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Chapter 1:  Introduction 

This thesis investigates whether biometric recognition can be performed on encrypted 

data without decrypting the data. 

1.1 Motivation 

As of the writing of this thesis in Summer 2020, bills proposing a moratorium on the 

governmental use of “facial recognition and biometric technology” are under consideration 

in both the U.S. House of Representatives and Senate [2], [3]. In a press release 

accompanying the introduction of the legislation, the co-sponsors of the bill published a 

press release calling facial recognition a “grave threat to our privacy” that has “no place 

in our society”. 

The concern makes sense. Biometric recognition is a new technology that still suffers 

from bias [4] (though efforts exist to mitigate these effects [5]), and it decreases the costs 

of surveillance in ways that can and have been abused [6]. 

Yet facial recognition, and biometric recognition more generally, is an important part 

of our modern interactions with technology. Facial recognition is used to help us log into 

devices [7] and to organize our photos. It’s used by governments to improve pedestrian 

safety [8], to search for missing and abducted children [9], to diagnose diseases [10]. 

Biometric classification more broadly is used to enable new modes of interaction with 
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technology, such as voice command-driven interfaces, and increase cybersecurity as people 

increasingly move their lives online [11]. 

It seems odd that a bill proposing a ban on facial recognition can gain support from a 

country’s political leadership at the same time it is advertised as a key feature on the 

most popular phone in the country. The tension between these two positions is a question 

of agency and trust. By imbuing technology with the ability to recognize people, we give 

the providers of that technology the ability to closely monitor our lives. We face the 

problem of balancing a desire for privacy and control of our data with a desire to use 

increasingly “smart” technology. 

1.2 Homomorphic Encryption (HE) 

One particularly exciting technical approach to the problem is homomorphic 

encryption. Originally theorized by Ron Rivest in 1978 [12], homomorphic encryption is 

a technique for encrypting data in a way that enables computation on that data without 

access to encryption secrets, resulting in computation and outputs that remain encrypted.  

Over the past ten years, innovations in the implementation and parallelization of 

homomorphic encryption has enabled the development of a growing range of practical 

uses of the technology. In 2009, Craig Gentry described in his Ph.D. thesis an scheme 

capable of performing homomorphically encrypted computation that supports both 

addition and multiplication of encrypted cyphertexts [13]. In this thesis, Gentry’s scheme 
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perform noisy operations (eventually complete destroying the data) capable of computing 

its own encryption/decryption circuit and at least one more operation before being 

overwhelmed by noise. By “bootstrapping”, or repeatedly encrypting the results of 

operations, Gentry’s thesis described the first scheme theoretically capable of performing 

basic homomorphically encrypted operations. Though mathematically elegant, this 

solution required a practically infeasible amount of additional computation to perform 

useful operations. 

In 2012 Gentry and his collaborators designed a scheme  (referred to as the “BGV” 

scheme after the author names) that limits the amount of noise per operation, allowing 

for less aggressive bootstrapping [14].  

Implementations of this scheme required implementing a lattice-based cryptosystem 

both in plaintext and within the encryption scheme; a mathematically and 

programmatically complicated task. As with any encryption software, correctness is 

measured not only by the ability of the algorithm to perform computations correctly, but 

also it the implementation’s data leakage, which can take years of testing to fully assess. 

Because of these complexities, it was nearly three years before any group released a 

practical opensource implementation of BGV. IBM’s HElib was the first to do so in 2015, 

followed shortly after by Microsoft’s Simple Encryption Algorithm Library (SEAL) [15], 

[16]. 
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These easily used implementations of homomorphic encryption schemes have led to a 

wave of new research into the practical applications of the technology. Operations are still 

expensive (a computer running HElib, the most popular HE implementation, takes almost 

100,000 times longer to perform an encrypted multiplication of two 32-bit numbers than 

it would without encryption), and limited (BGV, for example, only supports the 

computation of addition and multiplication within ℤ! for some prime constant p). 

Practical development of more complex operations such as machine learning algorithms 

are still an area of active research. 

1.2.1 Homomorphically Encrypted Classification Algorithms 

This theoretical contributions of this thesis pick up where, Shaul, Feldman, and Rus  

leave off in their 2020 paper “Secure 𝑘-ish Nearest Neighbors Classifier” [1]. In this work, 

the authors describe a system for efficiently performing the k nearest neighbors  algorithms 

(KNN)–an algorithm that classifies a datum based on the most similar data in some 

reference database–in a homomorphically encrypted context.  

Shaul describes a technique for performing a homomorphically encypted comparison 

between two numbers, which he uses to compute the result of a “coin toss” by comparing 

a random plaintext with an encrypted cyphertext. Using these coin tosses, one can 

approximate the sum of any monotonic, invertible function on an array of encrypted 

cyphertexts by adjusting the bias of the random plaintext selection.  
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Using these new algorithms, Shaul finds the nearest neighbors of a query point by 

approximating the mean and standard deviation of the distances between some set of 

reference points and a query point, which can be used to approximate the threshold around 

which a query points’ nearest neighbors reside. This algorithm is discussed in length in 

Chapter 3. 

The coin toss and approximation schemes discussed in this work have the potential to 

enable the translation of a wide range of algorithms into HE schemes. The KNN 

implementation used as an example, however, does not fully account for rounding and 

overflow errors, meaning it is only effective on carefully selected datasets that 

accommodate these errors (this is discussed further in Chapter 3). The algorithm also 

requires computations and comparisons (which have a runtime which grows with the 

number of reference points) on every point in the reference database. As databases grow 

large, as they do in biometric classification tasks, the runtime of a homomorphically 

encrypted KNN implementation becomes intractable. 

1.3 Contributions 

Using the work described in [1] as a starting point, this thesis tests the existing work 

on biometric recognition tasks, analyses reasons that the current implementation fails, 

and then describes the modifications necessary to perform biometric recognition using a 

homomorphically encrypted KNN approximation. We also explore an alternative 



 20 

algorithm that corrects for the growth in computation overhead accompanying large and 

complex reference databases. Both of these approaches apply the insight that moving as 

much computation as possible into cached, plaintext precomputation allows real-time, 

homomorphically encrypted algorithms to run with improved performance and accuracy. 

There are three main contributions in this thesis, two algorithms for efficiently 

performing biometric classification and recognition, and a collection of experiments 

demonstrating their effectiveness. 

1.3.1 Algorithmic Contributions 

Improvements to the efficiency, accuracy, and generalizability of the 𝒌-ishNN 

algorithm introduced in [1]. Using this precomputation technique, we describe in Section 

4.1 a new algorithm based on the prior work by Shaul et. al. that displays improvement 

in efficiency and runtime against all of the prior work’s test metrics. We demonstrate that 

these improvements allow the algorithm the precision necessary to perform biometric 

recognition tasks. 

The 𝑘-ishNN algorithm works by approximating statistical properties of a database of 

examples to perform classification tasks. By replacing the model of the space used by the 

algorithm (a modified Gaussian distribution) with a simpler uniform distribution, we are 

able to move much of the algorithm into plaintext precomputation, which both decreases 

the computational demands of formulating a response to a query, and increases the 
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experimentally measured accuracy of the algorithm’s classifications. These improvements 

enable the use of the 𝑘-ishNN algorithm to perform biometric classification tasks, which 

require a greater degree of precision than the approximation schemes and model than the 

original implementation of the algorithm allows. 

A homomorphically encrypted support vector-based classification technique. Because 

KNNs become less efficient as the amount of example data grows, in Section 4.2 we also 

describe and implement a homomorphically encrypted one-versus-all multiclass SVM that 

has computational demands that are independent of the size of the reference data. The 

SVM is implemented using the one-to-many training approach outlined in [17], the most 

salient property of which is the ability to classify a point by pre-computing a single basis 

vector for each class. If one projects a query point onto these vectors, the projection with 

the largest absolute value corresponds to the class of the query. Projections are relatively 

easy and efficient to compute in HE, and finding the maximum value in an array is 

demonstrated in the foundational work [1], enabling a simple implementation. 

1.3.2 Experimental Contributions 

In Chapter 5, we perform a series of experiments testing the accuracy and efficiency of 

these algorithms against both the original datasets used in a testing and on a new dataset 

prepared as a model of the challenges faces in biometric recognition tasks. We show that 

the new algorithms presented in this thesis not only achieve a level of improvement 

performance necessary for biometric recognition, but that they achieve accuracy decent 
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accuracy rates on a motivating biometric recognition dataset. We also show that our 

modifications to the 𝑘isnNN algorithm introduced in [1] result in an order of magnitude 

improvement in runtime under practical conditions. 

1.4 Technology vs. Regulation 

In the bill described at the top of this chapter, Senator Markey seeks to address the 

abuse of biometric recognition systems with legislation, banning technologies that might 

be misused. Another approach to the problem of misuse of powerful technologies is to 

build technical safeguards into the technology itself. If classification is useful, but data 

collection might be abused, then systems that can extend classification services to also 

provide strong, technically enforceable guarantees about what data is collected and how 

it is stored could limit the potential downsides of new innovations without restricting their 

benefits. 

Two of the mechanisms for preventing abuse of collected data are “notice and consent” 

and breach notification requirements, which levy huge fines against companies that fail to 

protect their user’s personal data or use it in a manner that the user has not consented 

to. There is evidence these mechanisms, which largely rely on self-enforcement, are 

ineffective at actually restricting data use or data protection [18], [19]. 

Especially in contexts where consumers might be especially concerned about data 

privacy (such as biometric recognition) or misuse (such as when interacting with a 
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government or untrusted authority), technical safeguards provide stronger guarantees and 

agency than policy safeguards, which at some level always requires people to either trust 

organizations will comply with policies, or authorities will enforce those policies. Since the 

Snowden revelations in 2013 [20], [21], this trust-based approach has become less effective, 

especially in international markets. 

This thesis describes technical systems that allow users to send biometric data to 

untrusted servers for analysis without requiring the user trust the provider to have policies 

in place to avoid storing or accessing that data. The systems also allow a provider to build 

services without exposing themselves to the liability risks inherent in handling user data.  

Rather than adopt increasingly heavy-handed restrictions on the functionality of 

technology, legislators can use results like these recent innovations in homomorphic 

encryption and the extensions in this thesis to restrict where data flows and how it is 

used, rather than placing broad moratoriums on entire technical fields with far reaching 

ranges of use and utility. 

1.5 Goals 

We hope that this thesis’ demonstration that fully encrypted biometric recognition can 

be performed efficiently serves both as a starting point for the development of technical 

alternatives to legislative privacy protection, and as a technique for service providers to 

continue to deliver the useful services biometric recognition enables without relying on 
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untestable trust of their users or raising the legitimate privacy concerns associated with 

biometric data collection. 
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Chapter 2:  Related Work 

This thesis describes a system for performing biometric recognition tasks on encrypted 

data in order to improve privacy guarantees provided by these systems. To do this, we 

incorporate techniques and standards from the field of biometric recognition and adapt 

them to fit into the computational models needed to perform encrypted computation. This 

chapter provides an overview of previous work in biometric recognition, describes some of 

the previous work in developing privacy-enhancing technologies, and introduces prior work 

in homomorphic encryption, the specific technology used in this thesis to enhance the 

privacy of biometric recognition systems. 

2.1 Biometric Recognition 

Biometric recognition systems fall largely into two categories. Verification systems 

take a claimed identity and some sensor input and determine whether the input 

corresponds to the claimed identity. The fingerprint sensor on a modern smartphone is an 

example of a biometric verification system. Identification systems seek to identify which 

member of a population triggered a set of sensor measurements. Automatic photo tagging 

is an example of an identification system. 

Biometric recognition systems span a wide range of applications, methods, and 

measurements.  
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Facial recognition is a common and widely used biometric recognition technique. 

Historically, facial recognition has relied on extracting recognizable features in images. 

For much of the late 1990s and early 2000s facial recognition relied on “eigenfaces”, vectors 

in extremely high dimensional image space that have face-like properties [22]. Several test 

datasets for facial recognition were developed during this era, notably the popular Yale 

Facial Recognition dataset and Yale Extended Facial Recognition Dataset B [23]. 

When ImageNet established the efficacy of deep convolutional neural networks for 

image classification in 2011 [24], the use of embedding spaces–vectors close to the end of 

a trained classifier–became a powerful tool in reducing images of faces into a 

computationally tractable number of dimensions while retaining enough data to 

differentiate faces. The FaceNet algorithm built a facial embedding space that maximizes 

the distance between images of different people and minimizes the distance between 

images of the same person [25]. It does so by using a triplet loss function, where a neural 

net is trained on three images, two of which are of the same person, and the side of 

resulting triangle connecting the two matching faces is minimized relative to the size of 

the triangle. 

Other biometric recognition systems, such as those recognizing fingerprints and irises, 

also use embedding spaces. Recognition of sequential data like voice and gaits using deep 

learning often uses recurrent neural networks; this sequential recognition work is less 
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mature than its convolutional counterpart and we treat at outside the scope of this initial 

investigation of biometric classification. 

Recent concerns about the fairness of machine learning, especially as practical 

applications in policing and surveillance causally connect the underlying bias in training 

sets to real work consequences [26], has led to the investigation of algorithmic methods 

for detecting and mitigating bias in the training of these algorithms [5]. 

2.2 Privacy Enhancing Technologies (PETs) and Encryption 

There are a wide range of technologies that seek to enhance privacy. Heurix et. al. 

describe a taxonomy that categorizes these technologies in [27], and also provide examples 

of technologies in most of the permutation of categories in that taxonomy. The taxonomy 

is useful in order to identify how this thesis fits into the larger context of PETs, so we 

summarize it here: 

At a high level, privacy technologies seek to obscure a user’s identity (or, less often, 

their content or observable behavior). PETs seek to obscure this information by either 

denying access, disassociating that information from other context, or rendering it 

indistinguishable from other information. This is achieved either through policy measures 

(security) or by performing algorithmic obfuscation on the underlying data 

(cryptography). Many PETs focus on information at a particular part of an algorithm, 

for example in transmission or during processing. 
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PETs are analyzed under a “threat model”, or the conditions under which data must 

be protected. This thesis focuses on cryptographic approaches (untrusted server) with an 

“honest-but-curios” server the follows the given protocol faithfully but tries to extract 

information from the protocols execution. We do not consider a “malicious server”, which 

might ignore or subvert the protocol itself. 

Examples of other technologies that have a similar goal of obscuring the identity and 

data of a user during computation includes most digital encryption schemes. Private 

machine learning, such as secure encrypted federated machine learning [28] is a recent 

example in this category. Modern work in this space seeks to provide the scale and 

aggregate learning that comes from computation “in the cloud” while still maintaining the 

privacy and data agency provided by running scripts on a local device. Federated secure 

machine learning uses encrypted aggregation techniques [29] to accumulate enough data 

to perform stochastic gradient decent on the weights of a machine learning system [28]. 

This is the technology that allows Google to train AndroidOS’s keyboards’ predictive text 

without collecting the actual text or typing information of individual users. 

2.3 Homomorphic Encryption 

Homomorphic encryption (HE) was originally theorized in 1978 by Ron Rivest [30]; a 

feasibility proof of HE was first described in 2009 by Craig Gentry in his PhD thesis [31]. 

Gentry extended the work for practical use in 2011 in collaboration with Brakerski and 
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Vaikuntanathan (the “BGV” scheme) [14]. The BGV homomorphic encryption scheme 

allows for addition and multiplication operations performed in a ring ℤ!. In 2016 Choen, 

Kin, Kin and Song (CKKS) described a homomorphically encrypted approximation 

scheme [32] that can efficiently run the same operations on approximations of numbers in 

ℝ. 

IBM’s HElib [33] (released 2015) implements the BGV and CKKS schemes with a 

number of optimizations. Microsoft Simple Encryption Algorithm Library (SEAL)  [34] 

similarly provides a wrapper around the BGV and CKKS schemes. A number of c++ and 

python wrappers exist for both libraries [35], [36]. 

The release of these libraries has accelerated research into HE implementations of 

algorithms. Results demonstrating the computation of hyperplane thresholding, sigmoids, 

and ReLU in HE have begun to lay the groundwork for running trained deep learning 

systems in an HE context [37]. Efficient homomorphic facial verification tasks have been 

implemented by computing distances from reference points in an encrypted embedding 

space [38]. 
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Chapter 3:  Problem Formulation and Foundational 

Work 

This chapter provides a description of the biometric recognition task we intend to 

solve, our development of a specific motivating problem to test potential solutions against, 

and the formal notation used in the rest of this thesis. It also describes the previous work 

that this work extends, and explores why that previous work is unable to perform 

encrypted biometric recognition without modification.  

3.1 Problem Formulation 

Previous work in homomorphic machine learning has achieved binary classification of 

a small number of classes or simple feature vectors, demonstrating the feasibility of 

algorithms generally. In order to enable biometric recognition, we select a motivating real-

world biometric recognition task and then explore the efficacy of existing homomorphically 

encrypted algorithms’ performance on that task, potential extensions to improve that 

performance, and out-of-band precomputation steps that can reduce the problem to one 

that is solvable using existing work. 
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3.2 Motivating Problem: Facial Recognition 

We consider a facial recognition task as a motivating problem. Previous work in 

homomorphic facial recognition either requires many rounds of online communication and 

several megabytes of online communication [39] or constrains the problem to face 

verification, performing a binary one-vs-the-rest classification of a face against a claimed 

identity [40]. 

We use the Yale Extended Facial Dataset B [23], which contains photographs of 28 

people in a variety of poses and lighting conditions. Using OpenFace [41], an open-source 

implementation of the FaceNet [25] algorithm, we map images of faces to a 128-

dimensional embedding space. For the sake of algorithmic clarity, we exclusively perform 

experiments on these embedding vectors and assume that the client has the ability to map 

facial images into the embedding space. This can be trivially achieved by either sharing 

the weights of the trained network or by performing transfer learning to compress the 

network for low-memory client applications. 

We also consider two dimensionality reduction techniques to decrease the number of 

dimensions and improve the efficiency of our algorithms, which depend on vector 

operations that scale with the number of dimentions. First, we use LDA to down sample 

the embedding space into 2, 3, 5, or 10 dimensions. Second, we retrain FaceNet, replacing 

the final layer with a vector of size 𝑑, the target dimentionality. 
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The relatively high number of classes, high dimensionality and precision of the feature 

vectors, and variable feature density of the embedding space make this dataset a 

motivating embodiment of many of the challenges of biometric recognition. State of the 

art biometric systems often have thousands to millions of classes and feature vectors (e.g. 

[42] has several million faces); this work is a step towards training against these more 

general datasets. 

3.3 Preliminaries 

Most of the HE operations in this thesis are performed following the BGV scheme [14]. 

This scheme supports addition and multiplication of cyphertexts in some integer ring 

ℤ! ≔ [0, 𝑝) where 𝑝 is a prime number selected at key generation time. We use + to 

denote addition and ∙ to denote multiplication. We denote encryption and decryption 

using public key 𝑝𝑘 and secret key 𝑠𝑘 with  

𝐸𝑛𝑐"#(𝑥) = ⟦𝑥⟧!# 	and	𝐷𝑒𝑐"#<⟦𝑥⟧!#= = 𝑥 

3.3.1 Notation and pre-defined functions 

For any plaintext variable 𝑥, we denote that variable encrypted with private key 𝑝𝑘 

as the cyphertext ⟦𝑥⟧!#. When there is only one possible private key, we omit the subscript 

for clarity. 
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Some algorithms in this paper use approximation schemes. We denote an approximate 

variable as 𝑇∗ ≈ 𝑇. 

We use several algorithms that are defined in [1]. Specifically, where ℙ%,!: ℤ! → ℤ! is 

the polynomial interpolation of some function 𝑓 rounded to the nearest integer and 𝑝 is 

the prime used by BGV, we use the comparison function 

isSmaller'(⟦𝑥⟧, ⟦𝑦⟧) = ℙ%,! L
𝑝
2 + 	𝑥 − 𝑦P 	𝑤ℎ𝑒𝑟𝑒	𝑓

(𝑥) = 	 T ⟦1⟧	𝑖𝑓	𝑥 >
𝑝
2

⟦0⟧	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

We also use Shaul et. al.’s implementation of ArgMax: 

𝐴𝑟𝑔𝑀𝑎𝑥((𝐶) ≔_𝑗 ∙aisSmaller<C), C*=
+,--∈/

 

Further, we use a trick described in that paper to compute the 𝑙0norm between points 

in a feature space by computing the absolute value of the difference between each element 

in the vector: 

𝑑𝑖𝑠𝑡!(𝑎, 𝑏) = ∑<1 − 2isSmaller(a), b))=(a) − b)) 

We use capital letters to denote arrays of values, and lowercase letters to denote 

scalars. We use a lowercase letter with a subscript to denote a single item from an array. 

For example, 𝑥+ is the 𝑖12 element of the array 𝑋. 

We denote cached constant coefficients use in functions with the Greek letters 𝛼 and 

𝛽. 
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3.3.2 Variable Names 

We use the follow variable names across all algorithms and protocols in this thesis: 

• 𝑑 – the number of dimensions in the feature space of a training set. 

• 𝑝 – the prime number used in the ring. 

• 𝑆 – a database consisting of 𝑛 vectors of size 𝑝 where each element 𝑠! ∈ 𝑆 represents a single 

training feature for use in classification 

• 𝑞 – a query sent by a client to a server for classification. A query is a 𝑑 dimensional vector 

where 𝑞! ∈ ℤ" 

• 𝑋 – an array of scalars 𝑥! ∈ ℤ"	𝑎𝑛𝑑	𝑥! ∈ 𝑋. 𝑥! is the distance between 𝑞 and 𝑠! 

• 𝜇	and	𝜎 – the mean and standard deviation of a distribution, respectively. 

• 𝑘 – in KNN-like algorithms, the desired number of neighbors to consider when determining 

the class of 𝑞. 

• 𝜅 – the number of points actually used in a KNN-like algorithm. In most cases 𝜅 = 𝑘∗: ≈ 𝑘, 

but this is not necessarily always true. 

• 𝐶 – a list of positive integers where 𝑐! ∈ 𝐶 is the class associated with the feature vector 𝑠!. 

We also occasionally use the notation 𝑐𝑙𝑎𝑠𝑠(𝑠!) ≝ 𝐶! to represent the class associated with 

a vector. 

• 𝑐𝑙𝑎𝑠𝑠$		- the predicted class of 𝑞 

• Φ is the standard normal function. Φ%& is the inverse normal.  

• ⌊ ⌉ - is the notation we use to denote rounding to the nearest integer. 

• 𝑇 is a number with the property that, for 𝑥', the 𝑘() largest element in 𝑋,  𝑥' ≤ 𝑇 ≤ 𝑥'*&. 

This number defines the length of a radius around 𝑞 that contains exact 𝑘 features. 
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• 𝐴 – a placeholder array for intermediate variables. Subscripts to 𝐴 provide a note on what 

the values in 𝐴 represent. 

3.3.3 Base-p representation 

Some algorithms use base-p representation. Base-p representation is a technique for 

avoiding large values of 𝑝, which can greatly increase computational overhead. It functions 

by converting some number 𝑣 ∈ [0, 𝑝3) into a “two digit” number in base p which could 

be expressed as the big-endian tuple: 

base − 𝑝	rep. of	(𝑣): = pq
𝑣
𝑝r , 𝑣	mod	𝑝s ,where	𝑣 ∈ [0, 𝑝

3) 

We denote the more significant figure in base-𝑝 notation as ℎ𝑖𝑔ℎ!(𝑣) and the one’s 

digit as 𝑙𝑜𝑤!(𝑣). If 𝑝 is unambiguous in context, we omit the subscript. 

3.4 Foundational Work 

This work builds on top of insights outlined by Shaul et. al. in in [1] in which they 

develop a secure classification algorithm, the “𝑘-ish Nearest Neighbors Classifier” (𝑘-

ishNN). 𝑘-ishNN describes a homomorphically encrypted algorithm which computes the 

output of the KNN algorithm on a query vector 𝑞 and a feature space 𝑆 with low 

communication requirements and running time.  
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3.4.1 Overview of 𝒌-ishNN 

This section describes the intuition behind the 𝑘-ishNN algorithm’s implementation 

and limitations. The remainder of Section 3.4 discusses those same topics in more technical 

detail. 

Stated in plain English, the 𝑘-ishNN algorithm performs the following operations: 

(1) A server is given a set of labelled example points 

(2) A client gives the server a “query” point, and asks what label makes the most sense for that 

query. 

(3) The server finds the most common label amongst the k nearest neighbors of the query to 

send back to the client. However, because the query is encrypted, the server does not know 

which points are closest. Instead, the server: 

a. Uses a series of novel techniques to estimate the radius of a “bubble” around the query 

that contains approximately k points. This computation is encrypted. 

b. The server computes the number of points within the bubble corresponding to each 

label. This computation is also encrypted. 

c. The server computes the label with the largest counts in the previous step and sends it 

back to the client. This entire process is encrypted, so the server doesn’t know what 

the final result is. 

(4) The client decrypts the server’s result and learns the likely class of the query point. 

The core intuition is that the points close to the query are likely similar to the query, 

and an approximate value of the threshold will likely yield the same suggested 
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classification as the precise value of the threshold. The highest fault risk in this 

implementation of the algorithm lies with the techniques used to keep the operations in 

step (3) encrypted: if the bubble ever grows or shrinks to a point of over- or under- 

inclusion, the algorithm will fail. 

The technique used by 𝑘-ishNN to estimate a threshold assumes that the reference 

points conform to a normal distribution, and uses that distribution to compute a target 

threshold. In practice, this approach often results in a non-sensical negative threshold (see 

Figure 1) which overflows to include most or all of the reference points, resulting in the 

selection of the most common label in the entire space as a class.  

If the situations most likely to trigger an overflow happen to occur in regions 

corresponding to the most common class in the space (as is the case in the two datasets 

used in [1] for testing), this error might go undetected. This problem largely stems from 

the use of a statistical model that can produce negative estimated values for the threshold. 

In Section 4.1 we describe a modified form of the algorithm that eschews the assumption 

that example data follows a Gaussian distribution. 

3.4.2 𝒌-ishNN in more detail 

The 𝑘-ishNN algorithm efficiently performs a homomorphically encrypted 

approximation of the output of the KNN algorithm on a query 𝑞 and feature space 𝑆. 
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It achieves this using a novel technique which can approximate any bounded, 

monotonically increasing, invertible function 𝑓 by performing 𝑛 encrypted “double blinded 

coin tosses” with bias %(⟦6⟧)
9

 for an arbitrary cyphertext ⟦𝑥⟧ and scaling factor 𝑚 > 𝑓(⟦𝑥⟧), 

the sum of which converges to 𝑓(⟦𝑥⟧) without requiring large intermediate values. 

The approach used by 𝑘-ishNN is described in Protocol 1 - 𝑘-ish Nearest Neighbors 

Classifier.  

It starts by computing a distance array ⟦𝑋⟧ such that: 

𝑥+ ≔ 𝑑𝑖𝑠𝑡(𝑞, 𝑠+)	∀	𝑠+ ∈ 𝑆 

It then uses the approximation technique outlined above to compute the mean and 

standard deviation of the distribution. The algorithm assumes that 𝑋 follows a continuous 

Gaussian distribution and precomputes Φ:0 L#
;
P, allowing for the estimation of a threshold 

𝑇∗ around 𝑞 which contains 𝑘 features (the * denotes an approximated value): 

⟦𝑇∗⟧ = ⟦𝜇∗⟧ + Φ:0 p
𝑘
𝑛s ∙

⟦𝜎∗⟧ 

Using this threshold and the polynomial expansion of a sigmoid around !
3
, this threshold 

can be used to compute an array 𝐶 where 𝐶(𝑐) represents the number of features within 

a radius of 𝑇∗ from 𝑞 which are of class 𝑐. By performing a series of comparisons on this 

resulting vector, 𝑘-ishNN computes 𝐴𝑟𝑔𝑀𝑎𝑥((𝐶(𝑐)), the most common class in the feature 

space within the threshold. 
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3.4.3 Issues and Assumptions in 𝒌-ishNN 

𝑘-ishNN has two critical assumptions that can cause it to have precipitous drops in 

performance. First, if the expected threshold is close to zero or the distribution is skewed 

right, 𝑇∗ might be negative, meaning ⟦𝑇∗⟧, which is computed modulo 𝑝, will overflow. 

Protocol 1 - 𝑘-ish Nearest Neighbors Classifier 
Shared Input:  integers 𝒑, 𝒅, 𝒄 > 𝟏 
Client Input:  a point 𝑞 ∈ ℤ!< and a security parameter 𝜆 
Server Input: integers 𝑘 < 𝑛 

points 𝑠0, … , 𝑠; ∈ ℤ!< 
A matrix 𝑀 ∈ {0,1};×( , 𝑠. 𝑡.𝑀(𝑖, 𝑗) = 1 iff 𝑐𝑙𝑎𝑠𝑠(𝑠+) = 𝑗 

Client 
Output: 

𝑐𝑙𝑎𝑠𝑠> ∈ [𝑐], the majority class of 𝜅 nearest neighbors of 𝑞  
where #

3
< 	𝜅 < ?#

3
 with high probability 

 Client Performs: 
1   Generate Keys (𝒔𝒌, 𝒑𝒌)𝑺 = 𝑮𝒆𝒏^𝟏𝝀, 𝒑` 
2   ⟦𝒒⟧ ≔ 𝑬𝒏𝒄𝒑𝒌(𝒒) 
3   Send (𝒑𝒌), ⟦𝒒⟧) to the server 

 Server Performs: 
4   for each 𝒊 ∈ 𝟏,… , 𝒏 do 
5    ⟦𝒙𝒊⟧ ≔ 𝒄𝒐𝒎𝒑𝒖𝒕𝒆𝑫𝒊𝒔𝒕(⟦𝒒⟧, 𝒔𝒊) 
6   ⟦𝝁∗⟧ ≔ 𝒂𝒑𝒑𝒓𝒐𝒙𝒊𝒎𝒂𝒕𝒆 𝟏

𝒏
∑⟦𝒙𝒊⟧ 

7   ^s𝒍𝒐𝒘((𝝁∗)𝟐)v, s𝒉𝒊𝒈𝒉((𝝁∗)𝟐)v` ≔ base-𝒑 rep. of (𝝁∗)𝟐 
8   (⟦𝒍𝒐𝒘(𝝁𝟐∗ )⟧, ⟦𝒉𝒊𝒈𝒉(𝝁𝟐∗)⟧) ≔ base-𝒑 rep. of (𝝁𝟐∗) 
9   ⟦𝝈∗⟧ ≔ 𝒂𝒑𝒑𝒓𝒐𝒙𝒊𝒎𝒂𝒕𝒆z𝝁∗ − 𝝁𝟐∗  
10   ⟦𝑻∗⟧ ≔ ⟦𝝁∗⟧ + ~𝚽%𝟏 �𝒌

𝒏
�� ⟦𝝈∗⟧ 

11   ⟦𝑪⟧ ∶= (𝟎,… , 𝟎) 
12   for each 𝒄 ∈ 𝟏,… , 𝒋 do 
13    ⟦𝑪(𝒋)⟧ ∶= 	∑ 𝒊𝒔𝑺𝒎𝒂𝒍𝒍𝒆𝒓(	⟦𝒙𝒊⟧, ⟦𝑻∗⟧)𝒏

𝒊2𝟏 ∙ 𝑴(𝒊, 𝒋) 
14   s𝒄𝒍𝒂𝒔𝒔𝒒v ≔ 𝑨𝒓𝒈𝑴𝒂𝒙𝒄(⟦𝑪⟧)  
15   Send s𝒄𝒍𝒂𝒔𝒔𝒒v  to the client 

 Client Performs: 
16   𝒄𝒍𝒂𝒔𝒔𝒒 ≔ 𝑫𝒆𝒄𝒔𝒌^s𝒄𝒍𝒂𝒔𝒔𝒒v` 
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Because 𝑋 is discrete and non-negative, even when 𝑋 is roughly Gaussian it will still be 

truncated at 0 and have a sample standard deviation rather than the actual standard 

deviation assumed in the algorithm formulation. The sample standard deviation is by 

definition smaller than the actual standard deviation, and a left-truncated Gaussian 

distribution has right skew, meaning in practice these error modes are likely. 

 

Figure 1 and Figure 2 depict the likelihood of a miscalculation of 𝑇∗ due to overflow 

in the Wisconsin Breast Tumor dataset used to test the algorithm in both [1] and this 

thesis. In Figure 1, the red regions in the charts reflect areas where there is a greater than 

Figure 1 – the expected value of 𝑇∗ assuming perfect approximations on a normalized 2d LDA 
projection of Wisconsin Breast Cancer database used in both this thesis and the original assessment of the 
𝑘-ishNN algorithm. Red regions are areas in which 𝑇∗ is expected to be negative, implying a greater than 
50% chance of an overflow and an effectively arbitrary value of 𝜅. 
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50% chance that there will be an overflow in threshold computation. For even fairly large 

values of 𝑘, almost half of the query space is expected to have an overflow. Figure 2 shows 

the computation of 𝜅 in an unencrypted setting. There are large spikes at 𝜅 = 0, 

corresponding to a negative expected threshold which would result in overflow in the 

actual implementation of the algorithm. On a binary classification task like the one 

analyzed here; an overflow typically will result in a classification of the class most heavily 

represented in the entire feature space (because a high threshold from an overflow will 

capture “too much” of the space). In the case of the test in use, the region most likely to 

trigger an overflow corresponds to the most populous class, an eccentricity of the test 

dataset that results in a correct default classification when the system is in an error state. 

Section 5.4 describes a test in which this correlation is not present and finds that the 

accuracy of 𝑘-ishNN decreases sharply in that situation. 
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The open source implementation of 𝑘-ishNN [43] mitigates this issue by computing a 

range of candidate thresholds across (0, 𝑝], computing the class counts of each of these 

thresholds, and then applying filters to the resulting class counts to perform a 

classification. Section 4.1 is partially motivated by this practical mitigation of the 

shortcoming of the original algorithm.   

In non-binary classification, the inaccuracy inherent in the Gaussian model for 𝑋 and 

the risk of overflow cause 𝑘-ishNN to exhibit impracticably low accuracy. An example of 

this is shown in Figure 3 and discussed in more detail in Section 5.4.1. 

Figure 2 – The expected value of 𝜅 without overflow for benign (orange) and malignant (blue) 
tumors. The graphs show the value of 𝜅 along the horizontal axis. The charts, from left to right, top to 
bottom, represent the distribution of values of 𝜅 for target values of k = {2,4,8,16,32,64} respectively. 
The spikes at 𝜅 = 0 correspond to a high likelihood of overflow when computing a threshold. These 

graphs were generated using the 2d LDA projection of Wisconsin Breast Cancer database used in both 
this thesis and the original assessment of the 𝑘ishNN algorithm 



 44 

 

 

 

Figure 3 - the accuracy of the 𝑘-ishNN algorithm on a 2D projection of the motivating 
facial recognition dataset is low, even with large grid sizes. 
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Chapter 4:  Technical Approach 

Most homomorphically encrypted classification models to date have focused on binary 

classification [37], [44], [45] and left multi-class classification as a future extension. In the 

year preceding this thesis, some homomorphically encrypted classifiers, including the 𝑘-

ishNN classifier have been built to handle multiple classes, but tests continue to focus on 

datasets with a small number of classes (e.g. [1] includes tests on a 4-class dataset, [46] 

focuses mainly on binary classification of text, but includes data from 4- and 14- class text 

datasets).  

Biometric classification requires differentiation between a large number of complicated 

classes, in the initial tests outlined in Section 3.4.3 we found that the current 

implementation of 𝑘-ishNN lacks the precision necessary to perform this classification. 

This thesis provides two potential solutions to this issue. 

Section 4.1 re-builds the formal definition of the 𝑘-ishNN algorithm (see Protocol 2) 

to isolate the part of the algorithm causing this loss of precision (Algorithm 1b) and then 

considers a simple replacement for that algorithms (Algorithm 1a), leaving further 

improvement for future work. This approach reframes work by Shaul et. al. [1] as the 

precomputation of a threshold generating function, and then uses the factory pattern [47] 

to load plaintext precomputation into that generator. The approach borrows the insight 
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from machine learning literature that high-cost out-of-band precomputation can enable 

efficient performance at runtime. 

Though the extension in 4.1 address the precision issue, it does not address the fact 

the number of reference points necessary to differentiate between classes rapidly becomes 

very large. Algorithms, like 𝑘-ishNN, that have a complexity that is a function of the size 

of the training database rapidly become computationally impractical.  

Section 4.2 defines an entirely new approach to homomorphically encrypted 

classification that scales with the number of classes while also providing the necessary 

precision for multi-class classification tasks. To do this we developed a privacy preserving 

version of an SVM, leveraging recent innovations in homomorphically encrypted 

computation. 

4.1 Generalization of 𝒌-ishNN: adding functional generators of 

candidate threshold families 

To explore the threshold computation portion of the	𝑘-ishNN algorithm outlined in 

Protocol 1, we modify the protocol to accept an any arbitrary function of type (𝑋, 𝑝𝑘) →

⟦𝑇⟧, where 𝑇 is some set of candidate thresholds. By performing some plaintext 

precomputation, the threshold function can be tuned for computable global properties of 

feature space. Protocol 2 describes this candidate selection formulation. The collection of 

implementations of Algorithm 1 describe several approaches to threshold computation. 
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4.1.1 Overview of 𝒌-ishNN with precomputation 

Protocol 2 describes a modified version of 𝑘-ishNN (Protocol 1) that introduces a 

precomputation step. Algorithms 1a, 1b, and 1c describe three potential threshold 

computation schemes. 1a and 1b are tested in Chapter 5. 1c is included because it is 

functionally equivalent to the open source implementation of 𝑘-ishNN, ppKNN [43]. 

Like the original 𝑘-ishNN, the modified version of the algorithm seeks to identify the 

class of a query point 𝑞 by finding the most common class in the 𝑘 points in a feature 

space closest to 𝑞. It does this by computing a threshold distance from 𝑞 and then 

computing the class of the points within that threshold distance from 𝑞.  

At some point before interacting with a client or query, a server implementing Protocol 

2 builds a function generateThresholds that returns a small number of candidate 

thresholds when given the distances between 𝑞 and each reference point in feature space. 

This function is only computed once per feature space, and is reused between queries.  

Algorithms 1a-1d describe several ways to construct generateThresholds: (1a) 

precomputes three constant values as candidate thresholds, and returns the identity 

function for those thresholds; (1b) pre-computes a first-degree polynomial based on the 

inverse Gaussian which approximates T and constructs an intermediate function that 

approximates the mean and median of the distance distribution for use as coefficients of 

that Gaussian. This algorithm causes Protocol 2 to functionally reduce to Protocol 1. (1c) 
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performs the same pre-computation as (1b), and approximates the same coefficients, but 

then multiplies those coefficients by a combination of integers and the multiplicative 

inverse of 2 in such a way that a series of threshold “pairs” are created on opposite sides 

of the ring of possible threshold values (the encryption scheme requires that all variables 

are integers between 0 and 𝑝, so for each threshold 𝑡 this scheme also creates a candidate 

threshold at L𝑡 + !
3
P 	𝑚𝑜𝑑	𝑝). Algorithm (1c) is functionally equivalent to the experiments 

run in [1]. Algorithm (1d) selects 10 random thresholds. In initial experimentation, 

algorithms (1c) and (1d) produced indistinguishable accuracy scores; our experiments in 

Chapter 5 focus on providing data on the performance of algorithms (1a) and (1b). 

Returning to Protocol 2: after generating a threshold generation function, the client 

encrypts and sends a query to the server (lines 2-4). While keeping all computation 

encrypted, the server builds a list of the distances between each reference point and the 

query point (lines 5-6), and then uses generateThresholds to generate several candidate 

thresholds (line 7). For each of these thresholds, the server counts the number of instances 

of points of each class within that threshold (lines 9-11), and then finds the most common 

class by identifying the class with the highest count (line 12). This results in an encrypted 

array of potential classes for 𝑞, which is sent back to the client (line 13). The client then 

decrypts the list (line 14), and, if there is a most popular class, accepts that as the class 

of the query (line 15). If there is a tie the behavior of the algorithm is undefined. (In 

Section 5.4.1 we show that if this undefined behavior is treated as a non-classification, 
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Protocol 2 with Algorithm 1a can sometimes achieve lower error rates than the reference 

implementation of “normal” unencrypted KNN). 

4.1.2 Discussion 

The 𝑘-ishNN protocol precomputes the value of an inverse Gaussian and then scales 

and translates that value based on approximations of the first and second moment of the 

distribution 𝑋 to estimate a threshold 𝑇 which defines the radius from 𝑞 to its 𝑘12 

neighbor,  ⟦𝑇∗⟧ ∶= 	 ⟦𝜇∗⟧ + �Φ:0 L#
;
P� ⟦𝜎∗⟧ (Algorithm 1c or Protocol 1). The value of 

�Φ:0 L#
;
P� is only precise to within a single standard deviation, and values of 𝜎∗ > @

3
 will 

often result in an overflow. We explore the implications of overflows on classification 

accuracy in Section 5.4.1. The open source implementation of 𝑘-ishNN [43] accounts for 

this issue by using the family of candidate thresholds ⟦𝑇∗⟧ ≔ ⟦𝜇∗⟧ − 𝛼(⟦𝜎∗⟧) +

	𝛽(⟦𝜎∗⟧ + 𝛾)	mod	𝑝 for some hand-chosen parameters 𝛼 ∈ {1,2,10}, 𝛽 ∈ {2:0, 1}, 𝛾 ∈ {0,1}, 

selecting the threshold resulting in the best approximation of 𝑘 by repeatedly applying 

𝑖𝑠𝑆𝑚𝑎𝑙𝑙𝑒𝑟 to 𝑠𝑢𝑚(𝐶) to identify a class. 

Modeling the distribution of 𝑋 as a cumulative density function (CDF) is difficult. If 

the density of feature vectors is non-uniform, a PDF approximating the distribution of 

points for an arbitrary query will be asymmetric, requiring operations other than 

stretching and translating a base CDF in order to accurately approximate the space. 

Symmetric functions run the risk of undetectable overflow, as encountered with the normal 
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distribution in practice. We experimented with approximating the third moment using a 

double-blinded coin toss and encountered increased overflow. The log normal distribution 

is always positive and therefore immune to negative overflow, but requires a polynomial 

on 𝜎 to compute, resulting in high sensitivity to small approximation errors in 𝜎∗. 

For many applications the distribution of feature points is roughly uniform. In these 

cases, a threshold function 𝑇(𝑋, 𝑝𝑘) → ⟦Τ⟧ that returns some set of constants Τ might 

have improved accuracy over a noisy threshold computation. This is especially applicable 

to feature spaces in which an overflow is likely to cause a misclassification, as is the case 

in feature spaces with a large number of classes. 

Given the method for data preparation in Section 3.2, uniform density can be induced 

by including a measure of the density in the loss function when training the vectorization 

scheme. Unified embedding algorithms, like FaceNet, are both common in biometrics and 

already tend towards using all of their embedding space, and therefore having roughly 

uniform volumes for different classes when the number of examples per class does not 

have high variation. Using this observation, we use the 𝑙0 norm and the identity in 

Algorithm 1a as a motivating alternative pre-computed threshold generation function. 
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Protocol 2 – 𝑘-ishNN with preprocessing 
Shared Input:  integers 𝒑, 𝒅, 𝒄 > 𝟏 
Client Input:  a point 𝑞 ∈ ℤ!< and a security parameter 𝜆 
Server Input: integers 𝑘 < 𝑛 

points 𝑠0, … , 𝑠; ∈ ℤ!< 
A matrix 𝑀 ∈ {0,1};×( , 𝑠. 𝑡.𝑀(𝑖, 𝑗) = 1 iff 𝑐𝑙𝑎𝑠𝑠(𝑠+) = 𝑗 

Client 
Output: 

𝑐𝑙𝑎𝑠𝑠> ∈ [𝑐], the majority class of 𝜅nearest neighbors of 𝑞 
where #

3
< 	𝜅 < ?#

3
 with high probability 

 Server Performs: 
1   𝒈𝒆𝒏𝒆𝒓𝒆𝒂𝒕𝒆𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅𝒔 ≔ 𝑮𝒆𝒏𝒆𝒓𝒂𝒕𝒆𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅𝑭𝒖𝒏𝒄𝒕𝒊𝒐𝒏(𝑺) 

 Client Performs: 
2   Generate Keys (𝒔𝒌, 𝒑𝒌)𝑺 = 𝑮𝒆𝒏^𝟏𝝀, 𝒑` 
3   ⟦𝒒⟧ ≔ 𝑬𝒏𝒄𝒑𝒌(𝒒) 
4   Send (𝒑𝒌), ⟦𝒒⟧) to the server 

 Server Performs: 
5   for each 𝒊 ∈ 𝟏,… , 𝒏 do 
6    ⟦𝒙𝒊⟧ ≔ 𝒄𝒐𝒎𝒑𝒖𝒕𝒆𝑫𝒊𝒔𝒕(⟦𝒒⟧, 𝒔𝒊) 
7   ⟦𝑻⟧ ∈ 𝒈𝒆𝒏𝒆𝒓𝒂𝒕𝒆𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅𝒔(𝑺, 𝒑𝒌) 
8   for 𝒕 ∈ 𝑻 
9    ⟦𝑪⟧ ∶= (𝟎,… , 𝟎) 
10    for each 𝒄	 ∈ 𝟏,… , 𝒋 do 
11     ⟦𝑪(𝒋)⟧ ∶= 	∑ 𝒊𝒔𝑺𝒎𝒂𝒍𝒍𝒆𝒓(⟦𝒙𝒊⟧, ⟦𝑻∗⟧)𝒏

𝒊2𝟏 ∙ 𝑴(𝒊, 𝒋) 
12    s𝒄𝒍𝒂𝒔𝒔𝒒,𝒕v ≔ 𝑨𝒓𝒈𝑴𝒂𝒙𝒄(⟦𝑪⟧)  
13   Send s𝒄𝒍𝒂𝒔𝒔𝒒v to the client 

 Client Performs: 
14   𝒄𝒍𝒂𝒔𝒔𝒒,𝒊 ≔ 𝑫𝒆𝒄𝒔𝒌^s𝒄𝒍𝒂𝒔𝒔𝒒,𝒊v`∀𝒊 
15   𝒄𝒍𝒂𝒔𝒔𝒒 ≔ 𝑨𝒓𝒈𝑴𝒂𝒙𝒄 �∑ 𝟏𝒄𝒍𝒂𝒔𝒔𝒒,𝒊2𝒄 � in case of a tie, return null. 
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Algorithm 1 – GenerateThresholdFunction(𝑆, 𝑝𝑎𝑟𝑎𝑚𝑠) 
Input: Database 𝑺: 𝒔𝟏, … , 𝒔𝒏 ∈ ℤ𝒑𝒅, 

𝒑𝒂𝒓𝒂𝒎𝒔 – a set of parameters for the algorithm 
Output: 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠 – a function of type (𝑋, 𝑝𝑘) → ⟦𝑇⟧!#, which given a 

set of distances returns a set of candidate thresholds 
 

Algorithm 1a – Precomputed constant threshold (“Static𝒌-ishNN” introduced by 
this thesis) 
params: (𝒌) 
1 𝒊𝒏𝒊𝒕𝒊𝒂𝒍𝒊𝒛𝒆^𝑨𝒎𝒊𝒏𝒊𝒎𝒖𝒎, 𝑨𝒂𝒗𝒆𝒓𝒂𝒈𝒆, 𝑨𝒎𝒂𝒙𝒊𝒎𝒖𝒎` ≔ 𝒆𝒎𝒑𝒕𝒚	𝒂𝒓𝒓𝒂𝒚𝒔 
2 for 𝒔𝒊 ∈ 𝑺 
3  𝑫 ≔ 𝒔𝒐𝒓𝒕𝒆𝒅^�𝒍𝟏^𝒔𝒊, 𝒔𝒋`∀𝒊 ≠ 𝒋�` 
4  𝑨𝒎𝒊𝒏𝒊𝒎𝒖𝒎 ← 𝒅𝒌, 𝑨𝒂𝒗𝒆𝒓𝒂𝒈𝒆 ←

𝒅𝒌*𝒅𝒌%𝟏
𝟐

, 𝑨𝒎𝒂𝒙𝒊𝒎𝒖𝒎 ← 𝒅𝒌*𝟏 
5 𝒈𝒆𝒏𝒆𝒓𝒂𝒕𝒆𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅𝒔 ∶= (𝑿) → 

⟦𝑻⟧ ≔ s�𝐦𝐚𝐱(𝑨𝒎𝒊𝒏𝒊𝒎𝒖𝒎) ,𝐦𝐢𝐧(𝑨𝒎𝒂𝒙𝒊𝒎𝒖𝒎) ,𝒎𝒆𝒅𝒊𝒂𝒏^𝑨𝒂𝒗𝒆𝒓𝒂𝒈𝒆`�v 
 
Algorithm 1b – 𝒌-ishNN threshold function (adapted from [1])  
params: (𝒌)  
1 𝜷 ∶= ~𝚽%𝟏 �𝒌

𝒏
��	 

2 𝒈𝒆𝒏𝒆𝒓𝒂𝒕𝒆𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅𝒔 ∶= (𝑿) → 
3   ⟦𝝁∗⟧ ≔ 𝒂𝒑𝒑𝒓𝒐𝒙𝒊𝒎𝒂𝒕𝒆 𝟏

𝒏
∑⟦𝒙𝒊⟧ 

4   ^s𝒍𝒐𝒘((𝝁∗)𝟐)v, s𝒉𝒊𝒈𝒉((𝝁∗)𝟐)v` ≔ base-𝒑 rep. of (𝝁∗)𝟐 
5   (⟦𝒍𝒐𝒘(𝝁𝟐∗)⟧, ⟦𝒉𝒊𝒈𝒉(𝝁𝟐∗ )⟧) ≔ base-𝒑 rep. of (𝝁𝟐∗ ) 
6   ⟦𝝈∗⟧ ≔ 𝒂𝒑𝒑𝒓𝒐𝒙𝒊𝒎𝒂𝒕𝒆z𝝁∗ − 𝝁𝟐∗  
7   ⟦𝑻∗⟧ ≔ ⟦𝝁∗⟧ + 𝜷⟦𝝈∗⟧ 

 

 

Algorithm 1c – 𝐩𝐩𝐊𝐍𝐍 threshold function (implementation used by [43])  
params: (none)  
1 𝒈𝒆𝒏𝒆𝒓𝒂𝒕𝒆𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅𝒔 ∶= (𝑿) → 
2   ⟦𝝁∗⟧ ≔ 𝒂𝒑𝒑𝒓𝒐𝒙𝒊𝒎𝒂𝒕𝒆 𝟏

𝒏
∑⟦𝒙𝒊⟧ 

3   ^s𝒍𝒐𝒘((𝝁∗)𝟐)v, s𝒉𝒊𝒈𝒉((𝝁∗)𝟐)v` ≔ base-𝒑 rep. of (𝝁∗)𝟐 
4   (⟦𝒍𝒐𝒘(𝝁𝟐∗)⟧, ⟦𝒉𝒊𝒈𝒉(𝝁𝟐∗ )⟧) ≔ base-𝒑 rep. of (𝝁𝟐∗ ) 
5   ⟦𝝈∗⟧ ≔ 𝒂𝒑𝒑𝒓𝒐𝒙𝒊𝒎𝒂𝒕𝒆z𝝁∗ − 𝝁𝟐∗  
6   ⟦𝑻∗⟧ ≔ ⟦𝝁∗⟧ − 𝜶(⟦𝝈∗⟧) + 	𝜷(⟦𝝈∗⟧ + 𝜸)𝐦𝐨𝐝	𝒑	∀	𝜶 ∈ {𝟏, 𝟐, 𝟏𝟎}, 𝜷 ∈ {𝟐%𝟏, 𝟏}, 𝜸 ∈ {𝟎, 𝟏} 

 

Algorithm 1d – random threshold function  
params: (none)  
7 𝒈𝒆𝒏𝒆𝒓𝒂𝒕𝒆𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅𝒔 ∶= (𝑿) → 
8   ⟦𝑻∗⟧ ≔ 𝐸𝑛𝑐(𝑅)	where	𝑅	is	a	list	of	random	numbers ∈ [0, p) 
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4.1.3 Efficiency Analysis 

Protocol 2 has a preprocessing efficiency of: 

𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦<𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(S)= 

 The protocol’s runtime consists of: 

1. Compute 𝑥&, … , 𝑥C 

2. Compute 𝑇(0), … , 𝑇(𝑡) 

3. Compute 𝐶(0), … , 𝐶(𝑐) for each 𝑡 ∈ 𝑇 

4. Compute 𝑐𝑙𝑎𝑠𝑠$ for each 𝑡 ∈ 𝑇 

Step 1 is computed with 𝑛 instances of 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐷𝑖𝑠𝑡 run in parallel.  

Step 2 is a function of 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠.  

Step 3 runs 𝑂(𝑛 ∗ 𝑡) parallel 𝑖𝑠𝑆𝑚𝑎𝑙𝑙𝑒𝑟 subcircuits.  

Step 4 is performed by 𝑡 instances of the 𝐴𝑟𝑔𝑀𝑎𝑥( polynomial.  

We require that 𝑡 is some small constant of 𝑂(1). This results in a general size a depth 

of: 

depth(𝑘ishNN	with	precomputation)

= 	𝑂<depth(𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐷𝑖𝑠𝑡) + depth(𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠) + log 𝑐

∙ 𝑑𝑒𝑝𝑡ℎ(𝑖𝑠𝑆𝑚𝑎𝑙𝑙𝑒𝑟)= 

and 
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size(𝑘ishNN	with	precomputation)

= 	𝑂<n ∙ size(𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐷𝑖𝑠𝑡) + size(𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠) + 𝑛

∙ 𝑠𝑖𝑧𝑒(𝑖𝑠𝑆𝑚𝑎𝑙𝑙𝑒𝑟)= 

When using approximations as outlined in Algorithm 1b and Algorithm 1c, 

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒	𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠 instantiates 𝑂(1) parallel 𝑝𝑟𝑜𝑏𝑎𝑏𝑎𝑙𝑖𝑠𝑖𝑐𝐴𝑣𝑒𝑟𝑎𝑔𝑒 and polynomial 

circuits in parallel, resulting in a depth of 𝑂(log 𝑝) and a size of 𝑂< 𝑝=. The 

precomputation step only determines the value of a single numerical value, and therefore 

runs in constant time and space. 

When using a constant precomputed threshold as outlined in Algorithm 1a: 

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠 performs no computation and returns 𝑂(1) constants, resulting in 

𝑂(1) size and depth. Precomputation of a constant threshold by determining the range of 

values of 𝜅 that result in a precisise measurement of 𝑘 for any point in feature space 

requires computing and sorting a distance array of size 𝑂(𝑛) a total of 𝑂(𝑛) times, 

resulting in a precomputation time of 𝑂(𝑛3 log 𝑛). The algorithm can have a parallelization 

factor of up to n, resulting in 𝑂(𝑛) parallel instances of runtime 𝑂(𝑛 log 𝑛). 

4.1.4 Security  

We assume a semi-honest server (one that follows the algorithm but tries to derive 

knowledge about the query during the run of the algorithm). Observe that two runs of 

the algorithm with two values 𝑞, the actual query, and 𝑞E, a randomly generated query, 
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would be computationally indistinguishable and, assuming that our encryption scheme is 

sound, contain identically meaningless values across the entire server-side computation. 
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4.2 H.E. SVM 

As the number of features per class grows, an algorithm that scales with the number 

of features will become computationally intractable. This section describes a 

homomorphically encrypted SVM that uses its precomputation stage to build a set of 

vectors 𝑊 that describe the classes in the feature space. 

Protocol 3 – Privacy Preserving SVM (ppSVM) classification 
Shared Input:  integers 𝒑, 𝒅, 𝒄 > 𝟏 
Client Input:  a point 𝑞 ∈ ℤ!< and a security parameter 𝜆 
Server Input: points 𝑠0, … , 𝑠; ∈ ℤ!< 
Client Output: 𝑐𝑙𝑎𝑠𝑠> ∈ [𝑐],	the	estimated	class	of	𝑞	
 Server Performs: 
1   𝑾≔	an iteratively computed matrix of weighted feature vectors such that 𝒘Dµµµµ⃗  

is the weight vector associated with class 𝒊 in the Crammer-Singer formulation of 
an SDN computed as described in [48]. 

 Client Performs: 
2   Generate Keys 
3   ⟦𝒒⟧ ≔ 𝑬𝒏𝒄𝒑𝒌(𝒒) 
4   Send (𝒑𝒌), ⟦𝒒⟧, 𝒓𝒆𝒍𝒊𝒏𝒆𝒂𝒓𝒊𝒛𝒂𝒕𝒊𝒐𝒏𝑲𝒆𝒚𝒔	 to the server 

 Server Performs: 
5   ⟦𝑪⟧ ∶= (𝟎,… , 𝟎) 
6   for 𝒘𝒊 ∈ 𝑾 
7    𝑪(𝒊) ≔ ∑ s𝒘𝒊,𝒋vs𝒒𝒋v𝒋  
8   Send 𝐬𝐡𝐮𝐟𝐟𝐥𝐞(𝑪) to the client 

 Client Performs: 
9   𝑪E := (0, … , 0) 

10   𝑪E(𝒊) ≔ ¾⟦𝟏⟧	⟦𝟎⟧
𝑨𝒓𝒈𝑴𝒂𝒙𝒊 �𝑫𝒆𝒄𝒔𝒌^𝑪(𝒊)`� = 𝒊

𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
 

11   send 𝑪E to Server 
 Server Performs 

12   send 𝐮𝐧𝐬𝐡𝐮𝐟𝐟𝐥𝐞(𝑪E ∙ ⟦𝟏⟧) to client 
 Client Performs: 

13   𝒄𝒍𝒂𝒔𝒔𝒒 = 𝑨𝒓𝒈𝑴𝒂𝒙𝒊 �𝑫𝒆𝒄𝒔𝒌^𝑪E(𝒊)`� 
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Keerthi et. al. [49] describe a method for computing the dual of a matrix of one-to-

many support vectors, which is implemented in LibLINEAR [50]. This resulting weight 

matrix 𝑊 has the convenient property that the classification computed by a linear SVM 

can be computed by  

𝐶𝑙𝑎𝑠𝑠> = 𝐴𝑟𝑔𝑀𝑎𝑥+(𝑤F¢¢¢¢⃗ ∙ 𝑞G) 

the computation of which requires only 𝑂(|𝐶|[𝑔]<)	 multiplications. A fully trained 

system also does not depend on the size of the feature space, which is convenient when 

the number of features per class is high. 

This reduction of an SVM to a small number of dot products and comparisons makes 

it feasible to perform the actual classification using homomorphic encryption by 

computing and scaling 𝑊 in a plaintext pre-computation. However, W necessarily contains 

negative numbers, and translations into positive space change the ordering of the class 

weightings. This precludes the use of a BGV encryption scheme, so this algorithm is 

implemented using CKKS, which supports large and negative numbers but loses precision. 

Without BGV, the polynomial comparison 𝑖𝑠𝑆𝑚𝑎𝑙𝑙𝑒𝑟 is more difficult to implement. 

We experimented with the polynomial expansion of a step function [51], however these 

expansions require that the numbers being compared are relatively close. Instead, we send 

the class weights to the client to perform 𝐴𝑟𝑔𝑀𝑎𝑥 in plaintext. In order to partially 

mitigate server data leakage to semi-honest clients, we perform an additional roundtrip 

that partially obscures the secondary class weightings. 
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There are several projects contemporaneous with this thesis that have shown promising 

preliminary results in homomorphically encrypted vector comparison. Sun et. al. have 

demonstrated binary classification using a hyperplane [37] by extending BGV to support 

efficient comparisons. Cheon et. al. have shown promising results in numerical methods 

for approximating comparisons in CKKS schemes. Either of these lines of research would 

enable an implementor of Protocol 3 to bypass the relinearization and shuffling methods 

with a homomorphic computation of 𝐴𝑟𝑔𝑀𝑎𝑥, either by supporting the BGV 

implementation of 𝑖𝑠𝑆𝑚𝑎𝑙𝑙𝑒𝑟 in the former case, or by providing an alternative to that 

function in the latter. 

4.2.1 Efficiency  

The precomputation is a function of the implementation of the training of the linear 

SVM, which is at least quadratic in the library we use [52]. 

The dot product can be run in parallel and therefore can have a depth of 

𝑂 L ;
'HIHJJKJ)LHM)NO	QHRMNI

P and size O(n). The server-side reshuffle also does an O(1) parallel 

operation to add noise to client data. 

4.2.2 Security 

The analysis used above applies here as well, a semi-honest server would be unable to 

meaningfully distinguish between ⟦𝑞⟧ and a random ⟦𝑞′⟧. The final step, shuffling and 
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unshuffling the class weights, prevents a semi-honest client from reverse engineering the 

vectors in two queries (which it could do otherwise), but does not provide strong security 

guarantees if the algorithm is run multiple times. 

Note [53] describes efficient comparison in CKKS and [37] demonstrates hyperplane 

decision boundaries in a modified implementation of BGV that would still accommodate 

the 𝑖𝑠𝑆𝑚𝑎𝑙𝑙𝑒𝑟 implementation in [1]. It is likely that either CKKS comparisons will enable 

the implementation in this thesis, or modified BGV will support the dual of the dot 

product operation in lines 6 and 7 of Protocol 3, which would similarly maintain efficiency 

while mitigating the server information leak. 
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Chapter 5:  Results 

This section describes the implementation and testing of the algorithms described in 

Chapter 4: and the analysis of those results. We show that the extension to 𝑘-ishNN 

exhibits improved efficiency and accuracy in a wide range of conditions, and demonstrate 

that a homomorphically encrypted SVM can operate efficiently on real-world datasets. 

5.1 Implementation Details 

Here we discuss some high-level implementation details. See Appendix A – Source 

Code for the specific implementations of these algorithms. In order to facilitate more 

rigorous testing of the precision of algorithms, we built each protocol twice: once with 

encryption, and once with emulated encryption (which runs orders of magnitude faster). 

Before running the unencrypted simulator, we ran both protocols several dozen times on 

several hundred candidate values of 𝑆, 𝑘, and 𝑞. Because the algorithms have a degree of 

randomness, we decrypted and compared the distribution of intermediate variables to 

ensure that the simulated and actual algorithms are functionally equivalent. 

Our encrypted implementations were built by modifying existing libraries. For each 

algorithm, we relied on several existing projects: 

For the 𝑘-ishNN implementation, we used the “privacy preserving kNearestNeightbor”  

(ppKNN) open source repository [5] as a starting point. This library uses the Library of 
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Practical Homomorphic Encryption algorithms (liphe) [11] to access the HElib 

implementation of the BGV protocol [12]. We also used liphe helper functions to generate 

polynomial expansions of functions when necessary. We implemented an emulator that 

performs HElib and liphe operations in python using NumPy [13]. 

For the ppSVM implementation, we used PyFhel [14] as a starting point. PyFhel is a 

python interface to HElib and the Microsoft Simple Encrypted Arithmetic Library [15], 

[16], which both implementations of BGV and CKKS homomorphic encryption protocols. 

PyFhel has been out of maintenance for several years and required significant 

modification. For training, we used the LibLINEAR [8] implementation of Crammer and 

Singer’s SDM training method. We performed data cleaning and preparation using the 

scikit-learn [18] data cleaning and vectorization libraries. 

5.2 Tests 

We tested the classifiers against three datasets: a collection of measurements and 

diagnoses of tumor samples, a database of car data, and a collection of facial images. The 

former two datasets were selected because they were used to established baselines in the 

foundational work this thesis extends. The latter was selected as a motivating dataset 

that, while sufficiently limited in scale to allow the testing of a wide range of potential 

approaches, still presents many of the challenges inherent in biometric recognition tasks. 
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For each dataset, we vary grid size and (for nearest neighbor-based algorithms) the 

size of 𝑘 to measure the effect of these values on the accuracy of the algorithms. We also 

prepared versions of each dataset projected into different dimensions to measure the trade-

off between computational and algorithmic efficiency at low dimensions and increased 

availability of precision and differentiation in high dimensions. 

5.2.1 Breast Cancer 

The Wisconsin Breast Cancer Diagnostic Dataset is a set of vectors representing 357 

benign and 212 malignant breast cancer tumors. Each vector is a 30-dimensional 

normalized vector representing the mean, standard error, and “worst” readings (defined as 

the average of the three highest readings) for ten measurements taken on each tumor. 

The dataset is popular as a test dataset for initial testing of binary classification 

algorithms because it has two easily distinguished classes in a continuous, high 

dimensional space. Generally, benign tumors are clustered closely, while there is a higher 

degree of variability in the measurements of malignant tumors. Because the size and depth 

of our homomorphically encrypted KNN approximation depends heavily on the number 

of dimensions in the space being classified, we use 2d, 3d, and 5d LDA projections of the 

space in addition to the original 30-dimensional dataset. Performing an LDA projection 

involves multiplying by a single projection matrix, which we assume is performed by the 

client in these experiments. Figure 4 and Figure 5 show the 2- and 3-D projections of the 

breast cancer dataset respectively. 
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Figure 4: LDA projection of the breast cancer diagnostic dataset into two dimensions. The green 
cluster shows benign tumors; the red cluster is malignant.  

 

Figure 5: LDA projection of the breast cancer diagnostic dataset in three dimensions. As in Figure 4, 
the green cluster (right) shows benign tumors, while red shows malignant tumors (left). Axes are still 

meaningless. Note that again the clusters are relatively distinct from each other, although the malignant 
set is less tightly clustered. 

As discussed in Section 3.4.3 there is an overflow risk in threshold computation. Tests 

involving binary classification may not capture this error if the correct classification is 
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also the class of the element more common in the feature set; this is the case in the breast 

cancer set, which has over 50% more benign than malignant tumors. Because overflow 

sensitivity is a function of feature density, we generated a second test set with additional 

artificial malignant tumor vector representations (Figure 6). The ratio of malignant to 

benign points in this synthetic set is the inverse of the original dataset. 

 

Figure 6: LDA projection in two-dimensional space of modified breast cancer dataset. Meanings of the 
clusters are the same as Figure 4. The benign tumor data is unchanged. Additional malignant tumor data 

has been randomly generated with a convex hull around the original malignant tumor feature cloud. 

5.2.2 Cars 

The Car Evaluation Data Set is a set of 1728 cars’ profiles represented by integer 

vectors in a 4x4x4x3x3x3 space (totaling 1748 possible descriptions). Each vector 

represents the car’s value, level of maintenance, number of doors, capacity, trunk size, 

and safety rating. Each car is then classified by desirability on a four-point scale. 
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The sample contains a large concave region of “undesirable” cars and smaller clusters 

within the “desirable” space. Similar to the breast cancer diagnostic dataset, we use 2- and 

3- dimensional LDA projections of the space in addition to the original sample, which are 

shown in Figure 7 and Figure 8. 

Because the sample almost completely describes the space, it has roughly uniform 

density, meaning there is a low variability in the range of thresholds necessary to 

accurately estimate 𝑘 when building a KNN classifier. The discrete and categorical nature 

of the axis in this dataset also make the use of 𝑙0 norms a natural choice of distance 

function. 

 

Figure 7: LDA projection of cars dataset in two dimensions. The large, red cluster (right) are 
undesirable cars. The green (left, top), blue (left, bottom), and yellow (far left) are the various levels of 

“desirability” 
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Figure 8: LDA projection of cars dataset to three dimensions. Colors are the same as Figure 7. 

5.2.3 Faces 

The Yale Extended Facial Dataset B [23] is a collection of photographs of the faces of 

28 human subjects in a variety of lighting conditions and angles. We trained an embedding 

of the dataset using the OpenFace [41] PyTorch [54] implementation of FaceNet [25] to 

create a non-linear mapping from facial images to points in a 128-dimensional embedding 

space. For these experiments we consider the ability of our algorithms to correctly classify 

a face given the vector representation of the face in that embedding. 

We selected the dataset as a difficult motivating problem. It has a comparatively high 

number of classes and heterogeneity as compared to other test datasets used. 

As with the other two datasets, we use dimensionality reduction techniques to reduce 

the number of dimensions and improve the efficiency of our algorithms. We attempted 



 67 

several non-linear dimensionality reduction algorithms. First, we tested t-SNE (Figure 9 

and Figure), which seeks to preserve “clusters” of points in the projection and was designed 

and is largely used as a visualization and debugging tool. Projecting queries into a reduced 

space generated by t-SNE [55] requires comparisons to points in the original dataset, 

defeating the original purpose for performing dimensionality reduction [56]. We then used 

MDS, which seeks to preserve distances between points during dimensionality reduction, 

but it fails to preserve class boundaries without significant turning, and has a similar “out 

of sample” mapping complexity issue to t-SNE. 

 

Figure 9 - Yale Extended B dataset projected to two dimensions using t-SNE. The t-SNE project 
seeks to preserve “clusters” of points. High degrees of visual separation on this graph tends to correlate 
with an original embedding space that has distinct regions for different classes of features. Each color 

corresponds to a single subject. Some of the 28 colors are very similar; each class is tightly clusters in this 
dataset. 
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Figure 10: Yale Extended B dataset projected to three dimensions using t-SNE. The interpretation of 
this graph follows the same logic as Figure 9. When inspected interactively, the clusters here have a visual 

margin between them. 

 

Figure 11 Yale Extended B dataset projected into two dimensions using non-metric MDS. MDS is a 
non-linear mapping from high dimensional space that seeks to maintain distance between points. Unlike t-
SNE in figures 9 and 10, it is possible to map newly introduced points in the original feature space into an 
MDS projection. As is apparent from the high levels of overlap between classes in this image, MDS does 

not preserve class separation on our dataset; so MDS isn’t particularly useful in this application. 
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An effective alternative to dimensionality reduction techniques is to retrain the 

classifier that maps faces into an embedding space by altering the size of the embedding 

space to the desired dimensionality. This causes some loss of expressiveness of the original 

mapping, but allows for efficient mapping of queries into a low dimensional feature space. 

The retraining can be performed efficiently on an already-trained classifier by preserving 

the weights in the rest of the system. 

The experiments in this thesis use the LDA projection of a high-dimensional embedding 

space as the technique is more generally applicable than modifying and retraining an 

embedding. 

 

Figure 12: An LDA projection into two dimensions of the Yale Face Database B. New points in the 
embedding space can be efficiently mapped into the low dimensional space using only additions and 

multiplications (the projection is a dot product with the basis vectors of the new space). This makes an 
LDA projection a natural choice for HE classifiers if enough separation between classes is preserved. 
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Figure 13 An LDA projection into three dimensions of the Yale Face Database B. There is visual 
separation between many of the classes in the dataset in this projection, and LDA supports efficient 

projection from the original embedding space using only HE-supported operations. This makes the LDA 
projection an attractive choice for a dimensionality reduction technique in this trial. 

5.3 Metrics 

5.3.1 Accuracy 

In order to measure of the accuracy of each algorithm we perform leave-one-out cross 

validation to provide consistent results with [1]. We compute the accuracy of each 

algorithm, defined as the ratio of correct classifications to total classification attempts. 

We also measure the error rate. The error rate and accuracy do not always sum to one 

because our modification of 𝑘-ishNN can refuse to classify an ambiguous query. 
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5.4 The Experiments 

5.4.1 Accuracy 

KNN accuracy with different threshold families 

We ran KNN, k-ishNN (Protocol 1), and staticKishNN (Protocol 2 with Algorithm 1a) 

on all three datasets for a range of grid sizes from 10 to 250 and a range of values of 𝑘 

from 2 to 256. For each dataset, I've performed cross-validation against reserved sets of 

points to measure the accuracy and precision of each algorithm. 

In most experiments, both values are identical, however because the static threshold 

approach can choose a null response if it does not have agreement between at least two 

thresholds, it achieves a higher accuracy than even the reference KNN algorithm, though 

it continues to have lower precision. 

Figures 15-21 depict the results of these experiments. The reference implementation of 

KNN is depicted in red, the thesis’ contribution of k-ishNN with precomputation is blue, 

and the original 𝑘-ishNN algorithm is green. Across all three datasets, the static 

precomputation approach outperforms the 𝑘-ishNN algorithm for all values of 𝑘 and grid 

resolutions in both accuracy and runtime. The difference is particularly pronounced when 

performing facial recognition, our motivating biometric recognition task. On the biometric 

recognition task, 𝑘-ishNN barely outperforms random chance, with between 0 and 30% 

correct classifications, while KNN and k-ishNN achieve accuracies as high as 55%. 
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Also noteworthy is the comparison between figures 17 and 19. Figure 17 depicts the 

breast tumor dataset binary classification task (Figure 4), and both HE systems achieve 

the reasonable accuracy originally observed in [1]. In Figure 19, the modified version of 

the same dataset (figure 6) exhibits significant decay in accuracy for the 𝑘-ishNN 

algorithm. The former dataset has more training features for the class with higher spatial 

feature density, the latter has more features for the more widely distributed class. The 

latter dataset results in high misclassification rates in the case of an overflow. Also notable 

between these two datasets: the decreased variation in point density across the feature 

space results in a significant improvement in classification using static thresholds, as the 

variance in the value of T that would result in 𝜅 = 𝑘 is a function of density variance.  
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Figure 14 – the precision (solid) and error rates (dotted) of plaintext KNN (red) and StaticKishNN 
blue) on the 3d LDA projection of the Yale Face Database. The X axis is an unordered permutation of 

values of 𝑘 ∈ {2,4,8,16,32,64,128,256} and 𝑔𝑟𝑖𝑑_𝑠𝑖𝑧𝑒 ∈ {20, 40, 80, 120, 160, 200, 300}. The design choice of 
building the static 𝑘-ishNN classifier to dismiss ambiguous results means that, though it has a lower recall 

rate than classic KNN, it also has a consistently lower false classification rate. 

 

 

Figure 15: Performance of KNN (red), 
static𝑘-ishNN (blue), and 𝑘-ishNN (green)  on 
the cars dataset using a 2D LDA projection. 

 

Figure 16: Performance of KNN (red), 
static𝑘-ishNN (blue), and 𝑘-ishNN (green) on 
the cars dataset. Because the cars dataset is 

already on a grid, the grid size has no effect on 
output. 
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Figure 17 Performance of KNN (red), 
static𝑘-ishNN (blue), and 𝑘-ishNN (green) on a 

2d LDA projection of the Wisconsin Breast 
Cancer dataset 

 

Figure 18: Performance of KNN (red), 
static𝑘-ishNN (blue), and 𝑘-ishNN (green) on a 

3d LDA projection of the Wisconsin Breast 
Cancer dataset. 

 

Figure 19 Performance of KNN (red), 
static𝑘-ishNN (blue), and 𝑘-ishNN (green) on a 
2d LDA projection of the extended breast cancer 
dataset In contrast to Figure 17, here 𝑘-ishNN’s 
performance decays rapidly as 𝑘 and grid size 

decrease. 
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Figure 20: Performance of KNN (red), 
static𝑘-ishNN (blue), and 𝑘-ishNN (green) on 
the faces dataset using a 3D LDA projection.  

 

Figure 21: Performance of KNN (red), 
Static𝑘-ishNN (blue), and 𝑘-ishNN(green) on the 

faces dataset using a 2D LDA projection. 

Privacy Preserving SVM 

We repeated the experiments to measure the performance of the privacy preserving 

SVM (protocol 3 – labeled “ppSVM”). Using the OpenFace algorithm as a benchmark, 

ppSVM has lower precision that improves as the number of dimensions increases. We also 

measured the effect of differing grid sizes, and though the grid impacted runtime, it did 

not impact accuracy for even relatively coarse grids. 

 In general, the SVM and KNN algorithms performed similarly in low dimensions. 

Because SVM scales with Ω(𝑐𝑙𝑎𝑠𝑠𝑒𝑠 ∙ 	𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠) and KNN scales with Ω(𝑐𝑙𝑎𝑠𝑠𝑒𝑠 ∙

	𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠), we were able to run experiments on SVMs on a higher number of dimensions 

without either exceeding a noise threshold on the computation or needing to execute 

multi-day runtimes. 
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 The ability to scale to higher dimensions allows SVM based algorithms to take 

advantage of more information, and this is reflected in the results, which show significant 

improvements to precision as the number of dimensions increases. 

 

Figure 22: Average precision of selected algorithms on face dataset in multiple dimensions. The 
OpenFace implementation of FaceNet (blue) serves as a benchmark. The KNN approximation algorithms 

were only run on 2 and 3 dimensional datasets because the computation demands of those approaches 
rapidly become impractical for datasets with large numbers of training features, such as the facial 

recognition database used here. 

 

Figure 23 A one-to-one comparison of the OpenFace and ppSVM classifiers on vectors projected into 
an identical embedding space. OpenFace uses the scikit-learn [57] SVM classifier. The accuracy of the two 

algorithms begin to converge as the number of dimensions increases. 
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Figure 24 Precision of ppSVM and scikit-learn’s wrapper of LibLINEAR [50], [57]. Though the two 
lines appear to overlap, the computation noise in ppSVM has caused a very slight decrease in precision on 
the test dataset. Both achieve nearly 80% accuracy in single element cross validation on a ten-dimensional 

projection of our facial recognition embedding space. 

 

5.4.2 Timing 

We also measure the runtime of these algorithms. Figures 25 and 26 show timing data 

collected during the experimental testing of the 𝑘-ishNN system described in Section 5.4.1. 

In addition to being more accurate, the pre-computation approach has significantly 

improved runtimes, especially for large grid sizes. This is likely because the approximation 

used in Algorithm 1b requires the computation of several additional polynomials. We did 

not measure the degree of parallelism used in these experiments, it may be possible to 

improve performance of one or both of these algorithms through improved optimization 

and parallelization. 
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Figure 25 – The runtime of classification tasks using the 𝑘-ishNN algorithm both with and without 
precomputation. Colors are displayed based on a normalized log scale (dark green is a fraction of a second 
per query, dark red is over a minute per query). Timing was computed by taking the average time per query 
of 300 queries during cross-validation. Measurements were taken on a docker container running on a 2016 
MacBook Pro with a 2.9 GHz Intel Core i5 processor and 8GB of LPDDR3 RAM. The data contains some 
clusters of outliers caused by the thermal throttling by the host OS. The algorithms that use precomputation 
can run in seconds instead of minutes on large grid sizes. As expected, runtime does not vary as a function 
of 𝑘. 
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Figure 26 – The runtime of biometric classification tasks using the 𝑘-ishNN algorithm both with and 
without precomputation. Colors are plotted on the displayed based on a normalized log scale. The 

runtimes were collected using the same system as the one described in Figure 25. On this dataset the 
KishNN algorithm exceeded the available parallelism, causing significant slowdowns.  

The implementation of the SVM algorithms ran on a different encryption library 

(SEAL [34] instead of HElib [33]) and no attempt was made to optimize any of the 

parameters in this system, resulting in a time per query of several minutes and making 
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comparisons between that algorithm and the modified 𝑘-ishNN algorithm not particularly 

meaningful. 

5.5 Discussion 

We have shown that a naïve precomputation step can result in across-the-board 

performance and accuracy improvements to a homomorphically encrypted classification 

algorithm. This result suggests that exploring other pre-trained classification parameters 

or selecting from a family of functions based on the training database might yield even 

more improvements. 

These experiments also demonstrated that classification tasks that scale with the 

number of classes rather than the number of feature sets are feasible given the current 

state of the art, though our implementation has high fixed overheads. Incorporating 

improved parallelism and more efficient comparison operators could increase the speed 

and utility of these algorithms in the future. 
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Chapter 6:  Conclusion 

This thesis presents two methods for moving most of the computation necessary to 

perform classification into pre-computation on the training set, allowing for efficient, 

homomorphically encrypted classification at sufficient resolution to enable biometric 

recognition. We demonstrate the efficacy of both of these methods on a binary 

classification task involving actual breast tumor data, on car desirability classification, 

and on a general facial recognition task. 

These contributions demonstrate that it is both possible to perform practical server-

side biometric recognition without exposing data to the classifier. 

6.1 Next Steps / Future Work 

Both algorithms rely on relatively naïve implementations and have several areas for 

improvement in future work.  

ppSVM does not take advantage of recent innovations in the computation of 

hyperplane decision boundaries in BGV, and makes no effort to optimize the CKKS 

implementation it uses, or to implement comparisons in CKKS. Future work should apply 

these optimizations to sparse SVMs, which could potentially significantly improve the 

efficiency of the algorithm. 
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The 𝑘-ishNN extensions establish that even a constant function can outperform the 

originally implemented Gaussian approximation. Exploring alternative families of 

threshold generation functions might improve accuracy. For example, while preparing this 

thesis we used brute force to generate a polynomial that takes the average value of 𝑋 as 

an input and returns the threshold as output, but ran into overfitting and approximation 

error issues; a more sophisticated approach to precomputing a threshold generation 

function or selecting the most appropriate generator from a family of candidate functions 

might improve the adaptability of the algorithm. 

More generally, finding ways to adjust established algorithms to cache or precompute 

the portions of the algorithms that can be performed in plaintext is underexplored in the 

classification context. As more functions are well approximated in homomorphically 

encrypted contexts, this may be a fruitful area of inquiry. 

6.2 Practical applications unlocked 

The contributions of this thesis are sufficient to build a facial classifier that can identify 

people from a small community while giving those people strong privacy guarantees. 

Privacy preserving identification systems have clear utility in situations where 

identification is desirable but at odds with an expectation of privacy. For example, the 

algorithms in this thesis could be to build security systems that alert when an unfamiliar 

person enters an area (an important application for automating “bubbles” during the 
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current COVID pandemic) while not building detailed logs that violate expectations of 

privacy.  

This might also provide a practical “shield” from legal liability. Service providers could 

provide classification-based services without collecting sensitive or heavily regulated data. 

For example, these algorithms could be used by medical diagnostic classifiers to provide 

medical advice and insight without requiring access to the patient’s identity or diagnosis, 

which might be important for encouraging patient participation in the face of concerns 

about increased insurance premiums (an example originally considered in [1]). 

6.3 Potential Interactions with Technology Policy 

There are two categories of technology policy considerations where this might have 

immediate practical impact. The first is informing how regulators design policies relating 

to data privacy, use, storage and sharing. The second is how service providers design 

systems to minimize liability risk and exposure. 

Some aspects of data use, such the quantity data preserved or mechanisms used in 

data storage, is difficult for regulators to observe or enforce. Because of this, data 

regulation tends to focus on the collection and use of data, or on the behavior of a firm 

after a public breach. These policies, because they focus on the nature of the data and its 

use, have recently been formulated around categories of data, of which personally 

identifiable and biometric data is particularly sensitive. This work demonstrates that 
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application-based restrictions might be overly aggressive, and exceptions for encrypted 

data could allow regulators to protect user data without restricting useful services by 

creating exceptions for encrypted computation. 

Service providers can approach this problem from the other side. Breach notification 

and security and compliance rules are tuned explicitly for the nature of the data being 

stored [58]–[60]. Data that is irrecoverable or uninterpretable (such as encrypted data with 

no key) is in many jurisdictions subject to much lower standards of care. Using 

homomorphic encryption for simple classification tasks using a method like the one 

outlined in Section 4.2 (which does not require the storage of reference features), might 

avoid many of the more stringent regulations by never collecting the most sensitive classes 

of information. 

6.4 Lessons Learned 

Cryptographic algorithms should be run in simulation first. Similar to machine learning 

algorithms, cryptographic computations effectively run in a black box. Building 

monitoring systems to keep track of noise levels, decrypt and log intermediate values, and 

generally provide a higher level of visibility was critical to exploring and debugging these 

algorithms. Discovering the overflow problem with the 𝑘-isnNN algorithm took days, both 

because intermediate values in an encrypted system are obfuscated, and because running 

a test of an HE algorithm can take hours to days to run across a permutation of possible 
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inputs. Building an “unencrypted mode” that tracked noise levels but did not actually 

perform the expensive encrypted computations was a massive productivity boost. 

Heterogeneous and hetero-temporal execution environments require heterogeneous 

system design. Portions of our algorithm necessarily ran in a computing environment with 

vastly different properties and constraints than a typical computing model. Some 

operations (those responding to a query) needed to happen in real time, while others could 

be precomputed. Good system design requires careful consideration of where and when 

computation can be performed most effectively. In a typical computing environment, 

caching the results of an asymptotically fast operation is usually unnecessary; in a partially 

homomorphically encrypted environment, it is worthwhile to create somewhat awkward 

divisions between different parts of algorithms in order to move as much computation 

into a cache or at least into plaintext. The constant factors are high enough that this 

often remains true even if the move to plaintext or a cache results in worse asymptotic 

complexity. 

Cryptography needs better interdisciplinary communication. The author worked on 

this project while also involved in regulatory policy research and had a chance to discuss 

the work with both his technical and non-technical colleagues. As a rule, technical experts 

are less likely to trust (unprovable) policy-based approaches to privacy and fairness and 

legal experts are less likely to trust (difficult to understand or audit) technical measures 
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to protecting privacy and fairness. Especially under-communicated are the various security 

threat models and how those threat models are designed and used.  

6.5 Final Thoughts 

Biometric recognition is a sensitive topic. It’s become a hot-button issue as surveillance 

concerns play a growing role in civil and political discourse. This thesis describes and 

demonstrates the feasibility of biometric recognition systems that operate entirely on 

encrypted data, establishing an importing first step in providing technical tools that 

mitigate many of the social concerns raised by modern recognition systems. 
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Appendix A – Source Code 

Any modification to existing projects has been sent to the maintainers of the open-

source projects referenced in this thesis and can be found incorporated into those codebases 

([36], [43]). 

A.1 – Simulation Code for ppKNN and simulation and 

implementation of ppSVM 

from collections import Counter, namedtuple, defaultdict 
import csv 
 
from scipy import stats 
 
import sympy 
 
import random 
import time 
 
from math import prod 
import json 
from tqdm import tqdm 
 
from sklearn.svm import LinearSVC, SVC 
from sklearn import svm 
from sklearn.decomposition import PCA 
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA 
import numpy as np 
 
import Pyfhel 
 
VERBOSE = False 
 
BaseP = namedtuple('BaseP', ['high', 'low']) 
def _basep(n, p): 
    return BaseP(int(n//p), int(n%p)) 
 
 
# simulation code 
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def KNN(S, q, classes, k): 
    """ 
    returns the most common class in the k elements with the smalled l1 distance to `q` 
    """ 
    return Counter( 
        c for s, c in 
        sorted( 
            ((s, c) for s, c in zip(S, classes)), 
            key=lambda s: sum(abs(ss - qq) for ss, qq in zip(s[0], q)) 
        )[:k] 
    ).most_common(1)[0][0] 
 
def KishNN(S, q, classes, k, p): 
    n = len(S) 
    mult(n) 
    X = [sum(abs(ss - qq) for ss, qq in zip(s, q)) % p for s in S]    # l1 norm distances 
for each X 
    # approximate mu 
    mu = (sum(X) // len(X)) % p # assume an arbitrarily low delta, achieves best theoretical 
accuracy. 
 
    # base-p rep of mu*2 
    poly(p, len(X)/64) + mult(len(X)) 
    bp_mu_sq = _basep(mu ** 2, p) 
 
    # base-p rep of avg(mu*2) 
    poly(p, len(X)/64) + mult(len(X)) 
    bp_avg_sq = _basep(sum((x**2 for x in X))/n, p) 
 
    # sigma = approximate 
    _highdiff = (bp_mu_sq.high - bp_avg_sq.high) 
    add() 
    mult(2) + add(2) 
    if _highdiff == 0: 
        sigma = abs(bp_mu_sq.low - bp_avg_sq.low) ** .5 
    elif _highdiff == 1: 
        sigma = abs(bp_mu_sq.low - bp_avg_sq.low + p) ** .5 
    else: 
        sigma = abs(p*(bp_mu_sq.high - bp_avg_sq.high)) ** .5 
    sigma = int(sigma) 
    sigma %= p 
 
    # Threshold 
    invnorm = stats.norm.ppf(k/n) 
    mult(1) + add(1) 
    T = int(mu + sigma * invnorm) 
    T %= p 
 
    # class = class if within threshold 
    C = [0 for _ in range(len(set(classes)))] 
    for x, cls in zip(X, classes): 
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        poly(p, n=len(S)) 
        C[cls] += x < T 
    if VERBOSE: 
        print(""" 
        q: {q} 
        k: {k}, 
        n: {n}, 
        mu: {mu}, 
        bp_mu_sq: {bp_mu_sq}, 
        bp_avg_sq: {bp_avg_sq} 
        sigma: {sigma} 
        invnorm: {invnorm} 
        T: {T} 
        C: {C}""".format(**locals())) 
 
    # argmax 
    poly(p, n=len(C)) 
    return C.index(max(C)) 
 
def _compute_Ts(S, p, k): 
    """ 
    precompute the min, max and average value of T 
    """ 
    q = S[0] 
    dists = sorted([sum(abs(ss - qq) for ss, qq in zip(s, q)) % p for s in S]) 
    minT, maxT = dists[k+1:k+3] 
    highest_low = minT 
    lowest_high = maxT 
    average_Ts = [] 
    for q in tqdm(S): 
        minT, maxT = sorted([sum(abs(ss - qq) for ss, qq in zip(s, q)) % p for s in 
S])[k+1:k+3] 
        average_Ts.append(minT + maxT / 2) 
        highest_low = max(highest_low, minT) 
        lowest_high = min(lowest_high, maxT) 
    return tuple(map(int, (highest_low % p, average_Ts[len(S)//2]%p, (lowest_high % p) + 
1))) 
 
def StaticKishNN(S, q, classes, k, p, cached_Ts=None, nullable=False): 
    n = len(S) 
    mult(n) 
    X = [sum(abs(ss - qq) for ss, qq in zip(s, q)) % p for s in S]    # l1 norm distances 
for each X 
    # approximate mu 
    mu = (sum(X) // len(X)) % p # assume an arbitrarily low delta, maximizes accuracy 
 
    T1, T2, T3 = cached_Ts# or _compute_Ts(S, p, k) 
 
    # class = class if within threshold 
    C1 = [0 for _ in range(len(set(classes)))] 
    poly(p, n) 
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    for x, cls in zip(X, classes): 
        C1[cls] += x < T1 
    # class = class if within threshold 
    C2 = [0 for _ in range(len(set(classes)))] 
    for x, cls in zip(X, classes): 
        C2[cls] += x < T2 
    # class = class if within threshold 
    C3 = [0 for _ in range(len(set(classes)))] 
    for x, cls in zip(X, classes): 
        C3[cls] += x < T3 
 
    # argmax 
    candidates = C1.index(max(C1)), C2.index(max(C2)), C3.index(max(C3)) 
    mult(3) 
    val, count = Counter(candidates).most_common(1)[0] 
 
    if VERBOSE: 
        print(""" 
        q: {q} 
        k: {k}, 
        n: {n}, 
        T: {T1}, {T2}, {T3} 
        C1: {C1} 
        C2: {C2} 
        """.format(**locals())) 
 
    if count > 1: 
        return val 
    else: 
        return None if nullable else candidates[1] 
 
def _compute_SVM_vectors(S, classes): 
    pass # return vectors, classMasks, classXORs 
 
 
# # Experiments 
# ## Helper 
 
def gen_grid_fn(S, res): 
    d = len(S[0]) 
    ranges = [None for _ in range(d)] 
    for i in range(d): 
        ranges[i] = min(s[i] for s in S), max(s[i] for s in S) 
    def grid_fn(x): 
        return [ 
            round((res * (x[i] - ranges[i][0]))/(ranges[i][1] - ranges[i][0])) 
            for i in range(d) 
        ] 
    return grid_fn 
 
def gen_p(S, res): 
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    d = len(S[0]) 
    return sympy.nextprime(res * d) 
 
def grid_and_p(S, q, res): 
    grid_fn = gen_grid_fn(S, res) 
    grid = list(map(grid_fn, S)) 
    grid_q = grid_fn(q) 
    p = gen_p(S, res) 
    return grid, grid_q, p 
 
def get_results(res_list): 
    correct_counts = defaultdict(int) 
    incorrect_counts = defaultdict(int) 
    skip_counts = defaultdict(int) 
    for res in res_list: 
        for key, value in res.items(): 
            correct_counts[key] += value == res['real_class'] 
            incorrect_counts[key] += value is not None and value != res['real_class'] 
            skip_counts[key] += value is None 
    return correct_counts, incorrect_counts, skip_counts 
 
def print_results(res_list): 
    correct_counts, incorrect_counts, skip_counts = get_results(res_list) 
    n = len(res_list) 
    for key in correct_counts.keys(): 
        print("{key:20s}: \t{perc:03.2%} correct  \t {incperc:03.2%} error \t 
{skipperc:03.2%} skip".format( 
            key=key, perc=correct_counts[key]/n, incperc=incorrect_counts[key]/n, 
skipperc=skip_counts[key]/n)) 
 
def load_data(dataset): 
    path = dataset_paths[dataset] 
    with open(path) as f: 
        raw = list(csv.reader(f)) 
        S = [list(map(float, s[:-1])) for s in raw] 
        classes = list(map(int, (s[-1] for s in raw))) 
    if VERBOSE: 
        print("len: ", len(S), " - d: ", len(S[0]), " - classes: ", len(set(classes))) 
    return raw, S, classes 
dataset_paths = { 
    'breast_cancer_2d': 
'/~/_M.Eng/data/breast_cancer/breast_cancer_classification_2d.csv', 
    'breast_cancer_3d': 
'/~/_M.Eng/data/breast_cancer/breast_cancer_classification_3d.csv', 
    'breast_cancer_30d': 
'/~/_M.Eng/data/breast_cancer/breast_cancer_classification_30d.csv', 
    'cars': '/~/_M.Eng/data/cars/car.csv', 
    'cars2': '/~/_M.Eng/data/cars/car2.csv', 
    'faces2d': '/~/_M.Eng/data/yaleExtendedB/YaleExtendedB_LDA_2d_with_classlabels.csv', 
    'faces3d': '/~/_M.Eng/data/yaleExtendedB/YaleExtendedB_LDA_3d_with_classlabels.csv', 
    'faces128d': '/~/_M.Eng/data/yaleExtendedB/YaleExtendedB_128d_with_classlabels.csv', 
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} 
 
def run_all_KNN(grid_S, grid_q, S, q, classes, p, k, correct_class, cached_Ts): 
    to_ret = run_all_KNN_raw(S, q, classes, k, correct_class) 
    to_ret.update(run_all_KNN_grid(grid_S, classes, grid_q, p, k, cached_Ts)) 
    return to_ret 
 
def run_all_KNN_raw(S, q, classes, k, correct_class): 
    return { 
        "real_class": correct_class, 
        "KNN": KNN(S, q, classes, k), 
    } 
def run_all_KNN_grid(grid_S, classes, grid_q, p, k, cached_Ts): 
    return { 
        "KishNN": KishNN(grid_S, grid_q, classes, k, p), 
        "StaticKishNN": StaticKishNN(grid_S, grid_q, classes, k, p, cached_Ts=cached_Ts), 
        "StaticKishNNNullable": StaticKishNN(grid_S, grid_q, classes, k, p, nullable=True, 
cached_Ts=cached_Ts), 
    } 
 
def timing(fn, args=[], kwargs={}): 
    measurements = [] 
    for _ in range(2): 
        start = time.time() 
        fn(*args, **kwargs) 
        end = time.time() 
        measurements.append(end - start) 
    return measurements 
 
def time_all_KNN(grid_S, grid_q, S, q, classes, p, k, correct_class, cached_Ts): 
    to_ret = run_all_KNN_raw(S, q, classes, k, correct_class) 
    to_ret.update(run_all_KNN_grid(grid_S, classes, grid_q, p, k, cached_Ts)) 
    return to_ret 
 
def time_all_KNN_raw(S, q, classes, k, correct_class): 
    return { 
        "real_class": timing(lambda x: x, [correct_class]), 
        "KNN": timing(KNN, [S, q, classes, k]), 
    } 
def time_all_KNN_grid(grid_S, classes, grid_q, p, k, cached_Ts): 
    return { 
        "KishNN": timing(KishNN,[grid_S, grid_q, classes, k, p]), 
        "StaticKishNN": timing(StaticKishNN,[grid_S, grid_q, classes, k, p], 
dict(cached_Ts=[1,2,3])), 
        "StaticKishNNNullable": timing(StaticKishNN,[grid_S, grid_q, classes, k, p], 
dict(nullable=True, cached_Ts=[1,2,3])), 
    } 
 
def try_KNN(k, res, S, n=None): 
    p = gen_p(S, res) 
    grid_fn = gen_grid_fn(S, res) 
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    grid_S = list(map(grid_fn, S)) 
    res_list = [] 
    VERBOSE = 0 
    for ii in range(n or len(S)): 
        i = random.randrange(len(S)) if n else ii 
        S_sample = S[:i] + S[i+1:] 
        classes_sample = classes[:i] + classes[i+1:] 
        q = S[i] 
        grid_q = grid_fn(q) 
        grid_S = grid_S[:i] + grid_S[i+1:] 
        correct_class = classes[i] 
        res = time_all_KNN(grid_S, grid_q, S, q, classes, p, k, correct_class, [1,2,3]) 
        res_list.append(res) 
        if VERBOSE: 
            print(res) 
    return res_list 
 
def backup(obj, name): 
    with open("/Users/stein/Dropbox/_M.Eng/data/experiments/{}-
macbook.json".format(name), 'w') as f: 
        json.dump(obj, f) 
 
 
ts = time.time() 
results = dict() 
#'breast_cancer_2d', 'breast_cancer_3d',  'cars', 
for dataset in ['cars2', 'faces2d', 'faces3d']: 
    for res in [20, 120, 200, 300]: 
        for k in [4,16,64,256]: 
            print(dataset,res,k) 
            raw, S, classes = load_data(dataset) 
            res_list = try_KNN(k, res, S, n=1) 
            results["{},{},{}".format(dataset, res, k)] = res_list 
            backup(results, 'KNN_experiments{}'.format(ts)) 
 
 
# ### SV 
 
def generate_SVM_vectors(X, classes, d=None): 
    # return vectors, coef 
    if d and d < len(X[0]): 
        X = LDA(n_components=d).fit_transform(X, classes) 
    classifier = LinearSVC(C=1, dual=False, max_iter=10000) 
    classifier.fit(X, classes) 
    return classifier.coef_, len(classifier.coef_[0]), X, classifier 
 
def gen_p(S, res): 
    d = len(S[0]) 
    return sympy.nextprime(res * d) 
 
def gen_grid_scalefn(S, res): 
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    bound = max(abs(ss) for s in S for ss in s) 
    p = gen_p(S, res) 
    def grid_fn(x): 
        return [round(res * ((xx/bound))) for xx in x] 
    return grid_fn 
 
def ppSVM(W, q, p): 
    class_idx = np.dot(q, (np.array(W)//2).T) 
    return (class_idx + p//2).argmax() 
 
def encrypted_ppSVM(W, q): 
    enc_W = [[HE.encryptInt(ww) for ww in w] for w in W] 
    enc_q = [HE.encryptInt(qq) for qq in q] 
    class_idx = [] 
    for w in enc_W: 
        class_idx.append(encrypted_dot(w, enc_q)) 
    return encrypted_ArgMax(class_idx) 
 
def encrypted_dot(w, q): 
    output = [] 
    for ww, qq, in zip(w, q): 
        output.append(debuggify(ww * qq)) 
    to_ret = HE.encryptInt(0) 
    for o in output: 
        to_ret = debuggify(to_ret + o) 
    return to_ret 
 
def encrypted_ArgMax(C): 
    to_ret = HE.encryptInt(0) 
    for j in range(len(C)): 
        cur_prod = HE.encryptInt(j) 
        smallest = isSmallest(C, j) 
        to_ret = debuggify(to_ret + cur_prod * smallest) 
    return to_ret 
 
def ep(ctxt, name=""): 
    print(name, HE.decryptInt(ctxt), HE.noiseLevel(ctxt)) 
 
def debuggify(ctxt): 
    if DEBUGGING: 
        # overagressive relinearization to fix weird PyFel thing. Do not use in 
        # actual test, this both removes noise and adds time. 
        tmp = HE.decryptInt(ctxt) 
        print(tmp) 
        return HE.encryptInt(tmp) 
    return ctxt 
 
def isSmallest(C, j): 
    vals = [stubbed_isSmaller(c, C[j]) for i, c in enumerate(C) if i != j] 
    cur = HE.encryptInt(vals[0]) 
    for v in vals[1:]: 
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        cur = debuggify(cur * v) 
    return cur 
 
def stubbed_isSmaller(ci, cj): 
    x = HE.decryptInt(cj) - HE.decryptInt(ci) 
    coefs = _IS_NEGATIVE_MACLAUREN 
    return HE.encryptInt(1 if x > 0 else 0) 
 
_IS_NEGATIVE_MACLAUREN = 
json.load(open("~/_M.Eng/data/experiments/is_smaller_poly.json")) 
def encrypted_isSmaller(ci, cj): 
    print((cj-ci)._encoding) 
    return HE.polyEval_double(cj - ci, _IS_NEGATIVE_MACLAUREN, in_new_ctxt=True) 
 
def run_all_SVM(W_grid, q_grid, W, q, p, cls, correct_class): 
    to_ret = run_all_SVM_raw(q, correct_class, clf) 
    to_ret.update(run_all_SVM_grid(W_grid, q_grid, p)) 
    return to_ret 
 
def run_all_SVM_raw(q, correct_class, clf): 
    return { 
        "real_class": int(correct_class), 
        "SVM": int(clf.predict([q])[0]), 
        "continuousSVM": int(np.dot(q, np.array(W).T).argmax()) 
    } 
 
def run_all_SVM_grid(W, q, p): 
    return { 
        "ppSVM": int(ppSVM(W, q, p)), 
        "enc_ppSVM": int(HE.decryptInt(encrypted_ppSVM(W, q))) 
    } 
 
def time_all_SVM(W_grid, q_grid, W, q, p, cls, correct_class): 
    to_ret = run_all_SVM_raw(q, correct_class, clf) 
    to_ret.update(run_all_SVM_grid(W_grid, q_grid, p)) 
    return to_ret 
 
def time_all_SVM_raw(q, correct_class, clf): 
    return { 
        "real_class": timing(int(correct_class)), 
        "SVM": timing(int(clf.predict([q])[0])), 
        "continuousSVM": timing(int(np.dot(q, np.array(W).T).argmax())) 
    } 
 
def time_all_SVM_grid(W, q, p): 
    return { 
        "ppSVM": timing(int(ppSVM(W, q, p))), 
        "enc_ppSVM": timing(int(HE.decryptInt(encrypted_ppSVM(W, q)))) 
    } 
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HE = Pyfhel.Pyfhel() 
HE.contextGen(p=2) 
HE.keyGen() 
import datetime 
ts = datetime.datetime.now() 
dataset_list = ['faces2d', 'breast_cancer_30d', 'cars2'] 
with tqdm(total=len(dataset_list) * 2 * 3) as pbar: 
    for dataset in dataset_list: # 'faces128d' 
        for d in [2, 3]: 
            for grid_size in [10, 120, 1000]: 
                pbar.update(1) 
                pbar.set_description("dataset: {}, d: {}, grid: {}".format(dataset, d, 
grid_size)) 
 
                raw, S, classes = load_data(dataset) 
                n_classes = len(set(classes)) 
                if d > n_classes - 1: 
                    continue 
                W, d, X, clf = generate_SVM_vectors(S, classes, d=d) 
                W = [[ww for ww in w] for w in W] 
                grid_fn = gen_grid_scalefn(S+W, grid_size) 
                p = gen_p(S+W, grid_size) 
                W_grid = list(map(grid_fn, W)) 
                res_list = [] 
 
                for _ in range(10): 
                    i = random.randrange(len(S)) 
                    q = X[i] 
                    correct_class = classes[i] 
 
                    svm_results = time_all_SVM(W_grid, grid_fn(q), W, q, p, clf, 
correct_class) 
 
                    res_list.append(res) 
                    if VERBOSE: 
                        print(res) 
                    svm_results["{},{},{}".format(dataset, d, grid_size)] = res_list 
                    backup(svm_results, "svm_results{}".format(ts)) 
 


