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MULTILAYER NETWORK ANALYSIS OF OIL LINKAGES

ROBERTO CASARIN ENRIQUE TER HORST GERMAN MOLINA

RAMON ESPINASA CARLOS SUCRE ROBERTO RIGOBON

SUMMARY

This manuscript proposes a new approach for unveiling existing linkages within the international oil
market across multiple driving factors beyond production. A multi-layer, multi-country network is
extracted through a novel Bayesian graphical vector autoregressive model, which allows for a more
comprehensive, dynamic representation of the network linkages than traditional or static pairwise
Granger-causal inference approaches. Building on the complementary strengths in Espinasa et al.
(2017) and Rousan et al. (2018), the layers of the network include country- and region-specific oil
production levels and rigs, both through simultaneous and lagged temporal dependences among
key factors, while controlling for oil prices and a world economic activity index. The proposed ap-
proach extracts relationships across all variables through a dynamic, cross-regional network. This
approach is highly scalable, and adjusts for time-evolving linkages. The model outcome is a set of
time-varying graphical networks which unveil both static representations of world oil linkages and
variations in micro-economic relationships both within and between oil producers. An example is
provided, illustrating the evolution of intra- and inter-regional relationships for two major inter-
connected oil producers: the United States, with a regional decomposition of its production and
rig deployment, and Arabian Peninsula and key middle east producers, with a country-based de-
composition of production and rig deployment, while controlling for oil prices and global economic
indices. Production is less affected to concurrent changes in oil prices and the overall economy than
rigs. However, production is a lagged driver for prices, rather than rigs, which indicates that the
linkage between rigs and production may not be fully accounted for in the markets.

Keywords: Bayesian Graphical Models, Dynamic Multilayer Network analysis, Rigs, Pro-
duction, Granger Causality, Oil Linkages.

1. INTRODUCTION

With an increase in globalization, the concept of networks has become an integral part

of human activities, including information and product exchanges at the individual level

(Dunbar et al., 2015), at the corporate level (Bernard and Moxnes, 2018), and at the global

level (Maluck and Donner, 2015). Actions of economic agents in local economies can now

have larger impact on a global scale due to strong connections among individuals, institu-

tions, and markets. These connections play a fundamental role in the spread of information

and risk (Broner and Ventura, 2016). Actions of major financial institutions have significant
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consequences on the stability or public confidence in the entire system (Billio et al., 2012,

Battiston et al., 2012, Brunnermeier and Pedersen, 2009).

The academic literature has attempted to mimic this societal evolution, and network

models have become a center of attraction for statistical/econometric modeling of depen-

dencies in real world phenomena, due to their intuitive approach to visualization and inter-

pretation of complex relationships (Goldenberg et al., 2010).

Network analysis and graph theory (Bollobas, 2001, 2002) has been shown to be a promis-

ing tool with the potential to help in monitoring the both interconnectedness and centrality

(Bonacich, 2007) of financial institutions and markets, and assess general system vulnerabil-

ities (Bianchi et al., 2018). This has led to considerable increase in research on the statistical

properties of network measures for systemic risk analysis (Battiston et al., 2012, Billio et al.,

2012, Diebold and Yilmaz, 2014, Hautsch et al., 2014, Puliga et al., 2016).

Oil markets provide a natural application of network models due to their highly inter-

connected nature (Economou et al., 2017). Multiple approaches have been proposed to the

use of network models in oil markets, either isolating the production-only relationships and

providing a dynamic representation of production-driven linkages (Rousan et al., 2018), or

providing a fuller picture of the micro-level relationships, but offering only a static approach

to their linkages (Espinasa et al., 2017).

As discussed in Espinasa et al. (2017), production of oil consists of several steps: ex-

ploration, drilling, extraction, and commercialization. When demand for oil increases and

prices rise, the supply chain responds by increasing exploration efforts and drilling activity,

which is followed by increased production levels. This does not imply that production is the

result of current, or even recent, drilling activity. Before oil production can expand, some

physical prerequisites must be fulfilled. The most important one is that new oil wells have

to be developed, which requires drilling activity. Current oil production cannot respond im-

mediately to simultaneous changes in the oil price. There is a lead time to increase capacity

and bring production in line, always assuming that there is no spare production capacity.

The approach proposed in this paper builds on Rousan et al. (2018) (multi-country,

single-layer) and Espinasa et al. (2017) (multi-layer, single country), yet it differs from those

two constrained perspectives of the linkage exploration problem by providing a dynamic,
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yet complete network representation of the linkages across (and while controlling for) a

wider set of relevant factors identified at the micro level. This study also contributes to the

recent and expanding stream of literature on applied network econometrics (Diebold and

Yilmaz, 2014), by adapting Bayesian graphical model for SVAR processes Ahelegbey et al.

(2016a) to the expanded oil network structure studied in (Espinasa et al., 2017), leading to

jointly estimating the shape of the world oil network. Also the findings in this paper are

not feasible with the aforementioned approaches, as some dynamic linkages occur at the

inter-factor level.

This manuscript elicitates a novel method for identification of current state and evolution,

within- and cross-country, of the micro-economic network linkages, accounting for relation-

ships between factors affecting both supply and demand, including locally-based factors (rigs

activity and oil production per regional area or country), global oil prices, and the state of

the global economy. The main novelty of the proposed approach is its multi-dimensional

nature, in contrast to previous cross-sectional proposed analyses. To our knowledge, this is

the first model in the oil literature to combine through a holistic single system: (1) multiple

factors at the micro level per oil-producing region/country; (2) inter-temporal associations

(both contemporaneous and lagged) between factors; and (3) dynamic linkages between fac-

tors, both within- and between-region/country. This comprehensive world network model

offers the additional advantage of allowing for scenario analyses, which in turn allow for

anticipation of (co-)movements. The proposed methodology allows economic actors affected

by oil dynamics to react or hedge to particular geographical or geopolitical risks by focusing

on the (evolving) core linkages most affecting their own production or supply.

Ahelegbey et al. (2016a) show that estimating networks by using conditional Granger-

causality or pairwise Granger-causality (Billio et al., 2012) can lead to spurious linkages and

to overestimation of the level of connectedness. In order to avoid these issues we employ

graphical models for multivariate systems (Whittaker, 1990, Dawid and Lauritzen, 1993,

Lauritzen, 1996, Carvalho and West, 2007, Wang and West, 2009, Wang, 2010, Rodriguez

et al., 2011, Wang et al., 2011). More specifically, this paper proposes a Bayesian Graphical

VAR model to retrieve the world oil network (Corander and Villani, 2006, Ahelegbey et al.,

2016a,b), with the added benefit from the Bayesian framework of a lesser reliance on data
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length, which is especially relevant in more recent oil producing areas, or those for which

limited data is available.

The paper is organized as follows: Section 2 describes the data used in the study and

provides a short description of the model used to extract the world network. Sections 3 and

4 describe the results, decomposing them into simultaneous and lagged networks. Section 5

provides a summary of the proposed approach and conclusions.

2. DATA AND METHODOLOGY

To illustrate the proposed methodology, a group of intra- and inter-connected subsets of

oil producing countries and regions is selected. This is not meant to be a comprehensive list

of oil producers, but an illustrating subset that is sufficiently large to: (1) demonstrate the

scalability of the methodology; (2) unveil intra-regional linkages (including inter-temporal

and cross-factor linkages); and (3) unveil inter-regional linkages (again, also inter-temporal

and cross-factor).

The regions and countries included in the analysis are the following (sorted alphabeti-

cally by their short codes in parenthesis, which will be used for descriptive and graphical

representation throughout the manuscript): Alaska (A), Golf of Mexico (GM), Irak (IK),

Kuwait (KW), Lower481 (LO), Oman (OM), Qatar (QA), Saudi Arabia (SA), United Arab

Emirates (UAE), USA Bakken (USB), USA Eagle Ford (USAE), and USA Permian (USAP).

For the purpose of non-graphical representations, the variable short code will be used,

while for graphical purposes, the variables will be color-coded. Following Espinasa et al.

(2017), two region- and country-specific variables are considered in this manuscript: (1)

Production, which will have a short code of Y and a blue color code; and (2) Rigs, which

will have a short code of R, and a red color code. The approach is clearly scalable, and more

region-specific factors of interest could easily be introduced. Common factors affecting all

regions and countries (and other factors), both lagged and synchroneously, are denoted as

PT and DT, representing the oil price and economic index variables, respectively.

1Lower48 includes the United States without Alaska, Golf of Mexico, Bakken, Eagle Ford and Permian.
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2.1 Data description

2.1 Data description

Building on data used in Espinasa et al. (2017), the number of rigs per country at each point

in time is taken from Baker Hughes Inc.2, an oil services company that provides the count

of active oil rigs for the 65 most important oil producing countries (with the exception of

Russia and China) on a monthly basis.

Also following Espinasa et al. (2017), we use the classification that distinguishes between

those rigs used for crude oil and natural gas activities. Baker Hughes began publishing data

with this distinction in January 1995. Baker Hughes registers rotary rigs3 ; while they are

not the only type of rigs available in the market, they are the most used worldwide.

For the purpose of this study, prices were taken from the most widely used crude price

index: West Texas Intermediate (WTI), settled in Cushing Oklahoma on a monthly basis.

Price is expressed in real terms using the US CPI provided by the Bureau of Labor Statistics,

and log-returns are used throughout the manuscript for this variable. The sensitivity of

the analysis to this choice of WTI was tested by comparing the results with Brent-price

driven results, which rendered low differences (this was expected due to the large correlation

between the two indices and the level-agnostic approach proposed in this paper). Finally,

average production per country was used, provided on a monthly basis by the International

Energy Agency (IEA), for the relevant period. The monthly crude supply can be found in

the IEA MODS database (Monthly Oil Data Service).

The data used in this study has been detrended, so that the focus remains exclusively in

the relationships among all factors, rather than spurious common-trend-driven relationships.

It corresponds to 18 full years of monthly observations, going from January 2000 to December

2017.

2.2 Bayesian Graphical Model Approach

In this section a primer on Bayesian Graphical Models is provided in the context of the oil

network application. Graphical models are stochastic models that summarize the depen-

2http://investor.shareholder.com/bhi/rig_counts/rc_index.cfm
3According to Baker Hughes Inc., a rotary rig rotates the drill pipe from surface to drill a new well (or

sidetracking an existing one) to explore for, developing and producing oil or natural gas.
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2.2 Bayesian Graphical Model Approach

dence structure among random variables by means of graphs (Brillinger, 1996). Specifically,

a graph is characterized by nodes and edges, where the nodes represent variables and the

edges depict the nature of the interaction among variables. For instance, the relationship

P → Q means the variable P causes the variable Q. The node P from which a directed

edge originates is the parent (explanatory variable), and its end Q is the child (response

variable).

One of the appealing features of the graphical approach to multivariate time series analy-

sis is the possibility of giving a graphical representation of the logical implications of models

as well as the conditional independence relationships. As an example, assume P → Q→ R,

then P and R would be probabilistically dependent in the absence of Q; but conditional on

Q, they would be independent. In oil network terms, as can be seen in Fig. 1, Lower48

rigs affect Saudi Arabia production, and Saudi Arabia production affects UAE production,

but there is no direct link between Lower48 rigs and UAE production without the presence

of Saudi Arabia as a relevant intermediate actor from the perspective of UAE. This aligns

with the regional and world-wide weight of each of the three producers, and their relative

influence on each other.

A graphical approach provides a coherent framework to represent and assess these re-

lationships. In this paper, both undirected and directed graphs are employed. In the di-

rected graphs, the edge orientation presents a direction of Granger-like causation among

the variables. Edges linking two nodes through a clock-wise oriented curve represent a

Granger-causal relationships between the two connected variables (the one originating the

edge Granger-causes the one receiving the edge, where origination and reception are based

on the clock-wise orientation of the connecting edge). Using such class of models provides

information on the structural dynamics among the variables by means of the directed edges.

Let Yt = (Y1,t, Y2,t, . . . , Yn,t), where Yi,t is a realization of the i-th variable at time

t. Equation (1) summarizes a graphical representation with a one-to-one correspondence

between the coefficient matrices and directed acyclic graphs (DAG):

Yi,t−s → Yj,t ⇐⇒ Ψ∗s,j,i 6= 0 0 ≤ s ≤ p (1)
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2.2 Bayesian Graphical Model Approach

where Ψ∗s,i,j contains the coefficient representing the directed linkage between variables j

and i occuring between the concurrent values of the latter and those s periods lagged for

the former.

By considering the structural dynamics as a causal dependence among variables, the re-

lationship in (1) for 1 ≤ s ≤ p can be referred to as lagged (temporal) dependence, and the

relationship for s = 0 can be referred as the contemporaneous dependence. Temporal depen-

dence is based on the time flow and relies on the assumption that causes precede effects in

time. The temporal dependence structure is represented naturally through a directed graph,

with edge orientation indicating the direction of the causation. Contemporaneous causal re-

lationships are based on distinguishing between instantaneous causation from correlations

and are represented through undirected graphs.

Let Y = (Y1, . . . , YT ) be a time series of n variables and length T . The joint distribution of

the variables in Y can be described by a graphical model (G, θ) ∈ {G,Θ}, where G is a graph,

θ is a vector of structural parameters, G is the space of the graphs, and Θ is the parameter

space. We assume the graph G = (V,E) is an ordered pair of sets V and E. The vertex set

V represents the set of random variables, and the edge set E ⊂ V × V is the set of pairs of

vertices indicating the presence of structural relationships between the variables. We assume

that the undirected (directed) graph G ∈ G, which defines the contemporaneous (temporal)

dependence among the variables, is a directed acyclic graph. The structural parameters are

θ ≡ {µ,Σ} ≡ {µ,Ψ∗,Σε}, where µ is n vector of means of Yt = (Y1t, . . . , Ynt), ∀t and Σ

is the covariance matrix of the observed time series that decomposes into {Ψ∗,Σε}, where

Ψ∗ = (Ψ∗0,Ψ∗1, . . . ,Ψ∗p), is the matrix of structural coefficients and Σε is the structural error

covariance matrix. Without loss of generality, and since the data has been detrended, we

assume the data is generated by a stationary process (µ = 0).

In equation (1), we set:

Ψ∗s = (As ◦ Φs), 0 ≤ s ≤ p (2)

where for s = 0, Ψ∗0 is n× n structural coefficients of contemporaneous dependences. A0 is

a n× n, 0-1 valued matrix (adjacency matrix) and Φ0 is a n× n matrix of coefficients. For
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2.2 Bayesian Graphical Model Approach

1 ≤ s ≤ p, Ψ∗s is a n × n matrix of structural coefficients of temporal dependences, As is

a n × n binary connectivity matrix and Φs is a n × n matrix of coefficients. The operator

(◦) is the element-by-element Hadaamard’s product (i.e., Ψ∗s,i,j = As,i,j Φs,i,j). We refer to

A0 as the connectivity matrix of contemporaneous dependence and to As, 1 ≤ s ≤ p, as the

matrix of the temporal dependence.

The set of matrices As, 0 ≤ s ≤ p, contain indicators for the existence of causal relation-

ships such that As,i,j = 1 ⇐⇒ Yj,t−s → Yi,t, and As,i,j = 0 otherwise.

Elements in Φs, 0 ≤ s ≤ p, are structural regression coefficients, such that Φs,i,j ∈ R

represents the value of the effect of Yj,t−s on Yi,t. There is a one-to-one correspondence

between Φs and Ψ∗s conditionally on As:

Ψ∗s,ij =


Φs,i,j if As,i,j = 1

0 if As,i,j = 0
(3)

Based on the notation in (2), a graphical VAR model can be written as:

Yt = (A0 ◦ Φ0)Yt +
p∑

s=1
(As ◦ Φs)Yt−s + εt (4)

where (As ◦ Φs) are the graphical model structural coefficient matrices whose non-zero

elements describe the value associated with the contemporaneous and temporal dependences,

respectively.

To complete the Bayesian network model, the prior distribution for Ψ∗ is assumed normal

and uninformative in the choice of hyperparameters, i.e., Ψ∗ ∼ N (Ψ∗, V Ψ).

Estimating (4) involves specification of the lag order, p of the causal structure, A =

(A0, A1, . . . , Ap), and the set of parameters, {Ψ∗0,Ψ∗1, . . . ,Ψ∗p,Σε} from Σ. A uniform prior

is assumed for G on the set of complete graphs and, completing the specification, a conjugate

Wishart prior distribution is assumed for Ω = Σ−1.

3. OIL NETWORK RESULTS

8

 Electronic copy available at: https://ssrn.com/abstract=3263535 



2.2 Bayesian Graphical Model Approach
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Figure 1: Contemporaneous (left panel) and lagged (right panel) oil production (red vertices)
and rigs (blue vertices) networks. Green vertices correspond to the WTI oil price returns
(PT) and the world economic activity index (DT). The size of each nodes increases with the
number of linkages.

The results using BIC indicate that the optimal lag can be found at p=1. This aligns

with the results in Espinasa et al. (2017), who also found that the information from further

lags are already contained in the s=1 lag at the micro-level for multiple examples in their

single-country analysis. Therefore, for the purpose of simplicity in the notation, we will drop

the sub-index s when referring to lagged linkages.

Fig. 1 presents the contemporaneous (left panel) and lagged (right panel) linkages on

the oil market considering oil production and rigs, after controlling for oil price returns PTt

(Cushing, OK WTI Spot Prices FOB in dollars per barrel), and the world economic activity

index DTt, built from Kilian (2009). For expository purposes only nodes with a total degree

larger than 8 (threshold for graphical relevance) have been considered. The top-left panels

in Fig. 8-9 provide a representation without this filter. Contemporaneous linkages in Fig. 1

are an undirected graph, whereas lagged linkages are directed graphs. Node sizes (and short

name code sizes in the graphs) relate to the number of linkages for the corresponding node.

Following the results in the top-left panel of Fig. 1, the contemporaneous linkages net-

work indicate the countries which are more likely affected by a joint shock. The central

countries in the contemporaneous linkages networks are Eagle Ford, Permian, Bakken, and
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2.2 Bayesian Graphical Model Approach

United Arab Emirates (USAE, USAP, USB, UAE) in terms of oil production (red vertices)

and Eagle Ford, Bakken, Lower48, and United Arab Emirates (USAE, USB, LO, UAE)

in terms of number of rigs (blue vertices). Also it is worth noting that the results from

the model explored in Espinasa et al. (2017) are confirmed in this graphical representation,

where production appears to be relatively independent of oil prices or the world economy,

conditional on rigs, across most countries. This shows that production decisions are often-

times made at the rig level (increasing or decreasing the number of rigs) rather than through

increases in productivity per rig. UAE and Qatar are the only two countries/regions where

current prices can drive increases in production independent of rig decisions (direct linkages

between PT and red nodes in the top left panel of Fig. 1). The state of the world economy

appears to be a factor affecting mostly rig decisions as well, with the exception of Bakken

crude oil production, which was one of the first producers to use fracking due to geological

advantages versus others such as Permian. An expected relationship is the linkage observed

between PT and DT (world economy and oil prices). Finally, it appears that the US (across

different regions) and the smaller countries in the Arabian Peninsula are most affected by

other actors, while Saudi Arabia, despite its size, appears to be relatively less dependent

from external influences (though there is a strong linkage between its rigs and oil prices,

which aligns with a historically large adaptability of its production decisions to oil market

dynamics). The lagged linkages network shows the main countributors to the transmission

of shocks in the aftermath of a shock to one node of the network. The centrality of a

node i in the network can be measured by its in, out, and total degree, which are defined,

respectively:

d+
i =

∑
j∈V

Ai,j (5)

d−i =
∑
j∈V

Aj,i (6)

di =
∑
j∈V

Ai,j +
∑
j∈V

Aj,i (7)

From the results in the right panel of Fig. 1, the oil producing countries (red vertices)

with the largest number of linkages (i.e. the highest total degree) are Permian, Lower 48, and
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2.2 Bayesian Graphical Model Approach

Bakken (USAP, LO, USB). This indicates the relevance of the United States as a point of

influence in the oil market, and, more especially, the biggest producer, the Permian region.

While the remaining actors are very connected, and the network structure is complex (a

conclusion expected due to the level of connectedness in oil markets), the non-U.S. producers

have a smaller relevance in the lagged network, indicating that their role is mostly reactive.

This can be seen as well in the small number of clockwise linkages between nodes that

originate in those regions, compared to the United States. The price PT appears to be a

major lagged factor, with most of the connections showing counter-clockwise linkages. Prices

are reactive (with a lag) to production changes, rather than rig changes. This indicates that

the market is not fully anticipating the changes in production due to changes in rigs. As

mentioned in Espinasa et al. (2017), there is a lag between production increases and rig

increases, due to physical and technological reasons. However, the network results indicate

that PT reacts to lagged changes in production (which occur later than the changes in rigs),

showing evidence of a delay in the digestion of the rig increase/decrease news (or perhaps

imperfect information about the impact of rig changes on production changes). This could

be an indication of potential opportunities for arbitrage due to imperfect information about

the nature and dimension of lagged linkages between rigs and production. Permian, Lower

48, and United Arab Emirates (USB, LO, UAE) are central in terms of shocks to rigs (blue

vertices).

The set of vertices V can be partitioned in oil production variables V Y and rig vari-

ables V R such that V = V Y ∪ V R. The partition is used to define the two sub-graphs

GY = (V Y , EY ) and GR = (V R, ER) representing the oil production and the rig networks,

respectively, with EY = {{v1, v2} ∈ E; v1, v2 ∈ V Y } and ER = {{v1, v2} ∈ E; v1, v2 ∈ V R}.

We define similarly the bipartite graph GRY = (V,ERY ) representing linkages between oil

production and rigs, with ERY = {{v1, v2} ∈ E; v1 ∈ V Y , v2 ∈ V R}. Decoupling the link-

ages in oil production, rigs and oil-rigs linkages is given in Fig. 8-9. This allows for relevant

sub-analysis of the kind shown in Rousan et al. (2018), which is one possible partition of our

proposed method (production-only sub-graph). This type of analysis is of relevance when

exploring univariate relationships focusing exclusively on a factor of interest, such as pro-

duction. However, some information can be lost when isolating a factor and excluding the
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4.1 Rigs and Oil Market

information contained in cross-factor linkages, such as the one explored in Espinasa et al.

(2017).

4. A DYNAMIC CONNECTEDNESS ANALYSIS

In order to assess the stability of the network relationships, a 60-month rolling window

is used to extract the oil network sequentially by fitting the proposed Bayesian graphical

VAR model.

4.1 Rigs and Oil Market

Let At denote the adjacency matrix estimate at time t of either lagged or contemporaneous

networks, and Aij,t denote its (i, j)-th element. The In- and out-connectedness and total

connectedness measures, either lagged or contemporaneous, are defined as

d+
it =

∑
j∈V

Ai,j,t, d−it =
∑
j∈V

Aj,i,t, dit =
∑
j∈V

(Ai,j,t +Aj,i,t) (8)

where in this case the sub-index t denotes the endpoint of the rolling window. This addition

to the notation simply accomodates for the rolling nature of the stability experiment, rather

than being an intrinsic part of the model. The results for dit, i = 1, . . . , 26 and t =

61, . . . , 215 (from December 2004 to December 2017) are presented in Fig. 4, which shows

the lagged (solid) and contemporaneous (dashed) total connectedness in the oil production

and rig activity (dt =
∑

i∈V dit ).

The top panel in Fig. 4 displays the total degree of contemporaneous (dashed) and lagged

(solid) linkages (as a proportion of the total number of such linkages that is possible). As

shown in this panel, countries (production and rig activity) are more connected through

responsive lags (contagion effects) than through contemporaneous shocks. Also the level of

connectedness has been increasing in the latter part of the sample. However, this increase

is concentrated in the lagged linkages, indicating that there is an increased lagged action-

reaction responsiveness, rather than a higher level of concurrent interconnectedness.
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4.1 Rigs and Oil Market

GM

PT

QA

UAE

DT

YAL

LO
IQ

KW

OM

QA

SA

KW

USB

USAP

YAL

GM

USB

USAE

LO

USAE

IQ

OM

SA

USAP

UAE

GM

PT

QA

UAE

DT

YAL

LO

IQ

KW

OM

QA

SA

KW

USB

USAP

YAL

GM

USB

USAE

LO

USAE

IQ

OM

SA

USAP

UAE

GM

UAE

YAL

LO
IQ

KW

OM

QA

SA
USB

USAP

USAE

QA

KW

YAL

GM

USB

USAE

LO

IQ

OM

SA

USAP

UAE

Figure 2: Contemporaneous linkages. Oil market network (top left panel). Production-
rigs network (top right panel), production layer network (bottom left panel) and rigs layer
network (bottom right panel).
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Figure 3: Lagged linkages. Oil market network (top left panel). Production-rigs network
(top right panel), production layer network (bottom right panel) and rigs layer network
(bottom left panel).
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4.1 Rigs and Oil Market

After 2011 there is a substantial change in the topology of the network. There is an

increase of centrality of the nodes and of the number of rigs. More specifically, the top-right

panel in Fig. 4 shows the mean and some key quantiles of the degree distribution. Year

2011 marks the beginning of some nodes with low degree becoming more connected, and the

degree distribution becoming more concentrated about the mean. This is indicative of the

higher level of interdependence of some of those actors, especially around the geopolitical

contagion effects due to the protests starting in Egypt in 2011 and spreading through the

region over the following months and years.

The Bottom-left panel in Fig. 4 shows the percentage of nodes which are hubs, which are

defined as nodes with successors of high authority scores (solid line). This panel also shows

the percentage of nodes which are authorities, which aredefined as nodes with predecessors

of high hub scores (dashed). There is an increase in the number of hubs (and the variability

of this number) after 2011, indicating that there is heterogeneity in the linkages among oil

activities, since a large majority of nodes have low degree, but a small number, known as

hubs (important regions/countries), have a high number of linkages. Around 15% of the

nodes fall into either category of hub or authority, placing them as central nodes of the oil

economy at any point in time, while the rest can be considered more marginal nodes in the

big picture of the oil economic network between the two geopolitical regions considered in

this study.

When representing the oil production and extraction system as a network, the in-

creased system fragility is reflected in a symmetric degree distribution with thinner tails

(see Barabási and Albert, 1999, Acemoglu et al., 2012). Conversely, asymmetry and fat tails

suggest heterogeneity in the linkages among regions/countries. In this case, the system is

robust to random failures, but vulnerable to targeted attacks. Billio et al. (2016) exploited

the heterogeneity of the network and consider entropy to build a systemic risk indicator.

The bottom-right panel in Fig. 4 shows the largest and smallest eigenvalues of the adjacency

matrix. The smallest eigenvalue gives a bound on the size of the largest independent set

and of the smallest clique in the graph (defined as a subset of vertices such that any two

vertices are adjacent). Since the smallest eigenvalue increases after 2011, this confirms an

increase in the level of connectivity and a change in the topology of the network which ex-
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Figure 4: Top-left: Lagged (black lines) and contemporaneous (red line) connectedness over
time for all regions/countries and variables. Top-right: mean (solid) and quantiles (dashed)
of the degree distribution. Bottom-left: percentage of hubs (solid) that are nodes with
successors of high authority scores, and percentage of authorities (dashed) that are nodes
with predecessors of high hub scores. Bottom-right: the maximum (solid) and minimum
(dashed) eigenvalues.

hibits larger groups of regions/countries highly connected between them. Again, this aligns

with the increased correlation observed between geopolitical actors due to the Arab Spring

events. The largest eigenvalue provides a lower bound on the maximum node degree, and

in the application is quite stable over time.

Building on the notation in Equation 8, and expanding it to apply jointly to rigs and

production, the connectedness measures are defined by

d+
it =

∑
j∈V k

Ai,j,t, d−it =
∑

j∈V k

Aj,i,t, dt =
∑

i,j∈V k

(Ai,j,t +Aj,i,t) (9)
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4.1 Rigs and Oil Market

while the total intra- and inter-connectedness for rigs, production, and across both rigs

and production is measured by

dY
t =

∑
i,j∈V Y

(Ai,j,t +Aj,i,t) (10)

dR
t =

∑
i,j∈V R

(Ai,j,t +Aj,i,t) (11)

dRY
t =

∑
i∈V R,j∈V Y

(Ai,j,t +Aj,i,t) +
∑

i∈V Y ,j∈V R

(Ai,j,t +Aj,i,t) (12)

where V Y is the set of oil producers and V R is the set of rigs producers, with V = V R∪V Y .

The last measure, dRY
t accounts for the cross-factor connectedness, which is a proposed new

measure of oil connectedness at a micro-level. The normalized measures are reported as

percentages of the maximum possible connectedness in Fig. 5.The level of connectedness is

relatively stable over time. The cross-factor connectedness is very relevant, as shown in the

second panel in Fig. 5, where approximately 35% of cross-factor lagged linkages are present

at any point in time. In addition to this, approximately 5% of contemporaneous cross-factor

linkages are present at any point in time. This combined cross-factor connectedness is ev-

idence of the need of cross-factor modelling including both rigs and oil production to fully

account for the oil relationships, as proposed initially in a static fashion in Espinasa et al.

(2017). The top panel in Fig. 5 shows the degree of factor-specific autoregressive connect-

edness across the regions and countries. The peak in oil production autoregressive connect-

edness occurred around 2008, which aligns with the midst of the economic crisis. However,

rigs have a very different dynamic, with higher autoregressive connectedness observed in

the latter part of the sample. This disconnect between rig and production autoregressive

behavior is also indicative of the need for joint modelling of these two key factors in the

supply chain. The information content for each factor is relevant and not necessarily found

in the other factor.

Additionally, from the decomposition of lagged connectedness in oil and rig connectedness

(see Fig. 5) we find that: (1) The level of rig and oil connectedness measures (top panel;

combined circles and solid-circles lines) increased between 2004 and 2017, neverthless after

2011 the rig market connectedness is contributing most to the overall connectedness (more

17

 Electronic copy available at: https://ssrn.com/abstract=3263535 



4.1 Rigs and Oil Market

2004:12 2006:08 2008:04 2009:12 2011:08 2013:04 2014:12 2016:08 
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2004:12 2006:08 2008:04 2009:12 2011:08 2013:04 2014:12 2016:08 
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

2004:12 2006:08 2008:04 2009:12 2011:08 2013:04 2014:12 2016:08 
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 5: Lagged inter- and intra-connectedness over time (top panel). In- and out- inter-
connectedness over time (middle panel). Contemporaneous inter- and intra-connectedness
over time (bottom panel). 18
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4.1 Rigs and Oil Market

than the oil connectedness); (2) When decomposing the inter-connectedness between in- and

out-degree (middle panel; solid and dashed lines), the out-degree is became slightly more

relevant after January 2009. This suggests that oil production drove rig activity/decisions

(in the lag) during the recovery years. In the last part of the sample (beginning of 2016) the

in-degree has became more relevant, indicating that lagged rig activity decisions are affecting

more the oil production changes (as producers reached maximum production capacity); and

(3) From the decomposition of contemporaneous connectedness (bottom panel) an increase

in connectedness is observable between rig activities across regions (solid circle), as well as

a decrease in the connectedness between oil production across regions (circle). This again

shows the relevance of the proposed approach, as oil production inter-connectedness may

fade, as rig activity appears to take the lead driving the network connectedness.

Fig. 6 portrays across all panels the lagged connectedness levels between the economic

activity index (DT) and the rest of the network across all regions and countries. There is

a strong upward trend in the level of connectedness between both oil production and rig

activity and economic activity, indicating that the cyclical nature of the oil markets has

increased over time. This finding is of relevance in global heding strategies.

Evidence of sharp reversal episodes can also be found in the top panel in Fig. 6. The

connectedness levels between economic activity and both oil extraction and rigs oscillates

significantly, showing sharp changes over time: (1) During the periods 2004-2007 and 2011-

2013, the economic activity is more interconnected with rig activity than with oil production

(top panel; solid circle line sitting above the circle line) ; (2) During the periods 2007-2011

and 2013-2015 the economic activity is more interconnected with oil production (top, circle

line above solid circle line); and (3) After 2015 both oil extraction and oil production activ-

ities are equally interconnected with the economic activity, with a sharp increasing slope.

These different level of connectedness with the economic activity index indicate that the

global economy is a relevant variable (the levels are always relatively high for a single driving

factor), but also that other factors may be missing, some of them of difficult quantification,

such as supply shocks (new field explorations, drill authorizations, etc.,), geopolitical (arab

spring, political elections, etc.), or technological (spread of fracking, technological advances,

etc.,) factors, which can have evolving relative relevance over time.

19

 Electronic copy available at: https://ssrn.com/abstract=3263535 



4.1 Rigs and Oil Market

The middle and bottom panels in Fig. 6 show multiple episodes of reversal causation

between economic activity and oil production and extraction. Though the general shape of

the connectedness is not too dissimilar to that observed in the top panel, some additional

effects can be observed in the bottom panels, where the overall levels (and decomposition)

of the lagged connectedness between DT and each of rigs and oil production shows that

the connectedness dynamics are very different over time, with periods where the economic

activity is leading the overall connectedness (solid line defines the shape of the circle line),

and others where the economic activity lags (dashed line driving the dynamics of the circle

line). For example, during the 2008-2010 period, the economic activity is a key driver,

with a significant spike of its impact on oil production. However rig decisions show less

stable patterns around key periods, indicating a more stable relationship with the economic

activity (decisions regarding rigs would be less driven by shorter-term factors, and more

driven by longer-term prospects of demand than decisions about oil production, which are

more shorter-term driven).

Fig. 7 contains the same analysis presented in 6, but this time for the price index

(PT) as the central variable, rather than the economic activity index. The relevance of

the price index is, again, time-varying, but with a strong level of connectedness with both

oil production and rigs (both around 40%). This indicates that it is a relevant factor as

well in the composition of the network, both in a contemporaneous and in a lagged fashion,

as shown in Espinasa et al. (2017). The largest oscillation measured appears to affect the

lagged relationship between prices and rig decisions, where a higher level of connectedness is

observed around 2013. This coincides with the stabilization of the Arabian Peninsula region,

leading to more fundamental factors (rather than geopolitical factors) being central to the

decision-making around rigs. This short-lived sharp increase eventually stabilizes around

long-term levels again around 2015.

Some additional graphical outcomes can be obtained from the proposed approach: (1)

Fig. 8 portrays the instantaneous linkages across the full network (top left panel), and

decomposes those into the cross-factor network (top-right panel; contemporaneous linkages

between rigs and production), the rig-only contemporaneous network (bottom left panel) and

the production-only contemporaneous network (bottom right panel; similar to the outputs
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Figure 6: Lagged connectedness over time between economic activity and both rigs (top and
bottom panel) and production (top two panels), both synchroneous (top panel) and lagged
(bottom two panels).
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Figure 7: Lagged connectedness over time between oil prices and both rigs (top and bottom
panel) and production (top two panels), both synchroneous (top panel) and lagged (bottom
two panels).
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from Rousan et al. (2018)). The regional connectedness of rig decisions is very strong,

with the United States producers clustered together, and, with the exception of UAE, the

remaining producers also clustered together. The UAE again shows stronger linkages with

the United States than other countries; (2) Fig. 9 shows, in the same order of panels,

the lagged relationships. It can be seen that the networks are denser, showing that lagged

linkages are more prevalent than contemporaneous ones, both in single-factor and cross-

factor subnetworks; and (3) Figs. 10-12 show the lagged network over time, at 16 different,

equally spaced points in the sample, with 10 months between each one. Though dense in

nature, these graphs allow for identification of dynamics over time that may be occuring

intra- or inter-factor.

5. CONCLUSION

This paper extends the work of Espinasa et al. (2017) and Rousan et al. (2018), and pro-

poses a unified approach that combines the micro-level information described in the former

reference with the network approach formalized in the latter reference. A Bayesian Graphi-

cal VAR model is proposed, which avoids some shortcomings of the conditional or pairwise

Granger-causality models, which can lead to spurious linkages and to overestimation of the

level of connectedness in network and graphical models. A full network is constructed to as-

sess not only the intra-factor relationships, but also the cross-factor relationships that drive

oil markets. An illustrating example includes rigs and oil production of two key intercon-

nected producers, namely the United States (across multiple regions) and key middle eastern

producers. Additionally, a world economic index and an oil price index are introduced to

moderate relationships, since they have been shown to be relevant in the micro-level relation-

ships across factors (Espinasa et al., 2017). Some key findings identified in this manuscript

include: (1) Several central regions are identified in the oil network. They are relevant both

in terms of oil production and rig activity, and include 3 regions in the United States and

the UAE; (2) The overall relevance of the rig level as connecting (conditioning) vertices

between the global factors (oil prices and the economic index) and the oil production. This
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Figure 8: Contemporaneous linkages. Full network (top left). Production-rigs network (top
right), rig layer network (bottom left) and production layer network (bottom right).
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Figure 9: Lagged linkages. Oil market network (top left). Production-rigs network (top
right), production layer network (bottom right) and rigs layer network (bottom left).
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shows that excluding the rigs from the network effectively removes what would become a

key latent variable driving the full network dynamics; (3) The relevance of Saudi Arabia as a

major actor may be overstated in terms of its connectedness, with other regions or countries

showing a higher relevance in the network; (4) Cross-factor relationships are highly relevant.

Rigs and production show high levels of connectivity, which, again, aligns with the proposed

approach and conclusions in (Espinasa et al., 2017); (5) Some changes in the topology of the

network can be found after 2011, coinciding with geopolitical events in the middle eastern

countries within the sample; and (6) The cyclical nature of oil markets has increased over

time, as shown in the upward trend of the connectedness between both oil production and

rig activity with the economic activity index.

The approach proposed in this paper can serve as building block and unifying point

between static, micro-level models, which expand the number of factors at the expense of a

imposing static linkages or single-country analyses, and macro-level models, which allow for

dynamic linkages but are limited in focus to single factors.
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Figure 10: Lagged linkages over time (every 10 months). Measurements 1-6.
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Figure 11: Lagged linkages over time (every 10 months). Measurements 7-12.
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Figure 12: Lagged linkages over time (every 10 months). Measurements 13-16.
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