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Maximum Likelihood Latent Space Embedding
of Logistic Random Dot Product Graphs

Luke O’Connor, Muriel Médard and Soheil Feizi

Abstract—A latent space model for a family of random graphs assigns real-valued vectors to nodes of the graph such that edge
probabilities are determined by latent positions. Latent space models provide a natural statistical framework for graph visualizing and
clustering. A latent space model of particular interest is the Random Dot Product Graph (RDPG), which can be fit using an efficient
spectral method; however, this method is based on a heuristic that can fail, even in simple cases. Here, we consider a closely related
latent space model, the Logistic RDPG, which uses a logistic link function to map from latent positions to edge likelihoods. Over this
model, we show that asymptotically exact maximum likelihood inference of latent position vectors can be achieved using an efficient
spectral method. Our method involves computing top eigenvectors of a normalized adjacency matrix and scaling eigenvectors using a
regression step. The novel regression scaling step is an essential part of the proposed method. In simulations, we show that our
proposed method is more accurate and more robust than common practices. We also show the effectiveness of our approach over
standard real networks of the karate club and political blogs.

Index Terms—Latent space models, Stochastic block models, Maximum likelihood

F

1 INTRODUCTION

C LUSTERING over graphs is a classical problem with
applications in systems biology, social sciences, and

other fields [1], [2], [3], [4]. Although most formulations of
the clustering problem are NP-hard [5], several approaches
have yielded useful approximate algorithms. The most well-
studied approach is spectral clustering. Most spectral meth-
ods are not based on a particular generative network model;
alternative, model-based approaches have also been pro-
posed, using loopy belief propagation [14], variational Bayes
[15], Gibbs sampling [16], and semidefinite programming
[22], [23].

Many spectral clustering methods are derived by
proposing a discrete optimization problem, and relaxing it
to obtain a continuous, convex optimization whose solution
is given by the eigenvectors of a normalized adjacency
matrix or Laplacian. A post-processing step, typically k-
means, is used to extract clusters from these eigenvectors
[6], [7]. Different matrix normalizations/transformations in-
clude Modularity [1], Laplacian [9], normalized Laplacian
[10], [11], [26], and Bethe Hessian [12]. These methods
are often characterized theoretically in the context of the
Stochastic Block Model (SBM) [30], a simple and canonical
model of community structure. Theoretical bounds on the
detectability of network structure for large networks have
been established for stochastic block models [14], [19], [20],
[21]. Several spectral methods have been shown to achieve
this recovery threshold [8], [12], [17]. Strong theoretical and
empirical results have also been obtained using SDP-based
[22], [23] and Belief Propagation-based [14] methods, which
often have higher computational complexity than spectral
methods. A threshold has also been discovered for perfect
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clustering, i.e. when community structure can be recovered
with zero errors [23], [24].

An alternative approach to the clustering problem is
to invoke a latent space model. Each node is assigned a
latent position vi, and the edges of the graph are drawn
independently with probability pij = g(vi, vj) for some g(·).
Hoff et al. [31] considered two latent space models, the first
of which was a distance model,

Pi,j = l(−||vi − vj || − µ+ βxij), l(x) = 1/(1 + exp(−x))

where edge probabilities depend on the Euclidean distance
between two nodes. xij is a fixed covariate term, which is
not learned. Their second model is called a projection model:

Pi,j = l(
vi · vj
||vj ||

+ βxij − µ). (1)

Hoff et al. suggest to perform inference using an MCMC ap-
proach over both models. Focusing on the distance model,
they have also extended their approach to allow the latent
positions to themselves be drawn from a mixture distribu-
tion containing clusters [32], [33]. Efforts to improve the
computational efficiency have been made in references [34],
[35], and with a related mixed membership blockmodel in
reference [15].

Young et al. [28] introduced the Random Dot Product
Graph (RDPG), in which the probability of observing an
edge between two nodes is the dot product between their
respective latent position vectors. The RDPG model can be
written as

Pi,j = vi · vj .

This model is related to the projection model of Hoff et al.
(1). The RDPG provides a useful perspective on spectral
clustering, in two ways. First, it has led to theoretical ad-
vances, including a central limit theorem for eigenvectors
of an adjacency matrix [29] and a justification for k-means
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clustering as a post processing step for spectral clustering
[25]. Second, as a natural extension of the SBM, the RDPG
describes more comprehensively the types of network struc-
tures, such as variable degrees and mixed community mem-
berships, that can be inferred using spectral methods.

Let V be the n × d matrix of latent positions, where
n is the number of nodes and d is the dimension of the
latent vectors (d ≤ n). Sussman et al. [25] proposed an
inference method over the RDPG based on the heuristic that
the first eigenvectors of A will approximate the singular
vectors of V , as E(A) = V V T . They also characterized
the distribution of the eigenvectors of A given V . This
heuristic can fail, however, as the first eigenvector of the
adjacency matrix often separates high-degree nodes from
low-degree nodes, rather than separating the communities.
This problem occurs even in the simplest clustering setup: a
symmetric SBM with two clusters of equal size and density.
Therefore, we were motivated to develop a more robust
inference approach.

In this paper, we consider a closely related latent space
model, the Logistic RDPG, which uses a logistic link function
mapping from latent positions to edge probabilities. Like the
previously-studied RDPG, the logistic RDPG includes most
SBMs as well as other types of network structure, including
a variant of the degree corrected SBM. The logistic RDPG
is also similar to the projection model, which uses a logistic
link function but models a directed graph (with pi,j 6= pj,i).
Over this model, we show that the maximum likelihood
latent-position inference problem admits an asymptotically
exact spectral solution. Our method is to take the top
eigenvectors of the mean-centered adjacency matrix and
to scale them using a logistic regression step. This result
is possible because over the logistic model specifically, the
likelihood function separates into a linear term that depends
on the observed network and a nonlinear penalty term that
does not. Because of its simplicity, the penalty term admits
a Frobenius norm approximation, leading to our spectral
algorithm. A similar approximation is not obtained using
other link functions besides the logistic link.

We show that the likelihood of the approximate solution
approaches the maximum of the likelihood function when
the graph is large and the latent-position magnitudes go to
zero. The asymptotic regime is not overly restrictive, as it
encompasses many large SBMs at or above the detectability
threshold [14]. We compare the performance of our method
in the graph clustering problem with spectral methods in-
cluding the Modularity method [1], the Normalized Lapla-
cian [9] and the Bethe Hessian [12], and the SDP-based
methods [22], [23]. We show that our method outperforms
these methods over a broad range of clustering models.
We also show the effectiveness of our approach over real
networks of karate club and political blogs.

2 LOGISTIC RANDOM DOT PRODUCT GRAPHS

In this section, we introduce the logistic RDPG, describe
our inference method, and show that it is asymptotically
equivalent to the maximum likelihood inference.

2.1 Definitions
Let A be the set of adjacency matrices corresponding to
undirected, unweighted graphs of size n.

Definition 1 (Stochastic Block Model). The Stochastic Block
Model is a family of distributions on A parameterized
by (k, c,Q), where k is the number of communities,
c ∈ [k]n is the community membership vector and
Q ∈ [0, 1]k×k is the matrix of community relationships.
For each pair of nodes, an edge is drawn independently
with probability

Pi,j := Pr(Aij = 1|ci, cj , Q) = Qci,cj .

Another network model that characterizes low dimen-
sional structures is the Random Dot Product Graph (RDPG).
This class of models includes many SBMs.
Definition 2 (Random Dot Product Graph). The Random

Dot Product Graph with link function g(·) is a family of
distributions on A parameterized by an n × d matrix of
latent positions V ∈ Rn×d. For each pair of nodes, an
edge is drawn independently with probability

Pi,j := Pr(Aij = 1|V ) = g(vi · vj), (2)

where vi, the i-th row of the matrix V , is the latent
position vector assigned to node i.

The RDPG has been formulated using a general link
function g(·) [28]. The linear RDPG, using the identity link,
has been analyzed in the literature because it leads to a
spectral inference method. We will refer to this model as
either the linear RDPG or as simply the RDPG. In this paper,
we consider the Logistic RDPG:
Definition 3 (Logistic RDPG). The logistic RDPG is the

RDPG with link function:

g(x) = l(x− µ), l(x) :=
1

1 + e−x
, (3)

where µ is the offset parameter of the logistic link func-
tion.

Note that this model is similar to the projection model
of Hoff et al. [31] (1). The projection model is for a directed
graph, with Pi,j 6= Pj,i owing to the division by ||vj ||.
Remark 1. The parameter µ in the logistic RDPG controls

the sparsity of the network. If the latent position vector
lengths are small, the density of the graph is

1

n(n− 1)

∑
i<j

E(Aij) ≈ l(−µ). (4)

A logistic RDPG with this property is called centered. In
Section 2.2, we show that asymptotically exact maximum
likelihood inference of latent positions over the centered
logistic RDPG can be performed using an efficient spectral
algorithm.

For a general RDPG, the ML inference problem is:
Definition 4 (ML inference problem for the RDPG). Let A ∈
A. The ML inference problem over the RDPG is:

max
X

∑
i 6=j

Aij log g(Xi,j) + (1−Aij) log(1− g(Xi,j)),

(5)

X = V V T , V ∈ Rn×d.

Note that in the undirected case, this objective function is
twice the log likelihood.
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Remark 2. A convex semidefinite relaxation of Optimization
(5) can be obtained for some link functions as follows:

max
X

∑
i 6=j

Aij log g(Xij) + (1−Aij) log(1− g(Xij)),

(6)
X � 0,

where X � 0 means that X is psd. For example, this
optimization is convex for the logistic link function (i.e.,
g(x) = l(x − µ)) and for the linear link function (i.e.,
g(x) = x). However, this optimization can be slow
in practice, and it often leads to excessively high-rank
solutions.

2.2 Maximum-Likelihood Inference of Latent Position
Vectors
Here, we present an efficient, asymptotically exact spectral
algorithm for the maximum-likelihood (ML) inference prob-
lem over the logistic RDPG, subject to mild constraints. We
assume that the number of dimensions is given. In practice,
these parameters are often set manually, but approaches
have been proposed to automatically detect the number of
dimensions [40].

The proposed maximum-likelihood inference of latent
position vectors for the logistic RDPG is described in Al-
gorithm 1. In the following, we sketch the derivation of this
algorithm in a series of lemmas. Proofs for these assertions
are presented in Section 7.

First, we simplify the likelihood function of Optimiza-
tion (5) using the logistic link function. Let F (X) be the
log-likelihood, and let the link function be g(x) = l(x− µ).
Then:

F (X) :=
∑
i,j

Aij log l(Xij − µ) + (1−Aij) log(1− l(Xij − µ))

=
∑
i,j

Aij log
l(Xij − µ)

1− l(Xij − µ)
+ log(1− l(Xij − µ))

=
∑
i,j

Aij(Xij − µ) + log(1− l(Xij − µ)). (7)

We have used that log(l(x)/(1− l(x))) = x. The maximum
likelihood problem takes the following form (for given µ):

max
X

Tr(AX) +
∑
i6=j

log(1− 1

1 + e−(Xij−µ)
),

X = V V T , V ∈ Rn×d. (8)

The objective function has been split into a linear term that
depends on the adjacency matrix A and a penalty term that
does not depend on A. This simplification is what leads to
tractable optimization, and it is the reason that the logistic
link is needed; using e.g. a linear link, an optimization of
this form is not obtained.

We define a penalty function f(x) that keeps only the
quadratic and higher-order terms in the penalty term of (8).
Let

f(x) := −(h(x)−h(0)−h′(0)x), h(x) = log(1− l(x−µ)).

Now, h′(0) = −l(−µ). Let

B := A− l(−µ)1n×n

in order to re-write Optimization (8) as:

max
X

Tr(BX)−
∑
i6=j

f(Xij), (9)

X = V V T , V ∈ Rn×d.

Note that for a centered RDPG with average density Ā, µ =
l−1(Ā), and B is the mean-centered adjacency matrix A −
Ā1n×n. In the next step, we convert the penalty term in the
objective function into a constraint:
Lemma 1. Suppose that X∗ is the optimal solution to Opti-

mization (5). Let

h∗ :=
1

n(n− 1)

∑
i,j

f(X∗ij).

Then X∗ is also the solution to the following optimiza-
tion:

max
X

Tr(BX) (10)

X = V V T , V ∈ Rn×d

1

n(n− 1)

∑
i 6=j

f(Xij) ≤ h∗.

In the following key lemma, we show that the inequality
constraint of Optimization (10) can be replaced by its second
order Taylor approximation.
Lemma 2. For any ε > 0 and γ ≥ 1, there exists δ > 0 such

that for any graph whose ML solution X∗ satisfies

h∗ ≤ δ and max
i
X∗ii ≤

γ

n

∑
i

X∗ii, (11)

the following bound is satisfied. Let B be the mean cen-
tered adjacency matrix of the chosen graph. Let s∗ ∈ R
be the optimal value of the following optimization, ob-
tained at X = X∗:

max
X

Tr(BX), (12)

X = V V T , V ∈ Rn×d

1

n(n− 1)

∑
i 6=j

f(Xij) ≤ h∗,

Let s̃ be the optimal value of the following optimization:

max
X

Tr(BX), (13)

X = V V T , V ∈ Rn×d
a2

n(n− 1)

∑
i6=j

X2
ij ≤ h∗.

where a2 := f ′′(−µ). Then

s̃ ≥ (1− ε)s∗.

The parameter h∗ is related to the average length of latent-
position vectors (X∗ii). If these lengths approach zero, h∗ ap-
proaches zero, for a fixed γ. An implication of this constraint
is that the logistic RDPG must be approximately centered.
Thus, there is a natural choice for the parameter µ for the
purpose of inference:

µ̂ = −l−1(
1

n(n− 1)
‖A‖F ). (14)
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Algorithm 1 ML Inference for the logistic RDPG
Require: Adjacency matrix A, number of dimensions d. (optional) number of clusters k

Form the mean-centered adjacency matrix B := A− 1/(n(n− 1))‖A‖.
Compute d eigenvectors of B with largest eigenvalues: e1, ..., ed.
Let Xi = eie

T
i for 1 ≤ i ≤ d.

Perform logistic regression of the entries of A lying above the diagonal on the corresponding entries of X1, ...., Xd,
estimating coefficients λ∗1, ...λ

∗
d subject to the constraint that λi ≥ 0 ∀i.

Let V be the matrix formed by concatenating
√
λ∗1e1, ...,

√
λ∗ded. Return V .

(optional) Perform k-means on V , and return the inferred clusters.

This estimator of µ can be viewed as the maximum-
likelihood estimator specifically over the centered logistic
RDPG. With this choice of µ, B, the mean-centered adja-
cency matrix, can be written as

B = A− 1

n(n− 1)
‖A‖F .

Note that changing the constant in the inequality con-
straint of Optimization (13) only changes the scale of the
solution, since the shape of the feasible set does not change.
Thus, in this optimization we avoid needing to know h∗ a
priori (as long as the conditions of Lemma 2 are satisfied).

Next we show that that the solution to Optimization (13)
can be recovered up to a linear transformation using spectral
decomposition:
Lemma 3. Let X̃ be the optimal solution to Optimization

(13). Let e1,..., ed be the first d eigenvectors of B,
corresponding to the largest eigenvalues. Then e1, .., ed
are identical to the non-null eigenvectors of X̃ , up to
rotation.

Once the eigenvectors of X̃ are known, it remains only
to recover the corresponding eigenvalues. Instead of re-
covering the eigenvalues of X̃ , we find the eigenvalues
that maximize the likelihood, given the eigenvectors of X̃ .
Let X̃i = eie

T
i . Then, the maximum-likelihood estimate

of λ1, ..., λd conditional on X1, ..., Xd = X̃1, ..., X̃d can be
written as follows:

λ∗ := argmaxλ=(λ1,...,λd)

∑
i6=j

logP (Aij |X̃1, ..., X̃d, λ, µ).

(15)

Lemma 4. Optimization (15) can be solved by logistic regres-
sion of the entries of A on the entries of X∗1 , ..., X

∗
d , with

the constraint that the coefficients are nonnegative, and
with intercept µ.

These lemmas can be used to show the asymptotic
optimality of Algorithm 1:
Theorem 1. For all ε > 0 and γ > 1, there exists δ > 0 that

satisfies the following. For any graph with size n and
adjacency matrix A, suppose that X∗ is the solution to
the optimization

max
X

P (A|X),

X = V V T , V ∈ Rn×d.

Let
h∗ :=

1

n(n− 1)

∑
i 6=j

f(X∗ij).

If

h∗ < δ and max
i
X∗ii ≤

γ

n

∑
i

X∗ii, (16)

then
P (A|X = X∗)

P (A|X = X∗)
> 1− ε,

where X∗ is the solution obtained by Algorithm 1.

Our algorithm is asymptotically exact in the sense that
the likelihood ratio between our solution and the true
maximum converges uniformly to one as the average latent
position length shrinks. Importantly, the convergence is
uniform over arbitrarily large graphs; therefore, this regime
contains most interesting large network models, such as
an SBM with large communities that cannot be perfectly
recovered. Coupling this algorithm with a k-means post
processing step leads to a clustering method with robust
performance under different network clustering setups.

This result is stronger than the statement that an ap-
proximate objective function approximates the likelihood
function at the optimum of the likelihood function. Such a
result, which can be obtained for many link functions (such
as an affine-linear link), is not useful because it does not
follow that the optimum of the approximate function lies
near the optimum of the true likelihood function. Indeed,
for a linear approximation, it has no optimum since the
objective function is unbounded. In order to obtain the
stronger statement that the likelihood at the optimum of
the approximation is large, it is necessary to use a quadratic
approximation. For link functions besides the logistic link,
the quadratic term in the likelihood function depends on A,
and a spectral optimization method cannot be obtained.

The condition in Theorem 1 that the lengths of optimal
latent vectors are sufficiently small is not restrictive for large
networks. Consider a sequence of increasingly-large SBMs
with two clusters of fixed relative sizes, and a convergent
sequence of admissible connectivity matrices whose average
density is fixed. There are three asymptotic regimes for
the community structure: (1) in which the structure of the
network is too weak to detect any clusters at all; (2) in which
the communities can be partially recovered, but some mis-
assignments will be made; and (3) in which the communities
can be recovered perfectly. The true latent position lengths
go to zero in regimes (1) and (2) as well as in part of
regime (3) [23]. Theorem 1 requires maximum-likelihood
latent position lengths, rather than true position lengths, to
go to zero. If this is the case, and if maximum likelihood
achieves the optimum thresholds for partial recovery and
perfect recovery, then our method will as well.
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Fig. 1. Normalized mean squared error (one minus squared correlation) of inferred latent positions for two SBMs (a-b) and a non-SBM logistic
RDPG (c). The top eigenvectors of the adjacency matrix A and the modularity matrix M do not characterize the community structure in panel (a)
and in panel (b), respectively. Note that in practice, a different eigenvector could be selected or multiple eigenvectors could be used. In panel (c),
the top eigenvector of A does not recover the latent structure. In contrast, our method successfully recovers the underlying latent position vectors
in all cases.

3 PERFORMANCE EVALUATION OVER SYNTHETIC
NETWORKS

In this section, we compare the performance of our pro-
posed method (Algorithm 1) with existing methods. First,
we assess the performance of our algorithm against existing
methods in inference of latent position vectors of two stan-
dard SBMs depicted in Figure 1. The network demonstrated
in panel (a) has two dense clusters. In this case, the first
eigenvector of the modularity matrix M leads to a good
estimation of the latent position vector while the first eigen-
vector of the adjacency matrix A fails to characterize this
vector. This is because the first eigenvector of the adjacency
matrix correlates with node degrees. The modularity trans-
formation regresses out the degree component and recovers
the community structure. However, the top eigenvector of
the modularity matrix fails to identify the underlying latent
position vector when there is a single dense cluster in the
network, and the community structure is correlated with
node degrees (Figure 1-b). This discrepancy highlights the
sensitivity of existing heuristic inference methods in differ-
ent network models (the Modularity method has not pre-
viously been considered a latent-position inference method,
but we believe that its appropriate to do so). In contrast, our
simple normalization allows the underlying latent position
vectors to be accurately recovered in both cases. We also
verified in panel (c) that our method successfully recovers
latent positions for a non-SBM logistic RDPG. In this setup,
the adjacency matrix’s first eigenvector again correlates with
node degrees, and the modularity normalization causes an
improvement. We found it remarkable that such a simple
normalization (mean centering) enabled such significant im-
provements; using more sophisticated normalizations such

as the Normalized Laplacian and the Bethe Hessian, no
improvements over were observed (data not shown).

Second, we assessed the ability of our method to detect
communities generated from the SBM. We compared against
the following existing spectral network clustering methods:

• Modularity (Newman, 2006). We take the first d
eigenvectors of the modularity matrix M := A −
vT v/2|E|, where v is the vector of node degrees and
|E| is the number of edges in the network. We then
perform k-means clustering on these eigenvectors.

• Normalized Laplacian (Chung, 1997). We take
second- through (d + 1)st- last eigenvectors of
Lsym := D−1/2(D − A)D−1/2, where D is the di-
agonal matrix of degrees. We then perform k-means
clustering on these eigenvectors.

• Bethe Hessian (Saade et al., 2014). We take the
second- through (d+ 1)st- last eigenvectors of

H(r) := (r2 − 1)1n×n − rA+D,

where r2 is the density of the graph as defined in
[12].

• Unnormalized spectral clustering (Sussman et al.,
2012). We take the first d eigenvectors of the adja-
cency matrix A, and perform k-means clustering on
these eigenvectors.

• Spectral clustering on the mean-centered matrix B.
We take the first d eigenvectors of the matrix B and
perform k-means on them, without a scaling step.

Note that in our evaluation we include spectral clustering on
the mean-centered adjacency matrix B without subsequent
eigenvalue scaling of Algorithm 1 to demonstrate that the
scaling step computed by logistic regression is essential to
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Fig. 2. Performance comparison of our method (logistic RDPG) against spectral clustering methods in different clustering setups. Panels (a)-(e)
illustrate networks that can be characterized by SBM, while panel (f) illustrates a non-SBM network model. The scale of the x axis is different
in panel (f) than the rest of the panels. Our proposed method performs consistently well, while other methods exhibit sensitive and inconsistent
performance in different network clustering setups. Note that in some cases, such as for the Laplacian in panel (b), performance is improved by
using a different eigenvector or by using a larger number of eigenvectors.

the performance of the proposed algorithm. When d = 1,
the methods are equivalent. We also compare the perfor-
mance of our method against two SDP-based approaches,
the method proposed by Hajek et al. (2015) and the SDP-1
method proposed by Amini et al. (2014). For all methods we
assume that the number of clusters k is given.

In our scoring metric, we distinguish between clusters
and communities: For instance, in Figure 2-e, there are two
clusters and four communities, comprised of nodes belong-
ing only to cluster one, nodes belonging only to cluster two,
nodes belonging to both clusters, and nodes belonging to
neither. The score that we use is a normalized Jaccard index,
defined as:

maxσ∈Sk
∑k
l=1

|Cl∩Ĉσ(l)|
|Cl| − 1

k − 1
(17)

where Cl is the l-th community, Ĉl is the l-th estimated com-
munity, and Sk is the group of permutations of k elements.
Note that one advantage of using this scoring metric is that
it weighs differently-sized clusters equally (it does not place
higher weights on larger communities.).

Figure 2 presents a comparison between our proposed
method and existing spectral methods in a wide range
of clustering setups. Our proposed method performs con-
sistently well, while other methods exhibit sensitive and

inconsistent performance in different network clustering
setups. For instance, in the case of two large clusters (b)
the second-to-last eigenvector of the Normalized Laplacian
fails to correlate with the community structure; in the case of
having one dense cluster (a), the Modularity normalization
performs poorly; when there are many small clusters (c), the
performance of the Bethe Hessian method is poor. In each
case, the proposed method performs at least as well as the
best alternate method, except in the case of several different-
sized clusters (d), when the normalized Laplacian performs
marginally better. In the case of overlapping clusters (e),
our method performs significantly better than all competing
methods. Spectral clustering on B without the scaling step
also performs well in this setup; however, its performance
is worse in panels (c-d) when d is larger, highlighting the
importance of our logistic regression step.

The values of k and d for the different simulations were:
k = 2, d = 1; k = 2, d = 1; k = 25, d = 24; k = 17, d = 16;
k = 4, d = 2; k = 2, d = 1 for panels (a)-(f), respectively. The
values of d are chosen based on the number of dimensions
that would be informative to the community structure, if
one knew the true latent positions. All networks have 1000
nodes, with background density 0.05.

While spectral methods are most prominent network
clustering methods owing to their accuracy and efficiency,
other approaches have been proposed, notably including
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Fig. 3. Performance comparison of our method (logistic RDPG) against semidefinite programming-based clustering methods. Hajek et al.’s method
is designed for the case of having two equally sizes partitions, thus it is not included in Panels b-d.

SDP-based methods, which solve relaxations of the maxi-
mum likelihood problem over the SBM. We compare the
performance of our method with the SDP-based methods
proposed by Hajek et al. (2015) and Amini et al. (2014)
(Figure 3). In the symmetric SBM, meaning the SBM with
two equally-dense, equally-large communities, we find that
our method performs almost equally well as the method of
Hajek et al. (2015), which is a simple semidefinite relaxation
of the likelihood in that particular case. Our method also
performs better than the method of Amini et al., which
solves a more complicated relaxation of the SBM maximum-
likelihood problem in the more general case (Figure 3).

4 PERFORMANCE EVALUATION OVER REAL NET-
WORKS

To assess the performance of the Logistic RDPG over well-
characterized real networks, we apply it to two well-known
real networks. First, we consider the Karate Club network
[44]. Originally a single karate club with social ties between
various members, the club split into two clubs after a dis-
pute between the instructor and the president. The network
contains 34 nodes with the average degree 4.6, including
two high degree nodes corresponding to the instructor and
the president. Applying our method to this network, we
find that the first eigenvector separates the two true clusters
perfectly (Figure 4-a).

In the second experiment, we consider a network of
political blogs, whose edges correspond to links between
blogs [45]. This network, which contains 1221 nodes with
nonzero degrees, is sparse (the average total degree is 27.4)
with a number of high degree nodes (60 nodes with degrees
larger than 100). The nodes in this network have been
labeled as either liberal or conservative. We apply our method
to this network. Figure 4-b shows inferred latent positions of
nodes of this network. As it is illustrated in this figure, nodes
with different labels have been separated in the latent space.

Note that some nodes are placed near the origin, indicating
that they cannot be clustered confidently; this is occurred
owing to their low degrees as the correlation between node
degrees and distances from the origin was 0.95.

5 CODE

We provide code for the proposed method in the follow-
ing link: https://github.com/SoheilFeizi/spectral-graph-
clustering

6 DISCUSSION

In this paper, we developed a spectral inference method
over logistic Random Dot Product Graphs (RDPGs), and
we showed that the proposed method is asymptotically
equivalent to the maximum likelihood latent-position in-
ference. Previous justifications for spectral clustering have
usually been either consistency results [25], [26] or partial-
recovery results [17], [18]; to the best of our knowledge, our
likelihood-based justification is the first of its kind for a spec-
tral method. This type of justification is satisfying because
maximum likelihood inference methods can generally be
expected to have optimal asymptotic performance charac-
teristics; for example, it is known that maximum likelihood
estimators are consistent over the SBM [38], [39]. It remains
an important future direction to characterize the asymptotic
performance of the MLE over the Logistic RDPG.

We have focused in this paper on the network clus-
tering problem; however, latent space models such as the
Logistic RDPG can be viewed as a more general tool
for exploring and analyzing network structures. They can
be used for visualization [41], [42] and for inference of
partial-membership type structures, similar to the mixed-
membership stochastic blockmodel [15]. Our approach can
also be generalized to multi-edge graphs, in which the num-
ber of edges between two nodes is binomially distributed.
Such data is emerging in areas including systems biology, in
the form of cell type and tissue specific networks [43].
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7 PROOFS

Proof 1 (Proof of Lemma 1). If not, then the optimal
solution to Optimization (10) would be a better solution
to Optimization (5) than X∗.

Proof 2 (Proof of Lemma 2). The origin is in the feasible
set for both optimizations. For each optimization, the
objective function value satisfies Tr(rCX) = rTr(CX).
Thus, the optimum is either at the origin (if there is no
positive solution) or at the boundary of the feasible set.
If the optimum is at the origin, we have s∗ = s̃ = 0.
If not, let X be be any solution to 1

n2

∑
i,j f(Xij) = h.

Let r = ||X||F , and let r′ =
√
h/a2. Claim: fixing γ,

r/r′ → 1 uniformly as h∗ → 0.
Define

FX(a) :=
1

n2

∑
i,j

f(aXij/||X||F )

for a > 0. In addition, since r′ has been defined such that
the quadratic term of FX(r′) is a2

∑
i,j(

r′

r Xij)
2 = h∗, we

have

FX(r′) = h∗ +
1

n2
O(
∑
i,j

(
r′

r
Xij)

3). (18)

Moreover, the Taylor series for f(·) converges in a neigh-
borhood of zero. Because of the constraint

max
i,j

X∗ij = max
i
X∗ii ≤

γ

n

∑
i

X∗ii,

we can choose δ such that every entry Xij falls within
this neighborhood. This constraint also implies

1

n2

∑
X3
ij ≤

1

n2

∑
|Xij |3 = O

((
1

n2
||X||F

)3
)
.

Substituting this into (18), we have

FX(r′) = h∗ +
1

n2
O(r′3). (19)

Therefore, we have

|FX(r)− FX(r′)|
FX(r′)

=
|h∗ +O(r′3)− h∗|

h∗
= O(r′). (20)

Note that f(·) is convex function with f ′(x) > 0 for all
x > 0 and f ′(x) < 0 for all x < 0. Thus FX is increasing,
convex, and zero-valued at the origin: for any a, b > 0,

|a− b|
b

<
|FX(a)− FX(b)|

FX(b)
. (21)

Thus |r−r
′|

r′ = O(r′) and r
r′ = 1 +O(r′).

Let rs be the norm of the arg max to optimization (12);
because the objective function is linear we have that
s̃ ≥ r′

rs
s∗. Let rt be the distance to the intersection of the

boundary of the feasible set with the ray from the origin
through the arg max to optimization (13); then s∗ ≥ rt

r′ s̃.
We have shown that both ratios tend uniformly to one.
This completes the proof.

Proof 3 (Proof of Lemma 3). First, suppose we have prior
knowledge of eigenvalues of X∗. Denote its nonzero
eigenvalues by λ∗1, ..., λ

∗
d. Then we would be able to

recover the optimal solution to Optimization (13) by
solving the following optimization

max
X

Tr(BX)

λi = λ∗i 1 ≤ i ≤ d
rank(X) = d (22)

Note that the Frobenius norm of a matrix is determined by
eigenvalues of the matrix as follows:

||X||2F = Tr(XXT ) = Tr(X2) =
∑

λ2i . (23)

Thus we can drop the Frobenius norm constraint in
(13). Let X be an n × n psd matrix, whose non-null
eigenvectors are the columns of a matrix E ∈ Rn×d,
and whose respective eigenvalues are λ1, ..., λd. Let
V := E diag(

√
λ1, ...,

√
λd), so that X = V V T . Rewrite

the objective function as

Tr(BX) = Tr(V TBV ) =
d∑
i=1

λie
T
i Bei.

Therefore X̃ = EET and X∗ = V V T .
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Proof 4 (Proof of Lemma 4). The upper-triangular entries
of A are independent Bernoulli random variables con-
ditional on X and µ, with a logistic link function. The
coefficients should be nonnegative, as X is constrained
to be positive semidefinite.

Proof 5 (Proof of Theorem 1). By Lemma 1, we have that
the solution to optimization (10) is equal to the log-
likelihood, up to addition of a constant. By Lemma 2,
we have that for a fixed γ, as h∗ → 0, the quotient s∗/s̃
converges uniformly to one, where s∗ is the solution
to (10) and s̃ is the solution to optimization (13). The
convergence is uniform over the choice of B that is
needed for Theorem 1. Because s∗ and s̃ do not diverge
to±∞, this also implies that s∗−s̃, and therefore the log-
likelihood ratio, converges uniformly to zero. By Lemma
3, the non-null eigenvectors of the arg max of optimiza-
tion (13) are equivalent (up to rotation) to the first eigen-
vectors of B. Finally, by Lemma 4, the eigenvalues that
maximize the likelihood can be recovered using a logistic
regression step. By Lemma 2, the theorem would hold
if we recovered the eigenvalues solving the approximate
optimization (13). By finding the eigenvalues that exactly
maximize the likelihood, we achieve a likelihood value
at least as large.
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