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A sequence of Kendama manipulations with corresponding displacement field (yellow) and force field (red). Video can be

found on Youtube: https://youtu.be/hWw9A0ZBZuU

Abstract—In this paper, we present a new version of tactile
sensor GelSlim 2.0 with the capability to estimate the contact
force distribution in real time. The sensor is vision-based and
uses an array of markers to track deformations on a gel pad
due to contact. A new hardware design makes the sensor more
rugged, parametrically adjustable and improves illumination.
Leveraging the sensor’s increased functionality, we propose to
use inverse Finite Element Method (iFEM), a numerical method
to reconstruct the contact force distribution based on marker
displacements. The sensor is able to provide force distribution of
contact with high spatial density. Experiments and comparison
with ground truth show that the reconstructed force distribution
is physically reasonable with good accuracy.

I. INTRODUCTION

Force feedback is key to humans’ amazingly dexterous
manipulation skill. Open-loop or vision-guided motion can
be inaccurate and slow for many manipulation tasks[1].
Enabling tactile sensing and tactile-based control in robotic
manipulation can significantly improve the robustness, pre-
cision and reliability of robot performance.

Furthermore, many manipulation tasks are often conve-
nient to think about in force space, making contact force an
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important form of feedback. For example, when picking a
ball and placing it on a Kendama, some specific instants are
critical phase transitions in the actions. Force information
seamlessly captures when successful grasping, lifting, reori-
enting, placing and releasing of the ball is achieved. Such
information is critical for tackling more complex robotic
manipulation tasks.

Tactile-sensing technology has been developed in the past
to meet this need. Among different technologies for tactile
sensing, vision-based tactile sensors, such as GelSight (which
uses a camera to track markers on a deformable silicone
gel pad) [2] or GelSlim [3], are promising due to their
high-resolution, convenient data-multiplexing and embedded
compliance. However, research on vision-based tactile sen-
sors [4], [5], [6], [7], [8] has focused more intensely on
measuring geometry instead of on force reconstruction.

The key to force reconstruction on vision-based sensors is
to accurately model the mapping between force and deforma-
tion of the deformable skin. Although force is proportional to
deformation of an elastic element, the distribution of forces
has a more complex relationship with the distribution of
displacements. Indeed, stress and strain are linearly related
for a given material according to the theory of elasticity but
force and displacement are also geometry-dependent.


https://youtu.be/hWw9A0ZBZuU

Fig. 1.
(b) contact on GelSlim 2.0 sensor with a circular ring pushed in the upper-
right direction. Displacements of markers are shown with yellow arrows.
Although the contact forces should happen only in the area where contacts
are made, the marker tracking algorithm shows that markers in larger area
are displaced.

The calibrated image of displacement markers before (a) and after

When force reconstruction is performed under the erro-
neous assumption that the force on a point is proportional
to its own displacement, we get physically unrealistic pre-
dictions. For example, in Fig. |1} displacements of markers
are observed in areas outside the contact patch. Here, the de-
formation marker movement outside contact patch is caused
by forces internal to the silicone gel pad instead of external
loading force.

The ability to accurately model the force-displacement
relationship and reconstruct the force distribution of the
entire body simultaneously can greatly improve the efficacy
of vision-based tactile sensors. In this work, we propose a
numerical approach: inverse Finite Element Method GFEM),
to estimate the force distribution with deformation measured
by vision. We also report on the development of GelSlim
2.0 — a new version of the vision-based tactile sensor with
force distribution estimation. Experiments and validation are
carried out with GelSlim 2.0.

II. RELATED WORK

In this section, we review different technologies that allow
measurement of force distributions.

a) Vision-based Tactile Sensors: Vision-based tactile
sensors have the advantage of high spatial resolution and
are commonly used to sense contact location and/or texture
and/or geometry of the contact object [9], [10]. Since force
information cannot be directly observed from the contact
imprint, researchers have explored different methods to infer
force information. Begej built a vision-based tactile sensor
that utilized frustrated total internal reflection phenomenon
to produce a grey-scale tactile image [11]. The sensor can
approximately estimate the normal force by calibrating a
look-up table between pixel intensity and normal force.
Ohka et al. built an optical three-axis tactile sensor that could
measure the total forces in 3 axis by observing the variance
of contacting area between the conical feeler on the sensor
surface and the inner acrylic board [12]. One popular method
of force measurement with vision-based tactile sensors is
to track the displacement of a field of markers printed on

the elastic sensing surface. The GelSight sensor has black
markers distributed on the sensor surface, which move along
with the applied external forces [2]. Yuan et al. use a deep
learning method to learn the total three-axis forces and z-axis
torque directly from this output [13]. However, the measured
forces and torques are noisy and are affected largely by the
contact textures. To the authors’ knowledge, the GelForce
sensor is the only vision-based tactile sensor that can measure
the distribution of three-axis forces [14], [15]. It uses two
layers of markers with different colors to track the motion of
the elastic gel surface. With the displacements of the markers,
the three-axis forces at each marker position are calculated
analytically according to elastostatic theory. The drawback
of this method is that it relies on the strong assumption
that the elastic surface is semi-infinite. This results in the
core equation that a force vector acting on a single marker
is linearly dependent only on the displacement vector of
that particular marker, which is not valid in general cases.
In this paper, we employ the iFEM method, also based on
elastostatic theory to establish a global relationship between
the field of marker motions and the field of applied forces.
The algorithm works for a diverse set of elastic membranes
and configurations and works in real time.

b) Force Transduction Arrays: There are many force
sensor arrays with various working principles developed to
measure force distributions [16], [17], [18]. However, most
of them can only sense the distribution of normal force[19],
[20], [20] with spatial resolution of about 2mm. An 8 X
8 flexible capacitive tactile sensor array built by Lee ef al.
could measure both normal and shear force distribution [21].
Four capacitors in the sensor formed a cell to decompose the
contact force into normal and shear components. The sensor
also worked with 2 mm spatial resolution. Compared to
the potential of optical-based sensors, the sensors discussed
above have lower spatial resolution and much smaller amount
of sensing elements, but often feature higher bandwidth.

III. HARDWARE: GELSLIM V2

In order to enable force distribution estimation, we aug-
ment the hardware design of GelSlim [3].

A. Markers to track displacement

The previous version of the GelSlim sensor was able to
measure contact at fairly high resolution using a Raspberry
Pi Spy Camera. However, it was difficult to disambiguate
shear of the gel pad versus an object sliding across the
gel by observing motion of the contact. We solve this
problem, and enable real-time iFEM, by adding displacement
markers to the gel surface, shown in figure Fig. [2l These
markers are very similar to the ones used in the GelSight
sensor [22] except that they are a regular grid, which is
directly-correlated with nodes of the FEM, instead of a
pseudorandom pattern. The markers are printed directly on
the outer surface of the gel, under the paint, which enables
direct measurement of gel displacement in camera frame. We
then use the measured displacement field and knowledge the
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Fig. 2. Exploded view of finger construction and maker placement.

gel’s material properties to make a dense estimation of the
contact force field.

B. Improved illumination

GelSlim’s signal strength depends on the visual contrast
between contact and non-contact scenarios. For example,
when the gel is illuminated with grazing light, a contact
region changes the surface normal to reflect more or less
light back to the camera. Because of this, the illuminated
side appears extra bright and the opposite side appears extra
dark. In GelSlim 2.0, we increase signal contrast with dual-
color illumination relative to the white illumination used in
the previous version. In this case, the gel pad is illuminated
with red grazing light from the left and green grazing light
from the right. These colors are easy to separate by isolating
two of the camera’s three (RGB) channels. Therefore, contact
information is encoded by differences between channels and
the different shadows they cast on the contact surface. These
particular LEDs (LUXEON CZ) are chosen because their
spectral emissions were well-matched with the detection
bands of the Raspberry Pi Spy Camera’s CCD while also
being far apart enough spectrally to be non-overlapping.

Signal strength also relies on having enough illumination.
Vision-based tactile sensors can only run at maximum frame-
rate if sufficiently illuminated. To increase the efficiency
of the optical path from light source to gel, we rely on
Total Internal Reflection (TIR) through a curved light guide
to reduce the number of mirror reflections. Relative to the
previous design that used a hard 45° mirror reflection to route
light to the gel, GelSlim 2.0 features a curve that maintains
TIR to increase brightness and therefore frame-rate.

C. More rugged

One practical requirement for a robotic tactile sensor is
its durability. The previous design was able to sustain the
wear of thousands of grasps with relatively little functional
degradation. Much of this degradation experienced was due
to damage of the optical path. In GelSlim 2.0 we have
redesigned the finger to have not only stronger components,
but also pre-compression in the optical path to prevent tensile
failure. This allows the sensor to continue its useful life with
less wear.
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Fig. 3. A family of GelSlim sensors generated from the same parametric

design.

D. Parametric design

Our design is parameterized using three sets of variables:

1) Camera parameters like depth of field and maximum
viewing angle are assumed to be given based on
specific camera hardware.

2) Independent design variables like gel size are set by
the designer based on the requirements of the task.

3) Dependent design variables like finger thickness and
overall length are driven by each of the independent
variable sets listed above.

GelSlim 2.0 uses CAD that is fully-parameterized in On-
shape by these variables (Fig. [3). This parametric design
makes it easy to scale for various manipulation tasks and
optical systems. Sensors of this current version can be made
with gel pads down to 20 mm x 20 mm and finger thickness
down to 18 mm. Further decreasing thickness intensifies the
keystone warp of the image and requires a large depth of
field. Cameras with larger depth of field or folded optical
paths could could enable thinner GelSlim sensors.

IV. NEW CAPABILITY: FORCE RECONSTRUCTION

The key to the relationship between displacement and
force fields is an FEM model of the gel. Therefore, FEM
is first briefly reviewed in this section. Then we’ll show how
to calculate the force distribution based on the displacement
of markers. Finally, we describe the pipeline for perform-
ing force reconstruction with iFEM on vision-based tactile
Sensor.

A. FEM and Hex-8 element

The essence of FEM is to discretize an object into small
and simple elements, whose force and deformation relation-
ship are well defined by the theory of elasticity. In this paper,
we employ Hex-8 elements to discretize the gel pad, for
reason of both accuracy and efficiency. As shown in Fig. @]
one Hex-8 element includes 8 nodes and has 24 degrees
of freedom (DoFs). The combination of displacements of
all 8 nodes describes the deformation of one FEM element.
The external force at each node is linearly dependent on all
displacements at all 8 nodes within the element though an
element stiffness matrix. The elements are then constrained
to each other through boundary conditions and assembled
together with a single high-dimensional stiffness matrix.



Fig. 4. Sketch of a Hex-8 element with its 8 nodes before (left) and after

(right) deformation.
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Fig. 5. The silicone gel pad (purple) is meshed into one layer of Hex-8
elements. The full mesh includes 1964 elements with 3698 nodes.

B. Force vs. deformation: Stiffness Matrix

The first step to force estimation is to discretize the
object’s 3D geometry into m 8-node hexahedron elements,
as in Fig[5] with a total of n nodes. The mesh should cover
the entire visible area of the gel. One could mesh the shape
of gel exactly with elements that are non-uniform in shape
and size. But for easy implementation, we mesh on an area
a little larger than the bounding box of the gel with uniform
sized elements and then crop it to the gel’s actual size.

With FEM, all external forces are assumed to be applied
at the nodes. Similarly, we will solve the contact forces on
the nodes. If we denote the displacement of all nodes as a
displacement vector U = (5)},5;,511, 52, 5y2, 52,...,81), then
the external force vector F = (fI, f}1 , le, 12, f)z, fzz, 1),
which represents externally applied forces at all nodes, would
be linearly dependent on the displacement vector U as in
Equation. [T]

F=KU, (1)

where the 3n x 3n matrix K is referred to as the stiffness
matrix and can be determined via standard FEM theory with
8-node hexahedron elements [23]. Beside the 3D mesh of the
gel pad, the only parameters required to obtain the stiffness
matrix are Young’s Modulus and Poisson’s ratio.Young’s
Modulus is a parameter that describes the stiffness of the
gel, while Poisson’s ratio is a measure of the Poisson effect,
the phenomenon by which a material tends to expand in
directions perpendicular to the direction of compression.
Our tensile test at different speeds results suggest that the
viscosity effect can be neglected. The two parameters are

147MPa and 0.3223 in this case, but they can be sensitive
to gel preparation process.

C. Displacement measurement

We then implement an image processing algorithm to
track the tangential displacements of markers, as shown in
Fig[T] (b). The algorithm includes two steps. 1) Find marker
locations in the former and current frame. 2) Match the
marker position between the two frames and compile the
displacement field. Because of the deformation of the gel,
some of markers can be missed by the marker detector so
we cannot compute the marker displacements by simply
taking the difference of the two position matrices. Instead,
we calculate the distances between the target marker in the
former frame and the marker with the smallest distance is the
potential correspondence and then further check its validity.

Since the distribution of the detected markers can be not
uniform, we interpolate the displacement vector of nodes
based on the computed marker displacement field.

We use a single layer of nodes with fixed boundary
condition (gel fixed to the acrylic) to characterize the system,
so that the displacement vectors of all nodes are directly
observable. Thus we avoid computation efforts to solve un-
observable internal nodes. The z direction displacements of
markers can be extracted from the deformation of gel in
z direction. Although the method can work on arbitrary
shapes with precise gel deformation information in the depth
direction (z direction), for easy implementation, we restrict
our current object set in experiment to objects with simple
geometry whose z-direction deformation can be constructed
by looking at the shape of contact patch like a sphere or a
cylinder.

D. Compensation to projection error

Since the camera is not looking at the gel pad perpen-
dicularly, as shown in Fig. [f] even though a marker is
displaced only in the normal direction, the camera can still
observe displacements of markers due to perspective. The
displacements of markers observed by camera are caused
by both tangential and normal deformation of the gel pad.
Therefore, we need to decouple the tangential and normal
components in order to retrieve the true 3D displacements
of each marker.
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Fig. 6. A projection error is the displacement error between (u,v) and

(«/,v"). The virtual camera is a projection of the real camera position across
the mirror. The optical path at the contact point is expanded for clarity.
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As illustrated in Fig. [f] we call projection error to the
displacement component seen from camera caused by normal
deformation, and denote it as 6 = (' —u,v —V'). By analyz-
ing the optic path from a marker to virtual camera, we can
model the projection error caused by the displacement of the
marker in z direction deformation. If we denote C,(x.,y.,z¢)
the coordinates of virtual camera in world reference frame,
and M(x,y,z) the coordinates of a marker on the gel in world
reference frame, the 2D vector from virtual camera to the
marker in gel pad plane is 7 = (x—x.,y — y.). Thus the angle
of incidence « is determined by:

i
|z — 2|

2
Then, angle of refraction f is

B = arcsin(sin(@)/7y), 3)

where 7 is the refractive index of the silicone gel.

Supposing the z direction marker displacement d is known,
the projection error A is

A="dtanp (4)
||

The optical refraction in acrylic is ignored when developing
these equations because the refractive index of acrylic is
close to that of the silicone gel by design.

E. The algorithm of force estimation

Fig. [/| summarize the algorithm of force estimation. Gen-
erating the stiffness matrix K is usually computationally
expensive. However, since it is constant for a particular
choice of elastic skin configuration, it can be pre-computed
and loaded to system off-line. Thus, the force estimation runs
in real time.

V. EXPERIMENTS AND VALIDATION

We perform an experiment where we push the sensor
against a known geometry using an ATI Gamma force-torque
sensor to validate force distribution reconstructed with iFEM.

a) Experimental setup: As shown in Fig.[§] a sphere is
installed on a Force/Torque (FT) sensor (ATI Gamma) while
the GelSlim 2.0 sensor on a robot hand is programmed to
push on the sphere and then slide to different directions. The
contact would result in tangential as well as normal forces
between GelSlim and the sphere. The FT sensor measures
the contact forces and provides ground truth measurement to
validate the resultant force measured by the GelSlim sensor
calculated from the reconstructed force distribution.

b) Tangential force distribution: Fig. 9] shows the dis-
placement field on gel and tangential force field reconstructed
with iFEM for an example touch against the sphere in Fig. 8]
The differences between displacement field and force field
are two-fold: First, the reconstructed forces are well located
inside the contact patch, while displacement vectors extend
outside the contact patch. This matches the physical intuition
that the gel can only experience reaction forces at contact
points while deformations extend though the material. There-
fore, the force distribution from iFEM is more physically
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Fig. 7.  Force estimation pipeline.

GelSlim 2.0

FT Sensor

Fig. 8. Validation experiment setup.

realistic than directly multiplying displacement distribution
by a scalar stiffness. Secondly, the direction of the tangential
force at a mesh point is not necessarily the same as its
tangential displacement. At certain areas such as boundary
of contact, the two directions can be even opposite to each
other. Since normal deformation is needed to compute force
distribution, for this experiment, we obtain it via analysis
of the circular contact patch. We first locate the patch via
an image processing algorithm and then calculate the 3D
geometry for the known sphere radius.

c) Normal force distribution: Although tangential force
distribution is what we usually care about, the normal force
distribution is also important in some cases. We show the
reconstructed normal force distribution of spherical contact
in Fig[T0] This figure shows a smoothly-distributed normal
force on the surface which is reasonable and consistent with



Fig. 9. Comparison between marker displacement field (left, blue) and
force distribution field (right, red). The green circles represent the area of
contact. It shows that the reconstructed tangential forces are naturally limited
in contact patch in most area, despite globally existing noises. The measured
force in down-left area is probably caused by the stretched fabric that is
pressed into the gel to some degree, which is not caught by our simplified
normal displacement reconstruction.
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Fig. 10. Normal force distribution (unit: N).

the geometry of a sphere.

d) Validation of resultant force : It is difficult to obtain
ground truth of force distribution since most accurate sensors
measure point forces instead. However, we can still perform
partial validation by comparing the results of summed re-
sultant force with fine measurement from FT sensor, which
serves as a ground truth. Fig. shows quantitative com-
parison between the reconstructed force and the ground
truth. The measurements of GelSlim 2.0 sensor are very
close to the identity line when compared with readings
from FT sensor. The standard deviation of reconstructed
resultant force is (0.244N,0.201N,0.322N) in (x,y,z) di-
rections, which is roughly within 15% of the ground-truth
measurement. Remaining errors are believed to be due to
calibration errors, tracking errors and material non-linearity.
The fact that correct force resultant is achieved without
overfitting to experiment data shows the strength of the
method, which only depends on the geometry and material
parameters measured independently. Results show that the
sensor can retrieve dense force distribution information with
accuracy. It proves that iFEM can work well in reconstructing
force from deformation measured by vision-based tactile
Sensors.

VI. CONCLUSION

GelSlim 2.0 is an improved version of GelSlim with a new
sensing modality: dense force distribution estimation. New
hardware enables this important functionality by making the
sensor more rugged, improving illumination and parametri-
cally adjustable.
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Fig. 11. The comparison of reconstructed resultant contact force with

ground truth measured by FT sensor. (a) is for Fy, force in x direction; (b)
is for Fy, and (c) is for F, force in normal direction. In these figures, the
blue dashed line is the identity line. Figure (d) shows comparison of the
force vectors in tangential plane, where blue dots represent ground truth
and red dots represent the reconstructed results.

Recent research has shown that vision-based sensors can
provide high-resolution tactile imprints of contact via track-
ing of markers or calculation of optic flow on deformed
gel. However, their methods lack the construction of force
distribution with the measured deformation.

The cornerstone of reconstructing force distribution with
GelSlim and other vision-based tactile sensors is the me-
chanical modeling of the deformable gel. As a deformable
continuum material, gel has infinite DOFs. While FEM, a
numerical method based on continuum mechanics, can effec-
tively model deformable objects in solving for displacements
or stresses given a loading scenario.

Conversely, this paper proposes inverse FEM (iFEM),
which is effective at reconstructing the external loading force
based on deformation of flexible objects. This approach
enables GelSlim 2.0 to provide physically realistic force dis-
tributions of contact with high spacial density. Experimental
comparisons show that the integrated resultant force is fairly
consistent with state of the art force-measurement.

The synthesis of hardware design and numerical methods
enables the new sensor to expand the sensing capabilities of
vision-based tactile sensors. The ability to effectively recon-
struct force distribution could augment these experimental
approaches and greatly benefit work in this area. For future
work, we are interested in not only further optimization
of hardware designs and numerical methods to improve
accuracy, but also in exploring controls of manipulation
tasks that exploit the availability of real-time dense force
distribution estimation.
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