
Certified Control in Autonomous Vehicles with
Visual Lane Finding and LiDAR

by

Jeff Chow

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2021

© Massachusetts Institute of Technology 2021. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

Jan 15, 2021

Certified by. .
Daniel Jackson

Professor, Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

Certified Control in Autonomous Vehicles with Visual Lane

Finding and LiDAR

by

Jeff Chow

Submitted to the Department of Electrical Engineering and Computer Science
on Jan 15, 2021, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Certified Control is a safety architecture for autonomous vehicles in which the con-
troller must provide evidence to a runtime monitor that the actions it takes are safe.
If the monitor deems the current state of the vehicle as unsafe, it intervenes by sig-
nalling the vehicle actuators to brake. In this work, we demonstrate how Certified
Control can be used to increase safety through two implementations: one involving
visual lane-finding and one involving LiDAR. Through experiments utilizing real driv-
ing data, a robot racecar, and simulation software, we show examples in which these
runtime monitors detect and mitigate unsafe scenarios.

Thesis Supervisor: Daniel Jackson
Title: Professor, Electrical Engineering and Computer Science

3

4

Acknowledgments

I would like to thank my advisor Daniel Jackson for his guidance and support through-

out the past two years. I’m thankful for participating in a project so closely aligned

with my interests, for being given the opportunity to present our group’s work, and

for learning so much under his mentorship.

It was a pleasure working with members of the Software Design Group for this

project. Special thanks to Valerie Richmond for her encouragement and help with ex-

periments (even after graduating), Mike Wang for help with the racecar and CARLA,

and Uriel Guajardo for his assistance in designing and executing experiments.

Finally, I would not have gotten here without the support of my friends and family.

Thank you Roy, Jeana, Martin, Kristen, and Andy T. for your friendship, especially

in the past several months. Thank you Mom, Jesse, and Andy M. for your love and

for always being there for me.

5

6

Contents

1 Introduction 13

1.1 Motivation . 13

1.1.1 The problem of safety . 13

1.1.2 An alternative to testing . 14

1.1.3 The Cost of Verification . 15

1.1.4 Small trusted bases . 16

1.1.5 Runtime monitors and safety controllers 16

1.1.6 The problem of perception in autonomous cars 17

1.1.7 Desiderata for a runtime monitor: choose two 18

1.2 Certified Control: A New Approach 19

1.2.1 A LiDAR-based Implementation of Certified Control 21

1.3 Related Work . 23

1.4 Contributions . 25

2 Certified Control with Vision 27

2.1 Design . 27

2.1.1 Controller . 28

2.1.2 Monitor . 28

2.2 Experiments . 33

2.2.1 Openpilot Implementation . 33

2.2.2 Racecar Implementation . 35

2.3 Evaluation . 38

2.4 Limitations . 39

7

2.4.1 Using Visual Data . 39

2.4.2 Obstructed/Unclear Lane Markings 39

2.4.3 Lack of Time-Domain Awareness 41

3 Combining Vision with LiDAR 43

3.1 Motivation . 43

3.2 Design . 44

3.3 Experiment . 46

3.4 Evaluation . 47

4 Enhancing the LiDAR Monitor 49

4.1 Design . 49

4.1.1 Case 1: Objects Don’t Move Backwards 50

4.1.2 Case 2: Objects Move Backwards 51

4.2 Implementation . 53

4.3 Experiments . 54

4.4 Limitations and Future Work . 55

5 Strengthening Monitor Security 59

5.1 Threat Model . 59

5.2 Design . 61

5.2.1 Sensor . 62

5.2.2 Controller . 62

5.2.3 Monitor . 63

5.2.4 Actuator . 63

5.3 Implementation . 63

5.4 Experiments and Results . 64

5.5 Future Work . 65

6 Conclusions and Future Work 67

6.1 Results and Conclusions . 67

6.2 Future Work . 68

8

6.2.1 Increased Testing . 68

6.2.2 Addressing Complicated Scenarios 69

6.2.3 Keeping Up-to-date with CARLA 69

6.3 Final Thoughts . 70

A Experiment with Adverse Lighting 71

B Collision Analysis 75

9

10

List of Figures

1-1 A conventional runtime monitor (left) and certified control monitor

(right). The trusted base is shown in gray. 21

2-1 Measuring distance between the lane lines is more accurate when mea-

suring across the normals of the lines. 30

2-2 The steps of the conformance test. 31

2-3 An example of a lane-detection failure detected by the monitor. The

green lines represent the proposed lane lines. 34

2-4 The lane-lines looks plausible from the camera’s view, but further away,

the lines are not parallel; this can more easily been seen from the bird’s-

eye view. 35

2-5 Additional examples of the vision monitor working with openpilot . . 36

2-6 The setup of the racecar with blue tape representing lane lines. . . . 37

2-7 The monitor correctly rejects lane lines when the controller proposes

incorrect lane lines due to the additional blue tape. 38

2-8 Comparison of code sizes for the monitor vs. certificate generation

within the controller. Only the racecar code is included; the openpilot

version uses a complex neural network. 38

2-9 A frame that caused the conformance test to fail due to the faded

right-hand lane line. 40

11

3-1 An image taken from dashcam footage in which a car using Tesla’s

autopilot almost ran into a concrete barrier. The malfunction was

presumably caused by the perception system mistaking the reflection

along the barrier for a lane line. 44

3-2 Our racecar setup, with the camera mounted directly above the LiDAR

scanner. 45

3-3 The lines look plausible from a 2D perspective, but the right line is not

on the ground. The red dots on the lines in (a) are the points sampled

along the line that lie at the same angles as the LiDAR scanner rows. 46

4-1 A simulation of the Uber crash in Tempe. 56

5-1 Our system design using Docker containers for isolation and bridge

networks for communication between components 61

A-1 A dashcam image with the road painted light-grey. 71

A-2 The monitor fails to confirm the lane lines given the adverse lighting.

Both the left and right lane lines do not pass the conformance test. . 72

A-3 The monitor correctly confirms the location of the lane lines despite

the adverse lighting. 73

B-1 A graph of a configuration where the ego vehicle and OIQ collide. The

delay in the braking for the ego vehicle is shown as 𝜌. Analyzing both

functions separately could lead one to believe there was no collision

since the final position of the OIQ is in front of the ego vehicle. How-

ever, the ego vehicle has a higher deceleration, causing it to overtake

the OIQ, and later fall behind it. 76

12

Chapter 1

Introduction

1.1 Motivation

If autonomous vehicles are to become widespread, it will be necessary not only to

ensure a high level of safety but also to justify our confidence that such a level has been

achieved. More traditional methods of ensuring confidence such as statistical testing

and formal verification of software are either not comprehensive enough to clearly

establish safety or would require a vast amount of resources to become comprehensive.

This motivates the idea of a small trusted base, a piece of software that can make

run-time checks to provide run-time safety assurances. This trusted base must be

simple enough to be verifiable, but must also have sufficient information to ensure

safety even in a system as complicated as an autonomous vehicle.

1.1.1 The problem of safety

The problem of safety for self-driving cars has two distinct aspects. First is the reality

of numerous accidents, many fatal, either involving fully autonomous cars—such as

the Uber that killed a pedestrian in Tempe, Arizona [1]—or cars with autonomous

modes—such as the Tesla models, which have spawned a rash of social media post-

ings in which owners have demonstrated the propensity of their own cars to repeat

mistakes that had resulted in fatal accidents. The metric of “miles between disengage-

13

ments,” made public for many companies by the California DMV [2], has revealed the

troublingly small distance that autonomous cars are apparently able to travel without

human intervention. Even if the disengagement metric is crude and includes disen-

gagements that are not safety-related [3], the evidence suggests that the technology

still has far to go.

Second, and distinct from the actual level of safety achieved, is the question of

confidence. Our society’s willingness to adopt any new technology relies on our con-

fidence that catastrophic failures are unlikely. But, even for the designs with the

best records of safety to date, the number of miles traveled falls far short of the

distance that would be required to provide statistical confidence of a failure rate

that matches (or improves on) the failure rate of an unimpaired human driver. Even

though Waymo, for example, claims to have covered 20 million miles—a truly impres-

sive achievement—this still pales in comparison to the 275 million miles that would

have to be driven for a 95% confidence that fully autonomous vehicles have a fatality

rate lower than a human-driven car (one in 100 million miles) [4].

1.1.2 An alternative to testing

Statistical testing is the gold standard for quality control for many products (such as

pharmaceuticals) because it is independent of the process of design and development.

This independence is also its greatest weakness, because it denies the designer the

opportunity to use the structure of the artifact to bolster the safety claim, and at the

same time fails to focus testing on the weakest points of the design, thus reducing the

potency of testing for establishing near-zero likelihood of catastrophic outcomes.

One alternative to statistical testing is to construct a “safety case:” an argument

for safety based on the structure of the design [5]. The quality of the argument and the

extent to which experts are convinced then becomes the measure of confidence. This

approach lacks the scientific basis of statistical testing, but is widely accepted in all

areas of engineering, especially when the goal is to prevent catastrophe rather than a

wider range of routine failures. For example, confidence that a new skyscraper will not

fall down relies not on testing (since each design is unique, and non-destructive tests

14

reveal little) but on analytical arguments for stability and resilience in the presence

of anticipated forces. In the UK, the use of safety cases is mandated by a government

standard [6] for critical systems such as nuclear power plants.

In software too, there is growing interest in safety cases (or, more generally, as-

surance or dependability cases) [7]. For a cyber-physical system, the safety case is

an argument that a machine, in the context of its environment, meets certain critical

requirements. This argument is a chain of many links, including: the specification

of the software that controls the machine, the physical properties of the environment

(including peripheral devices such as sensors and actuators that mediate between the

machine and the environment), and assumptions about the behavior of human users

and operators. Each link in the chain needs its own justification, and together they

must imply the requirements. Ideally, the justification takes the form of a mathe-

matical proof: in the case of software, for example, a verification proof that the code

meets the specification. But some links will not be amenable to mathematical rea-

soning: properties of the environment, and of physical peripherals, for example, must

be formulated and justified by expert inspection.

1.1.3 The Cost of Verification

For software-intensive systems, the software itself can become a problematic link in

the chain. Complex systems require complex software, and that inevitably leads to

subtle bugs. Because the state space of a software system is so large, statistical testing

can only cover a tiny portion of the space, and thus cannot provide confidence in its

correctness. So for high confidence, verification seems to be the only option.

Unfortunately, verification is prohibitively expensive. Even for software produced

under a very rigorous process that does not involve verification, the cost tends to

be orders of magnitude higher than for conventional software development. NASA’s

flight software, for example, has cost over $1,000 per line of code, where conventional

software might cost $10 to $50 per line [8]. Verifying a large codebase is a Herculean

task. It may not be impossible, as demonstrated by the success of recent projects to

verify an entire operating system kernel or file system stack. But it typically requires

15

enormous manual effort. SEL4, a verified microkernel, for example, comprised about

10,000 lines of code, but required about 200,000 lines of hand-authored proof, whose

production took about 25-30 person years of work [9].

1.1.4 Small trusted bases

One way to alleviate the cost of verification is to design the software system so that

it has a small trusted base. The trusted base is the portion of the code on which

the critical safety properties depend; any part of the system outside the trusted base

can fail without compromising safety. This idea is exploited, for example, in secure

transmission protocols that employ encryption (and is generalized in the “end-to-end

principle” [10]). So long as the encryption and decryption algorithms that execute at

the endpoints are correct, one can be sure that message contents are not corrupted or

leaked; the network components that handle the actual transmission, in particular,

need not be secure, because any component that lacks access to the appropriate

cryptographic keys cannot expose the contents of messages or modify them without

the alteration being detectable.

Of course, the claim that some subset of the components of a system form a trusted

base—really that the other components fall outside the trusted base—must itself be

justified in the safety case. It must be shown not only that the properties established

by the trusted base are sufficient to ensure the desired end-to-end safety properties,

but also that the trusted base is immune to external interference that might cause

it to fail (a property often achieved by using separation mechanisms to isolate the

trusted base).

1.1.5 Runtime monitors and safety controllers

One widely-used approach is to augment the system with a runtime monitor that

checks (and enforces) a critical safety property. If isolated appropriately, and if the

check is sufficient to ensure safety, the monitor serves as a trusted base.

For safety-critical systems, the runtime monitor might be an entire controller in its

16

own right. This “safety controller” oversees the behavior of the main controller, and

takes over when it fails. If the safety controller is simpler than the main controller,

it serves as a small trusted base (along with whatever arbiter is used to ensure that

it can veto the main controller’s outputs). This scheme is used in the Boeing 777,

which runs a complex controller that can deliver highly optimized behavior over a

wide range of conditions, but at the same time runs a secondary controller based on

the control laws of the 747, ensuring that the aircraft flies within the envelope of the

earlier (and simpler) design [11].

The Simplex architecture ([12, 13]) embodies this idea in a general form. Two

control subsystems are run in parallel. The high assurance subsystem is meticulously

developed with conservative technologies; the high performance subsystem may be

more complex, and can use technologies that are hard to verify (such as neural nets).

The designer identifies a safe region of states that are within the operating constraints

of the system and which exclude unsafe outcomes (such as collisions). A smaller subset

of these states, known as the recovery region is then defined as those states from which

the high assurance subsystem can always recover control and remain within the safe

region. The boundary of the recovery region is then used as the switching condition

between the two subsystems.

1.1.6 The problem of perception in autonomous cars

The safety controller approach relies on the assumption that the controller itself is

the most complex part of the system—that from the safety case point of view, the

correctness of the controller is the weakest link in the argument chain. But in the

context of autonomous cars, perception—the interpretation of sensor data—is more

complicated and error-prone than control. In particular, determining the layout of

the road and the presence of obstacles typically uses vision systems that employ large

and unverified neural nets.

In standard safety controller architectures (such as Simplex [12, 13]), only the

controller itself has a safety counterpart; even if sensors are replicated to exploit

some hardware redundancy, the conversion of raw sensor data into controller inputs

17

is performed externally to the safety controller, and thus belongs to the trusted base.

This means that the safety case must include a convincing argument that this

conversion, performed by the perception subsystem, is performed correctly. This is a

formidable task for at least two reasons. First, there is no clear specification against

which to verify the implementation. Machine learning is used for perception precisely

because no succinct, explicit articulation of the expected input/output relationship is

readily available. Second, state of the art verification technology cannot handle the

particular complications of deep neural networks—especially their their scale and their

use of non-linear activation functions (such as ReLU [14]) which confound automated

reasoning algorithms such as SMT and linear programming [15].

An alternative possibility is to not include perception functions in the trusted base.

Instead, one could perhaps use a runtime monitor that incorporates both a safety

controller and a simplified perception subsystem. Initially, this approach seemed

attractive to us, but we came to the conclusion that it was not in fact viable. In the

next section we explain why.

1.1.7 Desiderata for a runtime monitor: choose two

To see why a runtime monitor that employs simplified perception is not a solution to

the safety problem for autonomous cars, we shall enumerate three critical properties

that a monitor should obey, and argue that they are mutually inconsistent (at least

for the conventional design).

The first property is that the monitor should be verifiable. That is, it should

be small and simple enough to be amenable to formal verification (or perhaps to

fully exhaustive testing). If not, the monitor brings no significant benefit in terms of

confidence in the overall system safety (beyond the diversity of an additional imple-

mentation, which brings less confidence than is often assumed [13]).

The second property is that the monitor should be honest. It should intervene

only when necessary, namely when proceeding with the action proposed by the main

controller would be a safety risk. Applying emergency braking on a highway when

there is no obstacle, for example, is clearly unacceptable. Even handing over control

18

to a human driver is problematic, due to vigilance decrement [16].

The third property is that the monitor should be sound. This means that it

should ensure the safety of the vehicle within an envelope that covers a wide range of

typical conditions. It is not sufficient, for example, for the monitor to merely reduce

the severity of a collision when it might have been able to avert the collision entirely.

Unfortunately, it seems that these three properties cannot be achieved simultane-

ously in a classic monitor design. The problem, in short, is that the combination of

honesty and soundness requires a sophisticated perception system, leading to unver-

ifiable complexity. It is easy to make a monitor that is sound but not honest simply

by not allowing the vehicle to move; and conversely it is easy to make one that is

honest but not sound by not preventing any collisions at all.

This does not mean that monitors that fail to satisfy all three properties are

not useful—only that such monitors are not sufficient to ensure safety. Automatic

emergency braking (AEB) systems are deployed in many cars now, and use radar to

determine when a car in front is so close that braking is essential. But because AEB

might brake too late to prevent a collision, it is not generally sound. Responsibility-

Sensitive Safety systems [17], on the other hand, use the car’s full sensory perception

systems to identify and locate other cars and pedestrians, and can therefore be both

honest and sound, but due to the complexity of the perception are not verifiable.

1.2 Certified Control: A New Approach

Certified control (Fig. 1-1) is a new architecture that centers on a different kind of

monitor. As with a conventional safety architecture, a monitor vets proposed actions

emanating from the main controller. But the certified control monitor does not check

actions against its own perception of the environment.

Instead, it relies on the main perception and control subsystems to provide a

certificate that embodies evidence that the situation is safe for the action at hand.

The certificate is designed to be unforgeable, so that even a malicious agent could not

convince the monitor that an unsafe situation is safe. The evidence comprises sensor

19

readings that have been selected to support a safety case in favor of the proposed

action; because these sensor readings are only selected by the main perception and

control subsystems (and are signed by the sensor units that produced them), they

cannot be faked.

A certificate contains the following elements: (1) the proposed action (for example,

driving ahead at the current speed); (2) some signed sensor data (for example, a set of

LiDAR points or a camera image); (3) optionally, some interpretive data. This data

indicates what inference should be drawn from the sensor readings. For example,

if the sensor data comprises LiDAR points intended as evidence that the nearest

obstacle is at least some distance away, the interpretive data might be that distance;

if the sensor data is an image of the road ahead, the interpretive data might be the

purported lane lines.

The evidence and interpretive data are evaluated by the certificate checker using

a predefined runtime safety case. As an example, consider a certificate that proposes

the action to continue to drive ahead using LiDAR data. In this case, the LiDAR

points argue that there is no obstacle along the path; each LiDAR reading provides

direct physical evidence of an uninterrupted line from the LiDAR unit to the point

of reflection. Together, a collection of such readings, covering the cross section of the

path ahead with appropriate density, indicates absence of an obstacle larger than a

certain size.

Compare this with a classic monitor that interprets the LiDAR unit’s output

itself. The LiDAR point cloud is likely to include points that should be filtered out.

In snow, for example, there will be reflections from snowflakes. Performing snow

filtering would introduce complexity and likely render the monitor unverifiable. On

the other hand, a simple monitor would not attempt to identify snow, and could set

a low or a high bar on intervention—requiring, say, that 10% or 90% of points in the

LiDAR point cloud show reflections within some critical distance. The low bar would

result in a monitor that violates soundness, failing, for example, to prevent collision

with a motorcycle whose cross section occludes less than the 10% of points. The high

bar would result in a monitor that violates honesty, since it would likely cause an

20

Sensors

Controller
Subsystem

Monitor

Actuators

actuation
commands

Perception
Subsystem

Low level
controller

raw sensor
data

interpreted
sensor data

certificate

chosen
action

Sensors

Controller
Subsystem

Monitor

Actuators

actuation
commands

Perception
Subsystem

Low level
controller

raw sensor
data

interpreted
sensor data

proposed
action

chosen
action

interpreted
sensor data

Figure 1-1: A conventional runtime monitor (left) and certified control monitor
(right). The trusted base is shown in gray.

intervention due to snow even when the road ahead is empty of traffic.

It should be noted that certified control does not remove the sensor and actuator

units from the trusted base. What is removed is the main perception and controller

subsystems, crucially including complex algorithms that process and interpret sensor

readings.

1.2.1 A LiDAR-based Implementation of Certified Control

An implementation of Certified Control was developed to handle this point cloud fil-

tration problem. In this implementation, the certificate proposes to continue straight

21

ahead, using LiDAR points as evidence that there is no impending obstacle. To en-

sure the safety of a controller’s decision to move forward, the monitor checks that

the points in the certificate have sufficient spread and sufficient density. To achieve

sufficient spread, certificate points must horizontally span the size of one lane in front

of the car and vertically span the height of a car. Additionally, the monitor checks

whether there are any points closer than some minimum forward distance from the

car.

The monitor considers the certificate sufficiently vertically dense if it includes

points from each of the LiDAR scan rows which fall within the lane. The points are

sufficiently horizontally dense if there are no horizontal gaps of a size greater than

some pre-specified parameter.

The controller uses radius outlier removal (ROR) filtering, an improvement upon

statistical outlier removal (SOR), to identify LiDAR points reflecting off snow [18].

The controller preprocesses the entire LiDAR point cloud into a k-dimensional tree,

which it then queries for nearest neighbor information. Points with few neighbors,

relative to the average neighborhoods in the point cloud and based on tunable param-

eters, are labeled as snow. The controller then constructs the certificate by selecting

points from the remaining subset (namely, those not identified as snow) to meet the

spread and density criteria.

This monitor’s performance was tested in simulated snowy conditions by dropping

confetti-like paper in front of a robot car and confirming that the monitor accepts

a certificate when there is sufficient space between the car and an obstacle ahead,

despite the presence of simulated snow. When the controller’s filtering parameters

were set appropriately, it properly identified points as snow and passed a certificate

excluding them to the monitor. Assuming snow was distributed fairly evenly across

the lane ahead (and there was not a total “white out”) the remaining points were still

sufficiently dense to establish absence of an obstacle in the lane ahead.

The converse case was also tested. Tuning the filtering parameters, or adapt-

ing them to the perceived environment, can be difficult. One can imagine even a

non-adversarial controller failing to set appropriate parameters, and therefore mis-

22

categorizing true obstacles as snow. To demonstrate that the monitor would detect

such obstacles even when the controller fails to do so, the controller was modified

so that it would erroneously filter out some sparse but significant obstacles, such as

fallen tree branches (simulated, for the robot car, with plastic cables). As expected,

since the controller omitted points on the obstacle from its certificate, the monitor’s

horizontal density check failed, rejecting the certificate, and preventing an unsafe

action.

1.3 Related Work

The literature on safety assurance of vehicle dynamics splits roughly into two camps,

both of which focus on assurance of the planning/control system, and assume per-

ception is assured by some other mechanism.

One focuses on numerical analysis of reachable states. For example, reachable set

computations can justify conflict resolution algorithms that safely allocate disjoint

road areas to traffic participants [19]. The other focuses on deductive proofs of safety.

The work of [20] models cars with double integrator dynamics, and uses the theorem

prover KeYmaera to prove safety of a highway scenario, including lane changing,

with arbitrarily many lanes and arbitrarily many vehicles. The work of [21, 22]

demonstrates how these safety constraints can be used for verification and synthesis

of control policies, including control policies with switching. In [23], the authors

develop safety contracts that include intersections, and provide KeYmaera proofs to

demonstrate safety.

Responsibility-Sensitive Safety (RSS) [17] is a framework that assigns responsi-

bility for safety maneuvers, and ensures that if every traffic participant meets its

responsibilities, no accident will occur. The monitoring of these conditions is con-

ducted as the last phase of planning, and is not separated out as a trusted base. The

RSS safety criteria have been explored more formally to boost confidence in their

validity [24].

All of these works focus on control, and assume that the perception system is reli-

23

able. In contrast, certified control takes the perception subsystem out of the trusted

base. Nevertheless, these approaches are synergistic with ours. In our design, the

low-level controller is still within the trusted base and would benefit from verifica-

tion. RSS provides more sophisticated runtime criteria than those we have considered

that could be incorporated into certificates (e.g., for avoiding the risk of collisions with

traffic crossing at an intersection).

Several approaches aim, like ours, to establish safety using some kind of monitor.

The Simplex Architecture [13, 25], described above, uses two controllers: a verified

safety controller and a performance controller. When safety-critical situations are

detected, the system switches to the verified controller, but otherwise operates under

the performance controller. [26] extends Simplex to neural network-based controllers.

As we noted, this approach does not address flaws in perception. In contrast, reason-

ableness monitors [27, 28] defend against flawed perception by translating the output

of a perception system into relational properties drawn from an ontology that can be

checked against reasonableness constraints. This ensures that the perception system

does not make nonsensical inferences, such as mailboxes crossing the street, but aims

for a less complete safety case than certified control. Similarly, the work of [29] seeks

to explain perception results by analyzing regions of an image that influence the per-

ception result. These techniques may be useful to enable the perception system to

present pixel regions to the safety monitor as evidence of a correct prediction.

Other techniques seek to use the safety specifications to automatically stress test

the implementation [30, 31, 32]. A different approach checks runtime scenarios dy-

namically against previously executed test suites, generating warnings when the car

strays beyond the envelope implicitly defined by those tests [33]. Certified control is

similar in that the certificate criteria represent the operational envelope considered

by the designers, and outside that envelope, it will likely not be possible to generate

a valid certificate, leading to a safety intervention.

Assurance of perception systems needs to grapple with two key challenges. The

first is the difficulty of determining appropriate specifications for perception systems,

and the second is with developing scalable reasoning techniques to ensure that the

24

implementation satisfies its specifications. Reasonableness monitors provide a partial

answer to the first. The second is an active area of research: [34], [35], and [36], for

example, develop efficient techniques to prove that a deep neural network satisfies

a logical specification. While these technologies are promising, their applicability to

industrial-scale applications has not yet been demonstrated. Perception is a particu-

larly thorny problem, since it is not clear what properties of a perception system one

would want to formally verify.

1.4 Contributions

The majority of the sections above were taken from a co-authored paper submission

on Certified Control[37]. The contributions of this thesis include:

1. an implementation of certified control for visual lane detection;

2. an augmentation of the visual lane detection monitor with LiDAR;

3. a new LiDAR-based monitor incorporating both object position and velocity

data;

4. a full visual lane detection system focusing on improving monitor security;

5. the evaluation of these methods with a physical racecar, real driving data, and

in simulation.

The code discussed in the following sections is publicly available at:

https://github.com/jefftienchow/Thesis_Code.

25

26

Chapter 2

Certified Control with Vision

To explore the application of certified control in the domain of vision, we focused

on the verification of lane-line detection. When an autonomous vehicle proposes an

action (such as "continue in lane") within the context of the current lane, it must know

the current locations of the lane boundaries for the action to be safe. To maintain

safety, the controller must provide evidence that the current lane is where it says it is.

We designed an application of Certified Control that confirms whether the controller

is correctly perceiving the locations of lane boundaries.

2.1 Design

The goal of the monitor is to be able to confirm with high confidence that the con-

troller is correctly perceiving the road with relatively low latency. To do so, the

monitor must be presented with enough information to make these deductions with-

out having to resort to more complicated methods (i.e. machine learning). Thus, the

controller is tasked with assembling a certificate containing a set of proposed lane line

locations and sufficient metadata that serves as evidence that the proposed lane lines

are correct.

This Certified Control implementation is specifically designed to only be applicable

to highway-driving situations. Therefore, this may not be robust to residential or less-

conventionally marked roads; these conditions may need a different design to work.

27

2.1.1 Controller

In this scheme, the certificate assembled by the controller contains the following

elements:

• the signed image frame from which the lane lines were deduced;

• the left and right lane boundaries given, as second-degree polynomials in the

bird’s-eye/top-down view (𝐿(𝑑) and 𝑅(𝑑), respectively), both lines giving the

distance from the left side of the top-down view as a function of distance from

the front of the car;

• a transformation matrix 𝑇 used to transform the lane points from the bird’s-eye

view to the camera view;

• a series of color filtering thresholds used to process the image and highlight the

presence of the lane lines.

Depending on performance constraints, the controller may instead incorporate

a compressed/downsampled image in the certificate. This can greatly speed up the

monitor’s latency. However, if the image is downsampled too much, this can of course

come at the cost of accuracy.

2.1.2 Monitor

Using the provided certificate, the monitor verifies performs two tests:

1. a geometric test which checks that the proposed lane lines are geometrically

consistent and plausible

2. a conformance test which checks that there are light-colored strips on the road

present at the specified locations

In the geometric test, the monitor evaluates the proposed lane lines as a pair; if

they conform to specific geometric bounds (such as parallelism) then the lane lines

pass this test. The conformance test is a computer vision check. Computer vision

28

techniques are used to determine whether the proposed lane lines correspond to lane

line markings in the image. If they do, the lane lines pass. The proposed lane lines

must pass both checks in order for the certificate to be accepted.

Geometric Test

The geometric test ensures that the purported lane lines are parallel and spaced

according to local regulations. In the US, for example, the width of a freeway lane is

12 feet [38]. The geometric check is done as follows:

1. The polynomial 𝐿(𝑑) corresponding to the left proposed lane line is sampled at

intervals to form a discrete set of points along the line 𝑙 = 𝑙0, 𝑙1, 𝑙2, ..., 𝑙𝑛;

2. For each 𝑙𝑖, we compute the slope of the normal line 𝑛𝑖 to the lane polynomial.

We then find the intersection of the 𝑛𝑖 with the right polynomial 𝑅(𝑑) and

compute the distance 𝑥𝑖 between 𝑙𝑖 and that intersection point;

3. We calculate the standard deviation of the distances 𝑥1, ...𝑥𝑛 and check that it

is below some threshold;

4. We calculate the mean of the distances 𝑥1, ...𝑥𝑛 and check that it is within some

delta of the expected distance between lane lines.

In our initial design, we compared the distances between left and right lane lines

at various distances from the front of the car to get the average width of the lane and

deviation between the lines. However, this does not work well with curved lane lines,

as the distance between the left and right lines increase as the lines curve. We fixed

this by instead comparing the length of the normals between the lines. Using the

normals allows us to evaluate the distance between the lane lines as constant, even

when the road curves (Fig. A-1).

The problem of checking the lane width and comparing lane boundaries for par-

allelism is greatly simplified by working with a bird’s-eye perspective of the lane

boundaries. The transformation and fitting of the lane-lines is done by the main

controller, so the checks performed by the monitor remain simple.

29

(a) Distance measured using horizontal lines (b) Distance measured using normals

Figure 2-1: Measuring distance between the lane lines is more accurate when mea-
suring across the normals of the lines.

In the case that lane lines happen to not adhere to local standards, we argue that

it is fine for the monitor to intervene. Since it cannot reliably guarantee that rules of

a typical road apply in that scenario, it cannot guarantee safety.

Conformance Test

It is not enough to check whether the proposed lane lines have correct geometry, as

this only tells us whether the proposed lane lines could be possible. Proposed lane

lines might happen to pass the geometric test (or be maliciously tailored to pass it)

but not actually correspond to lane lines on the road itself. It is therefore essential

to also check that the lane lines conform to a signed image of the road. To do this,

the monitor applies simple and well-tested computer vision algorithms to determine if

there are corresponding lane markings in the image. The match between the proposed

lane lines and the image is checked as follows (Fig. 2-2):

1. The monitor computes the logical OR of the image filtered with an edge detec-

tion algorithm on lightness value (such as the Sobel operator) and the image

30

(a) Original image (b) Edge detection & lightness filtering

(c) Filter for left lane line
(d) Correlating filter and
left-half of image

Figure 2-2: The steps of the conformance test.

31

filtered by lightness above a certain threshold. These thresholds are computed

by the controller and passed to the monitor as part of the certificate.

2. Using the bird’s-eye transformation matrix passed from the controller, the mon-

itor transforms the lane lines 𝐿(𝑖) and 𝑅(𝑖) from the bird’s-eye view to the

camera’s view.

3. For the transformed left lane curve 𝐿𝑇 (𝑖) (and correspondingly for the right),

the monitor creates a filter based on the curve, slightly blurred to allow for

some margin of error in the proposed lane lines. The bottom of the filter is

weighted more heavily because deviations in the region closest to the car are

more important. At points not on the curve, the filter is padded with negative

values so that only thin lines that match the filter’s shape will produce a high

correlation output.

4. The monitor computes the cross-correlation 𝐶 between the filter and the left side

of the processed image (and correspondingly for the right), and finds the point

of highest correlation in the image (namely (𝑖max, 𝑗max) such that 𝐶[𝑖max, 𝑗max] =

max(𝐶)). It checks that the point of highest correlation lies within some small

distance from the transformed lane line 𝐿(𝑖), and that the maximum correlation

is above a predefined threshold.

Once again, we push the complexity of having to determine the specific bird’s-eye

transformation to the controller. Since the monitor just accepts the transformation

as part of the certificate, it can remain simple while still adapting to the curvature

and environment of the road (as the controller does). However, since the monitor

does not check the validity of the transformation, the transformation is currently

considered as part of the trusted base. A potential solution to this problem would be

to once again task the controller with producing a certificate proving the correctness

of the suggested transformation and add some check to the monitor to confirm the

validity of that transformation. For example, the certificate could also include LiDAR

points on the ground, and the monitor (which now has the exact coordinates of those

32

LiDAR points) could create a two-dimensional projection of those points from both

the camera view and the bird’s-eye view. The monitor could then check whether the

transformation matrix accurately maps points from the bird’s-eye view to the camera

view.

Originally, the certificate was composed of the lines in the camera view and a

transformation from the camera view to the bird’s-eye view. This was beneficial

because it allowed us to distinguish between dotted and solid lane lines. If we look

at images from the bird’s-eye view, the space between dots on a dotted lane line are

more consistent (whereas for images in the camera’s view, spaces between those dots

are larger closer to the vehicle); therefore, we were able to create separate filters for

dotted and solid lane lines. However, openpilot, our vision controller of choice that is

discussed in the next section, already internally computes a camera view to bird’s-eye

view transformation matrix, so we decided to use that in our certificate to reduce

project complexity.

2.2 Experiments

The vision certificate checking scheme was implemented and evaluated against two

different lane-detection software systems. While tweaking parameters, our primary

goals were to eliminate the false positives (the monitor rejecting the certificate when

the suggested lane lines are accurate) and the false negatives (the monitor passing the

certificate when the suggested lane lines are inaccurate). In addition, we primarily

focused on highway conditions, as this certified control implementation is not designed

to work on non-highway conditions.

2.2.1 Openpilot Implementation

The first lane-detection system we tested our design with was openpilot [39], an

open source production driver assistance system that can be used to control and

drive vehicles. We used real replay data from a car driven using the system. In

particular, we ran our monitor using the Comma2k19 dataset [40], which includes

33

Figure 2-3: An example of a lane-detection failure detected by the monitor. The
green lines represent the proposed lane lines.

driving segments with non-highway driving and adverse lighting conditions (such as

a rainy night).

Openpilot ’s implementation exposes a few variables that allows for easy integration

into our monitor implementation. In particular, it exposes:

1. Points on the left and right lane lines in the image in the bird’s-eye view.

2. The image used to deduce the location of the lane lines.

3. A transformation matrix that can be used to transform the lane lines points to

the camera view.

Since openpilot uses a complex neural network to do its lane-finding, there were

not any color-filtering thresholds readily available to incorporate into the certificate.

Instead, we configured openpilot to pass in a predefined set of thresholds to the

monitor to use in its check.

In several instances, our monitor caught lane detection failures (Fig. 2-3). In all

failure cases, however, openpilot was able to successfully correct its lane detection

within a few seconds. For some of these cases, it was not obvious from inspection of

the image taken from the camera’s perspective that the proposed lane lines were not

34

(a) The dashcam image with the proposed
lane lines (green) superimposed on the image.

(b) A graph of the lines

Figure 2-4: The lane-lines looks plausible from the camera’s view, but further away,
the lines are not parallel; this can more easily been seen from the bird’s-eye view.

geometrically correct. However, viewing from the bird’s-eye perspective, it was easier

to see that they could not correspond to plausible lane lines (Fig. 2-4). See Fig. 2-5

for more examples of passing and failing lane lines.

2.2.2 Racecar Implementation

The second experiment was conducted with a physical racecar. We implemented

a naive lane-detection scheme to serve as the controller, which deduced lane lines

through the following steps:

1. The image from the racecar’s camera is converted to a hue, saturation, value

(HSV) image to allow for easier segmentation based on lightness values.

2. Upper and lower HSV color thresholds are used to segment the the image into

a mask for the blue portions of the image.

3. Noise is removed using an erosion filter.

4. A Hough line-detection algorithm is run to isolate the lane lines in the image.

35

(a) All tests pass.

(b) Lane lines pass the geometric test but correctly fail both
conformance tests.

(c) Conformance test also works under darker lighting conditions
with rain.

Figure 2-5: Additional examples of the vision monitor working with openpilot

36

Figure 2-6: The setup of the racecar with blue tape representing lane lines.

5. The lines are separated into two groups based on slope. Due to the camera’s

perspective, a positive slope corresponds to a left lane line and a negative slope

corresponds to a right lane line.

6. The lines in each group are averaged to produce an estimate of the locations of

the left and right lane lines. These lines are represented as first-degree polyno-

mials.

To simulate potential lane lines, we placed blue tape on the floor in front of the

racecar (Fig. 2-6). When we tested the monitor with only straight and parallel lane

lines, the monitor never rejected the certificate given from the controller. However,

when we placed additional tape segments in inappropriate positions, we were able

to get the lane detector to report bad lane lines (Fig. 2-7); in all cases, the monitor

correctly rejected them.

37

(a) Additional blue tape is placed on the right
side to cause the naive controller to propose
bad lines.

(b) The proposed right lane line (blue) fails
because the correlation (red) at points along
the proposed line is not strong enough.

Figure 2-7: The monitor correctly rejects lane lines when the controller proposes
incorrect lane lines due to the additional blue tape.

Component Lines of Code
Vision Monitors library calls 90
Vision Monitors self-written code 235
Vision Monitors Total 325
Controller library calls 460
Controller self-written driver code 612
Vision Controller Total 1072

Figure 2-8: Comparison of code sizes for the monitor vs. certificate generation within
the controller. Only the racecar code is included; the openpilot version uses a complex
neural network.

2.3 Evaluation

Both implementations of the vision monitor were able to correctly detect errors in

lane-finding controllers. Neither controller, however, had the capability of generating

variable color filtering thresholds (depending on lighting conditions) to incorporate

in the certificate. The motivation for including these thresholds in the certificate

was to allow the monitor to adapt to different lighting conditions since lighting can

potentially affect whether the monitor verifies a certificate. See Appendix A for an

experiment demonstrating how varied color thresholds can improve the monitor’s

accuracy under adverse lighting conditions.

38

Overall, even though the racecar used only a naive lane-finding algorithm with

no machine learning, the algorithms still used three times as many lines of code as

the monitor’s three vision checks combined (Fig. 2-8). Production controllers are of

course much more complex—openpilot ’s deep learning container for lane-finding on

github has around 26 convolutional and 7 fully connected layers.

The certificate used for openpilot required about 45KB of storage, dominated by

the image. On average, checking of the certificate took about 0.08 seconds on a Dell

XPS 9570 Intel Core i7-8750H CPU with 16GB RAM. We achieved this latency and

certificate size by downsampling the image by a factor of 2. This may not be adequate

performance in a production system, but it is within an order of magnitude of what

would be required. With proper optimization of the checking algorithm, and some

additional compression of the image, performance seems unlikely to be a problem.

2.4 Limitations

2.4.1 Using Visual Data

This certificate is inherently less trustworthy than the LiDAR certificate. This seems

unavoidable, since unlike the physical obstacles detected by the LiDAR scheme, a

single pixel does not tell much about what is present at a particular location. Vi-

sual data generally must be interpreted at a larger scale (than just a single pixel),

introducing more complexity. In addition, following lane lines is a social convention,

with the lane lines acting as signs whose interpretation is not a matter of straightfor-

ward physical properties. Therefore, it may be necessary to use more sophisticated

methods to confirm the locations of lane lines when the lines are only implied by the

presence of these conventions as opposed to the presence of light-colored bands on

the road.

2.4.2 Obstructed/Unclear Lane Markings

This implementation assumes that both the left and right lane lines are fully visible

and therefore does not work with partially (or fully) occluded lane lines. There are

39

Figure 2-9: A frame that caused the conformance test to fail due to the faded right-
hand lane line.

two failure cases that we encountered during testing. The first involves obstructed

lane lines. Our design assumes that the lane boundaries are always at least partially

visible. Since the Comma2k19 dataset includes segments with non-highway driving,

there were cases in which multiple cars were lined up at a stoplight and obscuring

the lane lines. On the highway, the lane lines could be similarly obstructed during

traffic or when a car in front is changing lanes. It is possible that more sophisticated

methods would be needed to address these cases. The second failure case involves

poorly painted lane lines. In one case, a lane line was so faded it caused the correla-

tion output of the conformance test to not reach the desired threshold and therefore

fail the check (Fig. 2-9). This situation could be mitigated if color filter thresholds

were dynamically computed and passed by the controller to the monitor. However,

since such thresholds were not exposed in openpilot, we passed constant values to

the monitor. This failure case also reflects the fact that compelling evidence of the

presence of a lane will require well-drawn lane lines; a successful deployment of au-

tonomous cars might simply require higher standards of road markings. It is essential

to realize that certified control does not create or even exacerbate this problem but

merely exposes it. If the designer of an autonomous vehicle were willing to rely on

40

inferring lanes from poorly drawn lines, the certificate requirements could be reduced

accordingly, so that the level of confidence granted by the certificate reflect the less

risk-averse choice of the designer.

Another concern with the current implementation is the use of conventional edge

detection algorithms. The current implementation fails to confirm lane lines when

the road is poorly lit (ex: trees casting shadows on the lane lines). This is a known

problem with the Sobel operator, but can potentially be fixed using better edge

detection algorithms [41].

2.4.3 Lack of Time-Domain Awareness

This implementation does not store any metadata or results from previous timesteps.

The previous limitations discussed could potentially be resolved if the monitor ob-

served how lane lines and images change over time. For example, if a lane line is

present in one frame and occluded in the next, one might infer that the lane line is

still there but just concealed in that frame. This could potentially eliminate some

incorrect interventions from the monitor, as the monitor would be more robust to

sudden changes in lane visibility.

On the other hand, utilizing temporal data would increase the complexity of the

monitor and would lead to a larger trusted base. A potential solution would be to

only have the controller include temporal data when necessary (e.g., when a lane line

is occluded) and incorporate past frames as evidence that there is likely still a lane

line present at the specified location.

41

42

Chapter 3

Combining Vision with LiDAR

3.1 Motivation

Image data lacks the inherent physical properties of LiDAR data: a single pixel,

unlike a single LiDAR point, says nothing about the car’s environment, absent other

context. As a result, one can only perform limited checks on the lane lines using

vision alone. In a particular case involving a Tesla driving with autopilot, the vehicle

almost crashed into a concrete barrier. The problem was that bright lines that look

similar to lane lines appeared on the barrier in the camera’s image [42]. These lines

were actually bands of direct or reflected sunlight. In most cases, we believe that

the vision tests described above would catch such anomalies; we took one particular

image from an online video (Fig. 3-1) illustrating this problem and confirmed that

the inferred lane lines would indeed fail the geometric test and be correctly rejected.

However, it is conceivable that these spurious lane lines would have passed the

geometry and conformance tests. Indeed, in the Tesla example, the yellow ray of

sun almost looked, in the image, like a plausible lane line. Apparently a more basic

property is being violated: the detected lane line is on the barrier and not on the

ground.

This motivates a certificate that integrates LiDAR and vision data for verifying

lane line detection. In addition to providing the lane line polynomials and the camera

image (as above), the certificate also provides a set of LiDAR points that lie on the

43

Figure 3-1: An image taken from dashcam footage in which a car using Tesla’s au-
topilot almost ran into a concrete barrier. The malfunction was presumably caused
by the perception system mistaking the reflection along the barrier for a lane line.

purported lane lines. The monitor checks that these LiDAR points indeed correspond

to the lane lines and that they reside on the ground plane. The controller, as usual,

is given the more complex task: finding that ground plane and selecting the LiDAR

points.

3.2 Design

After the controller computes the location of the lane lines on the image, it is re-

sponsible for determining the LiDAR points that correspond to those lane lines. The

controller does this by sampling points along the lane line polynomial and transform-

ing them into 3D space. We assume that the camera and the LiDAR scanner are both

at the same location, which is approximately true given our setup (Fig. 3-2). We also

assume we are working with a pinhole camera, allowing us to use the pinhole camera

model to relate the 3D location of objects to their 2D projection. To determine which

pixels along the lane lines to sample, we utilize the vertical angle of the LiDAR rows

given by the LiDAR scanner specifications. This is to prevent us from choosing pixels

on the image that lie in between LiDAR rows (which would naturally not correspond

to any scanned LiDAR points). For each row with a vertical angle corresponding to a

pixel below 1/3 the height of the image, we sample one point for each of the lane lines.

44

Figure 3-2: Our racecar setup, with the camera mounted directly above the LiDAR
scanner.

Given a point (𝑥, 𝑦) in our 2D image sampled in this way, we can simply search that

corresponding LiDAR row to find the point that most closely matches the horizontal

angle of the pixel, telling us approximately which LiDAR point corresponds with that

pixel.

We additionally task the controller with identifying a ground plane. Our con-

troller implementation runs a random sample consensus (RANSAC) algorithm [43],

augmented with some constraints. More specifically, the controller uses additional

heuristics to make sure that the proposed ground plane is plausible. For example, the

controller requires that the ground plane lies below the camera and that the plane is

sufficiently flat.

Given the LiDAR lane line points and the ground plane, the monitor checks that:

• the proposed LiDAR points indeed match the proposed lane lines. This is again

done using trigonometric methods;

• the proposed LiDAR points are sufficiently close to the ground plane;

• the ground plane is sufficiently low-lying (below the camera) and flat;

45

(a) Image taken from the camera on the race-
car showing the sampled points (red) corre-
sponding to the LiDAR rows.

(b) The same setup from a higher perspec-
tive.

Figure 3-3: The lines look plausible from a 2D perspective, but the right line is not
on the ground. The red dots on the lines in (a) are the points sampled along the line
that lie at the same angles as the LiDAR scanner rows.

• there is a high enough density of points lying close to the ground plane.

3.3 Experiment

To simulate the Tesla barrier malfunction, we lined up two rows of tape to look like

lane lines (Fig. 4-1). The tape for the left line was placed on the ground while the

tape for the right lane was elevated on a platform; from the camera’s perspective, the

pair of lane lines looked geometrically plausible. When we ran our combined vision-

LiDAR implementation on this scenario, the monitor correctly rejected the certificate

because the points from the right lane line were not on the ground plane. This check

would theoretically also detect false lane lines which lie above or below the ground

plane for any other reason.

46

3.4 Evaluation

The integration of vision with LiDAR presents a few unique challenges. First, the

ground plane detector we implemented is not robust to steeply sloped roads or to very

uneven road surfaces. Our RANSAC algorithm only finds flat planes, so the controller

cannot yet propose curved planes. However, improving the system to work with those

conditions would mean only a more complex controller–the monitor need not become

more complex. Second, since the monitor’s checks to determine the validity of the

ground plane are not exhaustive, it is possible the monitor would not detect a false

ground plane. This is partly because the controller does not include in its certificate

any proof of validity of the ground plane it detected, and thus, the ground plane

algorithm must be regarded as within the trusted base. The obvious remedy—namely

including the ground plane detection in the monitor—is not straightforward for two

reasons: the algorithm is too complex to be easily verifiable, and the monitor only has

access to the points in the certificate, not the entire LiDAR point cloud. Nevertheless,

this could potentially be solved with our usual approach: by tasking the controller

with producing a certificate which proves to the monitor the validity of its suggested

ground plane, e.g. by inclusion of certain low-lying points.

47

48

Chapter 4

Enhancing the LiDAR Monitor

The original LiDAR-based implementation of certified control establishes that the

LiDAR points have sufficient spread and density and verifies that there are no points

within some minimum forward distance from the ego vehicle. In other words, the

monitor determines whether or not the controller is filtering out too many points and

intervenes if there are obstacles closer than some set distance from the front of the

car. In reality, some objects can be closer to the ego vehicle while maintaining safety

and others must be further away. More specifically, danger of collision also depends

on the velocity of objects relative to the ego vehicle. For example, if the ego vehicle

is driving at 20m/s and an object is 5m in front of the ego vehicle, the safety of the

situation depends on how fast that object is moving. If it is stationary, then the ego

vehicle might crash into it; if it’s also moving forward at 20m/s, then the situation is

probably not dangerous.

4.1 Design

Similar to the original LiDAR certificate, the controller is tasked with taking the

LiDAR point cloud and filtering out noise (such as snowflakes) while keeping the

points dense and spread out enough to ensure no large objects are filtered out. As

of now, the controller is only tasked with passing points in front of the ego vehicle

to the monitor. In addition, the LiDAR points now include a velocity in addition

49

to a position; this velocity corresponds to the speed of the particle that reflected

the LiDAR point relative to the ego vehicle. We assume there is some method of

obtaining the relative velocity of a LiDAR point. For example, LiDAR technology

has the ability to discern the speed of objects using the Doppler Effect with high

accuracy [44]. These position-velocity pairs are passed to the monitor to determine

whether the proposed velocity of the ego vehicle is safe.

Similar to the previous design, the monitor checks for sufficient density and spread

within the LiDAR points, confirming that there are no large areas in the ego vehicle’s

lane that do not contain LiDAR points. The monitor also evaluates each point in

the certificate by checking whether it’s possible for the ego vehicle to collide with the

point, assuming that the ego vehicle continues straight at the suggested velocity. To

perform this calculation, we will work within a one-dimensional framework where we

only care about object velocities in the forward direction.

4.1.1 Case 1: Objects Don’t Move Backwards

We first handle the case where objects in front of the car will not move backwards

toward the ego vehicle. We assume that the maximum deceleration 𝛽𝑚𝑎𝑥 an object

can have is 9𝑚/𝑠2, an estimate from a study on emergency braking capabilities of

vehicles [45]. We argue that this is acceptable because objects on the road are not

likely to have a higher maximum deceleration than a car. Given these assumptions,

the worst case for the ego vehicle would be if all other objects were to suddenly

decelerate at 𝛽𝑚𝑎𝑥, as this would be the situation that brings objects as close to the

colliding with the ego vehicle as possible. Since we are assuming objects can have a

maximum deceleration of 𝛽𝑚𝑎𝑥, objects that have lower deceleration rates would end

up further in front of the ego vehicle; using 𝛽𝑚𝑎𝑥 for all points gives us a conservative

worst-case estimate of where points could end up in the near future.

If the ego vehicle were to approach an unsafe scenario where it might crash into an

upcoming obstacle, we also want to give the controller time to circumvent the danger.

Thus, we can determine whether we need to intervene by calculating whether the ego

vehicle will crash into any objects decelerating at 𝛽𝑚𝑎𝑥 given that the ego vehicle

50

is also decelerating at its maximum deceleration rate 𝛽𝑒𝑔𝑜𝑚𝑎𝑥. In other words, we

assume that the controller will drive safely until the last possible moment: when

braking at the ego vehicle’s maximum deceleration will just barely cause a collision

with a particle decelerating at 𝛽𝑚𝑎𝑥.

We compute the position of the ego vehicle if it were to fully brake and compare

that position to the location of objects if they were to decelerate at 𝛽𝑚𝑎𝑥 toward the

ego vehicle. If the ego vehicle is in front of an object, there must have been a collision.

See Appendix B for our reasoning.

To calculate the braking distance of the ego vehicle, we also need to consider the

latency from when the monitor sends the command to when the actuator brakes.

Taking this into account, we get a formula for determining when to intervene:
𝑣2𝑒𝑔𝑜

2𝛽𝑒𝑔𝑜𝑚𝑎𝑥
+ 𝜌 · 𝑣𝑒𝑔𝑜 > 𝑑+

𝑣2𝑓
2𝛽𝑚𝑎𝑥

where

• 𝑣𝑒𝑔𝑜 is the forward velocity of the ego vehicle;

• 𝛽𝑒𝑔𝑜𝑚𝑎𝑥 is the maximum deceleration capability of the ego vehicle;

• 𝜌 is the latency between messages going from the monitor to the actuators;

• 𝑑 is the forward distance between the front of the ego vehicle and the object in

question;

• 𝑣𝑓 is the forward velocity of the object in question;

• 𝛽𝑚𝑎𝑥 is the maximum deceleration capability of the object, assumed to be 9𝑚/𝑠2.

4.1.2 Case 2: Objects Move Backwards

To handle cases where objects are moving backwards towards the ego vehicle (ex:

a tire that comes off a car), using the assumption that objects are going to have a

deceleration of 𝛽𝑚𝑎𝑥 no longer leaves us with a worse-case analysis. On the other hand,

assuming objects will accelerate towards the ego vehicle is also not a good assumption;

if we were to assume objects on the road were to accelerate toward the ego vehicle, it

51

would be impossible to share the road with other objects/vehicles. Thus, we assume

that objects moving backwards will continue at their current velocity, giving us a

more reasonable worst-case analysis.

This poses the question, how long do we assume the object will move backwards?

Since the monitor only has the power to stop the ego vehicle, and putting the ego

vehicle in reverse would complicate matters much more, we will again assume that

the best course of action in a dangerous situation is to maximally decelerate the ego

vehicle. Therefore, we only need to analyze how far objects will move backwards in

the time it takes the ego vehicle to fully stop. If the object continues to move toward

the ego vehicle even after the ego vehicle has completely stopped, then the monitor

could not have prevented the collision (at least with only the power to actuate the

brakes).

Therefore, we can summarize whether or not the monitor should intervene with

the following formula that considers the worst result of the two above cases:
𝑣2𝑒𝑔𝑜

2𝛽𝑒𝑔𝑜𝑚𝑎𝑥
+ 𝜌 · 𝑣𝑒𝑔𝑜 > min(𝑑+

𝑣2𝑓
2𝛽𝑚𝑎𝑥

, 𝑑+ 𝑣𝑓 · 𝑡𝑠𝑡𝑜𝑝)

where

• 𝑑+
𝑣2𝑓

2𝛽𝑚𝑎𝑥
is the distance between the ego vehicle and an object if it decelerates

at 𝛽𝑚𝑎𝑥;

• 𝑑+ 𝑣𝑓 · 𝑡𝑠𝑡𝑜𝑝 is the distance between the ego vehicle and an object if it continues

at 𝑣𝑓 ;

• 𝑡𝑠𝑡𝑜𝑝 is the time needed to fully stop the ego vehicle, given by: 𝑣𝑒𝑔𝑜
𝛽𝑒𝑔𝑜𝑚𝑎𝑥

+ 𝜌.

Similar to the previous LiDAR monitor implementation, noisy points that do not

represent large obstacles that would otherwise cause the certificate to fail should be

filtered out by the controller. This greatly simplifies the monitor, as it therefore does

not need to do any object segmentation to figure out whether objects in the point

cloud are small enough to be ignored.

The monitor evaluates every point in the certificate (using their respective position

and velocity) to determine if the vehicle is continuing at a safe speed. If all points

52

are safe, and there is sufficient spread and density within the ego vehicle’s lane (as in

the previous monitor implementation), the certificate passes.

4.2 Implementation

We tested this certified control implementation in CARLA, an open-source vehicle

simulation program [46]. CARLA has the ability to spawn and simulate objects in a

3D environment and was developed for the purpose of testing autonomous vehicles.

The program comes with a variety of preset maps, environmental conditions, and

actors (anything that plays a role in the simulation or can be moved around) which

greatly facilitated development. We ran CARLA on Dell XPS15 9500 laptops with

16GB of RAM, an NVIDIA GTX 1650Ti dedicated graphics card, and an Intel i7-

10750H CPU.

To implement our certificate design and monitor in CARLA, we took the following

steps:

1. Create a world in synchronous mode to allow for full control of the speed of

timesteps in simulation. We set the simulated time between ticks to be .05

seconds.

2. Spawn the ego vehicle on the map.

3. Mount a LiDAR object on the ego vehicle set to rotate 10 times per second.

Since the LiDAR only completes a full rotation every two timesteps, the con-

troller only passes a certificate to the monitor every two timesteps.

4. When a full rotation is completed, filter the LiDAR points for points in front of

the LiDAR scanner, above a certain height (1.2m below LiDAR scanner), and

within a given left/right boundary (2m, or half the width of a lane).

5. For each of the remaining points, if they are within the bounding box of an

actor (person, vehicle, etc), attach the velocity for that actor to that point. If a

point is not within the bounding box for an actor, assign it a velocity of 0. This

53

is a workaround to incorporate velocity into the LiDAR scans, since CARLA

does not have a built-in method for detecting velocity with LiDAR.

6. Pass a certificate containing remaining LiDAR points with both position and

velocity to the monitor, which verifies the safety of each point using the above

scheme. For our implementation, we assume the ego vehicle has a maximum

deceleration rate 𝛽𝑒𝑔𝑜𝑚𝑎𝑥 of 9𝑚/𝑠2 (the same as for other objects) and a latency

𝜌 from the monitor to the actuators of two timesteps (.1 seconds) as specified

in the CARLA documentation.

7. If any point does not pass the check, the monitor sends a command to CARLA,

braking the car at its maximum possible deceleration.

4.3 Experiments

We ran experiments in CARLA to examine the behavior of this monitor implemen-

tation. Some examples include:

• The ego vehicle follows a lead vehicle going at the same speed. No unsafe

scenarios occurred, and the monitor did not intervene.

• The ego vehicle travelling at a constant velocity approaches a stopped vehicle.

The monitor intervenes and prevents a collision.

• The ego vehicle travelling at a constant velocity approaches a pedestrian walking

in the same direction as the ego vehicle. The monitor intervenes and prevents

a collision.

• The ego vehicle travels at a constant velocity and passes by a stopped vehicle

in a neighboring lane. The points corresponding to the stopped vehicle are not

included in the certificate, so the monitor does not intervene.

• The ego vehicle follows a lead vehicle going at the same speed. The lead vehicle

then suddenly brakes as hard as it can. The monitor intervenes and prevents a

collision.

54

• The ego vehicle travels at a constant velocity and approaches a vehicle going

backwards. The monitor intervenes and stops the ego vehicle; however, the

backwards-moving lead vehicle continues and eventually hits the ego vehicle.

This is expected since the monitor’s only method of intervention is braking.

• The ego vehicle travelling at a constant velocity approaches a bicyclist crossing

the street. The paths of the ego vehicle and the cyclist cross. The monitor

intervenes and prevents a collision.

The final case discussed above is of particular interest because it was modelled

after an Uber accident in Tempe, Arizona that killed a pedestrian [47]. In the accident,

there was a variety of problems that ultimately caused the autonomous Uber vehicle

to crash into a pedestrian that was walking their bike across the street. According

to the report, the Uber was travelling at approximately 20m/s when approaching the

crash site, and only brakes .7s before the impact. We closely simulated this Uber

crash, and the monitor intervened in time to stop the collision.

4.4 Limitations and Future Work

The current design only considers objects directly in front of the ego vehicle and

reduces points to only having a velocity in the forward direction relative to the ego

vehicle. Obviously, there are many situations when we might want to consider objects

outside one-dimensional range (ex: curving roads, intersections). When simulating

the Uber crash and attempting to get the crash parameters correct, there was a

scenario that caused a crash. If the bicycle’s starting position is 1m further to the

left, this causes the bicycle to move into the ego vehicle’s direct line of sight much later

and therefore the monitor intervenes much later. Although the monitor intervenes

1.4s before the crash, there is still a slight collision between the ego vehicle and the

bicyclist.

If the certificate considered points not directly in front of the ego vehicle and

considered 2-Dimensional velocities, this collision could potentially have been avoided.

55

(a) The ego vehicle is on a collision path with
the bicycle.

(b) Without the monitor, the ego vehicle con-
tinues and crashes. (c) The monitor intervenes and prevents a

collision.

Figure 4-1: A simulation of the Uber crash in Tempe.

56

However, the problem of opening up the certificate to consider 2D velocities increases

the monitor’s complexity. Objects on the road (such as vehicles) have less predictable

lateral movements, so we cannot make the same assumptions. For example, for the

1-D implementation, we assumed that objects will not accelerate towards the ego

vehicle unless braking. However, this happens in the lateral direction when vehicles

are changing lanes (a vehicle changing into the ego vehicle’s lane will accelerate toward

the ego vehicle). Therefore, it may be necessary to use some sort of path prediction

to determine if an object not directly in front of the ego vehicle will collide with the

ego vehicle.

57

58

Chapter 5

Strengthening Monitor Security

For the monitor to be effective, it must also be secure. Naturally, we do not want the

monitor deciding whether actions are safe to be incorrect or tampered with. Moreover,

the monitor is part of our trusted base, so it must be protected from outside attacks

and vulnerabilities. We designed a system using containers to strengthen the security

of the visual lane-detection monitor and created adversarial controllers to test this

new system.

This implementation has four main components: the sensor, the controller, the

monitor, and the actuator. The sensor fetches a dashcam image, signs it with a

timestamp, and passes this along to the controller. The controller detects lane lines

in the image, and then sends a certificate (the signed sensor data and the location of

the lane lines) to the monitor. The monitor makes checks to ensure that the proposed

lane lines are consistent with the image and that the controller did not tamper with

the sensor data. If the checks do not pass, the monitor intervenes by sending a signal

to the actuator, presumably to prevent an unsafe scenario.

5.1 Threat Model

Our main goal is to prevent an attacker from convincing a self-driving car to continue

when it should stop. To analyze possible attack vectors better, we need to examine

each component. The sensor needs to be trusted because otherwise there would be

59

no way to have any assurances about the car’s state. The monitor is also trusted,

since it is designed to be a small piece of software that makes simple checks on

the certificate. However, the controller is untrusted because it is made of many

more lines of code that may use unverifiable methods (such as machine learning) or

untrusted/less verifiable software. This makes it more prone to bugs and potential

exploitation by adversaries. Finally, the actuator must be trusted, because it is our

only way of utilizing our decisions to command how the car will move.

We will assume that the attacker has a method of gaining full control of the

controller. For example, the controller could have some internet-connected component

in which the attacker could exploit a buffer overflow to gain control. Similar attacks

have been performed before [48]. After gaining control, the adversary has the power

to:

• Access image/timestamp output from sensor;

• Send any data to the monitor;

• Attempt to exploit some bug in its environment (ex: a known buffer overflow

in Linux).

Recall that in the intended function of the controller, the image/timestamp is

passed along to the monitor in addition to the proposed lane lines. Assuming full

control of the controller, the attacker can perform all of, but not limited to, the

following:

• Propose incorrect lane lines;

• Send a modified version of image and/or timestamp;

• Pass along stale images from the sensor;

• Not send anything to the monitor.

All of these could result in a car crash in an insecure model. In addition, while

controller access does allow an attacker to spy using dashcam footage, our model is

focused on the (arguably) more important issue of preventing car crashes.

60

Figure 5-1: Our system design using Docker containers for isolation and bridge net-
works for communication between components

5.2 Design

To prevent the attacker from compromising the trusted components (sensor and moni-

tor), we isolate each component into its own Docker container. We also create separate

bridge networks with separate subnets between each possible connection (Fig. 5-1).

Benefits of using containers include [49]:

• isolation in the form of separate, distinct namespaces between containers;

• isolation of network stacks between containers;

• control groups to limit resource allocation

• the ability to restrict; capabilities/privilege levels of specific containers;

• easier deployability and higher performance compared to virtual machines.

The goal is to have the monitor detect when the controller is trying to perform the

aforementioned attacks. In addition, we would like the performance of the system to

61

be able to handle the sensor generating images at .25-.5 seconds/image. The actual

computer vision checks performed by the monitor are not a major focus of this section.

5.2.1 Sensor

The goal of the sensor is to produce dashcam image/timestamp data and securely

pass it along to the controller. For performance reasons, the sensor also produces

a low resolution version of the dashcam image. The sensor sends new data to the

controller at fixed intervals (once every .4 seconds in our implementation).

Using RSA encryption, the sensor also produces a hashed signature by first con-

catenating the low quality image and timestamp data, and then computing the sha512

hash of the resulting string, finally using the private key to encrypt the resultant hash.

Additionally, during the one-time startup of the system, the sensor generates a key

pair using a 1024-bit RSA modulus, passes the public key directly to the monitor,

and stores the private key within the sensor.

5.2.2 Controller

The responsibility of the controller is to perform perception and planning and produce

a certificate that convinces the monitor that it is correctly performing these tasks.

For our project, we are only having the controller perform perception and thus only

verifying that the perception is correct.

The controller receives both the high and low quality images from the sensor as

well as the signature produced from the images and a timestamp. It identifies the

location of the lane lines on the image and passes along the data from the sensor,

the proposed lane line locations (given as 2nd degree polynomials from the bird’s-

eye view), and additional metadata about the image to the monitor. The collection

of data the controller sends to the monitor comprises the certificate. Note that the

controller only sends the low-res version of the image for the monitor to check, to

improve performance.

62

5.2.3 Monitor

The monitor takes the certificate given from the controller and does the computer

vision checks described in Chapter 2 to see if the proposed lane lines are reasonable.

Whenever a certificate comes in, the monitor checks that its timestamp comes after

the last certificate (so the controller cannot send out of order certificates) and that

the timestamp is not too old. In addition, the monitor intermittently checks whether

or not the last certificate’s timestamp is within a fixed delta away from the current

time, ensuring that the controller is still sending certificates.

The monitor also determines if the low-res image and timestamp come unmodified

from the sensor. The monitor first decrypts the sha512 hash from the sensor using

the public key. Then the monitor takes the image/timestamp from the controller and

produces the hash of that. The image is legitimate if the hashes are equal, otherwise

it’s been tampered with. With this model, a malicious controller cannot modify the

image or timestamp because it would result in an unpredictably different hash, and

cannot forge an entirely new signature because the sensor keeps the private key.

If any of the given tests do not pass, the monitor sends a signal to the actuator

telling it to stop the car.

5.2.4 Actuator

The actuator takes a single boolean from the monitor; a false boolean signifies an

intervention. In a physical car, this would cause the actuators to apply the emergency

brakes.

5.3 Implementation

We used Python 3.7 to implement the system. To ensure isolation between com-

ponents, we used Docker to create separate containers for each component (4 in

total). Each container has a different IP address for each network it is a part of

(ex: the sensor has a different IP for its communication network with the monitor

63

than its communication network with the controller). For container communication,

we used Python’s socketserver library, and used the socketserver.TCPServer and

socketserver.StreamRequestHandler classes. To coordinate the clocks, both the

sensor and monitor share the same clocks as the host machine. The system is deployed

through docker-compose for convenience.

For image processing and detection of road lines, we used OpenCV. More specifi-

cally, we used it in the monitor to check if the white bands were at proposed locations

with the proposed shapes.

For signing and hashing of sensor data, we use the pycryptodome library, and

their built-in RSA key generation and sha512 hashing functions.

5.4 Experiments and Results

To test the security of our implementation, we created three malicious controllers

that:

1. Send a different image than the one given from the sensor.

2. Send along stale images from the sensor.

3. Stop sending certificates after a while.

The monitor correctly intervened for each malicious controller, and correctly did

not intervene for the normal controller. We also found an image that causes the

controller to incorrectly identify lane lines in the image; the monitor correctly catches

this mistake.

Meeting our performance goals was challenging during implementation. Origi-

nally, when not run on docker, the system could handle images at ∼ .1 seconds/image;

however, performance deteriorated to∼.4 seconds/image when run through docker-

compose. This was likely due to the use of virtual bridge networks, as programs run

on Docker have shown to run with near-native performance [50]. By decreasing the

resolution of the signed image by a factor of 5, we were able to get the system to run

consistently at <.1 seconds/image, meeting our goal.

64

5.5 Future Work

As self-driving cars become more popular, it becomes increasingly important that

safety monitors are not only correct, but secure. A few possible methods of increasing

security even further include:

• Reducing the size of the monitor: this would include modifying the code so that

it does not depend on networking/security packages.

• Using stronger forms of isolation: Docker containers were used in this project

for their performance and simplicity; however, stronger forms of isolation such

as virtual machines would enforce better security; for example, since containers

running on a machine operate within the same OS, an attacker could potentially

exploit a bug in the OS to break out of the container and control the monitor.

• Formally verifying the monitor: the monitor is small and trusted, so it could

potentially be feasible to verify the entirety of its code.

In addition, there are a few ways we could improve the performance of this system.

One method is to not sign every image being passed to the controller. Although

this might make the system more susceptible to vehicle hijacking while driving, the

monitor only needs one frame to determine if the situation is unsafe. If images are

still being signed several times per second, this would only give an attacker a split-

second to cause an unsafe scenario. Another performance improvement would be to

randomly hash a fraction of the image’s pixels. This may potentially allow an attacker

to change a few pixels, but there won’t be a reliable way for an attacker to change

the image so much that a different set of lane lines is produced.

65

66

Chapter 6

Conclusions and Future Work

6.1 Results and Conclusions

This research aimed to demonstrate how Certified Control can be used to increase

safety in autonomous vehicles. We demonstrated through the visual lane-finding im-

plementation that a monitor using simple checks can reveal both subtle and dramatic

errors in production visual perception systems. We found that by having the con-

troller perform most of the computation and provide a certificate acting as evidence

of safety, the checks made by the monitor are able to remain simple, verifiable and

relatively low latency. Although the current implementation can only be used for

highway driving and even then still has limitations, these problems can potentially

be solved by enriching the certificate to provide further evidence of safety in more

complicated situations. For example, we augmented the vision certificate to include

LiDAR data, which allowed us to check for an important feature of lane lines: that

they must be on the ground.

We also showed that by including both position and velocity in a LiDAR monitor,

we can ensure safety over a wider range of cases. More specifically, instead of not

allowing objects to be closer than a set distance away, we can take into account

each LiDAR point’s position and velocity to determine whether that point poses a

safety risk with respect to the ego vehicle’s velocity. We simulated a real autonomous

vehicle accident and demonstrated that this enhanced monitor was able to intervene

67

and completely stop a collision.

Finally, we experimented with increasing the security of the monitor by isolating

components into separate containers. The primarily goal was to enforce isolation

between the trusted monitor and untrusted controller so we can be confident in the

integrity of the monitor despite potential bugs in the controller. We showed that a

Certified Control system can maintain high performance despite this isolation.

In our experiments, our Certified Control systems achieved reasonable levels of

the three runtime monitor desiderata: our monitor for the most part did not inter-

vene when the situation was safe (honesty), it correctly intervened in unsafe cases

(soundness), and was much more verifiable than a typical controller as it used more

traditional methods and contained much less code (verifiability). However, the tests

we ran on these monitor implementations were relatively simple; it remains to show

that these systems can maintain the three desiderata even in more complicated sce-

narios. This is particularly the case for the vision implementation which confirms

the locations of lane-lines; our monitor makes certain assumptions that may not be

realistic in all highway driving conditions. For example, it assumes that the lane

lines are always fully visible. In cases where these assumptions do not apply, conven-

tional perception methods may not prove to be enough; machine learning or other

less verifiable methods may be necessary.

6.2 Future Work

6.2.1 Increased Testing

Extensions of this work would include further testing of both the vision and LiDAR

monitors in simulation. CARLA provides near-limitless possibilities for simulating

driving scenarios, and it presents an interface for quick development of these scenarios.

The LiDAR monitor was only tested under a set of specific cases, so it definitely needs

to be exposed to a wider variety of cases to be confident it improves safety. This

process could potentially be expedited through random generation of test cases.

68

Moving forward, it is necessary that we develop some sort of benchmarking test

suite so we can determine whether changes made to the monitor are actually beneficial.

This would include both simple and more complicated cases where the monitor either

should or should not intervene. This will allow us to maintain confidence that we are

maintaining both honesty and soundness.

6.2.2 Addressing Complicated Scenarios

To handle more complicated driving scenarios, it may be necessary to use more com-

plicated methods of verifying safety. For example, including temporal information

in the monitor seems crucial to determining how objects will move and inferring

where occluded objects are; we may need to incorporate path prediction-algorithms

to determine how objects will move in a two-dimensional plane. However, as more

complicated methods are introduced to the monitor, it is important that it remains

verifiable because it is part of the trusted base.

Through our testing, Certified Control appears to be a good method for catching

obvious failures in perception, such as when the ego vehicle is about to slam into

a pedestrian. Moving forward, we should also focus on how these monitors act in

less-obvious dangerous scenarios (e.g., small debris falling down a hill).

It is also very important that safety monitors maintain a high degree of honesty

and do not intervene in safe scenarios. In particular, we need to address complicated

scenarios where the situation is safe but may seem unsafe to a more naive monitor

(e.g., a paper bag floating in the air). Safety monitors that intervene under safe

circumstances often end up being turned off by users, as was the case in the Uber

crash in Tempe. Therefore, our monitors need to be extended to accommodate a

wider range of cases and make less assumptions.

6.2.3 Keeping Up-to-date with CARLA

CARLA is constantly being improved and updated, so it seems promising as a long-

term method of simulating and testing our Certified Control designs. As more features

69

are updated, it is important that we update how our monitor operates in CARLA. For

example, the velocity data we are using in the enhanced LiDAR monitor does not come

from CARLA’s LiDAR sensor object; instead, we are mocking the velocity readings

by directly reading object velocities from CARLA. If CARLA adds velocity readings

to their LiDAR sensors, the certificate should be updated to use those velocities for

more realistic results.

6.3 Final Thoughts

As the adoption of autonomous vehicles continues to increase, it is imperative that

there are reliable safety mechanisms in place to assure the safety of passengers. Au-

tonomous driving is a very difficult problem, and very complicated methods are be-

ing used to tackle it. Failures in driving software have resulted in death, and it is

inevitable that further casualties are to come. As new technologies emerge to im-

prove vehicle perception and control, we need to ensure that there remain methods

of verifying passenger safety regardless of the complexity of these new technologies.

Creators of driving software must be held accountable to ensure that their safety

technologies being used are verifiable and robust. Technology has the power to greatly

improve quality of life as well as safety; it is important that creators of autonomous

vehicles do not take shortcuts and respect the fact that human lives are in the hands

of their technology.

70

Appendix A

Experiment with Adverse Lighting

We experimented with different color filters and the possibility of allowing the con-

troller to select from a variety of filters for the monitor to use. This would allow the

monitor to adapt to different lighting conditions, allowing it to work under a wider

range of scenarios. In this experiment, we colored the road to make it light-grey so

the white lane-lines are less visible (Fig. A-1). The controller proposes the correct

ground truth lane lines and a set of generic color thresholds to the monitor, and the

original monitor incorrectly rejects the certificate (Fig. A-3). When the controller

proposes a set of thresholds adapted to the adverse lighting, the monitor correctly

accepts the certificate.

Figure A-1: A dashcam image with the road painted light-grey.

71

(a) Binary mask using the original color filter. The lane lines are almost completely masked
by the grey-colored road.

(b) Monitor result

Figure A-2: The monitor fails to confirm the lane lines given the adverse lighting.
Both the left and right lane lines do not pass the conformance test.

72

(a) Binary mask using the adapted color filter. The lane lines are visible.

(b) Monitor result

Figure A-3: The monitor correctly confirms the location of the lane lines despite the
adverse lighting.

73

74

Appendix B

Collision Analysis

We will prove the soundness of our stopping condition under a particular collection

of scenarios. We will analyze the behavior of the ego vehicle, with the capability

of decelerating at up to 𝛽𝑒𝑔𝑜𝑚𝑎𝑥, with respect to an object, with the capability of

decelerating at up to 𝛽𝑚𝑎𝑥 (also defined to be the maximum possible deceleration for

a road vehicle). The object in question will henceforth be referred to as OIQ.

We will assume the following scenario:

• At time 0, the OIQ, with initial forward velocity 𝑣𝑓 , is a distance 𝑑 in front of

the ego vehicle, with initial forward velocity 𝑣𝑒𝑔𝑜;

• At time 0, the OIQ decelerates at constant deceleration 𝛽𝑚𝑎𝑥 until it fully stops;

• The ego vehicle continues at 𝑣𝑒𝑔𝑜 until time 𝜌, when it decelerates at constant

deceleration 𝛽𝑒𝑔𝑜𝑚𝑎𝑥 until it fully stops;

• Both the ego vehicle and the OIQ are moving only in the forward direction;

• The OIQ is directly in front of the ego vehicle.

Let 𝑥𝑜 be the position of the OIQ after it has fully decelerated, and let 𝑥𝑒 be

the position of the ego vehicle after it has fully decelerated, assuming it waits 𝜌 time

before beginning its deceleration. We will analyze 𝑥𝑜 and 𝑥𝑒 independently of each

other, ignoring potential collisions between the objects.

75

Figure B-1: A graph of a configuration where the ego vehicle and OIQ collide. The
delay in the braking for the ego vehicle is shown as 𝜌. Analyzing both functions
separately could lead one to believe there was no collision since the final position
of the OIQ is in front of the ego vehicle. However, the ego vehicle has a higher
deceleration, causing it to overtake the OIQ, and later fall behind it.

76

Given this scenario, our goal is to show that 𝑥𝑒 ≥ 𝑥𝑜 if and only if there

will be a collision. We will model the movements of both the ego vehicle and the

OIQ with second-order polynomial lines with position as a function of time. Since

we assume that both objects will not continue accelerating after fully braking, we are

only interested in the increasing portions of both functions. If the lines intersect at

any point, then that signifies a collision.

If 𝑥𝑒 ≥ 𝑥𝑜, there must be a point where the lines intersect, so a collision must

happen.

We will show that 𝑥𝑒 < 𝑥𝑜 implies that there will not be a collision. First, we will

show that the ego vehicle’s deceleration never exceeds 𝛽𝑚𝑎𝑥. Recall that we define 𝛽𝑚𝑎𝑥

to be the maximum possible deceleration for a road vehicle, so |𝛽𝑚𝑎𝑥| ≥ |𝛽𝑒𝑔𝑜𝑚𝑎𝑥|. In

addition, during the time 𝜌 before the ego vehicle starts decelerating, the ego vehicle

has a deceleration of 0. Thus, the deceleration of the OIQ is greater than that of the

ego vehicle during this time as well.

Let us assume that 𝑥𝑒 < 𝑥𝑜 and there was a collision. This implies that there

must have been two intersections, one where the ego vehicle overtakes the OIQ, and

one where the ego vehicle falls behind it. Fig. B-1 shows an example of how this

might happen with two second-order polynomials. For the first intersection to have

happened, the ego vehicle must have had a higher velocity than the OIQ. For the

second intersection to have happened, the ego vehicle must have had a lower velocity

than the OIQ. This implies that the ego vehicle has a higher magnitude of decelera-

tion. However, this contradicts our assertion that the ego vehicle’s deceleration never

exceeds that of the OIQ. Therefore, this cannot happen given our assumptions.

Since 𝑥𝑒 ≥ 𝑥𝑜 implies there will be a collision, and 𝑥𝑒 < 𝑥𝑜 implies there will not

be a collision, this shows that 𝑥𝑒 ≥ 𝑥𝑜 if and only if there will be a collision.

77

78

Bibliography

[1] D. Wakabayashi, “Self-Driving Uber Car Kills Pedestrian in Arizona, Where
Robots Roam,” The New York Times, Mar. 2018.

[2] “Testing of Autonomous Vehicles.” https://www.dmv.ca.gov/portal/dmv/detail/
vr/autonomous/testing.

[3] O. Cameron, “The Driverless Readiness Score.”
https://olivercameron.substack.com/p/the-driverless-readiness-score. Library
Catalog: olivercameron.substack.com.

[4] N. Kalra and S. M. Paddock, “Driving to Safety: How Many Miles of Driving
Would It Take to Demonstrate Autonomous Vehicle Reliability?,” Tech. Rep.
RAND RR-1478-RC, RAND Corporation, 2016.

[5] C. B. Weinstock, J. B. Goodenough, and J. J. Hudak, “Dependability Cases,”
Tech. Rep. CMU/SEI-2004-TN-016, CMU Software Engineering Institute, 2004.

[6] “Safety Management Requirements for Defence Systems: Part 2: Guidance on
Establishing a Means of Complying with Part I",” tech. rep., UK Ministry of
Defense, 2007.

[7] D. Jackson, M. Thomas, and L. I. Millett, eds., Software for Dependable Systems:
Sufficient Evidence? National Research Council, 2007.

[8] “They Write the Right Stuff.” https://www.fastcompany.com/28121/they-write-
right-stuff.

[9] G. Klein and et. al., “seL4: Formal verification of an OS kernel,” in Proceedings
of the ACM SIGOPS 22nd Symposium on Operating Systems Principles - SOSP
’09, (Big Sky, Montana, USA), p. 207, ACM Press, 2009.

[10] J. H. Saltzer, D. P. Reed, and D. D. Clark, “End-to-end arguments in system
design,” ACM Transactions on Computer Systems (TOCS), vol. 2, pp. 277–288,
Nov. 1984.

[11] Y. C. Yeh, “Dependability of the 777 Primary Flight Control System,” in De-
pendable Computing for Critical Applications, 1998.

79

https://www.dmv.ca.gov/portal/dmv/detail/vr/autonomous/testing
https://www.dmv.ca.gov/portal/dmv/detail/vr/autonomous/testing

[12] T. L. Crenshaw, E. Gunter, C. L. Robinson, L. Sha, and P. R. Kumar, “The
simplex reference model: Limiting fault- propagation due to unreliable compo-
nents in cyber-physical system architectures,” in IEEE International Real-Time
Systems Symposium, 2007.

[13] Lui Sha, “Using simplicity to control complexity,” IEEE Software, vol. 18, pp. 20–
28, July 2001.

[14] V. Nair and G. E. Hinton, “Rectified Linear Units Improve Restricted Boltzmann
Machines,” in International Conference on Machine Learning, p. 8, 2010.

[15] L. Pulina and A. Tacchella, “Challenging SMT solvers to verify neural networks,”
AI Communications, vol. 25, no. 2, pp. 117–135, 2012.

[16] E. T. Greenlee, P. DeLucia, and D. C. Newton, “Driver Vigilance in Automated
Vehicles: Hazard Detection Failures Are a Matter of Time.,” Human Factors,
2018.

[17] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “On a Formal Model of Safe
and Scalable Self-driving Cars,” arXiv:1708.06374 [cs, stat], Oct. 2018.

[18] N. Charron, S. Phillips, and S. L. Waslander, “De-noising of Lidar Point Clouds
Corrupted by Snowfall,” in Computer and Robotic Vision, 2018.

[19] S. Manzinger and M. Althoff, “Tactical Decision Making for Cooperative Vehi-
cles Using Reachable Sets,” in 2018 21st International Conference on Intelligent
Transportation Systems (ITSC), (Maui, HI), pp. 444–451, IEEE, Nov. 2018.

[20] S. M. Loos, A. Platzer, and L. Nistor, “Adaptive Cruise Control: Hybrid, Dis-
tributed, and Now Formally Verified,” in FM 2011: Formal Methods (M. Butler
and W. Schulte, eds.), vol. 6664, pp. 42–56, Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011. Series Title: Lecture Notes in Computer Science.

[21] N. Arechiga, S. M. Loos, A. Platzer, and B. H. Krogh, “Using theorem provers to
guarantee closed-loop system properties,” in 2012 American Control Conference
(ACC), (Montreal, QC), pp. 3573–3580, IEEE, June 2012.

[22] N. Arechiga and B. H. Krogh, “Using verified control envelopes for safe controller
design,” in American Control Conference, 2014.

[23] S. M. Loos and A. Platzer, “Safe intersections: At the crossing of hybrid systems
and verification,” in 2011 14th International IEEE Conference on Intelligent
Transportation Systems (ITSC), (Washington, DC, USA), pp. 1181–1186, IEEE,
Oct. 2011.

[24] P. Koopman, B. Osyk, and J. Weast, “Autonomous Vehicles Meet the Physical
World: RSS, Variability, Uncertainty, and Proving Safety,” in Computer Safety,
Reliability, and Security (A. Romanovsky, E. Troubitsyna, and F. Bitsch, eds.),
vol. 11698, pp. 245–253, Cham: Springer International Publishing, 2019. Series
Title: Lecture Notes in Computer Science.

80

[25] D. Phan and et. al., “A Component-Based Simplex Architecture for High-
Assurance Cyber-Physical Systems,” 2017 17th International Conference on Ap-
plication of Concurrency to System Design (ACSD), pp. 49–58, June 2017.

[26] D. T. Phan, R. Grosu, N. Jansen, N. Paoletti, S. A. Smolka, and S. D. Stoller,
“Neural Simplex Architecture,” arXiv:1908.00528 [cs, eess], Mar. 2020.

[27] L. H. Gilpin and J. C. Macbeth, “Monitoring Scene Understanders with Con-
ceptual Primitive Decomposition and Commonsense Knowledge,” Advances in
Cognitive Systems, p. 20, 2018.

[28] L. H. Gilpin, “Reasonableness Monitors,” AAAI, 2018.

[29] J. Kim and J. Canny, “Interpretable Learning for Self-Driving Cars by Visualizing
Causal Attention,” in 2017 IEEE International Conference on Computer Vision
(ICCV), (Venice), pp. 2961–2969, IEEE, Oct. 2017.

[30] M. Koren, S. Alsaif, R. Lee, and M. J. Kochenderfer, “Adaptive stress testing for
autonomous vehicles,” in IEEE Intelligent Vehicles Symposium, 2018.

[31] X. Qin, N. Aréchiga, A. Best, and J. Deshmukh, “Automatic Testing
and Falsification with Dynamically Constrained Reinforcement Learning,”
arXiv:1910.13645 [cs, eess], Feb. 2020.

[32] A. Corso, P. Du, K. Driggs-Campbell, and M. J. Kochenderfer, “Adaptive Stress
Testing with Reward Augmentation for Autonomous Vehicle Validation,” in
IEEE Intelligent Transportation Systems Conference, 2019.

[33] M. Mauritz, F. Howar, and A. Rausch, “Assuring the Safety of Advanced Driver
Assistance Systems Through a Combination of Simulation and Runtime Mon-
itoring,” in Leveraging Applications of Formal Methods, Verification and Vali-
dation: Discussion, Dissemination, Applications (T. Margaria and B. Steffen,
eds.), vol. 9953, pp. 672–687, Cham: Springer International Publishing, 2016.
Series Title: Lecture Notes in Computer Science.

[34] G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer, “Reluplex: An
Efficient SMT Solver for Verifying Deep Neural Networks,” arXiv:1702.01135
[cs], May 2017.

[35] R. Ehlers, “Formal Verification of Piece-Wise Linear Feed-Forward Neural Net-
works,” arXiv:1705.01320 [cs], Aug. 2017.

[36] G. Katz and et. al., “The Marabou Framework for Verification and Analysis of
Deep Neural Networks,” in Computer Aided Verification (I. Dillig and S. Tasiran,
eds.), vol. 11561, pp. 443–452, Cham: Springer International Publishing, 2019.
Series Title: Lecture Notes in Computer Science.

81

[37] J. Chow, V. Richmond, M. Wang, U. Guajardo, D. Jackson, N. Arechiga, G. Litt,
S. Kong, and S. Campos, “Certified control, a new safety architecture for au-
tonomous vehicles,” EMSOFT, submitted for publication, 2020.

[38] W. J. Stein and T. R. Neuman, “Mitigation strategies for design exceptions,” tech.
rep., United States. Federal Highway Administration. Office of Safety, 2007.

[39] “Comma AI OpenPilot Software.” https://github.com/commaai/openpilot, Apr.
2020.

[40] “Comma AI Driving Dataset.” https://github.com/commaai/comma2k19, Apr.
2020.

[41] Z.-x. Wang and W. Wang, “The research on edge detection algorithm of lane,”
EURASIP Journal on Image and Video Processing, 2018.

[42] “Tesla Autopilot Drives Straight Towards Concrete Barrier on Highway.”

[43] M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm for
model fitting with applications to image analysis and automated cartography,”
Communications of the ACM, 1981.

[44] “Lidar speed-measuring device performance specifications.”
https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/809811-
lidarspeedmeasuringdevice.pdf.

[45] N. Kudarauskas, “Analysis of emergency braking of a vehicle,” Transport, May
2007.

[46] “Carla.” https://github.com/carla-simulator/carla.

[47] “Vehicle automation report; tempe, az; hwy18mh010,” tech. rep., National Trans-
portation Safety Board, Office of Highway Safety, Washington D.C., 2018.

[48] “Hackers remotely kill a jeep on a highway.”
https://www.youtube.com/watch?v=MK0SrxBC1xs.

[49] “Docker security.” https://docs.docker.com/engine/security/.

[50] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated performance
comparison of virtual machines and linux containers,” IEEE International Sym-
posium on Performance Analysis of Systems and Software, 2015.

82

	Introduction
	Motivation
	The problem of safety
	An alternative to testing
	The Cost of Verification
	Small trusted bases
	Runtime monitors and safety controllers
	The problem of perception in autonomous cars
	Desiderata for a runtime monitor: choose two

	Certified Control: A New Approach
	A LiDAR-based Implementation of Certified Control

	Related Work
	Contributions

	Certified Control with Vision
	Design
	Controller
	Monitor

	Experiments
	Openpilot Implementation
	Racecar Implementation

	Evaluation
	Limitations
	Using Visual Data
	Obstructed/Unclear Lane Markings
	Lack of Time-Domain Awareness

	Combining Vision with LiDAR
	Motivation
	Design
	Experiment
	Evaluation

	Enhancing the LiDAR Monitor
	Design
	Case 1: Objects Don't Move Backwards
	Case 2: Objects Move Backwards

	Implementation
	Experiments
	Limitations and Future Work

	Strengthening Monitor Security
	Threat Model
	Design
	Sensor
	Controller
	Monitor
	Actuator

	Implementation
	Experiments and Results
	Future Work

	Conclusions and Future Work
	Results and Conclusions
	Future Work
	Increased Testing
	Addressing Complicated Scenarios
	Keeping Up-to-date with CARLA

	Final Thoughts

	Experiment with Adverse Lighting
	Collision Analysis

