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Abstract

Concurrent hash tables are among the most important primitives in concurrent pro-
gramming and have been extensively studied in the literature. Robin Hood hashing is
a variant of linear probing that moves around keys to reduce probe distances. It has
been used to develop state of the art serial hash tables. However, there is only one
existing previous work on a concurrent Robin Hood table. The difficulty in making
Robin Hood concurrent lies in the potential for large memory reorganization by the
different table operations. This thesis presents Bolt, a concurrent resizable Robin
Hood hash table engineered for high performance. Bolt treads an intricate balance
between an atomic fast path and a locking slow path to facilitate concurrency. It uses
a novel scheme to interleave the two without compromising correctness in the concur-
rent setting. It maintains the low expected probe count and good cache locality of
Robin Hood hashing. We compared Bolt to a wide range of existing concurrent hash
tables in a comprehensive benchmark. We demonstrate that on a 36-core machine
with hyper-threading, Bolt is between 1.57x - 1.73x faster than the fastest publicly
available non-resizable concurrent hash table and 1.45 - 2x faster than the fastest pub-
licly available concurrent resizable hash table. It also achieves speedups between 15x -
35x over a highly optimized serial implementation at 36-cores with hyper-threading.

Thesis Supervisor: Julian Shun
Title: Assistant Professor
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Chapter 1

Introduction

Concurrent data structures are data structures that allow multiple threads to operate

on them with proper correctness guarantees. Making them performant has become

increasingly important in recent years due to the end of CPU frequency scaling and

the shift towards multiprocessor machines. Concurrent data structures are inherently

more challenging to implement properly than their sequential counterparts because

of the complexity of the interactions between different threads and the underlying

memory model.

A hash table is a fundamental, flexible, and dynamic data structure that stores

a mapping from keys to data. The operations commonly provided are insert, find,

and delete. It is an important data structure for sharing data between threads in

the concurrent setting. A hash table uses a hash function to compute an index for a

key and uses it to look up the associated data. A hash table has to handle collisions

that occur when two keys map to the same index. The two common methods for

resolving collisions are hash chaining and open addressing.

Hash chaining constructs an associated list per index for elements that collide in

the table. To look for a colliding key’s corresponding data, the key is hashed to its

index, and then the corresponding list is searched. Open addressing, on the other

hand, places colliding keys in nearby slots directly within the table. There are many

variations of open addressing that differ in how they find slots for colliding keys. The

most popular approach is linear probing, which linearly searches for an empty slot

13



starting from the hash index.

Robin Hood Hashing [3] is a variant of open addressing that seeks to minimize

variance of distances of keys to their hashed index, which is referred to as the probe

distance. It does so by moving around keys in the table. Robin Hood Hashing has

strong guarantees on the distribution of the probe distance across the table, which

allows unsuccessful find operations to stop early without encountering an empty slot,

unlike in linear probing.

Low variance of the probe distance is well suited for branch prediction and cache

utilization. Because Robin Hood’s operations proceed linearly in memory and the

probe distance is low, serial Robin Hood should perform well on modern CPU ar-

chitecture. It also has a natural solution for deletions that allow deleted slots to

be reclaimed. Indeed, Ska [12] shows that Robin Hood can be used to develop a

state-of–of-the–the-art hash table in the serial context.

However, Robin Hood hash table is difficult to make concurrent in a performant

way because each operation may move around large amounts of memory. This is

problematic because modern CPU architectures only support moving 16 bytes of

memory atomically, which is only enough to fit one key and its associated value. In

addition, Robin Hood imposes strong requirements on how keys are laid out in the

table, which is challenging to maintain in the concurrent context.

Kelly et al. present the only existing concurrent implementation of Robin Hood

[5]. However, it has poor performance, doesn’t support associating values with keys,

and lacks support for resizing, which is necessary when the table fills up.

In this thesis, we present Bolt, a re-sizable concurrent version of a Robin Hood

hash table. Bolt is engineered for high performance. Bolt treads an intricate balance

between an atomic "fast path" and a locking "slow path" to facilitate concurrency.

It uses a novel scheme to interleave the two without compromising correctness in the

concurrent setting.

Bolt’s key insight is to distinguish between operations that can be resolved by

looking at the location where the key hashes to, the distance zero slot, and opera-

tions that can’t. In the former case, there is a fast path that bypasses locks and uses

14



atomic instructions to execute the operation. This is the common case for reasonable

load factors (≤ 0.6).

In Bolt, the table is divided into segments, each of which is protected by a lock.

Operations that can be resolved by looking at the distance zero slot bypass the locks

and directly operate on memory. Operations that require multiple memory look-ups

take locks to properly interact with other operations operating over the same memory

region. The complexity arises from the interaction between threads executing the

locked path and the non locked path. Most of our find operations resolve using one

atomic load, which makes them very fast. We also support updating the values of

existing keys, which is done without locks in the fast path.

Bolt has very low overhead to support resizing because of a novel heuristic we

developed that approximates how full the table is. This is based on counting the

number of keys that are misplaced from their distance zero slot concurrently.

We conduct extensive experiments across the different operations of the table on

both uniform and contented use cases. We demonstrate that on a 36-core machine

with hyper-threading, Bolt is between 1.57x - 1.73x faster than the fastest publically

available non-resizable concurrent hash table (folklore[8]) and 1.45 - 2x faster than the

fastest publically available concurrent resizable hash table (growt[8]). It also achieves

speedups between 15x - 35x over a highly optimized serial implementation at 36-cores

with hyper-threading.

Chapter 2 gives background on serial Robin Hood and related work. Chapter 3

establishes the different structures utilized in Bolt and the API. Chapter 4 discusses

the non-resizable version of Bolt. Chapter 5 argues the correctness of Bolt. Chapter

6 describes the modifications necessary to support resizing. Chapter 7 demonstrates

the performance of Bolt in a comprehensive benchmark against the fastest existing

tables and other widely used hash tables. Finally, chapter 8 concludes the thesis.
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1.1 Terminology

Compare and set (CAS) is a hardware supported instruction that allows atomically

comparing up to 16 bytes of memory to an expected value and changing it atomically

if it matches. We refer to the 16-byte version as CAS in this thesis.

Robin Hood is a variant of linear probing that serves as the backbone of our

implementation. Its described in section 2.1.

Lock-free is a property of an algorithm that requires at least one thread to make

progress at any point in time. Locks violate this property as a thread might stop

making progress and fail to release them, blocking other threads.

1.2 Related work

Maier et al. propose Growt [8], a state of the art concurrent resizable hash table based

on folklore [8], a highly optimized concurrent linear probing hash table. Growt’s op-

erations are lock-free, except resizing. Growt has low complexity and excellent per-

formance. However, the standard linear probing it employs suffers from high variance

in probe distances affecting its performance. Moreover, its delete implementation

doesn’t reclaim slots, which negatively affects the performance of inserts and finds.

A future resize is required to reclaim the deleted slots.

Li et al. [6] present a concurrent resizable cuckoo table that uses fine-grained

locking per bucket for correctness. To reduce the number of acquired locks, they use

a BFS-based algorithm to find each key’s minimal displacement path from its current

slot due to a cuckoo eviction.

Shun et al. [11] develop a phase concurrent deterministic hash table based on linear

probing that supports one operation within a synchronized phase. They exploit the

phase concurrency to implement a linear probing table in a fast and deterministic

way. Because the implementation rearranges the table for inserts and deletes, the

phase aspect is necessary to prevent finds from missing keys in the table.

Junction [10] is a popular re-sizable concurrent hash table that requires an in-
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vertible hash function and claims memory through quiescent-state-based reclamation

(QSBR) protocol. This requires the user to regularly call a designated function.

Kelly et al. [5] present a lock-free concurrent Robin hood hash set without support

for resizing. A hash set is a special case of a hash table where no values are associated

with keys. It uses the K-CAS [2] primitive which allows changing multiple memory

locations atomically and timestamps to make each operation atomic. In our measure-

ments, we found K-CAS Robin Hood to have poor portability and high performance

overhead. To our knowledge, this is the only existing concurrent implementation of

a Robin Hood hash set, and no concurrent implementation exists that also supports

resizing.
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Chapter 2

Background

2.1 Robin Hood Background

Robin Hood hashing was a relatively obscure collision handling method invented in

1986 [3] that has recently gained popularity in part through Rust, which adopted

Robin Hood as its standard hash table. Ska [12] demonstrates that Robin Hood can

be used to develop a state of art hash table that outperforms Google’s dense hash

map significantly. Robin Hood is based on the concept of stealing from the "rich"

and giving it to the "poor". In this case, the rich are elements of the hash table

located close to their hash slot, while the poor are located far from it. All entries of

a Robin Hood hash table maintain their distance from their original slot: the probe

distance. When new keys are inserted into the hash table, the incoming key’s current

probe distance is compared with each consecutive slot’s key’s probe distance until one

with a smaller probe distance is found. When such a key is found, the incoming key

replaces the key. The evicted key then begins looking for a new slot. Wraparounds

are allowed to deal with keys that hash close to the end of the array as in linear

probing. The process repeats until the last moving entry finds an empty slot. This

process can be visualized in figure 2-1.

For key lookups, the Robin Hood heuristic offers the benefit of pruning searches,

which is especially effective for keys that don’t exist in the table. A lookup proceeds

as follows. Robin Hood maintains the probe distance for a key as the key is searched.
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Figure 2-1: Inserting D with the Robin Hood heuristic. The under script represents
the current probe distance. D starts from its hashed slot to find a slot to insert itself
in (2). It keeps moving right until it encounters an element whose probe distance is
lower than D’s current probe distance (4). D swaps with C, and C goes to find a new
slot (5). It encounters an empty slot in (6), which completes the insert.

If a slot whose entry’s distance is smaller is found during the linear scan, then the key

cannot exist in the table. This is because if the key did exist, it would have a probe

distance of at most the scanned entries. This is referred to as the Robin Hood

Invariant. A successful lookup is visualized in figure 2-2. Unsuccessful lookup is

visualized in figure 2-3.

Figure 2-2: A successful lookup for key E using the Robin Hood heuristic. The find
operation for key E starts from its hash slot. It iterates right past keys whose probe
distance is lower than E’s current probe distance (1 - 3). It finally finds E in (4).

Finally, deletes work by finding the desired key and removing the entry from the

hash table. Instead of opting for a tombstone approach as is typical in linear probing

and leaving “holes” in the hash table that can’t be reused, Robin Hood hashing

backshifts all entries to the right of the removed entry that are not in their hashed

slot by one as to maintain the Robin Hood invariant and reduce probe distance. This

is visualized in Figure 2-4.

Robin Hood hashing achieves amortized constant time in operations and boasts

20



Figure 2-3: An unsuccessful lookup for key E using the Robin Hood heuristic. The
find operation for E starts from its hashed slot and iterates right until it encounters
D, which has a higher prob distance without encountering E (1 - 4). Because of the
Robin Hood invariant, its not possible for E to exist. Thus the search for E ends.
Unlike linear probing, reaching an empty slot to terminate the find was not necessary.

Figure 2-4: Deleting an element with the Robin Hood heuristic. After A is deleted,
B,C and D are shifted back since they are at not at their hashed slot and there is no
empty key between A and them (1 - 5). F remains at its hashed slot.

𝒪(log 𝑛) time [3] with high probability for a constant load factor < 1. It is cache-

friendly due to good locality and performs well under high load because it minimizes

variances of probe distances.

2.2 Challenges

The challenge of making the serial Robin Hood hash table concurrent lies in the

nature of the algorithm used to enforce the Robin Hood invariant in insertions and

deletions: it can potentially modify large amounts of memory. Keys that already

existed in the table can go temporarily missing during an insert since it does a local

reorganization of the table to enforce the invariant. Concurrent operations have to

properly handle this, which requires some level of communication between different
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threads about keys that are being moved. Note this problem does not happen in the

basic version of linear probing since existing keys will not be moved unless they are

deleted.

Delete shifts keys back, while find operates forward in the table. As a result, a

concurrent find can misses keys that are shifted to a region that it has already scanned

due to a concurrent delete.

There are multiple solutions to these problems. A read/writer lock to protect

indices of the table is the most straightforward one. However, care has to be made to

avoid deadlocks in this solution; for example, this can happen if an operation wraps

around the table, potentially taking locks in a non-increasing order. There is also per-

formance scalability to locks that can hamper performance, since they require memory

bandwidth, which is a limitation factor at high cores counts. Skewed distributions

are especially problematic for lock-based approaches since many threads will con-

tend for the same locks, causing massive performance deterioration and performance

serialization.

Another solution adopted by K-CAS Robin Hood [5] is to use K-CAS [2],which

allows atomically modifying large regions of memory. The limitation of this approach

is that K-CAS is an expensive operator, which results in a performance penalty. It

also poor contention mitigation since concurrent K-CAS operations in the same region

will fail.

There are also problems not unique to Robin Hood that cause performance limi-

tations in concurrent hash tables stemming from memory bandwidth limitations that

we address.

2.3 K-CAS Robin Hood

Kelly et al. present K-CAS Robin Hood [5], which is a concurrent Robin Hood hash

set algorithm. A hash set is a special case of a hash table where only the key is stored.

The implementation maintains Robin Hood’s properties in the concurrent context,

including low expected probe distance and early search culling.
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K-CAS [2] is a multiword compare and swap operation on K distinct memory

locations that either succeed or fail together. Traditionally, K-CAS requires memory

reclaimers, making it expensive to use in the concurrent context. K-CAS Robin Hood

uses a variant developed by Arbel-Raviv and Brown [5] that doesn’t require a memory

reclaimer system.

K-CAS Robin Hood uses K-CAS to modify the memory moved by insertion and

deletion atomically. This guarantees that insertion and deletion will be atomic with

respect to each other. The find operation doesn’t use a K-CAS, so K-CAS’s guarantees

don’t apply. Therefore it’s necessary to also have timestamps that are sharded across

the table. More specifically, the table is split into multiple contagious shards, and

there is a timestamp associated with each shard. The timestamps are updated when

the update operations modify the underlying shard. A find operation has to collect

the shards’ timestamps and verify that they have not changed if it doesn’t successfully

find the key.

We found K-CAS Robin Hood to be orders of magnitude slower than Bolt in our

measurements, which we suspect is due to K-CAS’s high overhead. Because K-CAS

Robin Hood is a hash set, it also doesn’t support storing values for the key while

Bolt does. This gives it less functionality, and a significant unfair advantage in the

concurrent context than a hash table since atomically moving 8 bytes of memory

(corresponding to a key) is cheaper than 16 bytes (a key and value). It also requires

less memory bandwidth, which is the limiting factor for performance at high core

counts. K-CAS Robin Hood doesn’t support resizing, which would have added over-

head. Even with all these advantages, Bolt significantly outperforms K-CAS Robin

Hood. However, K-CAS Robin Hood is lock-free while Bolt is not. This provides

stronger guarantees in terms of progress.

Bolt doesn’t use K-CAS to rearrange memory; it instead uses a combination of

compare and set (CAS) primitive to rearrange memory in the fast path and locks

in the slow path. This allows it to be significantly faster and more portable than

K-CAS Robin Hood. The main design similarity between K-CAS and Bolt is the use

of timestamps. We also employ version numbers in a similar way. However, our find
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operation has a fast path that doesn’t require checking the version numbers regardless

of whether the key is found or not.
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Chapter 3

Preliminaries

In this chapter, we give a high-level overview of Bolt and its different components.

We describe the data structures utilized by Bolt in section 3.1, and the structure of

Bolt and its underlying serial implementation in section 3.2. We then provide the

API and helper functions in the section 3.3.

3.1 Underlying Data Structures

3.1.1 Lock Manager

Our algorithm treads an intricate balance between slow paths that use locks and fast

paths that don’t. We need a well-crafted locking scheme to make the interaction

work. The lock manager data structure is used to implement that mechanism. At

a high level, we divide the array into multiple contiguous segments, each of which is

protected by a different lock.

Each thread has its own lock manager; however, the underlying locks that are

managed are the same between all threads to facilitate synchronization. Each lock

has an associated version number, which is increased atomically when the lock is

taken.

The lock manager API is as follows:
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lock(index) The lock function attempts to acquire the index’s lock.

Blocks until the lock is acquired.

speculate(index) Speculate returns whether the index’s lock is free and

internally records the version number for that index.

finish_speculate() Returns true if locks speculated upon through specu-

late(index) have been grabbed between this function call

and the first speculate(index) call. Returns false other-

wise. Calling this function expunges all speculated in-

dexes for a given thread.

release_locks() Releases all acquired locks.

3.1.2 Thread Handlers

The hash-table is accessed through thread-local handlers. The handler object also has

thread-local objects to facilitate table accesses, including thread-local lock manager

operations. A thread grabs a handler the first time it accesses the table. It releases

it when it’s done using the table.

3.2 Bolt Table

We are now ready to describe the details of Bolt. Bolt is a resizable Hash table based

on the Robin Hood heuristic, which seeks to minimize the variance of probe distances

across the hash table. Through the Robin Hood invariant, we improve the perfor-

mance of finds by terminating them early. The hash table’s tail performance improves

because probe distances are balanced across the table. Bolt is engineered for high

performance and scalability and comes with contention and NUMA optimizations.

Bolt is based on an intricate balance between an atomic "fast path" and a locking

slow path to create a fast and highly scalable concurrent hashtable.

The key insight in Bolt is to make a distinction between insertions and finds that

can be resolved by looking at the location where the key hashes to, i.e., the distance

zero slot. In that case, there is a fast path that bypasses locks. This is the common
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case for reasonable load factors (≤ 0.6).

In Bolt, the table is divided into segments, each of which is protected by a lock.

Operations that can be resolved by looking at the distance zero slot bypass the locks

and directly operate on memory. Operations that require multiple memory look-ups

take locks to properly interact with other operations operating over the same memory

region. The complexity arises from the interaction between threads executing the

locked path and the non locked path. Most of our find operations resolve using

one atomic load, which makes them very fast. We employ version numbers that are

embedded in the locks and change when the locks are grabbed in the slow path. A

find operation that requires multiple memory loads records the version number of

each segment it reads through and verifies they have not changed at the end of the

operation. We designed the segment version numbers to only change in the slow

path even under high contention, which allows the find operation to be fast. We also

support updating the values of existing keys, which is done without locks in the fast

path.

3.2.1 Bolt Structure

The underlying representation in Bolt is a flat array. Each entry in the array contains

a key, value, and distance. The key and value are 8 bytes, while the distance is one

byte. The distance is used to store how far away the key is from its hashed slot.

The distances are all initialized to zero. There is also a special sentinel value for

empty slots called EMPTY and one for slots locked by a concurrent operation called

LOCKED.

In our first description, we omit the resizable aspects of Bolt for simplicity. Chap-

ter 5 addresses the resizable version.

3.2.2 The underlying base algorithm

As the base of our hash table, we implemented a highly optimized Robin Hood hash

table. One of the most notable modifications is that we don’t allow wraparounds;
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instead we allocate a buffer region to deal with elements that hash to the end of the

array. This approach is outlined by Ska’s Robin Hood [12].

The construction is as follows: we create a table of size 𝑥+𝐶 log 𝑥 where 𝑥 is the

“capacity” of the hash-table, and 𝐶 > 1 is a constant. The hash function only uses

size 𝑥, so hash(𝒦) < 𝑥 for all 𝒦 where 𝒦 is a key corresponding to an entry to the

hash-table. We then disallow wraparound and use the extra space at the end instead

for elements that would have wrapped around. For reasonable load factors, we can

bound the extra space by 𝑂(log 𝑛) by noting that serial Robin Hood runs in 𝑂(log 𝑛)

with high probability for insertion and deletion and iterates through memory linearly

[3].

This approach has a few advantages:

1. It simplifies the approach for locking because it preserves global order of indices.

Wraparound results in a loss of global order in indices, which can cause deadlock

if not handled properly.

2. Compact code is generated for finding keys (no wraparound checks), resulting

in better performance.

The main disadvantage is that support for resizing is necessary, although it is ex-

tremely unlikely for the buffer to fill up before the table does.

3.2.3 Terminology

Distance The array index difference between the slot the key is stored in

and the slot it hashes to.

Distance-zero Index: The index that the key hashes to, i.e., the ideal slot for the key.

Table: The underlying array used in the hash table.

Entry: Entry is a structure containing the key, value associated with it,

and the probe distance. This are represented by key, value, dist

respectively. It is used to represent members of the hash table.
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3.3 Hash table API

insert(key, val) Inserts the key in the table with the value provided if

the key doesn’t exist. Returns whether the insert was

successful.

InsertOrUpdate(key, val) If the key exists in the table, it overwrites the value.

Otherwise, it inserts the key with the value provided.

find(key) Searches for the key in the table. It returns whether the

key was found, and the value for the key.

delete(key) Deletes the key if it exists, and returns whether the key

was deleted.

3.3.1 Helper functions

Here we provide a high-level description of the helper functions utilized internally by

the hash table API:

locked_insert(entry_to_insert, insert_index)

Inserts the entry into the table using locks at insert_index. It conducts necessary

migration of evicted elements to maintain the Robin Hood invariant. Assumes that

insert_index is the location for the entry that satisfies the Robin Hood invariant.

Caller is responsible for acquiring a lock on insert_index, and releasing locks grabbed

by the call.

distance_zero_insert(key, val, dist_zero_slot):

Attempts to insert the key at the index that the key hashes to, the dist_zero_slot,

atomically. Returns if it was successful in inserting the key and whether the key was

found in the table (in which case it is not inserted).

find_next_index_lock(manager, start_index, key, *distance_key):

Note *distance_key is a pointer, and is modified by this function. Searches for
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key starting from start_index using the Robin Hood invariant, locking indices before

accessing them. Assumes distance_key is the current distance of key from its hash

slot. Computes the insert index, which is where the key would have been inserted, and

updates distance_key to correspond to the distance from the insert index. It returns

the insert index and whether the key was found in the table. Caller is responsible for

releasing locks.

get_thread_lock_manager():

Returns the lock manager for the thread.

compare_and_set_key_val(index, prev_key, new_key, new_val):

Atomically checks the key located at index and if it matches prev_key, it atomi-

cally changes the entry stored at that index to new_key and new_val. Returns the

current key and val at the index before the change.

do_atomic_swap(swap_entry, index):

Does an atomic swap between the entry at the index provided and swap_entry.

Returns the previous entry.
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Chapter 4

Algorithm Details

In this chapter, we describe the algorithmic details of Bolt. Section 4.1 explains how

insert and InsertOrUpdate work. Section 4.3 outlines delete. Finally, Section 4.4

explains the find operation.
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4.1 Insertion

4.1.1 Distance zero insert

Algorithm 1: distance_zero_insert(key, val, dist_zero_slot): returns if

key is inserted, and if it exists.

1 Entry entry_to_insert = {.key = key, .val = val, .dist = 0}

2 key_exists = false

3 inserted = false

4 if table[dist_zero_slot].key == EMPTY then

5 p = compare_and_set_key_val(index, EMPTY, {.key = key, .val = val

})

6 if p == EMPTY then

7 inserted = true

8 end

9 end

10 if table[index].key == key then

11 key_exists = true

12 end

13 return inserted, key_exists;

Algorithm 1 shows the pseudocode for distance zero insert. distance_zero_insert

first checks if dist_zero_slot (the hash slot of the key) is empty. If so, it attempts to

claim this entry to insert the key atomically. If it is successful, it can return that the

key was inserted and thus does not exist. Otherwise, it checks if the dist_zero_slot

key matches the key. If so, then it returns that the key exists and that it was not

inserted. Otherwise, it returns failure, indicating to the caller to try the insert in a

different way.
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4.1.2 Insert

Algorithm 2: insert(key, val): returns true if key was not found, and thus

was inserted, and false otherwise.

1 index = h(k)

2 is_inserted, key_exists = distance_zero_insert(key, val, index)

3 if is_inserted then

4 return true

5 end

6 if key_exists then

7 return false

8 end

9 manager = get_thread_lock_manager()

10 entry_to_insert = {.key = key, .val = val, .dist= 0}

11 next_index, found = find_next_index_lock(manager, index, key,

&entry_to_insert.dist)

12 if found then

13 manager.release_all_locks();

14 return false

15 end

16 locked_insert(entry_to_insert, next_index)

17 manager.release_all_locks()

18 return true

Algorithm 2 shows the pseudocode for insert. Insertion first attempts a distance

zero insert. If that inserts the key, then it returns successfully. If it finds the key

already exists, then it returns insert failed.

If both are not conclusive, then it has to trigger the slow path to insert the key. This

proceeds in much the same way as the serial insertion. First, it checks if the key

exists in the table. If it exists, then it returns that the key was found. Otherwise, it

invokes locked_insert with the index that the key that is inserted should swap with.

It then releases all the locks that were grabbed from calling locked_insert and then
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returns that the key was successfully inserted.

4.1.3 Locked Insert

Algorithm 3: locked_insert(entry_to_insert, swap_index)

1 swap_index = insert_index

2 while true do

3 entry_to_insert = do_atomic_swap(entry_to_insert, swap_index);

4 if entry_to_insert.key == EMPTY then

5 return true

6 end

7 swap_index = find_next_index_lock(manager, swap_index, key,

entry_to_insert.dist)

8 end

Algorithm 3 shows the pseudocode for locked_insert. Locked insert proceeds very

similarly to the part of the serial insert procedure that displaces existing keys to

satisfy the Robin Hood invariant. It assumes that a lock has already been grabbed

on insert_location. In a loop, It swaps the key that is being moved with the entry at

swap_index (initially insert_index) atomically so it can properly handle a concurrent

distance zero insert / InsertOrUpdate. If the index that was swapped with contained

an EMPTY entry, then it returns as it didn’t displace an existing key. Otherwise, it

identifies the next index, which can swap with the displaced key using the robin-hood

invariant by using find_next_index_lock. It then goes on to repeat the procedure

and move the displaced key.
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4.2 InsertOrUpdate

Algorithm 4: InsertOrUpdate(key, val)

1 manager = get_thread_lock_manager()

2 index = h(k)

3 i = index

4 for ( dist = 0; table[index].distance >= dist; ++dist, ++i ) {

5 while table[i].key == key do

6 prev_key, prev_val = compare_and_set_key_val(index, key, key,

val)

7 if prev_key == key then

8 return;

9 end

10 end

11 }

12 is_inserted, is_found = distance_zero_insert(key, val, index)

13 if is_inserted then

14 return

15 end

16 entry_to_insert = {.key = key, .val = val, .dist= 0 }

17 next_index, found = find_next_index_lock(manager, index, key,

&entry_to_insert.dist)

18 if found then

19 table[next_index].val = val

20 manager.release_all_locks();

21 return

22 end

23 locked_insert(entry_to_insert, next_index)

24 manager.release_all_locks();

25 return
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Algorithm 4 shows the pseudocode for InsertOrUpdate. InsertOrUpdate first

searches for the key using the Robin Hood invariant without acquiring any locks

to update it if it exists. If the key is found, it attempts to change the value atomi-

cally. There is a subtle check to see if the procedure can return: it checks if the key

present at that location when the CAS executed is the same key that it is updating.

If so, it can return even if the CAS was unsuccessful since another update must have

updated the key, and therefore the updates cancel out. Note that we use a strong

CAS that cannot spontaneously fail.

If the key is not found through the search, it must trigger the slow path to in-

sert/update the key. Note that this does not mean the key does not exist in the

table; it might just have been moved around by concurrent operations.

It then attempts a distance zero insert. If this is successful in inserting the key, then it

can return. Otherwise, it enters the slow path. It checks if the key exists in the table

using find_next_index_lock. If it exists, then it updates the value of the key. If it

does not exist, then it will insert the key. It does this by invoking locked_insert with

the index that the key that is to be inserted should swap with. It then releases all

the locks grabbed from find_next_index_lock and locked_insert and then returns

that the element was inserted.
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4.3 Deletion

Algorithm 5: delete(key, val)

1 index = h(k)

2 Entry entry_to_delete = {.key = key, .val = val, .dist = 0}

3 index, found = find_next_index_lock(index,key, &entry_to_delete.dist)

4 if !found then

5 manager.release_all_locks();

6 return false

7 end

8

9 manager = get_thread_lock_manager()

10 next_index = index+1

11 manager.lock(next_index)

12

13 while table[next_index].distance > 0 do

14 entry_to_move = do_atomic_swap(LOCKED_ENTRY, next_index)

15 table[current_index] = entry_to_move

16 table[current_index].dist −= 1

17 current_index = next_index

18 next_index += 1

19 end

20 table[current_index] = EMPTY_ENTRY

21 manager.release_all_locks();

22 return true

Algorithm 5 shows the pseudocode for delete. In deletion, it first executes a locked

search using FindNextIndex to find the key in the table. If it does not exist, then

it can return failure. Otherwise, it starts the shift algorithm to eliminate the hole

created by the delete as in the serial algorithm. Care has to be taken to maintain

correctness in the concurrent context for shifting elements back.
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For each element it has to shift back, it first takes the lock corresponding to

the index it wants to move back, and then atomically swap the entries with the

LOCKED key, which will make sure the key will not change due to a concurrent

InsertOrUpdate operation (a distance zero insert cannot conflict because an entry

inserted by a distance zero insert would not be shifted back). Then it shifts it back

by one. This repeats until it encounters an element that does not need to be shifted

back either because it is EMPTY or in its distance zero slot.

4.4 Find

Algorithm 6: find_speculate(key, start_index)

1 speculate_success = false

2 val = 0

3 found = false

4 index = start_index

5 for ( dist = 0; table[index].distance >= dist; ++dist, ++index ) {

6 manager.speculate_index(index)

7 if table[current_index].key == key then

8 val = table[current_index].val

9 found = true

10 break

11 end

12 }

13 speculate_success = manager.finish_speculate()

14 return val, found, speculate_success
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Algorithm 7: find(key): Returns value of the key, and whether it was found

1 index = h(k)

2 zero_dist_key_pair = atomic_load_key_val(index);

3 if zero_dist_key_pair.key == key then

4 return zero_dist_key_pair.val, true;

5 end

6 if zero_dist_key_pair.key == EMPTY then

7 return -1, false;

8 end

9 val,found,speculative_success

10 tries = 0

11 while tries < MAX_TRIES do

12 tries++

13 val,found,speculative_success = Find_speculate(key, start_index)

14 if speculative_success then

15 return val, found

16 end

17 end

18 entry_to_find = {.key = key, .val = val, .dist = 0}

19 index,found = find_next_index_lock(index,key, &entry_to_find.dist)

20 val = table[index]

21 manager.release_all_locks();

22 return val,found

Algorithm 7 shows the pseudocode for find. In find, it first attempts a distance

zero find: it loads the entry in the table located at the hash slot of the key using an

atomic load, getting both the key and value atomically. If the key is the requested key,

then it returns the value. If the key is EMPTY ( which indicates this slot is empty),

it returns not found. Otherwise, we enter the slow path of find. This executes a

speculative search for the key. This proceeds as follows:

It does the serial Robin Hood search algorithm, but before looking at a new
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index, it calls speculate on that index, which internally verifies the lock for that

index is free and copies the version number. After the search completes following the

normal serial Robin Hood find algorithm, speculative() is called, which will return

if none of the locks that were speculated on earlier were taken at any point after

they were speculated on based on their recorded version number. This ensures that

no concurrent modify operations were invoked that could have moved keys around,

causing find to return that the key did not exist when the key was actually present

in the table.

If speculating succeeds, then it returns as in the serial algorithm. Otherwise,

the speculative search is repeated a constant number of times. If it fails, then find

executes a locked search using find_next_index_lock. It then releases all the locks

acquired and then returns the result.
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Chapter 5

Correctness

In this section, we show that Bolt is linearizable through an informal proof. We

discuss each function and argue correctness. We establish the correctness of insertion

in section 5.1, deletion in section 5.2, and InsertOrUpdate in section 5.3. Finally, we

prove the correctness of find in section 5.4.

5.1 Insertion

Lemma 1. A distance zero insert that inserts the key is linearizable with respect to

a concurrent Insert.

Proof. Let 𝒵 be the distance zero insert, and ℒ be the slot corresponding to 𝒵.

Consider a concurrent insert operation ℐ that is operating over the same region. The

only way ℐ can conflict with 𝒵 is if it attempts to modify ℒ.

If ℐ also attempts to insert on ℒ, then its CAS will fail since 𝒵 succeeded. If 𝒵

succeeds, then it executes an atomic swap with ℒ. This atomic swap only succeeds

when it atomically reads ℒ’s value and sets it to the target value. Thus, ℐ will see the

most up-to-date value for ℒ. Therefore, it must appear that ℐ occurs after 𝒵.

Lemma 2. A distance zero insert is linearizable with respect to a concurrent Inser-

tOrUpdate.

Proof. All line numbers are in reference to the pseudocode for InsertOrUpdate. Lemma 1
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handles the case where InsertOrUpdate inserts the key. We only have to consider the

case where InsertOrUpdate updates the value of the key because it already exists.

There are two ways they can happen: InsertOrUpdate finds the key and does a

successful CAS at line 6 or it updates it after locking at line 19. If InsertOrUpdate

happens through the CAS, then the CAS will linearize them. If it’s the latter, they

cannot conflict because distance zero insert only attempts CASing empty keys.

Lemma 3. A distance zero insert is linearizable with respect to a concurrent Delete.

Proof. Note that a concurrent delete will not shift an element inserted by a distance

zero insert (unless a future insert moved the element) since the delete procedure only

shifts elements with non zero distance. So the only collision possible is if a distance

zero insert and delete are operating on the same key. In that case, if the concurrent

delete does not see the key inserted, then it can be linearized to come before. If it

does, it will delete it and is linearized later than the distance zero insert.

Lemma 4. A locked insert is linearizable with another locked insert / deletion / and

the locked part of InsertOrUpdate.

Proof. First, note that locked operations take the indices’ lock before they read /

modify them, and they do not release locks until the operation is complete. Further

lock operations take locks of increasing indices, preventing deadlock. Note that even

though deletion shifts elements back, it still takes locks of increasing indices. Let the

two operations be G and F. WLOG, assume F has taken a lock of a later index than

G. Then if G,F end up visiting the same index at some point through their procedure,

then G has to stop and wait for F to complete because F would be holding the lock

for that index. Further, G will not see any of the read or modified locations until F

releases the locks.

Lemma 5. A locked insert is linearizable with respect to a concurrent InsertOrUpdate.

Proof. Lemma 1 can be easily extended for the distance zero insert attempt by Inser-

tOrUpdate (line 12) and the loop that searches for the key and does a CAS to update
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it. The only subtlety to consider is the CAS at line 6 can succeed without actually

updating the value as long as the key doesn’t change when it’s CASed. However, this

can’t happen due to a concurrent insert since an insert always changes both the key

and the value atomically. Starting from line 17, InsertOrUpdate acquires locks so

we can apply Lemma 4. Therefore locked insert and InsertOrUpdate are linearizable

with each other.

Theorem 1. Insert is linearizable with all concurrent modify operations.

Proof. There are two ways an insert could complete: through a distance zero insert

or a locked insert. Both are linearizable with all other modify operations based on

the lemmas above. Therefore insert is linearizable.

5.2 Deletion

Lemma 6. Delete is linearizable with respect to a concurrent InsertOrUpdate.

Proof. Lemma 3 can be extended to handle the linearization of the distance zero

insert attempt by InsertOrUpdate (line 12). Starting from line 17, InsertOrUpdate

acquires locks so we can apply Lemma 4. The remaining case deals with CAS that

updates values in InsertOrUpdate for an existing key. Delete handles by making sure

that it first atomically reads the key before moving a key and swaps it with LOCKED.

This will result in line 6 in concurrent InsertOrUpdate that CASes a key that is being

moved by delete in either succeeding and have it changes properly moved by Delete,

or failing which are both linearizable.

5.3 InsertOrUpdate

Lemma 7. InsertOrUpdate is linearzable if it executes an update for the key.

Proof. Let the InsertOrUpdate procedure be ℐ. Line numbers are in reference to

Pseudocode for InsertOrUpdate. For ℐ to return successfully after updating the key,
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there are two possibilities: it has to either execute the CAS at line 6 with the key not

changing or execute a store at line 19 after acquiring locks.

In the first case, if the previous key has not changed, it means that either the

CAS was successful, at which point its linearizable, or a concurrent modify opera-

tion updated the value of the key, making I’s CAS fail. Note that the concurrent

operation can’t be a Delete or Insert since those operations change the key if they

change the value atomically. Therefore the concurrent modify operation is another

InsertOrUpdate, which would imply that it is updating the same key. Therefore it is

linearizable.

The second case is similar to the first, except that the second case doesn’t check if

the key doesn’t change and does a blind store. At this point, ℐ has already grabbed

locks, so the only operations that could be modifying the same memory are ones

that don’t take any locks. These are either distanceZeroInsert in which Lemma 2

applies or a concurrent InsertOrUpdate, in which case the analysis for the first case

applies.

Theorem 2. InsertOrUpdate is linearizable with respect to all concurrent modify

operations.

Proof. InsertOrUpdate is linearizable with all modify operations: its linearizable with

Delete by Lemma 6, with a concurrent Insert by Theorem 1, and with a concurrent

InsertOrUpdate that does an insert by Theorem 1 and an update by Lemma 7.

5.4 Find

Lemma 8. A distance zero find that finds the key is linearizable.

Proof. All modify operations atomically update both the key and value. Therefore

since a distance zero find does an atomic load of the key and value, if it finds the

key its looking for , the key must exist in the table at some point after the invoca-

tion of the find and before its return (it might be promptly deleted before the find

returns, however). If the key was deleted or moved, it would have been replaced with
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EMPTY or a different key respectively. Therefore, a distance zero find that finds a

key linearizable.

Lemma 9. A distance zero find that returns the key is not found is linearizable.

Proof. Let 𝑖 be the index that the key 𝒦 hashes to (the first index searched). A

distance zero find returns key not found if it finds that table[𝑖].key represent the

EMPTY sentinel. Thus it’s necessary that 𝒦 doesn’t exist later in the table / is not

being moved for this to be correct.

Note that this holds trivially in the serial case because of the Robin Hood invariant

(otherwise, the key would be unreachable). Therefore we only have to consider con-

current operations that could temporarily move key 𝒦 while leaving index ⟩ empty.

The two types of operations that move keys are locked inserts or locked deletes. A

distance zero insert does not move keys, so it can safely be ignored. Only one oper-

ation can move key 𝒦 at a time because the operations need to acquire a lock and

find loads table[𝑖] atomically.

If 𝒦 is in the process of being moved later by an insert operation J, which inserts

key ℒ (for ℒ ≠ 𝒦), then it’s not possible for index 𝑖 to be empty. This is because

if 𝒦 was initially at distance zero, then ℒ would atomically replace it first, so index

𝑖 wouldn’t be empty. Otherwise, if 𝒦 had a probe distance > 0, there must not be

empty slots before 𝒦 starting from index 𝑖 as this would violate the Robin Hood

invariant.

If there is a concurrent delete operation that makes index 𝑖 empty, it would be the

last step in the delete procedure. After this, the delete operation is done. Because

delete sets a slot empty after moving all the relevant keys, If 𝒦 exists, there would

be an empty slot between it, violating the Robin Hood invariant. Therefore, 𝒦 is not

within the hash table.
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Chapter 6

Resizing

In this chapter, we discuss how to support resizing in Bolt. Section 6.1 addresses

relevant background. Section 6.2 addresses the resizing heuristics employed by Bolt.

Finally, section 6.3 outlines the resize protocol.

6.1 Background

Resizing is the scheme that hash tables implement to deal with an unknown number

of keys that will be resident in the table in the future at initialization. In this thesis,

we focus on a resize that increases the table’s size due to insertions. Reducing the

size of the table triggered by too many deletes is left for future work.

The standard approach for resizing is as follows: when the hash table’s size crosses

a certain fraction, the hash table internally triggers a resize of the underlying table.

In general, the constant used in deciding when to resize is implementation dependant.

It represents a trade-off between how often the table resizes and the maximum load

factor of the table.

When a resize is triggered, the hash table creates a new array of a larger size

and copies the new table’s old data. In the serial case, resizing a table is relatively

straightforward. A counter is kept that counts the number of keys that are currently

in the table. This is updated by the insert and delete operations. If this counter

exceeds the threshold in an insert operation, a resize is triggered, which inserts the
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data into a bigger table. The bigger table is a constant multiple of the old in size so

that the work for resizing can be amortized based on previous inserts to be 𝑂(1).

6.1.1 Challenges

Unlike serial resizing, concurrent resize is challenging to implement correctly in a per-

formant manner. It is non-trivial to keep track of the table’s size as the basic solution

of using an atomic counter updated by concurrent threads introduces a single point of

contention, which is not feasible due to the cache coherency protocol in modern mul-

ticore architectures. There also needs to be a protocol to deal with multiple threads

deciding to resize and concurrent operations when a resize is initialized. It is also

necessary to distribute work among threads dynamically. Finally, care must be taken

to minimize contention when moving data from the old table to the new table.

6.2 Bolt Resizing Scheme

The main design principle we applied for Bolt is to maximize resizing performance

while minimizing the performance cost incurred to enable resizing. Our resize pro-

tocol achieves this with an overhead of < 5% for the table’s operations while still

outperforming all other algorithms on the resizing benchmark. Our protocol for re-

sizing is inspired by Growt [8]. We will first address several subproblems and then

outline our resizing algorithm.

6.2.1 Heuristics for Resizing

Keeping an exact count of the number of keys in a concurrent table usually requires

a shared variable or counting networks, which are too expensive to incorporate in a

hash table. Instead, we developed a heuristic to allow us to resize without knowing

the table’s size in a fast and scalable manner, taking advantage of the Robin Hood

heuristic. We designed our heuristic to work well for load factor above 25%, which

is sufficient for resizing as most tables don’t resize below that load factor since that
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would be too frequent and unnecessary.

The goal of resizing is two folds: to avoid performance deterioration and avoid

running of space. The obvious way to do this is by keeping track of the load factor

directly. This predicts the table’s performance and trivially avoids running out of

space (or some direct approximation). However, that is not strictly necessary, and

our table exploits this. Instead, we keep a counter that allows us to estimate the hash

table’s performance while ensuring that it doesn’t run out of space.

We do this by keeping track of the number of keys that have distance ≥ 1 in

the table per lock segment. This count is significantly cheaper to compute than

the size of the table because it only changes when an inserted key collides with an

existing key, while the size changes every time there is an insert. This count gives a

sense of how many keys are not being placed at their original spot, giving a proxy

to estimate the table’s performance. If more keys are placed in their hashed slot,

then the table has low probe distance, which implies good performance. Conversely,

if more are placed away from their hashed slot, then we expect the probe distance

to be higher. Because only keys with dist ≥ 1 contribute to the probe distance, we

can use this to give a lower bound on the probe distance. The Robin Hood invariant

is also key to making this measure more accurate: Robin Hood kicks out keys from

their original slot as load factor increases, which means we get a stronger correlation

between load factor and distance ≥ 1 keys. It’s worth noting that one could take a

similar approach in linear probing with some metadata, but we believe it would be a

worse measure. This is because linear probing does not kick out existing keys from

their hashed slot as the load factor increases.

We combine this heuristic with one of the conditions that ska [12] uses for resizing.

In particular, we also resize the table when the probe sequence length reaches a

maximum size. As outlined in section 3.2.2, we size our table to have an overflow

buffer room to avoid having to wrap around. We set the size of this wrap-around

region to be bigger than the maximum size so that a resize is triggered if an insert

ends up reaching the end of the buffer. This avoids the case when an insert can’t find

a slot in the table.
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By combing the two heuristics, we can satisfy both conditions: by bounding the

number of distance ≥ 1 keys we can get good performance, and by the max probe

length heuristic, we can guarantee to resize before inserts fail because they can’t find

a spot in the table, while also guaranteeing that no wrap around is necessary.

The overhead of keeping track of distance ≥ 1 count is minimal in Bolt because

it only has to be updated when keys are moved from distance zero to distance one,

which requires locks in our approach. Therefore by incorporating the counters into

the lock segments, we can update them when the locks are released, requiring no

extra synchronization.

6.2.2 Distance ≥ 1 count and load factor

It turns out there is a strong relationship between the load factor the number of keys

with distance ≥ 1 that allows a very accurate prediction of load factor > 0.25. The

mathematical intuition for this comes from this analogy: we can think of inserting

a new element as randomly picking an index in the table (assuming a uniform hash

function), and from there doing an insert procedure. The probability that the distance

≥ 1 count up is related to the number of keys existing in the table (i.e the load factor).

Each insert repeats this experiment. Note that if we assume the hash function is

random, this is independent of the key distribution that the user employs (ignoring

duplicates), so we expect this to converge regardless of the underlying key distribution

for a sufficient large number of keys in the table.

6.3 Resize Outline

Algorithm 8 outlines the resize protocol. Resize is triggered once the distance ≥ 1

load factor of a lock segment in the table exceeds 𝜆, or the max probe distance exceeds

𝛾. We choose 𝜆 to correspond to a load factor of 0.5 exploiting 6.2.2. We set 𝛾 to

256, which is the maximum buffer size. Note that technically 𝛾 should be O(log 𝑛),

however, since the maximum size of memory is 264, 256 is a sufficient upper bound. To

facilitate resizing, a key structure is the thread handler, which is local to each thread.
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This is a wrapper for Bolt, and all accesses to Bolt go through it. To support resizing,

we augmented Bolt to have a version number, and a shared counter representing

the outstanding references to the table and is used to manage the life cycle.

When a thread first access Bolt, it creates a new thread handler, acquires the

global lock, copies the pointer of the latest version of Bolt, increments, and then

release the lock. It keeps this handler until it’s finished using the table. The lock

is necessary to ensure the table is not freed in the middle of a thread creating the

thread handler object. However, since this only happens once and future accesses

to the table by this thread don’t acquire the locks, it doesn’t impact performance.

During resizing, care must be taken to avoid elements being changed/inserted/deleted

as the table is migrated. To accomplish this, we drain all locks in the table in parallel,

which blocks any operations that take locks. This introduces a complication for table

operations such as insert because a resize can take locks out of order. To handle

this, we changed operations that take locks to attempt instead to acquire the lock.

If it fails, then they check if a resize has started. If so, then they undo the changes

they made to the table. Since their changes are not visible yet, this does not affect

correctness.

To handle the fast paths which don’t take locks (such as distance zero insert and

insert or update), we use the following protocol which we refer to as the migrator

protocol : each entry in the table is atomically replaced with a LOCKED entry by

a resize operation. This entry is then migrated in place into the new table. This

requires no modification of the fast path operation that doesn’t take locks because

they are already designed to handle locked entries.

Growt [8] implements a similar approach; however ours avoids reducing the keyspace

by a factor of two, which is necessary for their approach as they have a special marked

bit. They describe an extension of their table to get around this, but they don’t im-

plement it, and as described, it would seem to have significant performance overhead.

Each thread keeps their local table up-to-date with the latest table by checking

if the local table has initialized/undergone resizing before executing an operation. If

so, they join resizing if it’s still in progress, decrement the counter on their local table
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(freeing it if it reaches zero), and update their local table to the latest version

6.3.1 Resize Steps

Resize is triggered once the distance ≥ 1 load factor of a lock segment in the table

exceeds 𝜆 or the max probe distance exceeds 𝛾. We choose 𝜆 to correspond to a load

factor of 0.5 exploiting 6.2.2. We set 𝛾 to 256. Below is the procedure to handle

resizing:
Algorithm 8: Resize Algorithm

1 If a thread detects the condition for resizing, it attempts to start a resize. If

its the first thread to do so, it becomes the leader. Otherwise it helps with

resizing.

2 The leader initializes that a resize has started by setting a global flag.

3 Threads coordinate in grabbing all the locks in the table.

4 The leader creates the next table and allocates memory for it.

5 Threads coordinate in initializing the next table with EMPTY entries.

6 Threads coordinate in migrating elements from the old table to next table.

Elements from the old are replaced with a LOCKED entry, and then moved

to the new table with synchronization (they are treated as a concurrent

insert into the table).

7 The leader publishes the next table as the most recent table.

Correctness

Here we summarize the correctness argument established throughout section 6.3.

What is necessary for correctness is:

1. All keys are migrated into the new table.

2. Operations that happen concurrently with resize are handled properly.

3. Threads are aware of the new version of the table after it resizes so that they

can operate on the latest version.
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By draining the locks first, no locked operations can modify the table once the

migration has started. Because of the migrator protocol, operations that don’t use

locks are prevented from modifying the table while a migration is in progress.

Draining locks can cause a locked operation that has already modified memory

to fail, but because this operation’s changes are not visible yet, the operation first

undoes its changes and join resizing. These two combined allow (1) to hold.

Before starting, each operation checks for the most recent version of the table. If

the table changes after the operation starts, then there is two possibilities. The first is

that the operation completes on the old table, in which case the change is guaranteed

to be in the new table if it’s a modified operation by (1). Or if its find operation,

then it’s can be linearized to come before the resize since it’s concurrent. The second

possibility is that it is interrupted before completing by the resize, in which case it

will undo its changes, join resizing, and reattempt its operation on the new table.

This results in (2) and (3) holding.
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Chapter 7

Experimental Evaluation

We performed various experiments to investigate the performance of Bolt and com-

pared the results with other concurrent hash tables. We start with a description of

the environment for the test and discuss our competitors in section 7.1. We describe

results for operations in isolation in section 7.2. We go over mixed results in section

7.3 and contention results in section 7.4. We discuss results for resizing in section 7.5

and finally compare against K-CAS Robin Hood in section 7.6.

We demonstrate that on a 36-core machine with hyper-threading, Bolt is between

1.57x - 1.73x faster than the fastest publically available non-resizable concurrent hash

table (folklore[8]) and 1.45 - 2x faster than the fastest publically available concurrent

resizable hash table (growt[8]). It also achieves speedups between 15x - 35x over a

highly optimized serial implementation at 36-cores with hyper-threading.

We modified the experiments in Growt [8] that we retrieved from their GitHub

repo [7]. We also used their framework to build the different algorithms we compared

against.
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7.1 Testing Setup

7.1.1 Tested Algorithms

We compare against folklore [8], which is the fastest concurrent hash table. It does

not support resizing or deleting and is based on linear probing. We also compare

against Growt [8], which is a resizable concurrent hash table and the fastest among

tables that support deleting. Its implementation is based on modifying folklore to

support resizing and deletes. Specifically, we compare against their two fastest vari-

ants: uaGrowt and usGrowt. We also compare with Cuckoo [6], which is part of

the libcukoo library; the three variants of Junction [10] (junction_grampa, junc-

tion_linear, junction_leap), which were published by Pershing and are a variant of

open addressing; and the two variants of TBB (tbbHM, TBBUM), hash tables pro-

vided in the popular concurrent library developed by Intel: the Threading Building

Blocks [9]. K-CAS Robin Hood [5] is the only other concurrent implementation of

Robin Hood. However, it’s a hash-set, which does not allow storing a value per key,

and its performance is orders of magnitude slower on our machine than all other algo-

rithms, so we don’t use it for our experiments. We believe its lackluster performance

stems from the lack of portability of K-CAS primitive. We do a back-of-the-envelope

calculation to compare with the results presented in the K-CAS Robin Hood paper

[5].

We report our speedup with respect to Ska Robin Hood [12], which is a state

of the art serial table based on Robin Hood.

7.1.2 Experimental Setup

We evaluate the performance of Bolt on an AWS EC2 c5n.18xlarge machine. It is a

two-socket machine with two Intel Xeon Platinum 8000 Series Processors. Each socket

runs at 3.5 GHz, has 18 cores, and 38 MB of L3 cache. In total, there are 36 cores and

72 hyper-threads. We compiled all programs with gcc 9.3 at -O3 optimization, using

-flto for linking, and -mcx16, -msse4.2 for processor-specific instruction support.
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7.1.3 Test Methodology

We used the test infrastructure used in Growt to conduct benchmarks [7]. Each

test measures the time to execute operations, and we compute each data point by

taking the median of five separate runs after discarding the first one for cache warm-

up. We report absolute speedups of our algorithm on 36 cores with hyper-threading

with respect to Ska [12], a state of the art serial hash table based on Robin Hood

that outperforms Google’s dense hash map. The keys used in the benchmark are

generated ahead of time, and the work is distributed among threads. The inputs are

scattered across the NUMA nodes by threads.

Most of the experiments are performed using uniformly generated keys. We also

use an input with Zipf [4] distribution, which is a skewed distribution for testing

contention.

We first do benchmarks on inserts and finds separately without resizing. This

allows us to get a sense of how the most common table operations scale in isolation

and their overheads. Then we do a mixed benchmark combining finds, insertions, and

deletions. Finally, we test the performance of resizing.

7.2 Single Operation

7.2.1 Insertion

We insert 10M uniform random keys into an empty table that has been sized appro-

priately so that resizing is not required. However, tables that support resizing will

still keep track of how full the table is. This gives an advantage to folklore, which

does not support resizing. The results are presented in the figure 7-1. We note that

Bolt is the fastest across all core counts. It achieves an absolute speedup of 33x on 36

cores with hyper-threading and is 1.61x faster than folklore, our closest competitor.

The performance of Bolt and folklore is comparable up to 18 cores, at which point

NUMA effects kick in and Bolt is able to create a large gap. Note that folklore has a

notable advantage since it does not support resizing.
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Figure 7-1: Insert Benchmark

The next table is uaGrowt, which is 1.74x slower than Bolt. The difference between

usGrowt and uaGrowt is <5%. The next best table is Cuckoo, which is about 4x

slower than Bolt. The best variant of Junction is junction_leap, which is 11x slower

than Bolt. The best variant of TBB for this benchmark is TBBhm; however its

severely outclassed by Bolt and is 43x slower.

7.2.2 Find

We test the performance of both successful and unsuccessful finds on pre-initialized

tables. We expect different performance characteristics since unsuccessful finds of-

ten require looking at more entries in the table. We look up the 10M keys that

were inserted previously in the table (successful finds), as well as 10M random keys

(unsuccessful finds).

The results for successful finds (find+) are presented in 7-2, and unsuccessful finds

(find-) in 7-3 .

Bolt is the fastest across all core counts and achieves an absolute speedup of 25.9
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Figure 7-2: Successful Find (Find+) Benchmark

Figure 7-3: Unsuccessful Find (Find-) Benchmark
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and 24.9 on find- and find+ respectively at 36 cores with hyper-threading. It scales

better with find+ because a successful find requires less memory lookup and memory

bandwidth, which is the main limiting factor for Bolt at high core counts. It is faster

by 1.73x and 1.58x than its closest competitor folklore. The difference in performance

can be explained by the more performant serial implementation of Bolt as well as the

power of the Robin Hood invariant over linear probing (which is used by folklore) in

allowing fast searches and culling searches early for unsuccessful finds.

Bolt is at least 4.4x faster than all other remaining competitors on both find- and

find+. Find- is between 5% - 10% slower than Find+ across all thread counts for

Bolt. Find benchmarks are about two times faster than the insertions for Bolt, as no

writes are required on the fast path.

Figure 7-4: Delete/Insert Benchmark.

60



7.3 Mixed Inputs

Now that we have demonstrated the state of the art performance of inserts and

finds in Bolt, we turn our attention to mixed operation benchmarks that are more

representative of real-world use cases. Because folklore does not support deletions,

it’s omitted from these benchmarks.

7.3.1 Insertion/Delete

To test the performance of the interaction between insertion and deletion, we execute

a test when an insert follows a delete. This keeps the size of the table constant.

More specifically, the table starts prefilled with 2.5M keys, and then the delete of an

existing key is followed by an insert of a random key. This is executed 10M times.

The results are presented in figure 7-4.

Bolt is the fastest across all core counts and achieves an absolute speedup of 15.8x.

The absolute speedup of Bolt is worse than the insert benchmark because deletes do

not have a fast path and require locks. However, even with this limitation, it’s faster

by 2.03x than its closest competitor uaGrowt, and 3.06x faster than usGrowt. Unlike

the previous benchmarks, there is a large gap between uaGrowt and usGrowt. It’s

not clear why this is the case as the overhead in delete between the two approaches

is similar to insert. The performance gap between Bolt and uaGrowt and usGrowt is

wider than insertion because Growt deletes do not reclaim slots and instead initialize

a resize in the future to clean up deleted slots. The next best table is cuckoo, which is

2.61 slower than Bolt. It’s worth noting that cuckoo is actually faster than usGrowt

in this benchmark.

7.3.2 Insert/Find/Delete

In this benchmark, 100M operations are executed among different threads. Each

operation is randomly sampled with probability: 𝑥 finds, (1− 𝑥)/2 inserts, and (1−

𝑥)/2 deletes.

We consider two cases for the mix benchmark: mix_90 ( 90% finds) and mix_50
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( 50% finds). The rest of the operations are equally split between inserts and deletes.

Mix_90 captures the typical real-world case where most operations are finds while

mix_50 represents a more write-heavy operation. Again, folklore is omitted from this

benchmark because it does not support delete.

Figure 7-5: Mix Benchmark. 90% find, 5% delete, 5% insert

Results for mix_90 and mix_50 are presented in figure 7-5 and figure 7-6 re-

spectively. As expected, the throughput is 2x less for mix_50 compared to mix_90

because find heavy workloads scale better on modern cache architectures.

Bolt is again the fastest across all core counts, achieving an absolute speedup of 30x

on mix_90 and 15x on mix_50. Mix_90 scales better because most of the operations

are finds, which scale well on modern multicore architectures. Bolt is faster by 1.45x

and 1.75x than its closest competitor uaGrowt on mix_90 and mix_50, respectively.

Bolt is faster by at least 5.73x on mix_90 and 2.86x on mix_50 compared to other

competitors besides Growt.
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Figure 7-6: Mix Benchmark. 50% find, 25% delete, 25% insert

7.4 Contention

So far, we have considered uniform inputs. However, some real-world use cases exhibit

a skewed distribution, which causes contention in a concurrent hash table. Skewed

distributions are favorable for serial hash tables because of caching effects but are

problematic for concurrent algorithms because of the memory cache coherency pro-

tocol. Traditionally, lock-based algorithms suffer extreme performance deterioration

because a lock can only be grabbed by one thread at a time. Even though Bolt uses

locks, we designed it with optimizations to handle contention.

We use the Zipf distribution for this benchmark, which is a good approximation

of real-world skewness [1]. We generate 10M keys from Zipf using parameter 𝜃 = 0.75

and range 10M. We prefill the table with the 10M keys. We then execute a mixed

benchmark of 90% finds and 10% updates to keys that were prefilled in the table.

The updates overwrite the value of the key in the table to a unique value.

The results are presented in figure 7-7. Bolt is again the fastest across all core

counts and achieves an absolute speedup of 35.77x. It is 1.57x faster than the closest
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Figure 7-7: Contention Benchmark. 90% finds and 10% updates.

competitor folklore and 2x faster than the Growt variants. All other hash tables are

slower by at least a factor of 5.46x. This benchmark demonstrates that Bolt fast

paths for updating and finding keys are triggered with a high enough probability that

contention does not cause performance deterioration.

7.5 Resize

Finally, we run a benchmark that demonstrates the performance of resize. We insert

100M uniform random keys into an empty table that has been sized for 10M keys.

The results are presented in figure 7-8. Bolt is the fastest across all core counts and

achieves an absolute speedup of 33x. It is 1.57x faster than the closest competitor,

uaGrowt. All other tables besides Growt variants are clearly outclassed and are at

least 5x slower.

The throughput for the resize benchmark is lower than the insert benchmark be-

cause resize is a heavy memory bandwidth operation, which is especially problematic
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at high core counts where memory bandwidth is scarce. This is because the threads

will generate large amounts of memory traffic when moving the table. This bench-

mark also pushes the table to a high load factor before the table decides to resize,

causing high probe distances, negatively impacting performance.

Figure 7-8: Resize Benchmark.

7.6 K-CAS Robin Hood Comparison

When we measured K-CAS Robin Hood’s performance in our benchmark suite, we

found it to be orders of magnitude slower than Bolt. We believe this is due to the high

overheads of K-CAS and portability issues. Instead, we present a back-of-the-envelope

calculation to compare Bolt with K-CAS Robin Hood based on numbers reported in

their paper [5]. K-CAS Robin Hood reports results for 10% update between 20% -

40% load factor. This experiment is closest to Mix_90 in section 7.3.2. The machine

used in their benchmark has double the number of cores, and similar single-core

performance as our experiment machine. They achieve a throughout of 500 MOps/s
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at 144 threads. Adjusting for our machine, which has 72 cores, we would expect this

to translate to around 250 MOps/s. Bolt achieves 1400 MOps/s in this benchmark.

Based on these results, we are significantly faster. Note that K-CAS does not store

values since it’s a hash set, which gives it a significant advantage at high core counts

because of memory bandwidth constraints.
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Chapter 8

Conclusion

In this thesis, we introduced Bolt, a resizable concurrent hash table based on Robin

Hood. It achieves state-of-art performance outperforming the fastest publicly avail-

able resizable and non-resizable hash tables.

We show how to support a fast path that doesn’t require locks and a locked path

in a scalable manner. We support resizing in the concurrent setting with minimal

overhead using a heuristic to estimate how full the table is based on counting the

number of displaced keys.

Future work includes expanding our fast path to cover more cases, more optimiza-

tions to deal with contention, developing a lock-free Robin Hood that is competitive

to our algorithm, optimizations to make resize more efficient for a NUMA architec-

ture, and extending our ideas to other serial hash tables that have been traditionally

difficult to parallelize efficiently.
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