For select queries, we use Clark’s select structure [4], which usesO(n/ log log n)
extra bits for an input of length n. We describe the case for querying the location
of 1 bits, and the case for querying 0 bits is analogous. Clark’s data structure stores
the location of every log n log log n’th 1 bit, which defines ranges. For a range of
length r between the locations, if r ≥ log2 n(log log n)2, then the answers to all of
the possible select queries in the range are directly stored. Otherwise, the location
of every log r log log n’th 1 bit is stored, which defines sub-ranges. For a sub-range
of length r′, if r′ ≥ log r′ log r(log log n)2 then answers are stored directly relative to
the start of the sub-range using O(log log n) bits each. Queries that fall into all other
sub-ranges are answered via a lookup table that stores all answers for bitstrings of
length r′ = O((log log n)4).

To construct the select structure, we count the number of 1’s in each of the
2n/ log n half-words using table lookup, and perform a prefix sum over the 2n/ log n

results. We can now identify all of the half-words that contain the location of a
k log n log log n’th 1 bit, for any integer k. Using table lookup we can find the location
of the j’th occurrence (for a value of j determined by the prefix sum) of a 1 bit in
a half-word in O(1) work, which we then offset by the starting location of the half-
word. This can be done in O(n/ log n) work and O(log n) depth. This also allows us
to determine the range lengths. For the ranges of length at least log2 n(log log n)2, we
scan through the half-words in the range and store the location of every 1 bit. The
location of all 1 bits within a half-word can be determined in O(x) work and O(1)
depth via table lookup, where x is the number of 1’s in the half-word (the O(x) term
comes from having to output the x locations). The locations within the half-word
are then offset by the starting location of the half-word, again taking O(x) work and
O(1) depth. Scanning the half-words takes O(n/ log n) work and O(log n) depth.
There are at most n/(log n log log n) locations of 1 bits found this way, and we can
store their locations in the appropriate range in O(n/(log n log log n)) work and O(1)
depth using the result of the previous prefix sum and subtracting the offset of where
its range begins.

For ranges of length less than log2 n(log log n)2, we perform a prefix sum over the
half-words (as before, the count in a half-word is found via table lookup) in the range
to identify which half-words have boundaries for sub-ranges, which takes O(n/ log n)
work and O(log n) depth overall. Directly generating the boundary locations and
then packing them into words would require O(n/(log r log log n)) work since there
could be that many locations, and this is too much. Instead, for the half-words
that have boundaries, we output all of the boundary locations (relative to the begin-
ning of the range) in packed representation by using table lookup. The lookup table
takes a half-word, a skip amount s, an offset j, and a length r (these values are all
bounded by the range length log2 n(log log n)2), and outputs the location offset by j
of every s+k log r log log n’th 1 bit for all k in a packed representation. It can be con-
structed by considering all possible half-words, and all possible values of s, j, and r, in
o(n/ log n) work and O(log n) depth. There are at most O(n/(log r log log n)) bound-
aries, and each takes O(log log n) bits to store. We can output O(log n/ log log n)
boundaries in a word in constant work, and so outputting all of the boundaries takes
O(n/(log r log n)) = O(n/ log n) work and O(log n) depth.

If answers in the sub-range need to be stored directly (i.e., the sub-range length
r′ is at least log r′ log r(log log n)2), then as mentioned before we store the answers
relative to the start of the sub-range using O(log log n) bits each. We will generate
the locations of all 1 bits relative to the start of the range in each half-word by using
table lookup, where the result is packed into groups of O(log n/ log log n) relative
locations. The lookup table also takes as input how much to offset each answer. The
offsets can be computed via a prefix sum over the counts of 1 bits in the half-words.
The number of locations of 1 bits output is at most O(n/(log log n)2), and so the
number of groups is at most O(n/(log n log log n)). The last group in each half-word
might not be fully packed but this only increases the number of groups by a constant
factor. The offsets for storing the groups for each half-word can be pre-computed via
prefix sums. The lookup table takes at most log2 n(log log n)2 possible offsets, and has
O(2logn/2) entries per offset, so can be constructed in o(n/ log n) work and O(log n)

depth. The overall work for this step is thus O(n/ log n) and the depth is O(log n).
Finally, for the sub-ranges of length r′ < log r′ log r(log log n)2 = O((log log n)4), the
queries are answered via a lookup table that can be computed in o(n/ log n) work and
O(log n) depth.

For the select queries to work properly, all of the words inside each range and
sub-range except the last should be fully packed, but this can be fixed with a post-
processing step that generates an array of new words, and computes for each old word
where it should copy its results in the new word using a prefix sum. In parallel, each
new word is then constructed sequentially from the corresponding old words. There
are a total of O(n/ log n) words in total, so this takes O(n/ log n) work and O(log n)
depth.

We have the following theorem for constructing rank/select structures on binary
sequences:

Theorem 5.1. The rank and select structures for a binary sequence of length n packed
into n/ log n words can be constructed in O(n/ log n) work and O(log n) depth.

The prefix sums operate on inputs of size O(n/ log n) and therefore take O(n) bits
of working space. The lookup tables used all contain o(n/ log n) entries and take o(n)
bits of working space. Thus our algorithms use O(n) bits of working space.

5.2 Generalized Rank and Select Structures

In this section, we show how to construct rank and select structures on sequences
with alphabets σ = O(log1/3−δ n) for δ > 0 (this solution can also be used for binary
sequences although the solution described in Section 5.1 is simpler). For a sequence
of length n, Shun [26] describes how to construct the structures for O(n) work and
O(log n) depth. We show that the construction can be done in O(n log σ/ log n) work
and O(log n) depth. While a work bound of O(n/

√
log n) suffices for use in the

multiary wavelet tree algorithm described in Section 4, our goal is to match the work
of the sequential algorithms for constructing the generalized rank/select structures
of [1]. We assume the input is packed into n log σ/ log n words.
Rank. For the rank structure, a query rank≤c(S, i) returns the number of times a
symbol less than or equal to c appears from positions 0 to i, which differs from the
binary case. Thus, simply creating σ copies of the binary rank structure, one for
each character, will not suffice. We will instead use the generalized rank structure
described in [1].4

For every σ log2 n’th symbol in the sequence, the generalized rank structure of [1]
stores the σ ranks of that symbol (there is one rank per character in the alpha-
bet). These symbols define ranges in the sequence, and we will refer to them as
range symbols. For each range, the σ ranks of every log n/(3 log σ)’th symbol relative
to the beginning of the range are stored. These symbols define sub-ranges, which
we refer to as sub-range symbols. Queries inside a sub-range are of length at most
log n/(3 log σ) and can be answered in O(1) work via table lookup. The table has

4Specificially, this is described in Lemma 2.3 of the conference version of [1].

O(σlogn/(3 log σ) log n/(3 log σ)) entries per character, which sums to o(n log σ/ log n)
overall, and thus can be constructed in o(n log σ/ log n) work and O(log n) depth
using similar ideas as before.

We first describe how to compute the ranks of all sub-range symbols relative to
the beginning of its range. The algorithm requires pre-computing two lookup tables.
The first table takes as input a block of log n/(3 log σ) symbols and outputs the
generalized ranks for the last symbol in the block relative to the beginning of the
block in O(1) work. The second table takes as input two sets of generalized ranks
relative to the beginning of the range and outputs the sum of the generalized ranks
in O(1) work. Both tables can be constructed in o(n log σ/ log n) work and O(log n)
depth. The algorithm first passes the log n/(3 log σ) symbols closest to the left of (and
including) each sub-range symbol to the first table. The generalized ranks relative
to the beginning of the range can now be computed in parallel using a prefix sum
where the combining operator ⊕ is defined by the second lookup table. Note that
the combining operation is associative, as required by prefix sum. Over all ranges,
there are 3n log σ/ log n symbols that we compute ranks for, and so the prefix sum
takes O(n log σ/ log n) work and O(log n) depth. The results can be packed tightly
into words using similar ideas as before.

To compute the generalized ranks for the range symbols, we first obtain the gen-
eralized ranks of the last symbol of each range relative to the beginning of the range.
This can be obtained by summing the generalized ranks of the last sub-range symbol
in the range with the ranks of the remaining symbols after it (relative to the last
sub-range symbol) using the two lookup tables defined above. We then perform a
prefix sum over these values to obtain the generalized ranks relative to the beginning
of the sequence. When combining two entries, we can simply scan through all σ char-
acters (in parallel) and update their generalized ranks. Each combining operation
takes O(σ) work and O(1) depth, and there are O(n/(σ log2 n)) entries, giving a total
complexity of O(n/ log2 n) work and O(log n) depth. The generalized ranks for the
range symbols can now be computed by looking at the ranks of the last symbol in
the previous range and updating it with the value of the range symbol. The overall
complexity for constructing the rank structure is O(n log σ/ log n) work and O(log n)
depth.
Select. For the select structure, we could simply create σ copies of the binary select
structure in Section 5.1, one per character. However, the binary select structure that
we use takes O(n/ log log n) bits of space, and so this will not be a succinct represen-
tation for large σ. We will therefore parallelize the construction of the generalized
select structure described in [1]. It has been described how to do this in O(n) work
in [26], but to do this in O(n log σ/ log n) work to match the bound in [1] requires
additional care.

We will have a separate select structure for each character but the structure is
not the same as in the binary case. For a character c, the structure stores the
location of every σ log2 n’th occurrence of c, and these occurrences define ranges (call
these occurrences range symbols). For each range, if the length is at least σ2 log4 n
then we store the answers directly, and otherwise we store the locations for every

σ(log log n)2’th occurrence of c relative to the start of the range, which define sub-
ranges (call these occurrences sub-range symbols). For a sub-range, if the length is
at least σ3(log log n)4, the answers are stored directly, and otherwise a lookup table
is used to answer any query in the sub-range in O(1) work. The table contains
O(2σ

3(log logn)4σ3(log log n)4) = o(n log σ/(σ log n)) entries since σ = O(log1/3−δ n) for
δ > 0. Thus it can be constructed within the desired complexity bounds.

We will construct the select structures for all characters together. We first split
the input sequence into chunks of log2 n/(3 log σ) symbols and compute the number
of occurrences of each character inside a chunk. Each chunk is further split into
groups of log n/(3 log σ) symbols each. We can output the number of occurrences
of each character in a group using table lookup in O(1) work. The table contains
O(2logn/3) entries, and thus can be computed in o(n log σ/ log n) work and O(log n)
depth. We can also use table lookup to add two sets of σ counts together in O(1)
work. Each count has a maximum value of log2 n/(3 log σ) and thus any count requires
O(log log n) bits to represent. The number of possible inputs to this table is therefore
2O(2σ log logn) = o(n log σ/ log n) and so the table can be constructed within the desired
bounds. To compute the number of occurrences of each character inside a chunk, we
sum together the occurrences across the groups sequentially. This takes O(log n)
depth since there are log n groups per chunk. The computation is parallelized across
all chunks and the overall work performed is O(n log σ/ log n) and overall depth is
O(log n).

Now we must find the range symbols. We perform a prefix sum over the answers
computed above, where the associative combining operator is defined by a lookup
table that takes the σ counts from two chunks and outputs the σ counts that cor-
respond to the sum of the counts from the two input chunks. The counts here will
be relative to the beginning of the sequence, and thus an output can take O(σ log n)
bits to represent and O(σ) work to output. There are O(n log σ/ log2 n) chunks, and
thus the prefix sum takes O(nσ log σ/ log2 n) = O(n log σ/ log n) work and O(log n)
depth.

We now know the number of occurrences of each character in each chunk as well
as from the beginning of the sequence up to that chunk. This allows us to identify
which chunks the range symbols occur in for a given character, and we search in
the associated groups in the chunk for the location of the range symbol. For each
chunk, we scan over the groups sequentially updating the number of times we have
seen a symbol so far via table lookup. Whenever we find a group that contains
a range symbol, we use table lookup find the location of the j’th occurrence of a
character inside the group inO(1) work for an appropriate value of j. Thus, processing
each chunk takes O(log n) work and depth. The lookup table can be constructed in
o(n log σ/ log n) work and O(log n) depth. This process gives all of the range symbols
for a single character. There are at most n/(σ log2 n) chunks that need to be checked
per character, each one taking O(log n) work. Summed across all characters, the work
is O(n/ log n) and the depth is O(log n) (we can do this process for all characters and
all chunks in parallel).

With this information, we can compute the lengths of the ranges between range
symbols. For a given character c, for the ranges that are at least σ2 log4 n long, we

store all of the locations of c. Finding these locations requires scanning the relevant
chunks, which takes O(n log σ/ log n) work and O(log n) depth (each chunk is scanned
sequentially). If we mark the relevant chunks for each character beforehand, one
scan over all of the chunks suffices to obtain the information for all characters. In
particular on each chunk, for each character, we mark the start and the end of the
chunk that it should consider (with a special value if a character’s long ranges do not
span the chunk). This information on each chunk requires O(σ log log n) = o(log n)
bits and thus can be packed into a word and accessed in constant work. The scan over
all chunks takes O(n log σ/ log n) work and O(log n) depth, and for each chunk we
use a lookup table to find the locations of the relevant characters in each group. The
lookup table takes as input a group as well as the information stored on the chunk, and
outputs the locations of all of the relevant characters relative to the start of the group
(each location is tagged with the corresponding character). The work of the query is
proportional to the number of locations returned. The table has 2O(σ log logn)·O(2logn/3)
entries and can be constructed in o(n log σ/ log n) work and O(log n) depth. The
number of locations returned is at most n/(σ2 log4 n) · σ log2 n = O(n/(σ log2 n))
per character. Summed over all characters gives O(n/ log2 n) work for returning the
answers to the queries. These locations are offset by the start of the associated
group. Overall, this step takes O(n log σ/ log n) work and O(log n) depth. To store
these locations, we can pre-allocate space for these long ranges and compute offsets
using prefix sums within the desired work and depth bounds.

For ranges of length less than σ2 log4 n, we compute the sub-range symbols. This
process is mostly similar to how the range symbols were computed but since there
can be up to n/(σ(log log n)2) sub-range symbols per character, outputting their lo-
cations directly would take too much work. However, the locations only require
O(log log n) bits each so we can output O(log n/ log log n) locations in a packed rep-
resentation in constant work. We store on each chunk the start and the end of
the chunk each character should consider for its short range. The lookup table
takes as input a group, the information on the chunk (let C be the set of char-
acters to consider), a skip amount sc for each c ∈ C, and an offset j, and out-
puts the locations offset by j of every sc + kσ(log log n)2’th occurrence of c ∈ C
in a group for all integers k. The offset j is used to make the locations rela-
tive to the beginning of the sub-range. Both sc and j are bounded by the range
length, which is σ2 log4 n. The output locations are tagged with the correspond-
ing character and given in a packed representation (O(log n/ log log n) locations per
word). The total work for writing out the locations of sub-range symbols will then
be O(n/(σ(log log n)2)) · σ · log log n/ log n = o(n log σ/ log n). The lookup table can
be constructed in o(n log σ/ log n) work and O(log n) depth. The overall work is
O(n log σ/ log n) and depth is O(log n).

To determine sub-ranges of length at least σ3(log log n)4, we first return all sub-
range starting locations for all characters that satisfy this inside a group using a
lookup table. The table will return the (packed) locations of the sub-ranges that
satisfy this property. The information on each chunk with the start and the end of
the chunk in a short range for each character is also passed to the lookup table. The
table can then determine which subset of characters to output sub-range starting lo-

cations for inside a group. The number of entries in the table is 2O(σ log logn) ·O(2logn/3)
and can be constructed within our complexity bounds. However, since sub-ranges can
span multiple groups, we then use a prefix sum across all groups where the associative
operator is a lookup table that combines two groups by keeping the latest location
of each relevant character in the first group and earliest location of each relevant
character in the second. It uses the information on the chunk to determine which
characters are relevant, and for which part of the groups they are relevant. It also
outputs any sub-range starting locations where the difference between the latest loca-
tion in the first group and the earliest location in the second is at least σ3(log log n)4.
This table has 2O(σ log logn) · O(22 logn/3) entries and can again be constructed within
the desired bounds. Without accounting for the cost of outputting the locations, the
prefix sum across all groups takes O(n log σ/ log n) work and O(log n) depth. For
each character, there are at most n/(σ3(log log n)4) sub-ranges requiring answers to
be stored directly, each containing σ(log log n)2 locations that require O(log log n)
bits each. By returning the locations in packed representation, the total work is
O(n/(σ3(log log n)4)) · σ(log log n)2 · σ · log log n/ log n = o(n log σ/ log n). The work
for outputting the intermediate results in the prefix sum is also proportional to this.

Finally, for the remaining sub-ranges we create a lookup table that takes a group
and the information on a chunk, and outputs the position (relative to the beginning
of the sub-range) of all relevant occurrences (tagged with the character) in a packed
representation. Constructing this table can be done within the desired bounds.

Overall, constructing the generalized select structure takes O(n log σ/ log n) work
and O(log n) depth. Combined with the algorithm for constructing the generalized
rank structure, we have the following theorem:

Theorem 5.2. For a sequence of length n containing characters in [0, . . . , σ − 1]
packed into n log σ/ log n words, where σ = O(log1/3−δ n) for δ > 0, the corresponding
generalized rank and select structures can be constructed in O(n log σ/ log n) work and
O(log n) depth.

The algorithms use prefix sums on inputs of length O(n log σ/ log n) and therefore
requireO(n log σ) bits of working space. The lookup tables all contain o(n log σ/ log n)
entries, therefore using o(n log σ) bits of working space.

6 Conclusion
We have described parallel algorithms for wavelet tree construction with improved
work complexity. The ideas extend to constructing wavelet trees of arbitrary shape,
multiary wavelet trees, as well as wavelet matrices. We also showed that the rank
and select structures stored on the nodes of the wavelet tree can be constructed work-
efficiently in parallel. An open problem is obtaining a parallel wavelet tree algorithm
with O(ndlog σ/

√
log ne) work and polylogarithmic depth for any value of σ. We are

also interested in improving the working space bound of some of our algorithms.

Acknowledgements
This work was supported by the Miller Institute for Basic Research in Science at
UC Berkeley, U.S. Department of Energy Early Career Award #de-sc0018947, and
National Science Foundation CAREER Award #CCF-1845763. The author thanks
the anonymous reviewers of this paper for helpful feedback.

References
[1] M. A. Babenko, P. Gawrychowski, T. Kociumaka, and T. A. Starikovskaya.

Wavelet trees meet suffix trees. In ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 572–591, 2015.

[2] P. C. P. Bhatt, K. Diks, T. Hagerup, V. C. Prasad, T. Radzik, and S. Saxena.
Improved deterministic parallel integer sorting. Information and Computation,
94(1):29–47, 1991.

[3] R. P. Brent. The parallel evaluation of general arithmetic expressions. J. ACM,
21(2):201–206, 1974.

[4] D. R. Clark. Compact pat trees. Ph.D. Thesis, University of Waterloo, 1996.

[5] F. Claude and G. Navarro. Practical rank/select queries over arbitrary sequences.
In String Processing and Information Retrieval (SPIRE), pages 176–187, 2008.

[6] F. Claude and G. Navarro. The wavelet matrix. In String Processing and Infor-
mation Retrieval (SPIRE), pages 167–179. 2012.

[7] J. A. Edwards and U. Vishkin. Parallel algorithms for Burrows-Wheeler com-
pression and decompression. Theor. Comput. Sci., 525:10–22, Mar. 2014.

[8] P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed represen-
tations of sequences and full-text indexes. ACM Trans. Algorithms, 3(2), May
2007.

[9] J. Fischer, F. Kurpicz, and M. Löbel. Simple, fast and lightweight parallel
wavelet tree construction. InMeeting on Algorithm Engineering and Experiments
(ALENEX), pages 9–20, 2018.

[10] L. Foschini, R. Grossi, A. Gupta, and J. S. Vitter. When indexing equals com-
pression: Experiments with compressing suffix arrays and applications. ACM
Trans. Algorithms, 2(4):611–639, Oct. 2006.

[11] J. Fuentes-Sepulveda, E. Elejalde, L. Ferres, and D. Seco. Efficient wavelet
tree construction and querying for multicore architectures. In Symposium on
Experimental Algorithms (SEA), pages 150–161, 2014.

http://arxiv.org/abs/de-sc/0018947

[12] J. Fuentes-Sepulveda, E. Elejalde, L. Ferres, and D. Seco. Parallel construction
of wavelet trees on multicore architectures. Knowledge and Information Systems,
51(3):1–24, Jun 2017.

[13] R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed text in-
dexes. In ACM Symposium on Discrete Algorithms (SODA), pages 841–850,
2003.

[14] G. J. Jacobson. Succinct static data structures. Ph.D. Thesis, Carnegie Mellon
University, 1988.

[15] Y. Kaneta. Fast wavelet tree construction in practice. In String Processing and
Information Retrieval (SPIRE), pages 218–232, 2018.

[16] J. Labeit. Parallel lightweight wavelet tree, suffix array and FM-index construc-
tion. B.S. Thesis, Karlsruhe Institute of Technology, 2015.

[17] J. Labeit, J. Shun, and G. E. Blelloch. Parallel lightweight wavelet tree, suffix
array and FM-index construction. Journal of Discrete Algorithms, 43:2–17, 2017.

[18] V. Mäkinen, D. Belazzougui, F. Cunial, and A. I. Tomescu. Genome-Scale Al-
gorithm Design: Biological Sequence Analysis in the Era of High-Throughput
Sequencing. Cambridge University Press, 2015.

[19] V. Makinen and G. Navarro. Rank and select revisited and extended. Theor.
Comput. Sci., 387(3):332–347, 2007.

[20] C. Makris. Wavelet trees: A survey. Comput. Sci. Inf. Syst., 9(2):585–625, 2012.

[21] J. I. Munro, Y. Nekrich, and J. S. Vitter. Fast construction of wavelet trees. In
String Processing and Information Retrieval (SPIRE), pages 101–110, 2014.

[22] G. Navarro. Wavelet trees for all. In Combinatorial Pattern Matching (CPM),
pages 2–26. 2012.

[23] G. Navarro. Compact Data Structures: A Practical Approach. Cambridge Uni-
versity Press, 1st edition, 2016.

[24] S. Rajasekaran and J. H. Reif. Optimal and sublogarithmic time randomized
parallel sorting algorithms. SIAM J. Comput., 18(3):594–607, 1989.

[25] R. Raman. The power of collision: Randomized parallel algorithms for chain-
ing and integer sorting. In Foundations of Software Technology and Theoretical
Computer Science (FSTTCS), pages 161–175, 1990.

[26] J. Shun. Parallel wavelet tree construction. In IEEE Data Compression Confer-
ence (DCC), pages 63–72, 2015.

[27] U. Vishkin. Thinking in parallel: Some basic data-parallel algorithms and tech-
niques, 2010.

	1 Introduction
	2 Preliminaries
	3 Review of the O(n"4264306 log/logn"5265307) Work Sequential Algorithm
	4 Parallel Wavelet Tree Algorithms
	4.1 Parallelizing the algorithm of Babenko et al. BabenkoGKS14
	4.2 Domain-decomposition approach
	4.3 Variants

	5 Improved Parallel Construction of Rank/Select Structures
	5.1 Binary Sequences
	5.2 Generalized Rank and Select Structures

	6 Conclusion

