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RGDs are defined as genetic disorders affecting fewer than 
200,000 individuals in the United States1, or 1 in 2,000 indi-
viduals; however, a few highly penetrant genetic variants that 

occur more frequently (such as trisomy 21, affecting 1 in 600 indi-
viduals2) are often included. RGDs can be caused by the alteration 
of single nucleotides in one gene, entire chromosomes with hun-
dreds of genes, or anything in between (Fig. 1a). Though they are 
individually rare, the contribution of RGDs to human morbidity 
en masse is substantial, with 18% of protein-coding genes currently 
implicated in such disorders (Supplementary Table 1). RGDs affect 
the central nervous system (CNS) disproportionately, with CNS 
symptoms documented in 74%3 (Fig. 1b); neuropsychiatric mani-
festations account for a substantial fraction of this CNS morbid-
ity, with RGDs diagnosed in at least 40% of cases of developmental 
delay4 and up to 20% of cases of autism spectrum disorder (ASD)5.

Some RGDs have near-complete penetrance and distinctive fea-
tures that enable syndromes to be described, affected and unaffected 
family members to be reliably distinguished, and the underlying 

genetic locus identified (as for Dravet syndrome, an RGD caused by 
SCN1A mutations resulting in a severe form of epilepsy6,7). Newer 
genomic technologies, including chromosomal microarray, whole-
exome sequencing (WES) and whole-genome sequencing (WGS) 
(see Box 1, Glossary), have identified many additional RGDs with 
less distinctive features, lower penetrance and/or more variable 
effects on phenotype. Many of these newly described RGDs have 
milder phenotypic impacts that may be largely brain specific (for 
example, 15q13.3 deletions increase risk for psychosis 18-fold8; 
Supplementary Table 2), in contrast to those with large effect sizes 
and multisystem involvement (for example, in cases of trisomy 21, 
intellectual disability (ID), global developmental delay and short 
stature are nearly universal9). Genomic technologies have also 
expanded the known manifestations of previously recognized RGDs 
(for example, many individuals with SCN2A mutations present with 
ASD rather than seizures10,11).

The full extent to which RGDs contribute to the manifestations of 
behavioral aberration, evident in several neuropsychiatric disorders,  
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is still emerging. RGDs appear to contribute significantly to the 
genetic architecture of neuropsychiatric disorders characterized 
by high heritability, early age of onset, reduced fecundity, impaired 
cognition and behavioral deficits12–14. In pediatric patients referred 
for developmental delay, ID and/or ASD, the diagnostic yield of 
clinical genetic testing (microarray and/or whole-exome sequenc-
ing) is more than 30%15–19. It is important to note, however, that 
individuals with ASD with comorbid ID show a significantly higher 
rate of rare, de novo damaging variants than those with normal IQ, 
whereas there appears to be a greater contribution from common 
variants in those with higher IQ5,20,21. Therefore, RGDs contribute 
significantly to neurodevelopmental disorders, such as ID, ASD 
and epilepsy22,23; contribute modestly to child- or adolescent-onset 
neuropsychiatric disorders (attention deficit hyperactivity disorder 

(ADHD)24, schizophrenia8,25 and Tourette’s syndrome26); and con-
tribute less to later-onset neuropsychiatric disorders (bipolar disor-
der and major depressive disorder8,14,27,28).

Understanding the contribution of RGDs to neuropsychiatric 
disorders is critical for patient care and for developing effective 
therapeutics. Diagnosing and understanding RGDs enables screen-
ing for specific risks, early detection, informed family planning, 
initiation of services and therapies, detailed prognosis and support. 
Notably, recent advances in genetically targeted therapies29,30 raise 
the possibility of treating the underlying pathology. At the same 
time, the importance of this research is not limited to those diag-
nosed with RGDs. These high-penetrance disorders also have the 
potential to provide key insights into the underlying biology of idio-
pathic neuropsychiatric disorders.
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Fig. 1 | Overview of rare genetic disorders (RGDs). a, RGDs may be caused by variants that affect one gene (purple) or many genes (green). Many 
aneuploidies and structural variants arise spontaneously at higher rates than single-gene disorders, leading to comparatively high population frequencies 
for a given penetrance33,124. b, The CNS is involved in the majority of single-gene RGDs. c, Single-gene RGDs frequently affect multiple neuropsychiatric 
domains, as shown by extensive co-occurrence of Human Phenotype Ontology terms (Supplementary Table 1)125. Terms that co-occur in at least 200 
RGDs are shown as nodes (colored circles, size determined by the number of RGDs), with edge weight (gray lines) determined by the degree of co-
occurrence of a term between RGDs (203–1,114). Network layout is based on the Compound Spring Embedder algorithm126. OMIM, Online Mendelian 
Inheritance in Man; G2P, Gene2Phenotype; HPO, Human Phenotype Ontology; CNS, central nervous system; PNS, peripheral nervous system; UMN, upper 
motor neuron. Credit: Debbie Maizels/Springer Nature.
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A US National Institute of Mental Health (NIMH) workshop was 
held in September 2017 with the goal of identifying strategies for 
advancing the understanding and management of neuropsychiatric 
disorders through a focus on RGDs (see Supplementary Table 3 for 
list of attendees). This Perspective outlines guidelines and recom-
mendations that emerged from this workshop. In particular, three 
priorities were identified (see Box 2).

The overlap between rare genetic disorders and psychiatric 
disorders
Individuals affected by RGDs frequently have multiple neuropsychi-
atric symptoms, and specific RGDs frequently lead to multiple neu-
ropsychiatric symptoms (grouped into neuropsychiatric domains) 
in different individuals (Fig. 1c). The co-occurrence of neuropsy-
chiatric phenotypes within single-gene RGDs (Supplementary 
Table 1) reveals a highly connected network between developmental 
delay, behavioral abnormalities, seizures and abnormalities of the 
motor system (Fig. 1c).

Specific RGDs occupy different regions of this co-occurrence 
network, leading to widespread variation between RGDs in the 
domains affected (Fig. 2a,b). Notably, some RGDs appear to have 
strong effects on specific neuropsychiatric domains, as exempli-
fied by the link between the RGD 22q11.2 deletion syndrome and  

psychosis8,31 and the putative protective effect of the reciprocal 
22q11.2 duplication against psychosis32 (Fig. 2b, Extended Data 
Fig. 1, Supplementary Tables 2 and 4). In contrast, the association 
between the frequency of RGD diagnosis and IQ in ASD suggests 
that there is a global effect on cognition across many RGDs (Fig. 2a),  
and this notion is supported by large-scale screens in the general 
population5,13,33,34. In addition, recent evidence suggests that com-
mon genetic variation may influence the phenotypic expression of 
RGDs, and thus may contribute to variation in clinical presentation 
(Fig. 2a)35. More data are required to more precisely address the 
contribution of these RGD-causing mutations to neuropsychiatric 
traits, ideally from cohorts with consistent genotype and phenotype 
data ascertained without bias toward selection of individuals with 
particular characteristics, such as population-based birth cohorts, 
or with a proper strategy to control for ascertainment bias, such as 
assessing the same clinically presenting disorder across multiple 
RGDs and/or using first-degree relatives as controls34,36 to account 
for additional genetic and environmental factors (see Fig. 2c,d).

Further confounding our understanding is that the phenotypic 
severity within each RGD varies widely (Fig. 2a). Presently, our 
knowledge of individuals with RGDs is biased toward those who are 
clinically identified and thus likely more severely affected, with milder 
cases (Fig. 2d) and atypical presentations under-represented12,13.  

Box 1 | Glossary

Single-nucleotide variant (SNV) A genetic variant in which one 
nucleotide (for example, C) is changed to another (for example, T).
Single-nucleotide polymorphism (SNP) A common SNV (for 
example, found in ≥1% of a population).
Insertion or deletion (indel). The gain or loss of 1–50 nucleotides, 
usually detected by sequencing.
Missense variant. An SNV in a gene that changes one amino acid 
of the resulting protein.
Protein-truncating variant/premature termination variant 
(PTV). An SNV or indel that disrupts one copy of a gene, resulting 
in a premature stop codon that is expected to elicit nonsense-
mediated decay so that no protein is formed.
Loss-of-function (LoF) variant. Genetic variants predicted 
to seriously disrupt the function of protein-coding genes, for 
example, a missense variant at an amino acid critical to protein 
function or a PTV.
pLI (probability loss-of-function intolerant) score. Probability 
that a given gene is intolerant of PTVs based on lower-than-
expected rates of PTVs in the general population, suggestive of 
selective pressure. Genes with high pLI scores (≥0.9) are extremely 
LoF intolerant, whereas genes with low pLI scores (≤0.1) may 
be LoF tolerant or there may be insufficient data to assess their 
tolerance.
Copy-number variant (CNV). The gain (duplication) or loss 
(deletion) of ≥50 nucleotides (previously ≥1,000 bp), but 
often thousands to millions of nucleotides. Can be detected by 
microarray (large CNVs only) or WGS.
Structural variant (SV). A large-scale rearrangement of DNA. 
Can include CNVs, but also inversions, translocations, or more 
complex rearrangements.
Germline de novo variant. A new genetic variant observed in a 
child but not in either parent.
Somatic de novo variant. A new genetic variant observed in some 
cells of an individual but not others.
Chromosomal microarray (CMA). Technology that enables the 
number of copies of DNA to be assessed at thousands of locations 
across the genome, enabling the detection of CNVs. Many SNP 
genotyping microarrays detect SNPs at these locations too.

Whole-exome sequencing (WES). Technology that assesses ~45 
million individual nucleotides in regions of DNA that encode 
proteins (exons), enabling the detection of SNVs and indels.
Whole-genome sequencing (WGS). Technology that assesses 
~3.2 billion individual nucleotides across the genome, enabling 
the detection of SNVs, indels, CNVs and other SVs.
Locus (plural: loci). A region of DNA ranging from a single 
nucleotide to an entire chromosome. For RGDs, it often describes 
a single gene or structural variant.
Mendelian disorder. A disorder that follows a Mendelian pattern 
of inheritance. Changes at several loci may elicit the same disorder.
Complex disorder. A disorder caused by multiple variants with 
a range of effect sizes at multiple loci, often in combination with 
environmental factors.
Neuropsychiatric. Describes a behavioral or emotional 
disturbance due to an abnormality in the structure or function of 
the central nervous system.
Neuropsychiatric domain. A psychological construct relevant to 
human behavior and mental disorders that can be measured along 
a continuum in health and disease (e.g., anxiety).
Autosomes. Chromosomes 1–22 (in humans), in contrast to the 
sex chromosomes (X, Y) or mitochondria (M).
Autosomal dominant (AD). Describes a pattern of Mendelian 
inheritance in which a single variant on one copy of an autosomal 
chromosome causes the disorder or trait.
Autosomal recessive (AR). Describes a pattern of Mendelian 
inheritance in which two copies of a variant, one on each copy of 
an autosomal chromosome, must be present in order to cause the 
disorder or trait.
Compound heterozygous. A pattern of Mendelian inheritance in 
which two different variants at the same locus, one on each copy of 
a chromosome, cause the disorder or trait.
X-linked recessive (XLR). A pattern of Mendelian inheritance  
in which one variant on chromosome X causes the disorder in 
males only. It is not uncommon for carrier females to manifest 
mild or tissue-localized symptoms of disease due to normal 
or skewed X-inactivation of the functional copy of the gene in 
individual cells.
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At the same time, studies of brain, cognition and behavior in RGDs 
(i.e., phenotyping studies) often have the opposite bias, assessing 
only high-functioning individuals. This ascertainment bias com-
plicates genetic counseling, as it is not yet possible to provide an 
accurate representation of prognosis.

To address Priority 1 (Box 2), we think that proper charac-
terization of RGD effects on brain-related phenotypes requires 
moving away from categorical diagnoses (such as ASD) to neuro-
psychiatric domains assessed as quantitative traits (such as social 
impairment)37, as advocated for by the NIMH Research Domain 
Criteria (RDoC) initiative38,39, and assessing traits consistently 
across carriers who were referred to the clinic (probands) and car-
riers who were not (family members, individuals from unselected 
populations) regardless of presenting diagnosis (Fig. 2d)36,40,41. 
Capturing the full spectrum of phenotypic severity and control-
ling for ascertainment bias that often leads to inflated estimates of 
severity (Fig. 2d)42 may require conducting population-level anal-
yses of hundreds of thousands of individuals, for example, using 
birth cohorts or health system registries13,33,34,43, and applying this 
experimental design across generations to capture early- and late-
onset manifestations34,36,44,45.

Prioritizing RGDs for research
We think that the allocation of resources for research into an RGD 
should be commensurate with the level of evidence for genetic 
association to a specific neuropsychiatric domain. In order for 
resources to be provided for research, genome-wide statistical asso-
ciation should generally be demonstrated for a neuropsychiatric 
domain4,46,47 in a defined cohort4,5,8,23,48–50; however, for very rare neu-
ropsychiatric disorders (such as childhood-onset schizophrenia), a 
lower level of evidence may be appropriate51. Further, in order to 
identify supporting mechanistic insights, we assert that it is impor-
tant that functional data are used to enhance these statistical models 
(for example, protein-truncating variant (PTV) as opposed to mis-
sense mutation data, pLI score; see Box 1, Glossary)52. For genes 
for which clear functional assays are available, systematic evaluation 
of observed variants in both cases and controls11,53 may also con-
tribute to statistical association. In the absence of clear biomarkers 
(see below) indicating a role for a genetic variant in the etiology of 
disease, observing downstream, nonspecific effects for individual 
variants, such as altered synaptic function or behavioral assays, is 
not a substitute for identifying a statistical association between the 
genetic variant and the human condition. For genetic loci contain-
ing multiple genes (such as CNVs), association evidence for a locus 
does not automatically imply that a single gene is driving the effect. 
For many recurrent CNVs, multiple genes with smaller individual 
effects appear to contribute to the overall risk (Supplementary  
Fig. 1)5,54. The additive contribution of polygenic, common risk 
should also be considered5,21,54,55.

For the majority of RGDs associated with neuropsychiatric 
domains, the evidence for statistical association comes from the 
observation of multiple de novo mutations at the same gene or locus 
in independent cases4,5,8,23,48–50. Statistical association is calculated 
from three metrics: (1) the number of independent cases (affected 
individuals) with de novo mutations at the gene or locus; (2) the 
denominator, i.e., the total number of cases assessed to find the 
mutations; and (3) the mutation rate, i.e. the chance of observing a 
similar de novo mutation in an unaffected individual. Mutation rate 
is highly dependent on gene size, with larger genes having higher 
mutation rates (Fig. 3a) and therefore requiring more de novo muta-
tions in cases to demonstrate association (Fig. 3b)10,46,47. Defining 
these three metrics is straightforward in research cohorts4,52; how-
ever, when considering multiple clinical reports56, the denomi-
nator becomes all neuropsychiatric cases that have undergone 
genetic testing worldwide. Estimating this worldwide denomina-
tor as 100,000 at present, at least 5–10 confirmed and independent 

de novo PTV mutations are required to achieve genome-wide asso-
ciation, depending on gene size (Fig. 3b, Extended Data Fig. 2).

Once a genetic locus meets the threshold for genome-wide asso-
ciation, other factors should be considered in selecting which RGDs 
to study, including the effect size on behavioral domains, level of 
risk for a categorical disease manifestation, population frequency, 
tractability for experimentation and therapeutic potential. Given 
the complexity of neurobiology, there are important roles for both 
detailed assessment of individual genes and consistent assessments 
across multiple genes.

Progressing from genotype to mechanisms
The second priority we identified is the design of bottom-up 
approaches in order to progress from genetic etiology to mecha-
nism. Because RGDs are genetically defined, they provide an 
unparalleled opportunity to understand the pathophysiology of 
psychiatric domains and conditions. However, making the link 
between a genetic variant and the underlying mechanism (Fig. 4a) 
for a psychiatric domain or disorder presents a significant chal-
lenge57,58. Conceptually, the problem can be divided into two parts: 
first, to link a genetic variant to a biochemical and/or biological 
consequence in a specific type of neuron or glial cell, and second, 
to connect a functional change in a set of cells to a defect in a circuit 
in a specific anatomical region of the brain at a particular time in 
development. Although linking these diverse levels seems daunting, 
the prospects for success are greatly improved by the ongoing devel-
opment of experimental and conceptual tools, from wet-bench to 
bioinformatic approaches58,59.

To pinpoint the subcellular location of a specific gene implicated 
in a disorder, it is possible to use genetic tagging with fluorescent 
proteins and imaging using ultra-resolution microscopy in human 
neurons created from stem cells in vitro. The function of the gene 
can be determined by using CRISPR-Cas9 genome engineering 
tools to knock out or overexpress the gene and observing the cellu-
lar consequences using a combination of high-content microscopy, 
calcium and voltage imaging, high-throughput electrophysiology 
and RNA sequencing. Although these tools have traditionally not 
been amenable to the study of multiple variants, the development 
of automated microscopes and patch clamps that are used for high-
throughput drug screening is rapidly changing this. To establish the 
time in development and the anatomical location that is affected 
by a particular genetic variant, a set of gene atlases of the devel-
oping human brain have been generated by the Allen Institute and 

Box 2 | Identified priorities for advancing neuropsychiatric 
research through a focus on RGDs

•	 Priority 1: Develop new strategies to consistently charac-
terize the effects of RGDs on cognitive and behavioral traits 
that may result in disabilities and clinical referral, across the 
rapidly expanding spectrum of neuropsychiatric-associated 
RGDs routinely identified in the clinic.

•	 Priority 2: Prioritize RGDs for exploration of pathophysiol-
ogy through bottom-up approaches: building experimental 
models starting from the lower levels of the mechanistic 
hierarchy, such as gene expression and synaptic function, will 
help guide investigation and explain phenomena higher up 
in the hierarchy, such as macroscopic brain and behavioral 
alterations leading to psychiatric diagnoses.

•	 Priority 3: Integrate the knowledge resulting from Priorities 
1 and 2, above, to accelerate the development of new drugs 
and other therapeutic interventions in those with and with-
out RGDs.
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other groups that allow gene expression to be ascribed to specific 
types of cells in specific regions of the brain at particular times in 
development (http://portal.brain-map.org). Moreover, recent prog-
ress in recapitulating neural development in vitro using pluripotent 
stem cells offers a powerful platform to manipulate and investi-
gate the roles of specific disease genes in human neurons and glial 
cells60. This recent work demonstrates the high reproducibility and  
validity of these systems for studying many human brain develop-
mental processes.

By looking for cell types that are enriched in the expression of 
specific genes, it has been possible to determine that the phenotypes 
associated with particular RGDs are caused by dysfunction in a spe-
cific type of cell. For example, phenotypes associated with mutations 
in the gene SCN1A that cause Dravet syndrome are due to defects in 
fast-spiking interneurons61, and glutamatergic neurons in the cere-
bral cortex are implicated in ASD52,62–64. A similar strategy can be used 
to identify the developmental window during which a particular 
genetic variant leads to a disorder by narrowing down the expression 
of the gene to particular periods during development, as is the case 
for mutations in FOXG1, which likely lead to neurodevelopmental 
disorders by affecting the differentiation of cortical glutamatergic  

neurons during brain development65. Similar approaches have been 
applied to structural and functional neuroimaging data, testing 
multiple brain regions and circuits to identify those that are dis-
tinct versus shared across disorders66–68, as well as neuroanatomic 
patterns that predict subsequent disease69–71. Advances in data shar-
ing have enabled the analysis of large-scale, multisite cohorts72–74.  
Large-scale harmonized phenotypic data across RGDs could be 
analyzed in a similar manner and integrated with imaging and 
genomic data.

Identifying the circuits
The development of new, effective treatments is hindered by our 
current very limited understanding of the circuit abnormalities that 
underlie different neuropsychiatric disorders. RGDs offer a unique 
roadmap to the identification of these circuits because distinct 
underlying biochemical defects have now been shown to manifest 
with common phenotypes. For example, genes with roles in glu-
tamatergic receptors (such as GRIN2B), sodium channel activity 
(such as SCN2A) and chromatin remodeling (such as CHD2) can 
all manifest both in the behaviors of ASD and in seizures5,23,52. In 
all likelihood, these mechanistically distinct genetic causes of  
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comparisons and potentially inflates estimates of effect size and penetrance. ID, intellectual disability; NDD, neurodevelopmental delay; ASD, autism 
spectrum disorder; SCZ, schizophrenia; IE: infantile epilepsy; CNV, copy-number variant. Credit: Debbie Maizels/Springer Nature.
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disorders have common phenotypic manifestations through con-
vergent effects on key circuits. The convergent effects of the muta-
tions responsible for these circuit abnormalities therefore offer a 
unique set of probes to identify those circuits.

Although in vitro tools are essential for identifying the biochem-
ical and cell biological consequences of genetic variants, identify-
ing the neuronal circuits that lead to changes in behavior requires a 
more intact system. Well-defined and replicable genetic loci associ-
ated with RGDs provide a unique and indispensable opportunity to 
generate experimental animal models. These experimental models 
do not replicate the complexity of human neuropsychiatric disor-
ders, but are essential as scientific tools to interrogate the effects 
of disorder-associated genes and variants on circuit properties75. In 
fact, it is at this juncture of genetics and neurobiology that RGDs 
present an unmatched advantage to investigate pathophysiological 
mechanisms across multiple levels (Fig. 4a). Using a combination of 
recently developed technologies such as optogenetics, chemogenet-
ics, trans-synaptic tracers and single-cell sequencing in both animal 
models and human cells76–79, we now have the ability to determine 
the effect of genetic variants on specific cells and networks with 
unprecedented detail.

Genetically engineered mouse lines can offer important insights 
into gene function that provide a basis for probing pathological 
mechanisms in RGDs. Although behavioral phenotypes of mouse 
models may not resemble human disorders, the molecular, cellular 
and circuit phenotypes are more likely to be informative. Cross-
species validation of animal models provides evidence for evolu-
tionarily conserved electrophysiological signatures and cellular 
phenotypes that may enhance confidence in the relevance of the 
genetic perturbation (Fig. 4b–d)80–82. Regardless of the approach, 
replicable and rigorously collected data are beneficial, including 
replication of key findings in a second cohort83.

Nonhuman primate (NHP) experimental systems, such as are 
used in studying depression84 and schizophrenia85–88, offer several 
advantages, including structural and functional similarity of the 
prefrontal cortex to humans, presence of similar cortical–subcorti-
cal circuits and complex behavior repertoires89. These benefits come 
at the expense of lower throughput and substantially greater costs 
and ethical concerns. As with other models, validation of resulting 
findings in humans will be essential.

Alongside animal models, advances in cell reprogramming and 
differentiation, as well as CRISPR-Cas9 methods, enable the study 
of human neurons and glial cells in specific RGDs90,91. In particu-
lar, three-dimensional (3D) cultures, also known as organoids, 
resembling specific brain regions and in-vitro-assembled 3D cul-
tures to model inter-regional cell-cell interactions92 hold promise in 
capturing previously inaccessible aspects of human development. 
Transplantation of human-derived neural cells into animals could 
reveal defects associated with circuit-wide integration in RGDs. 
Moving forward, further improvements (for example, cellular matu-
ration, spatiotemporal control, scalability) and validation of human 
cellular models will be needed90.

The discovery of biomarkers for patient selection for clini-
cal trials, confirmation of target engagement (i.e., determining 
that the intervention has the predicted effect on its hypothesized 
mechanism of action) or prediction of treatment response that 
translates between species, including humans, would transform 
the utility of such experimental systems81,82,93,94. Without such bio-
markers, our best hope is to look for convergence across multiple 
RGDs in multiple experimental systems. Rather than advocating 
for one animal or cellular experimental system, we should encour-
age the development of multiple avenues of investigation80 for 
the RGDs that rank highest in the prioritization criteria (above) 
and for assays that can be compared across multiple systems  
(Fig. 4b–d)95. In all animal or cellular experimental systems, 
genetic background can affect the results profoundly96, and 

experiments that replicate results across multiple strains or clones 
should be encouraged97.

Therapeutic development
Aside from some metabolic disorders98, very few RGDs currently 
have treatments guided by genetic findings. Recent advances in 
genetic therapy, including the landmark improvement of infant 
mortality and neurological function in patients with spinal muscu-
lar atrophy (SMA) treated with the antisense oligonucleotide nusin-
ersen29 or Zolgensma gene replacement30, offer grounds for cautious 
optimism. However, potential therapies have yet to modify cogni-
tive or behavioral symptoms in humans in fragile X syndrome99, 
tuberous sclerosis100 or Rett syndrome101, despite promising results 
in mice102–104. Gene dosage is important in many such disorders, 
with too much or too little causing symptoms11,105, presenting chal-
lenges in titrating therapy. Consequently, recessive loss-of-function 
disorders, such as SMA, may be easier to treat than dominant loss-
of-function disorders. Delivery of a therapeutic to the brain presents 
an additional challenge, further complicated if the therapy needs to 
be targeted to a specific cell type or brain region.

The extent to which neuropsychiatric symptoms are modifiable 
in humans varies by domain, age and RGD. Although some domains 
can be modified years after onset (for example, seizures, psycho-
sis, attention), others may require early treatment, as suggested  
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by the critical period of visual cortex development106 or the rela-
tionship between early management of phenylalanine hydroxylase 
deficiency (PKU) and adult IQ98. With this in mind, therapies that 
have failed in adults and adolescents are being tested in 2–6-year-
olds with fragile X syndrome107 and infants with tuberous sclero-
sis108,109. Prenatal screening for many RGDs is feasible with current 
technology, and there is precedent for neonatal treatment for highly 
penetrant RGDs29.

Clinical trials require predefined outcome measures. In neuro-
psychiatric disorders, this usually entails caregiver questionnaires 
regarding symptom severity and functioning. There is considerable 
need for more reliable, sensitive and objective measures. Measures 
of brain function that can be compared to model systems, such 
as EEG or functional MRI, should be included in trial protocols 
to help demonstrate target engagement by the therapy and refine 
dosing for future trials94. Establishing multisite databases of indi-

viduals with RGDs, alongside genotype and longitudinal pheno-
type data, for example, by extracting knowledge from patient’s 
clinical notes110,111, would reduce the costs of trials and help iden-
tify subgroups with the greatest potential to respond. Finally, clini-
cal trials need to be of sufficient size to yield clear positive or null 
results99,112,113.

Phenotyping and harmonization
To date, most phenotypic descriptions have focused on individual 
RGDs, ranging from case series to quantitative assessments of large 
patient registries. Such studies provide vital, clinically relevant 
insights that can have important therapeutic implications114,115. At 
the same time, the overlap among neuropsychiatric domains, within 
and between RGDs, provides the opportunity for cross-domain and 
cross-disorder analyses44,116, which may identify biologically defined 
subcategories of neuropsychiatric domains117.
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Achieving this vision will require a community-wide initiative 
to collate consistent, harmonized genetic data with quantitative 
measures of cognition and behavior across multiple RGDs and mul-
tiple neuropsychiatric domains. No single set of clinical data ele-
ments adequately describes all RGDs. The variables to collect in a 
natural history study should be broad and based on features of the 
disorder, including morbidities that are most important to patients, 
those that are most likely to be life limiting, potential prognostic 
characteristics and those that may help formulate sensitive clinical 
endpoints118. The resulting data repository should reflect existing 
National Institutes of Health (NIH) data-sharing policies and stan-
dards, and become part of the NIH data sharing ecosystem to secure 
access for researchers, clinicians and institutions, enabling a wide 
range of hypothesis-testing with no restrictions on data use and 
appropriate human subjects and privacy safeguards119,120. This effort 
will also require standardized phenotypic ontologies, which can be 
achieved by adapting existing ontologies to ensure that adequate 
and comprehensive terminology exists for neuropsychiatric symp-
tom manifestations across the lifespan.

Other stakeholder actions
The challenges and opportunities presented above require coordi-
nated efforts among the community of stakeholders to fund, exe-
cute, coordinate and communicate research (see Supplementary 
Table 5). Patient- and family-based organizations fulfill an essential 
role of providing support and decreasing isolation experienced by 
patients and caregivers; these organizations also have a key role in 
forming interactive networks that connect them with researchers 
and health care systems (for example, to keep families informed 
about the latest clinical trials and research findings). Although 
some examples of interactive research and family-based networks 
for RGDs already exist, they are not all focused on or inclusive of 
neuropsychiatric disorders, and efforts need to be made to use these 
networks for such purposes. Such networks will contribute not only 
to larger sample sizes, which are critical for research progress, but 
also to organizing healthcare systems to collect consistent pheno-
types that include neuropsychiatric measures to enhance data har-
monization, as well as implementing standards for genotyping and 
phenotyping. Academic health systems, in partnership with other 
health care systems, can play a pivotal role in these networks by 
expanding the reach of their initiatives and imparting knowledge 
gained from the research. Some registries and databases will use a 
federated approach, and some will utilize a centralized repository 
approach. Both will be useful for specific purposes, with federated 
approaches allowing for more flexibility in individualization and 
‘real-time’ accrual of data, and centralized repositories providing 
more digested, pre-harmonized data that require less work by the 
user before analysis, but also restricts usage. Both types of net-
works will clearly be useful, and will continue to be expanded upon 
with respect to data types included, with electronic health records 
(EHRs) quickly becoming an additional data source.

Recently, clinical notes from patient EHRs have been identi-
fied as important sources of clinical and demographic information. 
This has led to the development of a variety of knowledge-extrac-
tion tools that transform the raw text content of clinical notes into 
structured associations between patients and phenotypes defined in 
terminologies such as the Systematized Nomenclature of Medicine–
Clinical Terms and the Human Phenotype Ontology. Knowledge 
extracted from clinical notes is of increased value to research into 
RGDs given the scarcity of patient data, necessitating the use of nat-
ural language processing engines to extract structured knowledge 
from clinical notes110. In addition, biobanks are increasingly being 
developed to support organized collections of biological specimens, 
genomic data and associated clinical information—including EHR 
data—from broadly consented, diverse patient populations contrib-
uting to RGD research121–123.

Partnerships among patient and family organizations, academic 
sites and other health systems will provide an important platform 
for working with funding agencies to emphasize the need for the 
implementation of core, cross-diagnostic phenotypic measures and 
the use of broad neuropsychiatric measures to facilitate data harmo-
nization. This approach will culminate in early collaboration and 
coordination across groups working in this space, resulting in the 
design of maximally effective initiatives, data sharing and dissemi-
nation of information and knowledge gained. Furthermore, partner-
ships will create a platform for collaboration with pharmaceutical 
companies, encouraging alliances in preclinical and translational 
research toward drug development. However, data harmonization 
for collaboration necessarily requires data sharing. The community 
should follow NIH and established standards in the field for phe-
nomic, genomic and biosample sharing. Although this can be done 
retrospectively, optimal sharing will begin before data collection, 
and include sharing of variables and even study methodology, to 
ensure replication and maximal generalizability of findings.

Drug development programs require a strong scientific foun-
dation, including detailed understanding of the natural history of 
a disorder. Because of the small numbers of patients affected, and 
because clinical experience is dispersed among clinical referral cen-
ters, the natural history of RGDs is rarely well characterized. The 
US Food and Drug Administration advises sponsors to evaluate the 
depth and quality of existing natural history knowledge early in drug 
development118. Close collaboration with patient and family groups 
and all stakeholders is essential to design and conduct impactful 
natural history studies for future potential drug design and approval.

Several examples (Supplementary Table 5) illustrate the potential 
contributions of such convergent efforts. The benefits of coordina-
tion across stakeholders are immense, and could create resources 
enabling investigators to merge and integrate available databases, 
examine existing data across disorders, and define the best data for-
mats for prospective studies that use consistent broad and deep phe-
notyping to facilitate harmonization efforts. Furthermore, it fosters 
complementary approaches for building resources and establishing 
cohorts (for example, mining of electronic medical records, clinical 
recruitment, patient advocacy) with synergism that propels the field.

Conclusions
We think that RGDs hold important biological clues into the mecha-
nisms underlying complex neuropsychiatric disorders, such as ASD 
and schizophrenia, that can be leveraged in model experimental 
systems, with the view to understanding the etiology underlying 
the full spectrum of these neuropsychiatric conditions. Although 
the individual features of each RGD are important, it is the com-
monalities across RGDs that hold the greatest promise to transform 
our understanding and management of neuropsychiatric disorders. 
Identifying these commonalities in phenotype and neurobiology will 
require coordination and sharing of methods, data and resources 
across individuals and institutions, following the lead of the NIH 
and genomics community. Although RGDs and the neuropsychiat-
ric domains they impact pose substantial challenges, the opportunity 
these rare disorders offer for illuminating mechanisms is likely to be 
transformative for scientists, clinicians and, ultimately, patients.
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Extended Data Fig. 1 | Impact of RGDs on neuropsychiatric domains. a, Many RGDs impact cognition, measured by IQ. For CNVs, the decrease in IQ 
(x axis) can be predicted by considering the pLI score of the genes within the CNV. CNVs that are predicted to markedly reduce IQ are more likely to be 
de novo (y axis), based on logistic regression (blue line) of 2,743 CNVs detected in patients with neurodevelopmental disorders and the general population 
(gray distributions at top and bottom). Updated analysis from ref. 54. b, In Fig. 2, we show the odds ratio for ID/NDD, ASD and SCZ across different CNV 
loci. Here, we show an equivalent plot for single-gene RGDs. Insufficient control data exist to estimate odds ratio, and therefore we show the percentage 
of cases with ID/NDD, ASD, and IE based on curated publication review applied equally across genes (https://dbd.geisingeradmi.org) with the number of 
cases are shown in parentheses (see Supplementary Table 2 for numbers). Abbreviations: ID, intellectual disability; NDD, neurodevelopmental delay; ASD, 
autism spectrum disorder; SCZ, schizophrenia; IE, infantile epilepsy; pLI, probability loss-of-function intolerant.
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Extended Data Fig. 2 | Thresholds for genome-wide significant association with de novo PTVs. a, Gene mutability is a function of gene length (cDNA) 
and sequence context (particularly GC content). b, RGD gene discovery from exome sequencing has been driven by de novo mutations, leading to a 
bias towards larger genes with higher mutability. c, Thresholds of statistical association (colored lines) are estimated for a given number of de novo PTV 
mutations (3, 5, 10, and 20) as cohort size (x axis) and gene mutability/size (y axis) varies. P values are estimated based on the rate of de novo PTV 
mutations in controls4 and a Poisson distribution (see Methods for details). Abbreviations: pLI, probability of loss-of-function intolerance; ASD, autism 
spectrum disorder; DDD: Deciphering Developmental Disorders; GC content, guanine-cytosine content.
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