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Abstract
The goal of this paper is to enable robots to perform robust task execution following human instructions in partially
observable environments. A robot’s ability to interpret and execute commands is fundamentally tied to its semantic
world knowledge. Commonly, robots use exteroceptive sensors, such as cameras or LiDAR, to detect entities in the
workspace and infer their visual properties and spatial relationships. However, semantic world properties are often
visually imperceptible. We posit the use of non-exteroceptive modalities including physical proprioception, factual
descriptions, and domain knowledge as mechanisms for inferring semantic properties of objects. We introduce a
probabilistic model that fuses linguistic knowledge with visual and haptic observations into a cumulative belief over
latent world attributes to infer the meaning of instructions and execute the instructed tasks in a manner robust to
erroneous, noisy, or contradictory evidence. Additionally, we provide a method that allows the robot to communicate
knowledge dissonance back to the human as a means of correcting errors in the operator’s world model. Finally, we
propose an efficient framework that anticipates possible linguistic interactions and infers the associated groundings for
the current world state, thereby bootstrapping both language understanding and generation. We present experiments on
manipulators for tasks that require inference over partially observed semantic properties, and evaluate our framework’s
ability to exploit expressed information and knowledge bases to facilitate convergence, and generate statements to
correct declared facts that were observed to be inconsistent with the robot’s estimate of object properties.

Keywords
Human-Robot Collaboration, Semantic State Estimation, Bayesian Modeling, Multi-Modal Interaction, Natural
Language Understanding

1 Introduction

Our goal is to enable a robot to understand and robustly
execute high-level commands from a human in partially-
known workspaces. Communication is integral to effective
coordination and collaboration among human-robot teams.
In human teams, perceptual and auditory descriptions are
often used to understand the environment and communicate
intent about the task and/or environment that may not
otherwise be directly observable. Similarly, robots that
primarily rely on visual sensors cannot directly observe
all attributes of objects in which some attributes may be
necessary for reference resolution or task execution. For
example, as shown in Figure 1, the knowledge of whether
an object can be pushed or moved by a robot manipulator,
or whether it is heavier in comparison to another object, may
be relevant for manipulation tasks but difficult to estimate
from vision alone. The lack of knowledge of non-visual
properties may make it impossible to synthesize plans or lead
to unanticipated failures during plan execution.

In this work, we address the problem of inferring semantic
properties of the world that may not be observable from
exteroceptive modalities such as visual or LiDAR sensors.
We incorporate three information sources for estimating the
latent world properties. First, we use factual, task-relevant

knowledge that is implicit or explicit in the natural language
communication between the robot and its human partner.
For example, the utterance “the nearest barrel is empty”
provides factual knowledge about a property of the indicated
object. Second, we leverage the robot’s ability to directly
interact with the world to inform its belief over the latent
attributes of the environment. Force and torque observations
and other end-effector measurements provide cues about
physical properties of an object, such as whether it can be
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(a) A Husky with a UR5 arm, understanding
language utterances in partially-known
environment

(b) Multimodal semantic knowledge
estimation followed by linguistic feedback
generation to the human operator

Figure 1. Bi-directional communication for human-robot teams: A human operator can share his mental model of an object
with a robot by stating declaratively that “the barrel on the right is full.” However, the shared world knowledge can be inaccurate in
partially-observable environments. Upon updating the world knowledge state via physical estimation, the robot reports back a
declarative statement in order to correct the operator’s mental model.

pushed or lifted, or whether it is pliable. Third, we utilize
common-sense knowledge about particular object types (e.g.,
that plastic containers are typically lighter and less rigid than
their metal counterparts) present in crowdsourced corpora,
such as the VERBPHYSICS data set (Forbes and Choi 2017),
derived from human judgement annotations.

We present a probabilistic model and inference algo-
rithm that estimate semantic knowledge about the workspace
through natural language communication, physical inter-
action measurements, and background knowledge sources.
This is a challenging estimation problem as it involves
distilling high-level semantic knowledge from low-level
measurements arising from physical interactions or highly
complex and varied sources such as human language utter-
ances and relational data stores. We present a probabilistic
model that fuses measurements from multiple modalities into
a probabilistic belief over the latent semantic knowledge
about world entities. We factor the inference task into one
of estimating the presence of semantic properties from each
modality and of temporally fusing the semantic observations
into a probabilistic belief that is robust to erroneous or
contradictory evidence. We show how the robot can use this
model to plan exploratory actions to improve its belief over
latent semantic properties of its world model. The ability to
infer missing semantic aspects of the world allows robots to
follow instructions while remaining resilient to incomplete
or inaccurate workspace knowledge.

Further, we observe that effective human-robot teaming
requires seamless communication as well as transparent
ways to provide feedback in case of observed discrepancies
between the mental model of the human and that of the
robot. We describe how a robot can learn to synthesize
linguistic feedback to the human operator when the robot’s
direct observations differ from the inferred model of
the human. Finally, we address the problem of reducing
latency in instruction interpretation and feedback generation
that arises while evaluating possible associations between
language utterances and semantic entities in the world,
particularly in large environments. We propose an approach
that anticipates future language interactions based on
changes in the environmental context and the robot’s

environmental knowledge. This allows the robot to pre-
compute associations, thereby reducing the latency of future
command interpretation and language generation tasks.

We demonstrate the model’s effectiveness in real-world
scenarios in which fixed or mobile manipulation platforms
follow natural language instructions in environments that
are only partially known. By fusing declarative knowledge
provided by natural language with observations made during
physical interactions, our method successfully infers the
latent object attributes necessary for task execution. We
show that the proactive approach to language understanding
and feedback generation improves the runtime performance.
The proposed model builds on the following lines of
work: (i) efficient language grounding in large semantic
spaces (Paul et al. 2018), where the approximation of
the complete model is fundamental to efficient inference;
(ii) acquiring factual knowledge (Paul et al. 2017) over a
temporally extended visual and linguistic interaction; (iii)
learning an informed belief from background knowledge
corpora; and (iv) improved efficient communication by
proactively searching for and inferring the meaning of likely
phrases given the interaction history and current state of the
world (Arkin and Howard 2018).

Contemporary approaches that incorporate declarative
knowledge (Matuszek et al. 2012a; Paul et al. 2017; Kollar
et al. 2013b) assume that such information is correct and
sufficient for task execution and thus are not robust to
situations in which the declared knowledge is incorrectly
understood by the robot or factually inaccurate. Approaches
such as Walter et al. (2013, 2014b); Hemachandra et al.
(2015); Duvallet et al. (2014) incorporate language in
semantic mapping in partially-known environments in order
to simultaneously infer a metric map and semantic labels for
regions from visual or range-based observations. Similarly,
Daniele et al. (2017a) use language to learn kinematic
models of articulated objects. Our work expands the scope of
semantic properties from region types alone to fine-grained
physical and abstract properties of objects and further
incorporates active interaction and high-level common-sense
knowledge for making predictions.
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This paper expands significantly on an earlier conference
paper describing this framework (Arkin et al. 2018).
We present a thorough exposition of the proposed
model with additional technical details, an expanded
background and problem formulation, and a more thorough
description of related work. We extend the core technical
contributions in the following ways. First, we incorporate
a data-driven model to estimate an informed prior over
object attributes derived from background common-sense
knowledge corpora. Second, we extend the model to provide
linguistic feedback to the human in the event that there is
disagreement between the human’s inferred model of the
environment and the robot’s internal estimate derived from
physical interaction. Third, we include new experimental
results and additional field demonstrations.

This paper is organized as follows. We present the
background material and problem formulation in Section 2.
Section 3 presents the model for representing semantic
knowledge and details the process of fusing multiple
modalities into a probabilistic belief over the correctness of
semantic aspects of the world model. Section 4 approaches
the problem of command following in a manner that
takes into account uncertainty in the acquired knowledge
of entities in the scene. In Section 5, we present an
approach for providing feedback to the human operator when
discrepancies are detected between the human’s inferred
model of the environment and that of the robot. Section 6
tackles the crucial issue of reducing latency in command
understanding as well as linguistic feedback generation. The
experimental evaluation and results are described in detail in
Section 7. Section 8 is devoted to reviewing related efforts.
Finally, Section 9 concludes the paper and lays out avenues
for future research.

2 Problem Formulation

2.1 Robot and Workspace Model
We consider a robot manipulator operating in a workspace
populated with a set of rigid bodies O. Let Υt denote the
metric state of the world at time t that includes the pose of the
robot and other entities in the scene, typically populated by
a perception system. A human operator communicates with
the robot through a natural language interface. Let Λt denote
the language utterance received by the robot at time t. We
assume that the human either instructs the robot to perform
high-level tasks, such as “clearing,” “packing,” “inspection,”
etc. or provides factual descriptions, such as “the barrel on
the left is empty.”

The robot’s goal is to derive a plan that affects the
world state in order to satisfy the human’s command. We
model the plan µt as a sequence of actions that change
the state of the world, such as “grasping,” “moving,”
“placing,” “pushing,” or “poking” an object. We assume
that the robot makes proprioceptive measurements of the
world through physical interaction with its surroundings. Let
Zt = {zt0 , zt1 . . . , ztn} denote a proprioceptive observation
recorded at time t that consists of a sequence of force/torque
measurements and manipulator poses observed during
interaction.∗

The robot’s decision-making and planning requires
semantic knowledge about the world. We present a

representation and a framework for estimating semantic
aspects of the world in the next section.

2.2 Semantic Attributes and Knowledge
Let Γ denote the space of concepts or “groundings” that
express semantic properties of the world. Groundings model
semantic attributes associated with entities (e.g., class types
and factual knowledge) as well as relationships between
entities (e.g., spatial relations and relative orientations).
We represent concepts as a set of discrete symbols
using the predicate-role representation (Russell and Norvig
2016). Each predicate represents a semantic property or a
relationship σ ∈ Σ that is expressed for a certain set of
entities in the robot’s world model o ⊆ O. The space of
grounding symbols Γ can be expressed as

Γ = {(σ,o)|σ ∈ Σ,o ⊆ O}. (1)

A class of grounding symbols models boolean object cate-
gories such as IsBlock(o), IsBarrel(o), and IsBox(o), where
o ∈ O is an object instance in the world model. A second
category of symbols expresses physical object properties,
such as IsMovable(o), IsHeavy(o), or IsPushable(o). A
third class of symbols models spatial relationships, such as
Front(oi, oj), Left(oi, oj) or Inside(oi, oj), between object
instances oi and oj in O. In this work, we assume the
predicates Σ and the class of grounding symbols are known
and fixed ahead of time but that the object instancesO are not
known. Finally, we introduce a symbolic abstraction over the
continuous actions that the robot can take. Following Howard
et al. (2014b), actions are modeled as a set of symbols
that represent the goals or objectives of the robot’s motion.
For example, the symbol Grasp(o) represents motions that
result in a force closure of an object of interest. Similarly,
we introduce other symbolic actions such as picking an
object, Pick(o), or moving an object o to a goal location r,
Move(o, r).

A robot’s ability to follow commands is fundamentally
tied to its knowledge about the world. The robot’s
semantic knowledge about the world is typically informed
via sensors that are noisy and error-prone. Hence, we
introduce a representation to model the robot’s belief
over semantic knowledge of the world. Let Kt denote
the knowledge state that consists of semantic attributes
(e.g. “pushable,” “movable,” and “rigid”) associated with
individual object instances, and semantic relationships (e.g.,
“relative strength” and “relative weight”) associated with
pairs of objects. Let kt ∈ Kt represent a single semantic
attribute or a relationship. We model the uncertainty over
semantic knowledge using a probabilistic belief over the
knowledge state p(Kt),

p(Kt) =
∏

kt∈K
p(kt = True). (2)

∗Our technical exposition uses two time scales. The subscript t denotes
the time scale at which the language utterances, visual observations, and
interaction measurements are used to update the robot’s world model We
assume a finer discretization of this update time instant t into n time steps
t0, . . . tn in which the robot executes a low-level motion plan and receives
measurements that are collectively used to update knowledge about the
world.
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Here, we assume that the distributions over each semantic
property are independent. For example, if the workspace
contains a “cup” and a “box,” the knowledge state Kt is
represented as a set of independent binary random variables:
p(IsFull(cup) = True), p(IsMovable(box) = True), etc. In
this work, we focus on estimating the aforementioned
physical properties of objects (restricted to unary attributes
and binary relationships). The robot’s belief over semantic
world knowledge informs the robot’s decision-making and
planning process. Next, we formalize the task of interpreting
and executing an instruction in the context of acquired
knowledge about the world.

2.3 Following Instructions under Semantic
Knowledge Uncertainty

The robot’s goal is to interpret and act according to the
human’s instruction in the context of its current knowledge
about the world. A planning model that reasons over
which actions are applicable requires some knowledge
about the objects the robot can potentially interact with.
Note that we consider planning domains that may only
be partially known. In particular, the robot may lack
relevant semantic knowledge that is required for planning
manipulation interactions. For example, manipulation tasks
may require knowledge of the intrinsic object attributes
that cannot be determined from visual observations alone.
Consider executing the instruction “clear away the cups on
the table,” in which empty cups should go in the trash and
full cups should be put aside. This task requires knowledge
of the internal states of the cups (full or empty) to decide how
each cup should be treated. We consider three sources of non-
exteroceptive knowledge for “filling in” knowledge about
latent aspects of the world model: linguistic communication
from the human, direct physical interaction by the robot, and
common-sense knowledge corpora.

Formally, the robot is assumed to be primed with a
background knowledge corpus B0. The robot receives
language utterances from the human Λ0:t and acquires
interaction measurements Z0:t. At time t+ 1, the robot is
provided a language instruction Λt+1 and must synthesize a
plan µt+1 in the context of prior observations {Λ0:t,Z0:t},
the metric world state Υt, and background knowledge B0.
The estimation of the most likely plan µ̂t+1 as per the
human’s instruction in the context of the world model can
be formulated as:

µ̂t+1 = arg max
µt+1

p(µt+1|Λt+1,Υt,Λ0:t,Z0:t,B0,Γ). (3)

Equation 3 involves deriving actions from past linguistic and
physical interaction measurements. This inference problem
is intractable due to the large space of language and intrinsic
force measurements. We introduce the explicit representation
of semantic world knowledge Kt at time t that factors the
estimation task into more tractable learning tasks:

p(µt+1|Λt+1,Υt,Λ0:t,Z0:t,B0,Γ) =

∫

Kt

Instruction Following︷ ︸︸ ︷
p(µt+1|Λt+1,Υt,Kt,Γ)

Knowledge Estimation︷ ︸︸ ︷
p(Kt|Λ0:t,Z0:t,B0,Γ) .

(4)

Here, learning the factor p(Kt|Λ0:t,Z0:t,B0,Γ) involves
acquiring semantic knowledge about the world from
observations and background knowledge.

Section 3 presents a probabilistic model of the belief
over latent semantic properties informed by observations
and prior knowledge. The factor p(µt+1|Λt+1,Υt,Kt,Γ)
in Equation 4 models plan inference conditioned on the
robot’s cumulative estimate of its world knowledge. We
detail this factor in Section 4 and show how the robot
can maintain this distribution over semantic knowledge by
actively interacting with the world before synthesizing a
plan. Section 6 addresses the task of providing realtime
feedback when a discrepancy is observed between the robot’s
knowledge and the inferred model of the human operator.

3 Bayesian Multimodal Semantic
Knowledge Estimation

This section addresses the problem of estimating latent
semantic attributes associated with objects in the world
model from multimodal observations and background
knowledge corpora. We first introduce a probabilistic
representation of semantic knowledge and then present
a Bayesian formulation for incremental online estimation
using past language descriptions, direct physical interaction,
and background knowledge corpora.

3.1 Probabilistic Knowledge
The knowledge state Kt consists of discrete random
variables kt, each modeling a latent object property.
We model semantic attributes kt as Bernoulli random
variables with parameter θkt . We introduce a conjugate beta
distribution prior with hyper-parameter αkt over the Bernoulli
distribution parameter θkt as:

p(kt) ∼ Bernoulli(θkt ) (5a)

θkt ∼ Beta(αkt ). (5b)

The distribution over kt is parameterized by θkt and,
in turn, αkt and models the current belief over the true
likelihood of a symbolic attribute and consists the shape
parameters (akt , b

k
t ) characterizing the beta distribution. The

likelihood over the semantic attribute variable kt given the
beta distribution parameter αkt can be expressed as:

p(kt|αkt ) =

∫

θ

p(kt|θkt )p(θkt |αkt ), (6)

where the beta-distributed random variable θkt is marginal-
ized out.† For a detailed exposition on conjugate distribu-
tions, we refer the reader to Bishop (2006).

Our goal is to infer the knowledge state given
past observations that arise from language and physical
interaction {Λ0:t,Z0:t}, as well as a priori knowledge from
background sources B0, p(Kt|Λ0:t,Z0:t,B0,Γ). Following
the treatment above, we assume that the likelihood over the
state Kt is Bernoulli distribution with parameter αt. We use

†Note that the beta distribution models the distribution over the true
likelihood of the Bernoulli distribution. Each sample from the beta
distribution forms a histogram over truth value of a semantic property.
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Figure 2. A probabilistic model for robot command following with learned semantic knowledge about world model
entities. The model estimates a belief over the knowledge state Kt from background knowledge B0 and observations received until
time t which includes language utterances from the human Λ0:t and proprioceptive measurements from physical interaction Z0:t.
This estimation is posed as inference on a dynamic Bayesian network that evolves temporally with novel observations. The learned
knowledge is used to follow instructions by generating an appropriate plan of actions. The model consists of three components
which are indicated via grey, blue and red boxes and are described in Sections 3, 4 and 6. Grey: The likelihood over the knowledge
state is initialized as parameter α0 learned from background commonsense knowledge sources B0. Blue: At each time step, a
correspondence Φt is estimated between percepts {Λt, Zt} and semantic attributes contained in Γ. True correspondences indicate
semantic observations that serve as evidence for updating the belief over the latent knowledge state p(Kt|αt). Red: At time instant
t+ 1, the robot interprets an instruction Λt+1 given its current belief over the knowledge Kt state parameterized by αt. The robot
synthesizes a plan µt+1 to accomplish the stated goal state or takes information gathering actions to resolve uncertainty in the
semantic state. Here, Υt denotes the metric world state. Natural language feedback is generated in case discrepancies are
observed between the robot’s and the human’s mental model. The model shown in the illustration evolves from left to right.

a Bayesian filter to recursively maintain the knowledge state
distribution over time given new observations Zt,

p(Kt|Λ0:t,Z0:t,B0,Γ) =

∫

α

Updated knowledge state at time t︷ ︸︸ ︷
p(Kt|Λt, Zt, αt−1,Γ)

Belief over knowledge state at time t−1︷ ︸︸ ︷
p(αt−1|Λ0:t−1,Z0:t−1,B0,Γ) .

(7)

Here, the beta distribution parameter αt−1 represents
the belief over the knowledge state Kt−1 at the pre-
vious time step t− 1 as p(Kt−1|αt−1). This belief is
informed by observations {Λ0:t−1,Z0:t−1} until time
t− 1 and background knowledge B0. Hence, the factor
p(αt−1|Λ0:t−1,Z0:t−1,B0,Γ) can be viewed as the pre-
dictive posterior over the knowledge state at t− 1, i.e., the
belief that integrates past evidence until time t− 1, before
incorporating the current set of observations {Λt, Zt}. The
second factor p(Kt|Λt, Zt, αt−1,Γ) updates the predictive
posterior using the current set of observations {Λt, Zt}. The
result is the posterior over the knowledge state at time t,
which is propagated to the next time step.

Note that the factorization in Equation 7 assumes that,
given the prior and current observation, the knowledge state
is independent of the previous observations and background
knowledge. Formally, the belief over the knowledge state
αt−1 at the previous time step t− 1 decouples the estimation
of the belief over the next knowledge state Kt from past
observations Λ0:t−1,Z0:t−1 and the prior knowledge corpus
B0 given the current set of observations {Λt, Zt}.

Now, we turn our attention to initializing the dynamic
Bayesian network at time t0. The initial prior over the
knowledge state be represented by the beta distribution with
parameter α0. We assume the presence of a background
common-sense corpus B0 that informs the initial belief
over the knowledge state before the robot acquires any

observations. We model this estimation at time t0 by
the factor p(α0|B0,Γ). Introducing the parameter α0 in
Equation 7 leads to the following formulation:

p(Kt|Λ0:t,Z0:t,B0,Γ) =

∫

α

( Updated knowledge state at time t︷ ︸︸ ︷
p(Kt|Λt, Zt, αt−1,Γ)

Belief over knowledge state at time t−1︷ ︸︸ ︷
p(αt−1|Λ0:t−1,Z0:t−1,Γ, α0)

Prior from background knowledge︷ ︸︸ ︷
p(α0|B0,Γ)

)
.

(8)

where, the parameters α0 and αt−1 are marginalized out.
In practice, we approximate Equation 8 with a maximum
likelihood estimate over the knowledge prior α̂0:

p(Kt|Λ0:t,Z0:t,B0,Γ) =

∫

α

( Knowledge update at time t︷ ︸︸ ︷
p(Kt|Λt, Zt, αt−1,Γ)

Cumulative belief till time t−1︷ ︸︸ ︷
p(αt−1|Λ0:t−1,Z0:t−1,Γ, α̂0)

)
.

(9)

Figure 2 illustrates the overall probabilistic model.
The remainder of this section is organized as follows.
Subsection 3.2 describes the inference procedure at each
step in the temporal model, specifically the updates to the
distribution to account for language utterances and direct
physical interaction. Subsection 3.3 addresses the problem
of learning an informed prior over semantic knowledge from
background common-sense corpora. Finally, Subsection 3.4
shows how semantic observations from multiple modalities
can be fused into a probabilistic belief over world
knowledge.

3.2 Estimating Semantic Observations from
Multimodal Percepts

This section details the estimation of the knowledge state
Kt at time t expressed in the factor p(Kt|Λt, Zt, αt−1,Γ)
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Kt+1Kt

αt+1

Zt

Γ

Λt

αt

Φt

(a) Joint model
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Figure 3. Probabilistic model for knowledge acquisition over latent object attributes from descriptive language utterances
and physical interaction measurements instantiated at each time step t in the dynamic Bayesian network. (a) Joint model. Semantic
observations are derived jointly from physical interaction measurement Zt and factual knowledge from language description Λt.
The combined factor estimates true correspondences Φt between low-level measurements {Zt,Λt} and high-level semantic
properties represented by Γ. The semantic property associated with true correspondences serves as a semantic observation. The
inferred observation updates the prior belief over the latent knowledge state p(Kt|αt) to a posterior belief p(Kt+1|αt+1)
propagated to the next time step t+ 1. (b) The factored model assumes independence between semantic observations derived
from language description and those derived from physical interaction. Hence, the correspondence variables are factored as ΦZ

t

and ΦΛ
t associating physical interaction Zt and language Λt with semantic concepts Γ. The estimated groundings from both visual

and linguistic modalities are fused to inform a posterior distribution over the latent knowledge state.

in Equation 8. The knowledge estimate is derived from
the input language utterance Λt, the physical interaction
measurement Zt, and the cumulative belief over the
knowledge state, represented by αt−1, until time t− 1.
This inference involves learning an association between
the set of high-level semantic attributes and the language
and low-level interaction observations. Learning such an
association is challenging as the joint space of multimodal
percepts and semantic properties can be combinatorially
large. The problem can be factored by first inferring likely
semantic attributes from each modality and then fusing the
discrete observations into a cumulative belief over the latent
knowledge state.

Following earlier work on probabilistic language ground-
ing (Liang et al. 2013; Tellex et al. 2011b; Howard et al.
2014b,a; Paul et al. 2017, 2018), we employ a binary corre-
spondence variable Φt that models the association between
semantic attributes and the language and interaction mea-
surements. For example, we express the correspondence
between the language phrase “the empty cup” and the
semantic grounding IsEmpty(cup) as the conditional likeli-
hood p(Φ = True|IsEmpty(cup), “the empty cup”). Fun-
damentally, this turns the problem of learning the joint distri-
bution between language and percepts into a discriminative
problem of learning true or false associations between lan-
guage and candidate meanings. This significantly improves
the tractability of training and inference.

We extend the use of correspondence variables to associate
physical interaction-based observations with the latent
semantic object attributes. For example, a slowly increasing
force profile while poking a barrel object is indicative of
the object being pushable. Alternatively, if the force profile

saturates rapidly, the robot can infer that the object is likely
to be less pliable during manipulation.

The introduction of the correspondence variable allows us
to factorize the distribution over the knowledge state as:

p(Kt|Λt, Zt, αt−1,Γ) =

∑

Φt

Knowledge Belief Update︷ ︸︸ ︷
p(Kt|Φt, αt−1,Γ)

Language & Interaction Groundings︷ ︸︸ ︷
p(Φt|Λt, Zt,Γ) .

(10)

Here, the factor p(Φt|Λt, Zt,Γ) models the likelihood of
the correspondences between the semantic attributes and
percepts Λt, Zt. We use the term semantic observations to
denote semantic attributes indicated by the most likely set of
true correspondence variables. The factor p(Kt|Φt, αt−1,Γ)
fuses the estimated semantic observations into the belief over
the latent semantic attribute.

Note that Equation 10 involves directly fusing observa-
tions derived from multiple modalities into a belief over
semantic attributes. Learning in the joint space of multiple
modalities is likely to be tractable with a small number
of modes. Further, we observe that language descriptions
and force interactions arise from independent sources and
may arrive at different instances in time. Language descrip-
tions arrive opportunistically from the human, while force
interactions are likely to arise from planned and controlled
interactions by the robot. Hence, we assume conditional
independence between observations arising from different
modalities, which enables Equation 10 to be expressed as:

p(Kt|Λt, Zt, αt−1,Γ) =
∑

ΦΛ
t ,Φ

z
t

{ Knowledge Belief Update︷ ︸︸ ︷
p(Kt|{ΦΛ

t ,Φ
Z
t }, αt−1,Γ)

Language Grounding︷ ︸︸ ︷
p(ΦΛ

t |Λt,Γ)

Interaction Grounding︷ ︸︸ ︷
p(ΦZt |Zt,Γ)

}
,

(11)
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where ΦΛ
t and ΦZt represent correspondence variables

derived from language Λt and force measurements Zt,
respectively, at the current time step t. Figure 3 presents the
corresponding factor graph representation.

Next, we discuss methods for deriving semantic observa-
tions from language and physical interactions. We then detail
the belief update over the latent object attribute given the
inferred semantic observations from each modality.

3.2.1 Estimating Groundings from Declarative Language
We now consider the problem of interpreting factual
knowledge about the world present in natural language
utterances from the human. As an example, we aim to ground
the declarative language utterance, “the cup on the table is
empty” to the predicate IsEmpty(cup), where the “cup”
object is located on the table.

The factor p(ΦΛ
t |Λt,Γ) in Equation 11 models the factual

knowledge inherent in declarative language utterances.
Inference involves reasoning over the correspondence ΦΛ

t

between a language instruction Λt and semantic aspects of
world entities modeled as Γ.

We incorporate a contemporary approach to grounding
factual knowledge from natural language utterances (Paul
et al. 2017; Howard et al. 2014b). The approach exploits
the linguistic parse structure of the utterance to factor the
grounding problem into separate terms for each constituent
phrase. This factorization permits inference over individual
phrases rather than joint inference over the entire utterance,
improving scalability. For example, the model learns a
grounding for the utterance “the nearest cup” as the
“cup”-type object nearest to the speaker. We represent
the association between individual linguistic elements and
semantic concepts using a log-linear model that expresses the
likelihood of the linguistic features in each parsed constituent
phrase and the corresponding “grounded” attributes of the
world model. We train the model using an aligned corpus
of utterances and known groundings in the context of a
physical world model. The model leverages the inherent
compositional structure in language and learns to assign
meaning to simpler constituent phrases and structure them
together to infer the meaning of an instruction received at
runtime (Howard et al. 2014b).

Further, the model uses linguistic structure and part-of-
speech information to partition the sentence (Paul et al. 2017)
into (i) phrases that can be associated with physical aspects
of the world (e.g., detected objects and spatial relations)
and (ii) phrases that convey facts about the world (e.g.,
knowledge about the latent state of objects). The inferred
factual knowledge conveyed in language provides positive or
negative evidence for the underlying knowledge state of the
entities described in the utterance. The ability to infer factual
knowledge derived from language descriptions is particularly
useful if the expressed facts relate to unobserved aspects of
the world state. For example, the phrase, “the nearest cup is
empty,” conveys information that is otherwise unobservable
unless the robot interacts with the cup, i.e., IsEmpty(cup).

We assume that the user’s utterances convey factual
knowledge that they believe to be true according to their
internal model of the world. In practice, we store each
correspondence ΦΛ

t that we infer to be true along with
the associated semantic properties Γ (Fig. 3b) for future

reference. This allows the robot to maintain a model of what
the human believes to be true of the world and engage in
bidirectional communication to correct human beliefs that
are inconsistent with evidence that the robot gathers.

The estimation of semantic attributes from the human’s
utterance can be viewed as a declarative top-down
inference over semantic world knowledge. Next, we
address the problem of deriving semantic observations
from proprioceptive measurements that arise as the robot
physically interacts with the world.

3.2.2 Estimating Semantic Properties from Physical
Interaction The estimation of object attributes from physical
interaction is an extensively explored area (Chitta et al. 2011;
Bhattacharjee et al. 2013; Chu et al. 2015). The ability to
infer certain sementic properties of objects from physical
interaction helps to determine an appropriate plan in visually
unobservable environment. In this work, we perform offline
classification of object attributes (e.g., IsFull or IsMovable)
given noisy time-series physical interaction measurements
during a stereotyped motion with a manipulator, such as
lifting or poking. To model the noisy time-series signals,
we use a hidden Markov model (HMM) that is a state-based
method in which a hidden state is a latent representation of
current measurements depending on the previous state. The
state transition enables to model or test time-series data with
variable length. In particular, we use a multivariate Gaussian
HMM‡ and model the emission distribution p(Zt|st) as
a Gaussian with a full covariance matrix that models the
correlation between force and pose measurements (Park et al.
2018).

The factor p(ΦZt |Zt,Γ) in Equation 11 relates semantic
properties (i.e., object attributes) to measurements acquired
through physical interaction. Each interaction-based mea-
surement Zt consists of a sequence of three-axis end-effector
force and arm-pose measurements recorded during physical
interaction with an object. We identify the correspondence
ΦZt via maximum a posteriori inference. This estimation can
be viewed as a bottom-up source of symbolic knowledge
derived from grounding raw positional and force measure-
ments.

We use HMMs to define an object attribute estimator
fk that is the predictive model of the factor p(ΦZt |Zt,Γ)
given interaction experience of the semantic attribute k.
Let mk

True and mk
False denote the HMM models trained for

the True and False of an object attribute kt. The two
HMMs determine the observation likelihoods p(Zt|mk

True)
and p(Zt|mk

False) conditioned for the presence or absence
of the object attribute, respectively. The physical interaction
measurement acquired online is associated with an object
state by comparing the model evidence for the presence or
absence of object attributes kt ∈ Kt as

fk(Zt,m
k
True,m

k
False) = p(Zt|mk

True)/p(Zt|mk
False). (12)

We threshold the above likelihood ratio to arrive at a binary
classification, and thus ΦZt .

The HMM modelm consists of state transition probability,
emission probability, and initial state distribution: us from

‡We implement the HMMs using the General Hidden Markov Model library
(GHMM) (Schliep et al. 2004).
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(A,B, π), where A ∈ Rn×n, B ∈ Rn×d, and π ∈ Rn. Let
n and d denote the number of hidden states (i.e., 20 or
30 in this work) and the number of modalities (i.e., 2),
respectively. In particular, we use a left-to-right HMM that
does not allow backward state transitions from a higher-
numbered state to a lower-numbered state in A. We also
set the first element of initial state distribution π is 1 and
other are zero to make the HMM always starts from the
first state. These A and π helps to model the temporal
processes of physical measurements during the stereotyped
motions. To use multivariate Gaussian HMMs, we represents
the emission probability B as a set of observation mean
vector and its covariance matrix. We then train each HMM by
iteratively searching its modelmk that maximizes p(Ztr|mk)
using an expectation-minimization (EM) algorithm (Rabiner
1989). Ztr ∈ Rnd×d×l is a set of pre-processed interaction
traces with varied object states and configurations, where nd
and l are the number of training data (i.e., 20 or 30 per the
presence or absence of the object property) and the length of
a trace (i.e., 50 to 200), respectively. The pre-processing step
includes smoothing, time-alignment, and scaling. However,
after training, the estimation does not require smoothing and
time alignment.

3.3 Learning Informed Priors over Semantic
Knowledge from Commonsense Corpora

In this section, we focus on the problem of inferring
an informed prior over world knowledge derived from
a noisy common-sense corpus. In the absence of any
background domain knowledge, the initial prior of the model
introduced in Section 3.1 can be left uninformed and as
more observations and interactions are received, the model
gradually converges to the true object attributes. However,
estimating the latent object attributes can be hastened if
we have an informed prior that is guided by experience. A
source of experience can be found in common-sense corpora
derived from human judgement tasks (Forbes and Choi
2017; Rashkin et al. 2018; Vedantam et al. 2015; Yatskar
et al. 2016). Such corpora contain crowdsourced human
annotations indicating if an attribute or a relationship is true
for certain object types. For example, human judgements
about the relative rigidness of plastic and metal containers
would result in relational facts indicating that containers
made of plastic are less rigid compared to metal ones.

Learning an informed prior over semantic knowledge K0

from a common-sense corpus B0 at time t0 can be posed
as estimating the conditional distribution p(K0|B0, α0,Γ).
The model is initialized at time t0 with an uninformed beta
hyper-prior α0.§ We treat the factual knowledge present in
the common-sense corpus as stochastic observations of the
true latent semantic attributes. Following the approach in the
previous section, we introduce correspondence variables ΦB0
that indicate the set of semantic properties associated with a
true prior found before robot interaction. The introduction
of the correspondence variables allows the conditional
likelihood p(K0|B0, α0,Γ) to be expressed as:

p(K0|B0, α0,Γ) =
∑

ΦB
0

Informed Knowledge Prior︷ ︸︸ ︷
p(K0|ΦB0 , α0,Γ)

Facts from Corpus︷ ︸︸ ︷
p(ΦB0 |B0,Γ) . (13)

The factor p(ΦB0 |B0,Γ) represents the predictive model
that estimates the likelihood that a semantic attribute is true
in the world given the evidence in the common-sense corpus.
The predicted semantic observations are fused into the latent
belief expressed by the factor p(K0|ΦB0 , α0,Γ), resulting
in the informed prior at the start of the mission. We now
discuss the model for predicting semantic properties given
a background knowledge corpus and delegate the fusion of
the semantic properties into a probabilistic belief to the next
section.

Learning the factor p(ΦB0 |B0,Γ) involves estimating the
correctness of a semantic attribute k0 ∈ K0 relating object
instances inO. The problem of predicting attributes between
semantic entities has received recent attention in the context
of knowledge represented as databases, graphs, or other
structured networks (Wang et al. 2015; Socher et al. 2013;
Zhang and Chen 2018; Yang et al. 2014). We adopt a
contemporary approach (Yang et al. 2014) and learn a
function fB that models the association between a semantic
attribute k0 and the object types τ associated with object
instances in O. In this work, we restrict ourselves to binary
relations and hence estimate the function:

fB(τ(oi), τ(oj), k0) =

{
“greater than” score,
“less than” score

}
, (14)

where τ(oi) and τ(oj) represent object types for object
instances {oi, oj} ∈ O. We use the above scores to define
the factor p(ΦB0 |B0,Γ) by normalizing it.

The aforementioned function fB is realized using a neural
architecture. We first encode the object types using GLOVE
word embeddings (Pennington et al. 2014) that represent
semantic or conceptual affinities between words, resulting
in the vector embeddings gτ(oi) ∈ R300 and gτ(oj) ∈ R300.
We introduce a single-layer feedforward neural network
q with rectified linear unit (ReLU) activation functions
that outputs task-specific word embeddings yoi ∈ R300

and yoj ∈ R300: yoi = qw(gτ(oi)) and yoj = qw(gτ(oj)),
where w are the parameters of the network. We define a
function fB(yoi , yoj , k0) that models the association between
the task-specific vector and the object attribute k0 under
consideration. We explored the following scoring functions
to realize the function fB(yoi , yoj , k0):

• TransE (Bordes et al. 2013)

−

(
2

(
Vk
−Vk

)T(
yoi
yoj

)
− 2yToiyoj + ||Vk||22

)
(15)

• Bilinear

yToiMkyoj (16)

• Bilinear-diag: Same as Bilinear with the additional
condition that Mk is constrained to be a diagonal matrix.

In the above definitions, Vk and Mk are neural network
parameters learned from data. In this work, we use the
VERBPHYSICS dataset (Forbes and Choi 2017) that contains

§We used α0 = (2, 2) to initialize a symmetric beta distribution acting as a
diffuse uninformed prior over K0 at model initialization at time t0.
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relative physical knowledge of object pairs encoded as
relational tuples, each consisting of relationship and entity
attributes. The dataset contains approximately 2500 object
pairs annotated with their relative comparisons in terms of
“size,” “weight,” “strength,” and “rigidness.” The model is
trained to predict object attributes (e.g., “size,” “weight,”
“strength,” and “rigidity”) of types (e.g., “greater than,”
“less than,” “equal,” and “unknown”). The training objective
minimizes a marking-based ranking loss that encourages the
scores of positively expressed semantic relationships to be
higher than negatively expressed relationships (Yang et al.
2014).

The learned function provides the prior distribution over
knowledge state incorporated in Equation 8. Note that the
learned relational model predicts the presence of relative
physical properties from abstract object-type data before
fusing observations. Online, the model is conditioned on the
world model to obtain a distribution over semantic attributes
that are relevant for the world model. Next, we turn our
attention to the problem of fusing semantic observations
derived from multiple modalities into a cumulative belief
over latent semantic knowledge.

3.4 Estimating Belief over Knowledge from
Multimodal Semantic Observations

The set of semantic observations of the world state derived
from language and physical interaction must be fused into
the robot’s belief over semantic knowledge. The current
observation Φt allows the robot to update its previous
knowledge estimate parameterized by the beta parameter
αt−1 to yield the updated belief over Kt. This estimation
is represented by the factor p(Kt|Φt, αt−1,Γ) in Equation
11. The application of Bayes’ rule allows the posterior
distribution over Kt to be expressed as:

Posterior over knowledge︷ ︸︸ ︷
p(Kt|Φt, αt−1,Γ) ∝

Observation likelihood︷ ︸︸ ︷
p(Φt|Kt−1,Γ)

Prior︷ ︸︸ ︷
p(Kt−1|αt−1) .

(17)

Since, the beta distribution serves as a conjugate prior
for the Bernoulli likelihood, the posterior distribution over
the knowledge state is also beta distributed (Bishop 2006;
Blei et al. 2003). The posterior distribution parameters are
obtained using closed-form updates to the prior distribution
parameters informed by the current set of observations. A
true correspondence variable serves as a positive observation
of the associated semantic property and increment to the beta
distribution parameter:

p(Kt|Φt, αt−1,Γ) ∼ Beta(αt)

∼ Beta(αt−1 + Φt).
(18)

Here, the notation αt−1 + Φt indicates an update of
the beta distribution parameter αt−1 with the semantic
observation indicated by the correspondence variable Φt.
Fusing a true observation of a semantic property biases the
beta distribution parameters towards favoring a Bernoulli
distribution with a higher true belief over the semantic
property, and vice versa for a negative observation.
Partitioning the set of semantic properties into those derived
from language descriptions and those derived from force
interactions enables Equation 18 to be factorized as:

p(Kt|{ΦΛ
t ,Φ

Z
t }, αt−1,Γ) ∼ Beta(αt−1 + {ΦΛ

t + ΦZt }). (19)

The posterior distribution over the latent knowledge variable
evolves incrementally with each observation. The current
beta distribution parameters after fusing current observation
Λ0t, Zt} with the last estimate αt−1 can be expressed as:

αt = {at, bt}
= {at−1 + (n1

Λ + n1
Z), bt−1 + (n0

Λ + n0
Z)}.

(20)

Here, {n1
Λ, n

0
Λ} and {n1

Z , n
0
Z} denote the number of true

and false observations derived from language ΦΛ
t and

interaction groundings ΦZt , respectively. Parameters {at, bt}
constitute the parameter tuple for the beta parameter αt and
{at−1, bt−1} denotes the parameter tuple for the last estimate
αt−1. Note that Equation 20 shows that the true and false
observations derived from multiple modalities bias the beta
distribution parameters appropriately.

Finally, we turn our attention to representing the informed
prior belief overK0 from common-sense corpora initializing
the model at time t0. Again, leveraging the conjugacy
property of the Beta− Bernoulli distributions we can
represent the belief as:

p(K0|ΦB0 , α0,Γ) ∼ Beta(α0 + ΦB0 ). (21)

Recall, that prior knowledge derived from common-sense
corpora serve as noisy observations of the latent semantic
knowledge. As indicated in Equation 21, possibly noisy
semantic assertions from background knowledge serve
as pseudo-measurements and bias the beta distribution
parameters before incorporating physical measurements.

Finally, we make a few remarks on the modeling choices
in our probabilistic model. The model presented in this
section allows the estimation and propagation of the belief
over knowledge states derived from multiple and diverse
sources. The ability to model uncertainty over latent state and
to efficiently fuse multiple modalities provides robustness
to noisy and possibly contradictory measurements. Our
approach leverages conjugate priors over the likelihood over
the correctness of semantic properties in the world model,
enabling tractable and efficient posterior updates using
observations collected online. The probabilistic formulation
can be viewed as a form of semantic state estimation. Note
that we perform inference over a restricted set of symbolic
aspects of the world model. This approach can be considered
a special case of more general models that represent beliefs
over more complex logical rules (Zettlemoyer et al. 2008).
The approach presented is also closely related to histogram
filtering, which has been employed effectively for robot
mapping and tracking applications (Thrun et al. 2005).
The measurement updates in a histogram filter require
empirically estimating sensor-specific detector rates. On the
other hand, the Bayesian approach uses less prescriptive
uninformed priors that are updated with new evidence and
is expected to be more robust to noise and erroneous
measurements.

4 Instruction-Following by Introspecting
Knowledge Uncertainty

Recall that our goal is to enable a robot to follow instructions
in partially-known domains where some object attributes
necessary for synthesizing a plan are unobserved. For
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example, following the instruction “clear the cups on the
table” requires knowledge of the internal states of the cups to
decide their appropriate destinations in the clearing task (i.e.,
empty cups should go in the trash and full cups should be put
aside). Given the probabilistic model laid out in the previous
section, the robot can form a belief over the unobserved
semantic properties of the world model by integrating past
observations and any available prior domain knowledge. We
now consider the task of synthesizing a plan as per the
human’s command in the context of the acquired knowledge
about the world.

Formally, the robot determines a plan µt+1 to satisfy the
language instruction Λt+1 received at time t+ 1, taking into
account the metric world state Υt+1 and the robot’s current
world knowledge p(Kt−1|αt−1):

p(µt+1|Λt+1,Υt+1, αt,Γ) =

∫

Kt

Current Knowledge Belief︷ ︸︸ ︷
p(Kt|αt)

Instruction-Following︷ ︸︸ ︷
p(µt+1|Λt+1,Υt+1,Kt,Γ) .

(22)

The instruction-following task, represented as
p(µt+1|Λt+1,Υt+1, αt,Γ), can be factored as follows.
First, the robot infers the goals or objectives from the natural
language command based on its current knowledge about the
world. This is followed by reasoning about the sequence of
actions resulting in the intended goal state. This factorization
allows Equation 22 to be formulated as:

p(µt+1|Λt+1,Υt+1, αt,Γ) =

∫

Kt

∑

ΦΛ
t+1

Current Knowledge Belief︷ ︸︸ ︷
p(Kt|αt)

Action Generation︷ ︸︸ ︷
p(µt+1|ΦΛ

t+1,Υt+1,Kt,Γ)

Instruction Understanding︷ ︸︸ ︷
p(ΦΛ

t+1|Λt+1,Υt+1,Γ) .

(23)

Using the maximum likelihood estimates for the knowledge
state K̂t and the grounding for the input instruction ΦΛ

t+1

approximates Equation 23 as:

Φ̂Λ
t+1 = arg max

Φ
p(ΦΛ

t+1|Λt+1,Υt+1,Γ) (24a)

K̂t = arg max
K

p(Kt|αt) (24b)

µ̂t+1 = arg max
µ

p(µt+1|Υt+1, Φ̂
Λ
t+1, K̂t). (24c)

Here, the maximum likelihood estimate indicating the
presence of a semantic property K̂t is obtained by
sampling the Bernoulli distribution from the current beta
prior p(Kt|αt). Further, we use a contemporary language
interpretation model for estimating intended manipulation
goals from an input instruction (Paul et al. 2017) in
the context of the robot’s current semantic knowledge.¶

In this work, we use a set of predefined actions such
as “clearing,” “packing,” “inspection,” etc. Each action
is a sequence of motion primitives including “grasping,”
“moving,” “placing,” “pushing,” or “poking,” etc. Each
primitive is a sequence of joint values or end-effector poses.
We sequence primitives by transforming and scaling each
with respect to a goal.

The robot’s action generation takes into account the degree
of uncertainty in the robot’s knowledge about the semantic
properties of objects relevant to the input instruction. We

compute the normalized entropy of the latent belief over
semantic properties as a confidence measure for quantifying
the robot’s uncertainty over semantic aspects of the world
(Grimmett et al. 2016; Paul et al. 2013; Triebel et al.
2016). The presence of significant uncertainty in the robot’s
knowledge belief (as indicated by high entropy of the belief
distribution) allows the robot to take information gathering
actions such as lifting, pushing, poking, or sliding. The new
set of observations are used to update the robot’s belief
over the latent object states. The robot continues to interact
until the latent belief is sufficiently likely that the robot can
execute the final action to complete a task described in the
language instruction Λt+1 with high confidence of success.
The robot halts plan inference and plan execution when
the normalized entropy of the latent belief over semantic
properties is lower than an empirically determined threshold.
Finally, the estimated high-level plan is handed to a low-level
motion planner that generates joint trajectories to achieve an
assigned action via the decision-making process.

5 Knowledge-State Feedback to the Human
Humans working in teams often share world knowledge to
help accomplish tasks, such as letting a teammate know that
a box is exceptionally heavy. When a teammate observes
that the shared knowledge is not true, it is useful to share
the corrected information, improving the entire team’s world
model. One limitation of the system presented in Arkin
et al. (2018) is the lack of a mechanism to provide direct
feedback to the human teammate. Providing robots with
the capacity to generate linguistic feedback is of particular
use for cases in which the robot makes proprioceptive
observations during object interaction that contradict world
knowledge provided by the human. If we assume that the
human teammate only shares world knowledge that they
believe is true, then the robot has an opportunity to provide
corrective feedback regarding the contradictory observations
that should be useful for the human. Such feedback can
help the human make better decisions in the future and can
help prevent miscommunications due to incompatible world
models.

One approach to providing such feedback via a language
interface is to store both the imperative phrase used by the
human to reference the object of interest and the declarative
phrase used to convey the specific world knowledge. By
keeping track of knowledge that was provided by the human
(as opposed to other sources of knowledge, e.g., from a
commonsense database), the robot can trigger a feedback
response upon making a contradictory observation. The
linguistic feedback can be composed of the stored imperative
and declarative phrases to indicate which object and
associated semantic property were different than expected.
This approach has the advantage of being computationally
inexpensive in that the feedback can be generated by
executing a simple lookup for the phrases previously stored.
However, this mechanism is brittle to changes in the world

¶Note that the same language understanding model (Paul et al. 2017) was
used in Section 3 for inferring declarative facts from language utterances. In
this section we use the model to infer grounded actions based on knowledge
acquired from past observations and prior knowledge.
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that invalidate the stored reference phrase. For example, if
the robot has moved close to an object in order to interact
with it, what once may have best been described as “the
barrel on the left” may now better be referred to as “the
barrel directly in front” or “the nearest barrel”. As such, a
declarative phrase such as “the barrel on the left is heavy”
might best be corrected with linguistic feedback such as “the
barrel nearest to me was not heavy”.

In order to address this brittleness, we pursue an
alternative approach by inverting the learned language
understanding model to generate phrases associated with
the symbolic representation for both the object and hidden
semantic state of interest as conditioned on the current
spatial configuration of objects in the world. While this
does make the feedback robust to changes in the world, it
trades off the relatively low computational cost of looking
up stored phrases for a significantly higher computational
burden of searching over language phrases for one that
sufficiently expresses the meaning intended by the symbolic
representation. This section details the process for generating
linguistic feedback via inverting a language understanding
model.

5.1 Communicating Knowledge-Dissonance to
the Human

Consider a scenario in which a human teammate says, “the
cup on the table is empty”. The robot will ground this
declared knowledge and update its belief over the hidden
state of the cup’s fullness. Unless the human is intentionally
giving false information, the robot can also note that the
human’s model of the world includes the confident belief that
the cup on the table is empty. Suppose the robot then interacts
with the cup and makes an observation indicating that the cup
is actually full. In this case, it would be useful for the robot
to be able to express this disagreement back to the human,
thereby providing a correction to the human’s world model
and allowing them to make more informed decisions in the
future.

We are interested in a mechanism that facilitates providing
this kind of feedback via a natural language interface,
namely generating sentences to convey observations that
contradict human-provided knowledge. By inverting the
learned language understanding model used to ground
declarative knowledge, the robot can effectively search for
the most likely phrases that map to the set of groundings
representing the object of interest and its semantic state.
In related work (Tellex et al. 2014), this problem has been
referred to as inverse semantics. Here, forward semantics
refers to the process of taking language and finding
associated entities or concepts in the physical world, and
while inverse semantics refers to the process of takings
aspects of the world and finding language to describe them.
The problem formulation and subsequent factorization is
inspired by Tellex et al. (2014). The main difference between
their approach and what is being done in this work lies
in the language understanding model. Tellex et al. (2014)
used Generalized Grounding Graphs (Tellex et al. 2011a)
as the underlying language understanding model, whereas
the work presented here uses Distributed Correspondence
Graphs (Howard et al. 2014b). Using a different underlying

language understanding model has important implications
for the subsequent model formulation and factorization.
The main advantage in this case is the improved runtime
performance, the results of which are presented in Howard
et al. (2014b).

The problem of inverse semantics for generating feedback
can be formulated as search for the most likely sentence
corresponding to the intended meaning in the context of the
robot’s knowledge about its world. Formally, we estimate
a feedback language utterance Λf∗t+1 given the known set
of groundings Γ, the knowledge state Kt, and metric
information about entities in the world Υt as follows:

Λf∗t+1 = arg max
Λf

t+1∈Λ

p(Λft+1|Kt,Γ,Υt+1). (25)

The space of possible sentences Λ is generated via a
grammar G that specifies linguistic tokens and production
rules for constructing the associated parse tree. This grammar
is constructed by scraping the language model’s training
corpus for both the tokens and rules. In order to prevent
recursive construction of an infinite space of language, the
generation process is constrained by the depth of a parse tree.

As we have done for language understanding, we can
model this inference process as a correspondence problem
wherein the value of a correspondence variable ΦΛ

t indicates
the association between language and a symbol. Because
the desired groundings are already known, it is also
known which correspondence variables are true. These
true correspondences are indicated by ΦΛ

t , and modify
Equation 25 as shown below:

Λf∗t+1 = arg max
Λf

t+1∈Λ

p(ΦΛ
t+1|Λ

f
t+1,Kt,Γ,Υt+1). (26)

In practice, the inverse semantics process is a series
of forward semantics evaluations in which the choice of
language is an element from Λ. The main concern with this
search process is computational cost and, in turn, its impact
on the real-time performance of the system. If we could
further improve the runtime performance of the forward
semantics model, there would necessarily be a corresponding
improvement in our inverse semantics implementation. The
next section describes a mechanism to effectively bootstrap
the language grounding process with solutions computed in
advance of an utterance expressed by a human teammate.

6 Improving Runtime Performance of
Language Understanding and Generation

When designing language interfaces, it is important to
consider how long the system takes to react or take
an action after receiving an utterance from the human.
In the proposed system, the runtime performance of the
inference process is the main computational bottleneck that
contributes to this latency. Interfaces to robotic systems
should aim to achieve real-time responsiveness in order to
maintain their effectiveness, as motivated in Section 1 with
respect to mission tempo. While the work presented thus
far leverages prior research on model approximations for
fast inference, language grounding is treated as a reactive
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process. We propose further addressing this latency problem
by precomputing language and grounding solutions for
a given environmental context, a process we refer to as
proactive symbol grounding. By instead proactively inferring
the meaning of utterances a human teammate might say
(in the context of the current state of the environment), the
system has the possibility of receiving a new utterance with
the solution already in-hand.

6.1 Proactive Symbol Grounding for Language
Understanding

In our model, the language grounding factor acts as a
computational bottleneck as it involves a search over a large
space of interpretations for an input instruction. Rather than
reactively interpreting a full instruction, which introduces
an interaction latency as previously described, we instead
proactively compute groundings for phrases that are likely
to be relevant for future instructions. This improves the
inference runtime by boot-strapping a novel utterance with
estimated groundings (true correspondences) from the set
of proactively grounded phrases possessing a similar parse
structure. For example, consider the novel instruction “put
the empty cup in the trash can”. If the robot has already
proactively grounded the constituent phrase “the trash can”
for the current state of the world, then the reactive inference
process can simply insert the solution for “the trash can” and
move on to other phrases in the parse tree.

Formally, the set of proactive correspondences Φpsg
t+1

is determined as a function of the current environment
state Υt+1. The space of possible language utterances is
generated via a grammar G that specifies linguistic tokens
and production rules and is determined by scraping the
rules present within a training corpus. Since conditional
independence is assumed across both individual phrases
within the parse tree and individual groundings within the
full space of semantic concepts, any given phrase with the
same environment state Υt+1 will always ground to the same
set of symbols, regardless of parent phrases in the parse tree.
Relating back to the example above, “the trash can” maps to
the same set of symbols whether it appears in the utterance
“put the empty cup in the trash can”, “put the full cup in the
trash can”, or even just the simplest form of “the trash can”.
Once the symbols that correspond to a simple phrase have
been found, they can be reused within more complex phrases
as long as changes in the environment do not alter their
meaning. We leverage the hierarchical and compositional
structure of language to construct proactive grounding sets
in a bottom-up manner.

Recall that the command-following task can be formulated
as Equation 23 defined in Section 4. Interpreting the
instruction requires computing the groundings for the full
instruction, i.e., for each phrase in the parse tree. A proactive
approach precomputes a set of candidate correspondences
for likely phrases as denoted as Φpsg

t+1. Conditioned on these
proactively grounded solutions Φpsg

t+1, we reactively only
compute correspondences Φnew

t+1 for novel phrases in the
instruction Λt+1 while performing a constant time retrieval
for the precomputed solutions. The proactive grounding

approach reformulates Equation 23 as:

p(µt+1|Λt+1,Υt+1, αt,Γ) =

∫

Kt

∑

Φnew
t+1

Knowledge Belief︷ ︸︸ ︷
p(Kt|αt)

Generating Actions︷ ︸︸ ︷
p(µt+1|Υt+1,Kt, {Φnew

t+1 ,Φ
psg
t+1,Γ})

Proactive Language Grounding︷ ︸︸ ︷
p(Φnew

t+1 |Λt+1,Υt+1,Φ
psg
t+1,Γ) .

(27)

Note that the factor p(Φnew
t+1 |Λt+1,Υt+1,Φ

psg
t+1,Γ) only

estimates the correspondences for new solutions. If we
indicate the set of novel phrases in the instruction as
Λst+1, then |Λst+1| ≤ |Λt+1|. The model only reactively
computes correspondences for novel phrases Φnew

t+1 , which
are fewer than the full set of candidate solutions Φt+1 for
the instruction. As a result, the proactive approach leads to
runtime improvements in online instruction interpretation.

6.2 Proactive Symbol Grounding for Feedback
Generation

One of the main limitations of the approach introduced
in Section 5 is the runtime performance. Finding the
sentence that maximizes the probability of the known set
of groundings can be thought of as a series of forward
passes through the learned language understanding model.
As a result, the time it takes to finish the search process
depends on the runtime of each forward pass. Depending
on the size of the search space, this can be prohibitively
long. Fortunately, the set of proactively grounded phrases
Λpsg generated for addressing the latency problem of reactive
language understanding can similarly bootstrap this inverse
semantics process by effectively providing solutions for a
subset of sentences at the cost of a constant-time lookup. As
a result, the set of sentences that inverse semantics needs to
compute reactively Λnew is now smaller than the full set Λ.
The reformulated model from Equation 26 is shown below:

Λf∗t+1 = arg max
Λf

t+1∈Λnew∪Λpsg

p(ΦΛ
t+1|Λ

f
t+1,Kt,Γ,Υt+1). (28)

By effectively bootstrapping the search over language
with a subset of already-grounded sentences, the reactive
language generation process has fewer computations. In the
best case, the proactive language grounding process will have
already exhausted Λ and thus the search process consists of
finding the highest value in a list. In the worst case, Λpsg is
empty and inverse semantics is equivalent to Equation 26.
We evaluate the runtime performance both with and without
the use of proactively grounded phrases and report those
results in Section 7.

7 Experiments & Results
In order to validate the performance of the proposed system
and its components, we designed independent qualitative and
quantitative experiments.

7.1 Qualitative Evaluation
The first experiment aims to show knowledge acquisition
over latent object attributes from declarative knowledge and
physical interaction. We used a Baxter Research Robot in a
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“Full” “Empty” “Trash can” “Tray”

Repeated twice Repeated twice

Repeated thrice

Figure 4. Experiment evaluating knowledge acquisition over latent object attributes from declarative knowledge and
physical interaction. The Baxter robot was instructed to “clear away the cups on the table.” Top: The robot attempts to pick up
each cup in turn and infers the latent attribute of the cups from the time series of interactions. Once the belief is sufficiently
confident, the robot discards the empty cup in the trash bin and puts the filled cup on the tray. Bottom: The human informs the
robot that “the cups on the table are empty” a fact that is true only for only one of the cups. The robot’s physical interaction results in
a posterior belief correcting the prior that resulted from the incorrectly stated fact. The posterior allows the robot to correctly
accomplish the task of clearing in correct locations.
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(a) Lifting distance and z-axis force measurements over time for
both full (red) and empty (blue) cups in Figure 4.
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(b) Approaching distance and z-axis force measurements over
time for both full (red) and empty (blue) barrels in Figure 8.

Figure 5. Distribution of physical interaction time-series
measurement during manipulation. The time-series force
measurements for the “full” and “empty” object states. The
patterns of force measurements over distances are modeled by
two HMMs that are then leveraged during log-likelihood-based
binary classification to infer an object’s attribute.

tabletop setup populated with household objects as shown
in Figure 4. In the first scenario, the robot’s workspace
contained two coffee cups (with closed lids), a tray and a
trash can; the internal state of the cups was hidden with
one cup being empty and the other full. We assume that the
robot possesses learned background knowledge that empty

cups are to be discarded in the trash and full cups are to
be placed on the tray. As discussed in Section 3.2, the robot
also possesses trained HMMs for classifying signatures from
physical interaction with the cups. A plot of the different z-
axis force measurements for a full and an empty cup can
be seen in Figure 5a. The robot did not have access to
the internal state of the cups. The robot was instructed to,
“clear away the cups on the table,” resulting in a grounded
solution referencing the two coffee cups. The grounding
model estimated the probable grounding of the sentence as
the two cups on the table. The robot picked up each, updating
the belief over the latent attributes according to force/torque
sensing. This knowledge allowed the robot to estimate the
correct location to discard the empty cups in the trash and
place the filled cups on the tray.

In a subsequent scenario, the human declared, “the cups
on the table are empty,” before instructing the robot to “clear
away the cups.” Contradictory to the initial statement, the
actual state of one of the cups is filled and should not be
discarded. The robot determined the true state of the cups
during interaction, correctly updating its prior belief from
force/torque sensing and choosing the correct actions.

Figure 6 shows the resulting changes to both the beta
distribution and the expected likelihood of the expressed fact
as the robot interacts with one of the cups in the first scenario.
The robot first receives a declarative fact from language
expressed as “the cups on the table are empty,” leading to
a posterior update to the Beta hyper-prior for the likelihood
using the estimated grounding IsFull(cup) = True. Upon
engaging in a time-series of physically interactions with the
cup whose hidden attribute is actually IsFull(cup) = False,
the robot successively updates the latent belief over the
symbolic state. The robot interacts with the object until the
normalized entropy of the latent distribution is sufficiently
informative (set via a likelihood threshold). The estimation
of the correct belief allows the robot to correctly follow
the instruction of clearing the empty cups despite initially
receiving an incorrect fact from the human.
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Figure 6. The temporal evolution of belief over factual knowledge informed by language and interaction. The beta
distribution at time t for the Bernoulli likelihood over factual groundings is plotted in the top row. The maximum likelihood for a
predicate state appears below. Temporal evaluation from left to right. The initials “Lang.” and “Obs.” denote estimated groundings
obtained from language and time-series interaction data respectively. The estimation of the correct belief allows the robot to
correctly follow the instruction of clearing the empty cups to the trash and placing the fill cup on the tray.

Initial state of the right case is heavy. Updated belief is uncertain about
heavy case.

Interaction with the other case. Updated belief that the left case is
heavy.

Figure 7. An experiment incorporating both proactive symbol grounding and updates to beliefs about objects’ attributes
via declarative knowledge and force/torque sensing. The Husky robot with a mounted robot arm was inaccurately told, “the
case on the right is heavy” before receiving the instruction “pick up the heavy case.”

In the second experimental evaluation, we tested an
integrated system that incorporates both the proactive
symbol grounding process for fast inference and the joint
use of declarative knowledge and force sensing for updating
beliefs about objects’ attributes. The goal of this qualitative
experiment was twofold: (1) to demonstrate a scenario
in which faster task completion can be achieved by
incorporating human-declared knowledge about the world
as compared to relying on physical interaction observations
alone, and (2) to demonstrate robust task execution when
provided incorrect world knowledge by a human. For this
second experiment, we used a Clearpath Husky A200
mounted with a Universal Robots UR5 manipulator in a
mobile manipulation setting composed of two Pelican cases,
as shown in Figure 7; the internal state of the Pelican cases
was hidden. The Pelican case on the robot’s left was full

and heavy, and the Pelican case on the right was empty
and light. We executed three different types of scenarios in
this experiment: (i) no declarative knowledge, (ii) accurate
declarative knowledge describing the state of the two Pelican
cases, and (iii) inaccurate declarative knowledge. In one case
of (i), the Husky was instructed to, “pick up the heavy case”
resulting in an ambiguous grounded reference solution. The
robot picked up the left case, updating the belief that it
was heavy; a second interaction made the robot confident
enough to complete the action. In one case of (ii), the
human accurately declared, “the case on the left is heavy”
followed by, “pick up the heavy case.” The robot picked
up the left case, updating its belief, which reinforced the
human’s provided fact. A single force/torque interaction
and the accurate declared fact made the robot sufficiently
confident to complete the action; the fact reduced the number
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H: “The left most barrel is full.”
R: “Understood. The left most barrel is full.”

H: Push the right most barrel
R: Understood. Push the right most barrel.
R: (Navigating and pushing the barrel)

R: “Previous ‘the right most barrel is full’ is 
inconsistent with the world model.”

H: Push the full barrel
R: Understood. Push the full barrel.

¬Full 

barrel

Full 

barrel

Human: “The right most barrel is full.”
Robot: “Understood. The right most barrel is full.”

R: (Navigating and pushing the barrel)

Figure 8. Experiment demonstrating the declarative knowledge feedback and latent attribute update by declarative
language utterance and physical interaction. The Husky robot with a UR5 arm is placed in a outdoor test site filled with doors,
windows, barrels, bicycles, among other objects. A user verbally provided wrong and right declarative knowledge for empty and full
barrels, respectively. The robot then estimates and reports the latent attribute to the user by pushing each.

of required interactions. In one case of (iii), the human
declared, “the case on the right is heavy” followed by, “pick
up the heavy case.” The robot picked up the case on the right,
updating its belief in contradiction to the human’s provided
fact. The robot then lifted the left case twice to be sufficiently
confident and complete the action.

The third experiment, illustrated in Figure 8, was a part
of a field test held in a mock village marketplace at an
undisclosed testing facility. Deployed on a separate Husky
with a UR5 manipulator, we demonstrated an integrated
system that incorporated both previously evaluated com-
ponents and declarative knowledge feedback. Similar to
previous experiments, we trained an IsFull semantic property
estimator from 39 physical interaction data. In the scenario,
the robot first localized itself using multimodal sensor fusion
with Velodyne LiDAR, inertial measurement unit (IMU), and
Intel RealSense camera data. It then constructed the world
model by recognizing objects using Mask R-CNN (Massa
and Girshick 2018). Notably, the internal states of the two
barrels were unobservable; in actuality, the blue barrel was
empty and the other barrel was full. Via a multimodal
interface (MMI) described by Barber et al. (2016), a human
teammate initially shared their mental model of the objects
by stating declaratively that both “the rightmost barrel is full”
and “the leftmost barrel is full.” As mentioned, the true state
of the rightmost barrel was empty, and thus the human’s
shared knowledge contained an inaccuracy. The robot was
then instructed to “push the rightmost barrel.” Upon doing
so, it updated its belief over the internal states according
to observations from force/torque sensing, which were in
contradiction to the human’s shared world knowledge. As
such, the robot reported back a declarative statement in order
to correct the human’s mental model of the barrel. This
was done by populating a template with the stored phrase
that the human used to initially provide world knowledge

about the barrel. With this updated information, the user then
instructed the robot to “push the full barrel,” an instruction
that previously would have been ambiguous. Because of the
updated shared world model, the robot was able to navigate
to and push the barrel on the left as per the user’s instruction.

Videos for all qualitative evaluations are submitted as a
multimedia extension along with this manuscript and listed
on Table 5.

7.2 Quantitative Evaluation
The first statistical evaluation targets the impact of both the
PSG component and use of the common-sense knowledge
base informed priors on the latency of generating linguistic
knowledge-state feedback. In particular, this evaluation seeks
to quantify the change in feedback generation time (i.e. from
the time the utterance is received to the time a response is
generated) as a result of including one or both of these system
components. The forward semantics model was trained on
a corpus of 807 annotated examples composed of a variety
of symbolic concepts including objects in the world, object
categories, physical object properties, spatial relationships,
regions, and symbolic actions (see Section 2). By leveraging
idle system time while the robot physically interacted with
an object, the PSG process was able to precompute the
solutions for a subset of 550 different language phrases
that could describe the object. When the robot identifies an
incorrect fact, it searches over 6 possible fact templates that
are populated using the most likely phrase describing the
object of interest, where this phrase is found via the inverse
semantics process described in Section 5. The baseline case
allowed no time for PSG to run, instead requiring the process
to trigger reactively. In the best case, it was able to exhaust
the full set of language phrases and provide fast feedback.
As can be seen in Table 2, proactive symbol grounding
contributed a significant reduction in the latency of feedback
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PSG Duration (s) - 2.0 4.0 6.0 8.0
Number of Grounded Phrases 0 31 62 102 146

NLSG Inference Time (s) 0.21 0.18 0.14 0.13 0.09
Table 1. Runtimes showing the impact of incrementally increasing durations of proactive symbol grounding (PSG) on natural
language symbol grounding (NLSG) for a single instruction. The leftmost column reports the baseline of NLSG, which is effectively
0 seconds of PSG duration. The proactive approach allows a significant reduction in latency.

Informed Prior No Prior

PSG 2.445s ± 2.423s 0.169s ± 0.003s
No PSG 94.761s ± 0.806s 94.834s ± 0.646s

Table 2. Language generation latency from making a
contradictory observation to producing linguistic
knowledge-state feedback. The results show the performance
with and without both the use of proactive symbol grounding
(PSG) and the informed prior. The proactive approach leads to
significant reduction in latency in both cases.

generation. Because the use of an informed prior can
reduce the number of physical interactions necessary for the
robot to become sufficiently confident about a contradictory
observation, it consequently limits the idle system time that
can be used for PSG.

A second statistical evaluation targets the proactive
symbol grounding component for natural language symbol
grounding in simulation and quantitatively compares the
inference runtime to a reactive baseline. This experiment
is designed to address the question of how the amount
of idle system time impacts the contribution of PSG on
improved runtime performance of the inference process.
For this experiment, we assumed a sufficiently expressive
symbolic representation (Paul et al. 2018), a grammar, and a
corpus of annotated examples used for training. To quantify
performance, we trialed different durations of proactive
grounding time, increasing from 0 seconds to 8 seconds
in 2 second intervals, during which the process grounded
candidate phases, illustrated in Table 1 as “PSG Duration”
(Proactive Symbol Grounding Duration) and “Number of
Grounded Phrases” respectively. The row “NLSG Inference
Time” (Natural Language Symbol Grounding Time) reports
the runtime for a novel utterance; as expected, the runtime
decreases as a function of the PSG Duration due to the
process generating more matches to phrases in the novel
utterance’s parse tree and thus reducing the number of
phrases to be computed at inference time. We include
a trial with 0 seconds of proactive grounding time to
establish a baseline of performance for the natural language
symbol grounding process without any bootstrapping by the
proactive grounding module.

Next, we evaluated the accuracy of predicting semantic
properties using the model trained from common-sense
corpora. We evaluated the performance of three scoring
functions that were introduced in Section 3.3. We trained
the model using the aforementioned scoring functions
with the VERBPHYSICS dataset containing 2500 object
pairs annotated with relative physical properties. The goal
of the classifiers is to predict one of the four classes
(greater, less, equal or unknown) given an object pair and
a physical property as input. The corpus was split into
training, development and test set in the ratio 80 : 10 :

Function size weight strength rigidity

TransE 92.04 92.77 85.96 83.96
Bilinear 92.96 91.97 87.39 84.07
Bilinear-diag 93.78 93.07 89.8 83.52

Table 3. A comparison of accuracy (%) in predicting semantic
physical properties from common-sense corpus. The table
compares the TransE, Bilinear and Bilinear-diag similarity
functions.

10. The classifiers were trained to minimize negative log
likelihood of the data. We trained for 50 epochs with Adam
optimization. The model was tested at the end of each epoch
on the development set and the one with the best average
performance was selected to get the accuracy on the test set.
Table 3 shows the performance of the models on the test set.
The model based on the Bilinear-diag function outperforms
other methods‖. For the rest of the experiments, we use the
Bilinear-diag model.

We also quantitatively evaluated the impact of using an
informed prior on the accuracy and rate of convergence of
the belief to the correct estimate of a semantic property as
the robot interacts with an object. We selected six objects for
our environment: a box, a basket, a chair, a case, a fridge and
a cabinet (see images in Table 4). For each object, we focus
on estimating whether each of the objects is heavy or light
for the purposes of manipulation using a UR5 manipulator.
The robot interacted with each object 30 times by randomly
positioning the object in the manipulation region of the robot,
pushing the object with the end effector and recording the
force measurements and end-effector pose of the UR5 arm.
The resulting physical interaction data set was randomly
permuted resulting in a total of 1000 different manipulator
interaction sequences for each object. Prior probabilities
were estimated using the model laid out in Section 3.3 using
the Bilinear-diag function, which was empirically found to
be best performing (see Table 3).

Next, we estimated the heavy/light semantic property
using the physical interactions alone and subsequently
incorporated the informed priors along with the physical
interactions. In each trial, we recorded the number of
interaction attempts necessary to infer the property of the
object. If we inferred the wrong attribute or we were not
able to infer the correct property even after incorporating
the entire sequence, the number of attempts was set
to 30, the maximum length of the interaction sequence.
Figure 9b demonstrates that the informed prior enabled faster
convergence to the true estimate in comparison to using an
uninformed prior represented as no prior (e.g., 0.5 for both

‖The higher performance of the Bilinear-diag similarity function
corroborates findings by Yang et al. (2014) in link prediction tasks.
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(a) The accuracy of estimating the latent semantic attribute.
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(b) The average number of interaction tries (with standard errors) for estimating the latent
semantic attribute.

Figure 9. Comparison of latent-attribute estimation results with or without informed prior over three likelihood thresholds,
(0.75, 0.8, 0.85). Acc. shows the fraction of sequences in which we could infer the correct property for the object. Avg. Tries is the
average number of interaction attempts needed to estimate whether an object is heavy or not.

Object Type (True Latent Semantic Attribute)

Box

(¬Heavy)

Case

(Heavy)

Basket

(¬Heavy)

Fridge

(Heavy)

Chair

(¬Heavy)

Cabinet

(Heavy)

Table 4. Real objects (6 nos.) used in the third experimental
evaluation for showing how an informed prior from background
knowledge can assist in rapid estimation of latent semantic
attributes. We recorded force/torque and end-effector positional
information during 180 robot-object interaction sequences.

¬Heavy and Heavy). The figure empirically demonstrates
the learned priors are informative and hasten convergence to
the true latent attribute. Further, the accuracy of predictions
at convergence was found to be equivalent for the runs
with the informed priors and the uninformed priors (see
Figure 9a). As an example, inferring the latent attribute for
the basket object required at least five interaction tries with
an uninformed. The informed prior (i.e., 0.2 for ¬Heavy)
decreased the necessary tries by two interactions without
decreasing the accuracy, where the likelihood threshold was
0.85 in this experiment.

Finally, we evaluated a fully integrated system that
incorporated previously evaluated components, PSG, and
linguistic feedback generation. As shown in Figure 10, we
placed a Husky with a UR5 manipulator in a partially-
observable environment with a “full” semantic attribute of
a Pelican case. In the scenario, the robot first recognized
the Pelican case by using a RealSense camera mounted on
the rear sensor arch. A human operator then provided a
declarative fact, “the case is full” or “the case is empty.”
Otherwise, the operator did not provide any fact. The
robot was then commanded to infer the Pelican case’s
latent attribute through physical interactions with or without
informed prior. Once the belief over any latent attribute is
higher than a threshold (i.e., 0.9) via Bayesian update, the
robot reported the inference result. The robot performed 5
experiments per each scenario (total 6 scenarios), correctly
estimated the true attribute (i.e., “full”), and recorded the
number of required physical interactions with belief changes
per each. Figure 11 shows both informed prior and correct
factual knowledge are helpful to minimize the number
of required physical interactions. It shows the Bayesian
semantic knowledge estimator successfully propagated the
belief over semantic world properties from multiple and
diverse sources, and also presents the probabilistic model
corrected inaccurate knowledge, “empty” or no prior, online.

Note that the common-sense corpora derived from human
annotations might contain erroneous facts resulting in
incorrectly informed priors. Either incorrect utterance or
incorrectly informed priors may lead to incorrect linguistic
feedback, which is not observed in our experiments.

8 Related Work

Significant attention has been paid to the problem of endow-
ing robots to interpret natural language instructions. Con-
temporary statistical approaches to language understanding
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Figure 10. Semantic latent-attribute estimation experiment.
The Husky robot with a UR5 manipulator detects a Pelican case
using a RealSense camera and attempts to touch it to infer a
latent attribute that is not visually observable.
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Figure 11. Comparison of semantic latent-attribute
estimation with or without informed prior over declarative
knowledge. The Husky robot with a UR5 manipulator
attempted to touch a Pelican case (see Figure 10) and infers its
latent attribute (i.e., full). Once the belief over any attribute is
higher than the 0.9 threshold via Bayesian update, the
manipulator finishes the estimation.

been developed that enable robots to follow complex free-
form instructions that involving object manipulation (Misra
et al. 2016; Paul et al. 2018; Thomason et al. 2016; Shridhar
and Hsu 2018), navigation (Kollar et al. 2010; Matuszek
et al. 2010, 2012b; Howard et al. 2014b; Thomason et al.
2015) and mobile manipulation (Tellex et al. 2011b; Wal-
ter et al. 2014a). Such approaches commonly formulate
language understanding as a problem of learning a model
that associates (i.e., “grounds”) each word in a free-form
utterance to its corresponding referent in the robot’s model of
its state and action space (Harnad 1990; Tellex et al. 2011b;
Howard et al. 2014b,a). Most existing methods assume that
the robot’s model of the environment (the “world model”) is
known a priori, typically in the form of a map that expresses
the semantic and metric properties of objects and locations
necessary to interpret the command.

Instead, we have proposed and evaluated a probabilistic
framework bluethat enables robots to exploit multimodal
observations, including linguistic, visual, and haptic mea-
surements, to infer latent properties of its environment neces-
sary for human-robot collaboration in partially observed set-
tings. Earlier work in this area includes that of Duvallet et al.

(2013), which learns to follow navigational instructions in
unknown environments based upon human demonstrations,
as well as recent work on language-based visual navigation
in novel environments (Mei et al. 2016a; Anderson et al.
2018). More closely related to our framework are methods
that leverage metric and semantic information implicit or
explicit in the command to learn a distribution over world
models that facilitates natural language understanding in a
priori unknown environments (Walter et al. 2014b; Duvallet
et al. 2014; Hemachandra et al. 2015; Duvallet et al. 2014;
Oh et al. 2016). We address a different element of “partial
observability” by inferring the state of object attributes as
opposed to hypothesized locations of objects or landmarks
that exist beyond the robot’s field-of-view or its internal map
of the explored world. We also incorporate a novel knowl-
edge state variable in our graphical model and incrementally
update a distribution over that knowledge state rather than
reason over a distribution of maps.

Meanwhile, recent methods similarly exploit multimodal
observations to learn object attributes. Of this body of work,
some approaches incorporate human gestures as an input
modality to learn object and relation classifiers, as well
as attributes such as color (Kollar et al. 2013a; Matuszek
et al. 2014; Whitney et al. 2016). Others incorporate audio
and haptic measurements as sensing modalities to learn
attributes that are not visually observable (Chu et al. 2015),
such as whether a container is full or not based on the
sounds produced while picking up and shaking (Sinapov
and Stoytchev 2009). Related, some methods directly learn
behavior- or sensorimotor-grounded classifications (Hogman
et al. 2013), such as the work of Sinapov et al. (2014)
that uses vision, proprioception, and audio to learn semantic
labels for objects while the robot interactions with them.

Relevant to the goals of this work are methods that
consider the problem of understanding instructions that
are ambiguous in the context of the robot’s model of its
state and action space. Among these methods are those
that employ inverse groundings (Tellex et al. 2014; Gong
and Zhang 2018) as a means of asking targeted questions
that are believed to be most informative in an estimation-
theoretic sense (Tellex et al. 2012). Related, a number of
techniques have been proposed to learn a priori unknown
grounding models by exploring models that relate novel
linguistic predicates to the robot’s world model or directly
to its percepts (Thomason et al. 2016; She and Chai 2017;
Tucker et al. 2017; Thomason et al. 2018). Our work differs
in that we assume that the concepts are known, but that the
instantiation of these concepts in the robot’s environment are
unknown.

Our contribution leverages language as a source of
information about latent object states by grounding
declarative statements from user utterances. Other natural
language symbol grounding approaches that incorporate
declarative knowledge (Matuszek et al. 2012a; Thomason
et al. 2016; Paul et al. 2017; Kollar et al. 2013b;
Perera and Allen 2013) assume that such information is
correct and sufficient for task execution. In contrast, our
model incrementally fuses information from language and
force/torque interactions, making task execution more robust
to inaccurate or incorrectly understood declarations.
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In the event that the robot identifies discrepancies
between the declared knowledge and its observation of the
environment, our framework conveys this disagreement to
the user via generated language. Our approach is related
to recent work on inverse symbol grounding (Tellex et al.
2014), which is typically considered in the context of
engaging the user in dialogue to resolve ambiguities in the
task (Tellex et al. 2012; Deits et al. 2013; Raman et al. 2013;
Hemachandra and Walter 2015). With this approach, we
invert our learned language understanding model to identify
the set of phrases that are most likely to correspond to the
particular properties of the environment of interest. Unlike
Tellex et al. (2014), which uses Generalized Grounding
Graphs (Tellex et al. 2011b), we use the Distributed
Correspondence Graph (DCG) language model (Howard
et al. 2014a), which affords more efficient inference. We
also identify phrases by explicitly optimizing over their
likelihood rather than maximizing over a scoring function.

Highly relevant is work on referring expression genera-
tion, which is concerned with producing a textual description
that allows a human to correctly identify a target object
or other entity that is known only to the generator. In the
computer vision and natural language processing commu-
nities, the task typically involves conveying information
about objects or locations within an image (Kazemzadeh
et al. 2014; Yu et al. 2016; Mao et al. 2016; Luo and
Shakhnarovich 2017). Contemporary approaches to this
problem employ neural network architectures for language
generation, and thus require access to large datasets for
training, which are typically not available for robotics or
other embodied domains. In robotic applications, referring
expression problems often involve reasoning over spatially
extended 3D environments (e.g., at the room-, floor-, or
building-level). Consequently, generation algorithms (Kelle-
her and Kruijff 2006; Zender et al. 2009; Fang et al. 2015)
must provide enough information for the listener, whose
context will often be limited.

Related, other researchers have endowed robots with
language generation capabilities as a means of conveying
task information to their human partners (Dzindolet et al.
2003; Andrist et al. 2013; Wang et al. 2016). Among these
are methods that consider the problem of producing free-
form instructions that allow humans to perform a task, such
as navigation (Goeddel and Olson 2012; Oswald et al. 2014;
Curry et al. 2015). Traditionally, solutions to this problem
have relied upon hand-crafted rules that are designed to
mimic the way in which humans generate instructions (e.g.,
via a set of composition rules and language templates). Much
like language understanding, recent work employs statistical
and learned models (Cuayáhuitl et al. 2010; Oswald et al.
2014; Daniele et al. 2017b) that can be trained from natural
language corpora, and are thus able to produce utterances
that are easier for people to follow.

Significant effort in the natural language processing
community has focused on the problem of generation. This
includes work on selective generation, which considers
the problem of producing a natural language utterance
that effectively expresses the content of a rich database.
Selective generation has traditionally been formulated as
two separate problems: content selection (Barzilay and Lee
2004; Barzilay and Lapata 2005), which reasons over what

to talk about, and surface realization (Liang et al. 2009;
Walker et al. 2001), which decides how to convey the
selected content via natural language. Relevant to our inverse
semantics approach, Wong and Mooney (2007) effectively
invert a semantic parser to generate natural language text
from formal meaning representations using synchronous
context-free grammars.

Recent work performs selective generation via a single
framework (Chen and Mooney 2008; Kim and Mooney
2010; Angeli et al. 2010; Konstas and Lapata 2012; Mei et al.
2016b), rather than treating it as two separate sub-problems.
Angeli et al. (2010) formulate content selection and surface
realization as local decision problems via log-linear models,
and employ templates for generation. Mei et al. (2016b)
propose a recurrent neural network encoder-aligner-decoder
model that jointly learns to perform content selection and
surface realization from database-text pairs, thereby treating
the selective generation as an end-to-end learning problem.

9 Discussion & Conclusion
We introduced a probabilistic model for inferring the latent
semantic properties of the world to correctly follow high-
level human instructions in partially-observable environ-
ments. We demonstrated how both linguistic descriptions
from a human and signatures derived from the robot’s physi-
cal interaction can be used to infer the latent semantic proper-
ties of the environment required for task execution. Further,
we leveraged background common-sense knowledge corpora
to learn an informed prior when initializing the model for
efficient subsequent inference.

We also presented an approach for generating linguistic
feedback to the human in the case where there are
discrepancies are observed between the robot’s and the
human’s semantic knowledge about the world. Finally,
we addressed the issue of reducing latency in both
instruction interpretation and feedback generation that stems
from the computation complexity of associating language
with semantic entities in the world. We introduced a
proactive grounding approach that predicts future utterances
and selectively computes candidate interpretations from
incremental observations of the world. We demonstrated the
approach on fixed and mobile manipulators executing high-
level tasks by “filling in” semantic knowledge about world
entities from both declarative knowledge sources as well as
physical interactions.

The experiments in this work contribute towards bridging
the gap between higher-order inputs such as language
from the human and low-level representation such as
interaction forces for the robot via grounded learning of
semantic concepts by fusing acquired semantic knowledge.
The experimental evaluations on multiple platforms and
the field deployment test contribute toward validating the
reproducibility and robustness in the presence of uncertain
environment conditions. Further, the ability to provide online
linguistic feedback for resolving differences in the robot’s
and the human’s mental models contributes to addressing the
transparency and op-tempo communication requirements of
real-world human-robot teaming scenarios.

There are several avenues for future work that emerge
from the current investigation. Our current approach for
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deciding and taking information gathering actions is myopic
since we only utilize a one-step look ahead. The decision is
also based on the entropy of the underlying distribution but
does not explicitly compute the information gain associated
with actions. There is scope to integrate multi-step planning
to gain information about uncertain semantic properties.
Further, we considered semantic attributes associated with
an object to be independent while fusing knowledge from
multiple sources. Often, physical properties are correlated.
For example, heavy objects are often difficult to slide. Hence,
future work will explore Bayesian priors that preserve
correlations. There is scope to leveraging similar work
in correlated topics modeling (Blei and Lafferty 2006)∗∗.
Similarly, there is scope to use a correlated measurement
model that accounts for correlated observations. For
example, observing items such as cups and tables are highly
predictive of a presence of humans in a building.

The current model assumes that the space of semantic
concepts is fixed a priori, thereby making the overall system
less robust for situations in which the plan execution requires
knowledge of a novel semantic property that was not seen
during training. This limitation can be addressed in two
ways. First, we can incorporate non-parametric Bayesian
models that expand with data complexity (Blei and Jordan
2006). Secondly, we may explore ways to detect the presence
of a new concept and acquire new recognition models
online with limited interaction (Tucker et al. 2017), thereby
allowing our model to grow its space of semantic concepts
in an online fashion. Our experiments so far have focused
on the robot interacting with the world to improve its
understanding. There is further scope to acquire semantic
knowledge by observing the behavior of other agents, either
during an intentional demonstration or via happenstance
while executing a collaborative task. As an example, if
the robot observes a person struggle to lift a box, it can
incorporate that observation as evidence about the box’s
heaviness.

The present formulation incorporated binary predicate
symbols to represent symbolic states. The model can be
extended in case of ternary or multi-ary properties as well
by incorporating a multi-dimensional conjugate distribution.
For example, we can extend the Beta-Bernoulli prior
to a Dirichlet-multinomial prior to incorporate multi-ary
properties.

This work explored the use of natural language to
inform the latent properties of objects in the robot’s world
model which were corroborated or corrected by the haptic
modality. However, unlike touch, language utterances are
often ambiguous and may only implicitly communicate
information. For example, the a language instruction may
be ambiguous in terms of which objects are referenced.
Consider the utterance, “the barrel on the left is empty”
when there are two barrels on the left side of the robot.
Such ambiguity can be addressed by engaging in dialogue
with the operator. The natural language generation system
presented in this work can be extended and used to generate
disambiguation queries to resolve the ambiguity. Now, we
turn our attention to the problem of implicit knowledge that
we did not consider in this work. Consider the scenario,
where the operator informs the robot that, “all the oil in
the barrel was removed today”. Common sense reasoning

informs us that the barrel is now empty. However, the
presented system would not use such knowledge as it
cannot reason about implicit knowledge. The problem can
be addressed by incorporating (learning) common sense
knowledge and performing a form of logical inference or
logical state estimation to determine the implicit states from
the explicitly stated knowledge. Exploration in this direction
remains part of future extensions.

Further, the current model assumes that the the linguistic,
haptic and knowledge-based priors are equally weighted. In
practical contexts, one modality may be more informative
than others. Learning per-modality sensor models and
context-specific weightings remains part of future work.

Finally, we seek to expand the scope of language feedback
to also include explanations (Parkash and Parikh 2012;
Selvaraju et al. 2017). We envision that the robot should
be able to communicate not only that a piece of factual
knowledge is incorrect but describe how it arrived at such a
conclusion, for example, by interacting with it. We intend to
explore richer multi-modal communication as part of future
research.

10 Multimedia Extensions
Table 5 lists the multimedia extensions submitted along
with this paper demonstrating experiments on a mobile
manipulator in an outdoor domain and on a fixed-base
manipulator in a tabletop domain.

Table 5. Table of Multimedia Extensions

Extension Type Description
1 Video Demonstration of physical interac-

tion with closed cases for inferring
hidden states via a Clearpath Husky
A200 with a Universal Robotics
UR5 manipulator.

2 Video Demonstration of physical interac-
tion with barrels to estimate their
pliability/pushability via a Husky
with a UR5 manipulator.

3 Video Demonstration of physical inter-
action with cups in a tabletop
domain to estimate their internal
state as empty or full on a Rethink
Robotics Baxter Research Platform.
The determination of latent states
allows completion of a tabletop
clearing task.
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