
MIT Open Access Articles

Optimization of On-Orbit Robotic Assembly of Small Satellites

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Uzo-Okoro, Ezinne et al. "Optimization of On-Orbit Robotic Assembly of Small
Satellites." Accelerating Space Commerce, Exploration, and New Discovery Conference,
November 2020, virtual event, American Institute of Aeronautics and Astronautics, November
2020. © 2020 Massachusetts Institute of Technology

As Published: http://dx.doi.org/10.2514/6.2020-4195

Publisher: American Institute of Aeronautics and Astronautics

Persistent URL: https://hdl.handle.net/1721.1/130622

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/130622
http://creativecommons.org/licenses/by-nc-sa/4.0/

Optimization of On-Orbit Robot Assembly of
Small Satellites

Ezinne E. Uzo-Okoro , Prakash Manandhar , and Daniel Erkel1 1 2

Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Mary Dahl1
Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Emily Kiley3
Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Olivier DeWeck4
Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Kerri Cahoy4
Massachusetts Institute of Technology, Cambridge, MA 02139, USA

On-orbit assembly missions typically involve humans-in-the-loop and use large
custom-built robotic arms designed to service existing modules. A proposed concept of
on-orbit robotic assembly of modularized CubeSat components within a spacecraft locker
eliminates the need for humans-in-the loop. The spacecraft locker supports use cases such as
rapidly placing failed nodes within a constellation of satellites and providing sensing and
propulsion capabilities in Low Earth Orbit. Despite the recent proliferation of small
satellites, there are few planned demonstrations of on-orbit assembly and few
demonstrations of on-orbit servicing. Key gaps challenges of in-space assembly of small
satellites are (1) the lack of standardization of electromechanical CubeSat components for
compatibility with commercial robotic assembly hardware, and (2) testing and modifying
commercial robotic assembly hardware. In this work, we focus on testing and modifying: we
develop an optimization process for a robotic assembly model to integrate small satellites in
space. Our process focus is on the optimization of the on-orbit assembly time of small
satellites. We use Commercial-Off-The-Shelf (COTS) robot arms to snap together
components in a spacecraft, while minimizing humans-in-the-loop. Assembly time is the
selected performance metric as it is critical to the assertion that building small satellites
on-orbit results in reduced budget and satellite development time on Earth. We minimize
on-orbit small satellite assembly time by optimizing assembly time with the Genetic
Algorithm, which use dexterous robotic arms to assemble components, without any negative
effects on the attitude and control system.

1 Graduate Student, Department of Aeronautics and Astronautics
2 System Design & Management, MIT Sloan and MIT School of Engineering
3 Undergraduate Student, Department of Mechanical Engineering
4 Professor, Department of Aeronautics and Astronautics, and AIAA Associate Fellow

1

We implement a robot arm assembly model in Python, using Inverse Kinematics. We use
a Genetic Algorithm-based optimization scheme, with time as the objective function, and
three constraints: robot assembly volume, power consumption, and peak power. Design
variables such as joint damping, motor force (torque), position gain and velocity gain are
used to model grasping a component and moving the component to the satellite assembly
area of the spacecraft. The robot arms are required to be within a tolerance defined based
on the 300 mm x 300 mm x 500 mm assembly area. In simulation, we observe that using a
given baseline servo motor (7 V) at high proportional gains results in optimal assembly time
of approximately 10-20 seconds per component assembly, compared to roughly double this
time per component for a 1U CubeSat weighing 2 kg. However, we expect this improvement
to result in 25% higher power consumption. Using a high gain value with a lower voltage (5
V) motor results in oscillations and additional time required to dampen out to within the
given tolerance, and results in increased assembly time. The benchmarked small satellite
assembly time with a human-in-the-loop requires 50 weeks to 90 months of component
assembly and integration time on Earth. We anticipate that on-orbit assembly capability
optimized for a 1 U functional CubeSat with 30 W of total power, would reduce the assembly
time by an order of magnitude. With robotic arm models, for a 1 U CubeSat assembly, we
show up to 42% saving benefit in robotic assembly time.

I. Nomenclature
g1 = robot assembly volume
g2 = power consumption
g3 = peak power
J = assembly time
H = Hessian value
S = optimization vector
x = design vector

II. Introduction
The need for low-cost, low-latency and agile space infrastructure, which can reach quickly strategic orbits such as
GEO and Low Earth Orbit (LEO) in addition to polar and International Space Station (ISS) orbits, could be met by
using robotic assembly of modularized components into CubeSats. A standardized modular CubeSat and
COTS-based robotic assembly could eliminate the reliance on long-lead high-cost legacy space hardware. Satellite
cellularization [1] has made incremental advances in the modularization of small satellite subsystems. In this work,
we explore a new approach to CubeSat production based on the robotic assembly of spacecraft components. We
envision a new mission in which small COTS robot arms are enclosed in a free-flying small spacecraft “locker” of
approximately 318 mm x 609 mm x 914 mm for the assembly of a new kind of small satellite. These
mini-fridge-sized spacecraft “lockers” with propulsion capability are intended to be orbit-agnostic in order to deploy
on-demand robot-assembled CubeSats where needed. The locker houses robotic arms, modular components
including sensor and propulsion modules, and payloads for 1 U to 3 U-sized CubeSats. The mission is expected to
deliver an improvement in first time to orbit for a satellite from >30 days to less than 10 hours for a small satellite
build and deployment cycle.

On-orbit assembly missions typically involve humans-in-the-loop and use large custom-built robotic arms, which
are designed to service existing modules. While robot arms are becoming ubiquitous in several industries on Earth,
commercially available robotic arms suitable for small satellite space applications are not yet available. Despite the
recent proliferation of small satellites, there are few planned demonstrations to assemble and service small satellites.
The on-orbit robotic assembly of modularized CubeSat components within a spacecraft box offers several key
benefits, including, an unparalleled number of possible CubeSat configurations for scientific and commercial use:
1. Flexibility, by allowing for selecting sensors, power and propulsion-sizing;
2. Resiliency, by deploying custom-configured CubeSats for redundancy and/or coordination;
3. Efficiency, by using dexterous robot arms for on-orbit assembly of various sensor payloads.

2

In-space assembly for small satellites is valuable for large constellations as it enables improved launch mass

packaging, on-orbit modular customization and timely deployment to replace failed nodes or add new capabilities to
existing missions. We envision a new mission in which small COTS robot arms are enclosed in spacecraft lockers.
Robotic assembly based out of propulsive spacecraft “lockers” provides an on-orbit scalable deployer of small
satellites faster than NASA’s documented minimum launch-on-demand response time (35 days) for the International
Space Station (ISS) crew rescue [28]. Figure 1 shows a comparison of how small satellites are currently built and
how it will be done in the future.

Fig 1. Concept of operations for a “locker” with robotic arm assembly, showing future rapid response time of

~hours, compared with current and traditional missions response times of several weeks

As shown in Figure 2, there are four phases necessary to successfully realize the mission concept. Phase 1 involves
the ground-based robotic assembly of a CubeSat prototype using two dexterous arms and electromechanical
components in a laboratory environment. Phase 1 also involves modeling and assessment of different payload and
propulsion options to optimize response time and sensing, and choose the capability of the modular components for
inclusion in the locker. This work addresses the feasibility of Phase 1 and characterizes the systems engineering
efforts required to develop in-space robotic assembly.

The ISS Phase 2 technology demonstration is expected to prove the on-orbit assembly of modular reconfigurable
CubeSats, increase Technology Readiness Level (TRL), and assess response time quantitatively. Phase 2 involves
the development and launch of a flight unit locker with robot arms and CubeSat modular components, including
propulsion options for the CubeSats themselves. The locker could be hosted at the ISS Japanese Experiment Module
Exposed Facility (JEM-EF) [29][30][31] and would demonstrate the on-orbit assembly of five 1 U to 3 U sized
CubeSats. The first prototype CubeSat will be a ground-based assembled structure deployed first in order to validate
the locker deployment system, using the Nanoracks deployer. The four remaining CubeSats will be robotically
assembled on-orbit.

Phase 3 develops the agile free-flyer spacecraft locker with robotic arms to assemble [32][33] and deploy
rapid-response CubeSats. Response time is further reduced and options to mount the locker on existing satellites are
considered. Showing response time that improves ground development time by 10x is a key objective. Phase 4
involves the development of a strategic constellation of free-flyer locker satellites with robotic arms to
autonomously assemble and deploy CubeSats in select orbits. The goal is to demonstrate a response that improves
ground time by 100x (from a minimum of 35 days to launch, instead to reach the desired initial orbit in less than
four hours).

3

Fig. 2. The concept will progress to free-flying orbit-agnostic facilities that can rapidly deploy agile sensors. The
four major steps of the project are shown: 1) Lab Prototype, 2) ISS demonstration, 3) Free-flyer with human
supervision, 4) Constellation with autonomous facility.

III. Background - Selection and Timing of Robotic Arms
To date, most on-orbit assembly missions are designed to support ISS experiments, exploration, and servicing

(refuel or repair existing satellites) missions [2], which are large in terms of sizing and power. Previous missions
such as the U.S. Defense Advanced Research Projects Agency’s (DARPA) Orbital Express program [3], the
DARPA Phoenix Program [4], and the Jet Propulsion Laboratory’s (JPL) Mars Insight mission [5]. Robotic
manipulators, important for scientific experiments and the construction and maintenance of the ISS, have conducted
on-orbit robotic assembly. Examples include the Shuttle Remote Manipulator System (SRMS) [6], also known as
Canadarm, which is a 16.9-meter, seven degree of freedom (DOF) manipulator with a relocatable base; the National
Space Development Agency of Japan’s (NASDA) Japanese Experiment Module (JEM) Remote Manipulator System
(JEMRMS), which is a 9.91-meter, six DOF manipulator; and lastly, the European Robotic Arm (ERA), which is an
11-meter, seven DOF manipulator [7]. These manipulators employed very large robotic arms to deploy, maneuver,
and capture payloads. In the area of autonomy, SPHERES Universal Docking Port (UDP) demonstrates autonomous
docking maneuvers using small satellites [8]. AstroBees, the free-flying robots, provide a flexible platform for
research on zero-g free-flying robotics [9].

The industry’s first satellite life extension vehicle, Northrop Grumman’s Mission Extension Vehicle-1 (MEV-1),
completed its first docking to a client satellite, Intelsat IS-901 on February 25, 2020. MEV-1 is designed to dock to
geostationary satellites whose fuel is nearly depleted. MEV-1 does not make use of robot arms for its on-orbit
servicing mission [10]. On-orbit robotic assembly to date is costly, as evidenced by prior and current missions [11].
For example, the Defense Advanced Research Projects Agency (DARPA) Robotic Servicing of Geosynchronous
Satellites (RSGS) $400M program aims to demonstrate that a robotic servicing vehicle can perform safe, reliable,
useful and efficient operations in or near the Geosynchronous Earth Orbit (GEO) environment. RSGS is using the
custom-developed and large radiation-hardened Front-end Robotics Enabling Near-term Demonstration (FREND)
robot arm, which is a 1.8 m arm from shoulder pitch to wrist pitch weighing 78 kg, with an additional 10 kg for
electronics. The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center’s (GSFC)
RESTORE-L servicing mission [12], is also a robotic spacecraft equipped with the tools to rendezvous with, grasp,
refuel, and relocate satellites to extend their lifespan. Recently, NASA’s Dragonfly has also demonstrated a
ground-based test of robotic satellite assembly [13] and Made In Space (MIS) received a NASA contract to
demonstrate on-orbit assembly using three robot arms to assemble 3-D printed parts in space, called the Archinaut
mission [14].

Large custom-built robots need not be the only vehicles for in-space robotic assembly. The need for low-cost,
low-latency and agile space infrastructure, which can reach strategic orbits such as GEO and Low Earth Orbit (LEO)
in addition to polar and International Space Station (ISS) locations, could be realized using a robotic assembly of
modularized components into CubeSats.

4

IV. Approach
We minimize the on-orbit small satellite assembly time required by dexterous robotic arms to move small

satellite components within the spacecraft locker, from a shelf to the assembly workplace shown in Figure 3. This
work is completed while satisfying the given power consumption and weight requirements. Secondly, we explore
simultaneously optimizing assembly time of a satellite with mass, given a maximum of 2 kg for a 1 U.

Assembly time was selected as it is critical to the assertion that building small satellites on-orbit results in reduced
budget and satellite development time on Earth. An example of a use case of this system is rapidly repairing
damaged nodes within a constellation of satellites. We selected robotic arms, Kuka Iiwa Robot Arms and
LewanSoul xArm Robots (the low-cost option), both with six Degrees of Freedom (DOF), as the basis of our
modelling work. We investigated the minimization of on-orbit SmallSat assembly time by using the dexterous robot
arms while satisfying the given power consumption and weight requirements at a given orbit. Given that the search
parameters in the Inverse Kinematics approach - the key algorithm forming the basis of our modelling - task for a
robot with many degrees of freedom is constant, a Genetic Algorithm-based approach in combination with a
simulation - representing the process of the arms reaching and moving a component - was used. We also describe
the technology choices and redundancy levels of the different subsystems in this optimal on-orbit assembly design.

Low-cost robotic arms such as the Lewansoul xArm shown in Figure 3 are controlled using servo motors, which
are not typically used for space missions. We use the servo motors as a lab prototype test for feasibility. As we
progress to space qualification, appropriate motors for space operations will be used. Robotic arms of similar size
and weight come in a range of prices. A key discriminator between the robot arms available off-the-shelf is the use
of powerful motors and sophisticated control systems. The more sophisticated robot arms are able to move with
greater precision.

Fig. 3 (a) Lewansoul xArm Robot with 6-DOF (b) Robot Arm with dimensions. (Source: LewanSoul)

COTS robotic arms can be customized by adding additional sensors or swapping particular components such as

a motor or link. The software used to control the arms is also usually supplied with customization for controlling
system parameters; however, different control computers and real-time operating systems can be used. The
interaction between the control parameters and the physical dexterity can be complex due to communication
latencies and multi-tasking using the operating system. We make assumptions in the model and verify using the
existing physical prototype.

5

Fig. 4 Simulation of a Kuka iiwa robot arm in PyBullet with 2 DOF (Source: Kuka)

Table 1. System Design Variables and Parameters

This simulation describes Task 1, which is for a single step in a series of steps that are needed for the full
assembly of a satellite. In order to grasp and move an object, the robot arm, which is positioned within 2 mm of the
target and drop-off locations, is given a command to grasp, move and drop-off an object in Task 1. The task includes
grasping a part from a shelf and bringing it to the assembly area and snapping two parts together, using some
assumptions on force and alignment required for assembling LEGO-like parts together. To restrict scope of the
design optimization, we test a model simulation of two degrees of freedom. Figure 4 shows a 2-DOF simulation of
the xArm robot arm in PyBullet. The model simulation returns 19.09 seconds, from a starting point of 91 seconds.
The output value is reasonable because the robot arm requires 5 seconds to grasp and 10 seconds to move an object
to a drop-off location, and less than 5 seconds to snap-assemble the part. However, the global optimal value might
be out of reach due to power constraints on the servo motors on the robot arms. During simulation with different
parameters in Table 1, we see that using a powerful motor at high proportional gains results in faster (more optimal)
time values but consumes more power. Conversely, using a high gain value with a weak motor results in oscillations
at the take time to dampen out to within the 2 mm tolerance and hence result in higher time values. In later
iterations, two robot arms and task planning to sequence the assembly steps are added and obtain similar results. We
know that the simulation framework (PyBullet) can accommodate this level of fidelity in simulations because the
framework has precedent [15]. Next, we modelled six degrees of freedom. Using six motors instead of two motors
resulted in higher power calculations with about the same assembly time. A comparison of power and assembly time
is provided in Table 2.

6

Table 2. Simulation results for 2-DOF and 6-DOF robot performing Task 1

We discover that the arm with 6-DOF uses more power while performing Task 1 with less time, while the
2-DOF uses a larger assembly time and less power. Given that the optimization is focused on assembly time, we
select the 6-DOF robot arm for this work. After trying the AL5D 4-DOF robot arm kit, which resulted in servo
burnouts after less than 100 hours of tests, we conducted a second search for available low-cost robots. We assessed
a list of replacement servo motors (see Table 3) and defined low-cost for the lab prototype as under $1000 for all
robots, boards and parts. We selected the HiWonder servo motors, which are used on the LewanSoul xArm robots.
Table 4 lists the resulting robot arm options. The Lewansoul xArm robot arms was selected as the low-cost option
and produced reliable results (more than 170 hours of tests before burnouts) and less power and thermal
considerations.

Table 3. Select list of common commercial motors for robot arm use.

Table 4. List of select available low-cost COTS robot arms
 Vendor Model

A1 Franka Emika Panda

A2 Trossen Robotics WidowX

A3 UFactory xArm 7

A4 UFactory uArm

A5 LewanSoul xArm

A6 ST Robotics ST R17HS

7

Human versus Robot Assembly Time

We compare robotic assembly humans-in-the loop assembly. CubeSats are usually assembled by a team of
people and not robots. There is little available information to assess how long it might take to assemble a CubeSat
using robots. We begin by estimating how long it takes a human team to assemble a 1U CubeSat as a final
integration step. Note that this is the final step after the common components and payload subsystems have been
designed, manufactured and are ready for integration.

Table 5. Assembly time of various CubeSats by human teams

Satellite Satellite Size Assembly time by human teams Source of data

NASA MarCo CubeSat 6 U Several months by a large team Email correspondence with
JPL

Interorbital IOS CubeSat
2.0

1 U 2 days by a team of 2 people Email correspondence with
manufacturer

Planet Small Satellite 3 U 1 day for each spacecraft Conference Paper [16]

MakerSat-1 1 U 5 minutes in International Space
Station by 1 astronaut

Conference Paper [17]

From estimates obtained in Table 5, we focus on MakerSat-1, a 1 U CubeSat, which has the shortest assembly
time using pre-developed subcomponents. MakerSat-1 was designed with similar intentions for rapid assembly. The
first version of MakerSat-1 was released from the International Space Station and was able to collect ionizing
radiation particle counts in-orbit and support an experiment on polymer degradation while operating in space for at
least nine months [18]. A video demonstration of assembly under five minutes is available [19]. We use five minutes
as our starting point for CubeSat robotic assembly. To achieve a simulation assembly time similar to the MakerSat-1
assembly time, we need at least 2 robot arms: one arm to hold the partly assembled satellite, and the other arm to
insert and click together parts gathered from a storage location. We allow for further model refinement of robot arm
functions as the grippers and different motors in the robotic arm need to be accurately modeled. Most importantly,
we use five minutes as a metric for the on-orbit satellite assembly of a 1U CubeSat.

V. Design Optimization and Modeling

We optimize for two design objectives. The first objective is to minimize the assembly time of CubeSat robotic
assembly, which is a surrogate for cost. The second objective is to minimize the mass of the motor assemblies. The
model serving the basis of our optimization problem is implemented using the representation of a robot arm
assembly in Python, relying on Inverse Kinematics [20]. The primary optimization technique used is a Genetic
Algorithm-based optimization scheme [21], with time (and later time and mass simultaneously) as the objective
function(s), and three constraints: robot assembly volume, power consumption, and peak power. Each potential
solution of the problem represents a vector of values

S = {α11, α21, … , αn1, ... , α1N, α2N, … , αnN} (1)

Since the choice of the objective function will have a decisive influence on the solution, we focus on
minimizing assembly time, and later, minimizing the mass of the motor assemblies. Mass is certainly a critical
parameter due to the cost of launching components into space. In addition, we can imagine that a motor able to
operate at high speed, and to start and stop rapidly would need to be more powerful and be able to produce more
maximum torque. Hence, there would likely be a tradeoff between the motor mass and assembly time. The design
variables selected in Table 1, joint damping, motor force (torque), position gain and velocity gain, are used to model
grasping a component and moving the component to the satellite assembly area of the spacecraft locker. The robot
arms are required to be within a tolerance defined based on the assembly volume dimensions, 300 mm x 300 mm x

8

500 mm. Other constraints included in the optimization design are total power consumption, total mass (in the
single-objective case), and the total budget (available to the mission). Parameters used in the model are robotic arm
length, degrees of freedom of the robotic arm and the communication baud rate.

VI. Optimization Process and Modules

We identify several aspects of the system that we can simulate.

1. Articulated Rigid Body Dynamics: For each robotic arm, we create this simulation module by sourcing the
parameters of COTS parts from experiments or vendor-supplied specification literature to fill in the design
variables. The multi-body dynamics simulation also takes input from a layer simulation stage (feedback
loop) that simulates the control system by taking forces and torques applied to the motors in the robotic arm
assembly and calculating the robot state.

2. Task Sequence Planning [22]: We develop a package that lists the steps required for assembling a satellite
from parts. In our design, the small satellite modular components are pre-manufactured and assembled
using snap points; therefore, the robotic arm is programmed to sense, grasp and move the appropriate
component to the assembly station in the right orientation for a given assembly step. As of yet, no steps
require soldering, welding or gluing parts.

3. Control System: The output of the Task Sequence Planning module is routed to a control system that
coordinates robots and plans paths that avoid collisions. The control system passes the output (path) of the
module to individual robot arm units along with the total time required for assembly. We identify a control
system simulation platform and use classical PID simulation techniques that would be modified to disallow
robot collisions with the help of a multi-body dynamics simulation module. This submodule can also output
the motor peak power using estimates of power usage when a motor is instructed to move at a given
velocity.

4. Cost Model: This analytical module estimates the cost of a given configuration with consideration of any
non-recurring-engineering costs due to uncertainties, customizations, launch to orbit, deployment and
operations. We expect that some configurations can swap out components such as sensors or motors.

Fig. 5 Robot Arm Assembly Time Optimization Block Diagram

9

In this model, whole subsystems such as data communications and sensors are abstracted by the Control System
and the robotic arm actuator systems are abstracted by the Articulated Rigid Body Dynamics module. We use the
Design of Experiments (DOE), which is a collection of statistical techniques providing a systematic way of sampling
the design space. It is useful when tackling a new problem with little available information on the design space. It is
used to study the effects of multiple input variables on one or more output parameters. DOE is often a precursor to
setting up a formal optimization problem. It helps to identify the key drivers among potential design variables,
design variable ranges and achievable objective function values. The block diagram in Figure 5 shows feedback
loops from the DOE and between all modules, particularly the Control System and Articulated Rigid Body
Dynamics. The Cost Model is a separate entity while Task Sequence Planning only has inputs based on the spatial
configuration.

We implemented a system model of the robot arm assembly system in Python, using an Inverse Kinematics

library and a test function for the robot arm. The objective function, , is assembly time, and the constraints are the J
robot assembly volume, , and power (electrical energy) consumption, and peak power . The system model g1 g2 g3
currently Rigid Body Dynamics, Control System and Power Consumption. The Task Planning module is coded in
Python. The Power Consumption module satisfies the need for control of servo motor power consumption. Servo
motors are specified to have a no-load current and a maximum load. We use the inverse kinematics algorithm for the
rigid body dynamics simulation. The task plan consists of two subtasks: grasping an object and moving the object to
a drop-off location, where satellite assembly takes place. The robot arm end effector has to be located within 2 mm
of the pickup and drop-off locations for at least 5 seconds to perform the required pickup and assembly operations.
We demonstrate that the system can be executed in analysis mode through the design vector, , which consists of x
the four design variables: joint damping, motor force (Torque), position gain and velocity gain.

In the model, we assume that the robot arm is constrained to move within a volume of

g1 = 1.1 m3

This is automatically satisfied as the robot model has a fixed arm-length. The total power consumed is limited
by the battery or other energy source available. A typical lithium ion battery used in laptops stores about 50 W hr of
energy which is about 180 kJ (kilo Joules). However, given that we anticipate assembling tens of satellites, and this
is a single step in assembly of a satellite, which has at least 10 steps, the constraint we chose is 180 kJ/100 = 180 J.

g2 1800 J≤

The peak power available is determined by the electrical power system within a spacecraft. For most
Earth-orbiting satellites, this is generated using solar energy. We chose a peak power limit of 15 W per robot as we
intend to have two robots in the system with a total power budget of 30 W. 30 W is justified based on the power
availability in the ISS Nanoracks requirements [27]. We expect our assembly line to consume about the same
amount of power. This is much lower than a typical industrial robotic arm. Hence, only low-cost off-the-shelf
robotic arms satisfy this constraint.

g3 15 W≤

Assembly Time Feasibility

We initially address the problem of achieving a feasible solution and consider the minimization of J after the
first feasible design has been achieved.

xo = (0.1, 17, 0.03, 2)

The initial design vector is feasible because it satisfies the constraints, robot assembly volume, and x0 ,g1
power consumption, = 144.29 J and peak power = 12.96 W. The design vector returns the value, 21.27 g2 g3
seconds, which is a first step in minimizing , the robot arm assembly time. Since the design is in the feasible J

10

region, we verify that the system model has the capability to perform calculations and determine if the objective
function, assembly time, can be reduced by a certain percentage and remain feasible.

VII. Design of Experiments (DOE)

Performing a DOE using an array, we efficiently explore the design space. The design variables were assigned
the following notation: joint damping (A), Motor Force (B), Position Gain (C) and Velocity Gain (D). These factors
were selected based on the key features of robotic arms we evaluated and design inputs for our simulation model.
The levels were determined by the availability of motors. We examined the limits and best practices for our chosen
system model (based on the Pybullet module). This process was partly a trial-and-error process examining the
inherent limits of the variables. The design variables listed above were given levels listed in Table 6.

Table 6. List of levels for each factor

Each combination of the array created was then executed using our system model, with the design variables
affecting different modules. The combinations along with corresponding observations are recorded in Table 7.
Based on the combinations, the main effect of each of the factor levels was then evaluated. The levels which resulted
in the shortest assembly time, are highlighted in Table 8.

Table 7. Array created for the DOE with observations for each combination.
Expt no. Joint

Damping
A

Motor
Force

B

Position
Gain

C

Velocity
Gain

D
Assembly
time (s)

Total
Electrical
Energy (J)

Peak
Electrical
Power (W)

1 A1 B1 C1 D1 21.27 144.29 12.96

2 A1 B2 C2 D2 49.95 434.92 15.247

3 A1 B3 C3 D3 95.14 1565.86 16.77

4 A2 B1 C2 D3 57.43 444.06 12.96

5 A2 B2 C3 D1 89.29 1351.53 15.24

6 A2 B3 C1 D2 19.67 93.35 16.77

7 A3 B1 C3 D2 97.22 1234.42 12.96

8 A3 B2 C1 D3 20.98 110.33 15.24

9 A3 B3 C2 D1 43.04 656.79 16.77

Table 8. Main effects of each of the factors

Design Factor A1 A2 A3 B1 B2 B3 C1 C2 C3 D1 D2 D3

Effect on
Assembly time
(s)

0.6 0.6 -1.1 3.8 -1.5 -2.3 -34.2 -4.7 39 -3.7 0.7 3

11

Based on the results in Tables 7 and 8, the optimal combination of levels for the factors is A3, B3, C1, D1. The
resulting expected assembly time is 19.09 s. However, running the above combination through the model, the actual
resulting assembly time is 20.01 s. This is most likely due to non-linear interaction between the different factors.
Nonetheless, this is a recommended starting point () for our numerical optimization.x0

VIII. Genetic Algorithm
Single-Objective Genetic Algorithm
We use a Genetic Algorithm (GA) method [23][24] rather than a gradient-based method (due to the presence of
discrete variables) to complete the optimization. The GA are stochastic optimization techniques introduced by
Holland [25], which is inspired by genetics and natural selection. Genetic algorithms are well-suited for problems
where the search space is large but has many acceptable solutions, as is the case in this work. The trajectory space is
large, but there are, barring exceptional cases, numerous acceptable paths going from x0 to x1 without collision.

For this work, the individual is in the form of the vector S in Equation (1). Many genetic operators [26] are
available; however, the more commonly used are the mutation and the cross-over operators. The mutation operator
consists of randomly flipping some bits of an element of the population. The mutation rate used is 0.1. The
cross-over operator consists of first randomly choosing a place where to cut the two strings of bits, and then building
two new elements from this pair by simply gluing the right and the left parts of the initial pair of strings. The
crossover rate used is 0.7. The fitness function evaluation contains the simulation of the robot movement and the
time function evaluation. The optimizer itself was based on the Distributed Evolutionary Algorithms in Python
(DEAP) package, developed by Fortin et al. at the Computer Vision and Systems Laboratory (CVSL) at Université
Laval, Canada. Using the DEAP package we used binary encoding to create the chromosome for the individuals.
The encoding scheme used is in Table 9.

Table 9. Encoding Used to Generate Chromosomes for GA

Multi-Objective GA (MOGA)
A broader trade-space was obtained by extending the list of motors in Table 3 from that used in the

single-objective GA. The program was adjusted to accept these data. The DEAP Python library that we used for
single objective GA can do multi-objective GA without much customization. Due to the design variables and
constraints, our initial attempts to obtain a Pareto front yielded sparsely populated graphs. To better explore the
design-space and obtain a discernible Pareto front, we to increase the peak power constraint to 1 kW, and the energy
constraint to 10 kJ. We based the new value on data from literature [24] on the power constraints for experiments
flown on the International Space Station (ISS), a potential test environment for initial models of our assembly. These
higher values are also feasible through an optimization of the solar array sizing of the future spacecraft equipped
with the robotic arms.

VII. Results

We reran the optimization using the setup for several iterations, obtaining the results in Table 10, where J is optimal
assembly time and the four design variables are identical to those introduced in the sections above. Using a
constraint of 15 W, the new optimal assembly time was close to 50s. This assembly time is g1 ≤ J tmin ≤

12

significantly higher than our previous optimum, which however, was expected with the power constraint. To
fine-tune this, we varied the constraint maintaining the GA inputs and found that if we increased the constraint to 16
W, the optimum found by the GA at 100 generations and 20 individuals per generation was closer to 22 seconds.

Table 7. Array created for the DOE with observations for each combination.

Design Variable Value

x* [7.549 (damping), 1.961 N.m (max motor force), 0.157

(position gain), 1.943 (velocity gain)]

J(x*) 21.950 s

g1(x*) 15.247 W < 16 W

g2(x*) 187.993 J < 1300 J

One of the key issues we faced in the optimization is the presence of maximum motor force as a discrete
variable; hence, the use of the GA method. This is because we chose from a set of discrete options from COTS
motors. We assume the secondary motor characteristics (e.g. current drawn, from which power consumption is
calculated) to be proportional to the COTS robot arm motor's force. Therefore, the motor has the same torque to
current ratio. Next, we calculate the diagonals of the Hessian matrix using a Finite Difference Method, beginning
with a small delta in each variable, h = 0.1 and decreased to h = 0.01 and h = 0.001, etc. to check grid convergence,
and use the central difference formula.

The results for the diagonals of the Hessian are:

[9.0 50.4 1079.0 78.0] # h = 0.1

[200.0 1500.0 10300.0 200.0] # h = 0.01

[20000.0 70000.0 80000.0 20000.0] # h = 0.001

[2000000.0 2000000.0 2000000.0 2000000.0] # h = 0.0001

We see that as we decrease h, the double derivative “explodes”. It is suspected this could be due to the precision
used in the simulation packages for kinematics. To obtain the system’s physical values, we use h = 0.1 as the basis
for normalization. Given that in the diagonals of the Hessian, only the position gain value is greater than 100, the
scaling required is as follows where the position gain is multiplied by 10:

[1.0 1.0 10.0 1.0]

We rerun the code with scaling = 1.0 and the best solution that resulted was:

SCALING = [1.0 1.0 1.0 1.0]

x* = [1.516 (damping), 1.961 N.m (max motor force), 0.0524 (position

gain), 1.929 (velocity gain)]

J(x*) = 21.01 sec

g1(x*) = 15.25 W < 16 W

13

g2(x*) = 109.60 J < 1300 J

In Figure 6, we observe that there is a small difference in the optimum assembly time achieved - with and
without scaling - which could be due to the random nature of genetic algorithms. The data for the GA iterations
shows that in both the scaled and non-scaled cases, there are some mutations that result in deviation from optimal,
but the solution converges back to a similar optimum value. We hypothesize that our implementation of the genetic
algorithm where the binary bits were spread between and minimum and maximum feasible values of the variable
resulted in the inclusion of scaling. Despite the scaling that is based on the Hessian matrix being included, where
most of the scales were 1.0 and only one scale was 10.0, we observed no changes.

Fig. 6 Genetic Algorithm results J(x) with penalty for constraints and iterations, where every 20 iterations is a

generation, with 2000 iterations in 100 generations

Fig. 7 Genetic Algorithm results J(x) with penalty for constraints and iterations where every 20 iterations is a

generation, with 2000 iterations in 100 generations

14

Performing the multi-objective optimization, we obtain the results presented in Figure 7. We can see from the plot
that we can optimize the time to be slightly less than 16 s by choosing a mass that is slightly higher than 1.25 kg and
can optimize mass to about slightly more than 0.25 kg by staying at about 20 s in time. The trade-off is not strictly
convex because not all non-dominated solutions lie on the Pareto-optimal front. If we consider only the Pareto
optimal points, the front is convex. We considered all Pareto points and selected the middle point near the knee as
the optimal solution. This is because at this point, we can reduce mass by a lot without compromising too much on
the assembly time. Also, the middle point is likely to have more feasible solutions nearby (other COTS parts that
result in a similar performance) than the more extreme points. Deviating a little from the much higher mass and the
lowest mass solutions could result in a sharp rise in assembly time (e.g. due to the motor not being strong enough
and needing to move very slowly) or designs that require a much higher mass (due to the use of more powerful
motors than required).

This design objective reaches an optimal solution of 22 seconds in the final run, for assembly of each
component part, with penalty for constraints. During the simulation, we see that using a given baseline servo motor
(7 V) at high proportional gains results in optimal assembly time of approximately 20 seconds per component
assembly, compared to roughly double this time per component for a 1 U CubeSat weighing 2 kg. The key
parameter affecting our results proved to be the number of generations, rather than the population size. In the first
run, we did not alter the parameters controlling the mating. In the first run, due to limitations in available
computational time, we used a population of 20 and 100 generations. We concluded that the optimum achieved is -
given the relatively small number of population size - close to the global optimum. This can be inferred from the
results of the presented DOE and considerations of physical limitations in the assembly setup. However, this
simulation resulted in 25% higher power consumption.

Oscillations and Lack of Damping—Using a high gain value with a lower voltage (5 V) motor results in
oscillations and additional time required to dampen out to within the given tolerance, and results in increased
assembly time. Since damping control is needed to prevent oscillations from becoming hazardous, the joint damping
is set sufficiently large (0.1<joint_damping<1) so as to reduce the amplitude of the oscillations of the vibration
modes and facilitate accurate position tracking when needed. We observe that changing the joint damping (and
position gain) affect these oscillations. Our results indicate we gain high frequency performance improvement by a
joint damping increase such that lateral oscillation amplitude is significantly reduced. Additionally, we observe that
low-cost robots must operate in low-wind areas or in boundary-layer flow near surfaces to prevent oscillations.

VIII. Conclusion

Final recommendations on the optimization process in the three key areas (1) modelling, (2) single-objective
optimization and (3) multi-objective optimization are as follows. Designers should take full advantage of the Inverse
Kinematics technique for robotics programming. In our work, we obtained Inverse Kinematics by using PyBullet.
Performing single-objective optimization, better results can be obtained when a greater number of options are
presented in the COTS motor range. Performing GA-based single-objective optimizations, it was found that
generation number had a strong effect on results. Conducting the multiobjective optimization part of our work, we
found that mass was indeed a critical parameter for space operations given the deterministic nature of mass on
launch costs. We found that a wider range of motors with different specs would yield denser Pareto front, which in
turn yield better results, potentially also meeting n-KKT conditions (which we were unable to meet with present
results).

The benchmarked small satellite assembly time with a human-in-the-loop requires weeks to months of component
assembly and integration time on Earth. We see that on-orbit assembly capability, within a spacecraft - optimized to
assemble a 1 U CubeSat with 30 W of total power, would reduce the assembly time by an order of magnitude.
Investigating initial simulations with robotic arm models, for a 1U CubeSat assembly, we show a savings benefit in
robotic assembly time from 51 s to 20 s. The best solution for this discrete problem is a robotic assembly with an
optimal CubeSat development and deployment process. The solution to this problem satisfies single-route
constraints, collective constraints, and the mission budget constraint. A constraint that the on-orbit assembly must be
conducted by two dexterous robot arms and must take five minutes or less to assemble a 10-component CubeSat is

15

satisfied. We optimize the on-orbit assembly time of small satellites using dexterous COTS robot arms while
satisfying the given power consumption and weight requirements and minimizing humans-in-the-loop. Assembly
time is selected as it is critical to the assertion that building small satellites on-orbit results in reduced cost and
satellite development time on Earth.

For future work we have identified three key areas. The first area is the simulation incorporating interaction of
two arms would be necessary to create a fully representative model of the planned assembly. Further iteration on a
less-explored domain of the problem: the placement of the components. The second area is the addition of the task
sequencing as part of a coupled optimization. The third area is the prototyping of a robotic assembly of CubeSat
components within the optimal assembly to be used to validate the optimization results.

16

References

[1] Barnhart, David, et al. "Changing satellite morphology through cellularization." AIAA SPACE 2012 Conference &
Exposition. 2012.

[2] Weisbin, Charles R., and Guillermo Rodriguez. "NASA robotics research for planetary surface exploration." IEEE Robotics
& Automation Magazine 7.4 (2000): 25-34.

[3] Whelan, David A., et al. "Darpa orbital express program: effecting a revolution in space-based systems." Small Payloads in
Space. Vol. 4136. International Society for Optics and Photonics, 2000.

[4] Barnhart, David, et al. "Phoenix program status-2013." AIAA SPACE 2013 conference and exposition. 2013.

[5] Smrekar, Sue, and B. Banerdt. "The InSight mission to Mars." The 8th Mars Conference. Vol. 18. 2014.

[6] Sallaberger, Christian, Space Plan Task Force, and Canadian Space Agency. "Canadian space robotic activities." Acta
astronautica 41.4-10 (1997): 239-246.

[7] Laryssa, Patten, et al. "International space station robotics: a comparative study of ERA, JEMRMS and MSS." 7th ESA
Workshop on Advanced Space Technologies for Robotics and Automation. 2002.

[8] Rodgers, Lennon, Simon Nolet, and David W. Miller. "Development of the miniature video docking sensor." Modeling,
Simulation, and Verification of Space-based Systems III. Vol. 6221. International Society for Optics and Photonics, 2006.

[9] Bualat, Maria, et al. "Astrobee: Developing a free-flying robot for the international space station." AIAA SPACE 2015
Conference and Exposition. 2015.

[10] Northrop Grumman. "Companies demonstrate groundbreaking satellite life-extension service." [Online]. Available:
https://news.northropgrumman.com/news/releases/northrop-grumman-successfully-completes-historic-first-docking-of-mission-e
xtension-vehicle-with-intelsat-901-satellite

[11] Flores-Abad, Angel, et al. "A review of space robotics technologies for on-orbit servicing." Progress in Aerospace Sciences
68 (2014): 1-26.

[12] Parrish, J. "Robotic Servicing of Geosynchronous Satellites (RSGS)." Defense Advanced Research Projects Agency
(DARPA).[Online]. Available: https://www. darpa. mil/program/robotic-servicing-of-geosynchronous-satellites.

[13] B.E. Kelm, et al. FREND: Pushing the Envelope of Space Robotics. Space Research and Satellite Technology. 2008 NRL
Review.

[14] Reed, Benjamin B., et al. "The restore-L servicing mission." AIAA SPACE 2016. 2016. 5478.

[15] James, Stephen, et al. "Sim-to-real via sim-to-sim: Data-efficient robotic grasping via randomized-to-canonical adaptation
networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.

[16] Gilmore, Cheser, et al. "Flexible, High Speed, Small Satellite Production." (2019).

[17] Grim, Braden, et al. "MakerSat: A CubeSat Designed for In-Space 3D Print and Assembly." (2016). 30th Annual
Conference on Small Satellites.

[18] Earth Observatory Portal Directory. “MakerSat”. [Online]. Available:
https://directory.eoportal.org/web/eoportal/satellite-missions/m/makersat

[19] NNU. “NNU’s MakerSat-1 CubeSat Assembly.” [Online]. Available: https://youtu.be/shLPETczsF4

[20] Rodgers, Lennon, Simon Nolet, and David W. Miller. "Development of the miniature video docking sensor." Modeling,
Simulation, and Verification of Space-based Systems III. Vol. 6221. International Society for Optics and Photonics, 2006.

[21] Števo, Stanislav, Ivan Sekaj, and Martin Dekan. "Optimization of robotic arm trajectory using genetic algorithm." IFAC
Proceedings Volumes 47.3 (2014): 1748-1753.

17

https://news.northropgrumman.com/news/releases/northrop-grumman-successfully-completes-historic-first-docking-of-mission-extension-vehicle-with-intelsat-901-satellite
https://news.northropgrumman.com/news/releases/northrop-grumman-successfully-completes-historic-first-docking-of-mission-extension-vehicle-with-intelsat-901-satellite
https://directory.eoportal.org/web/eoportal/satellite-missions/m/makersat
https://youtu.be/shLPETczsF4

[22] Spensieri, Domenico, et al. "Optimal robot placement for tasks execution." Procedia CIRP 44.Supplement C (2016):
395-400.

[23] Goldberg, David E., and John Henry Holland. "Genetic algorithms and machine learning." (1988).

[24] Eiben, Agoston E., and James E. Smith. Introduction to evolutionary computing. Vol. 53. Berlin: springer, 2003.

[25] Holland, John. "Adaptation in natural and artificial systems: an introductory analysis with application to biology." Control
and artificial intelligence (1975).

[26] Davidor, Yuval. "Analogous crossover." Proceedings of the Third International Conference on Genetic Algorithms. 1989.

[27] Nanoracks. “How to Build a NanoLab Payload.” [Online]. Available:
https://nanoracks.com/wp-content/uploads/How-to-Build-a-NanoLab-Payload.pdf

[28] Ceccacci, Anthony, Dye, Paul. “Contingency Shuttle Crew Support (CSCS)/Rescue Flight Resource Book.” National
Aeronautics and Space Administration (2005): 89.

[29] Kawasaki, Kazuyoshi. "Overview of JEM-EF on ISS." Proceedings of the RIKEN Symposium. Saitama. 2008.

[30] Steimle, Per C., et al. "Commercial Approach to Research Outside the International Space Station-A Small Size Precursor
Service For Future In-Orbit Testing." AIAA SPACE 2014 Conference and Exposition. 2014.

[31] Steimle, Christian, and Uwe Pape. "ISS External Payload Platform-a new opportunity for research in the space
environment." 40th COSPAR Scientific Assembly. Vol. 40.

[32] LeMaster, Edward, David Schaechter, and Connie Carrington. "Experimental demonstration of technologies for autonomous
on-orbit robotic assembly." Space 2006. 2006. 7428.

[33] Sun, Yongjun, et al. "Design and optimization of a novel six-axis force/torque sensor for space robot." Measurement 65
(2015): 135-148.

18

https://nanoracks.com/wp-content/uploads/How-to-Build-a-NanoLab-Payload.pdf

