
 1

Efficient Homomorphically Encrypted Privacy-Preserving
Automated Biometric Classification

by

David Benjamin Stein

S.B. Computer Science
Massachusetts Institute of Technology, 2011

Submitted to the Department of Electrical Engineering and Computer Science

in partial fulfilment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
SEPTEMBER 2020

© David Benjamin Stein, MMXX. All rights reserved.

The author hereby grants to MIT and MIT Lincoln Laboratory permission to reproduce and

to distribute publicly paper and electronic copies of this thesis document in whole or in part.

Author: …………………………….…………………………………………………………..
David Stein

Department of Electrical Engineering and Computer Science
August 20, 2020

Certified by: …………………………………………………………………………………………………….

Daniela Rus
Erna Viterbi Professor of Electrical Engineering and Computer Science

Thesis Supervisor

Accepted by: ..…………………………………………………………………………………………….......
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

 3

Efficient, Homomorphically Encrypted, Privacy-Preserving
Automated Biometric Classification

by

David Benjamin Stein

Submitted to the Department of Electrical Engineering and Computer Science on
August 21, 2020

In partial fulfilment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

This thesis investigates whether biometric recognition can be performed on encrypted data
without decrypting the data. Borrowing the concept from machine learning, we develop
approaches that cache as much computation as possible to a pre-computation step,
allowing for efficient, homomorphically encrypted biometric recognition. We demonstrate
two algorithms: an improved version of the 𝑘-ishNN algorithm originally designed by
Shaul et. al. in [1] and a homomorphically encrypted implementation of a SVM classifier.
We provide experimental demonstrations of the accuracy and practical efficiency of both
of these algorithms.

Thesis Supervisor: Daniela Rus

Title: Erna Viterbi Professor of Electrical Engineering and Computer Science

 5

Table of Contents

CHAPTER 1: INTRODUCTION __ 15

1.1 MOTIVATION ___ 15

1.2 HOMOMORPHIC ENCRYPTION (HE) __ 16

1.2.1 Homomorphically Encrypted Classification Algorithms ________________________________ 18

1.3 CONTRIBUTIONS ___ 19

1.3.1 Algorithmic Contributions ___ 20

1.3.2 Experimental Contributions __ 21

1.4 TECHNOLOGY VS. REGULATION ___ 22

1.5 GOALS ___ 23

CHAPTER 2: RELATED WORK __ 25

2.1 BIOMETRIC RECOGNITION __ 25

2.2 PRIVACY ENHANCING TECHNOLOGIES (PETS) AND ENCRYPTION _____________________________________ 27

2.3 HOMOMORPHIC ENCRYPTION __ 28

CHAPTER 3: PROBLEM FORMULATION AND FOUNDATIONAL WORK ____________________________ 31

3.1 PROBLEM FORMULATION ___ 31

3.2 MOTIVATING PROBLEM: FACIAL RECOGNITION __ 32

3.3 PRELIMINARIES __ 33

3.3.1 Notation and pre-defined functions ___ 33

3.3.2 Variables Names __ 35

3.3.3 Base-p representation __ 36

3.4 FOUNDATIONAL WORK __ 36

3.4.1 Overview of 𝒌-ishNN ___ 37

3.4.2 𝒌-ishNN in more detail ___ 38

 6

3.4.3 Issues and Assumptions in 𝒌ishNN __ 40

CHAPTER 4: TECHNICAL APPROACH __ 45

4.1 GENERALIZATION OF 𝒌-ISHNN: ADDING FUNCTIONAL GENERATORS OF CANDIDATE THRESHOLD FAMILIES. _________ 46

4.1.1 Overview of 𝒌-ishNN with precomputation ___ 47

4.1.2 Discussion ___ 49

4.1.3 Efficiency Analysis ___ 53

4.1.4 Security ___ 54

4.2 H.E. SVM ___ 56

4.2.1 Efficiency __ 58

4.2.2 Security ___ 58

CHAPTER 5: RESULTS __ 60

5.1 IMPLEMENTATION DETAILS __ 60

5.2 TESTS __ 61

5.2.1 Breast Cancer __ 62

5.2.2 Cars __ 64

5.2.3 Faces ___ 66

5.3 METRICS __ 70

5.3.1 Accuracy __ 70

5.4 THE EXPERIMENTS ___ 71

5.4.1 Accuracy __ 71

5.4.2 Timing __ 77

5.5 DISCUSSION __ 80

CHAPTER 6: CONCLUSION __ 81

6.1 NEXT STEPS / FUTURE WORK __ 81

6.2 PRACTICAL APPLICATIONS UNLOCKED ___ 82

 7

6.3 POTENTIAL INTERACTIONS WITH TECHNOLOGY POLICY ___ 83

6.4 LESSONS LEARNED ___ 84

6.5 FINAL THOUGHTS __ 86

BIBLIOGRAPHY ___ 87

APPENDIX A – SOURCE CODE ___ 97

A.1 – SIMULATION CODE FOR PPKNN AND SIMULATION AND IMPLEMENTATION OF PPSVM _______________________ 97

 8

Table of Figures

Figure 1 – the expected value of 𝑇 ∗ assuming perfect approximations on a normalized 2d LDA

projection of Wisconsin Breast Cancer database used in both this thesis and the original assessment of

the 𝑘-ishNN algorithm. Red regions are areas in which 𝑇 ∗ is expected to be negative, implying a

greater than 50% chance of an overflow and an effectively arbitrary value of 𝜅. 41

Figure 2 – The expected value of 𝜅 without overflow for benign (orange) and malignant (blue)

tumors. The graphs show the value of 𝜅 along the horizontal axis. The charts, from left to right, top

to bottom, represent the distribution of values of 𝜅 for target values of k = {2,4,8,16,32,64} respectively.

The spikes at 𝜅 = 0 correspond to a high likelihood of overflow when computing a threshold. These

graphs were generated using the 2d LDA projection of Wisconsin Breast Cancer database used in both

this thesis and the original assessment of the 𝑘ishNN algorithm .. 43

Figure 3 - the accuracy of the 𝑘-ishNN algorithm on a 2D projection of the motivating facial

recognition dataset is low, even with large grid sizes. ... 44

Figure 4: LDA projection of the breast cancer diagnostic dataset into two dimensions. The green

cluster shows benign tumors; the red cluster is malignant. ... 63

Figure 5: LDA projection of the breast cancer diagnostic dataset in three dimensions. As in Figure

4, the green cluster (right) shows benign tumors, while red shows malignant tumors (left). Axes are

still meaningless. Note that again the clusters are relatively distinct from each other, although the

malignant set is less tightly clustered. .. 63

Figure 6: LDA projection in two-dimensional space of modified breast cancer dataset. Meanings of

the clusters are the same as Figure 4. The benign tumor data is unchanged. Additional malignant

tumor data has been randomly generated with a convex hull around the original malignant tumor

feature cloud. .. 64

 9

Figure 7: LDA projection of cars dataset in two dimensions. The large, red cluster (right) are

undesirable cars. The green (left, top), blue (left, bottom), and yellow (far left) are the various levels

of “desirability” .. 65

Figure 8: LDA projection of cars dataset to three dimensions. Colors are the same as Figure 7. . 66

Figure 9 - Yale Extended B dataset projected to two dimensions using t-SNE. The t-SNE project

seeks to preserve “clusters” of points. High degrees of visual separation on this graph tends to correlate

with an original embedding space that has distinct regions for different classes of features. Each color

corresponds to a single subject. Some of the 28 colors are very similar; each class is tightly clusters in

this dataset. ... 67

Figure 10: Yale Extended B dataset projected to three dimensions using t-SNE. The interpretation

of this graph follows the same logic as Figure 9. When inspected interactively, the clusters here have

a visual margin between them. ... 68

Figure 11 Yale Extended B dataset projected into two dimensions using non-metric MDS. MDS is

a non-linear mapping from high dimensional space that seeks to maintain distance between points.

Unlike t-SNE in figures 9 and 10, it is possible to map newly introduced points in the original feature

space into an MDS projection. As is apparent from the high levels of overlap between classes in this

image, MDS does not preserve class separation on our dataset; so MDS isn’t particularly useful in this

application. .. 68

Figure 12: An LDA projection into two dimensions of the Yale Face Database B. New points in

the embedding space can be efficiently mapped into the low dimensional space using only additions

and multiplications (the projection is a dot product with the basis vectors of the new space). This

makes an LDA projection a natural choice for HE classifiers if enough separation between classes is

preserved. .. 69

 10

Figure 13 An LDA projection into three dimensions of the Yale Face Database B. There is visual

separation between many of the classes in the dataset in this projection, and LDA supports efficient

projection from the original embedding space using only HE-supported operations. This makes the

LDA projection an attractive choice for a dimensionality reduction technique in this trial. 70

Figure 14 – the precision (solid) and error rates (dotted) of plaintext KNN (red) and StaticKishNN

blue) on the 3d LDA projection of the Yale Face Database. The X axis is an unordered permutation

of values of 𝑘 ∈ {2,4,8,16,32,64,128,256} and 𝑔𝑟𝑖𝑑_𝑠𝑖𝑧𝑒 ∈ 20, 40, 80, 120, 160, 200, 300. The design

choice of building the static 𝑘-ishNN classifier to dismiss ambiguous results means that, though it has

a lower recall rate than classic KNN, it also has a consistently lower false classification rate. 73

Figure 15: Performance of KNN (red), static𝑘-ishNN (blue), and 𝑘-ishNN (green) on the cars

dataset using a 2D LDA projection. .. 73

Figure 16: Performance of KNN (red), static𝑘-ishNN (blue), and 𝑘-ishNN (green) on the cars

dataset. Because the cars dataset is already on a grid, the grid size has no effect on output. 73

Figure 17 Performance of KNN (red), static𝑘-ishNN (blue), and 𝑘-ishNN (green) on a 2d LDA

projection of the Wisconsin Breast Cancer dataset ... 74

Figure 18: Performance of KNN (red), static𝑘-ishNN (blue), and 𝑘-ishNN (green) on a 3d LDA

projection of the Wisconsin Breast Cancer dataset. .. 74

Figure 19 Performance of KNN (red), static𝑘-ishNN (blue), and 𝑘-ishNN (green) on a 2d LDA

projection of the extended breast cancer dataset In contrast to Figure 17, here 𝑘-ishNN’s performance

decays rapidly as 𝑘 and grid size decrease. ... 74

Figure 20: Performance of KNN (red), static𝑘-ishNN (blue), and 𝑘-ishNN (green) on the faces

dataset using a 3D LDA projection. .. 75

Figure 21: Performance of KNN (red), Static𝑘-ishNN (blue), and 𝑘-ishNN(green) on the faces

dataset using a 2D LDA projection. .. 75

 11

Figure 22: Average precision of selected algorithms on face dataset in multiple dimensions. The

OpenFace implementation of FaceNet (blue) serves as a benchmark. The KNN approximation

algorithms were only run on 2 and 3 dimensional datasets because the computation demands of those

approaches rapidly become impractical for datasets with large numbers of training features, such as

the facial recognition database used here. ... 76

Figure 23 A one-to-one comparison of the OpenFace and ppSVM classifiers on vectors projected

into an identical embedding space. OpenFace uses the scikit-learn [57] SVM classifier. The accuracy of

the two algorithms begin to converge as the number of dimensions increases. 76

Figure 24 Precision of ppSVM and scikit-learn’s wrapper of LibLINEAR [50], [57]. Though the two

lines appear to overlap, the computation noise in ppSVM has caused a very slight decrease in precision

on the test dataset. Both achieve nearly 80% accuracy in single element cross validation on a ten-

dimensional projection of our facial recognition embedding space. ... 77

Figure 25 – The runtime of classification tasks using the 𝑘-ishNN algorithm both with and without

precomputation. Colors are displayed based on a normalized log scale (dark green is a fraction of a

second per query, dark red is over a minute per query). Timing was computed by taking the average

time per query of 300 queries during cross-validation. Measurements were taken on a docker container

running on a 2016 MacBook Pro with a 2.9 GHz Intel Core i5 processor and 8GB of LPDDR3 RAM.

The data contains some clusters of outliers caused by the thermal throttling by the host OS. The

algorithms that use precomputation can run in seconds instead of minutes on large grid sizes. As

expected, runtime does not vary as a function of 𝑘. ... 78

Figure 26 – The runtime of biometric classification tasks using the 𝑘-ishNN algorithm both with

and without precomputation. Colors are plotted on the displayed based on a normalized log scale. The

runtimes were collected using the same system as the one described in Figure 25. On this dataset the

KishNN algorithm exceeded the available parallelism, causing significant slowdowns. 79

 12

Table of Algorithms

Algorithm 1 – GenerateThresholdFunction(𝑆, 𝑝𝑎𝑟𝑎𝑚𝑠) .. 52

Table of Protocols

Protocol 1 - 𝑘-ish Nearest Neighbors Classifier ... 40

Protocol 2 – 𝑘-ishNN with preprocessing .. 51

Protocol 3 – Privacy Preserving SVM (ppSVM) classification .. 56

 13

 14

Acknowledgements

Daniela – for originally encouraging me to pursue this degree, for being just as

supportive and encouraging a decade later, and for years of guidance and advocacy.

Hayim – for taking on a surprise mentee and spending countless hours on Zoom

teaching me cryptography and providing feedback on my approaches and ideas.

Brandi, Vera, and the rest of the course 6 team – for taking the time to create a path

for my return after a decade away.

Emily – for dealing with a summer of sleepless nights, for keeping me healthy and sane

though the final three-week crunch, and for learning an entire field so that i could have

someone to discuss problems with.

 15

Chapter 1: Introduction

This thesis investigates whether biometric recognition can be performed on encrypted

data without decrypting the data.

1.1 Motivation

As of the writing of this thesis in Summer 2020, bills proposing a moratorium on the

governmental use of “facial recognition and biometric technology” are under consideration

in both the U.S. House of Representatives and Senate [2], [3]. In a press release

accompanying the introduction of the legislation, the co-sponsors of the bill published a

press release calling facial recognition a “grave threat to our privacy” that has “no place

in our society”.

The concern makes sense. Biometric recognition is a new technology that still suffers

from bias [4] (though efforts exist to mitigate these effects [5]), and it decreases the costs

of surveillance in ways that can and have been abused [6].

Yet facial recognition, and biometric recognition more generally, is an important part

of our modern interactions with technology. Facial recognition is used to help us log into

devices [7] and to organize our photos. It’s used by governments to improve pedestrian

safety [8], to search for missing and abducted children [9], to diagnose diseases [10].

Biometric classification more broadly is used to enable new modes of interaction with

 16

technology, such as voice command-driven interfaces, and increase cybersecurity as people

increasingly move their lives online [11].

It seems odd that a bill proposing a ban on facial recognition can gain support from a

country’s political leadership at the same time it is advertised as a key feature on the

most popular phone in the country. The tension between these two positions is a question

of agency and trust. By imbuing technology with the ability to recognize people, we give

the providers of that technology the ability to closely monitor our lives. We face the

problem of balancing a desire for privacy and control of our data with a desire to use

increasingly “smart” technology.

1.2 Homomorphic Encryption (HE)

One particularly exciting technical approach to the problem is homomorphic

encryption. Originally theorized by Ron Rivest in 1978 [12], homomorphic encryption is

a technique for encrypting data in a way that enables computation on that data without

access to encryption secrets, resulting in computation and outputs that remain encrypted.

Over the past ten years, innovations in the implementation and parallelization of

homomorphic encryption has enabled the development of a growing range of practical

uses of the technology. In 2009, Craig Gentry described in his Ph.D. thesis an scheme

capable of performing homomorphically encrypted computation that supports both

addition and multiplication of encrypted cyphertexts [13]. In this thesis, Gentry’s scheme

 17

perform noisy operations (eventually complete destroying the data) capable of computing

its own encryption/decryption circuit and at least one more operation before being

overwhelmed by noise. By “bootstrapping”, or repeatedly encrypting the results of

operations, Gentry’s thesis described the first scheme theoretically capable of performing

basic homomorphically encrypted operations. Though mathematically elegant, this

solution required a practically infeasible amount of additional computation to perform

useful operations.

In 2012 Gentry and his collaborators designed a scheme (referred to as the “BGV”

scheme after the author names) that limits the amount of noise per operation, allowing

for less aggressive bootstrapping [14].

Implementations of this scheme required implementing a lattice-based cryptosystem

both in plaintext and within the encryption scheme; a mathematically and

programmatically complicated task. As with any encryption software, correctness is

measured not only by the ability of the algorithm to perform computations correctly, but

also it the implementation’s data leakage, which can take years of testing to fully assess.

Because of these complexities, it was nearly three years before any group released a

practical opensource implementation of BGV. IBM’s HElib was the first to do so in 2015,

followed shortly after by Microsoft’s Simple Encryption Algorithm Library (SEAL) [15],

[16].

 18

These easily used implementations of homomorphic encryption schemes have led to a

wave of new research into the practical applications of the technology. Operations are still

expensive (a computer running HElib, the most popular HE implementation, takes almost

100,000 times longer to perform an encrypted multiplication of two 32-bit numbers than

it would without encryption), and limited (BGV, for example, only supports the

computation of addition and multiplication within ℤ! for some prime constant p).

Practical development of more complex operations such as machine learning algorithms

are still an area of active research.

1.2.1 Homomorphically Encrypted Classification Algorithms

This theoretical contributions of this thesis pick up where, Shaul, Feldman, and Rus

leave off in their 2020 paper “Secure 𝑘-ish Nearest Neighbors Classifier” [1]. In this work,

the authors describe a system for efficiently performing the k nearest neighbors algorithms

(KNN)–an algorithm that classifies a datum based on the most similar data in some

reference database–in a homomorphically encrypted context.

Shaul describes a technique for performing a homomorphically encypted comparison

between two numbers, which he uses to compute the result of a “coin toss” by comparing

a random plaintext with an encrypted cyphertext. Using these coin tosses, one can

approximate the sum of any monotonic, invertible function on an array of encrypted

cyphertexts by adjusting the bias of the random plaintext selection.

 19

Using these new algorithms, Shaul finds the nearest neighbors of a query point by

approximating the mean and standard deviation of the distances between some set of

reference points and a query point, which can be used to approximate the threshold around

which a query points’ nearest neighbors reside. This algorithm is discussed in length in

Chapter 3.

The coin toss and approximation schemes discussed in this work have the potential to

enable the translation of a wide range of algorithms into HE schemes. The KNN

implementation used as an example, however, does not fully account for rounding and

overflow errors, meaning it is only effective on carefully selected datasets that

accommodate these errors (this is discussed further in Chapter 3). The algorithm also

requires computations and comparisons (which have a runtime which grows with the

number of reference points) on every point in the reference database. As databases grow

large, as they do in biometric classification tasks, the runtime of a homomorphically

encrypted KNN implementation becomes intractable.

1.3 Contributions

Using the work described in [1] as a starting point, this thesis tests the existing work

on biometric recognition tasks, analyses reasons that the current implementation fails,

and then describes the modifications necessary to perform biometric recognition using a

homomorphically encrypted KNN approximation. We also explore an alternative

 20

algorithm that corrects for the growth in computation overhead accompanying large and

complex reference databases. Both of these approaches apply the insight that moving as

much computation as possible into cached, plaintext precomputation allows real-time,

homomorphically encrypted algorithms to run with improved performance and accuracy.

There are three main contributions in this thesis, two algorithms for efficiently

performing biometric classification and recognition, and a collection of experiments

demonstrating their effectiveness.

1.3.1 Algorithmic Contributions

Improvements to the efficiency, accuracy, and generalizability of the 𝒌-ishNN

algorithm introduced in [1]. Using this precomputation technique, we describe in Section

4.1 a new algorithm based on the prior work by Shaul et. al. that displays improvement

in efficiency and runtime against all of the prior work’s test metrics. We demonstrate that

these improvements allow the algorithm the precision necessary to perform biometric

recognition tasks.

The 𝑘-ishNN algorithm works by approximating statistical properties of a database of

examples to perform classification tasks. By replacing the model of the space used by the

algorithm (a modified Gaussian distribution) with a simpler uniform distribution, we are

able to move much of the algorithm into plaintext precomputation, which both decreases

the computational demands of formulating a response to a query, and increases the

 21

experimentally measured accuracy of the algorithm’s classifications. These improvements

enable the use of the 𝑘-ishNN algorithm to perform biometric classification tasks, which

require a greater degree of precision than the approximation schemes and model than the

original implementation of the algorithm allows.

A homomorphically encrypted support vector-based classification technique. Because

KNNs become less efficient as the amount of example data grows, in Section 4.2 we also

describe and implement a homomorphically encrypted one-versus-all multiclass SVM that

has computational demands that are independent of the size of the reference data. The

SVM is implemented using the one-to-many training approach outlined in [17], the most

salient property of which is the ability to classify a point by pre-computing a single basis

vector for each class. If one projects a query point onto these vectors, the projection with

the largest absolute value corresponds to the class of the query. Projections are relatively

easy and efficient to compute in HE, and finding the maximum value in an array is

demonstrated in the foundational work [1], enabling a simple implementation.

1.3.2 Experimental Contributions

In Chapter 5, we perform a series of experiments testing the accuracy and efficiency of

these algorithms against both the original datasets used in a testing and on a new dataset

prepared as a model of the challenges faces in biometric recognition tasks. We show that

the new algorithms presented in this thesis not only achieve a level of improvement

performance necessary for biometric recognition, but that they achieve accuracy decent

 22

accuracy rates on a motivating biometric recognition dataset. We also show that our

modifications to the 𝑘isnNN algorithm introduced in [1] result in an order of magnitude

improvement in runtime under practical conditions.

1.4 Technology vs. Regulation

In the bill described at the top of this chapter, Senator Markey seeks to address the

abuse of biometric recognition systems with legislation, banning technologies that might

be misused. Another approach to the problem of misuse of powerful technologies is to

build technical safeguards into the technology itself. If classification is useful, but data

collection might be abused, then systems that can extend classification services to also

provide strong, technically enforceable guarantees about what data is collected and how

it is stored could limit the potential downsides of new innovations without restricting their

benefits.

Two of the mechanisms for preventing abuse of collected data are “notice and consent”

and breach notification requirements, which levy huge fines against companies that fail to

protect their user’s personal data or use it in a manner that the user has not consented

to. There is evidence these mechanisms, which largely rely on self-enforcement, are

ineffective at actually restricting data use or data protection [18], [19].

Especially in contexts where consumers might be especially concerned about data

privacy (such as biometric recognition) or misuse (such as when interacting with a

 23

government or untrusted authority), technical safeguards provide stronger guarantees and

agency than policy safeguards, which at some level always requires people to either trust

organizations will comply with policies, or authorities will enforce those policies. Since the

Snowden revelations in 2013 [20], [21], this trust-based approach has become less effective,

especially in international markets.

This thesis describes technical systems that allow users to send biometric data to

untrusted servers for analysis without requiring the user trust the provider to have policies

in place to avoid storing or accessing that data. The systems also allow a provider to build

services without exposing themselves to the liability risks inherent in handling user data.

Rather than adopt increasingly heavy-handed restrictions on the functionality of

technology, legislators can use results like these recent innovations in homomorphic

encryption and the extensions in this thesis to restrict where data flows and how it is

used, rather than placing broad moratoriums on entire technical fields with far reaching

ranges of use and utility.

1.5 Goals

We hope that this thesis’ demonstration that fully encrypted biometric recognition can

be performed efficiently serves both as a starting point for the development of technical

alternatives to legislative privacy protection, and as a technique for service providers to

continue to deliver the useful services biometric recognition enables without relying on

 24

untestable trust of their users or raising the legitimate privacy concerns associated with

biometric data collection.

 25

Chapter 2: Related Work

This thesis describes a system for performing biometric recognition tasks on encrypted

data in order to improve privacy guarantees provided by these systems. To do this, we

incorporate techniques and standards from the field of biometric recognition and adapt

them to fit into the computational models needed to perform encrypted computation. This

chapter provides an overview of previous work in biometric recognition, describes some of

the previous work in developing privacy-enhancing technologies, and introduces prior work

in homomorphic encryption, the specific technology used in this thesis to enhance the

privacy of biometric recognition systems.

2.1 Biometric Recognition

Biometric recognition systems fall largely into two categories. Verification systems

take a claimed identity and some sensor input and determine whether the input

corresponds to the claimed identity. The fingerprint sensor on a modern smartphone is an

example of a biometric verification system. Identification systems seek to identify which

member of a population triggered a set of sensor measurements. Automatic photo tagging

is an example of an identification system.

Biometric recognition systems span a wide range of applications, methods, and

measurements.

 26

Facial recognition is a common and widely used biometric recognition technique.

Historically, facial recognition has relied on extracting recognizable features in images.

For much of the late 1990s and early 2000s facial recognition relied on “eigenfaces”, vectors

in extremely high dimensional image space that have face-like properties [22]. Several test

datasets for facial recognition were developed during this era, notably the popular Yale

Facial Recognition dataset and Yale Extended Facial Recognition Dataset B [23].

When ImageNet established the efficacy of deep convolutional neural networks for

image classification in 2011 [24], the use of embedding spaces–vectors close to the end of

a trained classifier–became a powerful tool in reducing images of faces into a

computationally tractable number of dimensions while retaining enough data to

differentiate faces. The FaceNet algorithm built a facial embedding space that maximizes

the distance between images of different people and minimizes the distance between

images of the same person [25]. It does so by using a triplet loss function, where a neural

net is trained on three images, two of which are of the same person, and the side of

resulting triangle connecting the two matching faces is minimized relative to the size of

the triangle.

Other biometric recognition systems, such as those recognizing fingerprints and irises,

also use embedding spaces. Recognition of sequential data like voice and gaits using deep

learning often uses recurrent neural networks; this sequential recognition work is less

 27

mature than its convolutional counterpart and we treat at outside the scope of this initial

investigation of biometric classification.

Recent concerns about the fairness of machine learning, especially as practical

applications in policing and surveillance causally connect the underlying bias in training

sets to real work consequences [26], has led to the investigation of algorithmic methods

for detecting and mitigating bias in the training of these algorithms [5].

2.2 Privacy Enhancing Technologies (PETs) and Encryption

There are a wide range of technologies that seek to enhance privacy. Heurix et. al.

describe a taxonomy that categorizes these technologies in [27], and also provide examples

of technologies in most of the permutation of categories in that taxonomy. The taxonomy

is useful in order to identify how this thesis fits into the larger context of PETs, so we

summarize it here:

At a high level, privacy technologies seek to obscure a user’s identity (or, less often,

their content or observable behavior). PETs seek to obscure this information by either

denying access, disassociating that information from other context, or rendering it

indistinguishable from other information. This is achieved either through policy measures

(security) or by performing algorithmic obfuscation on the underlying data

(cryptography). Many PETs focus on information at a particular part of an algorithm,

for example in transmission or during processing.

 28

PETs are analyzed under a “threat model”, or the conditions under which data must

be protected. This thesis focuses on cryptographic approaches (untrusted server) with an

“honest-but-curios” server the follows the given protocol faithfully but tries to extract

information from the protocols execution. We do not consider a “malicious server”, which

might ignore or subvert the protocol itself.

Examples of other technologies that have a similar goal of obscuring the identity and

data of a user during computation includes most digital encryption schemes. Private

machine learning, such as secure encrypted federated machine learning [28] is a recent

example in this category. Modern work in this space seeks to provide the scale and

aggregate learning that comes from computation “in the cloud” while still maintaining the

privacy and data agency provided by running scripts on a local device. Federated secure

machine learning uses encrypted aggregation techniques [29] to accumulate enough data

to perform stochastic gradient decent on the weights of a machine learning system [28].

This is the technology that allows Google to train AndroidOS’s keyboards’ predictive text

without collecting the actual text or typing information of individual users.

2.3 Homomorphic Encryption

Homomorphic encryption (HE) was originally theorized in 1978 by Ron Rivest [30]; a

feasibility proof of HE was first described in 2009 by Craig Gentry in his PhD thesis [31].

Gentry extended the work for practical use in 2011 in collaboration with Brakerski and

 29

Vaikuntanathan (the “BGV” scheme) [14]. The BGV homomorphic encryption scheme

allows for addition and multiplication operations performed in a ring ℤ!. In 2016 Choen,

Kin, Kin and Song (CKKS) described a homomorphically encrypted approximation

scheme [32] that can efficiently run the same operations on approximations of numbers in

ℝ.

IBM’s HElib [33] (released 2015) implements the BGV and CKKS schemes with a

number of optimizations. Microsoft Simple Encryption Algorithm Library (SEAL) [34]

similarly provides a wrapper around the BGV and CKKS schemes. A number of c++ and

python wrappers exist for both libraries [35], [36].

The release of these libraries has accelerated research into HE implementations of

algorithms. Results demonstrating the computation of hyperplane thresholding, sigmoids,

and ReLU in HE have begun to lay the groundwork for running trained deep learning

systems in an HE context [37]. Efficient homomorphic facial verification tasks have been

implemented by computing distances from reference points in an encrypted embedding

space [38].

 31

Chapter 3: Problem Formulation and Foundational

Work

This chapter provides a description of the biometric recognition task we intend to

solve, our development of a specific motivating problem to test potential solutions against,

and the formal notation used in the rest of this thesis. It also describes the previous work

that this work extends, and explores why that previous work is unable to perform

encrypted biometric recognition without modification.

3.1 Problem Formulation

Previous work in homomorphic machine learning has achieved binary classification of

a small number of classes or simple feature vectors, demonstrating the feasibility of

algorithms generally. In order to enable biometric recognition, we select a motivating real-

world biometric recognition task and then explore the efficacy of existing homomorphically

encrypted algorithms’ performance on that task, potential extensions to improve that

performance, and out-of-band precomputation steps that can reduce the problem to one

that is solvable using existing work.

 32

3.2 Motivating Problem: Facial Recognition

We consider a facial recognition task as a motivating problem. Previous work in

homomorphic facial recognition either requires many rounds of online communication and

several megabytes of online communication [39] or constrains the problem to face

verification, performing a binary one-vs-the-rest classification of a face against a claimed

identity [40].

We use the Yale Extended Facial Dataset B [23], which contains photographs of 28

people in a variety of poses and lighting conditions. Using OpenFace [41], an open-source

implementation of the FaceNet [25] algorithm, we map images of faces to a 128-

dimensional embedding space. For the sake of algorithmic clarity, we exclusively perform

experiments on these embedding vectors and assume that the client has the ability to map

facial images into the embedding space. This can be trivially achieved by either sharing

the weights of the trained network or by performing transfer learning to compress the

network for low-memory client applications.

We also consider two dimensionality reduction techniques to decrease the number of

dimensions and improve the efficiency of our algorithms, which depend on vector

operations that scale with the number of dimentions. First, we use LDA to down sample

the embedding space into 2, 3, 5, or 10 dimensions. Second, we retrain FaceNet, replacing

the final layer with a vector of size 𝑑, the target dimentionality.

 33

The relatively high number of classes, high dimensionality and precision of the feature

vectors, and variable feature density of the embedding space make this dataset a

motivating embodiment of many of the challenges of biometric recognition. State of the

art biometric systems often have thousands to millions of classes and feature vectors (e.g.

[42] has several million faces); this work is a step towards training against these more

general datasets.

3.3 Preliminaries

Most of the HE operations in this thesis are performed following the BGV scheme [14].

This scheme supports addition and multiplication of cyphertexts in some integer ring

ℤ! ≔ [0, 𝑝) where 𝑝 is a prime number selected at key generation time. We use + to

denote addition and ∙ to denote multiplication. We denote encryption and decryption

using public key 𝑝𝑘 and secret key 𝑠𝑘 with

𝐸𝑛𝑐"#(𝑥) = ⟦𝑥⟧!# 	and	𝐷𝑒𝑐"#<⟦𝑥⟧!#= = 𝑥

3.3.1 Notation and pre-defined functions

For any plaintext variable 𝑥, we denote that variable encrypted with private key 𝑝𝑘

as the cyphertext ⟦𝑥⟧!#. When there is only one possible private key, we omit the subscript

for clarity.

 34

Some algorithms in this paper use approximation schemes. We denote an approximate

variable as 𝑇∗ ≈ 𝑇.

We use several algorithms that are defined in [1]. Specifically, where ℙ%,!: ℤ! → ℤ! is

the polynomial interpolation of some function 𝑓 rounded to the nearest integer and 𝑝 is

the prime used by BGV, we use the comparison function

isSmaller'(⟦𝑥⟧, ⟦𝑦⟧) = ℙ%,! L
𝑝
2 + 	𝑥 − 𝑦P 	𝑤ℎ𝑒𝑟𝑒	𝑓

(𝑥) = 	 T ⟦1⟧	𝑖𝑓	𝑥 >
𝑝
2

⟦0⟧	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

We also use Shaul et. al.’s implementation of ArgMax:

𝐴𝑟𝑔𝑀𝑎𝑥((𝐶) ≔_𝑗 ∙aisSmaller<C), C*=
+,--∈/

Further, we use a trick described in that paper to compute the 𝑙0norm between points

in a feature space by computing the absolute value of the difference between each element

in the vector:

𝑑𝑖𝑠𝑡!(𝑎, 𝑏) = ∑<1 − 2isSmaller(a), b))=(a) − b))

We use capital letters to denote arrays of values, and lowercase letters to denote

scalars. We use a lowercase letter with a subscript to denote a single item from an array.

For example, 𝑥+ is the 𝑖12 element of the array 𝑋.

We denote cached constant coefficients use in functions with the Greek letters 𝛼 and

𝛽.

 35

3.3.2 Variable Names

We use the follow variable names across all algorithms and protocols in this thesis:

• 𝑑 – the number of dimensions in the feature space of a training set.

• 𝑝 – the prime number used in the ring.

• 𝑆 – a database consisting of 𝑛 vectors of size 𝑝 where each element 𝑠! ∈ 𝑆 represents a single

training feature for use in classification

• 𝑞 – a query sent by a client to a server for classification. A query is a 𝑑 dimensional vector

where 𝑞! ∈ ℤ"

• 𝑋 – an array of scalars 𝑥! ∈ ℤ"	𝑎𝑛𝑑	𝑥! ∈ 𝑋. 𝑥! is the distance between 𝑞 and 𝑠!

• 𝜇	and	𝜎 – the mean and standard deviation of a distribution, respectively.

• 𝑘 – in KNN-like algorithms, the desired number of neighbors to consider when determining

the class of 𝑞.

• 𝜅 – the number of points actually used in a KNN-like algorithm. In most cases 𝜅 = 𝑘∗: ≈ 𝑘,

but this is not necessarily always true.

• 𝐶 – a list of positive integers where 𝑐! ∈ 𝐶 is the class associated with the feature vector 𝑠!.

We also occasionally use the notation 𝑐𝑙𝑎𝑠𝑠(𝑠!) ≝ 𝐶! to represent the class associated with

a vector.

• 𝑐𝑙𝑎𝑠𝑠$		- the predicted class of 𝑞

• Φ is the standard normal function. Φ%& is the inverse normal.

• ⌊ ⌉ - is the notation we use to denote rounding to the nearest integer.

• 𝑇 is a number with the property that, for 𝑥', the 𝑘() largest element in 𝑋, 𝑥' ≤ 𝑇 ≤ 𝑥'*&.

This number defines the length of a radius around 𝑞 that contains exact 𝑘 features.

 36

• 𝐴 – a placeholder array for intermediate variables. Subscripts to 𝐴 provide a note on what

the values in 𝐴 represent.

3.3.3 Base-p representation

Some algorithms use base-p representation. Base-p representation is a technique for

avoiding large values of 𝑝, which can greatly increase computational overhead. It functions

by converting some number 𝑣 ∈ [0, 𝑝3) into a “two digit” number in base p which could

be expressed as the big-endian tuple:

base − 𝑝	rep. of	(𝑣): = pq
𝑣
𝑝r , 𝑣	mod	𝑝s ,where	𝑣 ∈ [0, 𝑝

3)

We denote the more significant figure in base-𝑝 notation as ℎ𝑖𝑔ℎ!(𝑣) and the one’s

digit as 𝑙𝑜𝑤!(𝑣). If 𝑝 is unambiguous in context, we omit the subscript.

3.4 Foundational Work

This work builds on top of insights outlined by Shaul et. al. in in [1] in which they

develop a secure classification algorithm, the “𝑘-ish Nearest Neighbors Classifier” (𝑘-

ishNN). 𝑘-ishNN describes a homomorphically encrypted algorithm which computes the

output of the KNN algorithm on a query vector 𝑞 and a feature space 𝑆 with low

communication requirements and running time.

 37

3.4.1 Overview of 𝒌-ishNN

This section describes the intuition behind the 𝑘-ishNN algorithm’s implementation

and limitations. The remainder of Section 3.4 discusses those same topics in more technical

detail.

Stated in plain English, the 𝑘-ishNN algorithm performs the following operations:

(1) A server is given a set of labelled example points

(2) A client gives the server a “query” point, and asks what label makes the most sense for that

query.

(3) The server finds the most common label amongst the k nearest neighbors of the query to

send back to the client. However, because the query is encrypted, the server does not know

which points are closest. Instead, the server:

a. Uses a series of novel techniques to estimate the radius of a “bubble” around the query

that contains approximately k points. This computation is encrypted.

b. The server computes the number of points within the bubble corresponding to each

label. This computation is also encrypted.

c. The server computes the label with the largest counts in the previous step and sends it

back to the client. This entire process is encrypted, so the server doesn’t know what

the final result is.

(4) The client decrypts the server’s result and learns the likely class of the query point.

The core intuition is that the points close to the query are likely similar to the query,

and an approximate value of the threshold will likely yield the same suggested

 38

classification as the precise value of the threshold. The highest fault risk in this

implementation of the algorithm lies with the techniques used to keep the operations in

step (3) encrypted: if the bubble ever grows or shrinks to a point of over- or under-

inclusion, the algorithm will fail.

The technique used by 𝑘-ishNN to estimate a threshold assumes that the reference

points conform to a normal distribution, and uses that distribution to compute a target

threshold. In practice, this approach often results in a non-sensical negative threshold (see

Figure 1) which overflows to include most or all of the reference points, resulting in the

selection of the most common label in the entire space as a class.

If the situations most likely to trigger an overflow happen to occur in regions

corresponding to the most common class in the space (as is the case in the two datasets

used in [1] for testing), this error might go undetected. This problem largely stems from

the use of a statistical model that can produce negative estimated values for the threshold.

In Section 4.1 we describe a modified form of the algorithm that eschews the assumption

that example data follows a Gaussian distribution.

3.4.2 𝒌-ishNN in more detail

The 𝑘-ishNN algorithm efficiently performs a homomorphically encrypted

approximation of the output of the KNN algorithm on a query 𝑞 and feature space 𝑆.

 39

It achieves this using a novel technique which can approximate any bounded,

monotonically increasing, invertible function 𝑓 by performing 𝑛 encrypted “double blinded

coin tosses” with bias %(⟦6⟧)
9

 for an arbitrary cyphertext ⟦𝑥⟧ and scaling factor 𝑚 > 𝑓(⟦𝑥⟧),

the sum of which converges to 𝑓(⟦𝑥⟧) without requiring large intermediate values.

The approach used by 𝑘-ishNN is described in Protocol 1 - 𝑘-ish Nearest Neighbors

Classifier.

It starts by computing a distance array ⟦𝑋⟧ such that:

𝑥+ ≔ 𝑑𝑖𝑠𝑡(𝑞, 𝑠+)	∀	𝑠+ ∈ 𝑆

It then uses the approximation technique outlined above to compute the mean and

standard deviation of the distribution. The algorithm assumes that 𝑋 follows a continuous

Gaussian distribution and precomputes Φ:0 L#
;
P, allowing for the estimation of a threshold

𝑇∗ around 𝑞 which contains 𝑘 features (the * denotes an approximated value):

⟦𝑇∗⟧ = ⟦𝜇∗⟧ + Φ:0 p
𝑘
𝑛s ∙

⟦𝜎∗⟧

Using this threshold and the polynomial expansion of a sigmoid around !
3
, this threshold

can be used to compute an array 𝐶 where 𝐶(𝑐) represents the number of features within

a radius of 𝑇∗ from 𝑞 which are of class 𝑐. By performing a series of comparisons on this

resulting vector, 𝑘-ishNN computes 𝐴𝑟𝑔𝑀𝑎𝑥((𝐶(𝑐)), the most common class in the feature

space within the threshold.

 40

3.4.3 Issues and Assumptions in 𝒌-ishNN

𝑘-ishNN has two critical assumptions that can cause it to have precipitous drops in

performance. First, if the expected threshold is close to zero or the distribution is skewed

right, 𝑇∗ might be negative, meaning ⟦𝑇∗⟧, which is computed modulo 𝑝, will overflow.

Protocol 1 - 𝑘-ish Nearest Neighbors Classifier
Shared Input: integers 𝒑, 𝒅, 𝒄 > 𝟏
Client Input: a point 𝑞 ∈ ℤ!< and a security parameter 𝜆
Server Input: integers 𝑘 < 𝑛

points 𝑠0, … , 𝑠; ∈ ℤ!<
A matrix 𝑀 ∈ {0,1};×(, 𝑠. 𝑡.𝑀(𝑖, 𝑗) = 1 iff 𝑐𝑙𝑎𝑠𝑠(𝑠+) = 𝑗

Client
Output:

𝑐𝑙𝑎𝑠𝑠> ∈ [𝑐], the majority class of 𝜅 nearest neighbors of 𝑞
where #

3
< 	𝜅 < ?#

3
 with high probability

 Client Performs:
1 Generate Keys (𝒔𝒌, 𝒑𝒌)𝑺 = 𝑮𝒆𝒏^𝟏𝝀, 𝒑`
2 ⟦𝒒⟧ ≔ 𝑬𝒏𝒄𝒑𝒌(𝒒)
3 Send (𝒑𝒌), ⟦𝒒⟧) to the server

 Server Performs:
4 for each 𝒊 ∈ 𝟏,… , 𝒏 do
5 ⟦𝒙𝒊⟧ ≔ 𝒄𝒐𝒎𝒑𝒖𝒕𝒆𝑫𝒊𝒔𝒕(⟦𝒒⟧, 𝒔𝒊)
6 ⟦𝝁∗⟧ ≔ 𝒂𝒑𝒑𝒓𝒐𝒙𝒊𝒎𝒂𝒕𝒆 𝟏

𝒏
∑⟦𝒙𝒊⟧

7 ^s𝒍𝒐𝒘((𝝁∗)𝟐)v, s𝒉𝒊𝒈𝒉((𝝁∗)𝟐)v` ≔ base-𝒑 rep. of (𝝁∗)𝟐
8 (⟦𝒍𝒐𝒘(𝝁𝟐∗)⟧, ⟦𝒉𝒊𝒈𝒉(𝝁𝟐∗)⟧) ≔ base-𝒑 rep. of (𝝁𝟐∗)
9 ⟦𝝈∗⟧ ≔ 𝒂𝒑𝒑𝒓𝒐𝒙𝒊𝒎𝒂𝒕𝒆z𝝁∗ − 𝝁𝟐∗
10 ⟦𝑻∗⟧ ≔ ⟦𝝁∗⟧ + ~𝚽%𝟏 �𝒌

𝒏
�� ⟦𝝈∗⟧

11 ⟦𝑪⟧ ∶= (𝟎,… , 𝟎)
12 for each 𝒄 ∈ 𝟏,… , 𝒋 do
13 ⟦𝑪(𝒋)⟧ ∶= 	∑ 𝒊𝒔𝑺𝒎𝒂𝒍𝒍𝒆𝒓(⟦𝒙𝒊⟧, ⟦𝑻∗⟧)𝒏

𝒊2𝟏 ∙ 𝑴(𝒊, 𝒋)
14 s𝒄𝒍𝒂𝒔𝒔𝒒v ≔ 𝑨𝒓𝒈𝑴𝒂𝒙𝒄(⟦𝑪⟧)
15 Send s𝒄𝒍𝒂𝒔𝒔𝒒v to the client

 Client Performs:
16 𝒄𝒍𝒂𝒔𝒔𝒒 ≔ 𝑫𝒆𝒄𝒔𝒌^s𝒄𝒍𝒂𝒔𝒔𝒒v`

 41

Because 𝑋 is discrete and non-negative, even when 𝑋 is roughly Gaussian it will still be

truncated at 0 and have a sample standard deviation rather than the actual standard

deviation assumed in the algorithm formulation. The sample standard deviation is by

definition smaller than the actual standard deviation, and a left-truncated Gaussian

distribution has right skew, meaning in practice these error modes are likely.

Figure 1 and Figure 2 depict the likelihood of a miscalculation of 𝑇∗ due to overflow

in the Wisconsin Breast Tumor dataset used to test the algorithm in both [1] and this

thesis. In Figure 1, the red regions in the charts reflect areas where there is a greater than

Figure 1 – the expected value of 𝑇∗ assuming perfect approximations on a normalized 2d LDA
projection of Wisconsin Breast Cancer database used in both this thesis and the original assessment of the
𝑘-ishNN algorithm. Red regions are areas in which 𝑇∗ is expected to be negative, implying a greater than
50% chance of an overflow and an effectively arbitrary value of 𝜅.

 42

50% chance that there will be an overflow in threshold computation. For even fairly large

values of 𝑘, almost half of the query space is expected to have an overflow. Figure 2 shows

the computation of 𝜅 in an unencrypted setting. There are large spikes at 𝜅 = 0,

corresponding to a negative expected threshold which would result in overflow in the

actual implementation of the algorithm. On a binary classification task like the one

analyzed here; an overflow typically will result in a classification of the class most heavily

represented in the entire feature space (because a high threshold from an overflow will

capture “too much” of the space). In the case of the test in use, the region most likely to

trigger an overflow corresponds to the most populous class, an eccentricity of the test

dataset that results in a correct default classification when the system is in an error state.

Section 5.4 describes a test in which this correlation is not present and finds that the

accuracy of 𝑘-ishNN decreases sharply in that situation.

 43

The open source implementation of 𝑘-ishNN [43] mitigates this issue by computing a

range of candidate thresholds across (0, 𝑝], computing the class counts of each of these

thresholds, and then applying filters to the resulting class counts to perform a

classification. Section 4.1 is partially motivated by this practical mitigation of the

shortcoming of the original algorithm.

In non-binary classification, the inaccuracy inherent in the Gaussian model for 𝑋 and

the risk of overflow cause 𝑘-ishNN to exhibit impracticably low accuracy. An example of

this is shown in Figure 3 and discussed in more detail in Section 5.4.1.

Figure 2 – The expected value of 𝜅 without overflow for benign (orange) and malignant (blue)
tumors. The graphs show the value of 𝜅 along the horizontal axis. The charts, from left to right, top to
bottom, represent the distribution of values of 𝜅 for target values of k = {2,4,8,16,32,64} respectively.
The spikes at 𝜅 = 0 correspond to a high likelihood of overflow when computing a threshold. These

graphs were generated using the 2d LDA projection of Wisconsin Breast Cancer database used in both
this thesis and the original assessment of the 𝑘ishNN algorithm

 44

Figure 3 - the accuracy of the 𝑘-ishNN algorithm on a 2D projection of the motivating
facial recognition dataset is low, even with large grid sizes.

 45

Chapter 4: Technical Approach

Most homomorphically encrypted classification models to date have focused on binary

classification [37], [44], [45] and left multi-class classification as a future extension. In the

year preceding this thesis, some homomorphically encrypted classifiers, including the 𝑘-

ishNN classifier have been built to handle multiple classes, but tests continue to focus on

datasets with a small number of classes (e.g. [1] includes tests on a 4-class dataset, [46]

focuses mainly on binary classification of text, but includes data from 4- and 14- class text

datasets).

Biometric classification requires differentiation between a large number of complicated

classes, in the initial tests outlined in Section 3.4.3 we found that the current

implementation of 𝑘-ishNN lacks the precision necessary to perform this classification.

This thesis provides two potential solutions to this issue.

Section 4.1 re-builds the formal definition of the 𝑘-ishNN algorithm (see Protocol 2)

to isolate the part of the algorithm causing this loss of precision (Algorithm 1b) and then

considers a simple replacement for that algorithms (Algorithm 1a), leaving further

improvement for future work. This approach reframes work by Shaul et. al. [1] as the

precomputation of a threshold generating function, and then uses the factory pattern [47]

to load plaintext precomputation into that generator. The approach borrows the insight

 46

from machine learning literature that high-cost out-of-band precomputation can enable

efficient performance at runtime.

Though the extension in 4.1 address the precision issue, it does not address the fact

the number of reference points necessary to differentiate between classes rapidly becomes

very large. Algorithms, like 𝑘-ishNN, that have a complexity that is a function of the size

of the training database rapidly become computationally impractical.

Section 4.2 defines an entirely new approach to homomorphically encrypted

classification that scales with the number of classes while also providing the necessary

precision for multi-class classification tasks. To do this we developed a privacy preserving

version of an SVM, leveraging recent innovations in homomorphically encrypted

computation.

4.1 Generalization of 𝒌-ishNN: adding functional generators of

candidate threshold families

To explore the threshold computation portion of the	𝑘-ishNN algorithm outlined in

Protocol 1, we modify the protocol to accept an any arbitrary function of type (𝑋, 𝑝𝑘) →

⟦𝑇⟧, where 𝑇 is some set of candidate thresholds. By performing some plaintext

precomputation, the threshold function can be tuned for computable global properties of

feature space. Protocol 2 describes this candidate selection formulation. The collection of

implementations of Algorithm 1 describe several approaches to threshold computation.

 47

4.1.1 Overview of 𝒌-ishNN with precomputation

Protocol 2 describes a modified version of 𝑘-ishNN (Protocol 1) that introduces a

precomputation step. Algorithms 1a, 1b, and 1c describe three potential threshold

computation schemes. 1a and 1b are tested in Chapter 5. 1c is included because it is

functionally equivalent to the open source implementation of 𝑘-ishNN, ppKNN [43].

Like the original 𝑘-ishNN, the modified version of the algorithm seeks to identify the

class of a query point 𝑞 by finding the most common class in the 𝑘 points in a feature

space closest to 𝑞. It does this by computing a threshold distance from 𝑞 and then

computing the class of the points within that threshold distance from 𝑞.

At some point before interacting with a client or query, a server implementing Protocol

2 builds a function generateThresholds that returns a small number of candidate

thresholds when given the distances between 𝑞 and each reference point in feature space.

This function is only computed once per feature space, and is reused between queries.

Algorithms 1a-1d describe several ways to construct generateThresholds: (1a)

precomputes three constant values as candidate thresholds, and returns the identity

function for those thresholds; (1b) pre-computes a first-degree polynomial based on the

inverse Gaussian which approximates T and constructs an intermediate function that

approximates the mean and median of the distance distribution for use as coefficients of

that Gaussian. This algorithm causes Protocol 2 to functionally reduce to Protocol 1. (1c)

 48

performs the same pre-computation as (1b), and approximates the same coefficients, but

then multiplies those coefficients by a combination of integers and the multiplicative

inverse of 2 in such a way that a series of threshold “pairs” are created on opposite sides

of the ring of possible threshold values (the encryption scheme requires that all variables

are integers between 0 and 𝑝, so for each threshold 𝑡 this scheme also creates a candidate

threshold at L𝑡 + !
3
P 	𝑚𝑜𝑑	𝑝). Algorithm (1c) is functionally equivalent to the experiments

run in [1]. Algorithm (1d) selects 10 random thresholds. In initial experimentation,

algorithms (1c) and (1d) produced indistinguishable accuracy scores; our experiments in

Chapter 5 focus on providing data on the performance of algorithms (1a) and (1b).

Returning to Protocol 2: after generating a threshold generation function, the client

encrypts and sends a query to the server (lines 2-4). While keeping all computation

encrypted, the server builds a list of the distances between each reference point and the

query point (lines 5-6), and then uses generateThresholds to generate several candidate

thresholds (line 7). For each of these thresholds, the server counts the number of instances

of points of each class within that threshold (lines 9-11), and then finds the most common

class by identifying the class with the highest count (line 12). This results in an encrypted

array of potential classes for 𝑞, which is sent back to the client (line 13). The client then

decrypts the list (line 14), and, if there is a most popular class, accepts that as the class

of the query (line 15). If there is a tie the behavior of the algorithm is undefined. (In

Section 5.4.1 we show that if this undefined behavior is treated as a non-classification,

 49

Protocol 2 with Algorithm 1a can sometimes achieve lower error rates than the reference

implementation of “normal” unencrypted KNN).

4.1.2 Discussion

The 𝑘-ishNN protocol precomputes the value of an inverse Gaussian and then scales

and translates that value based on approximations of the first and second moment of the

distribution 𝑋 to estimate a threshold 𝑇 which defines the radius from 𝑞 to its 𝑘12

neighbor, ⟦𝑇∗⟧ ∶= 	 ⟦𝜇∗⟧ + �Φ:0 L#
;
P� ⟦𝜎∗⟧ (Algorithm 1c or Protocol 1). The value of

�Φ:0 L#
;
P� is only precise to within a single standard deviation, and values of 𝜎∗ > @

3
 will

often result in an overflow. We explore the implications of overflows on classification

accuracy in Section 5.4.1. The open source implementation of 𝑘-ishNN [43] accounts for

this issue by using the family of candidate thresholds ⟦𝑇∗⟧ ≔ ⟦𝜇∗⟧ − 𝛼(⟦𝜎∗⟧) +

	𝛽(⟦𝜎∗⟧ + 𝛾)	mod	𝑝 for some hand-chosen parameters 𝛼 ∈ {1,2,10}, 𝛽 ∈ {2:0, 1}, 𝛾 ∈ {0,1},

selecting the threshold resulting in the best approximation of 𝑘 by repeatedly applying

𝑖𝑠𝑆𝑚𝑎𝑙𝑙𝑒𝑟 to 𝑠𝑢𝑚(𝐶) to identify a class.

Modeling the distribution of 𝑋 as a cumulative density function (CDF) is difficult. If

the density of feature vectors is non-uniform, a PDF approximating the distribution of

points for an arbitrary query will be asymmetric, requiring operations other than

stretching and translating a base CDF in order to accurately approximate the space.

Symmetric functions run the risk of undetectable overflow, as encountered with the normal

 50

distribution in practice. We experimented with approximating the third moment using a

double-blinded coin toss and encountered increased overflow. The log normal distribution

is always positive and therefore immune to negative overflow, but requires a polynomial

on 𝜎 to compute, resulting in high sensitivity to small approximation errors in 𝜎∗.

For many applications the distribution of feature points is roughly uniform. In these

cases, a threshold function 𝑇(𝑋, 𝑝𝑘) → ⟦Τ⟧ that returns some set of constants Τ might

have improved accuracy over a noisy threshold computation. This is especially applicable

to feature spaces in which an overflow is likely to cause a misclassification, as is the case

in feature spaces with a large number of classes.

Given the method for data preparation in Section 3.2, uniform density can be induced

by including a measure of the density in the loss function when training the vectorization

scheme. Unified embedding algorithms, like FaceNet, are both common in biometrics and

already tend towards using all of their embedding space, and therefore having roughly

uniform volumes for different classes when the number of examples per class does not

have high variation. Using this observation, we use the 𝑙0 norm and the identity in

Algorithm 1a as a motivating alternative pre-computed threshold generation function.

 51

Protocol 2 – 𝑘-ishNN with preprocessing
Shared Input: integers 𝒑, 𝒅, 𝒄 > 𝟏
Client Input: a point 𝑞 ∈ ℤ!< and a security parameter 𝜆
Server Input: integers 𝑘 < 𝑛

points 𝑠0, … , 𝑠; ∈ ℤ!<
A matrix 𝑀 ∈ {0,1};×(, 𝑠. 𝑡.𝑀(𝑖, 𝑗) = 1 iff 𝑐𝑙𝑎𝑠𝑠(𝑠+) = 𝑗

Client
Output:

𝑐𝑙𝑎𝑠𝑠> ∈ [𝑐], the majority class of 𝜅nearest neighbors of 𝑞
where #

3
< 	𝜅 < ?#

3
 with high probability

 Server Performs:
1 𝒈𝒆𝒏𝒆𝒓𝒆𝒂𝒕𝒆𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅𝒔 ≔ 𝑮𝒆𝒏𝒆𝒓𝒂𝒕𝒆𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅𝑭𝒖𝒏𝒄𝒕𝒊𝒐𝒏(𝑺)

 Client Performs:
2 Generate Keys (𝒔𝒌, 𝒑𝒌)𝑺 = 𝑮𝒆𝒏^𝟏𝝀, 𝒑`
3 ⟦𝒒⟧ ≔ 𝑬𝒏𝒄𝒑𝒌(𝒒)
4 Send (𝒑𝒌), ⟦𝒒⟧) to the server

 Server Performs:
5 for each 𝒊 ∈ 𝟏,… , 𝒏 do
6 ⟦𝒙𝒊⟧ ≔ 𝒄𝒐𝒎𝒑𝒖𝒕𝒆𝑫𝒊𝒔𝒕(⟦𝒒⟧, 𝒔𝒊)
7 ⟦𝑻⟧ ∈ 𝒈𝒆𝒏𝒆𝒓𝒂𝒕𝒆𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅𝒔(𝑺, 𝒑𝒌)
8 for 𝒕 ∈ 𝑻
9 ⟦𝑪⟧ ∶= (𝟎,… , 𝟎)
10 for each 𝒄	 ∈ 𝟏,… , 𝒋 do
11 ⟦𝑪(𝒋)⟧ ∶= 	∑ 𝒊𝒔𝑺𝒎𝒂𝒍𝒍𝒆𝒓(⟦𝒙𝒊⟧, ⟦𝑻∗⟧)𝒏

𝒊2𝟏 ∙ 𝑴(𝒊, 𝒋)
12 s𝒄𝒍𝒂𝒔𝒔𝒒,𝒕v ≔ 𝑨𝒓𝒈𝑴𝒂𝒙𝒄(⟦𝑪⟧)
13 Send s𝒄𝒍𝒂𝒔𝒔𝒒v to the client

 Client Performs:
14 𝒄𝒍𝒂𝒔𝒔𝒒,𝒊 ≔ 𝑫𝒆𝒄𝒔𝒌^s𝒄𝒍𝒂𝒔𝒔𝒒,𝒊v`∀𝒊
15 𝒄𝒍𝒂𝒔𝒔𝒒 ≔ 𝑨𝒓𝒈𝑴𝒂𝒙𝒄 �∑ 𝟏𝒄𝒍𝒂𝒔𝒔𝒒,𝒊2𝒄 � in case of a tie, return null.

 52

Algorithm 1 – GenerateThresholdFunction(𝑆, 𝑝𝑎𝑟𝑎𝑚𝑠)
Input: Database 𝑺: 𝒔𝟏, … , 𝒔𝒏 ∈ ℤ𝒑𝒅,

𝒑𝒂𝒓𝒂𝒎𝒔 – a set of parameters for the algorithm
Output: 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠 – a function of type (𝑋, 𝑝𝑘) → ⟦𝑇⟧!#, which given a

set of distances returns a set of candidate thresholds

Algorithm 1a – Precomputed constant threshold (“Static𝒌-ishNN” introduced by
this thesis)
params: (𝒌)
1 𝒊𝒏𝒊𝒕𝒊𝒂𝒍𝒊𝒛𝒆^𝑨𝒎𝒊𝒏𝒊𝒎𝒖𝒎, 𝑨𝒂𝒗𝒆𝒓𝒂𝒈𝒆, 𝑨𝒎𝒂𝒙𝒊𝒎𝒖𝒎` ≔ 𝒆𝒎𝒑𝒕𝒚	𝒂𝒓𝒓𝒂𝒚𝒔
2 for 𝒔𝒊 ∈ 𝑺
3 𝑫 ≔ 𝒔𝒐𝒓𝒕𝒆𝒅^�𝒍𝟏^𝒔𝒊, 𝒔𝒋`∀𝒊 ≠ 𝒋�`
4 𝑨𝒎𝒊𝒏𝒊𝒎𝒖𝒎 ← 𝒅𝒌, 𝑨𝒂𝒗𝒆𝒓𝒂𝒈𝒆 ←

𝒅𝒌*𝒅𝒌%𝟏
𝟐

, 𝑨𝒎𝒂𝒙𝒊𝒎𝒖𝒎 ← 𝒅𝒌*𝟏
5 𝒈𝒆𝒏𝒆𝒓𝒂𝒕𝒆𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅𝒔 ∶= (𝑿) →

⟦𝑻⟧ ≔ s�𝐦𝐚𝐱(𝑨𝒎𝒊𝒏𝒊𝒎𝒖𝒎) ,𝐦𝐢𝐧(𝑨𝒎𝒂𝒙𝒊𝒎𝒖𝒎) ,𝒎𝒆𝒅𝒊𝒂𝒏^𝑨𝒂𝒗𝒆𝒓𝒂𝒈𝒆`�v

Algorithm 1b – 𝒌-ishNN threshold function (adapted from [1])
params: (𝒌)
1 𝜷 ∶= ~𝚽%𝟏 �𝒌

𝒏
��	

2 𝒈𝒆𝒏𝒆𝒓𝒂𝒕𝒆𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅𝒔 ∶= (𝑿) →
3 ⟦𝝁∗⟧ ≔ 𝒂𝒑𝒑𝒓𝒐𝒙𝒊𝒎𝒂𝒕𝒆 𝟏

𝒏
∑⟦𝒙𝒊⟧

4 ^s𝒍𝒐𝒘((𝝁∗)𝟐)v, s𝒉𝒊𝒈𝒉((𝝁∗)𝟐)v` ≔ base-𝒑 rep. of (𝝁∗)𝟐
5 (⟦𝒍𝒐𝒘(𝝁𝟐∗)⟧, ⟦𝒉𝒊𝒈𝒉(𝝁𝟐∗)⟧) ≔ base-𝒑 rep. of (𝝁𝟐∗)
6 ⟦𝝈∗⟧ ≔ 𝒂𝒑𝒑𝒓𝒐𝒙𝒊𝒎𝒂𝒕𝒆z𝝁∗ − 𝝁𝟐∗
7 ⟦𝑻∗⟧ ≔ ⟦𝝁∗⟧ + 𝜷⟦𝝈∗⟧

Algorithm 1c – 𝐩𝐩𝐊𝐍𝐍 threshold function (implementation used by [43])
params: (none)
1 𝒈𝒆𝒏𝒆𝒓𝒂𝒕𝒆𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅𝒔 ∶= (𝑿) →
2 ⟦𝝁∗⟧ ≔ 𝒂𝒑𝒑𝒓𝒐𝒙𝒊𝒎𝒂𝒕𝒆 𝟏

𝒏
∑⟦𝒙𝒊⟧

3 ^s𝒍𝒐𝒘((𝝁∗)𝟐)v, s𝒉𝒊𝒈𝒉((𝝁∗)𝟐)v` ≔ base-𝒑 rep. of (𝝁∗)𝟐
4 (⟦𝒍𝒐𝒘(𝝁𝟐∗)⟧, ⟦𝒉𝒊𝒈𝒉(𝝁𝟐∗)⟧) ≔ base-𝒑 rep. of (𝝁𝟐∗)
5 ⟦𝝈∗⟧ ≔ 𝒂𝒑𝒑𝒓𝒐𝒙𝒊𝒎𝒂𝒕𝒆z𝝁∗ − 𝝁𝟐∗
6 ⟦𝑻∗⟧ ≔ ⟦𝝁∗⟧ − 𝜶(⟦𝝈∗⟧) + 	𝜷(⟦𝝈∗⟧ + 𝜸)𝐦𝐨𝐝	𝒑	∀	𝜶 ∈ {𝟏, 𝟐, 𝟏𝟎}, 𝜷 ∈ {𝟐%𝟏, 𝟏}, 𝜸 ∈ {𝟎, 𝟏}

Algorithm 1d – random threshold function
params: (none)
7 𝒈𝒆𝒏𝒆𝒓𝒂𝒕𝒆𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅𝒔 ∶= (𝑿) →
8 ⟦𝑻∗⟧ ≔ 𝐸𝑛𝑐(𝑅)	where	𝑅	is	a	list	of	random	numbers ∈ [0, p)

 53

4.1.3 Efficiency Analysis

Protocol 2 has a preprocessing efficiency of:

𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦<𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(S)=

 The protocol’s runtime consists of:

1. Compute 𝑥&, … , 𝑥C

2. Compute 𝑇(0), … , 𝑇(𝑡)

3. Compute 𝐶(0), … , 𝐶(𝑐) for each 𝑡 ∈ 𝑇

4. Compute 𝑐𝑙𝑎𝑠𝑠$ for each 𝑡 ∈ 𝑇

Step 1 is computed with 𝑛 instances of 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐷𝑖𝑠𝑡 run in parallel.

Step 2 is a function of 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠.

Step 3 runs 𝑂(𝑛 ∗ 𝑡) parallel 𝑖𝑠𝑆𝑚𝑎𝑙𝑙𝑒𝑟 subcircuits.

Step 4 is performed by 𝑡 instances of the 𝐴𝑟𝑔𝑀𝑎𝑥(polynomial.

We require that 𝑡 is some small constant of 𝑂(1). This results in a general size a depth

of:

depth(𝑘ishNN	with	precomputation)

= 	𝑂<depth(𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐷𝑖𝑠𝑡) + depth(𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠) + log 𝑐

∙ 𝑑𝑒𝑝𝑡ℎ(𝑖𝑠𝑆𝑚𝑎𝑙𝑙𝑒𝑟)=

and

 54

size(𝑘ishNN	with	precomputation)

= 	𝑂<n ∙ size(𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐷𝑖𝑠𝑡) + size(𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠) + 𝑛

∙ 𝑠𝑖𝑧𝑒(𝑖𝑠𝑆𝑚𝑎𝑙𝑙𝑒𝑟)=

When using approximations as outlined in Algorithm 1b and Algorithm 1c,

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒	𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠 instantiates 𝑂(1) parallel 𝑝𝑟𝑜𝑏𝑎𝑏𝑎𝑙𝑖𝑠𝑖𝑐𝐴𝑣𝑒𝑟𝑎𝑔𝑒 and polynomial

circuits in parallel, resulting in a depth of 𝑂(log 𝑝) and a size of 𝑂< 𝑝=. The

precomputation step only determines the value of a single numerical value, and therefore

runs in constant time and space.

When using a constant precomputed threshold as outlined in Algorithm 1a:

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠 performs no computation and returns 𝑂(1) constants, resulting in

𝑂(1) size and depth. Precomputation of a constant threshold by determining the range of

values of 𝜅 that result in a precisise measurement of 𝑘 for any point in feature space

requires computing and sorting a distance array of size 𝑂(𝑛) a total of 𝑂(𝑛) times,

resulting in a precomputation time of 𝑂(𝑛3 log 𝑛). The algorithm can have a parallelization

factor of up to n, resulting in 𝑂(𝑛) parallel instances of runtime 𝑂(𝑛 log 𝑛).

4.1.4 Security

We assume a semi-honest server (one that follows the algorithm but tries to derive

knowledge about the query during the run of the algorithm). Observe that two runs of

the algorithm with two values 𝑞, the actual query, and 𝑞E, a randomly generated query,

 55

would be computationally indistinguishable and, assuming that our encryption scheme is

sound, contain identically meaningless values across the entire server-side computation.

 56

4.2 H.E. SVM

As the number of features per class grows, an algorithm that scales with the number

of features will become computationally intractable. This section describes a

homomorphically encrypted SVM that uses its precomputation stage to build a set of

vectors 𝑊 that describe the classes in the feature space.

Protocol 3 – Privacy Preserving SVM (ppSVM) classification
Shared Input: integers 𝒑, 𝒅, 𝒄 > 𝟏
Client Input: a point 𝑞 ∈ ℤ!< and a security parameter 𝜆
Server Input: points 𝑠0, … , 𝑠; ∈ ℤ!<
Client Output: 𝑐𝑙𝑎𝑠𝑠> ∈ [𝑐],	the	estimated	class	of	𝑞	
 Server Performs:
1 𝑾≔	an iteratively computed matrix of weighted feature vectors such that 𝒘Dµµµµ⃗

is the weight vector associated with class 𝒊 in the Crammer-Singer formulation of
an SDN computed as described in [48].

 Client Performs:
2 Generate Keys
3 ⟦𝒒⟧ ≔ 𝑬𝒏𝒄𝒑𝒌(𝒒)
4 Send (𝒑𝒌), ⟦𝒒⟧, 𝒓𝒆𝒍𝒊𝒏𝒆𝒂𝒓𝒊𝒛𝒂𝒕𝒊𝒐𝒏𝑲𝒆𝒚𝒔	 to the server

 Server Performs:
5 ⟦𝑪⟧ ∶= (𝟎,… , 𝟎)
6 for 𝒘𝒊 ∈ 𝑾
7 𝑪(𝒊) ≔ ∑ s𝒘𝒊,𝒋vs𝒒𝒋v𝒋
8 Send 𝐬𝐡𝐮𝐟𝐟𝐥𝐞(𝑪) to the client

 Client Performs:
9 𝑪E := (0, … , 0)

10 𝑪E(𝒊) ≔ ¾⟦𝟏⟧	⟦𝟎⟧
𝑨𝒓𝒈𝑴𝒂𝒙𝒊 �𝑫𝒆𝒄𝒔𝒌^𝑪(𝒊)`� = 𝒊

𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

11 send 𝑪E to Server
 Server Performs

12 send 𝐮𝐧𝐬𝐡𝐮𝐟𝐟𝐥𝐞(𝑪E ∙ ⟦𝟏⟧) to client
 Client Performs:

13 𝒄𝒍𝒂𝒔𝒔𝒒 = 𝑨𝒓𝒈𝑴𝒂𝒙𝒊 �𝑫𝒆𝒄𝒔𝒌^𝑪E(𝒊)`�

 57

Keerthi et. al. [49] describe a method for computing the dual of a matrix of one-to-

many support vectors, which is implemented in LibLINEAR [50]. This resulting weight

matrix 𝑊 has the convenient property that the classification computed by a linear SVM

can be computed by

𝐶𝑙𝑎𝑠𝑠> = 𝐴𝑟𝑔𝑀𝑎𝑥+(𝑤F¢¢¢¢⃗ ∙ 𝑞G)

the computation of which requires only 𝑂(|𝐶|[𝑔]<)	 multiplications. A fully trained

system also does not depend on the size of the feature space, which is convenient when

the number of features per class is high.

This reduction of an SVM to a small number of dot products and comparisons makes

it feasible to perform the actual classification using homomorphic encryption by

computing and scaling 𝑊 in a plaintext pre-computation. However, W necessarily contains

negative numbers, and translations into positive space change the ordering of the class

weightings. This precludes the use of a BGV encryption scheme, so this algorithm is

implemented using CKKS, which supports large and negative numbers but loses precision.

Without BGV, the polynomial comparison 𝑖𝑠𝑆𝑚𝑎𝑙𝑙𝑒𝑟 is more difficult to implement.

We experimented with the polynomial expansion of a step function [51], however these

expansions require that the numbers being compared are relatively close. Instead, we send

the class weights to the client to perform 𝐴𝑟𝑔𝑀𝑎𝑥 in plaintext. In order to partially

mitigate server data leakage to semi-honest clients, we perform an additional roundtrip

that partially obscures the secondary class weightings.

 58

There are several projects contemporaneous with this thesis that have shown promising

preliminary results in homomorphically encrypted vector comparison. Sun et. al. have

demonstrated binary classification using a hyperplane [37] by extending BGV to support

efficient comparisons. Cheon et. al. have shown promising results in numerical methods

for approximating comparisons in CKKS schemes. Either of these lines of research would

enable an implementor of Protocol 3 to bypass the relinearization and shuffling methods

with a homomorphic computation of 𝐴𝑟𝑔𝑀𝑎𝑥, either by supporting the BGV

implementation of 𝑖𝑠𝑆𝑚𝑎𝑙𝑙𝑒𝑟 in the former case, or by providing an alternative to that

function in the latter.

4.2.1 Efficiency

The precomputation is a function of the implementation of the training of the linear

SVM, which is at least quadratic in the library we use [52].

The dot product can be run in parallel and therefore can have a depth of

𝑂 L ;
'HIHJJKJ)LHM)NO	QHRMNI

P and size O(n). The server-side reshuffle also does an O(1) parallel

operation to add noise to client data.

4.2.2 Security

The analysis used above applies here as well, a semi-honest server would be unable to

meaningfully distinguish between ⟦𝑞⟧ and a random ⟦𝑞′⟧. The final step, shuffling and

 59

unshuffling the class weights, prevents a semi-honest client from reverse engineering the

vectors in two queries (which it could do otherwise), but does not provide strong security

guarantees if the algorithm is run multiple times.

Note [53] describes efficient comparison in CKKS and [37] demonstrates hyperplane

decision boundaries in a modified implementation of BGV that would still accommodate

the 𝑖𝑠𝑆𝑚𝑎𝑙𝑙𝑒𝑟 implementation in [1]. It is likely that either CKKS comparisons will enable

the implementation in this thesis, or modified BGV will support the dual of the dot

product operation in lines 6 and 7 of Protocol 3, which would similarly maintain efficiency

while mitigating the server information leak.

 60

Chapter 5: Results

This section describes the implementation and testing of the algorithms described in

Chapter 4: and the analysis of those results. We show that the extension to 𝑘-ishNN

exhibits improved efficiency and accuracy in a wide range of conditions, and demonstrate

that a homomorphically encrypted SVM can operate efficiently on real-world datasets.

5.1 Implementation Details

Here we discuss some high-level implementation details. See Appendix A – Source

Code for the specific implementations of these algorithms. In order to facilitate more

rigorous testing of the precision of algorithms, we built each protocol twice: once with

encryption, and once with emulated encryption (which runs orders of magnitude faster).

Before running the unencrypted simulator, we ran both protocols several dozen times on

several hundred candidate values of 𝑆, 𝑘, and 𝑞. Because the algorithms have a degree of

randomness, we decrypted and compared the distribution of intermediate variables to

ensure that the simulated and actual algorithms are functionally equivalent.

Our encrypted implementations were built by modifying existing libraries. For each

algorithm, we relied on several existing projects:

For the 𝑘-ishNN implementation, we used the “privacy preserving kNearestNeightbor”

(ppKNN) open source repository [5] as a starting point. This library uses the Library of

 61

Practical Homomorphic Encryption algorithms (liphe) [11] to access the HElib

implementation of the BGV protocol [12]. We also used liphe helper functions to generate

polynomial expansions of functions when necessary. We implemented an emulator that

performs HElib and liphe operations in python using NumPy [13].

For the ppSVM implementation, we used PyFhel [14] as a starting point. PyFhel is a

python interface to HElib and the Microsoft Simple Encrypted Arithmetic Library [15],

[16], which both implementations of BGV and CKKS homomorphic encryption protocols.

PyFhel has been out of maintenance for several years and required significant

modification. For training, we used the LibLINEAR [8] implementation of Crammer and

Singer’s SDM training method. We performed data cleaning and preparation using the

scikit-learn [18] data cleaning and vectorization libraries.

5.2 Tests

We tested the classifiers against three datasets: a collection of measurements and

diagnoses of tumor samples, a database of car data, and a collection of facial images. The

former two datasets were selected because they were used to established baselines in the

foundational work this thesis extends. The latter was selected as a motivating dataset

that, while sufficiently limited in scale to allow the testing of a wide range of potential

approaches, still presents many of the challenges inherent in biometric recognition tasks.

 62

For each dataset, we vary grid size and (for nearest neighbor-based algorithms) the

size of 𝑘 to measure the effect of these values on the accuracy of the algorithms. We also

prepared versions of each dataset projected into different dimensions to measure the trade-

off between computational and algorithmic efficiency at low dimensions and increased

availability of precision and differentiation in high dimensions.

5.2.1 Breast Cancer

The Wisconsin Breast Cancer Diagnostic Dataset is a set of vectors representing 357

benign and 212 malignant breast cancer tumors. Each vector is a 30-dimensional

normalized vector representing the mean, standard error, and “worst” readings (defined as

the average of the three highest readings) for ten measurements taken on each tumor.

The dataset is popular as a test dataset for initial testing of binary classification

algorithms because it has two easily distinguished classes in a continuous, high

dimensional space. Generally, benign tumors are clustered closely, while there is a higher

degree of variability in the measurements of malignant tumors. Because the size and depth

of our homomorphically encrypted KNN approximation depends heavily on the number

of dimensions in the space being classified, we use 2d, 3d, and 5d LDA projections of the

space in addition to the original 30-dimensional dataset. Performing an LDA projection

involves multiplying by a single projection matrix, which we assume is performed by the

client in these experiments. Figure 4 and Figure 5 show the 2- and 3-D projections of the

breast cancer dataset respectively.

 63

Figure 4: LDA projection of the breast cancer diagnostic dataset into two dimensions. The green
cluster shows benign tumors; the red cluster is malignant.

Figure 5: LDA projection of the breast cancer diagnostic dataset in three dimensions. As in Figure 4,
the green cluster (right) shows benign tumors, while red shows malignant tumors (left). Axes are still

meaningless. Note that again the clusters are relatively distinct from each other, although the malignant
set is less tightly clustered.

As discussed in Section 3.4.3 there is an overflow risk in threshold computation. Tests

involving binary classification may not capture this error if the correct classification is

 64

also the class of the element more common in the feature set; this is the case in the breast

cancer set, which has over 50% more benign than malignant tumors. Because overflow

sensitivity is a function of feature density, we generated a second test set with additional

artificial malignant tumor vector representations (Figure 6). The ratio of malignant to

benign points in this synthetic set is the inverse of the original dataset.

Figure 6: LDA projection in two-dimensional space of modified breast cancer dataset. Meanings of the
clusters are the same as Figure 4. The benign tumor data is unchanged. Additional malignant tumor data

has been randomly generated with a convex hull around the original malignant tumor feature cloud.

5.2.2 Cars

The Car Evaluation Data Set is a set of 1728 cars’ profiles represented by integer

vectors in a 4x4x4x3x3x3 space (totaling 1748 possible descriptions). Each vector

represents the car’s value, level of maintenance, number of doors, capacity, trunk size,

and safety rating. Each car is then classified by desirability on a four-point scale.

 65

The sample contains a large concave region of “undesirable” cars and smaller clusters

within the “desirable” space. Similar to the breast cancer diagnostic dataset, we use 2- and

3- dimensional LDA projections of the space in addition to the original sample, which are

shown in Figure 7 and Figure 8.

Because the sample almost completely describes the space, it has roughly uniform

density, meaning there is a low variability in the range of thresholds necessary to

accurately estimate 𝑘 when building a KNN classifier. The discrete and categorical nature

of the axis in this dataset also make the use of 𝑙0 norms a natural choice of distance

function.

Figure 7: LDA projection of cars dataset in two dimensions. The large, red cluster (right) are
undesirable cars. The green (left, top), blue (left, bottom), and yellow (far left) are the various levels of

“desirability”

 66

Figure 8: LDA projection of cars dataset to three dimensions. Colors are the same as Figure 7.

5.2.3 Faces

The Yale Extended Facial Dataset B [23] is a collection of photographs of the faces of

28 human subjects in a variety of lighting conditions and angles. We trained an embedding

of the dataset using the OpenFace [41] PyTorch [54] implementation of FaceNet [25] to

create a non-linear mapping from facial images to points in a 128-dimensional embedding

space. For these experiments we consider the ability of our algorithms to correctly classify

a face given the vector representation of the face in that embedding.

We selected the dataset as a difficult motivating problem. It has a comparatively high

number of classes and heterogeneity as compared to other test datasets used.

As with the other two datasets, we use dimensionality reduction techniques to reduce

the number of dimensions and improve the efficiency of our algorithms. We attempted

 67

several non-linear dimensionality reduction algorithms. First, we tested t-SNE (Figure 9

and Figure), which seeks to preserve “clusters” of points in the projection and was designed

and is largely used as a visualization and debugging tool. Projecting queries into a reduced

space generated by t-SNE [55] requires comparisons to points in the original dataset,

defeating the original purpose for performing dimensionality reduction [56]. We then used

MDS, which seeks to preserve distances between points during dimensionality reduction,

but it fails to preserve class boundaries without significant turning, and has a similar “out

of sample” mapping complexity issue to t-SNE.

Figure 9 - Yale Extended B dataset projected to two dimensions using t-SNE. The t-SNE project
seeks to preserve “clusters” of points. High degrees of visual separation on this graph tends to correlate
with an original embedding space that has distinct regions for different classes of features. Each color

corresponds to a single subject. Some of the 28 colors are very similar; each class is tightly clusters in this
dataset.

 68

Figure 10: Yale Extended B dataset projected to three dimensions using t-SNE. The interpretation of
this graph follows the same logic as Figure 9. When inspected interactively, the clusters here have a visual

margin between them.

Figure 11 Yale Extended B dataset projected into two dimensions using non-metric MDS. MDS is a
non-linear mapping from high dimensional space that seeks to maintain distance between points. Unlike t-
SNE in figures 9 and 10, it is possible to map newly introduced points in the original feature space into an
MDS projection. As is apparent from the high levels of overlap between classes in this image, MDS does

not preserve class separation on our dataset; so MDS isn’t particularly useful in this application.

 69

An effective alternative to dimensionality reduction techniques is to retrain the

classifier that maps faces into an embedding space by altering the size of the embedding

space to the desired dimensionality. This causes some loss of expressiveness of the original

mapping, but allows for efficient mapping of queries into a low dimensional feature space.

The retraining can be performed efficiently on an already-trained classifier by preserving

the weights in the rest of the system.

The experiments in this thesis use the LDA projection of a high-dimensional embedding

space as the technique is more generally applicable than modifying and retraining an

embedding.

Figure 12: An LDA projection into two dimensions of the Yale Face Database B. New points in the
embedding space can be efficiently mapped into the low dimensional space using only additions and

multiplications (the projection is a dot product with the basis vectors of the new space). This makes an
LDA projection a natural choice for HE classifiers if enough separation between classes is preserved.

 70

Figure 13 An LDA projection into three dimensions of the Yale Face Database B. There is visual
separation between many of the classes in the dataset in this projection, and LDA supports efficient

projection from the original embedding space using only HE-supported operations. This makes the LDA
projection an attractive choice for a dimensionality reduction technique in this trial.

5.3 Metrics

5.3.1 Accuracy

In order to measure of the accuracy of each algorithm we perform leave-one-out cross

validation to provide consistent results with [1]. We compute the accuracy of each

algorithm, defined as the ratio of correct classifications to total classification attempts.

We also measure the error rate. The error rate and accuracy do not always sum to one

because our modification of 𝑘-ishNN can refuse to classify an ambiguous query.

 71

5.4 The Experiments

5.4.1 Accuracy

KNN accuracy with different threshold families

We ran KNN, k-ishNN (Protocol 1), and staticKishNN (Protocol 2 with Algorithm 1a)

on all three datasets for a range of grid sizes from 10 to 250 and a range of values of 𝑘

from 2 to 256. For each dataset, I've performed cross-validation against reserved sets of

points to measure the accuracy and precision of each algorithm.

In most experiments, both values are identical, however because the static threshold

approach can choose a null response if it does not have agreement between at least two

thresholds, it achieves a higher accuracy than even the reference KNN algorithm, though

it continues to have lower precision.

Figures 15-21 depict the results of these experiments. The reference implementation of

KNN is depicted in red, the thesis’ contribution of k-ishNN with precomputation is blue,

and the original 𝑘-ishNN algorithm is green. Across all three datasets, the static

precomputation approach outperforms the 𝑘-ishNN algorithm for all values of 𝑘 and grid

resolutions in both accuracy and runtime. The difference is particularly pronounced when

performing facial recognition, our motivating biometric recognition task. On the biometric

recognition task, 𝑘-ishNN barely outperforms random chance, with between 0 and 30%

correct classifications, while KNN and k-ishNN achieve accuracies as high as 55%.

 72

Also noteworthy is the comparison between figures 17 and 19. Figure 17 depicts the

breast tumor dataset binary classification task (Figure 4), and both HE systems achieve

the reasonable accuracy originally observed in [1]. In Figure 19, the modified version of

the same dataset (figure 6) exhibits significant decay in accuracy for the 𝑘-ishNN

algorithm. The former dataset has more training features for the class with higher spatial

feature density, the latter has more features for the more widely distributed class. The

latter dataset results in high misclassification rates in the case of an overflow. Also notable

between these two datasets: the decreased variation in point density across the feature

space results in a significant improvement in classification using static thresholds, as the

variance in the value of T that would result in 𝜅 = 𝑘 is a function of density variance.

 73

Figure 14 – the precision (solid) and error rates (dotted) of plaintext KNN (red) and StaticKishNN
blue) on the 3d LDA projection of the Yale Face Database. The X axis is an unordered permutation of

values of 𝑘 ∈ {2,4,8,16,32,64,128,256} and 𝑔𝑟𝑖𝑑_𝑠𝑖𝑧𝑒 ∈ {20, 40, 80, 120, 160, 200, 300}. The design choice of
building the static 𝑘-ishNN classifier to dismiss ambiguous results means that, though it has a lower recall

rate than classic KNN, it also has a consistently lower false classification rate.

Figure 15: Performance of KNN (red),
static𝑘-ishNN (blue), and 𝑘-ishNN (green) on
the cars dataset using a 2D LDA projection.

Figure 16: Performance of KNN (red),
static𝑘-ishNN (blue), and 𝑘-ishNN (green) on
the cars dataset. Because the cars dataset is

already on a grid, the grid size has no effect on
output.

 74

Figure 17 Performance of KNN (red),
static𝑘-ishNN (blue), and 𝑘-ishNN (green) on a

2d LDA projection of the Wisconsin Breast
Cancer dataset

Figure 18: Performance of KNN (red),
static𝑘-ishNN (blue), and 𝑘-ishNN (green) on a

3d LDA projection of the Wisconsin Breast
Cancer dataset.

Figure 19 Performance of KNN (red),
static𝑘-ishNN (blue), and 𝑘-ishNN (green) on a
2d LDA projection of the extended breast cancer
dataset In contrast to Figure 17, here 𝑘-ishNN’s
performance decays rapidly as 𝑘 and grid size

decrease.

 75

Figure 20: Performance of KNN (red),
static𝑘-ishNN (blue), and 𝑘-ishNN (green) on
the faces dataset using a 3D LDA projection.

Figure 21: Performance of KNN (red),
Static𝑘-ishNN (blue), and 𝑘-ishNN(green) on the

faces dataset using a 2D LDA projection.

Privacy Preserving SVM

We repeated the experiments to measure the performance of the privacy preserving

SVM (protocol 3 – labeled “ppSVM”). Using the OpenFace algorithm as a benchmark,

ppSVM has lower precision that improves as the number of dimensions increases. We also

measured the effect of differing grid sizes, and though the grid impacted runtime, it did

not impact accuracy for even relatively coarse grids.

 In general, the SVM and KNN algorithms performed similarly in low dimensions.

Because SVM scales with Ω(𝑐𝑙𝑎𝑠𝑠𝑒𝑠 ∙ 	𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠) and KNN scales with Ω(𝑐𝑙𝑎𝑠𝑠𝑒𝑠 ∙

	𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠), we were able to run experiments on SVMs on a higher number of dimensions

without either exceeding a noise threshold on the computation or needing to execute

multi-day runtimes.

 76

 The ability to scale to higher dimensions allows SVM based algorithms to take

advantage of more information, and this is reflected in the results, which show significant

improvements to precision as the number of dimensions increases.

Figure 22: Average precision of selected algorithms on face dataset in multiple dimensions. The
OpenFace implementation of FaceNet (blue) serves as a benchmark. The KNN approximation algorithms

were only run on 2 and 3 dimensional datasets because the computation demands of those approaches
rapidly become impractical for datasets with large numbers of training features, such as the facial

recognition database used here.

Figure 23 A one-to-one comparison of the OpenFace and ppSVM classifiers on vectors projected into
an identical embedding space. OpenFace uses the scikit-learn [57] SVM classifier. The accuracy of the two

algorithms begin to converge as the number of dimensions increases.

 77

Figure 24 Precision of ppSVM and scikit-learn’s wrapper of LibLINEAR [50], [57]. Though the two
lines appear to overlap, the computation noise in ppSVM has caused a very slight decrease in precision on
the test dataset. Both achieve nearly 80% accuracy in single element cross validation on a ten-dimensional

projection of our facial recognition embedding space.

5.4.2 Timing

We also measure the runtime of these algorithms. Figures 25 and 26 show timing data

collected during the experimental testing of the 𝑘-ishNN system described in Section 5.4.1.

In addition to being more accurate, the pre-computation approach has significantly

improved runtimes, especially for large grid sizes. This is likely because the approximation

used in Algorithm 1b requires the computation of several additional polynomials. We did

not measure the degree of parallelism used in these experiments, it may be possible to

improve performance of one or both of these algorithms through improved optimization

and parallelization.

 78

Figure 25 – The runtime of classification tasks using the 𝑘-ishNN algorithm both with and without
precomputation. Colors are displayed based on a normalized log scale (dark green is a fraction of a second
per query, dark red is over a minute per query). Timing was computed by taking the average time per query
of 300 queries during cross-validation. Measurements were taken on a docker container running on a 2016
MacBook Pro with a 2.9 GHz Intel Core i5 processor and 8GB of LPDDR3 RAM. The data contains some
clusters of outliers caused by the thermal throttling by the host OS. The algorithms that use precomputation
can run in seconds instead of minutes on large grid sizes. As expected, runtime does not vary as a function
of 𝑘.

 79

Figure 26 – The runtime of biometric classification tasks using the 𝑘-ishNN algorithm both with and
without precomputation. Colors are plotted on the displayed based on a normalized log scale. The

runtimes were collected using the same system as the one described in Figure 25. On this dataset the
KishNN algorithm exceeded the available parallelism, causing significant slowdowns.

The implementation of the SVM algorithms ran on a different encryption library

(SEAL [34] instead of HElib [33]) and no attempt was made to optimize any of the

parameters in this system, resulting in a time per query of several minutes and making

 80

comparisons between that algorithm and the modified 𝑘-ishNN algorithm not particularly

meaningful.

5.5 Discussion

We have shown that a naïve precomputation step can result in across-the-board

performance and accuracy improvements to a homomorphically encrypted classification

algorithm. This result suggests that exploring other pre-trained classification parameters

or selecting from a family of functions based on the training database might yield even

more improvements.

These experiments also demonstrated that classification tasks that scale with the

number of classes rather than the number of feature sets are feasible given the current

state of the art, though our implementation has high fixed overheads. Incorporating

improved parallelism and more efficient comparison operators could increase the speed

and utility of these algorithms in the future.

 81

Chapter 6: Conclusion

This thesis presents two methods for moving most of the computation necessary to

perform classification into pre-computation on the training set, allowing for efficient,

homomorphically encrypted classification at sufficient resolution to enable biometric

recognition. We demonstrate the efficacy of both of these methods on a binary

classification task involving actual breast tumor data, on car desirability classification,

and on a general facial recognition task.

These contributions demonstrate that it is both possible to perform practical server-

side biometric recognition without exposing data to the classifier.

6.1 Next Steps / Future Work

Both algorithms rely on relatively naïve implementations and have several areas for

improvement in future work.

ppSVM does not take advantage of recent innovations in the computation of

hyperplane decision boundaries in BGV, and makes no effort to optimize the CKKS

implementation it uses, or to implement comparisons in CKKS. Future work should apply

these optimizations to sparse SVMs, which could potentially significantly improve the

efficiency of the algorithm.

 82

The 𝑘-ishNN extensions establish that even a constant function can outperform the

originally implemented Gaussian approximation. Exploring alternative families of

threshold generation functions might improve accuracy. For example, while preparing this

thesis we used brute force to generate a polynomial that takes the average value of 𝑋 as

an input and returns the threshold as output, but ran into overfitting and approximation

error issues; a more sophisticated approach to precomputing a threshold generation

function or selecting the most appropriate generator from a family of candidate functions

might improve the adaptability of the algorithm.

More generally, finding ways to adjust established algorithms to cache or precompute

the portions of the algorithms that can be performed in plaintext is underexplored in the

classification context. As more functions are well approximated in homomorphically

encrypted contexts, this may be a fruitful area of inquiry.

6.2 Practical applications unlocked

The contributions of this thesis are sufficient to build a facial classifier that can identify

people from a small community while giving those people strong privacy guarantees.

Privacy preserving identification systems have clear utility in situations where

identification is desirable but at odds with an expectation of privacy. For example, the

algorithms in this thesis could be to build security systems that alert when an unfamiliar

person enters an area (an important application for automating “bubbles” during the

 83

current COVID pandemic) while not building detailed logs that violate expectations of

privacy.

This might also provide a practical “shield” from legal liability. Service providers could

provide classification-based services without collecting sensitive or heavily regulated data.

For example, these algorithms could be used by medical diagnostic classifiers to provide

medical advice and insight without requiring access to the patient’s identity or diagnosis,

which might be important for encouraging patient participation in the face of concerns

about increased insurance premiums (an example originally considered in [1]).

6.3 Potential Interactions with Technology Policy

There are two categories of technology policy considerations where this might have

immediate practical impact. The first is informing how regulators design policies relating

to data privacy, use, storage and sharing. The second is how service providers design

systems to minimize liability risk and exposure.

Some aspects of data use, such the quantity data preserved or mechanisms used in

data storage, is difficult for regulators to observe or enforce. Because of this, data

regulation tends to focus on the collection and use of data, or on the behavior of a firm

after a public breach. These policies, because they focus on the nature of the data and its

use, have recently been formulated around categories of data, of which personally

identifiable and biometric data is particularly sensitive. This work demonstrates that

 84

application-based restrictions might be overly aggressive, and exceptions for encrypted

data could allow regulators to protect user data without restricting useful services by

creating exceptions for encrypted computation.

Service providers can approach this problem from the other side. Breach notification

and security and compliance rules are tuned explicitly for the nature of the data being

stored [58]–[60]. Data that is irrecoverable or uninterpretable (such as encrypted data with

no key) is in many jurisdictions subject to much lower standards of care. Using

homomorphic encryption for simple classification tasks using a method like the one

outlined in Section 4.2 (which does not require the storage of reference features), might

avoid many of the more stringent regulations by never collecting the most sensitive classes

of information.

6.4 Lessons Learned

Cryptographic algorithms should be run in simulation first. Similar to machine learning

algorithms, cryptographic computations effectively run in a black box. Building

monitoring systems to keep track of noise levels, decrypt and log intermediate values, and

generally provide a higher level of visibility was critical to exploring and debugging these

algorithms. Discovering the overflow problem with the 𝑘-isnNN algorithm took days, both

because intermediate values in an encrypted system are obfuscated, and because running

a test of an HE algorithm can take hours to days to run across a permutation of possible

 85

inputs. Building an “unencrypted mode” that tracked noise levels but did not actually

perform the expensive encrypted computations was a massive productivity boost.

Heterogeneous and hetero-temporal execution environments require heterogeneous

system design. Portions of our algorithm necessarily ran in a computing environment with

vastly different properties and constraints than a typical computing model. Some

operations (those responding to a query) needed to happen in real time, while others could

be precomputed. Good system design requires careful consideration of where and when

computation can be performed most effectively. In a typical computing environment,

caching the results of an asymptotically fast operation is usually unnecessary; in a partially

homomorphically encrypted environment, it is worthwhile to create somewhat awkward

divisions between different parts of algorithms in order to move as much computation

into a cache or at least into plaintext. The constant factors are high enough that this

often remains true even if the move to plaintext or a cache results in worse asymptotic

complexity.

Cryptography needs better interdisciplinary communication. The author worked on

this project while also involved in regulatory policy research and had a chance to discuss

the work with both his technical and non-technical colleagues. As a rule, technical experts

are less likely to trust (unprovable) policy-based approaches to privacy and fairness and

legal experts are less likely to trust (difficult to understand or audit) technical measures

 86

to protecting privacy and fairness. Especially under-communicated are the various security

threat models and how those threat models are designed and used.

6.5 Final Thoughts

Biometric recognition is a sensitive topic. It’s become a hot-button issue as surveillance

concerns play a growing role in civil and political discourse. This thesis describes and

demonstrates the feasibility of biometric recognition systems that operate entirely on

encrypted data, establishing an importing first step in providing technical tools that

mitigate many of the social concerns raised by modern recognition systems.

 87

Bibliography

[1] H. Shaul, D. Feldman, and D. Rus, “Secure k-ish Nearest Neighbors Classifier,”

in PoPETS, 2020, pp. 1–20, Accessed: 07-Aug-2020. [Online]. Available:

http://arxiv.org/abs/1801.07301.

[2] P. Jayapal, “H.R.7356 - 116th Congress (2019-2020): Facial Recognition and

Biometric Technology Moratorium Act of 2020,” 2020, Accessed: 17-Aug-2020.

[Online]. Available: https://www.congress.gov/bill/116th-congress/house-bill/7356.

[3] E. J. Markey, “S.4084 - 116th Congress (2019-2020): Facial Recognition and

Biometric Technology Moratorium Act of 2020,” 2020, Accessed: 17-Aug-2020.

[Online]. Available: https://www.congress.gov/bill/116th-congress/senate-

bill/4084/text.

[4] J. Zou and L. Schiebinger, “Design AI so that its fair,” Nature, vol. 559, no. 7714.

Nature Publishing Group, pp. 324–326, 19-Jul-2018, doi: 10.1038/d41586-018-

05707-8.

[5] A. Amini, A. P. Soleimany, W. Schwarting, D. Rus, and S. N. Bhatia, “Uncovering

and Mitigating Algorithmic Bias through Learned Latent Structure,” vol. 19, 2019,

doi: 10.1145/3306618.3314243.

[6] Privacy and Technologies of Identity. Springer-Verlag, 2006.

 88

[7] “About Face ID advanced technology - Apple Support.”

https://support.apple.com/en-us/HT208108 (accessed Aug. 18, 2020).

[8] “Sidewalk Labs | The next-generation intersection helps all modes share the street.”

https://www.sidewalklabs.com/blog/the-next-generation-intersection-helps-all-

modes-share-the-street/ (accessed Aug. 18, 2020).

[9] “The Future of AI in Law Enforcement - Intel.”

https://www.intel.com/content/www/us/en/analytics/artificial-

intelligence/article/ai-helps-find-kids.html (accessed Aug. 18, 2020).

[10] H. A. Abbass, “An evolutionary artificial neural networks approach for breast cancer

diagnosis,” Artif. Intell. Med., vol. 25, no. 3, pp. 265–281, Jul. 2002, doi:

10.1016/S0933-3657(02)00028-3.

[11] ISACA, “State of Cybersecurity 2020 (part 1),” Isaca, no. November 2018, p. 22,

2020.

[12] R. Rivest, A. Shamir, and L. Adleman, “On Data Systems and Privacy

Homomorphisms,” Found. Secur. Comput., vol. 4(11), pp. 169–180, 1978, Accessed:

15-Aug-2020. [Online]. Available:

https://pdfs.semanticscholar.org/3c87/22737ef9f37b7a1da6ab81b54224a3c64f72.pd

f%0Ahttp://files/834/22737ef9f37b7a1da6ab81b54224a3c64f72.pdf.

[13] C. Gentry, “A Fully Homomorphic Encryption Sch,” 2009.

 89

[14] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) fully homomorphic

encryption without bootstrapping,” in ACM Transactions on Computation Theory,

2014, vol. 6, no. 3, doi: 10.1145/2633600.

[15] S. Halevi and V. Shoup, “Algorithms in HElib,” in Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), 2014, vol. 8616 LNCS, no. PART 1, pp. 554–571, doi:

10.1007/978-3-662-44371-2_31.

[16] “{M}icrosoft {SEAL} (release 3.5).” Apr-2020.

[17] R. E. Fan, K. W. Chang, C. J. Hsieh, X. R. Wang, and C. J. Lin, “LIBLINEAR: A

library for large linear classification,” J. Mach. Learn. Res., vol. 9, pp. 1871–1874,

2008, doi: 10.1145/1390681.1442794.

[18] J. K. Winn, “Are ‘Better’ Security Breach Notifications Possible?,” Berkeley

Technol. Law J., vol. 24, pp. 1009–1018, 2009.

[19] M. Burdon, “Contextualizing the tensions and weaknesses of information privacy

and data breach notification laws,” St. Cl. Comput. High Technol. Law J., vol. 27,

no. 1, pp. 63–129, 2010, [Online]. Available:

http://digitalcommons.law.scu.edu/chtlj/vol27/iss1/3/%5Cnhttp://heinonline.org

/HOL/Page?handle=hein.journals/sccj27&id=65&div=&collection=.

[20] “NSA collecting phone records of millions of Verizon customers daily | US news |

 90

The Guardian.” https://www.theguardian.com/world/2013/jun/06/nsa-phone-

records-verizon-court-order (accessed Aug. 18, 2020).

[21] “U.S., British intelligence mining data from nine U.S. Internet companies in broad

secret program - The Washington Post.”

https://www.washingtonpost.com/investigations/us-intelligence-mining-data-from-

nine-us-internet-companies-in-broad-secret-program/2013/06/06/3a0c0da8-cebf-

11e2-8845-d970ccb04497_story.html (accessed Aug. 18, 2020).

[22] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, “Eigenfaces vs. fisherfaces:

Recognition using class specific linear projection,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 19, no. 7, pp. 711–720, 1997, doi: 10.1109/34.598228.

[23] “Yale Face Database.” http://vision.ucsd.edu/~leekc/ExtYaleDatabase/Yale Face

Database.htm (accessed Aug. 17, 2020).

[24] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep

Convolutional Neural Networks.” Accessed: 18-Aug-2020. [Online]. Available:

http://code.google.com/p/cuda-convnet/.

[25] F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A unified embedding for face

recognition and clustering,” in Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, 2015, vol. 07-12-June,

pp. 815–823, doi: 10.1109/CVPR.2015.7298682.

 91

[26] “PRIVACY AND TECHNOLOGIES OF IDENTITY.”

[27] J. Heurix, P. Zimmermann, T. Neubauer, and S. Fenz, “A taxonomy for privacy

enhancing technologies,” Comput. Secur., vol. 53, pp. 1–17, Jun. 2015, doi:

10.1016/j.cose.2015.05.002.

[28] “Google AI Blog: Federated Learning: Collaborative Machine Learning without

Centralized Training Data.” https://ai.googleblog.com/2017/04/federated-learning-

collaborative.html (accessed Aug. 18, 2020).

[29] K. Bonawitz et al., “Practical Secure Aggregation for Privacy-Preserving Machine

Learning.”

[30] R. L. Rivest, L. Adleman, and M. L. Dertouzos, “ON DATA BANKS AND

PRIVACY HOMOMORPHISMS,” 1978.

[31] C. Gentry, “Fully Homomorphic Encryption Using Ideal Lattices,” in Proceedings

of the Annual ACM Symposium on Theory of Computing, 2009, pp. 169–178, doi:

10.1145/1536414.1536440.

[32] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption for

arithmetic of approximate numbers,” in Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 2017, vol. 10624 LNCS, pp. 409–437, doi: 10.1007/978-3-319-70694-

8_15.

 92

[33] S. Halevi, “An Implementation of homomorphic encryption,” p. 2015, 2015,

Accessed: 15-Aug-2020. [Online]. Available: https://github.com/shaih/HElib.

[34] “microsoft/SEAL: Microsoft SEAL is an easy-to-use and powerful homomorphic

encryption library.” https://github.com/Microsoft/SEAL#citing-microsoft-seal

(accessed Aug. 07, 2020).

[35] “HayimShaul/liphe: Library for Practical Homomorphic Encryption.”

https://github.com/HayimShaul/liphe (accessed Aug. 16, 2020).

[36] “ibarrond/Pyfhel: PYthon For Homomorphic Encryption Libraries, perform

encrypted computations such as sum, mult, scalar product or matrix multiplication

in Python, with NumPy compatibility. Uses SEAL/HElib/PALISADE as backends,

implemented using Cython.” https://github.com/ibarrond/Pyfhel (accessed Aug.

07, 2020).

[37] X. Sun, P. Zhang, J. K. Liu, J. Yu, and W. Xie, “Private Machine Learning

Classification Based on Fully Homomorphic Encryption,” IEEE Trans. Emerg. Top.

Comput., vol. 8, no. 2, pp. 352–364, Apr. 2020, doi: 10.1109/TETC.2018.2794611.

[38] V. Naresh Boddeti, “Secure face matching using fully homomorphic encryption,” in

2018 IEEE 9th International Conference on Biometrics Theory, Applications and

Systems, BTAS 2018, 2018, doi: 10.1109/BTAS.2018.8698601.

[39] A. R. Sadeghi, T. Schneider, and I. Wehrenberg, “Efficient privacy-preserving face

 93

recognition,” in Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2010, vol.

5984 LNCS, pp. 229–244, doi: 10.1007/978-3-642-14423-3_16.

[40] V. Naresh Boddeti, “Secure face matching using fully homomorphic encryption,” in

2018 IEEE 9th International Conference on Biometrics Theory, Applications and

Systems, BTAS 2018, 2018, doi: 10.1109/BTAS.2018.8698601.

[41] B. Amos, B. Ludwiczuk, and M. Satyanarayanan, “OpenFace: A General-Purpose

Face Recognition Library with Mobile Applications,” Tech. Rep. C. C. Sch.

Comput. Sci., vol. 16, no. 118, pp. 1–18, 2016, Accessed: 26-Jul-2020. [Online].

Available: http://cmusatyalab.github.io/openface/.

[42] “Consensus-Driven Propagation in Massive Unlabeled Data for Face Recognition.”

Accessed: 17-Aug-2020. [Online]. Available:

https://github.com/XiaohangZhan/cdp/.

[43] “HayimShaul/ppknn: Privacy Preserving k-ish earest Neighbors.”

https://github.com/HayimShaul/ppknn (accessed Aug. 15, 2020).

[44] V. N. Boddeti, “Secure Face Matching Using Fully Homomorphic Encryption,” May

2018, Accessed: 18-Aug-2020. [Online]. Available: http://arxiv.org/abs/1805.00577.

[45] S. Arita and S. Nakasato, “Fully Homomorphic Encryption for Classification in

Machine Learning,” in 2017 IEEE International Conference on Smart Computing,

 94

SMARTCOMP 2017, 2017, doi: 10.1109/SMARTCOMP.2017.7947011.

[46] A. Al Badawi, L. Hoang, C. F. Mun, K. Laine, K. Mi, and M. Aung, “PrivFT:

Private and Fast Text Classification with Homomorphic Encryption.”

[47] “Design Patterns: Elements of Reusable Object-Oriented Software [Book].”

https://www.oreilly.com/library/view/design-patterns-elements/0201633612/

(accessed Aug. 17, 2020).

[48] S. S. Keerthi, S. Sundararajan, K. W. Chang, C. J. Hsieh, and C. J. Lin, “A

sequential dual method for large scale multi-class linear svms,” in Proceedings of

the ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, 2008, pp. 408–416, doi: 10.1145/1401890.1401942.

[49] K.-W. Chang, C.-J. Hsieh, C.-J. Lin, S. S. Keerthi, and S. Sundararajan, “A

sequential dual method for large scale multi-class linear SVMs,” 2014, doi:

10.1145/1401890.1401942.

[50] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin, “LIBLINEAR: A

Library for Large Linear Classification,” 2008. Accessed: 12-Aug-2020. [Online].

Available: http://www.csie.ntu.edu.tw/.

[51] J. H. Cheon, D. Kim, D. Kim, H. Lee, and K. Lee, “Numerical Method for

Comparison on Homomorphically Encrypted Numbers.”

[52] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” 2011. Accessed: 16-

 95

Aug-2020. [Online]. Available: http://scikit-learn.sourceforge.net.

[53] J. H. Cheon, D. Kim, D. Kim, H. H. Lee, and K. Lee, “Numerical Method for

Comparison on Homomorphically Encrypted Numbers,” in Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), 2019, vol. 11922 LNCS, pp. 415–445, doi:

10.1007/978-3-030-34621-8_15.

[54] A. Paszke et al., “PyTorch: An Imperative Style, High-Performance Deep Learning

Library,” 2019.

[55] L. Van Der Maaten and G. Hinton, “Visualizing data using t-SNE,” J. Mach. Learn.

Res., vol. 9, pp. 2579–2625, 2008.

[56] A. Gisbrecht, W. Lueks, B. Mokbel, and B. Hammer, “Out-of-sample kernel

extensions for nonparametric dimensionality reduction,” in ESANN 2012

proceedings, 20th European Symposium on Artificial Neural Networks,

Computational Intelligence and Machine Learning, 2012, pp. 531–536, Accessed: 23-

Jul-2020. [Online]. Available:

http://www.i6doc.com/en/livre/?GCOI=28001100967420.

[57] F. Pedregosa FABIANPEDREGOSA et al., “Scikit-learn: Machine Learning in

Python Gaël Varoquaux Bertrand Thirion Vincent Dubourg Alexandre Passos

PEDREGOSA, VAROQUAUX, GRAMFORT ET AL. Matthieu Perrot,” 2011.

 96

Accessed: 16-Aug-2020. [Online]. Available: http://scikit-learn.sourceforge.net.

[58] H. Office of Civil Rights, “HIPAA Administrative Simplification Regulation Text.”

[59] California State Legislature, AB-375 Privacy: personal information: businesses.

(CCPA), no. 375. California, USA, 2018.

[60] T. Zarsky, “Incompatible: The GDPR in the Age of Big Data,” Seton Hall Law Rev.,

vol. 47, no. 4, p. 2, 2017.

 97

Appendix A – Source Code

Any modification to existing projects has been sent to the maintainers of the open-

source projects referenced in this thesis and can be found incorporated into those codebases

([36], [43]).

A.1 – Simulation Code for ppKNN and simulation and

implementation of ppSVM

from collections import Counter, namedtuple, defaultdict
import csv

from scipy import stats

import sympy

import random
import time

from math import prod
import json
from tqdm import tqdm

from sklearn.svm import LinearSVC, SVC
from sklearn import svm
from sklearn.decomposition import PCA
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
import numpy as np

import Pyfhel

VERBOSE = False

BaseP = namedtuple('BaseP', ['high', 'low'])
def _basep(n, p):
 return BaseP(int(n//p), int(n%p))

simulation code

 98

def KNN(S, q, classes, k):
 """
 returns the most common class in the k elements with the smalled l1 distance to `q`
 """
 return Counter(
 c for s, c in
 sorted(
 ((s, c) for s, c in zip(S, classes)),
 key=lambda s: sum(abs(ss - qq) for ss, qq in zip(s[0], q))
)[:k]
).most_common(1)[0][0]

def KishNN(S, q, classes, k, p):
 n = len(S)
 mult(n)
 X = [sum(abs(ss - qq) for ss, qq in zip(s, q)) % p for s in S] # l1 norm distances
for each X
 # approximate mu
 mu = (sum(X) // len(X)) % p # assume an arbitrarily low delta, achieves best theoretical
accuracy.

 # base-p rep of mu*2
 poly(p, len(X)/64) + mult(len(X))
 bp_mu_sq = _basep(mu ** 2, p)

 # base-p rep of avg(mu*2)
 poly(p, len(X)/64) + mult(len(X))
 bp_avg_sq = _basep(sum((x**2 for x in X))/n, p)

 # sigma = approximate
 _highdiff = (bp_mu_sq.high - bp_avg_sq.high)
 add()
 mult(2) + add(2)
 if _highdiff == 0:
 sigma = abs(bp_mu_sq.low - bp_avg_sq.low) ** .5
 elif _highdiff == 1:
 sigma = abs(bp_mu_sq.low - bp_avg_sq.low + p) ** .5
 else:
 sigma = abs(p*(bp_mu_sq.high - bp_avg_sq.high)) ** .5
 sigma = int(sigma)
 sigma %= p

 # Threshold
 invnorm = stats.norm.ppf(k/n)
 mult(1) + add(1)
 T = int(mu + sigma * invnorm)
 T %= p

 # class = class if within threshold
 C = [0 for _ in range(len(set(classes)))]
 for x, cls in zip(X, classes):

 99

 poly(p, n=len(S))
 C[cls] += x < T
 if VERBOSE:
 print("""
 q: {q}
 k: {k},
 n: {n},
 mu: {mu},
 bp_mu_sq: {bp_mu_sq},
 bp_avg_sq: {bp_avg_sq}
 sigma: {sigma}
 invnorm: {invnorm}
 T: {T}
 C: {C}""".format(**locals()))

 # argmax
 poly(p, n=len(C))
 return C.index(max(C))

def _compute_Ts(S, p, k):
 """
 precompute the min, max and average value of T
 """
 q = S[0]
 dists = sorted([sum(abs(ss - qq) for ss, qq in zip(s, q)) % p for s in S])
 minT, maxT = dists[k+1:k+3]
 highest_low = minT
 lowest_high = maxT
 average_Ts = []
 for q in tqdm(S):
 minT, maxT = sorted([sum(abs(ss - qq) for ss, qq in zip(s, q)) % p for s in
S])[k+1:k+3]
 average_Ts.append(minT + maxT / 2)
 highest_low = max(highest_low, minT)
 lowest_high = min(lowest_high, maxT)
 return tuple(map(int, (highest_low % p, average_Ts[len(S)//2]%p, (lowest_high % p) +
1)))

def StaticKishNN(S, q, classes, k, p, cached_Ts=None, nullable=False):
 n = len(S)
 mult(n)
 X = [sum(abs(ss - qq) for ss, qq in zip(s, q)) % p for s in S] # l1 norm distances
for each X
 # approximate mu
 mu = (sum(X) // len(X)) % p # assume an arbitrarily low delta, maximizes accuracy

 T1, T2, T3 = cached_Ts# or _compute_Ts(S, p, k)

 # class = class if within threshold
 C1 = [0 for _ in range(len(set(classes)))]
 poly(p, n)

 100

 for x, cls in zip(X, classes):
 C1[cls] += x < T1
 # class = class if within threshold
 C2 = [0 for _ in range(len(set(classes)))]
 for x, cls in zip(X, classes):
 C2[cls] += x < T2
 # class = class if within threshold
 C3 = [0 for _ in range(len(set(classes)))]
 for x, cls in zip(X, classes):
 C3[cls] += x < T3

 # argmax
 candidates = C1.index(max(C1)), C2.index(max(C2)), C3.index(max(C3))
 mult(3)
 val, count = Counter(candidates).most_common(1)[0]

 if VERBOSE:
 print("""
 q: {q}
 k: {k},
 n: {n},
 T: {T1}, {T2}, {T3}
 C1: {C1}
 C2: {C2}
 """.format(**locals()))

 if count > 1:
 return val
 else:
 return None if nullable else candidates[1]

def _compute_SVM_vectors(S, classes):
 pass # return vectors, classMasks, classXORs

Experiments
Helper

def gen_grid_fn(S, res):
 d = len(S[0])
 ranges = [None for _ in range(d)]
 for i in range(d):
 ranges[i] = min(s[i] for s in S), max(s[i] for s in S)
 def grid_fn(x):
 return [
 round((res * (x[i] - ranges[i][0]))/(ranges[i][1] - ranges[i][0]))
 for i in range(d)
]
 return grid_fn

def gen_p(S, res):

 101

 d = len(S[0])
 return sympy.nextprime(res * d)

def grid_and_p(S, q, res):
 grid_fn = gen_grid_fn(S, res)
 grid = list(map(grid_fn, S))
 grid_q = grid_fn(q)
 p = gen_p(S, res)
 return grid, grid_q, p

def get_results(res_list):
 correct_counts = defaultdict(int)
 incorrect_counts = defaultdict(int)
 skip_counts = defaultdict(int)
 for res in res_list:
 for key, value in res.items():
 correct_counts[key] += value == res['real_class']
 incorrect_counts[key] += value is not None and value != res['real_class']
 skip_counts[key] += value is None
 return correct_counts, incorrect_counts, skip_counts

def print_results(res_list):
 correct_counts, incorrect_counts, skip_counts = get_results(res_list)
 n = len(res_list)
 for key in correct_counts.keys():
 print("{key:20s}: \t{perc:03.2%} correct \t {incperc:03.2%} error \t
{skipperc:03.2%} skip".format(
 key=key, perc=correct_counts[key]/n, incperc=incorrect_counts[key]/n,
skipperc=skip_counts[key]/n))

def load_data(dataset):
 path = dataset_paths[dataset]
 with open(path) as f:
 raw = list(csv.reader(f))
 S = [list(map(float, s[:-1])) for s in raw]
 classes = list(map(int, (s[-1] for s in raw)))
 if VERBOSE:
 print("len: ", len(S), " - d: ", len(S[0]), " - classes: ", len(set(classes)))
 return raw, S, classes
dataset_paths = {
 'breast_cancer_2d':
'/~/_M.Eng/data/breast_cancer/breast_cancer_classification_2d.csv',
 'breast_cancer_3d':
'/~/_M.Eng/data/breast_cancer/breast_cancer_classification_3d.csv',
 'breast_cancer_30d':
'/~/_M.Eng/data/breast_cancer/breast_cancer_classification_30d.csv',
 'cars': '/~/_M.Eng/data/cars/car.csv',
 'cars2': '/~/_M.Eng/data/cars/car2.csv',
 'faces2d': '/~/_M.Eng/data/yaleExtendedB/YaleExtendedB_LDA_2d_with_classlabels.csv',
 'faces3d': '/~/_M.Eng/data/yaleExtendedB/YaleExtendedB_LDA_3d_with_classlabels.csv',
 'faces128d': '/~/_M.Eng/data/yaleExtendedB/YaleExtendedB_128d_with_classlabels.csv',

 102

}

def run_all_KNN(grid_S, grid_q, S, q, classes, p, k, correct_class, cached_Ts):
 to_ret = run_all_KNN_raw(S, q, classes, k, correct_class)
 to_ret.update(run_all_KNN_grid(grid_S, classes, grid_q, p, k, cached_Ts))
 return to_ret

def run_all_KNN_raw(S, q, classes, k, correct_class):
 return {
 "real_class": correct_class,
 "KNN": KNN(S, q, classes, k),
 }
def run_all_KNN_grid(grid_S, classes, grid_q, p, k, cached_Ts):
 return {
 "KishNN": KishNN(grid_S, grid_q, classes, k, p),
 "StaticKishNN": StaticKishNN(grid_S, grid_q, classes, k, p, cached_Ts=cached_Ts),
 "StaticKishNNNullable": StaticKishNN(grid_S, grid_q, classes, k, p, nullable=True,
cached_Ts=cached_Ts),
 }

def timing(fn, args=[], kwargs={}):
 measurements = []
 for _ in range(2):
 start = time.time()
 fn(*args, **kwargs)
 end = time.time()
 measurements.append(end - start)
 return measurements

def time_all_KNN(grid_S, grid_q, S, q, classes, p, k, correct_class, cached_Ts):
 to_ret = run_all_KNN_raw(S, q, classes, k, correct_class)
 to_ret.update(run_all_KNN_grid(grid_S, classes, grid_q, p, k, cached_Ts))
 return to_ret

def time_all_KNN_raw(S, q, classes, k, correct_class):
 return {
 "real_class": timing(lambda x: x, [correct_class]),
 "KNN": timing(KNN, [S, q, classes, k]),
 }
def time_all_KNN_grid(grid_S, classes, grid_q, p, k, cached_Ts):
 return {
 "KishNN": timing(KishNN,[grid_S, grid_q, classes, k, p]),
 "StaticKishNN": timing(StaticKishNN,[grid_S, grid_q, classes, k, p],
dict(cached_Ts=[1,2,3])),
 "StaticKishNNNullable": timing(StaticKishNN,[grid_S, grid_q, classes, k, p],
dict(nullable=True, cached_Ts=[1,2,3])),
 }

def try_KNN(k, res, S, n=None):
 p = gen_p(S, res)
 grid_fn = gen_grid_fn(S, res)

 103

 grid_S = list(map(grid_fn, S))
 res_list = []
 VERBOSE = 0
 for ii in range(n or len(S)):
 i = random.randrange(len(S)) if n else ii
 S_sample = S[:i] + S[i+1:]
 classes_sample = classes[:i] + classes[i+1:]
 q = S[i]
 grid_q = grid_fn(q)
 grid_S = grid_S[:i] + grid_S[i+1:]
 correct_class = classes[i]
 res = time_all_KNN(grid_S, grid_q, S, q, classes, p, k, correct_class, [1,2,3])
 res_list.append(res)
 if VERBOSE:
 print(res)
 return res_list

def backup(obj, name):
 with open("/Users/stein/Dropbox/_M.Eng/data/experiments/{}-
macbook.json".format(name), 'w') as f:
 json.dump(obj, f)

ts = time.time()
results = dict()
#'breast_cancer_2d', 'breast_cancer_3d', 'cars',
for dataset in ['cars2', 'faces2d', 'faces3d']:
 for res in [20, 120, 200, 300]:
 for k in [4,16,64,256]:
 print(dataset,res,k)
 raw, S, classes = load_data(dataset)
 res_list = try_KNN(k, res, S, n=1)
 results["{},{},{}".format(dataset, res, k)] = res_list
 backup(results, 'KNN_experiments{}'.format(ts))

SV

def generate_SVM_vectors(X, classes, d=None):
 # return vectors, coef
 if d and d < len(X[0]):
 X = LDA(n_components=d).fit_transform(X, classes)
 classifier = LinearSVC(C=1, dual=False, max_iter=10000)
 classifier.fit(X, classes)
 return classifier.coef_, len(classifier.coef_[0]), X, classifier

def gen_p(S, res):
 d = len(S[0])
 return sympy.nextprime(res * d)

def gen_grid_scalefn(S, res):

 104

 bound = max(abs(ss) for s in S for ss in s)
 p = gen_p(S, res)
 def grid_fn(x):
 return [round(res * ((xx/bound))) for xx in x]
 return grid_fn

def ppSVM(W, q, p):
 class_idx = np.dot(q, (np.array(W)//2).T)
 return (class_idx + p//2).argmax()

def encrypted_ppSVM(W, q):
 enc_W = [[HE.encryptInt(ww) for ww in w] for w in W]
 enc_q = [HE.encryptInt(qq) for qq in q]
 class_idx = []
 for w in enc_W:
 class_idx.append(encrypted_dot(w, enc_q))
 return encrypted_ArgMax(class_idx)

def encrypted_dot(w, q):
 output = []
 for ww, qq, in zip(w, q):
 output.append(debuggify(ww * qq))
 to_ret = HE.encryptInt(0)
 for o in output:
 to_ret = debuggify(to_ret + o)
 return to_ret

def encrypted_ArgMax(C):
 to_ret = HE.encryptInt(0)
 for j in range(len(C)):
 cur_prod = HE.encryptInt(j)
 smallest = isSmallest(C, j)
 to_ret = debuggify(to_ret + cur_prod * smallest)
 return to_ret

def ep(ctxt, name=""):
 print(name, HE.decryptInt(ctxt), HE.noiseLevel(ctxt))

def debuggify(ctxt):
 if DEBUGGING:
 # overagressive relinearization to fix weird PyFel thing. Do not use in
 # actual test, this both removes noise and adds time.
 tmp = HE.decryptInt(ctxt)
 print(tmp)
 return HE.encryptInt(tmp)
 return ctxt

def isSmallest(C, j):
 vals = [stubbed_isSmaller(c, C[j]) for i, c in enumerate(C) if i != j]
 cur = HE.encryptInt(vals[0])
 for v in vals[1:]:

 105

 cur = debuggify(cur * v)
 return cur

def stubbed_isSmaller(ci, cj):
 x = HE.decryptInt(cj) - HE.decryptInt(ci)
 coefs = _IS_NEGATIVE_MACLAUREN
 return HE.encryptInt(1 if x > 0 else 0)

_IS_NEGATIVE_MACLAUREN =
json.load(open("~/_M.Eng/data/experiments/is_smaller_poly.json"))
def encrypted_isSmaller(ci, cj):
 print((cj-ci)._encoding)
 return HE.polyEval_double(cj - ci, _IS_NEGATIVE_MACLAUREN, in_new_ctxt=True)

def run_all_SVM(W_grid, q_grid, W, q, p, cls, correct_class):
 to_ret = run_all_SVM_raw(q, correct_class, clf)
 to_ret.update(run_all_SVM_grid(W_grid, q_grid, p))
 return to_ret

def run_all_SVM_raw(q, correct_class, clf):
 return {
 "real_class": int(correct_class),
 "SVM": int(clf.predict([q])[0]),
 "continuousSVM": int(np.dot(q, np.array(W).T).argmax())
 }

def run_all_SVM_grid(W, q, p):
 return {
 "ppSVM": int(ppSVM(W, q, p)),
 "enc_ppSVM": int(HE.decryptInt(encrypted_ppSVM(W, q)))
 }

def time_all_SVM(W_grid, q_grid, W, q, p, cls, correct_class):
 to_ret = run_all_SVM_raw(q, correct_class, clf)
 to_ret.update(run_all_SVM_grid(W_grid, q_grid, p))
 return to_ret

def time_all_SVM_raw(q, correct_class, clf):
 return {
 "real_class": timing(int(correct_class)),
 "SVM": timing(int(clf.predict([q])[0])),
 "continuousSVM": timing(int(np.dot(q, np.array(W).T).argmax()))
 }

def time_all_SVM_grid(W, q, p):
 return {
 "ppSVM": timing(int(ppSVM(W, q, p))),
 "enc_ppSVM": timing(int(HE.decryptInt(encrypted_ppSVM(W, q))))
 }

 106

HE = Pyfhel.Pyfhel()
HE.contextGen(p=2)
HE.keyGen()
import datetime
ts = datetime.datetime.now()
dataset_list = ['faces2d', 'breast_cancer_30d', 'cars2']
with tqdm(total=len(dataset_list) * 2 * 3) as pbar:
 for dataset in dataset_list: # 'faces128d'
 for d in [2, 3]:
 for grid_size in [10, 120, 1000]:
 pbar.update(1)
 pbar.set_description("dataset: {}, d: {}, grid: {}".format(dataset, d,
grid_size))

 raw, S, classes = load_data(dataset)
 n_classes = len(set(classes))
 if d > n_classes - 1:
 continue
 W, d, X, clf = generate_SVM_vectors(S, classes, d=d)
 W = [[ww for ww in w] for w in W]
 grid_fn = gen_grid_scalefn(S+W, grid_size)
 p = gen_p(S+W, grid_size)
 W_grid = list(map(grid_fn, W))
 res_list = []

 for _ in range(10):
 i = random.randrange(len(S))
 q = X[i]
 correct_class = classes[i]

 svm_results = time_all_SVM(W_grid, grid_fn(q), W, q, p, clf,
correct_class)

 res_list.append(res)
 if VERBOSE:
 print(res)
 svm_results["{},{},{}".format(dataset, d, grid_size)] = res_list
 backup(svm_results, "svm_results{}".format(ts))

