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Counterfactual Off-Policy Evaluation with
Gumbel-Max Structural Causal Models

Michael Oberst 1 David Sontag 1

Abstract
We introduce an off-policy evaluation procedure
for highlighting episodes where applying a rein-
forcement learned (RL) policy is likely to have
produced a substantially different outcome than
the observed policy. In particular, we introduce
a class of structural causal models (SCMs) for
generating counterfactual trajectories in finite
partially observable Markov Decision Processes
(POMDPs). We see this as a useful procedure
for off-policy “debugging” in high-risk settings
(e.g., healthcare); by decomposing the expected
difference in reward between the RL and observed
policy into specific episodes, we can identify
episodes where the counterfactual difference in
reward is most dramatic. This in turn can be used
to facilitate review of specific episodes by do-
main experts. We demonstrate the utility of this
procedure with a synthetic environment of sepsis
management.

1. Introduction
When a patient dies in the hospital, we might ask: Could
it have been avoided, if the clinicians acted differently?
This is impossible to know, because we cannot go back in
time. Nonetheless, there is precedent for trying to answer
these counterfactual questions: In medical malpractice, for
instance, establishing fault requires showing that the injury
would not have occurred “but for” the breach in the standard
of care (Bal, 2009; Encyclopedia, 2008).

When considering the deployment of new technologies in
high-risk environments, such as RL policies in healthcare,
we might worry about a similar counterfactual: If we had
deployed an RL policy, would it have caused the death
of patients who lived under a physician policy? Or more
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optimistically, are there lives which could have been saved?
This question becomes increasingly relevant, with growing
interest in applying RL to everything from HIV therapy
(Parbhoo et al., 2017) to epilepsy (Guez et al., 2008) and
sepsis (Komorowski et al., 2018).

However, evaluation of RL policies with observational data
remains a challenge, albeit a necessary one due to the safety
risk of training an RL agent on real patients. Off-policy eval-
uation in this context is prone to issues such as confounding,
small effective sample sizes, and lack of introspection as
discussed in Gottesman et al. (2019). Lacking a surefire
solution, a physician might review patient trajectories along-
side the suggested actions from an RL policy, and ask: Does
this seem reasonable? What do I think would have happened
if this policy had been followed? Yet, manual inspection of
trajectories is not only inefficient, but difficult to interpret
without more information: If we are to discover new insights
about treatment, shouldn’t there be some disagreement?

This motivates our main conceptual contribution: By flip-
ping the counterfactual question around, and “asking the
algorithm” what would have happened, we aim to high-
light the most interesting cases of disagreement, while also
demonstrating implicitly why the learned policy is preferred,
based on the projected differences in trajectories.

More specifically, in the context of model-based RL with
discrete states, we give a post-hoc method to elicit the an-
swers to these questions based on a learned dynamics model.
Our goal is to pair counterfactual trajectories with observed
trajectories, so that domain experts can “sanity-check” a pro-
posed policy, potentially with additional side-information
(e.g., chart review in the case of a patient). In Section 5
we use a synthetic environment of sepsis management to
demonstrate how this type of introspection can highlight
dangerous implicit assumptions of the learned policy, even
when off-policy evaluation is overly optimistic.

Towards generating these counterfactual trajectories, we
have to deal with a fundamental issue of non-identifiability
in the absence of deterministic dynamics. As we show in this
paper, even with a fully-specified finite Markov Decision
Process (MDP), there are multiple parameterizations of a
structural causal model (SCM) which are equally compatible
with the transition and reward distributions, but which sug-
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gest different counterfactual outcomes. For binary treatment
and outcomes, the monotonicity condition is sufficient to
identify the counterfactual distribution (Pearl, 2000) and has
been previously used in epidemiology applications (Cuellar
& Kennedy, 2018). However, to our knowledge, there is no
analogous condition for the categorical case.

This motivates our main theoretical contribution, which is
two-fold. First, we introduce a general condition of counter-
factual stability for SCMs with categorical variables (e.g.,
state transitions) and prove that this condition implies the
monotonicity condition in the case of binary categories.
Second, we introduce the Gumbel-Max SCM, based on the
Gumbel-Max trick for sampling from discrete distributions,
and (a) demonstrate that it satisfies the counterfactual sta-
bility condition, and (b) give a Monte Carlo procedure for
drawing counterfactual trajectories under this model. We
note that any discrete probability distribution can be sampled
using a Gumbel-Max SCM; As a result, drawing counter-
factual trajectories can be done in a post-hoc fashion, given
any probabilistic model of dynamics with discrete states.

The paper proceeds as follows: In Section 2, we review the
formulation of structural causal models and counterfactual
estimation, as given by Pearl (2009) and Peters et al. (2017).
In Section 3, we introduce the assumption of counterfactual
stability, propose a SCM which satisfies it, and show how
it can be used to estimate counterfactual trajectories in a
Partially Observed Markov Decision Process (POMDP). In
Section 4, we discuss related work, and in Section 5 we give
an illustrative application using a synthetic example.

2. Preliminaries
2.1. Structural Causal Models

First, we briefly review the concept of structural causal
models, and encourage the reader to refer to Pearl (2009)
(Section 7.1) and Peters et al. (2017) for more details.

Notation: As a general rule throughout, we refer to a ran-
dom variable with a capital letter (e.g., X), the value it ob-
tains as a lowercase letter (e.g.,X = x), and a set of random
variables with boldface font (e.g., X = {X1, . . . , Xn}).
Consistent with Peters et al. (2017) and Buesing et al. (2019),
we write PX for the distribution of a variable X , and px for
the density function.

Definition 1 (Structural Causal Model (SCM)). A struc-
tural causal modelM consists of a set of independent ran-
dom variables U = {U1, . . . , Un} with distribution P (U),
a set of functions F = {f1, . . . , fn}, and a set of vari-
ables X = {X1, . . . , Xn} such that Xi = fi(PAi, Ui),∀i,
where PAi ⊆ X \Xi is the subset of X which are parents
ofXi in the causal DAG G. As a result, the prior distribution
P (U) and functions F determine the distribution PM.

YT

X

YT

X

Ut

Ux Uy

Figure 1. Example translation of a Bayesian Network into the cor-
responding Structural Causal Model. Left: Causal DAG on an
outcome Y , covariates X , and treatment T . Given this graph, we
can perform do-calculus (Pearl, 2009) to estimate the impact of
interventions such as E[Y |X, do(T = 1)]− E[Y |X, do(T = 0)],
known as the Conditional Average Treatment Effect (CATE).
Right: All observed random variable are assumed to be gener-
ated via structural mechanisms fx, ft, fy via independent latent
factors U which cannot be impacted via interventions. Following
convention of Buesing et al. (2019), calculated values are given
by black boxes (and in this case, are observed), observed latent
variables are given in grey, and unobserved variables in white.

As a motivating example to simplify exposition, we will
assume the pair of causal graphs given in Figure 1. This
causal graph corresponds to a single-action setting which
is often assumed in the literature of Conditional Average
Treatment Effect (CATE) estimation (see, e.g., Johansson
et al., 2016). It can be used to represent, for instance, the
effect of a medical treatment T on an outcome Y in the
presence of confounding variables X.

The SCMM defines a complete data-generating processes,
which entails the observational distribution P (X, Y, T ). It
also defines interventional distributions. For example, the
estimate of CATE is given by τx = E[Y |X, do(T = 1)]−
E[Y |X, do(T = 0)], where the do-operator (Pearl, 2009) is
used to signify an intervention.
Definition 2 (Interventional Distribution). Given an SCM
M, an intervention I = do

(
Xi := f̃(P̃Ai, Ũi)

)
corre-

sponds to replacing the structural mechanism fi(PAi, Ui)
with f̃i(P̃Ai, Ui). This includes the concept of atomic in-
terventions, where we may write more simply do(Xi = x).
The resulting SCM is denotedMI , and the resulting inter-
ventional distribution is denoted PM;I .

For instance, suppose that Y corresponds to a favorable
binary outcome, such as 5-year survival, and T corresponds
to a treatment. Then several quantities of interest in causal
effect estimation, such as pT=1 := E[Y |X, do(T = 1)],
pT=0 := E[Y |X, do(T = 0)], and τx = pT=1 − pT=0,
are all defined by the interventional distribution, which is
forward-looking, telling us what might be expected to occur
if we applied an intervention.

However, we can also define the counterfactual distribution
which is retrospective, telling us what might have happened
had we acted differently. For instance, we might ask: Hav-
ing given the drug and observed that Y = 1 (survival), what
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would have happened if we had instead withheld the drug?

Definition 3 (Counterfactual Distribution). Given an SCM
M and an observed assignment X = x over any set of ob-
served variables, the counterfactual distribution PM|X=x;I

corresponds to the distribution entailed by the SCM MI

using the posterior distribution P (U|X = x).

Explicitly, given an SCMM, the counterfactual distribution
can be estimated by first inferring the posterior over latent
variables, e.g., P (U|X = x, T = 1, Y = 1) in our running
example, and then passing that distribution through the struc-
tural mechanisms in a modifiedMI (e.g., I = do(T = 0))
to obtain a counterfactual distribution over any variable1.

2.2. (Non)-Identifiability of Counterfactuals

Given an SCMM, we can compute an answer to our coun-
terfactual question: Having given the drug and observed
that Y = 1 (survival), what would have happened if we had
instead withheld the drug? In the binary case, this corre-
sponds to the Probability of Necessity (PN) (Pearl, 2009;
Dawid et al., 2015), because it represents the probability
that the exposure T = 1 was necessary for the outcome.

However, the answer to this question is not identifiable with-
out further assumptions: That is, there are multiple SCMs
which are all consistent with the interventional distribu-
tion, but which produce different counterfactual estimates
of quantities like the Probability of Necessity (Pearl, 2009).

2.3. Monotonicity Assumption to Identify Binary
Counterfactuals

Nonetheless, there are plausible (though untestable) assump-
tions we can make that identify counterfactual distributions.
In particular, the monotonicity assumption (Pearl, 2000;
Tian & Pearl, 2000) is sufficient to identify the Probability
of Necessity and related quantities used in epidemiology
(Cuellar & Kennedy, 2018; Yamada & Kuroki, 2017) to
answer counterfactual queries with respect to a binary treat-
ment and outcome.

Definition 4 (Monotonicity). An SCM of a binary variable
Y is monotonic relative to a binary variable T if and only
if it has the following property2,3: E[Y |do(T = t)] ≥
E[Y |do(T = t′)] =⇒ fy(t, u) ≥ fy(t

′, u), ∀u. We can

1Called abduction, action, and prediction in Pearl (2009)
2We could also write this property as conditional on X
3This definition differs slightly from the presentation of mono-

tonicity in Pearl (2009), where fy(t, u) being monotonically in-
creasing in t is given as the property, with the testable implication
that E[Y |do(T = t)] ≥ E[Y |do(T = t′)] for t ≥ t′. Because
the direction of monotonicity is only compatible with the corre-
sponding direction of the expected interventional outcomes, we
fold this into the definition of monotonicity directly, to align with
our later definition of counterfactual stability. Also note that we
use the notation Ydo(T=t) := fy(t, u) here

Figure 2. SCM for a POMDP as taken from Buesing et al. (2019),
with initial state Us1 = S1, states St, and histories Ht, where the
action is generated via the mechanism π(Ua, Ht).

write equivalently that the following event never occurs,
in the case where E[Y |do(T = 1)] ≥ E[Y |do(T = 0)]:
Ydo(T=1) = 0∧Ydo(T=0) = 1. Conversely for E[Y |do(T =
1)] ≤ E[Y |do(T = 0)], the following event never occurs:
Ydo(T=1) = 1 ∧ Ydo(T=0) = 0.

This assumption restricts the class of possible SCMs to those
which all yield equivalent counterfactual distributions over
Y . For instance, the following SCM exhibits the monotonic-
ity property, and replicates any interventional distribution
where g(x, t) = E[Y |X = x, do(T = t)]:

Y = 1 [Uy ≤ g(x, t)] , U ∼ Unif(0, 1)

More importantly, the monotonicity assumption identifies
several counterfactual quantities, such as the Probability of
Necessity mentioned earlier.

2.4. Relationship to POMDPs

As noted in Buesing et al. (2019), we can view an episodic
Partially Observable Markov Decision Process (POMDP)
as an SCM, as shown in Figure 2, where St corresponds
to states, At corresponds to actions, Ot corresponds to ob-
servable quantities (including reward Rt), Ht contains his-
tory up to time t, i.e., Ht = {O1, A1, . . . At−1, Ot}, and
stochastic policies are given by π(at|ht).

Buesing et al. (2019) investigate a grid-world setting where
the transition distribution P (St+1|St, At) is deterministic.
To extend this counterfactual reasoning to stochastic transi-
tions, we need to make further assumptions on the functional
relationships themselves. However, to the best of our knowl-
edge, there is no investigation of plausible assumptions
in the literature to identify the answers to counterfactual
queries in the case of categorical distributions.

3. Gumbel-Max SCMs
In the context of reinforcement learning with POMDPs,
we are typically concerned with estimating the expected
reward of a proposed policy π̂. To formalize notation,
a given policy π implies a density over trajectories τ ∈
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T = (S1, O1, A1, . . . , AT−1, ST , OT ), which we denote
as pπ(τ), and we let R(τ) be the total reward of a trajectory
τ . For ease of notation, we sometimes write Eπ̂ and Eobs
to indicate an expectation taken with respect to τ ∼ pπ̂ and
τ ∼ pπobs respectively, where π̂ refers to the proposed (‘tar-
get’) policy, and πobs to the observed (‘behavior’) policy.

If we wish to compare the performance of a proposed pol-
icy π̂ and the observed policy πobs, we might compare the
difference in expected reward. The expected reward under
πobs can be estimated in this case using observed trajecto-
ries, without a model of the environment. The difference in
expected reward is conceptually similar to the average treat-
ment effect (ATE) of applying the proposed vs. observed
policy, and we denote it as δ:

δ := Eπ̂[R(τ)]− Eobs[R(τ)] (1)

However, it may be useful to drill down into specific cases:
Perhaps there are certain environments, for instance, in
which the proposed policy would perform better or worse
than the observed policy. One natural decomposition is to
condition on the first observed state to estimate a conditional
expected reward, e.g.,

δo := Eπ̂[R(τ)|O1 = o]− Eobs[R(τ)|O1 = o] (2)

Equation 2 corresponds conceptually to CATE estimation,
where we condition only on pre-treatment information (in
this case, O1, which occurs before the first action). We
can use post-treatment information to decompose this fur-
ther, over actual trajectories that we have observed, to high-
light differences between the observed and proposed policy.
Given a causal model of the environment (in the form of
an SCM as described in Section 2.4), we can decompose
Equation 2 further as follows:

Lemma 1 (Counterfactual Decomposition of Expected Re-
ward). Let trajectories τ be drawn from pπobs . Let τπ̂ be a
counterfactual trajectory, drawn from our posterior distri-
bution over the exogenous U variables under the new policy
π̂. Note that under the SCM, τπ̂ is a deterministic function
of the exogenous U variables, so we can write τπ̂(u) to be
explicit:

Eπ̂[R(τ)|O1 = o]

=

∫
τ

pπobs(τ |O1 = o1)Eu∼pπobs (u|τ)[R(τπ̂(u))]dτ

Corollary 1 (Counterfactual Decomposition of δo).

δo := Eπ̂[R(τ)|O1 = o]− Eobs[R(τ)|O1 = o]

=

∫
τ

pπobs(τ |O1 = o1)Eu∼pπobs (u|τ)[R(τπ̂(u))−R(τ)]dτ

The proofs of Lemma 1 and Corollary 1 are very similar
to (and are essentially implied by) Lemma 1 from Buesing
et al. (2019), but are given in self-contained form in the
supplement. Corollary 1 implies that we can decompose
the expected difference in reward between the policies into
differences on observed episodes over counterfactual trajec-
tories. However, we face a non-identifiability issue when
transitions are not deterministic: Multiple SCMs can all
entail the same interventional distribution, but a different
set of counterfactual trajectories, and therefore a different
decomposition under Lemma 1.

This motivates the theoretical work of this section: We
must make our assumptions carefully, as they cannot be
tested by data, so it is worth investigating which assump-
tions are consistent with our causal intuition. We illustrate
this non-identifiability (with respect to categorical distri-
butions) in Section 3.1. Then we introduce the condition
of counterfactual stability (in Section 3.2) for a discrete
distribution on k categories, and show that it is compatible
with the monotonicity condition of Pearl (2000) in that it
implies the monotonicity assumption when k = 2. Then
we introduce the Gumbel-Max SCM for discrete variables
in Section 3.3, and prove that it satisfies the counterfactual
stability condition. Finally, in Section 3.4 we describe how
the Gumbel-Max SCM assumption can be used to generate
a posterior over the counterfactual distribution, under the
condition that the data comes from this SCM.

3.1. Non-Identifiability of Categorical Counterfactuals

We will first illustrate that the non-identifiability of coun-
terfactual distributions applies to categorical distributions
as well. Consider the categorical distribution over k
categories, e.g., the transition kernel P (S′|S = s,A = a)
over discrete states. Let pi := P (S′ = i|S = s,A = a).
There are multiple ways that we could sample from this
distribution with a structural mechanism f and latent
variables U . For instance, we could define an ordering
ord on the categories, and define k intervals of [0, 1] as
[0, pord(1)), [pord(1),

∑2
i=1 pord(i)), . . . , [

∑k−1
i=1 pord(i), 1].

Then we could draw U ∼ Unif(0, 1), and return the
interval that u falls into.

However, different permutations ord will yield equiva-
lent interventional distributions but can imply different
counterfactual distributions. For instance, let k = 4 and
p1 = p2 = 0.25, p3 = 0.3, p4 = 0.2 and consider an in-
tervention A = a′ which defines a different distribution
p′1 = 0, p′2 = 0.25, p′3 = 0.25, p′4 = 0.5. Now consider
two permutations, ord = [1,2,3,4] and ord′ = [1,2,4,3],
and the counterfactual distribution under a′ given that
S′ = 2, A = a. In each case, posterior inference over U im-
plies that P (U |S′ = 2, S = s,A = a) ∼ Unif [0.25, 0.5).
However, under ord this implies the counterfactual S′ = 3,
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while under ord′ it implies S′ = 4. A visual depiction of
this can be found in the supplement.

Note that in this example, the mechanism ford implied a
non-intuitive counterfactual outcome: Even though the inter-
vention A = a′ lowered the probability of S′ = 3 (relative
to the probability under A = a) without modifying the
probability of S′ = 2, it led to a counterfactual outcome of
S′ = 3. Since all choices for ord imply the same interven-
tional distribution, there is no way to distinguish between
these mechanisms with data.

This motivates the following sections, where we posit a de-
sirable property for categorical SCMs which rules out this
result (among others) and is compatible with the notion of
monotonicity introduced by Pearl (2000). We then demon-
strate that a mechanism based on sampling independent
Gumbel variables satisfies this property, which motivates
the use of the Gumbel-Max SCM for performing counter-
factual inference in this setting.

3.2. Counterfactual Stability

We now introduce our first contribution, the desired property
of counterfactual stability for categorical SCMs with k cate-
gories, laid out in in Definition 5. This property would rule
out the non-intuitive counterfactual implications of ford in
Section 3.1. We then demonstrate that this condition implies
the monotonicity condition when k = 2.

Notation: Denote the interventional probability distribution
of a categorical variable Y with k categories as PM;I(Y ) =
p under intervention I , and p′ under intervention I ′, where
p,p′ are vectors in the probability simplex over k categories.
To simplify notation for interventional outcomes, we will
sometimes denote by YI the observed outcome Y under
intervention I , and denote by YI′ the counterfactual out-
come under intervention I ′, such that pi and P (YI = i) are
both equivalent to PM;I(Y = i), and similarly for I ′. For
counterfactual outcomes, we will write PM|YI=i;I

′
(Y ) for

the counterfactual distribution of Y under intervention I ′

given that we observed Y = i under the intervention I .
Definition 5 (Counterfactual Stability). An SCM of a cate-
gorical variable Y satisfies counterfactual stability if it has
the following property: If we observe YI = i, then for all
j 6= i, the condition p′i

pi
≥ p′j

pj
implies that PM|YI=i;I

′
(Y =

j) = 0. That is, if we observed Y = i under intervention I ,
then the counterfactual outcome under I ′ cannot be equal to
Y = j unless the multiplicative change in pi is less than the
multiplicative change in pj .
Corollary 2. IfM is a SCM which satisfies counterfactual
stability, then if we observe YI = i, and p′i

pi
≥ p′j

pj
holds for

all j 6= i, then PM|YI=i;I
′
(Y = i) = 1.

This definition and corollary encode the following intuition

about counterfactuals: If we had taken an alternative action
that would have only increased the probability of Y = i,
without increasing the likelihood of other outcomes, then
the same outcome would have occurred in the counterfactual
case. Moreover, in order for the outcome to be different
under the counterfactual distribution, the relative likelihood
of an alternative outcome must have increased relative to that
of the observed outcome. The connection to monotonicity
is given in Theorem 1. The proof is straightforward, and
found in the supplement.

Theorem 1. Let Y = fy(t, u) be the SCM for a binary
variable Y , where T is also a binary variable. If this SCM
satisfies the counterfactual stability property, then it also
satisfies the monotonicity property with respect to T .

3.3. Gumbel-Max SCM

Unlike monotonicity with binary outcomes and treatments,
the condition of counterfactual stability does not obviously
imply any closed-form solution for the counterfactual poste-
rior. Thus, we introduce a specific SCM which satisfies this
property, and discuss in Section 3.4 how to sample from the
posterior distribution in a straightforward fashion.

We recall the following fact, known as the Gumbel-Max
trick (Luce, 1959; Yellott, 1977; Yuille. & L, 2011; Hazan
& Jaakkola, 2012; Maddison et al., 2014; Hazan et al., 2016;
Maddison et al., 2017):

Definition 6 (Gumbel-Max Trick). We can sample from a
categorical distribution with k categories as follows, where
p̃i is the unnormalized probability P (Y = i): First, draw
g1, . . . , gk from a standard Gumbel, which can be achieved
by drawing u1, . . . , uk iid from a Unif(0, 1), and assigning
gi = − log(− log ui). Then, set the outcome j by taking
argmaxj log p̃j + gj .

Clearly, we can perform this for any categorical distribution,
e.g., the transition distribution pi = P (S′ = i|S,A); In
particular, for any discrete variable Y whose parents in a
causal DAG are denoted X, a Gumbel-Max SCM assumes
the following causal mechanism, where g = (g1, . . . , gk)
are independent Gumbel variables:

Y = fy(x,g) := argmax
j
{logP (Y = j|X = x) + gj}

Like any mechanism which replicates the conditional distri-
bution under intervention, this mechanism is indistinguish-
able from any other causal mechanism based on data alone.
That said, it does satisfy the property given in Definition 5.

Theorem 2. The Gumbel-Max SCM satisfies the counter-
factual stability condition.

The proof is straightforward, and given in the supplement.
The intuition is that, when we consider the counterfactual
distribution, the Gumbel variables are fixed. Thus, in order
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for the argmax (our observed outcome) to change in the
counterfactual, the log-likelihood of an alternative outcome
must have increased relative to our observed outcome.

3.4. Posterior Inference in the Gumbel-Max SCM

Given a Gumbel-Max SCM as defined above, where Y =
argmaxj log pj + gj and pj := P (YI = j), we can draw
Monte Carlo samples from the posterior P (g|YI = i) using
one of two approaches: First, we can use rejection sampling,
drawing samples from the prior P (g) and rejecting those
where i 6= argmaxj log pj + gj . Alternatively, it is known
(Maddison et al., 2014; Maddison & Tarlow, 2017) that in
the posterior, the maximum value and the argmax of the
shifted Gumbel variables log pj + gj are independent, and
the maximum value is distributed as a standard Gumbel (in
the case of normalized probabilities). Thus, we can sample
the maximum value first, and then sample the remaining
values from shifted Gumbel distributions that are truncated
at this maximum value. Then, for each index j, subtracting
off the location parameter log pj will give us a sample of gj .
We can then add this sample g to the log-probabilities under
I ′ (i.e., logp′) and take the new argmax to get a sample of
the counterfactual outcome Y under intervention I ′.

4. Related Work
In the machine learning community, there has been recent
interest in applying insights from causal inference to aug-
ment the training of RL models, such as in bandit settings
(Lee & Bareinboim, 2018) and in model-based RL (Buesing
et al., 2019). The most similar work to our own is Buesing
et al. (2019), but while they use counterfactuals to approxi-
mate draws from the interventional distribution, we treat the
counterfactual distribution as the primary object of interest.

The term ‘counterfactuals’ is often used more broadly in
causal inference and machine learning, e.g., in the estima-
tion of potential outcomes (Imbens & Rubin, 2015), which
are also counterfactual outcomes at an individual level. How-
ever, this is often used (e.g., Schulam & Saria, 2017; Jo-
hansson et al., 2016) primarily towards predicting quantities
related to the interventional distribution, such as CATE.

Assumptions on structural mechanisms are also used in
structure learning to identify the direction of causation
X → Y or X ← Y from the observational distribution
alone, with both continuous (Peters & Schölkopf, 2014;
Mooij et al., 2016) and discrete (Kocaoglu et al., 2017) vari-
ables. However, these assumptions imply differences in the
observational distribution (by design), whereas our assump-
tions distinguish between counterfactual distributions which
are both observationally and interventionally equivalent.

The assumption of monotonicity implicitly appears in early
work in epidemiology on estimating quantities like the ‘rel-

ative risk ratio’ (Miettinen, 1974), which are often imbued
with causal interpretations (Pearl, 2009; Yamada & Kuroki,
2017). Formalizing the assumption of monotonicity, re-
quired to correctly impute causal meaning to these quanti-
ties, is covered in Balke & Pearl (1994); Pearl (2000); Tian
& Pearl (2000). More recent work in epidemiology uses the
assumption of monotonicity explicitly, e.g., to estimate the
counterfactual effect of water sanitation in Kenya (Cuellar
& Kennedy, 2018), and there has been ample discussion
and debate regarding how this reasoning could apply (in
principle) to legal cases, such as litigation around the toxic
effects of drugs (Dawid et al., 2016).

The use of Gumbel variables to sample from a categori-
cal distribution (the Gumbel-Max Trick) is well known (see
Definition 6) but in recent work in the machine learning com-
munity (Maddison et al., 2017; Hazan et al., 2016) it is not
imbued with the same causal / counterfactual interpretation
that we propose here. The Gumbel-Max mechanism was
initially introduced in the discrete-choice literature (Luce,
1959), where it is used as a generative model for decision-
making under utility maximization (Train, 2002; Aguirre-
gabiria & Mira, 2010), where the log probabilities may be
assumed to follow some functional form, such as being
linear in features. This is motivated by understanding the
impact of different characteristics on consumer choices, see
(Aguirregabiria & Mira, 2010, Example 1). In contrast, we
decouple this structural mechanism (for estimation of coun-
terfactuals) from the statistical model used to estimate the
conditional probability distributions under interventions.

5. Experiments
As discussed in Section 1, our hope is to provide a method
for qualitative introspection and ‘debugging’ of RL models,
in settings where a domain expert could plausibly examine
individual trajectories. We give an illustrative example of
this use case here, motivated by recent work examining the
use of RL algorithms for treating sepsis among intensive-
care unit (ICU) patients (Komorowski et al., 2018). In
particular, we use a simple simulator of sepsis and “debug”
an RL policy that is learned on observed trajectories.

An analysis like this requires three ingredients: First, we
are given observed trajectories, but cannot directly interact
with the environment4. Second, we have access to a struc-
tural causal model of the environment. In this case, that
model is a finite MDP, learned based on observed samples,
combined with the assumption of a Gumbel-Max SCM for
transition distributions. Finally, we need a target policy to
evaluate. We refer to the policy which generated the data as
the behavior policy, to distinguish it from the target policy.

4We do not assume access to a simulator; In this example, it is
used only for obtaining the initial observed trajectories.
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In Sections 5.1-5.2 we describe our illustrative scenario,
in which a target RL policy appears to perform well using
off-policy evaluation methods such as weighted importance
sampling, when it is actually much worse than the behav-
ior policy. In Sections 5.3-5.4 we then demonstrate how
our method could be used to identify a promising subset
of trajectories for further introspection, and uncover the
flaws in the target policy using side information (e.g., chart
review of individual patients). All the code required to repro-
duce our experiments is available online at https://www.
github.com/clinicalml/gumbel-max-scm

5.1. Illustrative Analysis: Sepsis

Environment: Our simulator includes four vital signs
(heart rate, blood pressure, oxygen concentration, and glu-
cose levels) with discrete states (e.g., low, normal, high),
along with three treatment options (antibiotics, vasopressors,
and mechanical ventilation), all of which can be applied at
each time step. Reward is +1 for discharge of a patient,
and -1 for death. Discharge occurs only when all patient
vitals are within normal ranges, and all treatments have been
stopped. Death occurs if at least three of the vital signs are
simultaneously out of the normal range. In addition, a bi-
nary variable for diabetes is present with 20% probability,
which increases the likelihood of fluctuating glucose levels.

Observed Trajectories: For the purposes of this illustra-
tion, the behaviour policy was constructed using Policy
Iteration (Sutton & Barto, 2017) with full access to the pa-
rameters of the underlying MDP (including diabetes state).
This was done deliberately to set up a situation in which the
observed policy performs well. To introduce variation, the
policy takes a random alternative action w.p. 0.05. Using
this policy, we draw 1000 patient trajectories from the simu-
lator, with a maximum of 20 time steps. If neither death nor
discharge is observed, the observed reward is zero.

Structural Causal Model: For this illustration, we ‘hide’
glucose and diabetes state in the observed trajectories; Given
this reduced state-space, we learn the parameters of the
finite MDP by using empirical counts of transitions and
rewards from the 1000 observed trajectories, with death and
discharge treated as absorbing states. For state / action pairs
that are not observed, we assume that any action leads to
death, and confirm that this results in a target policy which
never takes an action that has never been observed. For
counterfactual evaluation, we make the assumption that the
transitions are generated by a Gumbel-Max SCM.

Target Policy: The target policy is learned using Policy
Iteration on the parameters of the learned MDP. Because the
target policy is learned using a limited number of samples,
as well as an incomplete set of variables, it should perform
poorly relative to the behavior policy.
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Figure 3. Estimated reward under the target (RL) policy, with 95%
uncertainty intervals generated through 100 bootstrapped samples
(with replacement) of the same 1000 observed trajectories (for
1,2,4) and of 1000 new trajectories under the target policy (for 3,5).
(1) Obs: Observed reward under the behavior policy. (2) WIS: Es-
timated reward under the target policy using weighted importance
sampling. (3) MB: Estimated reward using the learned MDP as a
generative model. (4) CF: Estimated reward over counterfactual
trajectories (5 per observed trajectory). (5) True: Observed reward
under the target policy, over 1000 newly simulated trajectories.

5.2. Off-Policy Evaluation Can Be Misleading

First, we demonstrate what might be done to evaluate this
target policy without the use of counterfactual tools. In
Figure 3, we compare the observed reward of the actual
trajectories against the estimated reward of the target policy.
Using weighted importance sampling on the given trajec-
tories, the target policy appears superior to the behavior
policy. We also use the parameters of the learned MDP to
perform model-based off-policy evaluation (MB-PE), using
the MDP as a generative model to simulate trajectories and
their expected reward. Both of these suggest that the target
policy is superior to the behavior policy. In reality, the target
policy is inferior (as expected by construction), as verified
by drawing new samples from the simulator under the tar-
get policy. This corresponds conceptually to what would
happen if the target policy were deployed “in the wild”.

With this in mind, we demonstrate how examining individ-
ual counterfactual trajectories gives insight into the target
policy. The first step is to apply counterfactual off-policy
evaluation (CF-PE) using the same MDP and the Gumbel-
Max SCM. This yields similarly optimistic results as MB-
PE. However, by pairing counterfactual outcomes with
observed outcomes of individual patients, we can investi-
gate why the learned MDP concludes (wrongly) that the
target policy would be so successful.

5.3. Identification of Informative Trajectories

To debug this model (without access to a simulator), we
can start by drawing counterfactual trajectories for each
individual patient under the target policy. With these in
hand, we can assign each individual patient to one of nine

https://www.github.com/clinicalml/gumbel-max-scm
https://www.github.com/clinicalml/gumbel-max-scm
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Figure 4. Decomposition of 1000 observed patient trajectories
based on observed outcome (Died, no change, and discharged)
vs counterfactual outcome under the target policy, using the most
common outcome over 5 draws from the counterfactual posterior.

categories, based on the most frequently occurring counter-
factual outcome (death, no change, or discharge) in Figure 4.
This highlights individual trajectories for further analysis,
as discussed in the next section5.

5.4. Insights from Examining Individual Trajectories

Using this decomposition, we can focus on the 10% of
observed trajectories where the model concludes that “if the
physician had applied the target policy, these patients who
died would have most likely lived”.

This is a bold statement, but also one that is plausible for
domain experts to investigate (e.g., through chart review
of these specific patients), to try and understand the ratio-
nale. We illustrate this type of analysis in Figure 5, which
shows both the observed trajectory and the counterfactual
trajectories for a simulated patient.

This example illustrates a dangerous failure mode, where
the target policy would have halted treatment despite the
glucose vital being dangerously low (e.g., at t = 5, 7, 8, 11).
Under the learned MDP, the counterfactual optimistically
shows a speedy discharge as a result of halting treatment. To
understand why, recall that discharge occurs when all four
vitals are normal and treatment is stopped. Because diabetes
and glucose fluctuations are relatively rare, and because the
MDP does not observe either, the model learns that there is
a high probability of discharge when the first three vitals are
normal, and the action of ‘stop all treatments’ is applied.

6. Conclusion
Given the desire to deploy RL policies in high-risk settings
(e.g., healthcare), it is important to develop more tools and

5We only draw 5 counterfactuals per observed trajectory for
illustrative purposes here, but note that standard concentration ar-
guments could be used to quantify how many of these independent
draws are required to achieve a desired precision on counterfactual
quantities of interest, e.g., the probability of death
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Figure 5. Observed and counterfactual trajectories of a patient. The
first four plots show the progression of vital signs, and the last
three show the treatment applied. For vital signs, the normal range
is indicated by red dotted lines. The black lines show the observed
trajectory, which ends in death (signified by the red cross), and
the blue lines show five counterfactual trajectories all of which
end in discharge, signified by green diamonds. The glucose vital
sign was not included in the model, and hence does not have
a counterfactual trajectory. Note how this differs from a newly
simulated trajectory of a patient with the same initial state, e.g.,
all the counterfactual trajectories are identical to the observed
trajectory up to a divergence in actions (t = 2).

techniques to introspect these models and the policies they
learn. Our proposed technique can be used to flag individual
trajectories for review by a domain expert, based on the
fact that they have divergent counterfactual and observed
outcomes. Specifically, we gave an example of how this
could help to identify sub-optimal (and perhaps dangerous)
behavior in a proposed policy.

Applying this approach requires knowing the structural
causal model: simply knowing the MDP is insufficient, as
demonstrated by our unidentifiability results. The Gumbel-
Max SCM is an example of an SCM that may be realistic
in some settings. As followup, it would be interesting to
understand the sensitivity of counterfactual trajectories to
the specific choice of SCM. For instance, while we are not
aware of another SCM that both satisfies the counterfactual
stability condition and can model any discrete conditional
probability distribution, it would be interesting to charac-
terize the space of such alternative SCMs, or prove that
no other such SCM exists for k > 2 which satisfies these
conditions.
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