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Enzymes readily perform chemical reactions several orders of magnitude faster than their 
uncatalyzed versions in ambient conditions with high specificity, making them attractive design 
targets for industrial purposes. Traditionally, enzyme reactivity has been contextualized through 
transition-state theory (TST), in which catalytic strategies are described by their ability to 
minimize the activation energy to cross the reaction barrier through a combination of ground-state 
destabilization (GSD) and transition-state stabilization (TSS). While excellent progress has been 
made to rationally design enzymes, the complexity of the design space and the highly optimized 
nature of enzymes make general application of these approaches difficult. This thesis presents a 
set of computational methods and applications in order to investigate the larger perspective of 
enzyme-assisted kinetic processes. 

For the first part of the thesis, we analyzed the energetics and dynamics of proficient 
catalyst orotidine 5´-monophosphate decarboxylase (OMPDC), an enzyme that catalyzes 
decarboxylation nearly 17 orders of magnitude more proficiently than the uncatalyzed reaction in 
aqueous solvent. Potential-of-mean-force (PMF) calculations on wild type (WT) and two 
catalytically hindered mutants, S127A and V155D (representing TSS and GSD, respectively), 
characterized the energy barriers associated with decarboxylation as a function of two parameters: 
the distance between the breaking C–C bond and a proton-transfer coordinate from the nearby side 
chain of K72, a conserved lysine in the active site. Coupling PMF analyses with transition path 
sampling (TPS) approaches revealed two distinct decarboxylation strategies: a simultaneous, K72-
assisted pathway and a stepwise, relatively K72-independent pathway. Both PMF and TPS rate 
calculations reasonably reproduced the empirical differences in relative rates between WT and 
mutant systems, suggesting these approaches can enable in silico inquiry into both pathway and 
mechanism identification in enzyme kinetics.  

For the second study, we investigated the electronic determinants of reactivity, using the 
enzyme ketol-acid reductoisomerase (KARI). KARI catalyzes first a methyl isomerization and 
then reduction with an active site comprised of several polar residues, two magnesium divalent 
cations, and NADPH. This study focused on isomerization, which is rate limiting, with two 
objectives: characterization of chemical mechanism in successful catalytic events (“reactive”) 
versus failed attempts to cross the barrier (“non-reactive”), and the interplay between atomic 
positions, electronic descriptors, and reactivity. Natural bonding orbital (NBO) analyses provided 
detailed electronic description of the dynamics through the reaction and revealed that successful 
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catalytic events crossed the reaction barrier through a 3-center-2-electron (3C) bond, concurrent 
to isomerization of hydroxyl/carbonyls on the substrate. Interestingly, the non-reactive ensemble 
adopted a similar electronic pathway as the reactive ensemble, but its members were generally 
unable to form and sustain the 3C bond.  Supervised machine learning classifiers then identified 
small subsets of geometric and electronic descriptors, “features”, that predicted reactivity; our 
results indicated that fewer electronic features were able to predict reactivity as effectively as a 
larger set of geometric features. Of these electronic features, the models selected diverse 
descriptors representing several facets of the chemical mechanism (charge, breaking–bond order, 
atomic orbital hybridization states, etc.). We then inquired how geometric features reported on 
electronic features with classifiers that leveraged pairs of geometric features to predict the relative 
magnitude of each electronic feature. Our findings indicated that the geometric, pair-feature 
models predicted electronic structure with comparable performance as cumulative geometric 
models, suggesting small subsets of features were capable of reporting on electronic descriptors, 
and that different subsets could be leveraged to describe various aspects of a chemical mechanism.  

Lastly, we revisited OMPDC in order to learn the key geometric features that distinguished 
between the simultaneous and stepwise pathways of decarboxylation, aggregating and labeling 
pathways drawn from WT and mutant systems ensembles. We leveraged classifiers that predicted 
between reactive pathways by selecting small subsets of structural features from 620 geometric 
features comprised of atoms from the active site. The classifiers performed comparably, with 
greater than 80% testing accuracy and AUC, between times starting from in the reactant basin to 
30 fs into crossing the reaction barrier. Remarkably, model-selected features reported on 
chemically meaningful interactions despite no explicit prior knowledge of the mechanism in 
training. To illustrate this, we focused analyses on two particular features shown to be predictive 
while in the reactant basin, prior to crossing the barrier: a potential hydrogen-bond between D75*, 
an aspartate in the active site, and the 2’-hydroxyl of OMP, and electrostatic repulsion through the 
proximity of a different aspartate, D70, to the leaving group carboxylate of OMP. Analysis 
between the simultaneous and stepwise ensembles demonstrated that the simultaneous ensemble 
adopted shorter distances for both features, generally suggesting stronger interactions. Both 
features were additionally shown to be associated with the ability to distort the planarity of the 
orotidyl ring, where shorter distances for either feature were correlated with larger degrees of 
distortion. Taken together, this suggested the simultaneous ensemble was more effective at 
distorting the ground state structure prior to crossing the reaction barrier.  
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1.1     Overview  

Of the diverse functions of proteins, enzymes perform the role of biological catalysts, 

facilitating reactions on molecules that are easily millions of times faster than their uncatalyzed 

version at physiological pH and temperature, and with high specificity [1, 32]. To date, enzymes 

are known to catalyze at least 5000 reactions, many critical to life as the product molecules of 

these reactions would be imperceptible at uncatalyzed rates [2, 3]. Harnessing the exquisite 

specificity of enzymes has long been a desirable goal for industrial purposes [30–33]. 

Problematically, it remains a major challenge to re–engineer proteins for custom function or 

repurpose them for novel substrates [34].  

Several experimental and computational strategies exist toward the design of custom 

enzymes, including but not exclusive to directed evolution, computer–aided rational design, and a 

newly emerging branch employing machine learning. While such approaches have had remarkable 

successes, the complexity of design space and the highly optimized nature of enzymes for their 

native function thwart ubiquitous application of these approaches [26]. Often, engineered enzymes 

(or antibodies with catalytic function) are many orders of magnitude less efficient than their natural 

counterparts, and may still require rounds of directed evolution or random mutagenesis to improve 

their efficacy [29, 35–39], This suggests the need for further inquiry into the facets of enzyme 

chemistry to develop a holistic view on how to engineer an enzyme toward a desired goal (either 

de novo or repurposed), and to understand what structural facets of the enzyme govern successful 

catalysis. Three key directions toward that end include: (1) modeling the complex chemistries 

performed by enzymes in rich detail while preserving the underlying dynamics, (2) identifying the 

salient structural components most indicative of reactivity, and lastly (3) understanding the refined 

interplay between atomic positions within the active site and its influence on electronic structure 
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that encourage reactivity. The focus of this thesis is to delve into the catalytic nuances of enzyme 

reactivity, and to provide a computational framework in order to generate representative simulation 

data of enzyme–facilitated reactivity, analyze the catalytic strategies, and interpret the way 

enzymes achieve incredible chemistries.  

 
1.2     Enzyme kinetics  

1.2.1 Transition–state theory and origins 

Inquiry into the origins of enzymes’ remarkable catalytic prowess has led to numerous 

theories as to how enzymes facilitate these great enhancements. The prevailing theory of enzyme 

catalysis has been traditionally couched in the language of transition–state theory (TST), arising 

from foundational work beginning in the 1940s [4–7]. Broadly, transition–state theory provides a 

framework in which to study chemical reactions: namely, in this framework, ‘activated–

complexes’ (i.e. the transition state) exist in quasi–equilibrium with the reactant–state molecules, 

and they have the ability to convert to products [4–6, 40, 41]. While the quasi–equilibrium 

assumption differs from the classical interpretation of equilibrium, the same thermodynamic 

treatment can be used to express the formation of product [5, 42].  

 The definition of the transition–state structure relies on the concept of a potential energy 

surface (PES), in which the progress of a reaction is defined as a function of atomic positions and 

momenta. The 'reaction coordinate' is a hypothetical variable(s) often used to describe this reaction 

progress, and the transition state is often cast in the context of it. Identifying the transition–state 

structure then corresponds to identifying the saddle points on the PES of the reaction [40, 41]. Due 

to the nature of this high energy, unstable structure, the transition state is extraordinarily short–

lived, with a proposed lifetime of barely 10–13 s, on the scale of a bond vibration [47].  
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Using the framework of TST, Pauling proposed that these biological catalysts exhibit tight–

binding to transition–state structures, thereby reducing the activation energy and improving the 

rate of reactivity without altering the equilibria of the unbound reactant and product molecules [7, 

12] (Figure 1.1).  

 

1.2.2 Michaelis–Menten kinetics in enzyme–substrate catalysis 

 Figure 1.1 shows the description of enzyme kinetics in the Michaels–Menten formalization 

[86]. Free enzyme (E) and substrate (S) exist in equilibrium with the formation of the enzyme–

substrate complex (ES), with this equilibrium association constant denoted as 𝐾$ =
&'
&('

. The ES 

complex also has the ability to become product (P) with rate 𝑘*+, (measured in units of inverse 

time for ‘unimolecular’ reactions, of which ES is considered to be). When considering catalysis, 

the prowess of the enzyme influences 𝑘*+,. The rate, 𝑘*+,, incorporates additional terms that 

quantify the equilibrium of the ES complex and the (activated) transition state (𝐸𝑆‡), as well as 

the formation of 𝐸𝑃, or the enzyme–product bound state, that then separates into enzyme and 

product molecules (E + P).  

 

 

 

 

 

 

  

 

Figure 1.1: Kinetics of enzyme–substrate chemistry, as described by Michaelis–Menten kinetics 

[86]. The free (unbound) enzyme is “E”, the unbound substrate is “S”, the unbound product is 

“P”, the bound enzyme–substrate complex is “ES”, and the activated (transition state) complex 

is “ES‡”. The left–hand portion denotes the equilibrium kinetics at which the enzyme and 

substrate association leading to the enzyme substrate complex. The right–hand portion of the 

equation denotes the enzyme–substrate complex becoming unbound enzyme and product, for 

brevity simplified into E+P.  

E + S ES ES‡ E+P
"#

"$#

"%

"$%
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Figure 1.2 illustrates these kinetics in the context of a free–energy diagram (i.e., potential 

energy surface). The corresponding schematic illustrates a hypothetical reaction coordinate that 

marks the progress of the reaction. The left–hand portion of the equation in Figure 1.1 is 

represented in the ‘binding’ stage of Figure 1.2, in which the ES complex is formed. Catalysis is 

the subsequent activation of the ES complex, marked by the transition state (TS, or 𝐸𝑆‡) with a 

concomitant increase in energy, followed by the formation of the enzyme–product complex (EP). 

This transition–state complex is energetically unfavorable and it quickly dissociates to free enzyme 

and product, for favorable reaction attempts [7, 12, 86].   

The region of the protein that surrounds the substrate molecule for binding and subsequent 

reactivity is characterized as the ‘active site’. The active site often has side–chain amino acids that 

are capable of exerting several forces (hydrogen bonds, van der Waals, and electrostatics) that 

provide an appropriate environment for catalysis, and that reduce the activation energy of the 

reaction. Comparisons of the uncatalyzed versus catalyzed rate of enzymatic enhancements have 

estimated that this reduction in activation energy (𝐸3) ranges from 11 to 38 kcal/mol from the 

uncatalyzed reaction [8–11]. 

 Rigorous treatment of transition–state theory also suggests the inclusion of a transmission 

coefficient [4]. The transmission coefficient accounts for the fact that not every vibration may lead 

to successful barrier crossing [4]. While considerable work exists to characterize transmission 

coefficients in enzymes, it is not always practical to explicitly consider such effects [133–135]. 
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1.2.3 Catalytic strategies employed by enzymes 

Transition–state theory has played a pronounced role in the investigation of enzyme 

catalysis, and has led to the rational design of inhibitor drug molecules that mimic hypothesized 

transition states of their respective enzymes [47]. Figure 3 represents a schematic of a hypothetical 

reaction from the context of enzyme–substrate catalysis, contrasting both the uncatalyzed and 

catalyzed version of the reaction. Two prevalent catalytic strategies put forward in the context of 

transition–state theory are ground–state destabilization (GSD) and transition–state stabilization 

(TSS), both of which both aim to reduce the activation energy of the reaction [24, 55]. It should 

be noted that enzymes may also provide for an alternative reaction pathway compared to what may 

occur in solvent [66]. 

Ea
(enzyme)

Ea
(without enzyme)

Figure 1.2 [Figure adapted from reference 141]: Schematic of the canonical interpretation of 

enzyme kinetics. The binding step incorporates free enzyme (E) and substrate (S) into the 

enzyme–substrate (𝐸𝑆) complex. This complex becomes activated into 𝐸𝑆‡, the transition–

state. The 𝐸𝑆‡ exists in quasi–equilibrium with 𝐸𝑆, but also has the ability to become 𝐸𝑃, or 

the enzyme–product complex. Subsequently, the enzyme–product state rapidly dissociates to 

form free enzyme and product. 
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As the name suggests, GSD increases the free energy of the enzyme and/or substrate in the 

enzyme–substrate complex relative to the same molecules in the unbound substrate and enzyme, 

often through using some of the binding energy to induce a distortion. On the other hand, TSS 

decreases the free energy of the bound transition–state complex.  Conventional mechanistic 

proposals that support GSD–based hypotheses are often centered around electronic strain, bond–

distortion, desolvation–effects, and conformational restriction after binding the substrate [43]. 

Similarly, central tenets of TSS include favorable interactions promoted by electrostatic 

interactions, such as hydrogen bonding, solvent environment, and occasionally promoting efficient 

and rapid proton abstractions or additions [48].  

While transition–state theory has provided an organized methodology toward studying 

reactivity in enzymes, increasingly, studies have shown that there are other contributions that 

influence enzyme reactivity [13–17]; thus, these necessitate extending upon the classic transition–

state theory characterization of enzymes. Several hypotheses have been put forth to help fill out 

the complete picture of enzyme kinetics, including enzyme pre–organization, and the role of near–

attack conformations (NACs) which are conformations of the ground state that lie on the transition 

path of the reaction [13–17].  

 The hypothesis of electrostatic preorganization describes the enzyme providing a 

(typically) polar environment that encourages catalysis [54, 55]. Traditionally, this region is 

defined to include generally the first and occasionally second coordination sphere residues 

(typically corresponding to the amino acids within the active site) [52, 53]. A core tenet of this 

hypothesis is that the enzyme positions residues to sample NACs more effectively; this 

rearrangement of the environment can be as effective in enabling catalysis as lowering the reaction 

barrier [53, 138–140]. 
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Figure 1.3 [Figure used from reference 46] Hypothetical 1D reaction profile. Free enzyme is 

represented as “E”, unbound substrate as “S”, unbound product as “P”, enzyme–substrate 

complex as “ES”, and the bound enzyme–product complex as “EP”. Note, in all cases, these 

examples are simplified; enzymes can drastically change the reaction path compared to the 

solvated reaction. (A) The uncatalyzed reaction has some barrier indicated by the top-most dashed 

line. The activation energy would be the difference in energy from the TS, appearing at the 

topmost dashed black line, to the substrate “S”. (B) This hypothetical uniform binder enzyme is 

not considered a true catalyst, as it does not change the activation energy of the enzyme. The 

decrease in energy after binding substrate is the same as the decrease in energy in attaining the 

enzyme-assisted TS complex. Thus, the activation energy is unchanged. (C) This hypothetical 

enzyme stabilizes the transition state compared to Fig 3B, as the difference between TS and ES 

is smaller than in Fig 3A and 3B. (D) This enzyme additionally includes ground-state 

destabilizing interactions compared to Fig 3A–3C, as the ground state is higher in energy; the 

difference in energy from TS and ES is smaller than 3A–3C, also suggesting this is enzyme would 

be a more effective catalyst. 
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A parallel question emerging from these catalytic strategies is what role atomic motions 

and dynamics play in the context of enzyme catalysis [17, 50, 51]. Reactivity (bond 

breaking/formation) often occurs on time scales that span mere femtoseconds up to picoseconds – 

on the order of larger–scale atomic motions [29]. In contrast, binding events are often on the scale 

of microseconds to milliseconds, suggesting these events could be decoupled from the catalytic 

act [29, 49]. A compelling hypothesis put forth by Schwartz and Schramm is the idea that the 

enzyme active site “increases the probability of rare dynamic interactions that permit rapid barrier 

crossing” [29]. Stated otherwise, after the relatively slow events of substrate collision and binding 

(and any conformational changes that may accompany them), the active site of an enzyme may 

favor or even encourage rate–promoting vibrations that help the system cross the barrier and 

facilitate catalysis [17, 29, 50]. Consensus among enzymologists suggests that enzymes likely 

employ numerous strategies, not limited to just GSD, TSS, preorganization, or NACs, to attain 

their catalytic performance [17–24, 52–56]. 

 

1.3     Biophysical modeling and molecular simulation 

1.3.1 Quantum–mechanical/molecular–mechanical methods 

As reactivity is a rapid event, careful experimental work has been able to supplement and 

support mechanistic proposals supporting these hypotheses [56–58]. However, many of these 

methods can be quite challenging to employ in experimental settings due to the short–lived nature 

of many of these states; hence computational approaches are an attractive strategy to investigate 

and quantify refined atomistic details about how enzymes facilitate their chemistries, and to inspire 

subsequent experiments that attempt to alter their functions. When considering theoretical studies, 

enzymes are large, high–dimensional, and complex molecules to model. With the advent of 
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increased processing power and specialized algorithms, biophysical modeling at the atomic level 

of detail is possible for many of these proteins [45]. Molecular mechanics employs the use of force 

fields to describe the physics of atomic interactions from a classical perspective; such approaches 

are versatile in describing dynamics and binding events [86–94]. However, force fields alone do 

not describe electronic structure phenomena, such as bond formation and destruction. Chemical 

reactions require quantum mechanical descriptions to characterize the transient changes in 

electronic structure. Quantum mechanical/molecular mechanical (QM/MM) methods were 

developed to efficiently address this discrepancy, in which a system is simultaneously modeled 

with both levels of theory, focusing the more expensive QM model only on the reactive portion 

[95–98]. For protein systems, a region within the active site where the reaction occurs (typically 

catalytic/conserved residues and the substrate) is often characterized at the quantum level of 

theory, while the remainder of the environment is quantified with an appropriate molecular–

mechanics forcefield [45].  

 

1.3.2 Enhanced sampling approaches to identify energetic landscapes 

Most QM/MM simulations are run at ambient conditions; given a Boltzmann energy 

distribution centered around these conditions, sampling high–energy configurations, such as 

transition states, can be extraordinarily rare. To illustrate this point, consider orotidine 5´-

monophosphate decarboxylase (OMPDC); its reaction barrier is nearly 17 kcal/mol [66]. The 

Boltzmann–associated likelihood of generating a configuration with this energy at 300 K would 

be 𝑒5
67
89 ≅ 4 × 105$? – a virtually impossible event!  
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To tackle this problem, clever physical methods have been developed that efficiently 

sample configurations in these high–energy regions. These methods encompass techniques such 

as umbrella sampling, blue–moon sampling, metadynamics, quantum–mechanical band methods, 

and empirical–valence bond theory [38, 59–62, 99–101]. A unifying element of these techniques 

is to apply either a biasing potential or higher temperatures to make rare configurations more 

accessible [59–62]. Methods like Weighted Histogram Analysis Method (WHAM) can then be 

used to estimate the unbiased potential at the desired temperature. Although these techniques 

provide accurate potential energy landscapes for reactive paths, they alter the dynamics of the 

simulation [63]. Moreover, the performance of these techniques in estimating barrier heights and 

reactivity is sensitive to the definition of the reaction coordinate(s) [63–65].  

 

1.3.3 Transition path sampling methods for catalysis 

 Path algorithms, led by Transition Path Sampling (TPS), can explore rugged energy 

landscapes and reactivity without distorting dynamics. These methods harness Markov chain 

Monte Carlo (MCMC) techniques to sample ensembles of ‘transitions’, and they are formulated 

to be agnostic to reaction coordinates [63–65]. The only requirement for path sampling methods 

is the definition of an order parameter that appropriately identifies structures in the starting 

(reactant) basin and the ending (product) basin [63, 64] (Figure 4). Equipped with this parameter, 

one only needs an initial ‘seed’ path that connects between the starting and ending basins to 

generate ensembles of the transition of interest [63–65].  

Generating ensembles with path sampling methodologies requires the use of several types 

of moves: this work specifically focuses on shifting and shooting moves, as indicated in Figure 4 

[63–65]. Shifting moves preserve the majority of the trajectory, but alter a relatively few time steps 
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at the start or end of the trajectory [63–65]. By contrast, shooting moves can generate entirely de 

novo pathways. The Monte Carlo move chooses a time slice of a given trajectory, and creates a 

small perturbation to the velocity of all the atomic coordinates at this selected point. This 

perturbation is integrated forward and backward in time by the prescribed physics of the QM/MM 

simulation. A new candidate trajectory is accepted if the move resulted in a trajectory that 

successfully begins and ends in the appropriate starting and ending basins [63–65].    

Prior studies have employed path–sampling to study several enzymatic systems due to the 

methods’ versatility and rich data generation process [67–76]. Additionally, a rigorous statistical 

mechanical formulation has been developed to analyze the trajectories computed by path sampling 

methodologies and compute rate constants from the generated ensembles [77, 78]. Historically, 

path–sampling simulation studies have often focused on the mechanistic details of enzymatic 

reactions as opposed to full rate computations [128–132]. 
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Figure 1.4 [Figure used from reference 79] (A) Hypothetical potential energy surface (PES) and 
reactive paths drawn across the landscape. Path sampling strategies require the order parameter 
to provide a clear delineation between the starting basin “A”, and the product basin “B”. In the 
following diagram, the advantage of path sampling strategies is that the Markov chain Monte 
Carlo (MCMC) sampling procedures allow for new paths to be constructed that can navigate 
across rugged landscapes that conventional sampling may not traverse without an assisting 
biasing potential. The ensemble of paths that connect A with B can then be analyzed for insights. 
In the case of reactivity, the starting basin is the reactant, and the ending basin is the product. The 
paths that connect between these states represent the catalytic trajectories. (B) A schematic of a 
shooting move; a shooting move within the MCMC path sampling ensemble uses a slice chosen 
from the prior trajectory within the ensemble (guaranteed to connect between the starting and 
ending basins), and applies a momentum or velocity perturbation to all the atoms in the system. 
Molecular mechanics models can propagate the resulting forces due to this perturbation forward 
and backward in time to assess whether the new trial trajectory also connects between the desired 
basins. If it does, the trajectory is accepted into the ensemble and a new move is computed using 
this as the starting trajectory. If it is rejected, the original seed trajectory is added again to the 
ensemble. (C) A schematic representing a shifting move; the TPS shifting move temporally 
“shifts” a path so that the actual path connecting between the basins remains the same, the 
beginning and ending are changed by lengthening or shortening.  
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1.3.4 Quantum calculation and natural bonding orbitals (NBO) 

 The path sampling methodology preserves the underlying dynamics of crossing a reactive 

barrier. For this reason, the atomic positions of the enzyme reaction can be probed in richer detail 

to quantify the electronic transitions as the reaction proceeds. To analyze electronic structure, pure 

ab initio methods can be employed on a system of interest to construct a wavefunction (or proxy 

of one) that characterizes the electron density across the atoms. However, full quantum 

characterization of biological systems remains a difficult feat. The complexity and size of large 

biomolecules (for example, the fully solvated protein system in Chapter 2 with orotidine 5´-

monophosphate and explicit water is nearly 54,000 atoms!) makes it difficult to overcome the 

computational requirements that often scale as order 3 or greater with respect to the system size 

(i.e. O(N3) where N is the number of electrons in the system) [38, 99–103]. However, analyses 

may be focused on the critical region of reactivity (the substrate and the active site) to quantify the 

manner in which the enzyme facilitates reactivity [98, 104, 105]. While quantum techniques 

provide descriptions of electron density, further refinement of the orbital structure, as localized 

between atoms, can afford interpretable chemical insight. To that end, techniques such as Natural 

Bonding Orbital (NBO) theory allow the elucidation of mechanism through the lens of an organic 

chemist; namely, NBO theory quantifies bonding orbitals and lone–pair orbitals from a Lewis–

like perspective [80–82].  

 NBOs aim to characterize the electron density between “centers”, typically one or two 

(occasionally three or more) atoms via an orthonormal set of “localized maximum occupancy 

orbitals” [80–82, 106–108]. This technique makes no pre–supposed hypotheses toward either the 

form, or location of the bonding orbitals. Instead, it searches across all possible ways of drawing 

bonds and lone pairs that describe the highest percentage of total electron density in leading  
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“Lewis–type” NBOs [106–108]. This description is considered the “Natural Lewis Structure” 

(NLS), which attributes the percentage of the computed wavefunction toward a “Lewis–like” 

interpretation, and the remaining orbitals are labeled as “non–Lewis” type NBOs that represent the 

residual effects not well–captured by Lewis theory (such as resonance or other types of 

delocalization). 

 The NBO approach works through a series of steps; first, the non–orthogonalized functions 

corresponding to the atomic wavefunctions calculated via some high level of theory (such as 

Density Functional Theory “DFT” or Hartree–Fock “HF”) are converted into individual, “atom–

centered”, orthogonal natural atomic orbitals (NAOs) [81, 109]. These NAOs represent a localized, 

1–center orbital that are ascribed to a given atom. The formulation of the NAOs allows for two 

physical attributes to be qualitatively described: (a) the spatial diffuseness of the orbital (i.e. the 

delocalized versus contracted nature) will depend on the molecular environment and (b) the 

valence NAOs properly incorporate nodal features from steric confinement. NAOs are strictly 

orthogonal, and are used in Natural Population Analysis (NPA) that appropriates the number of 

electrons associated to each atom in a more basis–insensitive way compared to the Mulliken 

Population Analysis [81, 109]. 

NAOs are then subsequently transformed into natural hybrid orbitals (NHOs), which 

represent atom–centered hybrids that are a linear combination of NAOs. The NHOs are eventually 

used in the two–centered natural bond orbital or NBO [110]. One advantage of NBOs is that they 

are uniquely associated to the wavefunction, with orbitals that are generally non–degenerate. 

Departures from classic Lewis–like descriptions also have meaningful interpretations, typically 

regarded as delocalization or resonance effects that a single Lewis structure cannot easily 

articulate. Common orbitals found in the NBO formulation include core shell, lone pair (“non–
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bonded”), bonding, antibonding, and Rydberg orbitals. More recently, the formulation adopted a 

definition to encompass 3–center–2–electron (3C) descriptors [111, 112]. For biological systems, 

the NBO analysis has been performed on localized regions of enzymes in order to explore the 

chemical mechanism of catalysis [113], and to link key atomistic features and the way they 

influence the electronic environment of a reaction. 

While quantum calculations provide refined interpretation of the electronic structure 

underlying a chemical reaction, understanding how a protein facilitates reactivity requires also 

capturing what geometric changes of the active site drive catalysis and are amenable to 

successfully crossing a reactive barrier. To highlight those geometric facets of the active site that 

give rise to reactivity, machine learning models can highlight key features that are linked to 

catalysis, which can then lead to structure and dynamics–based mechanistic hypotheses. 

 

1.4     Machine learning methods in protein catalysis 

Protein models are complex, diverse–atom, high–dimensional systems which are not 

necessarily intuitive, even to the keen enzymologist. Most classes of machine learning models are 

adept at parsing complex, multivariate relationships between key features within data, and can be 

applied to biology. Recently, several pioneering papers have employed various architectures of 

machine learning models to investigate relationships in structural biology in the fields of protein–

protein interaction networks, optimized directed evolution, protein–ligand binding, protein 

structure and/or protein folding prediction [114–121].  

Given the multitude of machine learning models, the choice of which algorithm depends 

on the problem posed. No single architecture or algorithm suffices for all tasks ubiquitously; thus, 

the formulation of the problem will drive the types of models deployed. The goal of understanding 



 33 

the drivers of enzyme reactivity with machine learning requires two criteria be met: models should 

(i) identify whether or not a system crosses the barrier (reactive versus “non–reactive”), and (ii) 

select features most important toward predicting reactivity that are readily interpretable and/or 

easily accessible.  

Given these criteria, neural networks are not necessarily appropriate for the enzyme 

reactivity problem. While they have excellent predictive performances [115–121], interpretability 

of the key features that influence predictive power in neural networks is still an open problem in 

the field [122–124]. Moreover, such models are often data hungry and require extensive training 

data in order to learn appropriate representations, given the number of parameters in the model 

[115–121]. Simpler machine learning models typically apply some type of linear transformation 

on the input features in order to predict a property or class of interest, and are often the first baseline 

predictors employed before more expressive models are used [117]. The work within chapters 3 

and 4 employs the use of a simpler machine learning model, logistic regression, chosen for its 

ability to classify while directly underscoring the relevant features involved.  

 

1.5     Thesis scope and organization 

This thesis aims to synthesize the above progress in enzymology and computational 

techniques to investigate high–dimensional data in order to understand how enzymes facilitate 

their magnificent chemistries. Toward that end, the following three chapters describe key studies 

to explore these methods.  

In Chapter 2, we studied the catalytic proficiency of orotidine 5´-monophosphate 

decarboxylase (OMPDC), an enzyme found in many biological systems that facilitates the 

decarboxylation of its substrate, orotidine 5´-monophosphate (OMP). This enzyme is known for 
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its incredible catalytic proficiency, enhancing reactivity by nearly 17 orders of magnitude from the 

solvated, uncatalyzed reaction [125]. Elegant experimental methods have dissected several key 

residues that facilitate reactivity in the enzyme, and our work focuses on 2 empirically verified 

mutants, S127A and V155D [66]. These variants, respectively, address the catalytic strategies of 

transition–state stabilization and ground–state destabilization. This investigation employed the use 

of potentials of mean force (PMFs) and path sampling strategies to provide both an energetic and 

a dynamic perspective on the decarboxylation of OMPDC. The PMF and path sampling 

trajectories showed reasonable agreement with the ranked, relative orders of the empirically 

identified rates, suggesting that both approaches were capable of reflecting systematic changes in 

catalysis from the local environment of the enzyme. The path sampling trajectories across WT, 

S127A, V155D revealed that there were at least two distinct reactive pathways to facilitate 

decarboxylation. WT and S127A frequently decarboxylated via a “simultaneous” mechanism, 

where the position of K72 was observed to be “coordinated” with the decarboxylation event. The 

V155D mutant displayed two types of mechanisms: one that was similar to WT and S127A, and 

another that explicitly broke the carbon–carbon bond before the proton transfers to the substrate 

and finishes the reaction (“stepwise”).  

We applied quantum–chemical techniques to explore the electronic description of the 

drivers of reactivity in Chapter 3. This chapter investigated the catalysis performed by ketol–acid 

reductoisomerase (KARI), an enzyme that facilitates a methyl–transfer isomerization with the 

assistance of two magnesium ion cofactors and NADPH. This enzyme has been the target of 

several studies, as the reaction it catalyzes plays a critical role in the synthesis of biofuels [127, 

137, 138]. Prior work in the group identified a subset of 30 geometric features, constructed from 

distances, angles, and torsions of the active site of KARI that predicted reactivity and influenced 
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the likelihood of crossing the barrier when sampled in the reactant basin [136]. Chapter 3 analyzed 

the successful, methyl transferring reactive simulations and the simulations that failed to cross the 

barrier from the work of Bonk et al. [136] and extended the chemical significance by revealing the 

mechanism of KARI via Natural Bonding Orbital (NBO) analyses to represent electronic structure 

in a Lewis–like representation. Our calculations revealed that methyl transfer occurred 

simultaneously with carbonyl formation and lone–pair formation with the adjacent oxygens (O6, 

O8) of the substrate, and that the reaction formed a three–center–two–electron bond, formed from 

the participating carbons (C4, C5, C7) of the substrate. In order to investigate the relationship 

between the geometric features of the active site and underlying electronic structure, we performed 

classification tasks to predict reactivity with both geometric and electronic features. Subsequent 

analyses identified a subset of 10 geometric features or a set of 6 electronic features, either of 

which were sufficient to predict reactive and non–reactive simulations with ROC AUC > 0.9, 

suggesting that while both types of features were predictive, fewer electronic features were 

required to predict reactivity with the same performance. We identified a possible catalytic strategy 

in which one of the geometric features involving a catalytically conserved glutamate, E319, and 

the distance to the transferring methyl (E319/OE1–C5) influenced the torsional orientation of the 

methyl prior to transferring such energy of the breaking bond orbital (C4–C5) increased, 

suggesting ground–state destabilization. This torsional orientation was also related to an electronic 

descriptor reporting on the electron density of the breaking bond (C4–C5 bond index), 

demonstrating that eclipsed orientations weakened the breaking bond prior to reacting. Lastly, we 

showed that pair–feature models of the 10 geometric features in predicting each of the 6 electronic 

features performed comparably to a full cumulative model, suggesting small subsets of geometric 

features were enough to predict the underlying electronic structure. 
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Chapter 4 revisited the OMPDC system and harnessed the framework of Chapter 3 in order to 

investigate the decarboxylation mechanism across the WT and mutant systems. From the results 

of chapter 2, energetic and dynamic characterization of the decarboxylation of OMPDC revealed 

two distinct pathways: a ‘simultaneous’ mechanism where the decarboxylation is coordinated with 

the positioning of catalytically important lysine, K72, and a ‘stepwise’ mechanism in which the 

decarboxylation is relatively independent of K72’s position. The reactive pathways of the WT, 

S127A, and V155D mutants were combined to create two aggregate ensembles for each pathway, 

and supervised machine learning models are trained to classify between the two mechanisms for 

several time points starting from the reactant basin to 30 fs after the systems were committed to 

crossing the reaction barrier. Pair–feature models were able to predict reactivity with (ROC) AUC 

> 0.8 across all time points tested in this work. Moreover, model–selected features underscored 

several mechanistic hypotheses, of which we showed that two features, the distance between 

residue D75 in proximity to the 2’–hydroxyl of the OMP substrate ribose and the distance between 

D70’s carboxylate oxygen and OMP’s carboxylate oxygen, influenced the ability to distort the 

planarity of the orotidyl prior to reacting. Taken together, this highlights the ability for machine 

learning models to recognize chemically meaningful features in enzyme catalysis, without explicit 

knowledge of the mechanism. 
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2.1   Abstract 

Orotodine 5´-monophosphate decarboxylase (OMPDC) is notable for its extreme catalytic 

proficiency and has been the subject of numerous experimental and theoretical studies. This 

enzyme facilitates conversion of its substrate, orotidine 5´-monophosphate (OMP), to uridine 5´-

monophosphate (UMP), a precursor in pyrimidine biosynthesis, with a rate enhancement of nearly 

17 orders of magnitude over the uncatalyzed reaction in aqueous solvent. Empirical studies have 

implicated direct decarboxylation, yet there are several catalytic strategies that remain compatible 

with this proposal. While prior theoretical work often focused on studying the enzyme in the 

context of explicit transition–state stabilization (TSS) or ground–state destabilization (GSD), we 

examine both energetics and dynamics. In the current work, we characterize the potentials of mean 

force for the enzyme catalyzed reaction with umbrella sampling using QM/MM simulations for 

wild type (WT) and two catalytically hindered mutants, S127A and V155D, empirically identified 

to address different aspects of the catalysis. Our results suggest that two reaction mechanisms are 

compatible with direct decarboxylation: one in which a catalytically conserved lysine, K72, 

stabilizes the carbanion formed through direct decarboxylation; and another in which 

decarboxylation could be independent of K72’s position. We performed path–sampling 

calculations that simulated the reaction dynamics to further study contributions to catalytic 

proficiency. The simulations showed reduced catalytic proficiency for both mutants, consistent 

with the rate depreciation established from experiments. Interestingly, dynamic paths collected 

from WT and each mutant demonstrated that each system sampled different reaction paths: WT 

and S127A preferentially adopted a “simultaneous” path, in which K72’s position plays a role in 

the decarboxylation, whereas V155D decarboxylated with both the former pathway, and a second, 

K72–independent, “stepwise” path. These results suggest the role of dynamics in adopting paths 

toward reactivity that are altered when the chemical environment is changed. 
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2.2  Introduction 

Orotidine 5´-monophosphate decarboxylase (OMPDC) is an enzyme that catalyzes the 

precursor material in de novo synthesis of pyrimidines [1]. This pathway is present in eukaryotic 

organisms such as plants, fungi and even protists as well as prokaryotic organisms like bacteria 

[15, 17, 20–22]. Strikingly, this enzyme is noted as one of the most proficient catalysts in existence, 

producing a rate enhancement of over 17 orders of magnitude compared to aqueous solvent, 

without assistance of co–factors or metal ions to facilitate the chemistry [1, 2]. The enzyme 

facilitates the decarboxylation of the ring–structure connected to the ribophosphate group of the 

reactant–state orotidine 5´-monophosphate (OMP) to make uridine 5´-monophosphate (UMP) 

(Figure 2.1). 

 

 

 

 

 
 
 
 
 
 
 
 
 

Since the discovery of OMPDC, several mechanisms have been posited to describe the 

decarboxylation reaction [3–7]. While mechanistic proposals have included the possibility of a 

Figure 2.1: Reaction catalyzed by OMPDC. This enzyme is able to facilitate the 
decarboxylation of the pyrimidine precursor OMP into UMP. Cleavage removes a carboxylate 
group from the base and replaces it with a proton for two products molecules: UMP and 
carbon dioxide.  

+H 
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nucleophilic attack on C5 [5], or a zwitterionic structure formed via protonation of O2 [4], 

experimental and theoretical characterization has led to the prevailing hypothesis that the enzyme 

stabilizes a carbanion formed through decarboxylation [3, 6–11]. Experiments have also 

demonstrated that the decarboxylation likely happens before protonation [11], and the rate–

determining step is considered to be dependent on the decarboxylation, or breaking of the C–C 

bond on the nitrogenous base of the nucleotide precursor substrate [53]. Evidence also seems to 

suggest that the enzyme favors catalytic strategies that can stabilize the carbanion formed upon 

decarboxylation to help facilitate the rate enhancement [13–20]. Indeed, evidence suggests that 

methyl–orotate, a truncated version of the substrate methylated at the N1 location (omitting the 

ribophosphate), reacted up to three orders of magnitude faster in solvents less polar than water 

[12]. Another experiment demonstrated that a truncated substrate representing the orotate ring 

fluorinated at position of C5 (replacing a proton) enhanced the rate up to 400–fold, suggesting that 

the electronegativity of a proximal atom can help alleviate the strain of decarboxylation by 

potentially delocalizing negative charge from a formed carbanion [13].  

OMPDC is well characterized across yeast and bacterial species, with a highly conserved, 

charged active–site network, and substrate positioning that seems to be conserved across 

organisms [15, 17, 20–22], despite divergence in the sequence itself. This study specifically 

focused on the Methanothermobacter thermoautotrophicus variant (MtOMPDC) due to the 

existence of an excellent crystal structure with a resolution of 1.4 Å and empirically well–

characterized mutants [23, 11].   

MtOMPDC exists as an obligate homodimer, in which two active–site pockets are formed 

using the interface of the dimer; the opposing dimer provides a catalytically important residue, 

thus is necessary for the formation of the appropriate active site. The active–site possesses highly 
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charged residues that assist in reactivity and create a tetrad of lysines and aspartates: K42, D70, 

K72, D75* (the asterisk indicating the second monomer) [7, 20, 23] (Figure 2.2). This particular 

motif is seen in several other species, including yeast and E. coli [20, 24].  

The aforementioned residues correspond to K59, D91, K93, D96* respectively in 

Saccharomyces cerevisiae yeast OMPDC (ScOMPDC). Experimental validation of this yeast 

analog has demonstrated that individual alanine substitution of each of these residues, except K59 

(analogous to K42 in MtOMPDC), has detrimental effects on catalytic function [20, 28]. This 

charged network appears to also be important to MtOMPDC, as the enzyme exhibits a hundred–

fold reduction in catalytic performance with a D70N mutation [27].  

Considerable theoretical discussion has also explored the role of these specific catalytic 

residues in the context of the reaction, resulting in two leading hypotheses framed in the context 

of ground–state destabilization and transition–state stabilization. The specific functional 

significance of the catalytic tetrad residues in the active site in close proximity to the substrate 

carboxylate is considered unclear; initial hypotheses posed by Wu et al. suggested evidence for 

ground–state stabilization (GSD) [15], compatible with the theory originally proposed by Jencks 

that an enzyme first may employ luring attractive forces to later compensate for a destabilizing 

effect [30]. Wu et al. claimed that the role of the active–site lysines (namely K72) would ‘lure’ the 

substrate into the binding pocket, whereupon the aspartyl side chains would provide considerable 

electrostatic stress to the Michaelis–Menten complex to reduce the ΔΔ𝐺 between the ground state 

and transition state [15, 23]. Contrary to the GSD hypothesis, Warshel et al. proposed that the 

origin of rate enhancement for OMPDC arises from transition–state stabilization (TSS), claiming 

that K72 provides a stabilizing role toward a possible carbanionic transition–structure [14]. In 

support of the TSS–based hypotheses, an additional residue (namely S127) is thought to delocalize 
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the transition state to allow for a carbene–like intermediate through a transient hydrogen–bond 

with a carbonyl present on the ring structure [6, 27]. Experimental mutation of S127 to alanine or 

proline does point to some role for this residue, as these mutants showed marked reduction in the 

catalytic rate of the decarboxylation [27].  

In addition to the charged tetrad, several other residues are implicated to play an important 

role toward the catalysis of OMPDC. The residues binding the phosphodianion moiety (namely 

R203 and Q185) provide a stabilizing role for the substrate to bind into the active site. For 

MtOMPDC, substitution of either of these residues dramatically affects catalysis by changing KC, 

suggesting these residues affect the binding affinity of the substrate to the enzyme [32]. Moreover, 

prior work identified a hydrophobic pocket adjacent to the highly charged catalytic tetrad, 

indicating the importance of the charged environment in substrate destabilization (i.e. GSD), as 

mutation of any of these participating pocket side–chains to hydrophilic and/or polar residues 

resulted in a 101 to 104–fold reduction in catalysis [27].  

Evidence converges to suggest that the enzyme actively employs multiple attributes to 

facilitate catalysis. Mechanisms compatible with experimental observations underscore the 

following two facets: (1) the ability to either directly stabilize a carbanion or create a carbene–like 

resonance structure during the reaction via transition–state stabilization (TSS) and (2) the capacity 

to destabilize the carboxylate group via ground–state/substrate destabilization (GSD). 
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Iiams et al. provided extensive characterization of residues implicated in catalytic strategies 

of TSS and GSD by creating mutants of MtOMPDC demonstrating dramatic reductions in kcat 

when contrasted with the wild type (WT) system [27]. In particular, that study focused on 

comparing WT with several mutants including V155D and S127A; both mutants exhibited large 

reduction in reactivity and link changes to the local environment to each of the two aforementioned 

catalytic strategies. The mutant V155D represents a polar substitution to the hydrophobic pocket 

near the catalytic, charged tetrad of the active site, and is thought to hinder GSD [27]. S127A 

Figure 2.2: Active–site of MtOMPDC highlighting the substrate and several active-site residues: 
the catalytic tetrad K42, D70, K72, and D75* (asterisk denoting it comes from the other monomer), 
S127, V155, R203 and Q185. The decarboxylation reaction removes the carboxylate group at C6 
of the orotidyl ring. Subsequently, C6 is protonated, and the carboxylate group of CX leaves as an 
uncharged CO2. For a walleyed stereoview, see Figure 4.S17. 
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substitutes the hydroxyl side group of a conserved serine that participates in hydrogen bonding the 

amide of the substrate ring. While it does not directly discount delocalization via the amide proton 

and carbonyl O4 of the substrate, it has been shown to decrease the rate by 2 orders of magnitude, 

potentially by disrupting the hydrogen bond formed by the side–chain hydroxyl and carbonyl O2 

from the ring, disrupting effective TSS [27].  

The objectives of the current work are two–fold: first, we aimed to characterize and contrast 

the free–energy surfaces of the WT with the two catalytically hindered mutants, and secondly, we 

aimed to elucidate reaction paths that the WT and mutants may take to facilitate reactivity. These 

aims were accomplished through the use of potential of mean force (PMF) calculations coupled 

with transition path sampling (TPS) methodologies to provide a free–energy perspective of the 

reaction, and to explore how the WT and mutants navigated across the reaction barrier of facilitated 

decarboxylation.  

Our work extends prior work by Vardi–Kilshtain et al. that produced the free–energy 

landscape of the decarboxylation of WT MtOMPDC [18]. Their work employed the use of 

umbrella–sampling and QM/MM methodologies to characterize the energetics of the reaction as a 

function of three reaction coordinates, namely: the decarboxylation coordinate of the breaking 

bond between the ring carbon and the carboxylate carbon; a proton–transfer coordinate monitoring 

the distance of a proton on K72 as it formed a bond with the ring carbon versus the distance of the 

originally attached amide group of K72; and a hybridization coordinate measuring the linearity of 

the carboxylate group. In their findings, they reported that the minimum free–energy path 

implicated the lysine, K72, providing a directly stabilizing effect – the position of the nearest 

proton of K72 was coordinated with the decarboxylation event and concurrently approached the 

ring carbon while the decarboxylation occurred. While well–characterized, their sampling 
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approach was restricted to a narrowly defined region of the decarboxylation/proton–transfer 

coordinate phase space, hence omitting the possibility of exploring if any other mechanistic paths 

may be energetically plausible [18]. Our work extends theirs and explicitly samples a larger grid 

of decarboxylation and proton–transfer coordinates and additionally includes the empirically 

characterized mutants.  

The introduction of empirically characterized mutants that probe different aspects of the 

catalysis allows for a holistic view of how decarboxylation proceeds in the OMPDC chemical 

environment. Our calculations applied umbrella sampling methods to decarboxylation and proton–

transfer coordinates of the WT and catalytically hindered mutants, capturing absolute and relative 

reactivity reasonably well, as measured by barrier heights (PMF) and rate (TPS). The resulting 

PMFs for WT and S127A mutant also suggested two energetically comparable pathways toward 

decarboxylation: one in which the decarboxylation occurs concurrently to the K72 proton moving 

closer to the ring, and another independent of the K72 proton’s general location. In contrast, the 

V155D mutant exhibited a higher barrier toward the concurrent route, favoring the K72–

independent approach.   

While umbrella sampling methods provide an excellent view of the energetics of a 

landscape, subsequent methods are required to identify reaction paths. Examples of such 

approaches include nudged–band methods, which have been employed in the use of identifying 

reaction paths across energetic barriers [18]. While such methods provide rigorous structures of 

the transition–state saddle point, they often omit the dynamic contributions that occur throughout 

the reaction, and are also dependent on the reaction coordinates chosen to describe the reaction. 

For protein systems, there has been much debate on the role of dynamics in the ability of an enzyme 

to facilitate reactivity [48, 49]. In order to be able to explore the role of dynamics, in addition to 
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potential reactive paths, transition–path sampling methods offer an amenable way to explore these 

reactive pathways without the constraints and assumptions directly imposed by explicit transition–

state theory (TST) methodologies. While compatible with TST, the theory does not explicitly 

require a formal definition of the transition–state structure or reaction coordinate, and it is possible 

to directly compute a rate that takes account of dynamic effects [39, 40]. TPS, in the context of 

chemical reactions, only requires an order parameter, denoted 𝜆, capable of describing the reactant 

and product basins, with basin boundaries being independent of one another [39, 40]. For this 

reason, TPS methods were suitable for our inquiry into the dynamic paths that the WT and mutant 

OMPDCs may employ to facilitate decarboxylation. The resulting TPS calculations not only 

recapitulated the PMF results, in particular suggesting that the likelihood of crossing the barrier 

diminished for hindered mutants compared to WT, but additionally demonstrated that the WT and 

mutants preferentially crossed the barrier in different ways. Simulations of successful bond 

breakage showed the WT and S127A preferentially decarboxylating in a “simultaneous” pathway 

which leveraged the position of a nearby side chain, K72, while decarboxylating, whereas the 

V155D mutant had two distinct pathways: one that resembled the WT and S127A pathway and a 

separate approach independent of K72’s position dubbed “stepwise”.  
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2.3  Methods 

2.3.1 Structure Preparation 

The crystal structure of native M. thermobacterautotrophicus OMPDC with bound 

transition–state inhibitor 6’–hydroxyuridine–5’–phosphate (BMP) (accession code 3LTP) from 

the Protein Data Bank was used for the preparation of WT and mutant structures [23]. The crystal 

structure was solved with data collected to 1.4 Å resolution and a pH of 7.1. Missing hydrogen–

atom positions were generated with CHARMM’s internal HBUILD module using parameters from 

CHARMM36’s all–atom forcefield. The structure contained two histidine residues per monomer; 

both were protonated in the 𝛿–position in order to optimize hydrogen–bonding to nearby side 

chains. OMPDC comprises two independent active sites from the assembly of two monomers. In 

both active sites of the crystal structure, BMP is complexed with the enzyme. BMP was converted 

to OMP in each active–site by assigning analog atom positions to the OMP parameters (indicated 

below in 2.3.2) and allowing CHARMM’s native internal–coordinate building procedures to 

replace the missing carboxylate. requiring it to be co–planar with the aromatic ring based on 

geometry optimization with GAUSSIAN03 (see ‘Constructing force field parameters’). Starting 

coordinates for point mutants of the protein were obtained by ablating the side–chain of the 

canonical residue in the WT, and re–building the mutated side chain from internal coordinates 

using the remaining peptide backbone atoms. No significant changes in the pucker of the ribose 

were exhibited between the OMP structure and the BMP structure. 

 

2.3.2 Constructing force–field parameters for OMP 

An initial structure and molecular mechanics parameters for the substrate orotidine–5´-

monophosphate (OMP) were constructed based on the structure of BMP (present in the original 
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structure) and existing parameters for the related thymine derivative Gamma 2–carboxy phenyl 

GA CDCA amide (2XBD) [45]. The full OMP structure was optimized by quantum mechanical 

optimization at the RHF/6–31G* level and partial atomic charges were assigned with RESP [54, 

55]. The carboxylate group (CX, OX1, OX2) was found to be co-planar with the orotidyl ring after 

optimization.  

 

2.3.3 Equilibration of OMPDC and substrate 

All molecular mechanics and dynamics calculations were carried out with the CHARMM 

program package [46, 47]. Energy minimization using adopted basis Newton–Raphson (ABNR) 

[46] was performed to reduce poor contacts for wild–type and mutant structures, progressively 

relaxing hydrogen atoms, side chains and substrate, and then finally the backbone. All 

crystallographic water molecules present in the original crystal structure were preserved in the 

active–site preparation, and the entire system was solvated with a pre–equilibrated rhombic 

dodecahedron box (75 Å x 100 Å x 75 Å) of TIP3P water molecules [37]. All water molecules 

were treated with SHAKE [56]. Twenty–four potassium counterions were randomly placed in the 

box to restore charge neutrality. The neutral cell of protein and water complex was heated to 298 K 

over the course of 100 ps using a 1–fs timestep, subjected to NPT molecular dynamics at one 

atmosphere pressure with Leapfrog integration. A subsequent equilibration run of 100 ps without 

heating was performed [57]. Periodic boundary conditions with Ewald summation was applied for 

all molecular dynamics (MD) simulations. Electrostatic interactions were computed with particle–

mesh Ewald summation using a real space cutoff of 14 Å and 1 Å grid spacing. 
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2.3.4 Umbrella Sampling and PMF Construction 

Umbrella sampling was performed with CHARMM’s SQUANTUM QM/MM 

implementation at the level of AM1 in order to both allow for electronic descriptions of bond–

breaking and formation of the decarboxylation and proton–transfer coordinates, and to balance 

accuracy and speed [46, 47, 58]. The quantum mechanical region included the side groups, all 

from the active site primarily comprised of chain A, starting from 𝐶G, of K42, D70, K72, D75*, 

and the orotidyl group of the OMP substrate from the N1 amide of the ring, where boundary atoms 

across the 𝐶H– 𝐶G bond were treated with the Generalized Hybrid Orbital (GHO) method [34]. 

Explicit treatment of umbrella sampling potentials and metrics were treated with the 

RXNCOR module of CHARMM. A pair of coordinates was chosen to drive the chemical reaction, 

corresponding to the observed chemistry: (1) the decarboxylation coordinate corresponding to 

breaking the C6–CX bond (and equal to that bond length), and (2) a coordinate for the proton 

transfer from the ammonium group of K72 to the C6 carbon of the orotate ring (and equal to the 

breaking bond length minus the making bond length). In other words, the definition of the 

decarboxylation coordinate was cast as: 

𝜆$ = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐶R − 𝐶𝑋) 

and the proton transfer coordinate as 

𝜆$ = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑁𝑍XYZ − 𝐻𝑍1XYZ) − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐶R − 𝐻𝑍1XYZ) 

Henceforth, these coordinates are represented as an ordered pair (λ1, λ2) (Figure 2.3). Umbrella 

sampling simulations were performed across the two–dimensional space of these reaction 

coordinates (at 0.1Å spacing for the decarboxylation coordinate and 0.2Å spacing for the proton–

transfer coordinate) with harmonic restraint of 80 kcal/Å2 with the use of CHARMM’s RXNCOR 

module. To maintain the integrity of the proton–transfer coordinate and prevent transfer of a 
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different amide proton (HZ2 and HZ3), the protons that formed hydrogen bonds with proximal 

aspartates near K72 were restrained to K72’s amide nitrogen, NZ, with an additional harmonic 

potential of 200 kcal/Å2. Each simulation began with the same template equilibrated structure, and 

was perturbed iteratively in increments of 200 fs until the desired umbrella’s center was attained 

for both reaction coordinates. Once the center was attained, each simulation sampled 50,000 

timesteps of production dynamics. To construct the free energy profile as a function of these two 

reaction coordinates, the use of the Weighted Histogram Analysis Method (WHAM) was 

employed [31].    

  

Figure 2.3: Schematic of reaction coordinates used in potential of mean force calculations to 
characterize the decarboxylation landscape. As indicated, the decarboxylation reaction 

coordinate (λ1) was the C6–CX distance, and the proton–transfer reaction coordinate (λ2) 

combined the distance between proton HZ1 of K72 and the amide nitrogen NZ of K72 versus 
the distance between the same K72–HZ1 and the orotidyl ring C6. In the illustrated example, 

λ1 = 2.1 Å and λ2 = 1.0 Å – 2.4 Å =   –1.4 Å. 
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2.3.5 TPS Procedure 

Transition path sampling methods enabled inquiry into the reactive pathways of WT and 

mutants used to catalyze decarboxylation. In particular, it allowed an exploration of the routes by 

which WT and mutants approached the reaction barrier independent of equilibrium assumptions. 

A path sampling formulation allows the generation of transition ensembles that reflect the native 

probability distribution of reactivity, without the need of defining an actual reaction coordinate. 

The use of this method allowed for analysis for subsequent, successive transitions from a reactant–

bound state to a product–bound state and enabled the calculation of rate constants (kcat) for WT 

and mutants. For TPS, an order parameter was required to define the reactant and product basins. 

The order parameter was defined as the breaking bond decarboxylation coordinate, C6–CX, where 

the reactant basin definition was the interval [1 Å, 1.7 Å] and the product basin definition was [2.5 

Å, 5 Å]. All path sampling dynamics were performed with the same quantum region as indicated 

in umbrella sampling, also at the AM1 level of theory. All harmonic restraints that were placed on 

K72’s protons HZ2 and HZ3 were removed.  

TPS calculates rate by combining two quantities: the frequency factor,  𝑣̇(𝑡), and the 

probability factor, 𝑃, which are detailed below [59]. Briefly, the frequency factor accounts for the 

rate by which trajectories enter the product basin, across all successful catalytic events. This 

contrasts the P–calculation, which explicitly probes the ratio of trajectories that exactly end, within 

a given time–frame, within a window’s limits. The actual probability factor is the integrated 

probability for all values of the order parameter corresponding to the product basin, and it 

represents the likelihood of a trajectory starting in the reactant basin ending in the product basin 

within a fixed amount of time. The product of the frequency factor and the probability factor yields 

the rate: 

𝑘\3]^_` = (𝑣̇	in	linear	regime) × (area	under	𝑃	curve) 
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2.3.6 Seed Trajectory 

An initial path connecting the reactant–bound state with the product–bound state was 

obtained by extracting coordinate and velocity frames from the umbrella simulations near the 

hypothesized transition–state (TS) region and subsequently used to create starting structures to 

perform forward and backward integration [REF]. Each frame was seeded with random momenta 

drawn from a Boltzmann distribution centered at 298 K. The aforementioned initial seed trajectory 

regions were identified for WT, S127A, and V155D using all umbrella sampling frames from (2.2 

to 2.5 Å, –1.8 to –1 Å), (2 to 2.5 Å, –2 to –1 Å), and (2.2 to 2.7 Å, –2 to –1 Å), using the 

decarboxylation, proton–transfer coordinate dimensions respectively. One seed trajectory was 

selected for each protein model for subsequent TPS calculations. Seed trajectories were a total of 

2000 timesteps, integrated for 1000 timesteps forward and backward from the frame chosen, 

utilizing Leapfrog NPT dynamics at a timestep of 1 fs.  

 

2.3.7 Frequency factor: v̇ Calculation 

The 𝑣̇–calculation path ensemble used a path length of 601 fs, as this ensured that over 

90% of the trajectories were able to successfully reach the product basin by the end of the timespan, 

hence longer than the molecular transit time. To obtain the path ensemble for each protein, we 

attempted 2000 shooting and shifting moves with equal probability, where 50% of shooting moves 

were allowed as half–shoots equally likely in both directions [39, 40, 59]. Perturbed path velocities 

were provided with the use of Langevin integrator, capitalizing on the Langevin perturbation. The 

maximum shift allowed was 50 fs, and shooting locations were restrained to the last 50 fs of the 

prior accepted move. To compute the 𝑣̇ term, 200 independently computed ensembles were 
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constructed, and a first–order polynomial fit was applied to the linear regime of each curve using 

polyfit in Python’s NumPy package [60].  

 

2.3.8 Probability factor: P Calculation 

Computing the P–ensemble required partitioning the order parameter into windows with 

overlap to compute the relative probability of progressively traversing the reaction barrier. 

Windows were constructed in 0.1 Å intervals of the order parameter, starting from 1.6 Å to 3.45 

Å, allowing a 0.05 Å overlap with a prior and subsequent window. A boundary window to describe 

the reactant and product basins was set from 1 Å to 1.6 Å and 3.45 Å to 5 Å. For each window, 

80% of all valid moves were shooting moves, of which we chose 20% as half–shoots equally likely 

in either direction, and the remaining 20% of all valid moves were shifting moves. The very last 

window from 3.45 to 5 Å was run with a shooting/shifting ratio at 50%/50%, as we observed this 

generated the greatest diversity in trajectories, which was critical for downstream analyses of 

reactive paths. As indicated in the v–calculation, Langevin dynamics provided the new momenta 

assigned to a frame to explore a novel path. Each window sampled 2000 moves each with an 

accepted trajectory required to end at the edges of a window after 651 fs. Mutants were run with 

10 replicate windows for a total of 420 total independent simulations for each mutant, and the WT 

was run with 5 replicates. To calculate the P–factor, windows were re–weighted using the overlap–

distribution of the preceding window such that reweighted windows could be aggregated to 

compute the overall probability distribution. The normalized P–factor was computed by 

integrating over all values in the product basin.  

  



 70 

2.3.9 Visitation probability of sampled TPS paths for decarboxylation and proton transfer 

To compare dynamical TPS ensembles to the PMF energetic surface, we track how the 

reaction coordinates used in the PMF evolved over the course of the dynamic simulations. For 

each path in the last window of the TPS ensemble (corresponding to the formation of product), we 

extracted the decarboxylation coordinate (C6–CX distance), the distance of each proton of K72’s 

amide group to the amide nitrogen (NZ–HZ1, NZ–HZ2, NZ–HZ3), and the distance of each proton 

of K72’s amide group to the orotidyl ring carbon (C6–HZ1, C6–HZ2, C6–HZ3). In order to 

compare with the reaction coordinates of the PMF, two order parameters were calculated for each 

path. The decarboxylation coordinate was defined as such: 

𝜆$ = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐶R − 𝐶𝑋) 

As the dynamic paths employ no biasing potentials or restraints, the proton transfer coordinate was 

defined to account for the closest of K72 protons to C6 as such: 

𝜆Z = max
	o∈{$,Z,?}

t𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒u𝑁𝑍XYZ − 𝐻𝑍oXYZv − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒u𝐶6 − 𝐻𝑍oXYZvx 

We define the visitation probability as the probability that a trajectory would visit some value of 

the pair of coordinates (𝜆$, 𝜆Z). Using the same grid as the PMF, we counted the number of 

trajectories that entered a given (𝜆$, 𝜆Z) bin at least once.  
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2.4  Results and Discussion 

2.4.1 Energetic landscapes of WT and mutants suggests two possible mechanisms for 

decarboxylation 

 Before studying dynamic reactive pathways across wild–type and mutant OMPDC 

systems, the energetic landscapes of WT and mutant were characterized using QM/MM 

simulations and umbrella sampling to compute a PMF. While previous studies describe the 

catalysis as decarboxylation dependent, the inclusion in our quantum mechanical region of the 

catalytic residues K72, D70, K42, and D75* in addition to the orotidyl ring of the substrate 

permitted protonation of the substrate ring; therefore, the energetics were modeled as a function 

of both the decarboxylation coordinate and the proton–transfer coordinate. First, to account for 

bond–breaking reaction, the decarboxylation reaction coordinate (λ1) included the ring carbon (C6) 

and the carboxylate carbon (CX). Second, to account for proton transfer, a combined reaction 

coordinate (λ2) was employed, comprising the difference between the breaking bond of the lysine’s 

proton (K72) and the forming bond between the ring carbon and the lysine proton: explicitly, the 

was the distance from K72–HZ1 to K72–NZ, and the distance from K72–HZ1 to OMP–C6. HZ1 

was chosen because this proton did not coordinate the adjacent carboxylate groups of the aspartates 

post–equilibration. The other two protons of K72’s amide group were physically restrained to 

prevent transfer, thus ensuring the proton–transfer coordinate indeed reflected that of the 

transferring proton. For the proton–transfer coordinate, negative values correspond to the state 

with the proton still attached to the lysine, whereas positive values indicate that the proton partially 

or fully transferred to the ring carbon C6, with a value of approximately 1 Å corresponding to a 

successful protonation onto the ring. Umbrella simulations for window pairs of the 

decarboxylation and proton–transfer coordinate, (λ1, λ2), allowed us to obtain a smooth 2–
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dimensional histogram of the free energy (PMF) of WT and mutant systems as a function of the 

two reaction coordinates (Figure 2.4). 

 The PMFs of the WT and mutants exhibited similar reactant basins and two product basins 

compatible with the common definition of reactivity that, strictly speaking, only includes 

decarboxylation (Figure 2.5). In all PMFs, the reactant basin appeared in the lower left around (λ1, 

λ2) = (1.5 Å, –3.1 Å). Moreover, in all PMFs, there existed a ‘lower–right’ basin with λ1 around 

3.3 Å to 3.5 Å and λ2 between –2.5 Å to –1.7 Å suggesting a local minimum. This basin 

corresponded to a decarboxylation event in which the decarboxylation coordinate was sufficiently 

extended to be considered broken, yet the system had not yet transferred a proton to create the 

UMP molecule. Literature reported that the proton transfer to the ring is faster than the 

decarboxylation event, suggesting the decarboxylation is rate limiting [27, 53]. In all PMFs, two 

valid product definitions in the context of the simulations included an ‘upper–right’ basin, 

corresponding to the final, expected observable product state – a protonated ring substrate in 

addition to the formation of carbon dioxide due to decarboxylation, and a ‘lower–right’ basin, 

corresponding to an intermediate where decarboxylation occurred but the ring was unprotonated. 

The energetics of the upper–right (protonated) product basin were comparable among WT and 

mutants, but the lower–right (unprotonated) basin was 4 to 10 kcal/mol higher in energy for 

mutants S127A and V155D respectively. For WT and both mutants, the upper–right basin was 

lower in energy than the lower–right basin. 

Between the reactant and product states, particularly for WT and S127A systems, we 

observed a diffuse transition zone that indicated two potential reaction path hypotheses compatible 

with decarboxylation. Coupled with the existence of the two basins, this suggests the following 

two scenarios: (1) a reaction path may be free to react independent of the proton transfer 
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coordinate, entering the lower–right basin by first successfully decarboxylating, and then 

inevitably protonating in a stepwise manner; or (2) the carboxyl group may transfer in a 

simultaneous manner, where K72 may play a role in stabilizing a potential transition–state (TS) 

and enabling reactivity. For the WT enzyme, the transition state was (2.1 Å, –1.2 Å), in terms of 

the decarboxylation and proton–transfer coordinates, respectively, with estimated barrier height of 

21 kcal/mol above the reactant state. Notably, the path from reactant to the lower–right basin was 

comparable energetically. Similarly, the S127A mutant exhibited a familiar landscape with 

increased activation barrier, in which the expected transition–state structure was (2.2 Å, –1.4 Å) 

at about 24 kcal/mol above the bound substrate. In contrast, the V155D mutant exhibited the most 

dramatic difference in PMF compared to the WT and S127A mutants. Inspection of its PMF 

indicated that the second scenario (i.e. the stepwise pathway) appeared most energetically 

favorable. The expected transition state of this mutant was near (2.4 Å, –1.6 Å), further along in 

the decarboxylation coordinate and protonation coordinate than either WT or S127A. The V155D 

mutant’s corresponding transition structure was also energetically higher, at 27 kcal/mol above the 

bound substrate. 
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Figure 2.4: Potentials of mean force 
(PMF) for WT (A), S127A (B), and 
V155D (C) demonstrating the similarity 
of the WT and S127A landscapes and 
destabilization of the lower–right basin of 
the V155D landscape. The horizontal axis 
represents the decarboxylation coordinate 
between C6–CX. The vertical axis 
represents the proton–transfer coordinate, 
in which positive numbers indicate K72’s 
proton was closer to the ring carbon C6 
and negative numbers indicate the proton 
was closer to K72’s amide group. 
Reported relative free–energy values were 
capped to the range [0, 28] kcal/mol. “R” 
and “P” indicate reactant and product 
states on PMFs.  Panel A indicates the 
approximate route taken by a 
simultaneous or stepwise mechanism. 
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2.4.2 Predicted energetics of the transition state match experimental values in relative order but 

not absolute magnitude 

The experimental rate constants were identified by Iiams et al. (2011) [27], who measured 

the kcat for the WT and mutants. This enabled the use of the Eyring approach to estimate expected 

energetics of barrier–height (activation energy), given the empirical rate constants [61–63]. The 

experimentally derived activation energies were then compared to the predicted barrier height, 

provided by the transition–state structure estimates above (Table 1). While the energetics were 4–

5 kcal/mol higher than the predicted empirical values for WT and prior umbrella sampling by 

Vardi–Kilshtain [18], the barriers were consistently ordered from WT to mutants. The activation 

energy was systematically higher for each catalytically impaired mutant compared to WT, and the 

relative separation of the energetics is in good agreement to the empirical literature.  

 

  

Protein 
variant 

Experimental 

rate (s–1) 

Experimental 
barrier height 

(kcal/mol) 

Predicted 
barrier height 

(kcal/mol) 

Expt. 
Relative 

kcat 

Predicted 
Relative 

kcat 

WT 4.0 ± 0.2 16.5 21 1 1 

S127A 3.5 x 10–2 ± 0.002 19.4 24 8.8 x 10–3 6.4 x 10–3 

V155D 5 x 10–4 ±.0002 21.9 27 1.3 x 10–4 4.0 x 10–5 

Table 1: Comparison of the transition–state barrier height from experiments (Iiams et al. 2011 
[27]) and from the potentials of mean force calculations of WT and mutant systems of 
MtOMPDC. Eyring rates were applied to convert 𝑘\3] measurements from Iiams et al. to 
approximate the barrier–height of WT and its mutants, assuming the transmission coefficients 
were the same for WT and mutants. The predicted barrier heights from PMF calculations indicate 
that the calculations were systematically 4–5 kcal/mol higher than experiment, but with the 
correct relative spacing among mutants to preserve the fold–reduction in rate. Relative rates were 
scaled with the WT as reference. 
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2.4.3 Reaction rates obtained from transition path sampling match experimental rates in relative 

order  

Transition path sampling (TPS) methods, with their explicit treatment of reaction 

dynamics, were then subsequently employed to further explore the routes that WT and mutants 

take in order to traverse the reaction barrier. Although the PMF results suggested the existence of 

a protonation–independent pathway, TPS methods overcome the limitations of umbrella sampling 

methods, and allow elucidation of dynamic pathways. 

  

Figure 2.5: Components of the TPS rate calculation, where (A) represents the 𝑣̇ calculation or 
frequency factor and (B) represents the P calculation or probability factor. (A) The 𝑣̇ measures the 
rate at which trajectories enter the defined product basin (decarboxylation reaction coordinate, λ1 ≥ 
2.5 Å) over time, as indicated by the slope of the line in the plot provided. The WT and S127A 
mutant possessed the same slope value (2.3 x 1012 s–1), as indicated by the linear regime between 
100 fs and 525 fs. The V155D mutant possessed a slope that was nearly 5% larger (2.4 x 1012 s–1) 
for the same indicated regime. Before the linear regime, there was a lag of about 100 fs, which 
suggests the minimum time required for the order parameter to reach the product basin is at least 
100 fs. (B) P–calculation represents the probability of a trajectory reaching a certain window of the 
order parameter within a fixed time (651 fs). The WT and S127A mutant show similar likelihoods 
of reaching an order parameter stretched to 1.8 Å, but then differ beyond that: the WT is consistently 
more likely to reach the subsequent windows (i.e. larger values of order parameter) than the S127A 
mutant. The V155D mutant is consistently hampered and less likely to reach extended values of the 
order parameter than the WT and S127A mutant, both below and beyond the 2.1 Å distance. 
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The frequency factor for the WT and S127A were both 5% smaller than for V155D. The 

frequency factor is related to the average transition time, which in Eyring theory is treated as a 

function of the breaking bond’s (C6–CX) vibrational frequency (Figure 2.5A). The small 

difference between WT and mutant frequency factors has been observed in other enzymes [51, 

52]. For the P–factor, the WT was more effective at reaching the product state compared to the 

mutants. Notably, the likelihood of extending the CX–C6 bond remained comparable for S127A 

and WT until 1.8 Å, at which point the WT became more likely to reach further windows toward 

the product side (Figure 2.5B). The V155D mutant was compromised even at much smaller values 

of the breaking bond, being less likely to reach every window from the reactant basin definition.  

 The computed rates from TPS were faster than both the expected rates computed by 

umbrella sampling and the experimental benchmarks (Table 2). While the predicted rates were 

larger when compared to experiment, there was a systematic ordering between the WT and mutants 

with regard to rate. Encouragingly, the relative rates of the TPS calculations match the empirical 

results well, with the S127A nearly two orders of magnitude slower and the V155D mutant nearly 

4 orders slower than the WT. 

  

System 𝑣̇(𝑡) (s–1) 𝑃 Computed kcat (s–1) Expt. kcat (s–1) 
Predicted 

Relative  kcat 
Expt. 

Relative kcat 

WT 2.3 x 10
 12

 2.2 x 10
 –8

 5.1 x 10
 4
 4.0  ± .02 1 1 

S127A 2.3 x 10
 12

 1.6 x 10 
–9

 3.7 x 10
 3
 (3.5 ± 0.2)  x 10

–2   
  7.3 x 10

 –2
 8.8 x 10 

–3
 

V155D 2.4 x 10
 12

 2.0 x 10
 –12

 4.8 x 10
 0
 (5 ± 2)  x 10

–4   
  8.4 x 10

 –5
 1.3 x 10 

–4
 

Table 2: Reaction rates calculated from TPS match systematically with relative rates computed from 
empirical characterization by Iiams et al. [27]. The frequency factor, 𝑣̇(𝑡), indicates the slope of the 
v–calculation line for WT and mutant systems. The P factor indicates the normalized likelihood of 
reaching product basin given that a path has exited the reactant basin. The predicted kcat is the product 
of the frequency factor and the P factor, contrasted with the experimentally reported kcat from Iiams 
et al. [27]. Relative rates are scaled to the WT for both computed and experimental kcat values. 
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2.4.4 Analysis of the visitation probability from productive trajectories of WT and mutant 

OMPDC suggests that the V155D mutant is more likely to decarboxylate independently of 

K72 

 To describe the dynamical route by which each system successfully decarboxylates (i.e. 

break the C6–CX bond), the ensemble of trajectories from the last window of TPS simulations was 

analyzed, as these represent full reactive trajectories. For each simulation in the WT and each 

mutant ensemble, a decarboxylation coordinate 𝜆$ and a proton transfer coordinate 𝜆Z for each 

proton of K72 was computed, where the K72 proton with the closest proximity to C6 was used to 

define the proton–transfer coordinate for any given timepoint. Using the same grid spacing for the 

proton–transfer and decarboxylation coordinates as the PMF, we computed the number of 

trajectories that visited a grid point at least once, and then scaled by the total number of trajectories, 

to estimate the distribution of decarboxylation paths the ensemble took. 

This analysis revealed that the WT and S127A mutant exhibited similar paths; most 

trajectories sampled a path wherein the proton transfer coordinate increased linearly while the 

decarboxylation coordinate stretched (Figure 2.6). Curiously, for the WT only about 50% of the 

trajectories sampled the PMF–derived transition state at (𝜆$, 𝜆Z) =	(2.1 Å, –1.2 Å), but over 60% 

of the S127A mutant trajectories sampled its PMF–derived transition state at (2.2 Å, –1.4 Å) 

(Figure 2.S1). For both the WT and S127A mutant, no trajectories within the ensemble were able 

to cross into the product state (in which the decarboxylation coordinate stretched to 2.5 Å) with 

the proton transfer coordinate below –2.7 Å (Figure 2.S1). Fewer than 5% of trajectories for either 

WT or S217A were able to enter the corresponding lower–right basin of the PMF with 𝜆$ ≥ 3.3	Å 

and 𝜆Z ∈ u−2.5	Å,−1.7	Åv (Figure 2.S1). Contrarily, the V155D mutant exhibited a different 

landscape than either WT or the S127A mutant; unlike either WT or mutant, the visitation 
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probability of the proton–transfer coordinate concurrently changing with the decarboxylation 

coordinate was much lower. Curiously, about 40% of trajectories sampled the transition state of 

(2.4 Å, –1.6 Å). Additionally, some trajectories did cross into the product state with the proton–

transfer coordinate below –2.7 Å, and at least 20% of trajectories in the V155D ensemble explicitly 

visited the lower basin of the PMF. These results indicate that the V155D mutant takes different 

paths to decarboxylate than the WT and S127A OMPDC. 

 

 

        

 

 

 

 

 

 

 

 

 

 

 

2.4.5 Analysis of proton transfer coordinate as a function of the decarboxylation coordinate 

 For each trajectory, we stratified the C6–CX order parameter in 0.1–Å increments and 

monitored the proton–transfer coordinate distribution for all time steps within a trajectory 

A B C 

Figure 2.6: Time points corresponding to the decarboxylation and proton–transfer coordinate as 
a function of time overlaid on the PMFs for WT (A), S127A (B), and V155D (C). In order to 
denote time in the trajectories, the color saturates from darker to lighter, with black indicating the 
start of the trajectory and white its end. The above illustrates a randomly selected subset of the 
trajectories within each ensemble. 

Energy 
(kcal) 
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considered within the stratum (Figure 2.7). This stratification allowed inquiry into how the proton 

of K72 may approach C6 as a function of the decarboxylation coordinate. Notably, for any stratum 

of the order parameter C6–CX, the distribution between all pairs of the WT, S127A, and V155D 

mutants had a p–value less than 1	 × 105�, suggesting the ensembles were indeed distinct 

distributions. Notably, for C6–CX values within the reactant basin (C6–CX < 1.7 Å), V155D 

proton–transfer coordinate was shifted left to –3 Å, nearly 1 Å further left than the WT or S127A 

ensemble, each centered between (–2.3 Å to –2.1 Å). As the reaction proceeded and C6–CX 

stretched, all distributions shifted to the right, but the WT and S127A distributions remained 

relatively tight compared to that of V155D.  Consistent with a concurrent transfer mechanism, the 

proton–transfer coordinate distributions for the WT and S127A ensembles were unimodal and 

shifted to the right as decarboxylation occurred. By contrast, the V155D proton–transfer 

distribution exhibited a local peak around –2.9 Å for multiple strata of the decarboxylation 

coordinate; while some trajectories transfer the proton, this particular peak did not disappear until 

the decarboxylation coordinate exceeds approximately 3.0 Å. This analysis showed how the 

proton–transfer coordinate depended on the decarboxylation coordinate in a manner that differs 

between systems. Specifically, the V155D ensemble’s trajectories more frequently decarboxylated 

in paths such that the proton–transfer coordinate did not change concurrently with the 

decarboxylation coordinate, as compared to the WT and S127A mutant.  
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Figure 2.7: Dependence of the proton–transfer coordinate distribution on decarboxylation coordinate, 
for WT, S127A, and V155D, among TPS–sampled trajectories that achieve successful decarboxylation 
(i.e. for which the decarboxylation coordinate stretches from at least 1.7 Å to up to 5 Å.). 
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2.5  Conclusion and Future Directions 

 Considerable theoretical and experimental inquiry has explored the origin of catalytic 

proficiency of the OMPDC enzyme. Consensus in the field suggests decarboxylation as rate–

limiting, but provides compatible evidence for several mechanistic strategies couched in the 

language of Transition–State Theory. In this study, we analyzed energetic and dynamic 

contributions to OMPDC catalysis for wild type and two catalytically impaired variants, S127A 

and V155D. 

 Comprehensive analysis of the PMF profiles and dynamical trajectories describing the 

decarboxylation of WT and mutant enzymes indicated the possibility of two possible catalytic 

strategies: (1) decarboxylation that occurs concurrently with a proton from K72 approaching C6 

and (2) decarboxylation independent of K72’s proton position. The energetic landscape of the 

PMFs are in reasonable agreement with both theory and experiment [18, 27] but suggest the 

V155D mutant may prefer to decarboxylate independently of the position of K72. We 

subsequently applied path–sampling strategies to investigate how dynamics may play a role in the 

catalysis of both the WT and mutant reactions. Notably, the concurrent route was sampled in both 

WT and each mutant system, but the WT and S127A mutant showed strong preference for a K72–

assisted decarboxylation, whereas the V155D showed a lesser preference and frequently exhibited 

proton–independent decarboxylation. 

 The catalytic strategies presented are compatible with the prevailing belief that 

decarboxylation occurs prior to proton transfer. While all ensembles possessed some fraction of 

trajectories that participated in K72–assisted decarboxylation, no trajectories transferred the proton 

before the decarboxylation coordinate reached 2.5 Å, suggesting that bond–breakage occurred 

prior to proton abstraction by C6. The existence of the lower–right hand basin, in which 
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decarboxylation is assured but K72 proton transfer has not occurred, may correspond to a state in 

which nearby solvent molecules provide the necessary stabilization and proton required for 

catalysis. One potential extension of the work is to include quantum–mechanically described 

solvent molecules in the active site to permit the formation or destruction of a bond facilitated by 

water. Another potential source of further investigation is to quantify the pKa of K72 for WT and 

variant systems, which has been reported to be around 8.0 for OMPDC homologs [6].  

In the present work, a single seed trajectory obtained from the resulting PMFs for WT and 

mutant systems was employed to launch the ensembles. In follow–up work, we would initialize 

ensembles from multiple different seeds to ascertain the ergodicity of the sampling procedure.  

Taken together, the methodologies employed and results obtained in this work illustrate 

the importance of the chemical environment in altering dynamics and reaction mechanism, 

particularly in explaining the catalytic proficiency of OMPDC and its hindered mutants. Such 

insights could be employed for enzyme–catalyzed reactions observed in other systems. 
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2.7   Supplementary Information 

 

 

 

 

 

 

 

 

 

 

Figure 2.S1: The visitation probability of the path ensembles of the WT and mutant OMPDC as a 

function of the decarboxylation coordinate and the proton–transfer coordinate. Each panel 

indicates the proportion of trajectories that sampled a decarboxylation/proton transfer coordinate 

at least once during the duration of the trajectory. (A) Most trajectories of the WT ensemble 

appeared to decarboxylate concurrent to the K72 proton approaching the C6 carbon.  Moreover, 

less than 5% of trajectories were capable of sampling the lower–right hand basin corresponding to 

proton–independent decarboxylation. (B) The S127A ensemble appeared to follow a similar path 

to the WT ensemble, with a majority of trajectories decarboxylating as the K72 proton approached 

the C6 carbon. (C) The V155D ensemble appeared most different of the three ensembles. A 

concurrent route, like the WT and S127A mutant, did appear, but at a lower probability than the 

other two ensembles. Additionally, the V155D mutant sampled the lower–right basin of the PMFs 

more often than either the WT or S127A mutant. 

A B C 
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3.1 Abstract 
 
 Path sampling rate calculations provide tremendously detailed statistical mechanical 

descriptions of kinetic processes. Using these powerful datasets to understand the structural and 

dynamical processes that drive catalysis remains a challenge due to their high dimensionality. 

Here, we use combined quantum and molecular mechanical models together with machine learning 

tools to explore the interplay of atomic and electronic interactions responsible for the catalytic 

activity of the enzyme ketol–acid reductoisomerase (KARI), an enzyme that facilitates branched–

chain amino acid synthesis via rate limiting alkyl migration followed by reduction. Previous work 

identified relatively small sets of structural features describing the enzyme–substrate complex in 

the reaction basin that were capable of predicting whether or not a particular trajectory would 

succeed in crossing the barrier and becoming a product complex [1]. In the current work, we extend 

the chemical significance of these findings by identifying the electronic determinants of reactivity 

and studying the relationships among atomic geometric features, electronic structure, and 

reactivity.  

 To characterize the electronic descriptors most relevant to the reaction, Natural Bonding 

Orbital (NBO) calculations were used to probe simulations that successfully (reactive) and 

unsuccessfully (non–reactive) facilitate methyl transfer within the substrate. Analyses of the 

Wiberg bond index, a proxy for bond order, indicated that methyl transfer occurred concurrent to 

isomerization between the substrate carbonyls/hydroxyls. Further inspection of the atomic orbital 

hybridization states across various bonding orbitals throughout the course of the reaction revealed 

that the KARI transition state possessed a three–center–two–electron bond formed with the three 

adjacent carbon atoms (𝐶�, 𝐶�, 𝐶Y), primarily formed through a network of 2pz orbitals orthogonal 

to the plane constructed by the oxygens (𝑂R, 𝑂�) and carbons of the substrate (𝐶�, 𝐶Y).  
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 Supervised machine learning methods were used to identify a reduced subset of geometric 

features, and electronic features that predicted reactivity. A subset of 10 geometric or set of 6 

electronic features were capable of over 90% AUC predictive performance, suggesting electronic 

descriptors were more indicative of reactivity as fewer were required for similar predictive power. 

For both the geometric and electronic–feature models, the cumulative models outperformed any 

pair–feature model, suggesting that multiple descriptors were synergistic and predicted reactivity 

more effectively than isolated pairs. 

 Analysis of the dynamic trajectories revealed that the torsional orientation of the methyl 

group prior to reacting influenced the ability to climb the reaction barrier by destabilizing the 

breaking 𝐶� − 𝐶� σ–bond orbital energy. This orientation was also related to the first model–

selected geometric feature (the distance between the transferring methyl 𝐶� and a neighboring, 

conserved residue’s carboxylate oxygen E319/𝑂𝐸$), and an electronic feature (𝐶� − 𝐶� bond 

index) in this work. Stratifying the geometric feature on the methyl torsional orientation 

demonstrated that farther proximity between the methyl and E319 permitted the eclipsed 

orientation of the methyl group that encouraged reactivity in the reactive ensemble, and that the 

non–reactive ensemble was in closer contact on average than the reactive simulations and less 

likely to adopt this orientation. Similar stratification for the electronic feature also demonstrated 

that the breaking 𝐶� − 𝐶� bond index was weaker in the reactive ensemble for eclipsed 

orientations, and that the non–reactive ensemble on average had a slightly stronger  𝐶� − 𝐶� bond 

index overall. 

The cumulative electronic feature model possessed a variety of features that reported on 

two facets of the mechanism: the breaking 𝐶� − 𝐶� σ–bond and the diminishing 𝐶Y − 𝑂� π–bond. 

To investigate how the geometric features may report on these different components, we 
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constructed classifiers that predicted the relative magnitude for each of the 6 model–selected 

electronic features, given the combined average of the reactive and non–reactive ensembles. Our 

results showed that geometric pair-feature models were capable of predicting the relative 

magnitude of the electronic features as well as the cumulative geometric feature model leveraging 

all 10 unique features. This suggested that small subsets of geometric features were capable of 

reporting on an electronic descriptor, and that different subsets could be leveraged to predict 

various aspects of the chemical reaction. 
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3.2 Introduction 
 

Enzymes readily facilitate difficult reactions with high selectivity at ambient temperatures 

and pressures, making them desirable targets for industrial repurposing. However, preparing 

enzymes for industrial purposes often requires tailoring their catalytic prowess toward the specific 

target of interest [2]. Despite excellent progress from directed evolution and rational design 

strategies, facile enzyme engineering remains a challenging feat due to the incomplete perspective 

of the determinants of enzyme reactivity, and vast design space [2–7, 11].   

Approaches to enzyme design currently involve directed evolution [8–10] and 

computational design that spans from tight–binding approaches based on Transition–State Theory 

[4, 11], to machine learning strategies based on inferring function from aspects of a sequence [6, 

7]. While such methods have demonstrable success, they have yet to become generalizable tools. 

Moreover, it is not always intuitive why certain refinements on rational design models, or changes 

accrued from evolutionary processes influence reactivity in a way that may be desirable [11–13]. 

For this reason, it is useful for in silico models’ features to be able to explain the way they report 

on reactivity and report on how such changes in the local environment may influence the electronic 

characteristics of a reaction of interest.  

Prior work by Bonk et al. identified classifiers, trained on geometric features (features that 

indicate structural interactions such as distances, angles, and torsions of active–site atoms) chosen 

for their ability to describe the local environment of the active site, and potentially report on key 

drivers of reactivity [1], as they improved the computed rate of reactivity. This work indicated a 

subset of 30 consensus features that were part of different classifiers that were trained at several 

time intervals prior to the simulations’ approach to the reaction barrier. These geometric features 

were subsequently shown to not only predict reactivity, but also improve the likelihood of crossing 
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a reactive barrier. Moreover, clustering on these geometric features showed that the same features 

could be employed in different ways, suggesting the existence of multiple reaction channels 

representing slight variations toward the overall mechanism. 

The current study extends on the work done by Bonk et al. [1] to analyze the results, as 

reflected through the machine learning models computed, and to understand how the models may 

distinguish between the reactive and nearly reactive (non–reactive) simulations. Moreover, this 

work aims to compare determinants of reactivity, discovered by machine learning methods, to the 

chemical mechanism constructed from prior experimental and theoretical studies, and further 

elucidated by our theoretical analyses.  

 

3.2.1 Catalytic strategies of ketol–acid reductoisomerase (KARI) 

The system studied in this work involves the enzyme ketol–acid reductoisomerase (KARI), 

an enzyme crucial to the creation of branched–chain amino acid synthesis in plants, archaea, algae, 

and fungi [14, 25, 26]. There are two linked reactions carried out by KARI: (1) an isomerization 

resulting in the migration of an alkyl group and interconversion between carbonyl and hydroxyl 

moieties and (2) an NADPH–assisted reduction [14–16]. Native KARI includes two divalent 

cationic magnesium ions and one molecule of NADPH as required co–factors, and the substrate 

either acetolactate (AL; methyl R–group) or acetohydroxybutyrate (AHB; ethyl–R group) [15–

18]. Ordinarily substrate binds and is isomerized and then reduced without unbinding in between 

[14, 15, 17–19]. The reduction reaction has been shown to work independently of isomerization 

by binding other 2–ketoacids that are unable to isomerize but are capable of being reduced further 

[20]. Further experiments have demonstrated that the alkyl migration step is specifically Mg2+ 

dependent. Reduction is possible in the presence of other divalent cation, as Mn2+ and Co2+ have 
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been shown to salvage reductase activity on compounds that do not require isomerization [16, 17, 

20]. The isomerization step is considered rate–limiting, and the product does not release after 

isomerization until a subsequent reduction step occurs, creating the final product 

dihydroxyisovalerate (DHIV) or dihydroxymethylvalerate (DHMV) (respectively if the alkyl is a 

methyl or ethyl substrate) [19, 21].  

 

 

 

 

 

 

Mechanistic studies both experimental and theoretical have posited that a proton 

abstraction, initiated from a hydroxyl group or active–site residue, occurs quickly from the 

substrate’s 𝑂R (Figure 3.1) [18, 21]. Subsequently, the alkyl group (𝐶�) migrates from carbon 𝐶� 

to 𝐶Y employing the Mg2+ cations in the process [18, 21]. Potent inhibitors, IpOHA and Hoe704, 

possess similar oxalyl motifs that are thought to mimic the isomerization transition–state by 

bridging Mg2+ (specifically M17) in the process of the reaction (Figure 3.2B) [22, 28]. Notably, 

Figure 3.1: Hypothesized mechanism of the two reactions of KARI, of which this work focuses 
on modeling the rate–limiting isomerization, indicated in the box for step 3 and 4. Magnesium 
atoms are labeled M16 and M17, as are substrate atoms.  
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the hypothesized transition state of the reaction is thought to possess a three–center–2–electron 

(3C) bond bridging between carbon atoms 𝐶�, 𝐶�, and 𝐶Y. 

There is considerable structural diversity in the KARI family: a short form (Class I) and 

long form (Class II) enzyme isoform [26]. Despite these differences, active sites within KARI 

family remain highly conserved for a binding pocket for NADPH and charged active–site residues, 

namely E496, E319, and D315 (S. oleracea numbering).  These active–site residues are thought to 

play a key role, together with water molecules, in the hexa–coordination of the divalent cationic 

Mg found in the active site [15, 16, 20]. Studies have validated that these residues are critical, and 

even a charge–conservative mutation of aspartyl to glutamyl (or vice–versa) moieties results in 

reduced substrate and/or co–factor binding and/or loss of activity [20].  

  

  

AC6	

A B 

Figure 2: (A) Quantum mechanical region of the QM/MM simulations including the co–factor 

NADPH (indicated by acronym NDP); side chains E496, E319, and D315; two Mg2+ cations; 5 

water molecules; and the substrate, AL. Mg2+ cations are hexacoordinated through the water 

molecules and polar side chains. (B) Known transition–state inhibitors of KARI and the 

hypothetical transition state [21–23].  
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3.2.2 QM/MM ensembles generate simulations that successfully catalyze methyl transfer or 

rebound to the reactant state 

 Prior work by Bonk et al. generated ensembles of molecular dynamic trajectories that 

traversed from enzyme–bound substrate, over the barrier, to enzyme–bound product (of the methyl 

migration reaction), as well as trajectories that return to the reactant basin after an attempt to cross 

the barrier [1, 23]. In this work, we analyze these simulations and augment them with additional 

quantum mechanical calculations to identify the underlying electronic determinants of reactivity. 

In order to do this, a common timeline was established by identifying the last bond compression 

between the 𝐶� and	𝐶� atoms, and marking this as time 𝑡 = 0 fs (Figure 3.3), for the 2000 sampled 

reactive and non–reactive trajectories. By establishing a common timeline, direct comparisons 

could be made by how the reactive and non–reactive ensemble diverge electronically over time. 

For timepoints prior to 𝑡 = 0 fs, trajectories were still in the reactant basin, and at times 𝑡 > 0 fs, 

they began to ascend the barrier.  

  A B 

Figure 3.3: Distances between the breaking bond, 𝐶� − 𝐶�, and the forming bond 𝐶Y − 𝐶� for the 
reactive (red) and non–reactive (blue). The time point for subsequent analyses (−20 fs) is 
indicated by the dashed vertical black lines on both plots. (A) The reactive and non–reactive 
ensembles exhibited similar oscillatory behavior for times 𝑡 ≤ 0 fs while in the reactant basin. As 
the reaction proceeded, the reactive ensemble was able to successfully transfer the methyl group 
and continued to maintain separation beyond 2.0 Å, whereas the non–reactive ensemble returned 
to baseline values. (B) The distance between the product–side carbon, 𝐶Y, and the methyl carbon, 
𝐶� for the reactive and non–reactive ensembles was on average 2.4 Å away while in the reactant 
state. As the reaction proceeded, only the reactive ensemble was able to achieve bonding between 
these atoms, below 1.8 Å. The non–reactive ensemble did not approach any closer than 2.0 Å.  

- 

- 
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3.2.3 Feature selection for enzyme catalysis and machine learning 

We selected chemically meaningful features capable of distinguishing reactive from non–

reactive trajectories while still in the reactant well. We chose both geometric features describing 

the relative configurations and electronic features describing the relationships between orbitals and 

bonding patterns. Feature selection was pursued with two priorities in mind; we wanted to allow 

for synergistic sets of features to the extent that they enhanced predictive performance due to their 

ability to represent complex, or coordinated chemistry. We also desired redundant features 

(multiple features indicative of the same underlying chemistry) to increase the signal highlighting 

important chemistry. To meet these priorities, we chose a sequence–of–pairs approach.  

The geometric features identified were chosen from the 30 consensus features of prior work 

[1]. These features included a collection of distances, angles, and dihedrals that appeared in 

classifiers, trained at several time points prior to reactivity, that could distinguish between a 

reactive and non–reactive ensemble. These features were part of a greater collection initially 

chosen due to their relationship with mechanistic hypotheses proposed in the literature.  

The features chosen for the electronic analysis included: charge, bond index, and atomic 

orbital hybridization state, derived from Natural Bonding Orbital (NBO) computations to provide 

a Lewis–like interpretation of the electronic wavefunction [29, 30]. Charge was computed through 

natural population analysis (NPA), which uses the sum total of the occupancies of Natural Atomic 

Orbitals (NAOs), centered on the atom of interest, prescribed by NBO formulation [29–31]. The 

Wiberg NAO bond–index computes the atomic coefficient overlap between two atoms specified; 

this corresponds to half the electrons shared between two atoms—a proxy for bond order. Covalent 

bonds are considered greater than one, whereas ionic bonds are historically less than one unless 

negligible [32, 33]. Lastly, atomic orbital hybridization state was derived from the coefficients, 



 105 

centered on each atom, considered to be participating in a given molecular orbital (whether 

bonding or lone–pair). This definition of charge and bond index are robust to basis–set 

dependencies [29–33]. 
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3.3 Methods 
 

3.3.1 Electronic Structure and Natural Bonding Orbital (NBO) Calculations 

A reactive region encompassing the quantum–mechanical component of the reactive and 

non–reactive simulations was extracted, including 32 atoms of the substrate, and divalent cationic 

complex of magnesium ions and corresponding bound water molecules. This subset of the reaction 

required no imputations of electronic structure corresponding to the boundary atoms, as these are 

all complete fragments. To derive NBO descriptors out of NBO 5.0, implemented within Q–Chem, 

the following descriptors were used: “NBOSUM” – an NBO summary table, “CMO” – bonding 

character of canonical molecular orbitals, “BNDIDX” – the Natural Atomic Orbital (NAO)–

Wiberg bond index as a proxy for bond order, “3CHB” – three–center four–electron bond hybrid 

molecular orbital (MO) searches, and “3CBOND” – three–center two–electron bond hybrid 

molecular orbital searches.   

 

3.3.2 Machine Learning 

Scikit–learn’s LogisticRegression module was employed to perform the classification task 

[34]. Classifiers employing all pairwise subsets of only geometric features or only electronic 

features were constructed using this python module. The 30 geometric features were chosen from 

the top populated features of Bonk et al. [1], and 19 electronic features were chosen to capture 

electronic descriptors of the mechanism described with Natural Population Analysis charge, 

Natural Atomic Orbital (NAO) Wiberg Bond Index for bond order, and atomic orbital composition 

based on the coefficients of bonding orbitals described by NBO on the atoms where the reaction 

is localized: C4, C5, C7, O6, O8, M16, and M17 (Supplemental Table 1). 
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The dataset pooled all five reactive clusters from the prior paper [1] in equal proportions; 

in total, there were 2000 simulations in the reactive ensemble and 2000 simulations for the non–

reactive ensemble. To perform the classification task, trajectories were aligned according to the 

last bond compression defined as time 0, and subsequently the timepoint of –20 fs was chosen to 

extract for the training and testing sets. To verify the performance of the models, 10 randomized 

training/testing splits were created, assigning 70% of the data as train, and 30% toward testing, 

and the average performance of accuracy and AUC on the testing sets was reported.  

The testing performance (accuracy) for each pair was rank ordered, and subsequently, the 

best performing pair was selected until a combined model (5 pairs for geometric, 3 pairs for 

electronic) testing performance improved no further. Performance metrics included were accuracy 

and ROC AUC. 

Classifiers with explicitly only geometric, or only electronic features predicted reactivity 

(from the reactive ensemble, versus the non–reactive ensemble). Labeling of reactivity is inherent 

to whether the simulation successfully catalyzed the methyl transfer and ended in the product 

basin, versus failed to react and returned to the reactant basin. From the subset of geometric 

features capable of predicting reactivity, these features were subsequently tasked to predict the 

expectation of a large/small value of an electronic descriptor, of the electronic features that 

predicted reactivity. To label the electronic descriptor, the reactive and non–reactive ensembles 

were combined, and the average value across the total ensemble was calculated. A “large” 

electronic feature is labeled if a simulation exhibited an electronic descriptor larger than the 

average of the distribution and subsequently vice versa for a “small” electronic feature.  
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3.3.3 Geometric feature analysis with torsional order parameter 

 
We defined a torsion order parameter to measure the degree of stagger/eclipse orientation 

between the 𝐶� and 𝐶� by averaging the minimum, absolute angle between each proton of 𝐶� to 

𝐶�’s constituent bonded partners (𝐶$, 𝑂R, and 𝐶Y). This order parameter describes the degree to 

which the 𝐶� methyl was purely eclipsed (0 degrees) or purely staggered (60 degrees) while in the 

reactant state when referenced to 𝐶�.  

 

 

3.3.4 Generation of QM/MM reactive and non–reactive ensembles 

 
Quantum mechanical/molecular mechanical (QM/MM) simulations were performed on 

KARI facilitating the methyl transfer of the substrate using CHARMM version 41 with the 

SQUANTUM semi–empirical methodology. The simulations employed the use of AM1 to 

describe the active site including the substrate, active–site–coordinated waters (5 total), both 

magnesium cations, the R–groups of D315, E319, E496, and the nicotinamide group of NADPH 

for a total of 77 atoms. Boundary–condition atoms were treated using the General Hybridized 

Orbital (GHO) method to handle the QM/MM region across covalent bonds. To account for the 

rate limiting step, O6 of the substrate was deprotonated to emulate the hypothesized, transient fast–

step proton–abstraction, as indicated by prior studies [21]. E496 is modeled at neutral charge, 

acquiring this proton. 

In generating the reactive and non–reactive ensembles, reactivity was defined through the 

use of a combined order parameter: 

𝜆 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐶� − 𝐶�) − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐶Y − 𝐶�) 
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The combined parameter measures the breaking bond (𝐶� − 𝐶�) versus the forming bond (𝐶Y −

𝐶�) wherein the reactant interface was 𝜆� = −1	Å and the canonical product is defined as 𝜆� =

1	Å. Reactive ensemble trajectories were expected to reach the product interface, but non–reactive 

simulations had a modified product definition of 𝜆�� = −0.2	Å, and were advanced until they 

returned to the reactant basin. Detailed information of this particular QM/MM system setup can 

be found in prior work [1].  

 

3.3.5 Structure Preparation 

 
The crystal structure of S. oleracea (spinach) KARI with accession code 1YVE from the 

Protein Data Bank (PDB) was acquired. The native homodimer of KARI enzyme contains two 

active sites, significantly separated between both monomers. To facilitate computational 

efficiency, only chain A of the KARI monomer was used. To represent the enzyme–substrate (ES) 

bound complex for QM/MM calculations, in vacuo ground–state electronic calculations were 

performed with two magnesium cations, five coordinated water molecules, and the side–chains of 

3 active–site residues (E496, E319, D315), and substrate at the level of RHF/3–21G* theory using 

GAUSSIAN03. Detailed information of structure preparation can be found in prior work [1, 23].  
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3.4 Results and Discussion  

3.4.1 Electronic description of KARI methyl transfer reaction for reactive and non–reactive 
ensemble 
 

 To construct an electronic level description of the chemical mechanism of KARI facilitated 

methyl transfer, quantum mechanical calculations were carried out on the reaction region of both 

reactive and non–reactive simulations with the NBO method employed to interpret the resulting 

wavefunction as orbital populations. Simulations were time–aligned such that 𝑡 = 0 fs 

corresponded to the last compression of the breaking bond, 𝐶� − 𝐶�, before attempting to cross the 

barrier.   

 The electronic “flow” (the “arrows” of the reaction, per se), was quantified through the 

reaction by tracking the Wiberg NAO bond–index between core atoms of the reaction: 𝐶�, 𝐶�, 𝐶Y, 

𝑂� and 𝑂R (summarized in Figure 3.4).  The simulations for both reactive and non–reactive 

ensembles indicated that the methyl migration – namely the breaking of the 𝐶� − 𝐶� bond (Figure 

3.5A) and formation of the 𝐶Y − 𝐶� bond (Figure 3.5B) – occurred concurrently with the formation 

of a double bond between 𝐶� − 𝑂R (Figure 3.5C) and single bond between 𝐶Y − 𝑂� (Figure 3.5D). 

Shortly after 𝑡 = 0 fs (i.e. after the last compression of the 𝐶� − 𝐶� bond), in both non–reactive 

and reactive ensembles, as all trajectories exhibited a simultaneous reduction in bond index 

between 𝐶� − 𝐶� from an average of 1.0 to roughly 0.4, concomitant with an increase in bond 

index between 𝐶Y − 𝐶� from 0 to 0.25. At time 𝑡 = +20 fs, the reactive and non–reactive 

ensembles diverged, as the bond index between 𝐶� − 𝐶� steadily decreased (heading toward 0) 

while 𝐶Y − 𝐶� increased (toward 1.0) for the reactive ensemble only. In the non–reactive ensemble, 

both of these bond indices returned to the values adopted before 𝑡 = 0 fs. 

 Concurrently with the changing methyl–migration bond indices, the oxygens attached to 

both reactant–side carbon (𝐶�) and product–side carbon (𝐶Y) exhibited changes in bond indices. 
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The bond index for the carbonyl between 𝐶� − 𝑂R was nearly 0.9–1.0 at times prior to time 𝑡 = 0 

fs for both reactive and non–reactive ensembles. As the reaction proceeded for times after 𝑡 = 0 

fs, the bond index between 𝐶� − 𝑂R increased to approximately 1.0–1.15 until time 𝑡 = +20 fs, 

where the non–reactive ensemble returned to their baseline value of 0.9, and the reactive ensemble 

continued on upward, reaching a value of 1.1–1.5 during the simulated time. Likewise, the bond 

between  𝐶Y − 𝑂� started with a baseline of 1.5–1.65 for times prior to time 𝑡 = 0 fs. As the 

reaction proceeded, both the reactive and non–reactive ensemble fell to ~1.3 at around time 𝑡 =

+20 fs, after which the non–reactive ensemble subsequently rebounded toward the initial value, 

and the reactive ensemble continued toward 1.0.  

 

Figure 3.4: Lewis–representation of the KARI methyl transfer reaction. (A) The reactant state 

in a Lewis–like depiction (omitting side chains, magnesium ions and NADPH) indicates that the 

reactant–side carbon, 𝐶�, initially starts as an 𝑠𝑝? hybrid, in addition to the transferring methyl 

carbon 𝐶�. The product–side carbon, 𝐶Y, is an 𝑠𝑝Z hybrid. (B) As the reaction proceeded, NBO 

calculations suggested a concurrent change in bond–order across the methyl migration 

coordinate and the increase/decrease of bond index between 𝐶� − 𝑂R and 𝐶Y − 𝑂� respectively. 

As the reaction proceeded, a change in hybridization also occurred to account for the appropriate 

amount of carbon valences. (C) The Lewis–like product state has a ‘mirrored’ hybridization state 

to the reactant, where the 𝐶� carbon adopts an 𝑠𝑝Z hybridization state whereas the 𝐶Y carbon 

becomes 𝑠𝑝?. 

A B C 



 112 

 
  

BA

DC

B

C

A B 

C D 

Figure 5:  NAO–Wiberg bond indices changed concurrently for the four changing bonds across the methyl 
transfer reaction of the KARI substrate. Each panel shows a bond index over time for simulations in the 
reactive (red) and non–reactive (blue) ensembles. (A) The bond index for 𝐶� − 𝐶� oscillated around the 
expected value of 1.0 as a function of the harmonic stretching and compression for the reactant state prior 
to time 𝑡 = 0 fs. The bond index for 𝐶� − 𝐶� diminished until nonexistent for the reactive ensemble but 
rebounded to baseline values for the non–reactive ensemble, indicating that the latter simulations do not 
successfully sever the bond between 𝐶� − 𝐶�. (B) The bond index for 𝐶Y − 𝐶� was marginal prior to times 
𝑡 = 0 fs for both reactive and non–reactive ensembles, suggesting no bond was formed prior to the 
reaction. Only the reactive ensemble successfully enabled bond–formation for 𝐶Y − 𝐶�, whereas the non–
reactive ensemble rebounded to baseline value. (C) For 𝐶� − 𝑂R, the bond index near 1.0 suggested a 
roughly single bond between these two atoms at times prior to 𝑡 = 0 fs. As the reaction proceeded, an 
increase in bond index was sustained by the reactive ensemble only, but less than the expected 2.0 for 
double bond formation. (D) The bond index for 𝐶Y − 𝑂� started marginally lower than the expected 2.0 
for a double bond, but reduced to nearly 1.0 for the reactive ensemble only, suggesting a single–bond 
formation between these two atoms that did not occur for the non–reactive ensemble.   



 113 

To provide an orbital level view of the reaction, the electronic NBO calculations reported 

on orbital hybridization character through the composition of atomic orbital coefficients 

comprising key bonding orbitals between the reactant, transient, and product states, including the 

𝜎–bond 𝐶� − 𝐶�, the 𝜎–bond 𝐶Y − 𝐶�, 𝜋–bond between 𝐶� − 𝑂R, the 𝜋–bond 𝐶Y − 𝑂�, the lone 

pair orbital (indicated “LP”) of 𝑂R, the lone pair orbital of 𝑂�, and the transient methyl–migration 

bond considered the three–center–two–electron (3C) bond encompassing 𝐶� − 𝐶� − 𝐶Y (Figure 

3.6). Geometrically, the 3C atoms constitute a plane roughly normal to the plane formed by O6, 

C4, C7, and O8. Monitoring the atomic coefficients throughout the reaction, the most notable 

change to these orbitals resided in the composition of 2𝑠	and 2𝑝� atomic orbitals used to construct 

natural bonding orbitals. To measure hybridization state, the 2𝑠 and 2𝑝� composition was used to 

indicate whether a bond was mostly 𝑠𝑝? (comprised of 25% 2𝑠 character and 75% 2𝑝� character), 

	𝑠𝑝Z (comprised of 33.3% 2𝑠 character and 66.7% 2𝑝� character), or 𝑠𝑝	(comprised of 50%  2𝑠 

character and 50% 2𝑝� character). For any 𝑠𝑝–hybrid orbital, the 2𝑝 character may be distributed 

across the 2𝑝�, 2𝑝�, or 2𝑝� orbitals. 

  

Figure 3.6: Corresponding orbital diagram of the NBO–computed hybridizations for the KARI 
methyl transfer reaction. (A) Reactant state orbitals of interest include the 𝐶� − 𝐶�  𝜎–bond, 
the 𝐶Y − 𝑂� 𝜋 bond, and the lone pair of  𝑂R. (B) In the transition state, the transient orbitals 
used mainly 2𝑝� orbitals in the 3C bond between  𝐶�, 𝐶� and  𝐶Y, and the lone pairs on 𝑂� and 
𝑂R. (C) Simulations that attained the successful product state exhibited a  𝜎–bond between  
𝐶Y − 𝐶�, a  𝜋–bond between  𝐶� − 𝑂R, and a lone pair on  𝑂�. 
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The 𝐶� atom participated in bonds that change character over the course of the reaction. 

The natural bonding orbital describing the 𝐶� − 𝐶� 𝜎–bond exhibited, on average, 25% 2𝑠 

character (Figure 3.7, Panels A and C) and 75% 2𝑝� character (Figure 3.7, Panels B and D)  

specifically for the 𝐶� atom before time 𝑡 = 0 fs for both the reactive and non–reactive ensemble, 

suggesting 𝑠𝑝? behavior in the reactant state, which matches the expected reactant hybridization. 

As the reaction proceeded, both the reactive and non–reactive ensembles decreased in the amount 

of 2𝑠 character that 𝐶� exhibited in the 𝐶� − 𝐶�	𝜎–bond, diminishing in value until nearly 0%, and 

they both increased in this atom’s amount of 2𝑝� character in that bond until nearly 100%. 

Trajectories in the reactive ensemble, around time 𝑡 = +30 fs, all successfully formed a transient 

3C bond with the carbon atoms of the substrate, (𝐶�, 𝐶� and 𝐶Y) for at least 20 fs, whereas only a 

small fraction of the non–reactive simulations could sustain this 3C orbital. As time proceeded, 

the non–reactive ensemble returned to the substrate and established 2𝑠 character of the	𝐶� − 𝐶� 𝜎–

bond to baseline values, whereas the reactive ensemble never regained any substantial 2𝑠 

character. By about time 𝑡 = +60 fs, the atom 𝐶� participated in a 𝜋–bond 𝐶� − 𝑂R with nearly 

100% 2𝑝� character, consistent with the expectation that a product–state 𝜋–bond would be 

comprised of overlapping 2𝑝–atomic orbitals. Contrary to the reactive ensemble, the non–reactive 

ensemble was unable to form any substantial 𝜋–bond character between 𝐶� and 𝑂R. 

The next atom, 𝐶�, participated in three natural bonding orbitals including the 𝐶� −	𝐶�	𝜎–

bond, the 3C bond involving the central three substrate carbons, and the eventual formed 𝐶Y − 	𝐶� 

𝜎–bond. Atomic coefficient analysis of the natural bonding orbitals over time (Figure 3.8) for both 

the reactive and non–reactive ensemble showed that 𝐶� was 𝑠𝑝? hybridized, and the 𝐶� −	𝐶�	𝜎–

bond averaged 25% 2𝑠 character and 75% 2𝑝� character while in the reactant basin (for times 𝑡 ≤

0 fs). As the reaction proceeded, a distinct decrease in 2𝑠	character to about 10−15% and 
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simultaneous increase in 2𝑝� character by a comparable amount was reflected in both ensembles. 

Notably, this change in 2𝑠 character contrasts that of 𝐶�, where the observed 2𝑠 character was far 

lower at the comparable time points than for 𝐶�. For times 𝑡 = +30 fs onward, all reactive 

trajectories formed a 3C bond with predominantly 2𝑝� character, whereas only a small subset of 

the non–reactive simulations was able to transiently form a 3C bond. Throughout the 3C bond 

existence, trajectories maintained some 2𝑠 character for the 𝐶� atom. At times 𝑡 = +60 fs onward, 

the 3C bond was dissolved and reactive simulations successfully established the 𝐶Y − 𝐶� 𝜎–bond, 

with roughly 25% 2𝑠	character and 75% 2𝑝� character, suggesting 𝐶� adopted an 𝑠𝑝? hybridization 

state once more. Likewise, non–reactive simulations returned to the reactant state and 𝑠𝑝? 

hybridization. Notably for the nonreactive ensemble, the few trajectories capable of forming the 

3C bond possessed less 2𝑠 character in the transient time they existed. 

The final carbon atom involved in the methyl migration was 𝐶Y, which initially participates 

in a double bond comprised of a 𝐶Y − 𝑂� 𝜎–bond and 𝐶Y − 𝑂� 𝜋–bond. As seen in Figure 3.9 for 

early times, the 𝜋–bond was observed to have no 2𝑠 character for either reactive or non–reactive 

trajectories, but steadily increased in relative 2𝑝� character as the reaction approached time 𝑡 = 0 

fs. At time 𝑡 = +20 fs, the 𝐶Y atom appeared to no longer participate in the 𝜋–bond between 𝐶Y −

𝑂� for either the reactive or non–reactive ensembles. However, almost immediately after, all the 

members of the reactive ensemble were able to establish the 3C bond between the three carbon 

atoms of the substrate in contrast to the few non–reactive trajectories that were able to do so. The 

formation of the 3C bond also coincided with an increase in 2𝑠 character for the 𝐶Y atom for the 

reactive ensemble. Time 𝑡 = +40 fs marked the first instance of the 𝐶Y − 𝐶� 𝜎–bond with almost 

25% 2𝑠 character for all trajectories in the reactive ensemble. In contrast, the non–reactive 

ensemble was unable to form this 𝜎–bond between 𝐶Y − 𝐶�.  
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Addressing the carbonyl involving atom 𝑂�, Figure 3.10 shows that this atom initially 

participated in the 𝐶Y − 𝑂�  𝜋–bond comprised of mostly 2𝑝� character that increased in 2𝑝� 

character as the reaction proceeded for both the reactive and non–reactive ensembles. At time 𝑡 =

+20 fs, atom 𝑂� demonstrated additional a lone–pair formation, claiming the 2𝑝� orbital originally 

used in the 𝐶Y − 𝑂� 𝜋–bond. Between times 𝑡 = +20 fs and 𝑡 = +40 fs, the new lone pair 

persisted for the non–reactive ensemble but was then reformed back into the 𝐶Y − 𝑂� 𝜋–bond. The 

reactive ensemble sustained the lone–pair orbital for the duration of the reaction, where at times 

𝑡 = +45 fs and beyond, rehybridization with other 2𝑝 atomic orbitals occurred. 

The last atom participating in the reaction is atom 𝑂R on the reactant–side carbon 𝐶� (Figure 

3.11). Atom 𝑂R was modeled as negatively charged, labeled as “LP 3” in the QM calculations. As 

the reaction proceeded, this LP began to exhibit high 2𝑝� character for both reactive and non–

reactive ensembles and diminishing 2𝑠 character, as if in preparation for folding the lone pair into 

the incipient 𝐶� − 𝑂R	𝜋–bond. During time 𝑡 = +20 fs to time 𝑡 = +40 fs, the lone pair on 𝑂R 

maintained almost 100% 2𝑝� character which subsequently evolved into the 𝐶� − 𝑂R	𝜋–bond for 

only the reactive ensemble around time 𝑡 = +60 fs. The non–reactive simulations, while they first 

shifted in a similar manner to the reactive, were not capable of establishing the 𝜋–bond with 𝐶�, 

and regained their 2𝑠 character by time 𝑡 = +40 fs while ultimately decreasing in 2𝑝� character. 

 Concurrent to the change in orbitals was a slight shortening of the distance between 

specifically 𝑂� and 𝑀$Y (Figure 3.12). From 𝑡 = −20 fs, both the reactive and non–reactive 

ensembles were centered at 2.27 Å ± 0.06 Å and 2.24 Å ± 0.06 Å. Roughly corresponding to the 

time of the first (reactive) simulations’ 3C bond formation (𝑡 = 20 fs), these distributions shifted 

to 2.11 Å ± 0.04 Å and 2.15 Å ± 0.06 Å respectively, suggesting a slight shortening of the 𝑂� and 
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𝑀$Y coordination. This shortened distance persisted for at least 20 fs after the 3C bond was formed 

(𝑡 = 40 fs).  

Incidentally, the opposite trend held for the distance between 𝑂R and 𝑀$Y (Figure 3.13). 

While in the reactant basin (𝑡 = −20 fs), the reactive ensemble and non–reactive ensemble were 

centered at 2.07 Å ± 0.05 Å and 2.05 Å ± 0.04 Å respectively. At time 𝑡 = 20 fs, these distributions 

extended to 2.16 Å ± 0.05 Å and 2.14 Å ± 0.05 Å, suggesting an extension of the 𝑂R and 𝑀$Y 

distance. By 𝑡 = 40 fs, these distributions were roughly centered at the same distance as the latter 

time point, at 2.18 Å ± 0.05 Å and 2.14 Å ± 0.05 Å respectively.  

Multiple studies have postulated the methyl transfer occurs concurrently with 

isomerization of the carbonyl/hydroxyls (𝑂� and 𝑂R respectively while in the reactant basin), and 

that the KARI transition state adopts a 3C bond between the central carbons of the substrate 

(𝐶�, 𝐶�, 𝐶Y) while tightening the interaction between 𝑂� and 𝑂R and the bridging magnesium ion  

(𝑀$Y) [15, 19, 21–23, 28]. This work supports that hypothesis, as the changing bond index of the 

bonds 𝐶� − 𝐶�, 𝐶Y − 𝐶�, 𝐶� − 𝑂R, and 𝐶Y − 𝑂� are concurrent and agree with the anticipated 

changes in bond order expected of a methyl transfer and carbonyl/hydroxyl isomerization. The 

orbital analyses of this work indicated that the reactive ensemble formed an electronic structure 

compatible with the NBO definition of 3C bond, as did a small minority of the non–reactive 

ensemble. Interestingly, our simulations reflected a tightening in coordination of 𝑂� with 𝑀$Y but 

the same shortening of distance does not occur with 𝑂R and 𝑀$Y. The substrate oxygen–magnesium 

distributions, for both reactive and non–reactive simulations, over time are supported by prior 

studies expectations of hexa–coordinated Mg atoms [35, 36]. The possible shortening of the 𝑂� −

𝑀$Y distance may correspond to the formation of a lone–pair orbital that interacts more effectively 
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with 𝑀$Y. Subsequently, the lengthening of 𝑂R −𝑀$Y may correspond to the loss of the extra 𝑂R 

lone–pair orbital that goes on to form the 𝐶� − 𝑂R π–bond in the product state.  

Figure 3.7:  𝐶� atomic orbital composition across trajectories, indicated by changing colors, for reactive 
(panels A and B) and non–reactive (panels C and D) ensembles. (A) The 2𝑠 character of the 𝐶� atom as it 
participated in several different natural bonding orbitals through the course of the reaction diminishes toward 
the product state for the reactive ensemble. Subsequent bonding orbitals that occurred through the course of 
the reaction required less 2𝑠 character for the reactive ensemble. Taken with panel B, the subsequent 
reduction of 2𝑠 character from 25% to 0% suggests that the 𝐶� atom transitions from 𝑠𝑝? hybridization to 
𝑠𝑝Z hybridization. (B) Successful reactions developed more 2𝑝� character in bonding orbitals than reactant. 
The reactive ensemble was able to facilitate not only the formation of the 3C bond with mostly 2𝑝� character, 
but also eventually form the 𝐶� − 𝑂R 𝜋–bond with the 2𝑝� atomic orbital. (C) The non–reactive ensemble 
exhibited diminishing 2𝑠 character comparable to the reactive ensemble until time 𝑡 = +20 fs, but was 
unable to entirely eliminate it. (D) The non–reactive ensemble exhibited high 2𝑝� character until time 𝑡 =
+30 fs, when the 2𝑝� character began to return to its baseline value. Few non–reactive ensembles were able 
to establish the existence of the 3C bond, but even then were unable to generate the 𝐶Y − 𝐶� 𝜎–bond. In all 
panels, dashed horizontal black lines show canonical orbital proportions for static 𝑠𝑝Z hybridization and 𝑠𝑝? 
hybridization. 
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Figure 8:  𝐶� atomic orbital composition across trajectories, indicated by changing colors, for reactive 
(panels A and B) and non–reactive (panels C and D) ensembles. (A) The 2𝑠 character for the 𝐶� atom  of 
the reactive ensemble exhibited similar oscillatory behavior as 𝐶� at times prior to 𝑡 = 0 fs. As the reaction 
proceeded, the 2𝑠 character diminished by 10−15%, but did not entirely disappear as in the case of 𝐶�. As 
the reactive ensemble established the 𝐶Y − 𝐶� 𝜎–bond, the 2𝑠	character returned to baseline 𝑠𝑝? values. 
(B) The reactive ensemble showed increased 2𝑝� character through the participation of the 3C bond but 
possessed equivalent values of the baseline between the reactant–state 𝜎–bond between 𝐶� − 𝐶� and the 
product–state 𝜎–bond between 𝐶Y − 𝐶�.  (C) The non–reactive ensemble observed a persistent decrease in 
the 2𝑠 character of the 𝐶� − 𝐶�	𝜎–bond over the times including 𝑡 = +20 fs to 𝑡 = +40 fs but returned to 
baseline values of about 25% as the reaction failed to proceed. (D) The non–reactive ensemble showed 
increased 2𝑝� character throughout the reaction, but returned to a baseline value of about 75% as the 
reaction attempted to proceed. The few trajectories that were capable of forming the 3C bond exhibited 
slightly higher 2𝑝� character than those that could not. Taken with panel (C), no significant change in 
hybridization state occurred for 𝐶�, suggesting this carbon remained 𝑠𝑝?–hybridized throughout the 
reaction. In all panels, dashed horizontal black lines show canonical orbital proportions for static 𝑠𝑝Z and 
𝑠𝑝? hybridization. 
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Figure 9:  𝐶Y atomic orbital composition across trajectories, indicated by changing colors, for reactive 
(panels A and B) and non–reactive (panels C and D) ensembles. (A) Atom 𝐶Y participated in a 𝜋–bond in 
the reactant state, indicated by a lack of 2𝑠	character in the 𝜋–bond between 𝐶Y − 𝑂�. As the reaction 
proceeded toward 3C bond formation, 2𝑠	character grew until reaching nearly 25% as the 𝐶Y − 𝐶�.  𝜎–
bond formed. (B) The 𝐶Y − 𝑂�	𝜋–bond grew in 2𝑝� character until formation of the 3C bond. As the 𝐶Y −
𝐶� 𝜎–bond formed, the 2𝑝� character reduced to about 75%. Taken with panel (A), this suggested that 𝐶Y 
underwent a hybridization change from 𝑠𝑝Z, with 1 free 2p orbital (specifically 2𝑝�), to 𝑠𝑝?	hybridized. 
(C) The non–reactive ensemble was not capable of facilitating a truly successful methyl migration, and 
showed no developing 2𝑠 character in the 𝐶Y − 𝑂� 𝜋–bond. For the few trajectories capable of forming the 
3C bond, these contained negligible 2𝑠 character in the 3C bond, and also returned to 0% as the reaction 
proceeded to transition back to the 𝜋–bond. (D) Conversely, while there was little 2𝑠 character, the 𝐶Y −
𝑂� 𝜋 bond increased in 2𝑝� character as the reaction proceeded. Between 𝑡 = +20 fs and 𝑡 = +40 fs, the 
𝜋–bond was not sustained, but the non–reactive ensemble reestablished this orbital. In all panels, dashed 
horizontal black lines show canonical orbital proportions for static 𝑠𝑝Z and 𝑠𝑝? hybridization. 
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Figure 10: 𝑂� atomic orbital composition across trajectories, indicated by changing colors, for reactive 
(panels A and B) and non–reactive (panels C and D) ensembles. (A) While in the reactant basin, the reactive 
ensemble exhibited negligible 2𝑠 character in the 𝐶Y − 𝑂� 𝜋 bond. Near the time the reactive ensemble 
successfully established the 𝐶Y − 𝐶� 𝜎–bond (around 𝑡 = +50 fs), the 2𝑠 character of the lone pair on 𝑂� 
marginally increased. (B) The 𝐶Y − 𝑂�  𝜋–bond grew in 2𝑝� character until 𝑡 = +20 fs where the 2𝑝� 
orbital was classified as part of a new lone pair orbital on 𝑂�. The new lone pair orbital was maintained at 
nearly 100% 2𝑝� character until 𝑡 ≥ 50 fs, where a rapid rehybridization occurred. (C) Similar to the 
reactive ensemble, marginal 2𝑠 character existed in either the 𝐶Y − 𝑂�	𝜋–bond or the lone pair orbital of 
𝑂�.  (D) The non–reactive ensemble approached the reactive barrier comparably to the reactive ensemble 
with nearly 100% 2𝑝� character. Like the reactive ensemble, all non–reactive trajectories sustained the 
formation of the lone pair of 𝑂� between 𝑡 = +20 fs to 𝑡 = +40 fs. Subsequently however, the non–
reactive ensemble reestablished the 𝜋–bond between 𝐶Y − 𝑂�. In all panels, dashed horizontal black lines 
show canonical orbital proportions for static 𝑠𝑝Z and 𝑠𝑝? hybridization. 
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Figure 11: 𝑂R atomic orbital composition across trajectories, indicated by through changing colors, for 
reactive (panels A and B) and non–reactive (panels C and D) ensembles. (A) The lone pair orbital 
corresponding to the negative charge on 𝑂R for the reactive ensemble exhibited marginal 2𝑠	character. By 
time 𝑡 = +30 fs, negligible 2𝑠 character existed in either the lone pair orbital, or the subsequent 𝐶� − 𝑂R 
𝜋–bond. (B) The lone pair orbital had mixed 2𝑝� character that steadily increased in composition until 
𝑡 = 	+10 fs when the composition was nearly 100% for the reactive ensemble. Throughout the remainder 
of the reaction, the 2𝑝� character remained at 100% until transitioning into the 𝐶� − 𝑂R 𝜋 bond. (C) The 
non–reactive ensemble had similar 2𝑠	character to the reactive ensemble. From 𝑡 = +20 fs to 𝑡 = +40 
fs, corresponding to the start of the 3C bond formation and the lone pair formation on 𝑂�, there was no 
2𝑠 character, but it marginally increased near the end of the failed reaction. (D) The non–reactive 
ensemble followed a similar increase in 2𝑝� composition as the reactive ensemble, but rebounded back 
to the original value after time 𝑡 = +30 fs. In all panels, dashed horizontal black lines show canonical 
orbital proportions for static 𝑠𝑝Z and 𝑠𝑝? hybridization. 
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Figure 12: Histograms of reactive (red) and non–reactive (blue) simulations for the 𝑂� −𝑀$Y 

distance (in Å). The distance between 𝑂� − 𝑀$Y shortened as the simulations grew closer to 

crossing the reaction barrier. (A) For time 𝑡 = −20 fs, the reactive distribution was centered 

at (mean ± std. dev) 2.27 Å ± 0.06 Å whereas the non–reactive distribution was centered at 

2.24 Å ± 0.06 Å. (B) For time 𝑡 = 0 fs, the reactive distribution shifted left slightly to center 

at 2.20 Å ± 0.05 Å, whereas the non–reactive distribution remained at 2.20 Å ± 0.06 Å. (C) 

For time 𝑡 = 20 fs, the reactive distribution shifted closer 2.11 Å ± 0.04 Å, whereas the non–

reactive distribution shifted slightly left to 2.15 Å ± 0.06 Å. (D) For time 𝑡 = 40 fs, the reactive 

distribution remained at 2.10 Å ± 0.04 Å, whereas the non–reactive distribution consistently 

stayed at 2.15 Å ± 0.06 Å. 
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Figure 13: Histograms of reactive (red) and non–reactive (blue) simulations for the 𝑂R −𝑀$Y 

distance (in Å). The 𝑂R −𝑀$Y distance was shorter in the reactant basin, prior to attempting 

to cross the barrier, than they were during the course of the reaction.  (A) For time 𝑡 = −20 

fs, the reactive distribution was centered at (mean ± std. dev) 2.07 Å ± 0.05 Å, whereas the 

non–reactive distribution was centered at 2.05 Å ± 0.04 Å. (B) For time 𝑡 = 0 fs, the reactive 

distribution shifted right slightly to center at 2.09 Å ± 0.03 Å, whereas the non–reactive 

distribution remained at 2.11 Å ± 0.05 Å. (C) For time 𝑡 = 20 fs, the reactive distribution 

shifted further to 2.16 Å ± 0.05 Å, whereas the non–reactive distribution shifted slightly right 

to 2.14 Å ± 0.05 Å. (D) For time 𝑡 = 40 fs, the reactive distribution was centered at 2.18 Å ± 

0.05 Å, whereas the non–reactive distribution consistently stayed at 2.14 Å ± 0.05 Å. 
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3.4.2 Geometric feature classifiers predict reactivity with a subset of the 30 consensus features 

 We performed feature selection calculations to identify predictive features from 30 relevant 

features we previously identified (See Methods) [1]. Specifically, we ranked all two–feature 

classifiers and selected the top five with unique features. We also studied the ten–feature model 

containing all five pairs of features which had 89% accuracy and 94% AUC (results shown in 

Table 1). Across the two–feature models, pair accuracy was in the range of 66%–79% with an 

AUC of 70%–80%. The logistic regression model values are also shown in Table 1. Most 

coefficients were similar in scale, and all were identical in sign between the corresponding two–

feature model and the ten–feature model.  The consistent sign suggests that each feature may have 

a similar role in predictive reactivity in a pair model or combined model. 

  

Model β� β$ βZ β? β� β� βR βY β� β� β$� Acc AUC 

Set 1 5.32 5.55 –0.28 – – – – – – – – 0.79 0.88 

Set 2 2.21 – – 9.35 –0.14 – – – – – – 0.74 0.81 

Set 3 21.93 – – – – –7.2 –7.34 – – – – 0.67 0.73 

Set 4 12.27 – – – – – – –1.18 –0.05 – – 0.68 0.71 

Set 5 12.92 – – – – – – – – –1.02 –0.08 0.66 0.70 

All 79.45 5.37 –0.37 10.27 –0.19 –17.5 –5.82 –1.19 –0.06 –1.18 –0.06 0.89 0.94 

Table 1: Average performance (accuracy and AUC) and coefficients of geometric feature 

models across 10 randomized training/testing splits, for 5 two–feature models (Set 1–5) and 

the combined ten–feature model (all sets). Standard error was 0.02 for performance. Dashes 

indicate unused features in a model for the pair–feature models. Feature coefficients are 

numbered in Figure 14, with 𝛽� representing the bias term. 
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3.4.3 Electronic feature classifiers predict reactivity  

 We used quantum mechanical methods to compute properties describing the electronic 

structure of the substrate and its environment, and then trained classifiers to identify which of these 

electronic features were most predictive of reactivity. Specifically, we computed 171 pairwise 

classifiers from the 19 electronic features identified as potentially important in the mechanism 

extracted from time–aligned simulations at time 𝑡 = 	−20 fs. We chose the top performing unique 

two–feature models for subsequent analysis (Figure 3.15).    

 Each two–feature model, taken alone, had an accuracy in the range 80%–85% with AUC 

88%–92%, with standard error of performance under 1% across training–testing splits (Table 2). 

Feature Set Identity Type 

Set 1 
GLU319 OE1– C5 Distance 

O6–M16–O3 Angle 

Set 2 
C5–C4 Distance 

M17–O6–M16 Angle 

Set 3 
C4–C7 Distance 

C1–C4 Distance 

Set 4 
H28–O6 Distance 

NDP C4N–N1N–C1NQ Angle 

Set 5 
H27–O6 Distance 

C5–C7–C9 Angle 

Figure 3.14: Schematic indicating the geometric feature pairs, collected from the 𝑡 = −20 fs 

time point, where numbering indicates in which pair the feature was identified. Out of 10 

features, 6 were distance features (indicated in black) and the remaining were angles (indicated 

in blue).   
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By design, the first pair of features had highest performance metrics that subsequently fell 

monotonically with each subsequent pair. A collective set of the top three pairs, corresponding to 

6 electronic features, was sufficient to produce a classifier with 91% accuracy and 97% AUC, 

outperforming significantly the best individual pair. Both the top performing pair features, and the 

cumulative 6–feature classifier of the electronic features, outperformed the geometric top 

performing pair and cumulative 10–feature classifier respectively, suggesting that the electronic 

structure is more diagnostic of reactivity in the sense that fewer electronic descriptors than 

geometric descriptors are required. 

 Unlike the geometric classifiers, several of the individual pairs of features exhibited varied 

magnitude or sign when used in a combined model. Most of the weight of the combined classifier 

seemed placed on features corresponding to the charge on 𝐶Y and the bond index between 𝑂� −

𝑀𝑔$Y. The coefficients of 𝐶� − 𝐶� bond index and the 2𝑝� character of 𝑂� of the 𝜋–bond between 

𝐶Y − 𝑂� exhibited similar magnitude either in an individual pair classifier or as a combined model. 

The other features, while varied in magnitude, retained the same sign with exception of the 2𝑝� 

character of 𝐶� of the 𝜎–bond between 𝐶� − 𝐶�, which switched sign from positive in the pair–

feature model to negative in the combined model.  

 

 

 

Model β� β$ βZ β? β� β� βR Acc AUC 

Set 1 41.71 –55.78 –77.62 – – – – 0.85 0.92 

Set 2 –9.17 – – 49.05 –34.49 – – 0.82 0.88 

Set 3 49.36 – – – – –19.15 –38.01 0.80 0.88 

All 133.11 –104.25 –164.24 –1.53 –7.34 –14.80 –38.00 0.91 0.97 

Table 2: Average performance (accuracy and AUC) and coefficients of electronic feature models 

across 10 randomized training/testing splits, for three two–feature models (Set 1–3) and the 

combined 6–feature model (All). Standard error was 0.01 for performance. Feature coefficients are 

numbered as in Figure 15, with β� representing the bias term. 
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3.4.4 Geometric feature OE1–C5 influences torsional orientation of methyl that weakens 

electronic feature C4–C5 bond order 

Our dynamic trajectories revealed that the reactive ensemble, compared to the non–reactive 

ensemble, had a larger fraction of trajectories that started to cross the reaction barrier with an 

eclipsed conformation of the methyl, 𝐶�, with respect to the reactant carbon, 𝐶�.  (Supplementary 

Figure 3.S1, See Methods for torsion angle calculation). Further inspection of both ensembles, 

stratified by the torsion angle of 𝐶�, indicated that trajectories crossing the reaction barrier starting 

from the eclipsed conformation versus the staggered conformation, particularly for the reactive 

ensemble, had higher 𝐶� − 𝐶� σ–bond orbital energies and lower 𝐶� − 𝐶� σ*–antibond orbital 

energies, corresponding to a destabilization of the breaking–bond orbital and a stabilization of the 

anti–bonding orbital respectively, prior to 3C bond formation (Supplementary Figure 3.S2). 

Feature 
Set Identity Type 

Set 1 
C7 Charge 

O8–M17 Bond Index 

Set 2 

2pz C4; 
σ C4–C5 

Atomic Orbital 
Hybridization 

2pz C7; 
π C7–O8 

Atomic Orbital 
Hybridization 

Set 3 

2pz O8; 
π C7–O8 

Atomic Orbital 
Hybridization 

C4–C5 Bond index 

Figure 15: Schematic of electronic features that were most predictive of reactivity. Out of 6 
features, three were atomic orbital hybridization states, explicitly of 2𝑝� character, two were 
bond–indices, and one was partial atomic charge. Text in blue indicates how the electronic 
feature changes as the reaction progresses at the 𝑡 = −20 fs timepoint. 
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Moreover, the 𝐶� − 𝐶Y σ–bond and 3C bond orbital energies were lower for the reactive 

populations that left the reactant basin in the eclipsed orientation compared to the staggered 

orientation (Supplementary Figure 3.S3). There was an anti–correlated relationship between the 

torsional orientation with respect to 𝐶� and the torsional orientation with respect to 𝐶	Y which was 

time invariant (Supplementary Figure 3.S4); said otherwise, an eclipsed orientation with respect 

to the reactant transferred in the staggered orientation to the product. This suggested that the 

torsional orientation of the methyl prior to crossing the reaction barrier assisted catalysis by 

potentially creating a conformation that destabilized the ground state and stabilized the transition–

state. 

The torsional freedom and orientation of the methyl group can be influenced by the nearby 

environment, namely, interactions with nearby side–chains in close proximity. Correspondingly, 

residue E319’s carboxylate oxygens were considered in close enough proximity to create a CH–O 

type bond with the methyl protons [37–44]. The first model–selected geometric feature in this 

work, and the most commonly selected feature in prior work by Bonk et al., E319/𝑂𝐸$ − 𝐶�, 

signaled a CH–O type bond between the transferring methyl’s protons and one of E319’s 

carboxylate oxygens (𝑂𝐸$), indicated by the strong correlation between the E319/𝑂𝐸$ − 𝐶� and 

the E319/𝑂𝐸$ − 𝐻 distance where “𝐻” represented the closest methyl proton to 𝑂𝐸$ [1] 

(Supplementary Figure 3.S5). Prior work studying methyl transfer reactions in enzymes have 

indicated that CH–O type bonds can restrict rotational mobility, which influences catalysis [43–

45]. In the case of KARI, the E319/𝑂𝐸$ − 𝐻 distance for the reactive ensemble was on average 

0.3 Å further away than the non–reactive ensemble (the mean ± std.dev for reactive was 2.3 ± 0.2 

Å versus non–reactive 2.0 ± 0.2 Å; Figure 3.16A). The corresponding p–value between these 

distributions, via the Student’s t–test, was 𝑝 < 1	 × 105$�, suggesting the difference between the 
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reactive and non–reactive ensembles were significant. Stratifying the ensembles by the 𝐶� torsion 

revealed that, for the reactive ensemble, the eclipsed oriented methyl groups were more likely to 

have elongated 𝑂𝐸$ − 𝐻 distances than increasingly staggered orientations, suggesting that the 

larger distance between 𝑂𝐸$ − 𝐻 encouraged the eclipsed conformation. In contrast, there was no 

notable trend with the non–reactive ensemble, but the median population of the E319/𝑂𝐸$ − 𝐻 

distance was shorter than the reactive ensemble for all comparable populations.  

We observed that the torsion angle also influenced one of the electronic features, the 𝐶� −

𝐶�	bond index. The reactive ensemble was observed to have a smaller bond–order (the mean ± 

std.dev for reactive was 0.87 ± 0.03 versus non–reactive 0.90 ± 0.03, 𝑝 < 1	 × 105$�), 

corresponding to a weakened electronic overlap between the  𝐶� − 𝐶� σ–bond compared to the 

non–reactive ensemble (Figure 3.16C). Stratified on torsion angle, the eclipsed orientation in the 

reactive ensemble showed nearly a 6% decrease in bond index when compared to the staggered 

orientation (Figure 3.16D). Similar to the 𝑂𝐸$ − 𝐻 analysis, no clear trend was identified for the 

non–reactive ensemble but likewise, bond index was higher for each comparable population 

between non–reactive and reactive. A comparable analysis performed on the 𝐶� − 𝐶� σ–bond 

orbital energy to verify the diminished strength of this bond corroborated that the reactive 

ensemble was nearly 16 kcal higher in energy (Supplemental Figure 3.S6A; reactive mean ± std. 

dev = –454 ± 21 kcal vs non–reactive = –470 ± 21 kcal, with 𝑝 < 1	 × 105$� via t–test), and that 

the reactive ensemble’s eclipsed orientation was higher in energy than the staggered orientation.  

Taken together, these results suggest a potential catalytic strategy whereby an eclipsed 

torsion angle assists reactivity by weakening the 𝐶� − 𝐶� σ–bond, and such an orientation is 

promoted when the CH–O bond from E319 is weakest (as indicated by a longer 𝑂𝐸$ − 𝐶� 

distance). While the torsion angle may play some role in reactivity, we note that the majority of 
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both ensembles, reactive and non–reactive, were more likely to be staggered than eclipsed 

(Supplementary Figure 3.S1), suggesting it is not a necessary requirement for catalysis. It is very 

likely there are other strategies that allow for the reactive ensemble’s staggered trajectories to cross 

the barrier, further underscored by Bonk et al.’s claim that clustering the same features indicate 5 

disparate reactive pathways [1]. As seen in Figure 3.16A and Figure 3.16C, the reactive and non–

reactive ensembles share considerable overlap despite being statistically different distributions. It 

is possible the trajectories that lie in the overlap region deviate significantly with respect to other 

features, which is potentially an indicator of why cumulative classifiers are capable of predicting 

reactivity better than any given pair of features.  

 

3.4.5 Pairwise geometric feature models predict electronic features as well as the cumulative 

geometric model 

The model–selected set of electronic features that predicted reactivity reported on different 

aspects of the mechanism; from the NBO analyses, the features indicated information on the 

breaking–bond (𝐶� − 𝐶� bond index, 𝐶� 2pz orbital character in the 𝐶� − 𝐶�	σ–bond) and the 

diminishing 𝐶Y − 𝑂�	π–bond/eventual lone pair formation on 𝑂� (𝐶Y charge, 𝐶Y 2pz and 𝑂� 2pz 

character in the 𝐶Y − 𝑂� π–bond, and 𝑂� −𝑀$Y bond index). Given that predictive power increased 

for the cumulative electronic model as opposed to the pairwise models, a diverse set of descriptors 

that reported on different details of the mechanism was important for reactivity. A pair of 

geometric features (or even a single geometric feature) may not be capable of faithfully capturing 

all components of the chemical mechanism alone; diversity in geometric features can ensure 

implicit electronic structure was described adequately.  

 



 132 

  

Figure 16: Relationship of 𝑂𝐸$ − 𝐶� distance to reactivity. 𝑂𝐸$ − 𝐶�  is the distance between the 
methyl carbon (𝐶�) and Glu319’s carboxylate oxygen (𝑂𝐸$) used to coordinate Mg. This distance 
was strongly correlated to the distances of the methyl protons to Glu319’s oxygen. (A) Methyl–
proton to Glu319–O distances (𝑂𝐸$ − 𝐻) were significantly shorter in the non–reactive 
simulations (mean ± std. dev: 2.0 Å ± 0.2 Å) than the reactive simulations (2.3 ± 0.2 Å). (B) 
Distribution of methyl–proton to carboxylate oxygen distance as a function of methyl torsional 
conformation for reactive and non–reactive simulations. The data was separated into three bins: 
“eclipsed” between 0–20 degrees; “staggered” between 40–60 degrees; and intermediate between 
20–40 degrees. Reactive simulations showed an association between an eclipsed state of the 
methyl prior to reacting (𝑡 = −20 fs) and a farther 𝑂𝐸$ − 𝐻	distance. The median 𝑂𝐸$ − 𝐻 
distance for the eclipsed orientation was 2.5 Å for reactive simulations, contrasted with 2.1 Å for 
the staggered orientation. The non–reactive distribution did not exhibit a trend between the 
methyl–proton–𝐻 − 	𝑂𝐸$ distance and methyl torsion, as all proton–distances were relatively 
short across any torsional conformation. (C) Distribution of the reactive and non–reactive bond–
order between 𝐶� − 𝐶�. Reactive simulations adopted lower overall bond–order (mean ± std. dev: 
0.87 ± 0.03) than non–reactive simulations on average (mean ± std. dev: 0.90 ± 0.03). (D) 
Association of bond order as a function of methyl torsional orientation. Reactive simulations that 
adopted torsional conformations of 0–20 degrees (i.e. eclipsed rather than staggered) had a median 
𝐶� − 𝐶� bond order centered at 0.85 compared to the 40–60 (i.e. staggered) orientations at 0.88. 
This difference of 0.03 bond order is notable, as it is identical to the difference in the distributions’ 
overall average, and equal to the standard deviation of both distributions. 
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In order to investigate the relationship between the geometric and the electronic features, 

we trained geometric feature models (with the 10 geometric features that were shown to predict 

reactivity) on a different task where instead of predicting reactivity, models classified whether a 

given electronic feature was larger or smaller than the combined (reactive and non–reactive) 

ensemble average. Similar to prior analyses, we selected the top performing geometric pairs for 

each of the six electronic features, and compared it to a cumulative model trained with all 10 

geometric features predicting the electronic feature (Table 3 and 4). 

The performance of the geometric pair–feature models in predicting the electronic features 

spanned from 68% to 87% with an average (across 10 training/testing splits) of 75% for accuracy, 

and 70% to 95% with an average of 80% for AUC and a standard error of 1% or less, unless 

otherwise stated (Table 3). Comparatively, the performance of a 10–feature model, employing the 

use of all geometric features in distinguishing an electronic feature, spanned from 69% to 89% 

with an average of 77% for accuracy and 77% to 96% for AUC, with an average of 84%. Notably, 

only 2 out of the 6 electronic features exhibited an increase of over 2% accuracy prediction when 

a classifier was trained with all 10 features as opposed to 2 features, which was within twice the 

standard error. When considering each pairwise model for every electronic feature, we observed 7 

out of the 10 geometric features were represented. Some geometric features were popular among 

models: this included the E319/𝑂𝐸$ − 𝐶� distance, 𝐶� − 𝐶� distance, and 𝐶� − 𝐶Y distance, which 

appeared in three models for the former two, and 2 for the latter.  

The marginal increase in predictive performance, given additional geometric features 

beyond the original pair, and the diversity of which geometric feature pairs were most effective in 

predicting the different electronic classification tasks suggested two things: (i) small subsets of 

geometric features were enough to describe the electronic feature effectively and (ii) different 
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subsets of geometric features were capable of reporting on various parts of the chemical 

mechanism, which may account for the boost in predictive performance for the cumulative 

classifier in predicting reactivity. The popularity of some features may suggest that there are some 

geometric features that influence many electronic features, hence other descriptors were required 

to account for the other facets of the electronic structure.  

 
 

  

 

Electronic 
Feature 

Geometric 
Features Coefficient Bias 2ft:Mean 

Accuracy 
2ft:Mean 

AUC 

10ft: 
Mean 

Accuracy 

10 ft: 
Mean 
AUC 

C7 charge C5-C4 -2.41 -23.47 0.79 0.87 0.84 0.91 C4-C7 4.42 

O8-M17 
bond order 

H27-O6 8.00 
-13.74 0.68 

 
0.70 

 
0.69 0.77 

M17-O6-M16 8.73 
C4 2pz; σ 

C4-C5 
GLN319 OE1-C5 -4.31 

-32.36 0.73 0.81 0.77 0.85 C5-C4 2.64 
C7 2pz; π 
C7=O8 

GLN319 OE1-C5 -4.09 6.57 0.74 0.76 0.73 0.77 C5-C7-C9 5.08 

O8 2pz; π 
C7=O8 

GLN319 OE1-C5 -3.69 
5.93 0.71 

 
0.73 

 
0.72 0.78 NDP C4N-N1N-

C1NQ 3.27 

C4-C5 bond 
order 

C5-C4 -3.96 
31.80 0.87 0.95 0.89 0.96 C4-C7 2.5 

Table 3: Coefficients and model performance for classifiers that predict each electronic feature 

from geometric features. "2ft" represents the model with the best performance among all pairwise 

geometric classifiers; it; for each electronic feature, the corresponding geometric features and 

coefficients are shown. The bias corresponds to the 2ft model. "10ft" represents the model that 

uses all ten geometric features. 

Table 4: Coefficients for the 10–feature geometric models that predict each of the six electronic 

features. Features for the geometric classifier are numbered as in the geometric schematic in 

Figure 14. 
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3.5 Conclusion and Future Directions 
 

 In the current work, we explored the electronic drivers of reactivity and how structural 

components of the active site of KARI influence the reaction through their effect on electronic 

properties. To our knowledge, this work represents the first dynamical electronic description of 

the KARI methyl transfer reaction supporting the existence of a three–center–two–electron bond 

during concurrent transfer and isomerization.  

 NBO analyses of the reactive and non–reactive ensembles revealed methyl transfer and 

isomerization substrate carbonyls/hydroxyl groups occurred concurrently. Further inspection of 

the atomic orbital compositions throughout the course of the reaction showed that the reaction 

proceeded through a transition–state that had a three–center–two–electron bond via overlapping 

2𝑝� atomic orbitals of the central carbons on the substrate, and orthogonal to the plane formed by 

the atoms 𝑂R, 𝐶�, 𝐶Y and 𝑂�. Interestingly, the non–reactive ensemble adopted an electronic 

structure similar to the reactive ensemble, and failure to react was more of a consequence of the 

extent. However, further inquiry is needed to determine how the electronic mechanism changes as 

a function of the methyl–transfer coordinate; the non–reactive ensemble analyzed in this work 

allowed the transferring methyl group to stretch considerably (up to 2.1 Å in some cases) before 

failing to proceed further up the reaction barrier. Establishing different order parameter criteria in 

generating the non–reactive ensemble (wherein a threshold of a lower order parameter could result 

in a shorter stretch of the methyl transfer coordinate before returning to the reactant basin) and 

repeating this analysis could reveal other electronic departures from successful catalysis beyond 

the observed mechanism that could provide useful features for enzyme design. Delocalized 

systems are difficult to characterize with NBO, as there can be many compatible Lewis–like 

interpretations (i.e. resonance structures); while the mechanism characterized in this work 
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corroborates prior empirical observations and hypotheses, higher levels of theory and direct 

inspection of the density matrix components could reveal more subtle interactions that NBO 

approach may simplify [21–23, 46–51].  

 Inspection of the dynamic trajectories revealed the torsional orientation of the transferring 

methyl group influenced whether the system crossed the barrier with higher 𝐶� − 𝐶� σ–bond 

orbital energies, such that an eclipsed orientation promoted reactivity. The first selected model 

feature, the 𝑂𝐸$ − 𝐶� distance (E319’s glutamyl side chain oxygen and the substrate’s methyl 

group) highlighted a CH–O type interaction with the glutamyl side–chain oxygen and the methyl 

protons where close proximity affected the methyl’s ability to adopt certain conformations, as 

eclipsed orientations possessed larger distances compared to staggered orientations. Comparison 

of the reactive and non–reactive ensembles revealed the non–reactive ensemble had closer contact 

with E319, which taken with the earlier findings, may have discouraged reactivity by restricting 

the orientation of the methyl group. A similar analysis indicated this torsional orientation also 

influenced one of the electronic features, the 𝐶� − 𝐶� bond index. The reactive ensemble 

distribution on average had lower bond index than the non–reactive ensemble, suggesting a 

weakened electronic overlap between the 𝐶� − 𝐶� σ–bond. Similarly, the eclipsed orientation 

corresponded to lower 𝐶� − 𝐶� bond index than the staggered orientation for the reactive ensemble. 

While the torsional angle may assist in some part with successful barrier crossing, the 

conformation alone may not be sufficient to cross the activation barrier of KARI, as seen by the 

large percentage of trajectories in both reactive and non–reactive ensembles that still crossed the 

barrier in the staggered orientation [20, 27]. Several catalytic strategies may need to be leveraged, 

perhaps simultaneously, in order to make substantial progress up the reaction barrier.  
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 Logistic regression classifiers of electric–only and geometric–only models demonstrated 

that fewer electronic features (6) could predict reactivity as effectively as a larger set of geometric 

features (10). The cumulative set of electronic features reported on at least two distinct components 

of the mechanism: the breaking of the 𝐶� − 𝐶� σ–bond and 𝐶Y − 𝑂� π–bond. Given the cumulative 

model outperformed any pairwise classifier, it implied that a larger set of descriptors capable of 

capturing more attributes of the mechanism pinpoint the drivers of reactivity. In subsequent 

classification tasks where models, using the subset of geometric features, predicted whether an 

electronic feature was larger or smaller than the combined–ensemble average, we observed 

pairwise classifiers were nearly as effective as the entire cumulative model in predictive 

performance, and that 7 out of 10 of the subset of geometric features were incorporated into at 

least one electronic model. Taken together, this implied that the cumulative classifier may be 

employing subsets of features to describe different components of reactivity which may explain 

the increased predictive performance.  

 A key extension of this work would identify the correlated relationships between geometric 

features and their influence on an electronic state. A perturbation in isolation to only one 

(geometric) feature would not necessarily be physically feasible (e.g. stretching the distance of 

two atoms in the active–site would make at least one of them closer to the other atoms in the 

system); for this reason, identifying the strongest relationships between the geometric features and 

studying their effect energetically could provide insight into what conformational sets promote 

reactivity. This could potentially be performed by investigating the informatic overlap (such as via 

mutual information, or conditional/joint probabilities) to provide a robust view on which geometric 

features are most uniquely representative of different desirable electronic properties, and which 

are truly redundant.  
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3.7 Supplementary Information 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure S1: Histograms of the reactive (red) and non–reactive(blue) ensembles as 

a function of torsion angle of C5 with respect to C4 at t = –20 fs in the reactant basin, slightly prior 

to crossing the barrier. The reactive ensemble had nearly 5% more trajectories that were in the 

eclipsed “0–20” degree orientation than the non–reactive ensemble. In contrast, the non–reactive 

ensemble possessed about 8% more staggered “40–60” degree orientation trajectories than the 

reactive ensemble. Both ensembles had roughly equivalent populations of the intermediate “20–

40” degree orientation. 
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Supplementary Figure S2: Histograms of the C4–C5 σ–bond orbital energy (A, C, E) and C4–

C5 σ* antibonding orbital energy (B, D, F) at t = 20 fs, roughly the time when the 3C bond first 

began to form in the reactive ensemble simulations. (A) C4–C5 σ–bond orbital energy for eclipsed 

“0–20” orientations of the C5 methyl. The reactive ensemble was –347 ± 8 kcal (mean ± std. dev) 

versus the non–reactive ensemble was –369 ± 11 kcal. (B) C4–C5 σ*–antibond orbital energy for 

eclipsed “0–20” orientations. The reactive ensemble energy was –148 ± 9 kcal (mean ± std. dev) 

versus the non–reactive ensemble was –132 ± 10 kcal. (C) C4–C5 σ–bond orbital energy for 

intermediate “20–40” orientation; the reactive ensemble mean/std.dev was –354 ± 11 kcal versus 

A B 

C D 
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non–reactive with –364 ± 15 kcal. (D) C4–C5 σ*–antibond orbital energy for intermediate “20–

40” orientation; the reactive ensemble mean/std.dev was –143 ± 11 kcal versus non–reactive with 

–132 ± 13 kcal. (E) C4–C5 σ–bond orbital energy for staggered “40–60” orientation; the reactive 

ensemble mean/std.dev was –357 ± 16 kcal versus non–reactive with –366 ± 13 kcal. (F) C4–C5 

σ*–antibond orbital energy for staggered “40–60” orientation; the reactive ensemble mean/std.dev 

was –140 ± 12 kcal versus non–reactive with –130 ± 12 kcal.  

  



 147 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure S3: Histograms of the C5–C7 σ–bond orbital energy (A, C, E) and 3C  
bonding orbital energy (B, D, F) for the stratified torsion populations at the time they first were 
defined in the simulations for the reactive ensemble. (A) Simulations that left the reactant basin in 
the eclipsed orientation possessed a C5–C7 σ–bond orbital energy at –428 ± 15 kcal (mean ± std. 
dev). (B) The orbital energy of the 3C bond formed between C4, C5, and C7 for the eclipsed 
orientation was 17 ± 2 kcal (mean ± std. dev). (C) The intermediate torsional orientation possessed 
C5–C7 σ–bond orbital energy at –420 ± 15 kcal (mean ± std. dev). (D) The intermediate torsion 
angle distribution had a 3C bond orbital energy at 19 ± 3 kcal (mean ± std. dev). (E) The staggered 
orientation torsion angle population had a C5–C7 σ–bond orbital energy at –422 ± 16 kcal (mean 
± std. dev). (F) The staggered orientation torsion angle population had a 3C bond orbital energy at 
–19 ± 2 kcal (mean ± std. dev). 
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Supplementary Figure S4: Scatter plot of the torsional orientation of methyl C5 with respect to 

C4 versus methyl C5 with respect to carbon C7 (constituents C4, C9, O8). (A) Scatter plot at time 

t = –20 fs, where each point represents one time point on each member of the ensemble; the torsion 

angle with respect to C4 was anticorrelated compared to C5. (B) Scatter plot of torsional angles 

where each point represents a timepoint from a trajectory for all timepoints in the duration of 150 

fs per simulation. The anti–correlated relationship between the torsional angles with respect to C4 

and C7 were observed to be time invariant.  
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Supplementary Figure S5: Association between the E319–OE1—C5 methyl carbon distance and 

E319–OE1—minH distance, where minH represents the proton on the C5 methyl group closest to 

the OE1 oxygen on E319, for both Reactive (R) and Non–reactive (NR) populations. Each point 

represents a trajectory sampled at t = –20 fs. The Pearson correlation coefficient between the 

distance of the OE1–C5 distance and the OE1–H distance for the non–reactive ensemble is r = 

0.76, whereas for the reactive ensemble, r = 0.73. Combining both ensembles, the correlation is r 

= 0.79. Carbon–oxygen distances of up to 3.7 Å are safely categorized as CH–O type bonds [39].  
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Supplementary Figure S6: The distribution of the energy (kcal), as calculated by NBO, between 

the C4–C5 σ–bond for reactive and non–reactive simulations (A) and the energy of this C4–C5 σ–

bond, as stratified by methyl torsional angle (B) for both ensembles, at t = –20 fs. (A) Distribution 

of the orbital energy of the C4–C5 σ bond for the reactive and non–reactive simulations. Reactive 

simulations were higher in energy than non–reactive simulations. For reactive simulations, the σ–

bond energy between C4–C5 was –454 ± 21 kcal (mean ± std. dev), whereas for non–reactive 

simulations, it was –470 ± 21 kcal. (B) Distribution of C4–C5 σ–bond energy as a function of the 

methyl torsional conformation. For methyl torsional angles that were between 0–20 degrees, 

reactive simulations exhibited an increase in energy in the C4–C5 σ bond, relative to non–reactive 

simulations, of 32 kcal/mol (difference in medians). 
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Supplementary Figure S7: 2D histogram showing the dependence of C4–C5 bond order and 

sample count on the (x–axis) torsional angle of C4–C5, and (y–axis) OE1–min(proton on C5) 

distance, for reactive and non–reactive ensembles. (A) Reactive bond–order of C4–C5, averaged 

for the population binned between the (x,y) axis. (B) Non–reactive bond–order of C4–C5, 

averaged for the population binned between the (x,y) axis. (C) Number of reactive trajectories 

identified to each given (x,y) bin. (D) Number of non–reactive trajectories identified to each given 

(x,y) bin.The reactive–only distribution in panel (A) shows a clear trend where low torsional angle 

(0–20 or “eclipsed” status) and high OE1–H distances correspond to generally lower bond–order. 

Inspecting the medium torsional angle (20–40) and large torsional angle (40–60 or ‘staggered’), 

there is a trend that indicates that if OE1–H is farther away, the bond–order between C4–C5 

underscores this. For the non–reactive ensemble in panel (B), this trend does not exist, which 

underscores the findings in Figure 15B and Figure 15D.  
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4.1 Abstract 
 

Prior literature has hypothesized the importance of ‘near–attack conformations’ (NACs) as 

drivers of enzyme activity [2–7]. This concept emphasizes the role of the detailed conformational 

substructure of the enzyme–substrate (ES) ensemble, as opposed to the transition–state (TS) based 

theories that prioritize the relative energetics of the enzyme–TS compared to the enzyme–bound 

substrate. The current work investigates how the chemical environment, provided by the active 

site of the enzyme, influences reactive pathways, using wildtype (WT) orotidine 5´-

monophosphate decarboxylase (OMPDC) and two empirically–characterized, catalytically–

impaired mutants, S127A and V155D, as a case study. Transition path sampling (TPS) 

methodologies of the three enzymes were used to generate simulations leading to productive 

decarboxylation of the orotidine 5´-monophosphate (OMP) substrate. Analysis of the TPS 

ensembles across the three enzyme systems revealed two distinct catalytic strategies of 

decarboxylation: one that favored decarboxylation occurring “simultaneously” with the 

positioning of a catalytically important residue, K72, in close proximity, and second pathway in 

which decarboxylation occurred uncoupled from K72’s position in a “stepwise” manner. To 

investigate the differences in the reactive pathways, we posed a classification problem for 

supervised machine learning methods to predict the ‘simultaneous’ or ‘stepwise decarboxylation 

from these simulations.  

Supervised machine learning methods were used to identify key descriptors (“features”) 

that distinguished between the two pathways using data from six time points, three in advance of 

any reactivity, and three after committing to cross the barrier, but not explicitly reaching the 

product. Classifiers demonstrated that several pairs of geometric features were capable of 

predicting the catalytic strategy with over 80% testing accuracy and ROC AUC for all time points. 
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Moreover, numerous model–selected features corresponded to catalytically insightful geometries, 

despite the model having no prior knowledge of chemical mechanism. 

 Top predictive features highlighted the importance of a hydrogen bond between D75* and 

the 2’ – hydroxyl group of the OMP substrate, and the proximity between the carboxylate group 

of D70 and the OMP carboxylate group; both features have been previously hypothesized to play 

a strong role in catalysis [20–27]. These features were also correlated to the degree of distortion 

exhibited by the orotidyl ring prior to reaction. Stratified analysis of the mechanisms by protein 

ensemble revealed that the V155D ensemble formed longer, and likely weaker, interactions with 

the aforementioned features that may answer why its reactive profile differed from WT and S127A.  

 These results of this work support the hypothesis that multiple catalytic strategies may exist 

toward facilitating successful catalysis, and that changing the local environment can result in 

switching amongst alternative means in achieving reactivity. 
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4.2 Introduction 
 

The chemical environment in which a reactive center is embedded is crucial for catalysis. 

For enzymes, the active site provides an environment with conditions that greatly favor difficult 

reactions compared to pure solvent [1]. Extensive experimental and theoretical studies have been 

carried out to identify how components within an active site promote reactivity, particularly within 

the context of ground–state destabilization (GSD), transition–state stabilization (TSS), and near–

attack conformations (NACs) [2–7]. In prior work, our group identified the role of an enhanced 

reactivity zone, representing a set of conformations of the enzyme–substrate (ES) complex more 

likely to lead to successful catalytic events, described by geometric features of the active–site [8]. 

This suggests that preorganization of the active site, prior to crossing the barrier, may highlight 

the key strategies used in catalysis.  

 Chapter 2 of this thesis presented a simulation analyses of the enzyme orotidine 5´-

monophosphate decarboxylase (OMPDC) and two catalytically–impaired mutants, S127A and 

V155D. With both energetics (via potential of mean force “PMF”) and dynamics (via path 

sampling calculations), our studies found different distributions of reactive pathways taken across 

this set of enzymes. The reactive paths of WT and mutant systems were described earlier in the 

context of two parameters: a decarboxylation coordinate corresponding to the stretching of the 

breaking bond, C6–CX; and a proton–transfer coordinate, involving a breaking bond between a 

proton and the side–chain amide nitrogen of the catalytically conserved K72 residue, and a forming 

bond between that proton and the ring carbon, C6 (Figure 4.1B). We observed that the majority of 

WT and S127A mutants decarboxylated in a “simultaneous” manner – the proximity of K72 with 

the OMP ring shortened concurrent with decarboxylation. In contrast, the V155D mutant 

demonstrated two distinct pathways dynamically: one that followed a mechanism similar to WT 
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and S127A, but an additional decarboxylation strategy in which decarboxylation was independent 

of proton transfer.  Here, we investigated how changes in the geometric details of the active–site 

binding led to differences between the reactive pathways of OMPDC, and the chemical insight 

these features offered about the catalytic strategies.   

 
 
 
 
 

 
 
 
 
 

 

 To explore differences in the reactive pathways, we posed a classification problem between 

the “simultaneous” and “stepwise” mechanism across any protein system. Because of the inherent 

complexity of trajectories approaching the reaction barrier, we chose to use machine learning to 

identify the key descriptors (“features”) that could distinguish between the two pathways. Models 

were trained to select five pairs of features from a large set of 620 geometric descriptors, involving 

Figure 4.1: (A) The active–site of OMPDC including residues experimentally verified to affect 
the catalysis of the substrate. Geometric features were constructed from non–hydrogen atoms of 
the following residues K42, D70, K72, D75*, Q185, and R203, and non–hydrogen atoms of the 
orotate substrate. Starred nomenclature refers to the other monomer, as OMPDC is a homodimer 
[14]. Detailed characterization of the mechanism and the roles of these residues can be found in 
the Introduction section of Chapter 2. For a three–dimensional structure with relative placements 
of the residues, see Supplemental Figure 4.S17. (B) A schematic of the two order parameters 
that defined reactive pathways (See Methods 4.3.2); the decarboxylation coordinate (𝜆$) and the 
proton–transfer coordinate, (𝜆Z). 
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interactions of non–hydrogen atoms of catalytically important residues and the substrate, orotidine 

5´-monophosphate (OMP; Figure 4.1A) [12–17, 23]. We performed this classification task across 

six time points, considering times while in the reactant basin up until 30 fs into crossing the barrier. 

Predictive performance (testing accuracy) was over 80% for all six times tested, suggesting 

pathways were distinguishable while still in the reactant basin and with relatively few features 

required.  

 Analysis of the top predictive features, specifically while in the reactant basin, illustrated 

the model’s capacity to select chemically meaningful descriptors. Our model reported on the 

experimentally hypothesized hydrogen bond between D75* and the 2’–hydroxyl of the 

ribophosphate of OMP, thought to assist with binding of the substrate into the active site [22, 25–

27]. The other key feature the model reported underscored the role of ground–state destabilization 

through the form of a distance between D70’s carboxylate group oxygens and OMP’s carboxylate 

oxygens [17, 18, 21]. Both features were shown to influence the distortion of the carboxylate group 

off the OMP orotidyl ring. Stratifying the ensembles by protein systems revealed at the WT and 

S127A shared similar feature distributions when compared to the either the simultaneous V155D 

or stepwise ensembles. Remarkably, the model was able to identify these features without a priori 

information of the chemical mechanism except for pathway labels. 

This work does not intend to explicitly answer how such features give rise to reactivity, or 

what electronic differences are insinuated by the geometries, as no explicit electronic calculations 

were made. Extensions of this work by NBO analyses may directly attribute the magnitude and 

effect of the geometric features with regard to catalytic strategy of decarboxylation.  With design 

in mind, this work may offer insight into how conformations of catalytically critical residues may 

influence reactivity. 
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4.3 Methods 
 
4.3.1 Structure preparation, ensemble generation, and time alignment 

TPS ensembles for OMPDC WT and mutants were generated and described in Chapter 2. 

Briefly, quantum mechanical/molecular mechanical (QM/MM) simulations were used to create 

the TPS ensembles using CHARMM version 39. The SQUANTUM module of CHARMM was 

used at the AM1 level of theory to treat the orotidyl ring and the side–chains of K42, D70, K72, 

D75* [9]. The generalized hybridized orbital (GHO) methods was used to treat the QM/MM 

interface across the 𝐶� − 𝐶� bond for side chains and across the ribonucleotide–orotidyl bond for 

the substrate [10]. 

The reactive pathway ensembles were generated using Transition Path Sampling (TPS) 

methods [See Chapter 2 Methods for further discussion; 11]. The TPS order parameter explicitly 

monitored the breaking bond distance: 

𝜆 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐶R − 𝐶�) 

While this order parameter did not specifically monitor the proton transfer, the QM description 

permitted proton transfer from neighboring lysines to the orotidyl ring. The reactant basin interface 

was set at 𝜆� = 1.7	Å. To collect reactive pathways, trajectories were harvested from the [3.45 Å, 

5 Å] TPS window for the WT, S127A, and V155D systems. A total of 6391 WT trajectories, 13453 

S127A trajectories, and 13488 V155D trajectories were accumulated. 

To provide a reference point for the progress of dynamical features toward reactivity, 

trajectories were temporally aligned such that time 𝑡 = 0 fs corresponded to the simulation leaving 

the reactant basin, 𝜆�, for the last time (crossing the 𝜆� = 1.7	Å interface; Figure 4.2, Supplemental 

Figure 4.S1).  
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4.3.2 Pathway labeling 

 

Pathway labeling used two parameters: the decarboxylation coordinate order parameter below: 

𝜆$ = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐶R − 𝐶�) 

And an additional proton–transfer coordinate with K72, which considers the closest amide proton 

to the C6 atom of the ring:        

	

𝜆Z = max
	o∈{$,Z,?}

t𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒u𝑁𝑍XYZ − 𝐻𝑍oXYZv − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒u𝐶6 − 𝐻𝑍oXYZvx 

 

 

 

A 

Figure 4.2: (A) Schematic of the orotidyl ring of OMP truncated across the bond with the 
ribophosphate. The decarboxylation coordinate for time–alignment is defined as the distance 
between atoms C6 and CX. (B) The decarboxylation coordinate versus time for a time–aligned 
ensemble of WT trajectories. The simulations leave the reactant basin and begin to cross the 
reaction barrier for 𝑡 > 0 fs.  

B 
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In order to label reactive pathways, a cutoff was drawn using the decarboxylation and 

proton transfer coordinates. If a given trajectory’s proton–transfer coordinate, 𝜆Z, was less than or 

equal to –1.5 Å  at the time the decarboxylation distance, 𝜆$, was 2.9 Å, the trajectory was labeled 

as stepwise (Figure 4.3). This boundary roughly corresponded to the high energy region separating 

the lower–right energy basin and the upper–right energy basin of the PMF landscapes of Chapter 

2. By this definition, 6296 WT trajectories were classified as simultaneous, versus 95 stepwise. 

For S127A, 13397 trajectories were simultaneous versus 56 stepwise, and finally 8198 V155D 

trajectories were simultaneous and 5290 were stepwise (Supplemental Figure 4.S2). 

  

Figure 4.3: Trajectories overlaid on the PMFs of Chapter 2. (A) A random sampling of 

simultaneous trajectories on the WT PMF described by the decarboxylation coordinate (x) and 

the proton–transfer coordinate (y) (B) The boundary used for both order parameters to determine 

a simultaneous versus stepwise trajectory on the S127A PMF (C) A random sampling of both 

simultaneous and stepwise trajectories on the V155D PMF. 

B A C Energy 
(kcal) 
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4.3.3 Feature construction 

Prior literature and hypothesized mechanisms have directly implicated several residues in 

playing an active role in the catalysis of OMPDC; this subset includes the catalytic tetrad K42, 

D70, K72, D75*, Q185, and R203 [12–18]. Distances, planar angles, and torsions were constructed 

using atoms within the active–site that corresponded to non–hydrogen atoms of the side–chains of 

the aforementioned residues, the ribophosphate group of OMP, and the orotidyl ring of OMP with 

exception of the 6 descriptors characterizing the K72 proton (HZ1, HZ2, HZ3) – C6 distance and 

K72 amine nitrogen (NZ)–proton distance, as these features comprised the proton–transfer 

coordinate. Angles and torsions were specifically constructed to describe mechanistic hypotheses. 

Of the 620 total geometric features, the composition of each feature type was 546 distance features, 

36 angle features, and 38 torsional features. For each protein, every feature was computed for six 

timepoints (𝑡 = −20	fs, 𝑡 = −10	fs,	𝑡 = 0	fs,	𝑡 = 10	fs,	𝑡 = 20	fs, and	𝑡 = 30	fs).  These time 

points span the duration of the reaction before reaching the product, starting in the reactant basin 

(𝑡 ≤ 0	fs) to starting to cross the barrier (𝑡 > 0 fs). Features were normalized as follows: for each 

protein at a particular timepoint, the mean and standard deviation were calculated by combining 

the simultaneous and stepwise ensembles together. Each feature was then individually mean–

centered and standard–deviation scaled. 

 

4.3.4 Machine learning 

The simultaneous and stepwise ensembles were pooled from all protein systems resulting 

in 27891 simultaneous simulations and 5,441 stepwise simulations. From the total set, the six pairs 

of datasets (a simultaneous and stepwise ensemble pair for each of the six timepoints) were each 

subjected to supervised machine learning in a variety of modes. In each experiment, logistic 
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regression classification models were trained to use a subset of features, described above, to 

distinguish whether the simulation crossed the barrier through a simultaneous or a stepwise 

mechanism. 

In one set of experiments, an exhaustive search of all pairs of features was performed to 

find the pair of features for each classification task, the second–best (non–overlapping) pair, and 

so forth. These sequences of “best pairs” were combined to produce cumulative feature sets that 

were trained on their respective data set to produce cumulative–feature models as opposed to pair–

feature models. We used testing accuracy, averaged across all 10 sets, to determine predictive 

performance and rank order features. 

To identify the set of best performing pairs, 10 training/testing splits were created by 

randomly choosing 1691 trajectories from each ensemble, ensuring an equal representation of both 

pathways in a training/testing split. The training/testing ratios were 80%/20% respectively. 

Performances (accuracy and ROC AUC), coefficients, and biases were averaged across all 10 

models and reported in the Results and Discussion sections (Tables 1–4, Supplementary Tables 1–

6 for coefficients and bias, Supplemental Figures 4.S3–S8 for schematics of features). Models 

were constructed using the LogisticRegression module of Scikit–learn [19]. Pathway labels were 

binarized such that “simultaneous” and “stepwise” corresponded to 1 or 0 respectively.  

 

4.3.5 Calculation of the orotidyl ring (N1) improper 

Distortion of the π–network on the orotidyl ring of OMP can be measured by several 

angles. We computed the improper dihedral angle centered around atom N1 of the orotidyl ring 

using constituent atoms C1’, C6, and C2. The dihedral angle is measured from [0, 360] to account 
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for in–plane or out–of–plane orientations. We defined an “absolute distortion” angle as follows to 

measure the net deviation from planarity of N1: 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒	𝐴𝑛𝑔𝑙𝑒 = ¡𝑁$¢o£¤¢¥3¦	3§¨¦¤ − 180¡ 

For geometry optimized OMP, this angle is 0.25 degrees (Supplemental Figure 4.S9). 

 

4.3.6 Calculation of the C2–N1–C6–CX and C4–C5–C6–CX angles 

The C2–N1–C6–CX and C4–C5–C6–CX angles are proper dihedral angles from [0, 360] 

degrees depending on clockwise or counterclockwise positioning. We compared their absolute 

deviation from a trans–angle (180°) as follows: 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒	𝐴𝑛𝑔𝑙𝑒 = |𝜃 − 180| 

Where 𝜃 can represent either the C2–N1–C6–CX and C4–C5–C6–CX dihedral. For geometry 

optimized OMP, this angle is 0.5 and 4.5 degrees respectively (Supplemental Figures 4.S9, 4.S16, 

4.S15). 
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4.4 Results and Discussion 
 
4.4.1 Several feature pairs equally distinguish between pathways with high performance 

Feature selection calculations identified the top unique predictive pairs across all pair 

models comprised of the available 620 features (See Methods). We ranked all two–feature models 

for their predictive performance (testing accuracy), and selected the top five pairs with unique 

features for each time point. We also combined all unique pairs, per time point, into a cumulative, 

ten–feature model, and calculated the predictive performance across the training/testing splits.  

For each timepoint and across all ten randomized splits of the data, all top performing pair–

feature models were capable of achieving over 80% testing accuracy and AUC, with standard error 

at most ± 1.5% for both metrics (Table 1). The high predictive performance across these features 

suggested that there was redundancy across geometric features, further underscored by the 

similarity of the features, such as multiple descriptors involving bonded atoms of the same residue 

with the same target atom (Table 2; i.e. D75*/CG – OMP/O2’ and D75*/CB – OMP/O2’, where 

CG and CB are bonded atoms).  The cumulative classifier for all time points except 𝑡 ≥ 20 fs did 

not significantly outperform any given pair–feature model in the top five pairs. This may be due 

to the fact that no “new” chemical information was available to improve predictivity, as features 

within the cumulative model were redundant.  

  

Table 1: Pair–feature and cumulative feature testing performance (accuracy and ROC AUC) for 
reactive pathway prediction task. Each column indicates the accuracy (classification prediction 
of simultaneous versus stepwise) and AUC for a given timepoint among all six timepoints tested, 
averaged across 10 randomized training/testing splits. For all reported performance metrics 
across systems and timepoints, the standard error was less than 1.5 % unless otherwise noted. 
Pairwise classifiers obtain comparable performances within a given timepoint, and compared to 
the cumulative classifier which uses all ten features from the pairwise models. A slight increase 
in predictive performance occurred after time 𝑡 = 20 fs. 
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Aggregating features across all six timepoints revealed only 23 unique features were 

identified across all pairs of features. This suggested that important features remained predictive 

from the reactant basin until sometime after the system started to cross the reaction barrier; this is 

further underscored by the fact that 14 of these features were employed in at least 2 classifiers 

(Table 2, 3). Of the unique features, 18 out of the 23 features explicitly reported on catalytic–tetrad 

residue–substrate interactions. Inspection of the individual features revealed several chemically 

relevant findings – despite access to nearly 620 possible features, the models identified meaningful 

Table 2: Features for top 5 pairwise models to classify reactive pathway at the six timepoints 
selected. Distances are represented by a pair of atom identities, angles by a triplet of atoms, and 
dihedrals/improper angles by a set of 4 atoms. Feature ID references the coefficient label ID for 
the supplementary tables 1–6. Structural depictions of the top features are indicated in 
Supplementary Figures 3–8.  
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geometric descriptors that match prior hypotheses of reactivity [2, 3, 13–18]. In particular, seven 

features directly reported on the proximity of the D70 carboxylate group atoms (CG, OD1, OD2) 

with the orotidine 5´-monophosphate (OMP), of which four were explicitly with regard to OMP’s 

leaving carboxylate group (CX, OX1, OX2) and orotidyl ring carbon (C6; Supplementary Table 

7, Supplementary Figures 4.S3–4.S8). The residue D70 is considered as a ground–state 

destabilizing residue, where close proximity of the carboxylate group with another negatively 

charged carboxylate group from the orotidyl ring creates a repulsive interaction that encourages 

reactivity [17, 18, 23, 28]. Similarly, 5 features reported on the proximity of K72 with OMP, with 

at least 2 features directly reporting on the vicinity of K72 with the carboxylate leaving group or 

orotidyl ring carbon (Supplementary Table 7, Supplementary Figures 4.S3–4.S8). The residue K72 

has been characterized as a transition–state stabilizing residue, where the positively charged amine 

group stabilizes the carbanion formed through decarboxylation [9, 10, 14, 18]. Moreover, pathway 

labeling required the use of a proton–transfer coordinate derived from K72. While explicit K72–

proton to C6 distances were not part of the model–selected features, there were two features that 

reported on the amine group in relation to the orotidyl ring: the angle K72/HZ3–K72/NZ–

OMP/C6, the orientation/angle of one of K72’s protons to the C6 ring carbon, and K72/NZ–

OMP/OX1, the proximity of the amine nitrogen to one of the leaving group carboxylate oxygens 

(Supplementary Table 7). The models identified these features, despite no explicit knowledge of 

chemical mechanism, and only binarized labels of the reactive pathways across all three protein 

systems.  

Curiously, late–time classifiers (𝑡 ≥ 20 fs) possessed more geometric features related to 

K72 and OMP (Table 2, 3). In contrast, many of the features reporting on interactions between 

D70 and the substrate carboxylate group appeared across all time points among the six tested. The 
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growing appearance of the K72 features is interesting, as the times these features appeared 

corresponded to climbing the reaction barrier to approach the transition state as opposed to being 

in the reactant basin.    

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
4.4.2 Features from machine learning models are linked to distortions in the planarity of the 

OMP orotidyl ring, and influence the carboxylate distortion  

 
We identified two model–selected features that were important for pathway prediction 

while in the reactant basin (Figure 4.4). One feature was the distance between a catalytically 

conserved aspartate D75* and the 2’ – hydroxyl group of the ribophosphate of OMP (D75*/CG – 

Table 3: Unique features from all classifiers, listed in order of frequency of appearance. Out of 
23 unique features, 14 features appeared in at least 2 timepoints. There were 7 features reporting 
on D70–substrate interactions, 5 features on K72–substrate interactions, 5 intra–substrate 
features, 3 D75*–substrate interactions, and 3 features between the catalytic tetrad alone.  
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OMP/O2’), which appeared in the first predictive pair for the 𝑡 = −20 fs time point. The other 

feature included the distance between the carboxylate oxygen on residue D70, an amino acid 

implicated in ground–state destabilization, and the carboxylate leaving group of the OMP ring 

(D70/OD2 – OMP/OX1) that appeared within the top five predictive pairs for all six time points 

tested.  

 

 

 

 

 

 

 

 

Analysis of their coefficients indicated that these features had negative coefficients in all pairwise 

classifiers, particularly the D70/OD2–OMP/OX1 feature had negative coefficients across all six 

time points (Table 4). Temporal analysis suggested that the coefficient, at least considered within 

the pair–feature model, could have reported on the shorter distances between D75* and D70 to 

OMP that persisted for the simultaneous ensemble across all six time points tested (Figure 4.5; 

Supplementary Figures 4.S10–S13). 

A B 

Figure 4.4: (A) Schematic of the (D75*/CG) – (OMP/O2’) distance in the active–site of OMPDC. 

(B) Schematic of the (D70/OD2) – (OMP/OX1) distance in the active–site of OMPDC.  
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Comparison of the single–feature distributions of the simultaneous and stepwise ensemble 

for the (D75*/CG – OMP/O2’)’ distance revealed that the median of the simultaneous ensemble 

was nearly 1.6 Å shorter than the stepwise ensemble (Figure 4.5A). Separating the simultaneous 

distribution on the three protein systems (WT, S127A, and V155D) showed that the WT and 

S127A ensemble were nearly 1.6 Å shorter than the stepwise ensemble, but the V155D 

simultaneous ensemble was only 0.2 Å shorter than the stepwise ensemble (Figure 4.5B). The 

shorter distances between D75*’s carboxylate oxygen and the OMP 2’–hydroxyl oxygen implied 

the existence of a hydrogen bond between these atoms, which is thought to assist the binding of 

the substrate into the active site, as hypothesized in the literature [22, 25–27].  

  

Table 4: Coefficients for the (D75*/CG – OMP/O2’) and (D70/OD2 – OMP/OX1) machine 
learning features for the pairwise classifiers only. Coefficients provided are averaged across 
models trained on 10 randomized splits of the data. Full classifier information is provided in 
Supplemental Tables 1–6, including the cumulative model coefficients. Dashes indicate when 
the feature was not present in classifiers at other time points. The pair–feature model coefficients 
for both features were negative at the time points tested. 
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A B 

C D 

Figure 4.5: Distributions of model–selected features at time t = –20 fs. (A) The simultaneous (red) 
and stepwise (blue) distributions for the (D75*/CG – OMP/O2’) distance. The simultaneous IQR 
(25% and 75% quantile) spanned [4.8 Å, 6.0 Å], with median 5.0 Å and standard deviation of 0.75 Å. 
The stepwise ensemble IQR was [6.4 Å, 6.8 Å] with median at 6.6 Å and standard deviation of 0.42 
Å. (B) Distributions of (D75*/CG – OMP/O2’) distance, stratified on simultaneous ensemble WT 
(red), S127A (blue), and V155D (green) versus the stepwise ensemble (black). The WT IQR was [4.7 
Å, 5.1 Å] with median 4.9 Å and std. dev. 0.29 Å. The S127A ensemble was [4.7 Å, 5.0 Å] with 
median 4.8 Å and standard deviation 0.21 Å. The V155D ensemble was [6.2 Å, 6.6 Å] with median 
6.4 Å and standard deviation 0.40 Å. The stepwise ensemble was the same as in (A). (C) The 
simultaneous (red) and stepwise (blue) distributions for the (D70/OD2 – OMP/OX1) distance. The 
simultaneous IQR (25% and 75% quantile) spanned [3.6 Å, 4.5 Å], with median 3.9 Å and standard 
deviation of 0.65 Å. The stepwise ensemble IQR was [4.8 Å, 5.5 Å] with median at 5.1 Å and standard 
deviation of 0.53 Å. (D) Distributions of (D70/OD2 – OMP/OX1) distance, stratified on simultaneous 
ensemble WT (red), S127A (blue), and V155D (green) versus the stepwise ensemble (black). The WT 
IQR was [3.7 Å, 4.1 Å] with median 4.0 Å and std. dev. 0.31 Å. The S127A ensemble was [3.4 Å, 3.9 
Å] with median 3.7 Å and standard deviation 0.30 Å. The V155D ensemble was [4.6 Å, 5.2 Å] with 
median 4.9 Å and standard deviation 0.48 Å. The stepwise ensemble was the same as in (C). 
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Analysis of the distance between the hydroxyl proton (H2) and the closest carboxylate 

oxygen on D75* revealed that the simultaneous ensemble was nearly 1.6 Å closer than the stepwise 

ensemble, suggesting that the (D75*/CG – OMP/O2’) feature acted as a proxy for the hydrogen 

bond (Supplementary Figure 4.S14). Comparison of the simultaneous V155D ensemble versus the 

simultaneous WT and S127A ensemble suggested that V155D was either less capable or did not 

form a hydrogen bond due to the elongated distances exhibited by the V155D ensemble. This is 

further highlighted by the fact that the stepwise ensemble possessed slightly longer distances than 

the V155D simultaneous ensemble, and was primarily comprised of V155D trajectories.  

 Similarly, comparison of the simultaneous and stepwise ensemble (D70/CG – OMP/OX1) 

distance distributions revealed that the simultaneous ensemble median was nearly 1.2 Å shorter 

than the stepwise ensemble, suggesting closer proximity between D70 and the leaving carboxylate 

group. Comparison across the simultaneous distributions, stratified by protein system, revealed 

that the WT and S127A simultaneous distributions were 0.9 Å and 1.2 Å shorter than the V155D 

simultaneous ensemble, and that the V155D simultaneous ensemble was only 0.2 Å shorter than 

the stepwise ensemble. Closer distances would imply greater electrostatic stress between the two 

negatively charged carboxylate groups. This electrostatic stress is thought to be a large contributor 

toward reactivity due to ground–state destabilization [17, 18, 21]. 

These two features were linked to distortions of the planarity of the orotidyl ring, namely 

via the N1 improper angle (Figure 4.4, Supplementary Figure 4.S9, See Methods for absolute 

improper angle definition). Prior experimental studies characterized the orotidyl ring’s carboxylate 

motif bends out of plane, and that this distortion can assist the vinylic C6 carbanion to move in 

closer proximity to cationic residues like K72 [20–24]. Our simulations observed that the median 

distortion angle of the simultaneous ensemble was nearly 6.3 degrees more contorted than the 
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median angle of the stepwise ensemble, and that both ensembles were more distorted than the 

geometry optimized ground–state structure that had a distortion angle of 0.25 degrees (See 

Methods, Figure 4.6A). Similarly, the WT and S127A simultaneous ensembles were more likely 

to have larger distortions than the V155D simultaneous or stepwise ensemble (Figure 4.6B). This 

effect was also pronounced on the dihedrals C2–N1–C6–CX and C4–C5–C6–CX which reported 

on the orientation of the leaving carboxylate group of OMP (Supplementary Figures 4.S15 and 

16).  

 Stratifying the N1 improper angle as a function of these two features across both ensembles 

showed that shorter distances, for either feature, corresponded to greater angular distortion of the 

orotidyl ring (Figure 4.7). Shorter distances for the (D75*/CG – OMP/O2’) feature (4.0 – 4.7 Å) 

and (D70/OD2 – OMP/OX1) feature (2.4 – 3.5 Å) had median distortion angles of 15.4° and 16.2°, 

Figure 4.6: Distributions of the simultaneous and stepwise reactive pathway N1 absolute 
improper angle at 𝑡 = −20 fs. (A) The simultaneous distribution IQR (25% and 75% quantile 
respectively) was [7.9°, 20.1°] with median 14.5° and std. dev. of 8.2°. The stepwise ensemble 
had IQR [3.7°, 14.3°] with median 8.2° and std. dev. of 6.9°. (B) The distributions of absolute 
N1 improper angle, stratified on protein system for WT simultaneous, S127A simultaneous, and 
V155D simultaneous versus stepwise. The WT IQR was [15.4°, 25.7°] with median 20.2° and 
std.dev. of 7.5 °. The S127A IQR was [8.4°, 19.2°] with median 14.5° and std.dev. of 7.4°. The 
V155D ensemble IQR was [4.5°, 15.4°] with median 9.2° and std.dev. of 7°. The stepwise 
ensemble was the same as in (A). 

A B 
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Figure 4.7: N1 improper angle stratified on the two different model–selected features for all 
trajectories across the simultaneous and stepwise ensembles combined. (A) The N1 improper 
angle as a function of the (D75*/CG) – (OMP/O2’) distance revealed that close proximities (4.0 
– 4.7 Å) had a median distortion angle of 15.4°, whereas the largest distances (6.8 – 7.5 Å) had 
a median distortion angle of 8.7°. (B) The N1 improper angle as a function of (D70/OD2) – 
(OMP/OX1) distance was observed to have a median distortion angle of 16.2° for short distances 
(2.4 – 3.5 Å) and a median distortion angle of 7.1° for larger distances (5.5 – 6.7 Å).  

whereas the longer distances (6.8 – 7.5 Å and 5.5 – 6.7 Å respectively) possessed median angles 

nearly half the value, at 8.7° and 7.1° respectively.  
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 Taken together, this suggested the model–selected features were able to identify important 

“stand–in” features to signal important chemistry relevant to successful catalysis. The (D75*/CG 

– OMP/O2’) distance suggested that the hydrogen bond formed between D75* and the 2’–

hydroxyl of the ribophosphate group of OMP influenced substrate binding. Additionally, the 

(D70/OD2 – OMP/OX1) distance highlighted directly on ground–state destabilization by reporting 

on the proximity of two negatively charged groups within the active site. Both these features were 

observed to influence the planarity of the orotidyl ring prior to decarboxylation, as seen by 

considering the N1 improper angle as a function of stratified groups of these two features. 

 Further inspection of these features with regard to the specific protein distributions 

revealed that the WT and S127A ensemble were more effective at positioning the D75* and D70 

residues in closer proximity to the OMP substrate when compared to either the V155D 

simultaneous ensemble versus the stepwise ensemble. This may also explain why the WT and 

S127A reactive pathways were so similar, as opposed to the V155D which exhibited more 

diversity in its decarboxylation strategy. 
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4.5 Conclusion and future directions 
 

Enzyme active sites provide favorable conditions to allow for difficult reactions to occur. 

The following work investigated reactive pathways in decarboxylation performed by OMPDC and 

two catalytically hindered mutants: S127A and V155D. Prior analyses characterizing the 

energetics and dynamics of the reaction revealed that there were two reactive pathways 

distinguishable: a simultaneous and stepwise mechanism defined by the proximity of residue K72 

as the decarboxylation proceeded. This study explored the relevant geometric features that were 

able to predict between these mechanisms, and probed their influence on reactivity. 

Pair–feature classifiers across several time points, representing the system in the reactant 

basin up until committing 30 fs into crossing the barrier, achieved over 80% predictive 

performance for any time point. Interestingly, cumulative models did not outperform the pair–

feature model. Inspection of the classifiers revealed many features alluding to prior experimental 

and mechanistic details discussed in the literature, despite access to hundreds of varied features [2, 

3, 13–18, 23]. Two of these features were further discussed in the context of the chemical 

phenomena they highlighted. For both features, the (D75*/CG – OMP/O2’) distance and the 

(D70/OD2 – OMP/OX1) distance, the simultaneous ensemble exhibited shorter interactions than 

the stepwise ensemble. These features, respectively, pointed to a hydrogen bond formed by D75* 

and the 2’–hydroxyl of OMP, and to explicit ground–state destabilization from the proximity of 

D70’s carboxylate group with OMP’s carboxylate group. Moreover, both these features were 

associated to increased distortion of the OMP ring planarity for shorter distances, suggesting the 

model was capable of identifying features that represented crucial chemistry important for 

catalysis. Stratifying the ensembles by protein system revealed that the WT and S127A ensembles 

were more likely to have shorter distances for both feature distributions than the simultaneous 
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V155D ensemble, or the stepwise ensemble (mostly comprised of V155D), underscoring how 

V155D may hinder ground–state destabilization. 

A natural extension of this work is to provide an electronic description of how these 

features influence reactivity. While the N1 improper angle provides a view for how the π–network 

of the orotidyl ring is disrupted, ab initio quantum mechanical methods could quantify the degree 

of distortion of the π–character of the ring [28–31]. Despite possessing lower distortion angles, the 

stepwise ensemble is still capable of facilitating decarboxylation of OMPDC, suggesting there are 

other catalytic strategies to assist reactivity. Characterizing the underlying electronic state for the 

WT, S127A, and V155D could also highlight if there are fundamental differences between the two 

reactive pathways, and how the charged residue introduced by the V155D mutant interferes with 

the favorable conditions of the WT.  

Additional inquiry into how models predict reactivity within each protein system, as 

opposed to the mechanism, could also reveal differences across how these systems cross the 

reaction barrier. Path sampling methods can generate simulations that attempt to cross the barrier 

but fail to complete the reaction (deemed “non–reactive”) [8]. Comparing the reactive ensembles 

studied in this work to non–reactive ensembles generated for the WT and mutant systems can show 

how features promote reactivity, and what criteria are required in order to cross the reaction barrier 

successfully. 
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4.7 Supplementary Information 
 

 

Supplementary Figure 4.S1: Additional time–aligned trajectories of the decarboxylation 

coordinate from the (A) S127A ensemble and (B) V155D ensemble. The time 𝑡 = 0 fs 

corresponded to the last time a simulation was in the reactant basin before committing to crossing 

the reaction barrier. All trajectories across the three protein systems successfully decarboxylated 

the OMP substrate. 
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Supplementary Figure 4.S2: Simulations of the three protein systems as a function of two order 

parameters, the decarboxylation coordinate (C6–CX) and the proton–transfer coordinate 

(K72/NZ–K72/H – OMP/C6–K72/H). Each time point in the simulation is represented as a single 

marker, for all time points across the simulation. Simultaneous trajectories are colored red, and 

stepwise trajectories are indicated in blue. (A) WT decarboxylation pathway; most trajectories 

within the WT ensemble decarboxylated in a simultaneous manner. (B) S127A decarboxylation 

pathway; most trajectories in the S127A ensemble also decarboxylated with the simultaneous 

mechanism. (C) V155D decarboxylation pathway; by far, the V155D ensemble had the most 

stepwise trajectories compared to the other two mutants. The V155D mutant decarboxylated in 

both the simultaneous manner, akin to WT and S127A, but also in the stepwise pathway.  
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Supplementary Figure 4.S3: Schematic of top performing feature pairs for classifiers from 

timepoint 𝑡 = −20 fs. The features are listed in the order indicated from Table 2. All features were 

distances. 
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Supplementary Figure 4.S4: Schematic of top performing feature pairs for classifiers from 

timepoint 𝑡 = −10 fs. The features are listed in the order indicated from Table 2. All features were 

distances. 
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Supplementary Figure 4.S5: Schematic of top performing feature pairs for classifiers from 

timepoint 𝑡 = 0 fs. The features are listed in the order indicated from Table 2. All features were 

distances. 
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Supplementary Figure 4.S6:  Schematic of top performing feature pairs for classifiers from 

timepoint 𝑡 = 10 fs. The features are listed in the order indicated from Table 2. All features were 

distances. 
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Supplementary Figure 4.S7: Schematic of top performing feature pairs for classifiers from 

timepoint 𝑡 = 20 fs. The features are listed in the order indicated from Table 2. Black features 

indicate distances and the red feature is an angle. 
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Supplementary Figure 4.S8: Schematic of top performing feature pairs for classifiers from 

timepoint 𝑡 = 30 fs. The features are listed in the order indicated from Table 2. Black features 

indicate distances and the red feature is an angle. 
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Supplementary Table 1: Feature coefficients for the top 5 pairwise models and the cumulative 

model, for time 𝑡 = −20 fs. The order of the coefficients matches the order indicated by the 

Feature ID in Table 2 of the text, by order of appearance. The term 𝛽� refers to the value of the 

bias. 

 

 
Supplementary Table 2: Feature coefficients for the top 5 pairwise models and the cumulative 

model, for time 𝑡 = −10 fs. The order of the coefficients matches the order indicated by the 

Feature ID in Table 2 of the text, by order of appearance. The term 𝛽� refers to the value of the 

bias. 

  

t=–20 fs β� β$ βZ β? β� β� βR βY β� β� β$� 

Set 1 0.43 –1.32 1.25 – – – – – – – – 

Set 2 0.23 – – –0.61 2.11 – – – – – – 

Set 3 0.33 – – – – 1.43 –1.11 – – – – 

Set 4 0.49 – – – – – – 1.65 –0.92 – – 

Set 5 0.39 – – – – – – – – –1.94 –0.62 

Cumulative 0.55 –1.0 0.69 –0.41 –0.37 0.98 –0.48 0.18 –0.21 0.35 0.03 

t=–10 fs β� β$ βZ β? β� β� βR βY β� β� β$� 

Set 1 0.35 1.39 –1.20 – – – – – – – – 

Set 2 0.49 – – –1.39 1.22 – – – – – – 

Set 3 0.50 – – – – 1.63 –0.92 – – – – 

Set 4 0.40 – – – – – – 1.08 –1.76 – – 

Set 5 0.29 – – – – – – – – 1.25 –1.10 

Cumulative 0.61 1.98 –1.33 –1.11 1.07 –0.22 –0.32 –0.12 0.35 –1.67 0.42 
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Supplementary Table 3: Feature coefficients for the top 5 pairwise models and the cumulative 

model, for time 𝑡 = 0 fs. The order of the coefficients matches the order indicated by the Feature 

ID in Table 2 of the text, by order of appearance. The term 𝛽� refers to the value of the bias. 

 

 

 
Supplementary Table 4: Feature coefficients for the top 5 pairwise models and the cumulative 

model, for time 𝑡 = 10 fs. The order of the coefficients matches the order indicated by the Feature 

ID in Table 2 of the text, by order of appearance. The term 𝛽� refers to the value of the bias. 

 
 

t= 0 fs β� β$ βZ β? β� β� βR βY β� β� β$� 

Set 1 0.31 –0.85 1.66 – – – – – – – – 

Set 2 0.35 – – 1.29 –1.29 – – – – – – 

Set 3 0.40 – – – – 1.0 –1.84 – – – – 

Set 4 0.35 – – – – – – –1.30 1.20 – – 

Set 5 0.34 – – – – – –   0.77 –1.90 

Cumulative 0.59 –0.25 0.98 2.04 –1.45 0.35 0.78 0.06 –1.59 0.14 –0.92 

t=10 fs β� β$ βZ β? β� β� βR βY β� β� β$� 

Set 1 0.31 –0.80 1.69 – – – – – – – – 

Set 2 0.44 – – –1.86 1.07 – – – – – – 

Set 3 0.46 – – – – –1.38 1.15 – – – – 

Set 4 0.33 – – – – – – 1.15 –1.37 – – 

Set 5 0.42 – – – – – – – – 1.15 –1.29 

Cumulative 0.57 –0.07 1.07 –1.37 0.24 –1.19 0.03 0.72 1.35 –0.03 0.33 
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Supplementary Table 5: Feature coefficients for the top 5 pairwise models and the cumulative 

model, for time 𝑡 = 20 fs. The order of the coefficients matches the order indicated by the Feature 

ID in Table 2 of the text, by order of appearance. The term 𝛽� refers to the value of the bias. 

 

 

Supplementary Table 6: Feature coefficients for the top 5 pairwise models and the cumulative 

model, for time 𝑡 = 30 fs. The order of the coefficients matches the order indicated by the Feature 

ID in Table 2 of the text, by order of appearance. The term 𝛽� refers to the value of the bias. 

  

t= 20 fs β� β$ βZ β? β� β� βR βY β� β� β$� 

Set 1 0.49 –1.14 1.54 – – – – – – – – 

Set 2 0.41 – – 0.90 –1.99 – – – – – – 

Set 3 0.54 – – – – –0.79 2.06 – – – – 

Set 4 0.14 – – – – – – –2.24 0.42 – – 

Set 5 0.40 – – – – – – – – –1.55 1.07 

Cumulative 0.56 –0.35 0.68 0.60 –0.47 –0.39 –0.25 0.43 0.44 –1.11 0.36 

t=30 fs β� β$ βZ β? β� β� βR βY β� β� β$� 

Set 1 0.15 –2.30 0.47 – – – – – – – – 

Set 2 0.32 – – 1.48 –0.99 – – – – – – 

Set 3 0.40 – – – – 0.76 –2.09 – – – – 

Set 4 0.65 – – – – – – 2.07 –0.81 – – 

Set 5 0.28 – – – – – – – – –0.92 2.31 

Cumulative 0.51 –0.03 0.43 0.23 0.10 0.30 –1.18 –0.01 –0.69 –0.45 0.84 
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Supplementary Table 7: The 23 unique features identified across all six time points for the 

simultaneous/stepwise classification task, labeled by feature type.  

  

(ASP 70 OD2)-(OMP 1 OX1) D70-substrate
(OMP 1 OX2)-(OMP 1 O2') Intra-substrate
(LYS 42 NZ)-(LYS 72 CE) Catalytic Tetrad
(OMP 1 OX1)-(OMP 1 O2') Intra-substrate
(OMP 1 CX)-(OMP 1 O2') Intra-substrate

(ASP 70 OD2)-(OMP 1 C1') D70-substrate
(ASP 70 OD2)-(OMP 1 C6) D70-substrate
(ASP 75 CB)-(OMP 1 O2') D75-substrate
(LYS 72 CE)-(ASP 75 CB) Catalytic Tetrad
(ASP 70 CG)-(OMP 1 OX1) D70-substrate
(ASP 70 OD2)-(OMP 1 CX) D70-substrate
(OMP 1 C4')-(OMP 1 O2') Intra-substrate
(OMP 1 O4')-(OMP 1 PA) Intra-substrate

(LYS 72 HZ3)-(LYS 72 NZ)-(OMP 1 C6) K72-substrate
(ASP 75 CG)-(OMP 1 O2') D75-substrate

(LYS 72 CE)-(ASP 75 OD1) Catalytic Tetrad
(LYS 72 CE)-(OMP 1 O2') K72-substrate

(ASP 70 OD1)-(OMP 1 O2') D70-substrate
(ASP 75 OD1)-(OMP 1 C1') D75-substrate
(LYS 72 NZ)-(OMP 1 OX1) K72-substrate
(ASP 70 CG)-(OMP 1 O2') D70-substrate
(LYS 72 CE)-(OMP 1 C2') K72-substrate
(LYS 72 CE)-(OMP 1 N1) K72-substrate

Features Feature Type
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Supplementary Figure 4.S9: (A) An example of the orotidyl ring via RHF/6–31G* optimization. 

The C6–CX angle lies planar to the orotidyl ring. (B) An example of the orotidyl ring for a WT 

simultaneous trajectory at time 𝑡 = −20 fs. (C) Example of the orotidyl ring for a V155D 

simultaneous trajectory at time 𝑡 = −20 fs. (D) A schematic of the orotidyl ring with labeled 

atoms. (E) Example of the orotidyl ring for a S127A simultaneous trajectory at time 𝑡 = −20 fs. 

(F) Example of an orotidyl ring in a stepwise (V155D) trajectory at time 𝑡 = −20 fs. 
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Supplementary Figure 4.S10: Simultaneous (red) and stepwise (blue) distributions of the (D75*–

CG) – (OMP–O2’) distance across the six time points tested. (A) Distributions for time t = –20 fs 

(B) t = –10 fs (C) t = 0 fs (D) t = 10 fs (E) t = 20 fs (F) t = 30 fs. For all time points, the simultaneous 

ensemble distribution was shifted nearly 2 angstroms shorter than the stepwise ensemble. Marginal 

overlap existed between the simultaneous distribution and the stepwise distribution between 5.5 – 

7.5 Å. 
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Supplementary Figure 4.S11: Distributions of the (D75*–CG) – (OMP–O2’) for the WT, S127A, 

V155D simultaneous ensembles versus the total stepwise ensemble (indicated in the red, blue, 

green, and black lines respectively). (A) Distributions for time t = –20 fs (B) t = –10 fs (C) t = 0 fs 

(D) t = 10 fs (E) t = 20 fs (F) t = 30 fs. The WT and S127A ensemble distributions possessed 

virtually no overlap with the V155D and stepwise ensemble and were roughly 2.0 Å close for all 

time points, suggesting the D75*/OMP O2’ ribose interaction was stronger in the WT/S127A 

ensemble. The V155D simultaneous ensemble is slightly shifted toward the WT/S127A ensemble 

compared to the stepwise ensemble. 
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Supplementary Figure 4.S12: Simultaneous (red) and stepwise (blue) distributions of the (D70 

– OD2) – (OMP – OX1) distance across the six time points tested. (A) Distributions for time t = –

20 fs (B) t = –10 fs (C) t = 0 fs (D) t = 10 fs (E) t = 20 fs (F) t = 30 fs. For all time points, there 

was small overlap between the distributions near the 4.0 – 6.0 Å. 
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Supplementary Figure 4.S13: Distributions of the (D70 – OD2) – (OMP – OX1) for the WT, 

S127A, V155D simultaneous ensembles versus the total stepwise ensemble (indicated in the red, 

blue, green, and black lines respectively). (A) Distributions for time t = –20 fs (B) t = –10 fs (C) t 

= 0 fs (D) t = 10 fs (E) t = 20 fs (F) t = 30 fs. Small overlap existed across time between 4.0 – 5.0 

Å. The WT/S127A ensembles formed shorter contact between D70’s carboxylate oxygen and the 

leaving group’s, OMP, carboxylate oxygen. The simultaneous V155D ensemble distribution 

formed shorter contacts, with a distribution shifted left, than the stepwise ensemble.  
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Supplementary Figure 4.S14: Distributions of the closest oxygen of D75* with respect to the 2’ 

hydroxyl proton of the ribose ring on OMP, reporting on a potential hydrogen bond between D75* 

and the  2’ hydroxyl group of OMP [33]. (A) Simultaneous (red) and stepwise (ensemble) 

distributions at time t = – 20 fs; the simultaneous IQR (at the 25% and 75% quantile respectively) 

was [3.5 Å, 3.8 Å] with median 3.6 Å and standard deviation 0.75 Å. The stepwise ensemble IQR 

was [5.0 Å, 5.5 Å] with median 5.2 Å and standard deviation 0.45 Å. (B) Distributions stratified 

on the simultaneous WT, S127A, and V155D ensembles versus the stepwise ensemble. The WT 

IQR is [3.1 Å, 3.7 Å] with median 3.4 Å and std. dev. 0.43 Å. The S127A IQR was [3.5 Å, 3.9 Å] 

with median 3.7 Å and std. dev. 0.3 Å. The V155D IQR was [4.8 Å, 5.4 Å] with median 5.0 Å and 

std. dev. 0.43 Å. The stepwise ensemble was the same as (A).  
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Supplementary Figure 4.S15: Distributions of the C2–N1–C6–CX angle between the reactive 

pathways for 𝑡 = −20 fs. (A) Distribution comparison for the simultaneous and stepwise 

pathways. The simultaneous distribution IQR (in order of the 25%, 50%, and 75% quantile) is 

[13.2, 23.9, 29.7] degrees with std. dev 10.6 degrees and the stepwise distribution IQR is [3.2, 7.2, 

12.3] degrees with std. dev 7.1 degrees. (B) Distribution comparison stratified on the WT, S127A, 

and V155D simultaneous ensembles versus the stepwise ensemble. The WT IQR is [22.3, 26.5, 

29.9] degrees with std. dev 5.7 degrees; the S127A IQR is [23.2, 27.7, 32.3] degrees with std. dev. 

6.4 degrees; the V155D IQR is [3.4, 7.3, 11.7] degrees with std. dev 6.0 degrees; the stepwise 

ensemble IQR is [3.2, 7.2, 12.3] degrees with std. dev of 7.1 degrees.  
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Supplementary Figure 4.S16: Distributions of the C4–C5–C6–CX angle between the reactive 

pathways for 𝑡 = −20 fs. (A) Distribution comparison for the simultaneous and stepwise 

pathways. The simultaneous distribution IQR (in order of the 25%, 50%, and 75% quantile) is [7.5, 

13.3, 18.8] degrees with std. dev 7.6 degrees and the stepwise distribution IQR is [3.3, 6.6, 12.0] 

degrees with std. dev 8.2 degrees. (B) Distribution comparison stratified on the WT, S127A, and 

V155D simultaneous ensembles versus the stepwise ensemble. The WT IQR is [15, 19.5, 24.2] 

degrees with std. dev 7.0 degrees; the S127A IQR is [9.1, 14.0, 18.7] degrees with std. dev. 6.6 

degrees; the V155D IQR is [3.5, 7.2, 11.9] degrees; the stepwise distribution IQR is [3.3, 6.6, 12.0] 

degrees with std. dev 8.2 degrees 
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Supplementary Figure 4.S17:  PyMOL structure of OMPDC active–site, including residues K42, 

D70, K72, D75, S127, V155, Q185, R203.  
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5.1 Thesis Overview 
 
This thesis investigated the atomistic drivers of reactivity using novel methods and 

applications of computational tools. Enzymes are capable of performing difficult reactions at 

ambient conditions; thus, harnessing their exquisite specificity and selectivity would unlock 

massive potential for customized chemical reactions [1–3]. As illustrated in earlier chapters, 

enzymes leverage a variety of catalytic strategies in order to facilitate complex chemistries [4–13]. 

The theoretical approaches and methods applied in this work focused on harnessing the richer 

atomic details required for a more complete picture of enzyme catalysis.  

Chapter 2 presented a theoretical study of the experimentally characterized enzyme 

orotidine 5´-monophosphate decarboxylase (OMPDC) and two catalytically impaired mutants 

[14]. This enzyme performs a remarkable 1017–fold rate enhancement of the decarboxylation of 

its substrate, without the use of co–factors to assist its catalytic proficiency [15]. A combination 

of potential-of-mean-force (PMF) and transition path sampling (TPS) methods were used to 

characterize the energetic landscape of the decarboxylation and to collect full dynamic trajectories 

of the reactions, respectively; both methods provided relative rate constant estimates that matched 

empirical evidence [14, 16, 17]. PMFs of the wildtype (WT) and mutant enzymes revealed 

differences in the energetic landscape of reactivity that suggested two potential catalytic strategies 

toward decarboxylation: a simultaneous strategy where decarboxylation is coordinated with a 

shortening distance between a neighboring residue, K72, and a stepwise strategy that is 

independent of K72’s position. Dynamic paths, constructed from path sampling ensembles, 

revealed that the WT and S127A mutant preferentially decarboxylated using the simultaneous 

pathway, but the V155D mutant decarboxylated both simultaneously and in a stepwise manner. 
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Our work demonstrated the rich detail path sampling ensembles can offer in studies of kinetic 

processes. 

The work of Chapter 2 primarily compared the WT to two mutants, S127A and V155D. 

These mutants hinder the catalytic strategies employed by OMPDC (transition-state stabilization 

“TSS” and ground-state destabilization “GSD”, respectively) [4–7, 14]. Extending this work to 

include a broader panel of empirically-characterized mutants would offer refined details into the 

reactive pathways OMPDC leverages to decarboxylate the substrate. Several studies have 

considered single and/or double mutants to probe the effect of residues D20, K42, D70, K72, S127, 

Q185, R203, and hydrophobic–pocket residues I96, L123, and V155 [14, 26–31]. A larger panel 

of mutants could underscore whether certain mechanisms are preferentially adopted when different 

catalytic mechanisms are affected, or if there exists more pathways than currently considered.  

In the first part of Chapter 3, quantum mechanical techniques explored the electronic 

underpinnings of the methyl transfer reaction performed by ketol-acid reductoisomerase (KARI). 

The study investigates a spinach variant that facilitates isomerization with two magnesium ion co–

factors and NADPH [18–20]. Natural Bonding Orbital analyses of two ensembles of simulations, 

one that successfully catalyzes methyl transfer and another that failed to cross the reaction barrier, 

revealed a three-center-two-electron bond (3C) transition–state, and a catalytic strategy where 

carbonyl formation and lone-pair formation with the adjacent oxygens on the substrate occurred 

simultaneously.  

In the second part of Chapter 3, machine learning methods showed that a subset of 10 

geometric or 6 electronic features predict reactivity with high performance. Dynamic analyses 

revealed that the geometric feature, E319/OE1–C5 distance, and electronic feature, the C4–C5 

bond index, were associated with the torsional orientation of the methyl prior to exiting the reactant 
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basin. Reactive simulations’ methyl groups were more likely to be eclipsed than in the non-reactive 

simulations; this eclipsed orientation was shown to be correlated with both destabilized C4–C5 

breaking bond orbital energies and stabilized 3C bond orbital energies during the course of the 

reaction. Similarly, reactive simulations with eclipsed orientations had larger E319–methyl 

distance and smaller C4–C5 bond index populations. Lastly, we extended this work to identify 

subsets of the top 10 geometric features in predicting the 6 model-selected electronic features, as 

the electronic features spanned different components of the characterized mechanism. We found 

that small subsets of geometric features were capable of reporting on the electronic features with 

similar predictive performance to the entire cumulative geometric classifier. 

A limitation of this work is the narrow regime of time used to predict reactivity; while these 

features were identified in the reactant basin, identifying conformations over longer periods of 

time that improve reactivity can provide insight into the potential design strategies. Possible 

extensions to investigate this hypothesis include testing timepoints further back in time to see how 

feature selection could diverge as the system crosses the barrier. An additional option, leveraging 

the power of path sampling, is to condition the accepted ensemble to only accept simulations that 

are predicted as ‘reactive’ for some fraction of the time the system spent in the reactant basin. This 

approach modifies prior work by conditioning on multiple time points as opposed to one, which 

alone was shown to remarkably improve the rate [25]. Alternative modeling approaches could also 

consider features that are temporally linked; viable models with these properties include Hidden 

Markov Models (HMMs) or Recurrent Neural Networks (RNNs) [22–24]. 

While few features may be required to identify reactivity, it does not exclude the possibility 

that multiple catalytic strategies exist. Prior work has identified that even within the same set of 

features, clusters may exist that employ these features differentially [25]. A follow–up study could 
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consider what minimal subset of conformational changes to the non-reactive ensemble could 

permit successful barrier crossing, demonstrating how subtleties in dynamics may encourage 

reactivity. Given there are many non-reactive trajectories that cross relatively far up the barrier, an 

appropriate perturbation (e.g., if possible, changing the orientation of the methyl prior to reacting) 

on high–energy states that is then integrated forwards and/or backwards in time could reveal how 

dynamic catalytic strategies influence reactivity. 

Finally, in Chapter 4, we synthesized the methodologies and findings of the prior chapters 

to study geometric descriptors that were indicative of the reactive pathways of OMPDC. Across 

three protein systems (WT, S127A, and V155D), we posed a classification problem, leveraging 

machine learning to select up to 5 predictive pairs of features that distinguished between the 

pathways from times starting in the reactant basin until 30 fs after the reaction had proceeded. 

Model-selected features, despite no prior knowledge of chemical mechanism, were able to identify 

several sets of catalytically related geometries involving residues in direct contact with the 

orotidine 5´-monophosphate (OMP) substrate. In particular, two features signaled a weakened 

hydrogen bond between D75* and the 2’-hydroxyl of OMP, and diminished repulsion by extended 

distances between the carboxylate of D70, a ground-state destabilizing residue, and OMP’s 

carboxylate group. Both structural features were linked to distortions in the planarity of the orotidyl 

ring, a feature not explicitly provided to the models, and whose distortions are thought to be 

beneficial toward reactivity [32–34].  

An interesting study would contrast how reactivity differs between these protein systems 

and whether overlap between the features that predict pathway also influence the ability to cross 

the reaction barrier. New ensembles of “non-reactive” simulations that attempt to catalyze 

decarboxylation but fail to do so can be constructed by path sampling methods for each protein 
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system. These ensembles can be then used to compare the feature distributions that are most 

relevant to catalysis, versus those that distinguish between decarboxylation pathways. It may also 

be possible to train classifiers on the wild type (WT) and employ them on the mutant systems; as 

the WT is the most catalytically proficient enzyme across the three proteins, predictive 

performance of the reactive conformations on mutants may reveal whether the mutants use the 

same conformations as WT, just less effectively, or if there are different ones altogether [14]. 

A noble goal of theoretical work is to empower and offer insight for experimental design. 

Given the increasing progress in interpretability within machine learning, and its powerful capacity 

to learn subtle correlates within data, dissecting the nuances within path sampling ensembles will 

become more tractable and can be used as a generalized tool toward enzyme catalysis [35–39]. 

With this larger perspective into the details of enzyme catalysis, we can probe refined details of 

mechanism, and construct models that identify variants that perform desired reactions.  
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