
Infrastructure for Modeling and Inference
Engineering with 3D Generative Scene Graphs

by

Austin J. Garrett

B.S. Electrical Engineering and Computer Science and Physics
Massachusetts Institute of Technology, 2020

Submitted to the department of Electrical Engineering and Computer
Science in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2021

© Massachusetts Institute of Technology 2021. All rights reserved.

Signature of Author .
Department of Electrical Engineering and Computer Science

January 25, 2021

Certified by. .
Vikash K. Mansinghka

Principal Research Scientist
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

Infrastructure for Modeling and Inference Engineering with

3D Generative Scene Graphs

by

Austin J. Garrett

Submitted to the Department of Electrical Engineering and Computer Science
on January 25, 2021, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Recent advances in probabilistic programming have enabled the development of
probabilistic generative models for visual perception using a rich abstract represen-
tation of 3D scene geometry called a scene graph. However, there remain several
challenges in the practical implementation of scene graph models, including human-
editable specification, visualization, priors, structure inference, hyperparameters tun-
ing, and benchmarking. In this thesis, I describe the development of infrastructure to
enable the development and research of scene graph models by researchers and prac-
titioners. A description of a preliminary scene graph model and inference program
for 3D scene structure is provided, along with an implementation in the probabilistic
programming language Gen. Utilities for visualizing and understanding distributions
over scene graphs are developed. Synthetic enumerative tests of the posterior and
inference algorithm are conducted, and conclusions drawn for the improvement of the
proposed modeling components. Finally, I collect and analyze real-world scene graph
data, and use it to optimize model hyperparameters; the preliminary structure infer-
ence program is then tested in a structure prediction task with both the unoptimized
and optimized models.

Thesis Supervisor: Vikash K. Mansinghka
Title: Principal Research Scientist

3

4

Acknowledgments

This work was conducted with the support of an amazing team of collaborators and

mentors, and would not be possible without them. I am grateful to Marco Cusumano-

Towner for encouraging and sharpening my exploration of deep technical questions.

His genuine curiosity and passion for his work is an inspiration to always keep digging

at the hard technical problems, and to always strive for a deeper understanding. I

thank my adviser Vikash Mansinghka for his guidance in my journey through this

program. I greatly appreciate his dedication to finding and encouraging the good in

his students and collaborators, and the positive leadership example he sets by doing

so. He has patiently helped me to see the value in my own work, and as such led me

to gain a better appreciation for what it actually takes to do research.

My Master’s would not have been the same Ben Zinberg; he has been a consistent

bright light through the dark spots. I appreciate him for his collaboration on the

work in this thesis, his humor, and above all, his friendship. Rachel Paiste has been

a consistently grounding presence in the ever changing sea that has been the COVID

pandemic. Her persistent support in the more challenging of times has been an invalu-

able source of stability, for which I am incredibly grateful. I’d like to thank Nishad

Gothoskar, Falk Pollok, Aldo Pareja, and Javier Felipe Leon for their collaboration on

and work on the project leading up to this thesis. Many others members and affiliates

of MIT’s aided in the development of this thesis through discussions and interactions;

I’d like to thank Alex Lew and Tan Zhi-Xuan for growing my understanding of the

deep field of probabilistic programming, Amanda Brower for her support, and Nick

Charchut for being a bud.

Finally, none of this would’ve been possible without my parents David and Laura

Garrett, who taught me genuinity of heart and sacrificed so much to help me succeed.

Because of them, I am free to do what I love.

This research was funded by the DARPA Machine Common Sense program, under

(sub)contract CW3013540.

5

6

Contents

1 Introduction 15

1.1 Modeling with generative scene graphs 16

1.2 Summary of this thesis . 16

2 Scene Graphs 17

2.1 A scene graph model . 17

2.1.1 Computing the 6DoF poses of all objects in the scene 18

2.1.2 Modeling face-to-face contact between two objects 18

2.1.3 A prior distribution on scene graphs 19

2.1.4 Probabilistic dynamics on scene graphs 20

2.1.5 Robust pose likelihood for noisy object detections 22

2.1.6 Representation as a generative program 23

2.2 Inference over scene structure . 23

2.3 Reversible jump moves . 24

2.3.1 Representation as an inference program 25

2.4 Example application domains of scene graphs 28

2.4.1 YCB objects on a synthetic tabletop 29

2.4.2 Real YCB objects on a physical tabletop 30

3 Visualizing Scene Graphs 33

3.1 Desiderata . 33

3.2 Examples . 34

3.2.1 Visualizing a single scene graph 35

7

3.2.2 Distributions over structure beliefs 36

3.2.3 Distributions over scene graphs 38

3.2.4 Visualizing inference in a particle filter 39

4 Analysis of Posteriors and Inference by Enumeration 41

4.1 Enumerative inference . 41

4.2 Structure posterior . 42

4.2.1 Static model . 43

4.2.2 Dynamic model . 44

4.2.3 RJMCMC structure inference 46

4.3 Contact slack model . 46

4.3.1 Varying the gap between sliding objects 46

4.3.2 Hyperprior over slack standard deviation 47

4.4 Neural outlier model . 49

4.5 Lessons for improving scene graph priors 52

5 Learning and Testing from Real-World Data 53

5.1 Data specification . 53

5.2 Metrics . 56

5.2.1 Modeling: marginal likelihood 56

5.2.2 Structure inference: graph edit distance 56

5.3 Learning hyperparameters with gradient ascent 57

5.4 Inlier detection observational model 59

5.5 Testing structure inference . 61

6 Conclusion 65

6.1 Future directions . 65

8

List of Figures

2-1 Our random walk transition model on the structure of scene graphs

modifies the tree that defines the scene graph structure. Left: A tran-

sition from structure 𝐺′ to 𝐺 that makes 𝑜5 a child of the root 𝑟 instead

of object 𝑜3. In 𝐺, parametrization of the pose of 𝑜5 was previously

parametrized relative to the pose of object 𝑜3; in 𝐺′ it is parametrized

independently of the pose of the other objects. Right: The transition

on structures is reversible, and the reverse transition is unique. This

allows us to use the transition model on structure as the basis of re-

versible jump MCMC moves on structure, as well within the dynamics

model on structure. 21

2-2 Abstract representation of our scene graph model; image data is parsed

into noisy unstructured neural detections, which are modeled as obser-

vations of an underlying structured scene graph. 22

2-3 Probabilistic pseudocode for an example dynamic scene graph model 26

2-4 Custom implementation of RJMCMC algorithm for structure inference 27

2-5 Top-level inference procedure for particle filtering 28

2-6 Synthetic scenes generated using the GenSceneGraphs library in sim-

ulated dim light. The colored wireframe bounding boxes represent ob-

jects in the scene graph, and the white boxes represent contact edges

(see Chapter 3 for more detail on how this visualization was produced). 29

9

2-7 Example data from real-world scenes containing objects from the YCB

dataset. (a) and (c) show the underlying latent scene graph. (b) and

(d) show observed inaccurate pose estimates generated from the nVidia

DOPE detector. (b) in particular demonstrates the types of catas-

trophic detection and localization errors that deep neural networks

can exhibit. 30

3-1 Visualization of a synthetic scene with its abstract scene graph overlaid.

The Soft Scrub bottle is above the table, so doesn’t have an edge. . . 34

3-2 Visualization of a distribution over abstract scene graph structure using

Graphviz. 36

3-3 Various methods for visualizing multiple beliefs. Node labels are omit-

ted in the rendered structure distribution, and instead the wireframe

rendering and GraphViz node for an object 𝑜 share the same color. . 37

3-4 Visualization of sampling and rejuvenation moves in a particle filter.

A complete video of this scene can be seen at: https://www.youtube.

com/watch?v=0_0TvrGC65Q. (i) shows the first time step with the over-

laid beliefs from the initial time step prior (initialized to the observed

neural pose estimates), before structure inference. (ii) shows the be-

liefs over the first time step, after running 1 step of the rejuvenation

kernel. (iii) shows the beliefs over the second time step, after sampling

from the dynamics model. (iv) shows the beliefs over the second time

step, after running 20 steps of the rejuvenation kernel. 39

4-1 Probability that an object is sliding in a static scene with different

settings of 𝜎slack, and observed/latent vertical offset 𝑦. 42

4-2 Probability that the scene structure 𝐺𝑡 is in a “sliding” configuration

at time 𝑡, in a dynamic scene where the object’s observed position and

slack offset is given by 𝑦(𝑡) = 10 − 0.67 · 𝑡 cm, with hyperparameters

(𝜎floating, 𝜎sliding). 44

10

https://www.youtube.com/watch?v=0_0TvrGC65Q
https://www.youtube.com/watch?v=0_0TvrGC65Q

4-3 RJMCMC structure inference results. For each value of 𝑑, the approx-

imate probability of the top object sliding is inferred as the average

structure of 100 particles run with 3 iterations of the reversible jump

moves applied to the top object. 45

4-4 Posterior distribution on slack offset 𝑑. The dashed lines represent the

set of observed 𝑦 values, while the curve of the same color represents

the slack offset posterior, given the observed 𝑦 and sliding structure. 47

4-5 Joint posterior 𝑝(𝑑, 𝜎slack|𝑦 = 5.0). The dashed red line indicates the

observed position 𝑦 = 5.0 of the top object. The blue star indicates

the maximum a posteriori (𝜎*
slack, 𝑑

*). 48

4-6 Slack offset posterior for 𝑑, conditioned on 𝜎slack = 𝜎*
slack. The dashed

lines represent the set of observed 𝑦 values, while the curve of the

same color represents the posterior over slack given the observed 𝑦 and

sliding structure. 48

4-7 Posteriors over the latent pose of an object 𝑝(𝑥2|𝑦2) = 𝑝(𝑥2|𝑦2, 𝑥1 = 0),

under two different settings of the dynamics parameter. The noisy

observational model’s inlier distribution is given by 𝜎inlier = 1 cm,

while the prior probability of an outlier is 𝑝outlier = 0.1. The dashed line

represents the observed pose 𝑦2, with color representing the probability

that 𝑦2 is an outlier (totally green means 𝑝inlier = 1, while totally red

means 𝑝outlier = 1). 51

5-1 A selection of frames from 5 of the 8 captured videos. (Left) We use

a dynamic occluder to generate noise in the observed neural network

detections, in which objects have their poses estimated incorrectly, or

even flicker out of existence. (Right) Each scene is represented by

a single static scene graph, with manually annotated structure, and

object poses estimated as the average of the inlier neural detections. 55

11

5-2 Results of gradient ascent on 𝜎. (Top) shows the change in log like-

lihood ∆ℓ(𝒯 ;𝜎) = ℓ(𝒯 ;𝜎𝑡) − ℓ(𝒯 ;𝜎0). (Bottom) shows the values of

the parameters 𝜎𝑡. 58

5-3 Scatter plot of the projection of nVidia DOPE’s observed pose esti-

mates to the x and z position axes, along with corresponding marginal

histograms for each axis respectively. The plotted contour is the over-

laid noisy observation model for inlier detections (in the projection,

a 2D multivariate normal distribution), with the standard deviation

hyperparameter set to the maximum-likelihood value for 𝜎slack that we

optimized for above. 59

5-4 Example of the performance on RJMCMC on inferring the structure

posterior in a frame from scene #5. (Top) The uniform prior over scene

graph structure contains a random assortment of inaccurate classifica-

tions. (Bottom) The RJMCMC structure inference procedure predicts

the correct ground-truth structure with high probability. 61

5-5 Graph edit distance between the ground truth structure 𝐺 and the

mode �̂�* of the inferred structure posterior, for the unoptimized model

(top) and optimized model (bottom). 63

12

List of Tables

5.1 Description of data collected in our real-world experiments with YCB

objects. 54

13

14

Chapter 1

Introduction

Scene graphs have recently emerged as a proposed unifying representation for

3D scenes, that allows for structured constraints on the relative geometric poses of

objects [19, 14, 7]. Some scene graph approaches build on top of the probabilistic

programming paradigm in Bayesian statistics, which has been increasingly common

in computer vision applications [1, 5, 6, 8, 11, 17, 18, 15]. However, with the intro-

duction of this rich new representation, comes the introduction of several challenges

to the practical implementation of scene graph models. Among these challenges are:

human-editable specification, visualization, priors, structure inference, hyperparame-

ters tuning, and benchmarking. This thesis describes the development of engineering

infrastructure aimed at addressing these challenges, to enable robust exploration of

scene graph modeling and inference in a principled way.

15

1.1 Modeling with generative scene graphs

Scene graphs are a scalable representation framework for 3D scenes, with a long

history in computer graphics. They have been increasingly used as a unifying rep-

resentation for a naturalistic combined structure for communicating, rendering, ex-

ecution, and modeling in 3D graphical programs [16]. Several approaches to visual

perception have proposed that vision operates as an inverse graphics pipeline, infer-

ring the latent state of a scene from an observed generated rendered image [15, 9, 13]

Scene graph models are a natural extension of this line of research, extending modeling

to more richly structured relative relations between objects.

1.2 Summary of this thesis

The methods employed in this thesis are implemented in the probabilistic program-

ming system Gen [2]. Gen differs from other probabilistic programming systems, by

emphasizing user freedom and flexibility of implementation over automation of infer-

ence, and providing users with an interface for specifying custom inference procedures

defined on those models. This flexibility enables the development of powerful new

tools for working with complex generative programs, like those based on scene graphs.

Chapter 2 specifies the scene graph data type and a reference model, as well

as an inference procedure for estimating the underlying geometry of a scene. It

additionally provides an implementation of this model and inference procedure in Gen.

Chapter 3 describes methods for visualizing and understanding distributions over

the scene graph representation, which is part of the vital infrastructure for working

with probabilistic models that leverage it. Chapter 4 describes a set of constructed

synthetic test cases that allow us to analyze, test, and ultimately improve the behavior

of scene graph models and inference procedure. Chapter 5 leverages real-world scenes

containing YCB objects on a physical tabletop to benchmark modeling and structure

inference, and to tune scene graph model hyperparameters on real data.

16

Chapter 2

Scene Graphs

2.1 A scene graph model

We model the geometric state of a scene at a single time point as a scene graph,

which is a tuple (𝐺,Θ, 𝑍), where 𝐺 = (𝑉,𝐸) is an undirected graph that encodes

the scene graph structure and Θ encodes the scene graph continuous parameters and

𝑍 encodes the scene graph discrete parameters. Although the framework we present

can represent articulated objects, in this document we only consider scenes involving

a set of rigid objects 𝑂. The scene graph structure includes a vertex 𝑣𝑜 ∈ 𝑉 for each

object 𝑜 ∈ 𝑂 that represents the 6DoF pose of object 𝑜, as well as a vertex 𝑟 ∈ 𝑉

that represents the the coordinate frame of the observer. An edge 𝑒 = (𝑣𝑖, 𝑣𝑗) ∈ 𝐸

between objects 𝑖, 𝑗 ∈ 𝑂 encodes that the pose of object 𝑗 is parametrized relative

to the pose of object 𝑖, by parameters 𝜃𝑒 and 𝑧𝑒. The pose of object 𝑗 relative to

object 𝑖 is denoted ∆𝑥(𝑧𝑒, 𝜃𝑒) ∈ 𝑆𝐸(3). An edge 𝑒 = (𝑟, 𝑣𝑗) ∈ 𝐸 from the root to

an object 𝑗 ∈ 𝑂 encodes that the pose of object 𝑗 is not parametrized relative to

that of any object, but is instead a full 6DoF pose 𝜃𝑒 ∈ 𝑆𝐸(3) where 𝑆𝐸(3) is the

special Euclidean group consisting of all 6DoF poses. The continuous and discrete

parameters of the scene graph consist of the parameters for each edge in the structure

(Θ := {𝜃𝑒}𝑒∈𝐸 and 𝑍 := {𝑧𝑒}𝑒∈𝐸). The set of edges 𝐸 must span the set of vertices

𝑉 := {𝑟} ∪ {𝑣𝑜}𝑜∈𝑂, and be rooted at 𝑟; this condition makes the undirected tree

isomorphic to the directed forest constructed by removing the world node 𝑟.

17

2.1.1 Computing the 6DoF poses of all objects in the scene

Given a scene graph (𝐺,Θ, 𝑍) the pose 𝑥𝑖 ∈ 𝑆𝐸(3) of an object 𝑖 ∈ 𝑂 relative to

the observer coordinate frame can be computed by walking path in the tree 𝐺 from

the root vertex 𝑟 ∈ 𝑉 to the vertex 𝑣𝑖 ∈ 𝑉 , and successively computing the pose

of each object along the path from the pose of its parent (the set of all such poses

is 𝑋 := {𝑥𝑖}𝑖∈𝑂. That is, given pose 𝑥𝑢 ∈ 𝑆𝐸(3) and edge (𝑢, 𝑣) ∈ 𝐸, the pose

𝑥𝑣 ∈ 𝑆𝐸(3) is computed as 𝑥𝑣 := 𝑥𝑢 · ∆𝑥(𝑧𝑒, 𝜃𝑒) where ∆𝑥(𝑧𝑒, 𝜃𝑒) ∈ 𝑆𝐸(3) is the

relative pose between vertex 𝑢 and vertex 𝑣. For an edge from the root vertex to an

object vertex (𝑒 = (𝑟, 𝑣𝑖)), 𝑥𝑢 := 1 (the identity element of 𝑆𝐸(3)) and ∆𝑥(𝑧𝑒, 𝜃𝑒) =

𝜃𝑒 ∈ 𝑆𝐸(3) (note that there are no discrete parameters in this case, so 𝑧𝑒 := ()). The

functional form of ∆𝑥(𝑧𝑒, 𝜃𝑒) for an edge 𝑒 between two objects is discussed below.

One requirement is that ∆𝑥(𝑧𝑒, 𝜃𝑒) is a differentiable function of 𝜃𝑒; this enables

inference algorithms that exploit gradient information.

2.1.2 Modeling face-to-face contact between two objects

An edge (𝑣𝑖, 𝑣𝑗) ∈ 𝐸 from object 𝑖 to object 𝑗 indicates that the pose of object 𝑗 is

represented relative to the pose of object 𝑖. Various types of relative pose parametriza-

tions for two objects are possible; for simplicity we model objects as polyhedra, and

only model face-to-face contact between objects. That is, an edge 𝑒 = (𝑣𝑖, 𝑣𝑗) indi-

cates that a face of object 𝑖 is in contact with a face of object 𝑗. Since each object

has multiple faces, the choice of which pair of faces is in contact is encoded in the

discrete parameters 𝑧𝑒 for the edge. Concretely, let 𝐹𝑖 and 𝐹𝑗 denote the faces of

object 𝑖 and object 𝑗 respectively Then, 𝑧𝑒 ∈ 𝐹𝑖 × 𝐹𝑗. The continuous parameters

𝜃𝑒 for an edge 𝑒 between two objects is an element of R2 × [0, 2𝜋) that contains two

translational degrees of freedom (𝑥, 𝑦 ∈ R, for the relative offset of the two faces) and

one rotational degree of freedom (𝜑 ∈ [0, 2𝜋)). For example, a cuboid object 𝑖 ∈ 𝑂,

the set of faces is 𝐹𝑖 = {Top,Bottom,Left,Right,Front,Back}. For an edge 𝑒 = (𝑖, 𝑗)

where objects 𝑖, 𝑗 ∈ 𝑂 where both objects 𝑖 and 𝑗 are cuboids, there are 36 possible

values for 𝑧𝑒.

18

Slack variables for face-to-face contact We extend the parametrization of face-

to-face contact between objects with three additional degrees of freedom of slack vari-

ables : (i) one degree of freedom that encodes the perpendicular distance (𝑑 ∈ [0,∞))

between the two contact faces, and (ii) two degrees of freedom for relative orientation

of the two faces, encoded the surface normal unit vector n of the child object’s face,

relative to the parent object’s face, which takes values on the sphere 𝑆2. Therefore,

𝜃𝑒 ∈ R2 × [0, 2𝜋) × [0,∞) × 𝑆2 for an edge 𝑒 = (𝑣𝑖, 𝑣𝑗) between two objects 𝑖 and 𝑗.

Note that although this edge parametrization uses six degrees of freedom for object-

to-object edges like the edge parametrization for edges from the root (𝑒 = (𝑟, 𝑣𝑗)),

the prior distribution on these parameters (described below) encourages object 𝑗 to

be almost in face-to-face contact with object 𝑖; whereas the prior distribution on the

pose of object 𝑗 for an edge of the form (𝑟, 𝑣𝑗) is very different, and is typically a

uniform distribution over positions within the scene bounding volume, and a uniform

distribution on orientations.

2.1.3 A prior distribution on scene graphs

Various prior distributions on scene graphs are possible. In our experiments, we

use a generic prior distribution on scene graphs over a collection of objects 𝑂 that

factors into two components: (i) a prior distribution on scene graph structures 𝐺,

denoted 𝑝(𝐺), and (ii) a prior distribution on scene graph parameters (𝑍,Θ) given

structure, denoted 𝑝(𝑍,Θ|𝐺). While uncertainty about the number of objects is

possible to represent in our framework and implementation, for simplicity assume

that the set of objects is known a-priori, and that there is one vertex for each object,

and one vertex representing the observer coordinate frame, so 𝑉 is fixed a-priori to

{𝑟} ∪ {𝑣𝑜}𝑜∈𝑂. Therefore, 𝑝(𝐺) reduces to a prior distribution on edges in the scene

graph. For the prior distribution on structure, we use a uniform distribution on

undirected trees that are rooted at vertex 𝑟 and span all |𝑂|+1 vertices in the graph.

Therefore, the prior probability of a graph 𝐺 = (𝑉,𝐸) is obtained by using Cayley’s

19

formula to count the number of undirected trees on |𝑂| + 1 vertices:

𝑝(𝐺) := 𝑝unif(|𝑂|)(𝐺) :=

⎧⎨⎩ (|𝑂| + 1)1−|𝑂| if 𝐺 is a undirected tree over vertices 𝑉 rooted at 𝑟

0 otherwise
(2.1)

The prior distribution on scene graph parameters factors over the edges in the scene

graph:

𝑝(𝑍,Θ|𝐺) :=
∏︁
𝑒∈𝐸

𝑝𝑒(𝑧𝑒, 𝜃𝑒) (2.2)

where 𝑝𝑒(𝑧𝑒, 𝜃𝑒) is a probability distribution on 𝑧𝑒 and 𝜃𝑒 that depends on the two

vertices in the edge 𝑒 = (𝑢, 𝑣). For edges 𝑒 = (𝑟, 𝑣𝑗) where 𝑗 is an object, 𝑧𝑒 = () and

𝑝𝑒(𝑧𝑒, 𝜃𝑒) is the uniform distribution on elements of 𝐵×𝑆𝑂(3) where 𝐵 is the bounding

volume of the scene and 𝑆𝑂(3) is 3D rotation group (the uniform distribution on

𝑆𝑂(3) is given by the Haar measure). For edges 𝑒 = (𝑣𝑖, 𝑣𝑗) where 𝑖 and 𝑗 are objects,

recall that 𝑧𝑒 ∈ 𝐹𝑖×𝐹𝑗 and (using the edge parametrization including slack variables)

𝜃𝑒 = (𝑥, 𝑦, 𝜑, 𝑑, 𝛼1, 𝛼2) ∈ R2 × [0, 2𝜋) × [0,∞) × [0, 2𝜋)2. The prior distribution on

edge parameters is:

𝑝𝑒(𝑧𝑒, 𝜃𝑒) :=
1

|𝐹𝑖||𝐹𝑗|
· 𝑝norm(0,𝜎slidingXY)(𝑥) · 𝑝norm(0,𝜎)(𝑦) · 1

2𝜋
· 𝑝norm(0,𝜎slack)(𝛽)(𝑑) (2.3)

where 𝑝norm is the normal distribution density function.

2.1.4 Probabilistic dynamics on scene graphs

We build temporal models of scene geometry based on Markov chains of scene

graphs {(𝐺𝑡,Θ𝑡, 𝑍𝑡)}𝑇𝑡=1, where 𝑡 indexes time, with transitions 𝑝(𝐺𝑡,Θ𝑡, 𝑍𝑡|𝐺𝑡−1,Θ𝑡−1, 𝑍𝑡−1).

We factor the dynamics model on scene graphs decomposes into a dynamics model

on scene graph structure, and a dynamics on parameters:

𝑝(𝐺𝑡,Θ𝑡, 𝑍𝑡|𝐺𝑡−1,Θ𝑡−1, 𝑍𝑡−1) := 𝑝(𝐺𝑡|𝐺𝑡−1) · 𝑝(𝑍𝑡,Θ𝑡, |𝑍𝑡−1,Θ𝑡−1, 𝐺𝑡−1, 𝐺𝑡) (2.4)

20

Randomly choose:
1) a node to sever ()
2) a graft node ()

Randomly choose:
1) a node to sever ()
2) a graft node ()

Figure 2-1: Our random walk transition model on the structure of scene graphs
modifies the tree that defines the scene graph structure. Left: A transition from
structure 𝐺′ to 𝐺 that makes 𝑜5 a child of the root 𝑟 instead of object 𝑜3. In 𝐺,
parametrization of the pose of 𝑜5 was previously parametrized relative to the pose
of object 𝑜3; in 𝐺′ it is parametrized independently of the pose of the other objects.
Right: The transition on structures is reversible, and the reverse transition is unique.
This allows us to use the transition model on structure as the basis of reversible jump
MCMC moves on structure, as well within the dynamics model on structure.

The dynamics on graph structure is based on a mixture of a random walk on structures

(to capture incremental changes to the structure of a scene that often occur) and a

uniform distribution on structures (to model sudden unexpected changes in structure):

𝑝(𝐺𝑡|𝐺𝑡−1) := 0.9 · 𝑝walk(𝐺𝑡|𝐺𝑡−1) + 0.1 · 𝑝unif(|𝑂|)(𝐺𝑡) (2.5)

where 𝑝walk(𝐺
′|𝐺) is the distribution on graph structures induced by a sampling pro-

cess in which one vertex in the undirected tree is selected at random, severed from

the tree, and grafted back onto the graph at a uniformly chosen vertex, subject to

the condition that the resulting graph is a tree; Figure 2-1 shows an example of this

process. Recall that since the tree contains the root node 𝑟, this process can change

the edge type (𝑢, 𝑣𝑗) for an object 𝑖 from (𝑟, 𝑣𝑗) (representing independent 6DoF pose)

to (𝑣𝑖, 𝑣𝑗) (representing flush contact pose with another object 𝑣𝑖. The dynamics on

parameters factor according to edges in the graph:

𝑝(𝑍𝑡,Θ𝑡|𝑍𝑡−1,Θ𝑡−1, 𝐺𝑡−1, 𝐺𝑡) :=
∏︁
𝑒∈𝐸

𝑝𝑒(𝑧𝑒, 𝜃𝑒|𝐺𝑡, 𝐺𝑡−1, 𝑧𝑡−1𝑒, 𝜃𝑡−1𝑒) (2.6)

If an edge 𝑒 is present in both 𝐺𝑡 and 𝐺𝑡−1, then this distribution is a mixture of a

random walk and a uniform distribution. If an edge 𝑒 in 𝐺𝑡 was not present in 𝐺𝑡−1,

then this distribution is a uniform distribution.

21

Image Neural
Detections

Inference

Generative
Model

Scene
Graph

Neural
Network

Figure 2-2: Abstract representation of our scene graph model; image data is parsed
into noisy unstructured neural detections, which are modeled as observations of an
underlying structured scene graph.

2.1.5 Robust pose likelihood for noisy object detections

Our model differs from previous inverse graphics work in an important way; in-

stead of creating a full generative model all the way to pixel-level data, we instead

model the output of a bottom-up feature detector that estimates the poses of objects

from visual data. This was specifically motivated by the desire to leverage the power

of existing deep learning approaches to object detection, and integrate them with a

Bayesian approach. We do not justify the relative advantages of this approach in

this thesis, but it is an important feature of the model that has implications for the

forms of tests that are conducted later in the document. Figure 2-2 shows the ab-

stract pipeline for our model. Our generative model is thus grounded in attempting

to explain the output of a noisy detector, which requires us to accurately predict the

presence and distribution of “outlier” detections. In practice, the failure modes of

deep neural networks are complex and varied, and can depend on a huge range of

factors, including occlusion, lighting condition, the presence of novel objects, etc. We

provide a simple first-pass likelihood model for representing noisy bottom-up detec-

tors, and note that developing more accurate likelihoods in scene graph models is a

rich avenue for future work in this area.

We introduce a likelihood over observed object pose detections 𝑌 := {𝑦𝑜}𝑜∈𝑂 =

{(𝑦pos𝑜 , 𝑦rot𝑜)}𝑜∈𝑂. The likelihood consists of two components in a mixture model: (i)

a uniform distribution over a finite cuboid region in 3D space, and (ii) a product

of a diagonal multivariate Gaussian over object positions, and a von Mises–Fisher

distribution over rotations, represented as unit vectors in 𝑆3 (quaternions). The

22

first component represents the possibility of outlier neural “flicker”, where objects

may be properly recognized as being in the scene, but are very poorly localized. The

second component represents where the inlier cases where the neural detector roughly

captures the correct location of the object in the scene, with small local inaccuracies.

𝑝(𝑌 |𝑋, 𝜎, 𝜅) =
∏︁
𝑜∈𝑂

(︁𝑝outlier
𝐿𝑊𝐻

+ (1 − 𝑝outlier) · 𝑝norm(xposo ,𝜎inlier) (𝑦pos𝑜) · 𝑝vmf(xroto ,𝜅inlier)(𝑦
rot
𝑜)

)︁
(2.7)

2.1.6 Representation as a generative program

We implement our scene graph model in the Gen probabilistic proramming sys-

tem [2]. We leverage the dynamic DSL provided within Gen to implement the differ-

ent modeling components as modular generative functions. Figure 2-3 shows example

code of a probabilistic program that implements our scene graph model.

2.2 Inference over scene structure

When considering how to infer the posterior distribution over scene graph struc-

ture 𝐺, we might take inspiration from our graph random walk distribution 𝑝walk(𝐺𝑡|𝐺𝑡1)

to build an incremental graph modification kernel that proposes small changes to the

structure. However, when changing an edge type from 𝑒 → 𝑒′, we also induce a new set

of parameters 𝜃𝑒′ that must be simultaneously proposed or resimulated. Ultimately

these two parameterizations are just different ways to express identical absolute poses

𝑥𝑗 = 𝑥′
𝑗, as either relative to another object, or to the observer coordinate frame.

Reversible jump MCMC (RJMCMC) is a generalization of the MH algorithm that

allows moves between models with different state spaces, while reusing information

in the different model latents to accelerate inference. We provide the formulation

of RJMCMC here without proof of asymptotic correctness; for a full derivation see

Green et. al [4]. We define moves over a projection of the scene graph model to the

static case; the dynamic case can easily be extended with an additional parameter

for time.

23

2.3 Reversible jump moves

Define a set of models 𝑘 ∈ 𝒦, each with latent variables 𝜃𝑘 ∈ R𝑁𝑘 and joint density

𝑝𝑘(𝑘, 𝜃𝑘,𝒟), as well as a set of reversible jump moves 𝑚 ∈ ℳ, each of which switches

between two models 𝑘, 𝑘′ ∈ 𝒦. For each model, we have a distribution over possible

moves 𝑞𝑘(𝑚) with support over a subset of ℳ. Each reversible jump move from 𝑘 → 𝑘′

proposes a value for 𝜃𝑘′ given 𝜃𝑘, using a differentiable bijection 𝑓 . However, in general

𝑁𝑘 ̸= 𝑁𝑘′ , which prevents us from making a bijection between these two spaces. To

ameliorate this, we pad the latent spaces of both models with additional auxiliary

randomness. In the forward direction (𝑘 → 𝑘′), we sample 𝑢 ∼ 𝑞(·) where 𝑢 ∈ R𝐷𝑘 ,

and in the backward direction (𝑘′ → 𝑘), we sample 𝑢 ∼ 𝑞′(·) where 𝑢 ∈ R𝐷𝑘′ ; we

additionally require 𝑁𝑘 +𝐷𝑘 = 𝑁𝑘′ +𝐷𝑘′ such that we can define a bijection between

our two extended spaces. We then let the bijection be between these two extended

state spaces; the forward move then proposes new values (𝜃𝑘′ , 𝑢
′) = 𝑓(𝜃𝑘, 𝑢), which

we accept with probability min{1, 𝛼}, where

𝛼 =
𝑝𝑘′(𝑘

′, 𝜃𝑘′ ,𝒟)𝑞(𝑢)𝑞𝑘′(𝑚)

𝑝𝑘(𝑘, 𝜃𝑘,𝒟)𝑞′(𝑢′)𝑞𝑘(𝑚)
· |det 𝐽𝑓 | (2.8)

Because our different parameterizations ultimately represent the same absolute

poses, RJMCMC offers a way to reuse our inferred continuous parameters 𝜃𝑒 to effi-

ciently propose values for 𝜃𝑒′ . Explicitly, we define a class of reversible jump moves

parameterized by 𝑗 ∈ 𝑉 that determines which node will have a new parent pro-

posed. If 𝑗 is floating in 𝐺 = (𝑉,𝐸), then the models reachable have structure

(𝑉,𝐸 ∖ {(𝑟, 𝑗)} ∪ {(𝑖, 𝑗)}), and discrete parameter 𝑧(𝑖,𝑗) = (𝑓𝑖, 𝑓𝑗). The corresponding

moves are sampled from the distribution 𝑚sliding = (𝑖, 𝑓𝑖, 𝑓𝑗) ∼ 𝑞floating(·, ·, ·). Inversely,

if 𝑗 is sliding, then the only model reachable has structure (𝑉,𝐸 ∖ {(𝑖, 𝑗)} ∪ {(𝑟, 𝑗)}).

We call the move corresponding to this 𝑚floating, and 𝑞sliding(𝑚floating) = 1. The slack

terms mean both floating and sliding continuous parameters have 6DoF, thereby pre-

cluding the need for sampling auxiliary continuous random variables; this is the main

motivation for explicitly modeling a slack term.

The final component are the bijections. All sliding to floating moves have the

24

bijection 𝑓𝑚floating
(𝐺,Θ, 𝑍) = (𝐺′,Θ′, 𝑍 ′), where 𝐸 ′ = 𝐸 ∖{(𝑖, 𝑗)}∪{(𝑟, 𝑗)}), 𝑧′(𝑖,𝑗) = (),

and 𝜃(𝑖,𝑗) is calculated using the method described in 2.1.1. All floating to sliding

moves inversely have the bijection 𝑓(𝑖,𝑓𝑖,𝑓𝑗)(𝐺
′,Θ′, 𝑍 ′) = (𝐺,Θ, 𝑍), where 𝐸 = 𝐸 ′ ∖

{(𝑟, 𝑗)} ∪ {(𝑖, 𝑗)}), 𝑧′(𝑖,𝑗) = (𝑓𝑖, 𝑓𝑗), and 𝜃(𝑖,𝑗) is calculated as the sliding continuous

parameters given contacting faces 𝑓𝑖, 𝑓𝑗 and parent pose 𝑥𝑖, such that the absolute

pose 𝑥′
𝑗 = 𝑥𝑗.

The position parameterizations in the floating and sliding cases are both R3, and

thus the Jacobian correction is simply 1 for these subspaces. Orientations are slightly

more complex; in the floating case, the orientation is represented as a unit vector in 𝑆3

(which has a double-covering surjective homomorphism to the rotation group SO(3)).

In the sliding case, the orientation is represented as the Hopf fibration, which has

local product structure 𝑆2 × 𝑆1. This local topology means our Jacobian correction

for the transformation between these spaces is constant, and can be simply calculated

as

⃒⃒⃒
det 𝐽𝑓𝑚sliding

⃒⃒⃒
=

⃒⃒⃒
det 𝐽𝑓𝑚floating

⃒⃒⃒−1

=
𝜇(𝑆2) · 𝜇(𝑆1)

𝜇(SO(3))
=

𝜇(𝑆2) · 𝜇(𝑆1)

𝜇(𝑆3)/2
=

(4𝜋) · (2𝜋)

𝜋 · 𝜋
= 8

Gen automatically calculates the acceptance ratio for RJMCMC and makes ap-

propriate MH moves, given the involutions and associated Jacobian corrections.

2.3.1 Representation as an inference program

Gen provides an abstract interface to automatically run user-specified programmable

inference on a generative program using its built-in inference library. Among the

algorithms provided, Gen provides utilities for running RJMCMC, by specifying a

generative proposal function to generate auxiliary randomness, and an associated in-

volution function that provides the associated Jacobian correction. Figure 2-4 shows

an user-space implementation of these algorithmic components 1 , while Figure 2-5

shows how they may be used in a top-level inference procedure (ie. a particle filter).

1At the time of writing this document, Gen has added a DSL for involutive MCMC which and
provides an interface for the development of custom RJMCMC algorithms. See documentation at
https://www.gen.dev/dev/ref/mcmc/#Involutive-MCMC-1

25

https://www.gen.dev/dev/ref/mcmc/#Involutive-MCMC-1

1 @gen function model(T::Int)
2 latent_gs = []
3 for t = 1:T
4 # structure and parameter dynamics
5 if t == 1
6 structure ~ UniformUndirectedTree(N+1)
7 params ~ params_init(structure)
8 else
9 (prev_structure, prev_params) = decompose(gs[t-1])

10 structure ~ StructureTransition(prev_structure)
11 params ~ params_dynamics(structure, prev_params)
12 end
13
14 # observation
15 latent_g = SceneGraph(structure, params)
16 obs ~ noise_model(latent_g)
17 push!(latent_gs, latent_g)
18 end
19 return latent_gs
20 end

(a) Top-level scene graph model
1 @gen function init_params(structure::SimpleDiGraph)
2 params = []
3 for i in vertices(structure)
4 if isFloating(structure, i)
5 xs = {i} ~ init_floating_pose()
6 else
7 xs = {i} ~ init_sliding_pose(parent(structure, i))
8 end
9 push!(params, xs)

10 end
11 return params
12 end

(b) Parameter initialization
1 @gen function params_dynamics(structure, prev_params, hypers)
2 new_params = []
3 for i in vertices(structure)
4 if isFloating(structure, i)
5 new_xs = {i} ~ floating_pose_dynamics(prev_params[i])
6 else
7 new_xs = {i} ~ sliding_pose_dynamics(prev_params[i], parent(structure, i))
8 end
9 push!(new_params, new_xs)

10 end
11 return new_params
12 end

(c) Parameter dynamics
1 RobustNoisyPoseLikelihood = Mixture([GaussianVMF, UniformPose])
2
3 @gen function noise_model(g)
4 # use Mixture to construct a mixture of uniform and gaussian vmf with prob_outlier of being uniform
5 observed_poses = []
6 for i in vertices(g)
7 latent_pose = get_floating_pose(g, i) # get 6DoF pose for object i
8 observed_pose = {i} ~ RobustNoisyPoseLikelihood([1 - p_outlier, p_outlier],
9 [(latent_pose, inlier_pos_stdev, inlier_rot_conc),

10 (outlier_bounds,)])
11 push!(observed_poses, observed_pose)
12 end
13 return observed_poses
14 end

(d) Noisy observational model

Figure 2-3: Probabilistic pseudocode for an example dynamic scene graph model

26

1 @gen function structure_move_randomness(prev_trace, i::Int)
2 prev_structure = get_structure(prev_trace)
3 floating_to_sliding_move = isFloating(prev_structure, i)
4
5 if floating_to_sliding_move
6 prev_parent_node = ROOT_NODE_ID
7
8 # sample a new parent object from a categorical
9 probs = ones(N)

10 probs[i] = 0.0 # don’t propose to make the object its own parent
11 new_parent_node_object ~ categorical(1:N, probs ./ sum(probs))
12
13 # sample new faces from a categorical
14 box_faces = [:bottom, :top, :left, :right, :front, :back]
15 (parent_face_probs, child_face_probs) =
16 structure_move_face_distributions(prev_trace, i, parent_object)
17 parent_face ~ categorical(box_faces, parent_face_probs)
18 child_face ~ categorical(box_faces, child_face_probs)
19 else
20 prev_parent_node = parent(prev_structure, i)
21 new_parent_node = ROOT_NODE_ID
22 end
23 new_structure = replaceEdge(prev_structure, i, prev_parent_node, new_parent_node)
24 return (new_structure, floating_to_sliding_move)
25 end

(a) Generative function for sampling auxiliary randomness. In Gen, sampling the discrete
move is combined with sampling continuous auxiliary randomness in a single function.

1 function structure_move_involution(
2 prev_trace, # original sampled scene graph model
3 fwd_randomness_choices, # choices (i, f_i, f_j) sampled from structure_move_randomness
4 fwd_randomness_ret, # values returned from structure_move_randomness
5 fwd_randomness_args # arguments passed to structure_move_randomness
6)
7 i, = fwd_randomness_args
8 (new_structure, floating_to_sliding_move) = fwd_randomness_ret
9 prev_scene_graph = get_latent_scene_graph(prev_trace)

10
11 proposed_choices = choicemap() # to set proposed reversible jump moves in the trace
12 bwd_choices = choicemap() # to tell Gen which involution we’re using in the backward direction
13 proposed_choices[:structure] = new_structure
14
15 if floating_to_sliding_move
16 parent_object = fwd_randomness_choices[:parent_object]
17 parent_face = fwd_randomness_choices[:parent_face]
18 child_face = fwd_randomness_choices[:child_face]
19 sliding_choices =
20 get_equivalent_sliding_param(prev_scene_graph, parent_object, i, parent_face, child_face)
21 set_submap!(proposed_choices, :params => (:sliding, i), sliding_choices)
22 log_jacobian_correction = log(4)
23 else
24 prev_parent_object = parent(get_structure(prev_scene_graph), i)
25 (choices, prev_parent_face, prev_child_face) =
26 get_equivalent_floating_param(prev_scene_graph, prev_parent_object, i)
27 bwd_choices[:parent_object] = prev_parent_object
28 bwd_choices[:parent_face] = prev_parent_face
29 bwd_choices[:child_face] = prev_child_face
30 set_submap!(proposed_choices, :params => (:floating, i), cm)
31 log_jacobian_correction = -log(4)
32 end
33
34 # update trace with proposed values
35 args = get_args(prev_trace)
36 argdiffs = map((_) -> NoChange(), args)
37 new_trace, weight, = update(prev_trace, args, argdiffs, proposed_choices)
38 weight += log_jacobian_correction
39 return (new_trace, bwd_choices, weight)
40 end

(b) Involution for reversible jump moves

Figure 2-4: Custom implementation of RJMCMC algorithm for structure inference

27

1 function rejuvenation_kernel(traces)
2 for (i, tr) in enumerate(traces)
3 for _ in 1:iters
4 # gaussian drift, gradient search, data-driven proposals, etc.
5 tr = continuous_parameters_kernel(tr)
6
7 # our custom rjmcmc move
8 tr = rjmcmc_structure_kerenl(tr)
9 end

10 traces[i] = tr
11 end
12 end

(a) Example rejuvenation kernel for continuous and discrete parameters
1 function scenegraph_particle_filter(observed_poses::Vector{SceneGraph})
2 # generate initial trace
3 init_obs = scenegraph_to_choicemap(observed_poses[1], all_objs)
4 state = initialize_particle_filter(model, model_args, init_obs, num_particles)
5
6 # run forward model and inference
7 for t = 1:length(observed_poses)+1
8 new_obs = scenegraph_to_choicemap(observed_poses[t+1], all_objs)
9 state = rejuvenation_kernel(get_traces(state))

10 particle_filter_step!(state, (t+1,), (UnknownChange(),), new_obs)
11 end
12 return state
13 end

(b) Top-level inference code for a particle filter scene graph model.

Figure 2-5: Top-level inference procedure for particle filtering

2.4 Example application domains of scene graphs

We present some example visual perception domains where scene graphs provide

a useful abstraction for representing scene information. Our applications have thus

far been applied with a specific orientation toward two main problems: inferring

structured object relationships from unstructured poses of those objects, and robustly

filtering object poses under failures in bottom-up visual perception. Our modeling

choices were made with these goals in mind, so we focus on describing how these

features are captured by our representation. In theory, we can extend these models to

include even richer information about a scene, including dynamic physical properties

of objects, or their functional (as opposed to geometric) relationships; we leave these

and other applications for later work.

28

Figure 2-6: Synthetic scenes generated using the GenSceneGraphs library in simulated
dim light. The colored wireframe bounding boxes represent objects in the scene graph,
and the white boxes represent contact edges (see Chapter 3 for more detail on how
this visualization was produced).

2.4.1 YCB objects on a synthetic tabletop

Our scene graph abstraction is concretely implemented as a part of the GenScene-

Graphs library. This library provides facilities for constructing and manipulating

scene graphs composed of objects that can be rendered in a synthetic view. Figure 2-

6 shows a variety of example scenes generated using this library; each visualized scene

has an underlying scene graph representation that captures all relevant information.

As such, these rendered scenes show an intuitive view of what our information our

representation captures.

29

(a) YCB-Video Ground Truth (b) YCB-Video nVidia DOPE

(c) In-House Dataset (d) In-House Dataset nVidia DOPE

Figure 2-7: Example data from real-world scenes containing objects from the YCB
dataset. (a) and (c) show the underlying latent scene graph. (b) and (d) show
observed inaccurate pose estimates generated from the nVidia DOPE detector. (b)
in particular demonstrates the types of catastrophic detection and localization errors
that deep neural networks can exhibit.

2.4.2 Real YCB objects on a physical tabletop

Our scene graph representation can be used to represent information about real-

world scenes as well. Figure 2-7 shows how scene graphs can represent the underlying

poses and geometric relationships between objects in the real world. In contrast to the

synthetic scenes, the real world contains a much larger variety and range of extraneous

variables, that inject noise into visual perception systems and make inference more

difficult. Deep neural networks have shown incredibly promise in real-world object

perception. However, neural networks struggle with robustness and generalization,

30

and the presence of occluders, or even unfamiliar objects, can cause them to fail, as

Figure 2-7 also shows. Our scene graph model was designed with the goal of filtering

noisy visual perception systems, and enhancing them with structured information,

by inferring the underlying scene graph representation from a set of noisy bottom-up

detections.

31

32

Chapter 3

Visualizing Scene Graphs

Visualizing the richly structured geometric information contained in a generative

scene graph model is vital for proper debugging and analysis of modeling and infer-

ence programs. This chapter presents a series of visualization utilities for rendering

distributions over scene graphs. Thus this method serves as one of the main utili-

ties used in data-exploration (neural detections are special case scene graphs with no

edges), model development, and testing.

3.1 Desiderata

It is important to be able to clearly distinguish each part of a scene graph

(𝐺,Θ, 𝑍); as will be seen later, incorrect behavior in any part of the model or in-

ference introduces large qualitative variation in the posterior and inferred approxi-

mation. Rendering a single state estimate is a special subcase that serves as a primi-

tive for more advanced visualizations; in particular visualizations that include useful

information about distributions over scene graphs 𝑝(𝐺,Θ, 𝑍). Providing an clearly in-

terpretable view of all possible distributions is a huge task, so to simplify, the utilities

are focused on sample-based approximations of unimodal distributions over continu-

ous parameters, with relatively small numbers of structures. Common characterizing

features are the mean and uncertainty, so the visualizations are developed with the

goal of providing a clear view of these features.

33

Figure 3-1: Visualization of a synthetic scene with its abstract scene graph overlaid.
The Soft Scrub bottle is above the table, so doesn’t have an edge.

3.2 Examples

The following section proceeds with an explanation of the visualization utilities

using a series of illustrative examples. The first example lays out the primitive vi-

sualization of a single scene graph state. This is followed by a method to visualize

distributions over discrete structure. These are then combined into a series of visu-

alizations over distributions of complete scene graphs. The final example concludes

with a practical development use-case in visualizing a scene graph particle filter.

34

3.2.1 Visualizing a single scene graph

The main utility is a function that accepts an image, a scene graph (𝐺,Θ, 𝑍)

where 𝐺 = (𝑉,𝐸), and a camera configuration, and renders that scene graph as a

wireframe representation overlaid on top of the image, as viewed from the provided

camera specification. Figure 3-1 demonstrates using this function to see a synthetic

rendered scene’s underlying scene graph. For each object 𝑜 ∈ 𝑂 in the scene graph,

the function renders a colored wireframe bounding box with the dimensions of 𝑜, and

6DoF pose given by 𝑥𝑜. Importantly, this is the absolute pose of the object, including

any slack in relative contacts. Thus, the continuous parameters Θ := {𝜃𝑒}𝑒∈𝐸 are not

explicitly used in rendering, but can be distinguished in contacting objects 𝑖, 𝑗 ∈ 𝑂

by the distance in their corresponding wireframe renderings. Contact edges 𝑒 ∈ 𝐸

are visualized as white squares, located at the center of face 𝑓𝑖. Face 𝑓𝑗 is not directly

visualized, but can often be inferred from which face is closest to 𝑓𝑖. This does not

preclude potential ambiguity for certain pathological slack terms that rotate 𝑖 close

to a multiple of 𝜋/2. However, in practical modeling applications such occurrences

are rare, as sensible priors weight heavily against large slack terms.

35

Figure 3-2: Visualization of a distribution over abstract scene graph structure using
Graphviz.

3.2.2 Distributions over structure beliefs

Using the simple scene graph overlay provides a representation of a single scene

graph state, but it’s not immediately clear how to use this utility to represent distri-

butions over scene graphs. We developed a utility based off the Graphviz [3] graph

visualization library to more clearly view distributions over discrete structure. It ac-

cepts a distribution over scene graphs, and renders a specified number of the most

probable present in a scene. Figure 3-2 an example distribution, which can clearly

represent several of the most probable structures in a clear fashion. This tool can be

combined with the wireframe overlay to give rich visualizations of distributions over

scene graphs.

36

(a) Visualization of each sample’s state using the scene graph visualization utility.

(b) All 10 samples, rendered over the same image. Only the two most frequent structures
are shown.

(c) Aggregated visualization of all the samples. Only the two most frequent structures are
shown.

Figure 3-3: Various methods for visualizing multiple beliefs. Node labels are omit-
ted in the rendered structure distribution, and instead the wireframe rendering and
GraphViz node for an object 𝑜 share the same color.

37

3.2.3 Distributions over scene graphs

Finally, Using the methods to render rich views of multiple samples. To generate

the example visualization distribution, 10 scene graphs {𝒢𝑖}10𝑖=1 were generate, with

object parameters sampled from a uniform distribution centered at the graph as

seen in Figure 3-1. Figure 3-3a shows a simple form of visualizing the collection of

samples, as a collage of separate renderings of each sample. This provides the most

information, but at a glance it’s difficult to get a sense of the mean and uncertainty

of the distribution its representing.

A more information dense representation is the visualization of an aggregate of the

separate samples into a single representative scene graph “belief” 𝒢* = agg({𝒢𝑖}𝑁𝑖=1),

that is then overlaid on top of the rendered scene. This, combined with the abstract

structure visualization to improve the ability to see uncertainty in scene structure,

forms the basis for an scene graph visualization interface.

One possible aggregation method is simply taking the disjoint union agg({𝒢𝑖}𝑖∈1:𝑁) =
𝑁⨆︁
𝑖=1

𝒢𝑖. Figure 3-3b shows this has the effect of overlaying all of the beliefs on top of

the same image. This function can give a sense of the amount of uncertainty in ob-

ject positions and rotations, but obscures the underlying object, making it difficult

to determine the accuracy of the pose beliefs.

Another proposed function is agg({𝒢𝑖}𝑖∈1:𝑁) = (𝐺*,Θ*, 𝑍*), which first takes the

most probable structure 𝐺* = argmax𝐺 𝑝(𝐺,Θ, 𝑍) among the samples. The discrete

parameters 𝑍* are then selected arbitrarily from one of the graphs that has this

structure. The continuous parameters Θ* are then determined by the average of that

scene’s objects’ absolute poses 𝑥*
𝑜 = avg({𝑥(𝑖,𝑜)}𝑖∈1:𝑁) across all other samples (the

average position uses a simple sum, while the average orientation is calculated using

the method described by Markley et. al in [12]). Figure 3-3c shows an example of

this method. In contrast to the Figure 3-3b, this method clearly shows the accuracy

of pose beliefs, but loses information about uncertainty in the continuous parameters.

These trade-offs demonstrate choosing a visualization is contextually dependent on if

the accuracy or uncertainty is more relevant.

38

Figure 3-4: Visualization of sampling and rejuvenation moves in a particle filter. A
complete video of this scene can be seen at: https://www.youtube.com/watch?v=
0_0TvrGC65Q. (i) shows the first time step with the overlaid beliefs from the initial
time step prior (initialized to the observed neural pose estimates), before structure
inference. (ii) shows the beliefs over the first time step, after running 1 step of the
rejuvenation kernel. (iii) shows the beliefs over the second time step, after sampling
from the dynamics model. (iv) shows the beliefs over the second time step, after
running 20 steps of the rejuvenation kernel.

3.2.4 Visualizing inference in a particle filter

Finally, this section demonstrate a real-world application by showing the actual

usage of these visualization utilities in a particle filter with a corresponding complex

inference program. This demonstrates how the methods introduced in this chapter

can be used in practice for visualizing and debugging complex inference programs.

The scene graph model leverages the prior from 2.1.3 and dynamics from 2.1.4. Object

poses are initialized to their observed neural detections in the first time step. The

inference program is based off of a rejuvenation MCMC kernel, after sampling from

the prior for the first and second time step. This kernel is in turn composed of

an interleaved RJMCMC kernel (see 2.2) for discrete structure, and a drift kernel for

39

https://www.youtube.com/watch?v=0_0TvrGC65Q
https://www.youtube.com/watch?v=0_0TvrGC65Q

continuous parameters. The particle filter was ran with 10 particles, and 20 iterations

of the rejuvenation kernel. Figure 3-4 uses the method in Figure 3-3c to aggregate

the particle filter state into a stable visual estimate of the mean object poses, and to

view the distribution over inferred structure.

40

Chapter 4

Analysis of Posteriors and Inference

by Enumeration

In a model as complex as a generative scene graph program, it becomes essential

to carefully check and analyze the behavior of the posterior to ensure it is a good

representation of the data. This chapter describes a set of synthetic experiments

that carefully inspect isolated aspects of the model to ensure their posteriors exhibit

reasonable behavior that conforms to intuition.

4.1 Enumerative inference

In conducting an analysis of a generative scene graph program, it is useful to

inspect the posterior distribution induced by constraining some subset of the model.

Calculating the full posterior is intractable (indeed, this is why inference is necessary

in the first place). However, if most of the model’s latent variables are constrained,

it’s reasonable to enumerate over a small set of free variables, and calculate a nor-

malized density for a range of their values, which is a close approximation to the

posterior conditioned on the constrained variables. Note that this approach is limited

in its ability to examine interactions between variables, and in generality the posterior

conditioned on just the observed neural pose detections can behave radically differ-

ently from the posterior generated by constraining most of the model. Nonetheless,

41

this chapter shows that these projections can still be a rich source of information for

understanding and improving scene graph priors, especially model hyperparameters.

4.2 Structure posterior

This section looks at the model’s predictions for structure between objects, as

a function of the observed vertical offset 𝑦 between their closest faces. The analysis

conducted considers the static model and dynamic model respectively, and looks at the

behavior of the structure posterior under multiple settings of model hyperparameters.

It ultimately demonstrates the high variability of the posterior’s qualitative behavior

with respect to hyperparameters; this in turn shows the vital importance of proper

hyperparameter tuning in ensuring the correctness of scene graph models.

Figure 4-1: Probability that an object is sliding in a static scene with different settings
of 𝜎slack, and observed/latent vertical offset 𝑦.

42

4.2.1 Static model

An experimental scene was created with two objects, in order to visualize the

enumerated structure posterior for 𝐺, given an observed one-dimensional vertical

offset 𝑦 between the object’s closest faces. In the model, 𝑦 also denotes the vertical

gap in the observed object’s faces, 𝑑 denotes the sliding object’s slack offset, with

prior 𝑝norm(0,𝜎slack)(𝑑) where 𝜎slack is the hyperparameter for the slack prior (see 2.1.2

for a reminder of the slack variable model in sliding contacts). The latent parameters

are restricted to be the same as the observed poses, and the observed poses of the

objects are also taken to be the same, except for their one-dimensional offset 𝑦. The

structure prior is uniform, so all structures have equal prior probability.

Figure 4-1 shows the posterior probability that 𝐺 is in a “sliding” configuration,

given an offset 𝑦, for a few different settings of 𝜎slack. Predictably, the wider the dis-

tribution on slack, the larger a gap the model is willing to allow while still classifying

the objects as “sliding”. Note the relatively sharp transition in the sliding probability

from almost 0 to almost 1, at a discrete cutoff point; later it’s discussed if this could

be a result of a poor model for the slack variable.

43

Figure 4-2: Probability that the scene structure 𝐺𝑡 is in a “sliding” configuration at
time 𝑡, in a dynamic scene where the object’s observed position and slack offset is
given by 𝑦(𝑡) = 10 − 0.67 · 𝑡 cm, with hyperparameters (𝜎floating, 𝜎sliding).

4.2.2 Dynamic model

The second experimental scene is very similar to the first, except for the introduc-

tion of a dynamic element to examine the effect of the dynamics parameters. Across

30 time steps, the top object (and its observation) is lowered along 𝑦 from 10 cm

above the bottom object, to 10 cm interpenetrating with the bottom object. For

simplicity, the prior structure is once again uniform at each time step, and thus tem-

porally independent. Let 𝜎slack = 1 cm, and let the floating position dynamics be a

3D normal distribution with standard deviation 𝜎floating, while the sliding dynamics

are a 2D normal distribution with standard deviation 𝜎sliding.

Figure 4-2 shows the posterior probability that 𝐺𝑡 is in a “sliding” configuration,

given the observed/latent offset 𝑦, for each time step 𝑡 of the dynamic scene. Adding

44

dynamics has added completely new behavior to the structure posterior, dependent

on the additional hyperparameters. The pose displacement is always −0.67 cm every

time step, which is smaller than all values tested for 𝜎floating and 𝜎sliding, implying

that the most accurate dynamics model in this figure is the one with the tightest

distribution. The change in posterior probability in sliding structure is a consequence

of the Bayesian Occam’s Razor; the posterior probability for sliding is greatest (blue

curve) when the sliding dynamics model is much more confident (concentrated) than

the floating dynamics model, and is least in the opposite case (red curve). This is the

first instance with the Bayesian Occam’s Razor adding complications to the develop-

ment of scene graph models, but there are additional cases where the concentration

of different branches of the model has a huge impact on the behavior of the posterior.

Figure 4-3: RJMCMC structure inference results. For each value of 𝑑, the approxi-
mate probability of the top object sliding is inferred as the average structure of 100
particles run with 3 iterations of the reversible jump moves applied to the top object.

45

4.2.3 RJMCMC structure inference

This section includes a brief comparison of the RJMCMC structure inference

procedure to the enumerated posterior. This experiment replicates the scenario shown

in Figure 4-1 with 𝜎slack = 1 cm, and compares the performance of the inferred

posterior probability of a sliding structure. The figures shows RJMCMC accurately

recovers the posterior in this situation, which is a successful first test of the correctness

of the algorithmic implementation of structure inference on scene graphs.

4.3 Contact slack model

The second analysis conducted examines the enumerated posterior over the slack

offset 𝑑. Having a sensible posterior for slack variables is important for having a

reasonable model over structure; if the slack model provides a poor explanation for

any observed gap between “contacting” objects, the structured model will also provide

a poor explanation for the scene, artificially boosting the probability the model assigns

to floating structures. Recall the prior model over slack is 𝑝slack(𝑑) = 𝑝norm(0,𝜎slack)(𝑑).

4.3.1 Varying the gap between sliding objects

A similar scene to the previous section is constructed with two objects, to visualize

the enumerated slack offset posterior for 𝑑, given a fixed sliding structure. The objects

are again restricted to share the same observed pose, except for a one-dimensional

vertical offset 𝑦 between their contacting faces, but the latent offset 𝑑 in their contin-

uous parameters is left free (we enumerate over this instead). In the prior model let

𝜎slack = 1 cm, and let 𝑝inlier = 1. Denote the density over the observed vertical offset

𝑥 as 𝑝obs(𝑥|𝑦) = 𝑝norm(y,𝜎inlier)(𝑥), and let 𝜎inlier = 0.5 cm. Figure 4-4 shows the poste-

riors corresponding to various settings of the observed offset 𝑦. Because the density

𝑝(𝑑|𝐺 = sliding, 𝑦 = 𝑦) = 𝑝obs(𝑑|𝑦 = 𝑦) · 𝑝slack(𝑑) is a product of normal distributions,

the posterior is also a normal distribution, with mean located in-between the means

of the two modeling distributions. This implies the most probable gap between two

46

objects given a sliding structure is counter-intuitively in-between 0 and the observed

gap 𝑦; this may explain why there is such a sharp cutoffs in the probability of a

sliding structure in Figures 4-1 and 4-2. As the observed gap between two objects

becomes larger, the model over slack offset quickly becomes a poor explanation of the

observation. A more reasonable model would place high mass around 𝑑 = 𝑦, as this

would explain the observation most accurately.

Figure 4-4: Posterior distribution on slack offset 𝑑. The dashed lines represent the
set of observed 𝑦 values, while the curve of the same color represents the slack offset
posterior, given the observed 𝑦 and sliding structure.

4.3.2 Hyperprior over slack standard deviation

This section describes the addition of a hyperprior over 𝜎slack, to more accurately

allow for uncertainty in the size of the slack term. The slack offset is now a variable

sampled from an exponential distribution 𝜎slack ∼ 𝑝exp(0.2)(·) with rate parameter

𝜆 = 0.2. Figure 4-5 shows the joint posterior over 𝜎slack and the slack offset 𝑑, for an

observed vertical offset 𝑦 = 5 cm. The figure shows that the mode of the posterior is

located much closer to the observation than without a hyperprior over 𝜎slack. Indeed,

as seen in Figure 4-5, the posterior exhibits much more reasonable behavior when

letting 𝜎slack = 𝜎*
slack. This analysis thus concludes that adding a hyperprior over

slack is a viable way to increase the accuracy of the model with a sliding structure,

especially when the observed gap between objects is large.

47

Figure 4-5: Joint posterior 𝑝(𝑑, 𝜎slack|𝑦 = 5.0). The dashed red line indicates the
observed position 𝑦 = 5.0 of the top object. The blue star indicates the maximum a
posteriori (𝜎*

slack, 𝑑
*).

Figure 4-6: Slack offset posterior for 𝑑, conditioned on 𝜎slack = 𝜎*
slack. The dashed lines

represent the set of observed 𝑦 values, while the curve of the same color represents
the posterior over slack given the observed 𝑦 and sliding structure.

48

4.4 Neural outlier model

An essential component of the proposed scene graph model is a robust model of

the output of a neural detector. The dynamics model presented in 2.1.4 discourages

large movements in the latent poses of objects, while the prior observational model

is a simple mixture of a uniform outlier distribution over poses in a finite bounded

box region, with component 𝑝(outlier) = 0.1, and a direct product of a normal and

VMF inlier distribution, with component 𝑝(inlier) = 0.9. Ideally, the product of this

model and the dynamics model would allow the scene graph model to confidently

predict that large leaps in the latent position over a single time step are less probable

than that specific observation being an outlier “flicker” detection, sampled randomly

within the scene.

Figure 4-7 shows a scene in which an object’s observed pose jumps from a latent

position at the origin, 𝑥1 = 0, to one located a distance 𝑦2. On the left, when the

dynamics and observational model are equivalent width, the posterior predicts that

the detection is more likely to be an outlier than not at around 𝑦2 = 9.6 cm. On the

right, when the dynamics is significantly more broad than the observational model,

the posterior predicts that the detection is more likely to be an inlier, all the way

up to 50 cm = 5𝜎floating away from the previous position. The prior probability that

an object travels a distance greater than 5𝜎floating away from the mean is less than

5.73𝑒− 7, which is dramatically less than the prior probability of an object being an

outlier 𝑝(outlier) = 0.1.

The model on the right is counter-intuitively predicting that the object made an

extraordinarily unlikely jump. If we examine the log probability density functions

evaluated at the modes of the latent pose joint distributions, for the outlier and inlier

49

models respectively, we begin to see why:

log 𝑝(𝑥2 = 0, 𝑦2 = 50, outlier|𝑥1 = 0) =

log 𝑝(outlier)+

log 𝑝(𝑥2 = 0|𝑥1 = 0, outlier)+

log 𝑝(𝑦2 = 50|outlier) =

−2.303 + 10.717 − (3 · 0. + 2.289) = 6.125

log 𝑝(𝑥2 = 50, 𝑦2 = 50, inlier|𝑥1 = 0) =

log 𝑝(inlier)+

log 𝑝(𝑥2 = 50|𝑥1 = 0, inlier)+

log 𝑝(𝑦2 = 50|𝑥1 = 0, 𝑥2 = 50, inlier) =

−0.105 − 1.783 + 17.625 = 15.737

The dynamics model’s density (blue) weights heavily in favor of the observation

being an outlier. However, the inlier pose density (red) is so tightly concentrated

compared to the outlier pose model, that it dominates the calculation of the overall

model weight. The posterior tells us that the model would rather have the latent

pose make an incredibly unlikely jump, if it means it can explain the observed pose

confidently using the inlier observational model. This is another occurrence of the

Bayesian Occam’s Razor, where the most concentrated component of the model (in

this case the observation model), determines where the majority of the posterior mass

is distributed.

50

(a) Pose posteriors where
𝜎floating = 𝜎inlier = 0.01.

(b) Pose posteriors where
𝜎floating = 10𝜎inlier = 10 cm.

Figure 4-7: Posteriors over the latent pose of an object 𝑝(𝑥2|𝑦2) = 𝑝(𝑥2|𝑦2, 𝑥1 = 0),
under two different settings of the dynamics parameter. The noisy observational
model’s inlier distribution is given by 𝜎inlier = 1 cm, while the prior probability of an
outlier is 𝑝outlier = 0.1. The dashed line represents the observed pose 𝑦2, with color
representing the probability that 𝑦2 is an outlier (totally green means 𝑝inlier = 1, while
totally red means 𝑝outlier = 1).

51

4.5 Lessons for improving scene graph priors

There are two big lessons from these experiments regarding the improvement

of the scene graph model. The first lesson is that the qualitative behavior of the

posterior is highly sensitive to the proper tuning of hyperparameters. As seen in the

analysis of the structure posterior, hyperparameter settings had a crucial impact on

the performance of the model. Furthermore, this section showed how introducing

dynamics over continuous parameters impacts the posterior probability of a contact

edge existing between two objects. Interactions like these can be highly counter-

intuitive, and difficult to explore using synthetic tests like the ones explored here. It’s

for these reasons that in future development of scene graph models, training model

hyperparameters and analyzing model performance using real-world data will be a

vital step in improving accuracy. The subsequent chapter explores this further, and

especially how real-world data can be used to test and improve scene graph models.

The second lesson is the importance of considering how the relative concentra-

tions of different component distributions in the model will affect the posterior. More

specifically, the Bayesian Occam’s Razor suggests that distributions with very high

concentrations of their mass will tend to have an overinflated impact on where mass

ends up in the posterior. In the simplest case, the relative concentration of distri-

butions in different model structures have a large impact on which model structures

are more probable in the posterior. In the extreme case, this can lead to entire parts

of the prior model being neglected in favor of assigning high weights to areas that

maximize the density of the especially peaky model component. The proposed scene

graph model has a large family of possible model structures, with different contin-

uous parameter distributions of varying concentration and dimension. All of these

distributions, and their relative concentration, matter for the calculation of the struc-

ture posterior, and thus must be considered jointly in order to have a truly accurate

understanding of the posterior in the full model.

52

Chapter 5

Learning and Testing from

Real-World Data

Enumerative inference on synthetic traces can provide low-level confirmation about

basic properties of our model, under simple qualitative conditions. However, real-

world analysis provides a much richer set of possibilities in terms of analyzing and

improving our model. In this chapter, we collect a set of real-world videos containing

common household items from the YCB object dataset, along with annotated values

for all of the variables in the static (single frame) version of our model. The data is

then used in a gradient search to train a subset of hyperparameters that have thus far

been hand-selected through trial-and-error, but may not be properly tuned to model

real-world data. We also measure the performance of our proposed structure inference

algorithm on predicting the ground-truth structure from a set of object poses.

5.1 Data specification

We collect a set of experiments with static objects to analyze the model in the

static case. Noise is added via occluders that temporarily block the camera’s line

of sight to the objects. The raw video was collected using the Intel RealSense D435

RGB/Depth camera. Only the RGB information is used for the neural detector, but

depth data was collected to enable plane detection, and for future tests on models

53

containing likelihood over depth data. Observed poses are generated using the pub-

licly provided nVidia DOPE detector GitHub repository. Ground truth outlier status

is manually annotated for each frame in the collected videos. Note that using the

vertices, we can also use the scene graph structure to determine which detections are

false positives or negatives.

Ground truth structure is manually annotated once per scene, and the ground

truth poses are estimated as the average over all an object’s detected inlier poses.

While this obscures systematic bias across all neural detections in the data set, in

nonetheless provides a useful relative analysis of the stability of the neural detector in

the presence of varying levels of occlusion. This data set generation process is easily

scalable, as all it requires manually is the collection of the video, a once-per-scene

annotation of the static ground truth structure, and a per-frame annotation of which

neural detections were decently well-localized inliers. Table 5.1 lists the data collected

for each scene, while Figure 5-1 shows some representative samples from our data set.

Name Data Description

Observed

poses

(String, List[Pose]) nVidia Deep Object Pose Estimator neu-

ral detections

Ground truth

outlier status

(String, List[Bool]) Per-Frame, per-object flag indicating if an

object’s neurally generated pose estimate

is a noisy outlier

Ground truth

scene graph

Scene Graph Observed static structure, and object

poses estimated as the average of inlier de-

tections.

Table 5.1: Description of data collected in our real-world experiments with YCB
objects.

54

Figure 5-1: A selection of frames from 5 of the 8 captured videos. (Left) We use
a dynamic occluder to generate noise in the observed neural network detections, in
which objects have their poses estimated incorrectly, or even flicker out of existence.
(Right) Each scene is represented by a single static scene graph, with manually an-
notated structure, and object poses estimated as the average of the inlier neural
detections.

55

5.2 Metrics

In evaluating our scene graph model and inference procedure, we need concrete

quantitative metrics that can give us a measure how well each component performs.

We propose a two concrete metrics that can be used in benchmarking and testing:

one for modeling and the other for structure inference.

5.2.1 Modeling: marginal likelihood

The most immediate metric measuring the evidence for our model given the data is

the log likelihood. Since we’ve collected complete data for our model, the likelihood

simply ends up being the joint probability density of the trace. In Gen, given a

collection of traces 𝑡 ∈ 𝒯 and hyperparameters 𝜃, the log-likelihood is:

ℓ(𝒯 ; 𝜃) =
∑︁
𝑡∈𝒯

log 𝑝(𝑡𝑖; 𝜃)

5.2.2 Structure inference: graph edit distance

When evaluating the performance of structure inference, we would like a measure

of the similiary of the most probable inferred structure to the ground truth. This

gives a measure of how far our algorithm is from ground truth when tasked with

classifying the structure of an unambiguous scene. In particular, we simplify our

metric to how well our algorithm correctly determines which objects in a scene are

“contacting”. To do this, we reduce the structure of the predicted scene graph 𝐺1 and

target scene graph 𝐺2 to a simple set of undirected edges. The graph operations we

consider “edits” are edge addition and edge removal. Then, the edit distance is just

the size of the symmetric distance 𝐸1△𝐸2 of the edge sets, or more explicitly

Edit(𝐸1, 𝐸2) = |𝐸1△𝐸2| = |(𝐸1 ∪ 𝐸2) ∖ (𝐸1 ∩ 𝐸2)|

56

5.3 Learning hyperparameters with gradient ascent

We can perform a data-driven maximum, we can now use gradient-based opti-

mization to automatically tune the static model hyperparameters to our data, and

measure the increase in log-likelihood. We select 3 hyperparamters 𝜎 = (𝜎1, 𝜎2, 𝜎3)

to optimize over: the standard deviation 𝜎1 = 𝜎inlier for the observed 3D positions,

the standard deviation 𝜎2 = 𝜎slack for the 1D slack offsets, and the standard deviation

𝜎3 = 𝜎slidingXY for the latent (𝑥, 𝑦) contact parameters. We’d like to find

max ℓ(𝒯 ;𝜎) =
∑︁
𝑡∈𝒯

log 𝑝(𝑡;𝜎)

To do so, we perform a scheduled gradient ascent over the hyperparameters with

respect to the objective function. We initialize 𝜎0 = (0.01, 0.01, 0.25) (meters). We

run 1,000 iterations of gradient descent, and for each iteration 𝑡 we update parameters

according to

𝜎𝑡 = 𝜎𝑡−1 + 𝛼0𝑟
𝑡 · ∇𝜎𝑡−1

where 𝛼0 = 1 × 10−8 and 𝑟 = 0.999. Gen’s dynamic DSL supports automatic

calculation of gradients of the joint density evaluated on the conditioned addresses,

with respect to model hyperparameters, and for performing updates on parameters

with a provided learning rate. Thus our procedure is mostly automated once we have

the set of traces 𝒯 .

Figure 5-2 shows the results of gradient descent. The algorithm converges rather

rapidly for 𝜎inlier and 𝜎slack, but over a longer time we see 𝜎slidingXY begin to converge

as well. This longer convergence time suggests that 𝜎slidingXY may have a smaller

impact overall on the likelihood compared to the other two parameters.

57

Figure 5-2: Results of gradient ascent on 𝜎. (Top) shows the change in log likelihood
∆ℓ(𝒯 ;𝜎) = ℓ(𝒯 ;𝜎𝑡) − ℓ(𝒯 ;𝜎0). (Bottom) shows the values of the parameters 𝜎𝑡.

58

5.4 Inlier detection observational model

Figure 5-3: Scatter plot of the projection of nVidia DOPE’s observed pose estimates
to the x and z position axes, along with corresponding marginal histograms for each
axis respectively. The plotted contour is the overlaid noisy observation model for
inlier detections (in the projection, a 2D multivariate normal distribution), with the
standard deviation hyperparameter set to the maximum-likelihood value for 𝜎slack

that we optimized for above.

The lowest-level data in our static model are observations of neural object detec-

tions. A-priori, we modeled this data as a simple mixture of an “inlier” and “outlier”

distribution. We presupposed the noise for detected inlier positions would be nor-

mally distributed, with standard deviation 𝜎slack. In the last section, we jointly fit this

hyperparameter with two others, which gives us a tuned version of our inlier model.

Figure 5-3 provides a comparison of a simple observational model in the positional

dimensions, fit to maximum likelihood with respect to inlier pose detections. We note

59

a few details from this plot, and what they suggest for the observational model.

The first is that the distribution systematically overestimates the number of ob-

servations in the “middle” part of the space. A large number of detected poses are

either highly concentrated around the mean detection, or are much further out in the

tails of the distribution. A normal distribution may not be the most accurate model

of the behavior of the neural detector; a distribution with heavier tails, such as a

Cauchy, is likely to better model of the detected positions.

The second is the presence of “clusters” of erroneous detections that suggest fail-

ures in the neural detectors are strongly correlated across time. Indeed, the high

concentration of poses around the average inlier detection means that there could be

substantial correlated systematic error in an object’s detection across an entire scene,

that is not shown in Figure 5-3. For example, the average inlier pose detection for the

Domino sugar box presented on the right side of the fourth row in Figure 5-1 is visibly

mis-estimated. Assuming that observational noise is falsely uncorrelated can bias our

posterior latent pose to be centered around a systematically wrong detection. It may

instead be possible to model the correlation between these errors, and use additional

information from the image, like the presence of occluders, to obtain a more accurate

estimate of the true object pose.

60

5.5 Testing structure inference

Figure 5-4: Example of the performance on RJMCMC on inferring the structure pos-
terior in a frame from scene #5. (Top) The uniform prior over scene graph structure
contains a random assortment of inaccurate classifications. (Bottom) The RJMCMC
structure inference procedure predicts the correct ground-truth structure with high
probability.

Finally, we use our real-world data to evaluate the performance of our RJMCMC

procedure for structure inference, on the posterior for our unoptimized and optimized

models. We aim to see how well our procedure is able to classify the ground truth

structure, given the correct latent poses of the objects in a scene1 However, we only

have the ground truth poses for 8 unique static scenes, which limits the number of

independent trials we can perform.

To ameliorate this, we augment the data with some sampled noise. When perform-

ing continuous parameter inference our latent pose posterior will have some non-zero

width, meaning we should allow for some variability in the estimated underlying pose,

without significantly changing the structure posterior. To simulate this, we augment

1We omitted extending this gradient search to latent poses, due to an implementation challenge
in propagating gradients through custom data structures in Gen. These missing features, if fixed,
would allow inferring continuous parameters in the inlier case via gradient-based methods, enabling
efficient full scene graph inference.

61

our data by very slightly perturbing the latent poses for each frame, without qual-

itatively changing the underlying scene graph that best explains these latent poses;

the position is perturbed by gaussian noise sampled with a standard deviation of

0.5 cm, and the orientation is perturbed by VMF noise sampled with concentration

parameter 4000. This adds enough variability to give a more robust test of our struc-

ture inference algorithm, especially when comparing the unoptimized and optimized

models.

For each frame, we set the static model trace to the underlying scene graph in 5

independent particles. For each particle, we then resample the scene graph structure

𝐺 and discrete parameters 𝑍 from a uniform prior, without changing the absolute

6DoF poses or observations for each object. We then sweep our reversible jump

structure move across all objects 𝑂 for 5 iterations. Figure 5-5 shows the graph edit

distance between the ground-truth structure and the most frequent structure among

the particles, in the unoptimized and optimized case respectively. Figure 5-4 shows

an example of the prior structure and inferred posterior respectively for a frame in

sequence #5. Inference in both cases consistently finds a structure within two edges

of the ground-truth, and most often finds the correct structure.

The optimized procedure performs marginally better than the unoptimized case,

although the difference is minimal. Given this, and the fact that our hyperparameters

didn’t change much in the gradient ascent procedure, suggests that our hand-tuned

values were already decent to begin with, at least with respect to the structure pos-

terior. Recall that in our synthetic analysis of these hyperparameters shown in Fig-

ure 4-1, the posterior probability of an edge between two objects transitions rather

sharply between 0 and 1, depending on the distance of their contacting faces. We

might then expect that for a range of “decently-tuned” hyperparameter values, the

structure posterior would perform roughly the same, with a sharp decrease in model

performance once the hyperparmeters fell out of this range.

62

Figure 5-5: Graph edit distance between the ground truth structure 𝐺 and the mode
�̂�* of the inferred structure posterior, for the unoptimized model (top) and optimized
model (bottom).

63

64

Chapter 6

Conclusion

This thesis has focused extensively on developing utilities and infrastructure for

working with generative scene graphs in a practical and principled way. We’ve shown

the implementation of a preliminary dynamic scene graph model, and structure in-

ference procedure in the probabilistic programming system Gen. We’ve developed

capabilities for visualizing and understanding distributions over scene graphs. We’ve

analyzed and benchmarked subcomponents of our scene graph model, demonstrating

methods for improving complex generative scene graph programs. Finally, we col-

lected real-world data to train and test the accuracy of scene graph modeling and

inference, while

6.1 Future directions

The capabilities developed in this thesis are sufficient for future researchers and

engineers to explore a wide range of exciting basic research and applications in 3D

generative scene graph modeling and inference. We discuss some future directions

that can build off this work in applying generative scene graph models.

Filtering over noisy neural object detections We introduced a novel likelihood

that models the output of bottom-up deep neural pose detectors. The accuracy of

the such a model crucially depends on our ability to infer and correct failures that

65

are present in neural detections. This work made initial steps toward improving the

prior and likelihood models, but robustly inferring clean 3D scene structure from

noisy neural detections remains a key challenge, that is now approachable with this

infrastructure.

Random scene generation Generating random “realistic” scenes is a key simu-

lation and synthetic data generation problem. Properly tuned scene graph priors

can be used to generate random scenes with controllable variability. Combining hy-

perparameter learning over specifiable semantic constraints on the relationships of

objects allows an expressive class of models that can be replicate essential features

of real-world scenes. Such data could be used in a wide variety of applications, from

synthetic data augmentation, to world generation in video games.

Cognitive architecture for common sense The hypothesis that probabilistic

generative models can replicate naturalistic intuition and commonsense reasoning

extends from a Bayesian interpretation of cognitive science [10]. This work was com-

pleted as part of the Cora project at MIT, whose mission is to develop a system

for common-sense reasoning, leveraging modern probabilistic programming systems.

With utilities for practically developing and testing scene graph models, we lower the

barrier to using them as a central representation in a cognitively-inspired architecture.

Picture 2.0: adding motion and scene graphs Picture offered one of the

domain-specific probabilistic programming languages for visual scene perception [8].

The original language focused on simply-structured, closed-universe representations

of single-frame scenes. Scene graph models offer the potential for a more extensible

scene perception language, expanding the scope of possible models to a dynamic,

open-universe that is categorically more expressive.

66

Bibliography

[1] Peter W Battaglia, Jessica B Hamrick, and Joshua B Tenenbaum. Simulation as
an engine of physical scene understanding. Proceedings of the National Academy
of Sciences, 110(45):18327–18332, 2013.

[2] Marco F. Cusumano-Towner, Feras A. Saad, Alexander K. Lew, and Vikash K.
Mansinghka. Gen: A general-purpose probabilistic programming system with
programmable inference. In Proceedings of the 40th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2019, pages 221–
236, New York, NY, USA, 2019. ACM.

[3] John Ellson, Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and
Gordon Woodhull. Graphviz and dynagraph – static and dynamic graph drawing
tools. In GRAPH DRAWING SOFTWARE, pages 127–148. Springer-Verlag,
2003.

[4] Peter J Green and David I Hastie. Reversible jump mcmc. Genetics, 155(3):1391–
1403, 2009.

[5] Gregory Izatt and Russ Tedrake. Generative modeling of environments with
scene grammars and variational inference. In 2020 IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 6891–6897. IEEE, 2020.

[6] Varun Jampani, Sebastian Nowozin, Matthew Loper, and Peter V Gehler. The
informed sampler: A discriminative approach to bayesian inference in generative
computer vision models. Computer Vision and Image Understanding, 136:32–44,
2015.

[7] Justin Johnson, Agrim Gupta, and Li Fei-Fei. Image generation from scene
graphs. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1219–1228, 2018.

[8] Tejas D Kulkarni, Pushmeet Kohli, Joshua B Tenenbaum, and Vikash Mans-
inghka. Picture: A probabilistic programming language for scene perception. In
Proceedings of the ieee conference on computer vision and pattern recognition,
pages 4390–4399, 2015.

[9] Tejas D. Kulkarni, Will Whitney, Pushmeet Kohli, and Joshua B. Tenenbaum.
Deep convolutional inverse graphics network. CoRR, abs/1503.03167, 2015.

67

[10] Thomas L Griffiths, Charles Kemp, and Joshua B Tenenbaum. Bayesian models
of cognition. 2008.

[11] Vikash K Mansinghka, Tejas D Kulkarni, Yura N Perov, and Joshua B Tenen-
baum. Approximate bayesian image interpretation using generative probabilistic
graphics programs. arXiv preprint arXiv:1307.0060, 2013.

[12] F Landis Markley, Yang Cheng, John L Crassidis, and Yaakov Oshman. Averag-
ing quaternions. Journal of Guidance, Control, and Dynamics, 30(4):1193–1197,
2007.

[13] Pol Moreno, Christopher KI Williams, Charlie Nash, and Pushmeet Kohli. Over-
coming occlusion with inverse graphics. In European Conference on Computer
Vision, pages 170–185. Springer, 2016.

[14] Moshiko Raboh, Roei Herzig, Jonathan Berant, Gal Chechik, and Amir Glober-
son. Differentiable scene graphs. In Proceedings of the IEEE/CVF Winter Con-
ference on Applications of Computer Vision, pages 1488–1497, 2020.

[15] Lukasz Romaszko, Christopher KI Williams, Pol Moreno, and Pushmeet Kohli.
Vision-as-inverse-graphics: Obtaining a rich 3d explanation of a scene from a
single image. In Proceedings of the IEEE International Conference on Computer
Vision Workshops, pages 851–859, 2017.

[16] Henry Sowizral. Scene graphs in the new millennium. IEEE Computer Graphics
and Applications, 20(1):56–57, 2000.

[17] Jiajun Wu, Erika Lu, Pushmeet Kohli, Bill Freeman, and Josh Tenenbaum.
Learning to see physics via visual de-animation. In NIPS, pages 153–164, 2017.

[18] Jiajun Wu, Joshua B Tenenbaum, and Pushmeet Kohli. Neural scene de-
rendering. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 699–707, 2017.

[19] Ben Zinberg, Marco F. Cusumano-Towner, and Vikash K. Mansignhka. Struc-
tured differentiable models of 3d scenes via generative scene graphs. NeurIPS,
2019.

68

	Introduction
	Modeling with generative scene graphs
	Summary of this thesis

	Scene Graphs
	A scene graph model
	Computing the 6DoF poses of all objects in the scene
	Modeling face-to-face contact between two objects
	A prior distribution on scene graphs
	Probabilistic dynamics on scene graphs
	Robust pose likelihood for noisy object detections
	Representation as a generative program

	Inference over scene structure
	Reversible jump moves
	Representation as an inference program

	Example application domains of scene graphs
	YCB objects on a synthetic tabletop
	Real YCB objects on a physical tabletop

	Visualizing Scene Graphs
	Desiderata
	Examples
	Visualizing a single scene graph
	Distributions over structure beliefs
	Distributions over scene graphs
	Visualizing inference in a particle filter

	Analysis of Posteriors and Inference by Enumeration
	Enumerative inference
	Structure posterior
	Static model
	Dynamic model
	RJMCMC structure inference

	Contact slack model
	Varying the gap between sliding objects
	Hyperprior over slack standard deviation

	Neural outlier model
	Lessons for improving scene graph priors

	Learning and Testing from Real-World Data
	Data specification
	Metrics
	Modeling: marginal likelihood
	Structure inference: graph edit distance

	Learning hyperparameters with gradient ascent
	Inlier detection observational model
	Testing structure inference

	Conclusion
	Future directions

